Knobbed structures formed from and attached to plant roots, especially of LEGUMES, which result from symbiotic infection by nitrogen fixing bacteria such as RHIZOBIUM or FRANKIA. Root nodules are structures related to MYCORRHIZAE formed by symbiotic associations with fungi.
The usually underground portions of a plant that serve as support, store food, and through which water and mineral nutrients enter the plant. (From American Heritage Dictionary, 1982; Concise Dictionary of Biology, 1990)
The relationship between two different species of organisms that are interdependent; each gains benefits from the other or a relationship between different species where both of the organisms in question benefit from the presence of the other.
PLANTS, or their progeny, whose GENOME has been altered by GENETIC ENGINEERING.
Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.
A hemoglobin-like oxygen-binding hemeprotein present in the nitrogen-fixing root nodules of leguminous plants. The red pigment has a molecular weight approximately 1/4 that of hemoglobin and has been suggested to act as an oxido-reduction catalyst in symbiotic nitrogen fixation.
A plant genus of the family FABACEAE. This genus was formerly known as Tetragonolobus. The common name of lotus is also used for NYMPHAEA and NELUMBO.
The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds.
The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family.
A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.
Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed)
Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals.
The functional hereditary units of PLANTS.
A plant species of the family FABACEAE used to study GENETICS because it is DIPLOID, self fertile, has a small genome, and short generation time.
A family of gram-negative bacteria which are saprophytes, symbionts, or plant pathogens.
A plant species of the family FABACEAE widely cultivated for ANIMAL FEED.
A species of gram-negative, aerobic bacteria that causes formation of root nodules on some, but not all, types of sweet clover, MEDICAGO SATIVA, and fenugreek.
The formation of a nitrogen-fixing cell mass on PLANT ROOTS following symbiotic infection by nitrogen-fixing bacteria such as RHIZOBIUM or FRANKIA.
New immature growth of a plant including stem, leaves, tips of branches, and SEEDLINGS.
An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS.
A genus of gram-negative, aerobic, rod-shaped bacteria usually containing granules of poly-beta-hydroxybutyrate. They characteristically invade the root hairs of leguminous plants and act as intracellular symbionts.
Genus of BACTERIA in the family Frankiaceae. They are nitrogen-fixing root-nodule symbionts of many species of woody dicotyledonous plants.
Concentrated pharmaceutical preparations of plants obtained by removing active constituents with a suitable solvent, which is evaporated away, and adjusting the residue to a prescribed standard.
Subcutaneous nodules seen in 20-30% of rheumatoid arthritis patients. They may arise anywhere on the body, but are most frequently found over the bony prominences. The nodules are characterized histologically by dense areas of fibrinoid necrosis with basophilic streaks and granules, surrounded by a palisade of cells, mainly fibroblasts and histiocytes.
Deoxyribonucleic acid that makes up the genetic material of plants.
A plant family of the order Rhamnales, subclass Rosidae class Magnoliopsida. The plants have a characteristic silvery or rusty-colored sheen, caused by tiny distinctive scales. Flowers have a tubular structure of four sepals. Root nodules host the Frankia (ACTINOMYCETES) nitrogen-fixing symbionts.
Symbiotic combination (dual organism) of the MYCELIUM of FUNGI with the roots of plants (PLANT ROOTS). The roots of almost all higher plants exhibit this mutually beneficial relationship, whereby the fungus supplies water and mineral salts to the plant, and the plant supplies CARBOHYDRATES to the fungus. There are two major types of mycorrhizae: ectomycorrhizae and endomycorrhizae.
A plant genus of the family FABACEAE. It is distinct from Sweet Clover (MELILOTUS), from Bush Clover (LESPEDEZA), and from Red Clover (TRIFOLIUM).
A species of gram-negative, aerobic bacteria that is found in soil and which causes formation of root nodules on some, but not all, types of field pea, lentil, kidney bean, and clover.
A plant genus of the family FABACEAE that contains kukulkanin, a CHALCONE.
Processes orchestrated or driven by a plethora of genes, plant hormones, and inherent biological timing mechanisms facilitated by secondary molecules, which result in the systematic transformation of plants and plant parts, from one stage of maturity to another.
A plant genus in the family FABACEAE which is the source of edible beans and the lectin PHYTOHEMAGGLUTININS.
A variable annual leguminous vine (Pisum sativum) that is cultivated for its rounded smooth or wrinkled edible protein-rich seeds, the seed of the pea, and the immature pods with their included seeds. (From Webster's New Collegiate Dictionary, 1973)
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.
A plant genus of the family FABACEAE. The gums and tanning agents obtained from Acacia are called GUM ARABIC. The common name of catechu is more often used for Areca catechu (ARECA).
Parts of plants that usually grow vertically upwards towards the light and support the leaves, buds, and reproductive structures. (From Concise Dictionary of Biology, 1990)
Plants or plant parts which are harmful to man or other animals.
The part of a tooth from the neck to the apex, embedded in the alveolar process and covered with cementum. A root may be single or divided into several branches, usually identified by their relative position, e.g., lingual root or buccal root. Single-rooted teeth include mandibular first and second premolars and the maxillary second premolar teeth. The maxillary first premolar has two roots in most cases. Maxillary molars have three roots. (Jablonski, Dictionary of Dentistry, 1992, p690)
A number of small lung lesions characterized by small round masses of 2- to 3-mm in diameter. They are usually detected by chest CT scans (COMPUTED TOMOGRAPHY, X-RAY). Such nodules can be associated with metastases of malignancies inside or outside the lung, benign granulomas, or other lesions.
A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.
A plant genus of the family FABACEAE that is a source of SPARTEINE, lupanine and other lupin alkaloids.
Basic functional unit of plants.
The relationships of groups of organisms as reflected by their genetic makeup.
The genetic complement of a plant (PLANTS) as represented in its DNA.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Any of the hormones produced naturally in plants and active in controlling growth and other functions. There are three primary classes: auxins, cytokinins, and gibberellins.
The parts of plants, including SEEDS.
A plant genus of the family BETULACEAE that is distinguished from birch (BETULA) by its usually stalked winter buds and by cones that remain on the branches after the small, winged nutlets are released.
A species of gram-negative bacteria and an nitrogen inoculum that displays a high intrinsic tolerance to acidity.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
An organism of the vegetable kingdom suitable by nature for use as a food, especially by human beings. Not all parts of any given plant are edible but all parts of edible plants have been known to figure as raw or cooked food: leaves, roots, tubers, stems, seeds, buds, fruits, and flowers. The most commonly edible parts of plants are FRUIT, usually sweet, fleshy, and succulent. Most edible plants are commonly cultivated for their nutritional value and are referred to as VEGETABLES.
Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments.
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
A plant genus of the family FABACEAE.
An order of the ANGIOSPERMS, subclass Rosidae. Its members include some of the most known ornamental and edible plants of temperate zones including roses, apples, cherries, and peaches.
Acetic acid derivatives of the heterocyclic compound indole. (Merck Index, 11th ed)
Paired bundles of NERVE FIBERS entering and leaving the SPINAL CORD at each segment. The dorsal and ventral nerve roots join to form the mixed segmental spinal nerves. The dorsal roots are generally afferent, formed by the central projections of the spinal (dorsal root) ganglia sensory cells, and the ventral roots are efferent, comprising the axons of spinal motor and PREGANGLIONIC AUTONOMIC FIBERS.
The gourd plant family of the order Violales, subclass Dilleniidae, class Magnoliopsida. It is sometimes placed in its own order, Cucurbitales. 'Melon' generally refers to CUCUMIS; CITRULLUS; or MOMORDICA.
An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
Members of the group of vascular plants which bear flowers. They are differentiated from GYMNOSPERMS by their production of seeds within a closed chamber (OVARY, PLANT). The Angiosperms division is composed of two classes, the monocotyledons (Liliopsida) and dicotyledons (Magnoliopsida). Angiosperms represent approximately 80% of all known living plants.
Plant hormones that promote the separation of daughter cells after mitotic division of a parent cell. Frequently they are purine derivatives.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A plant genus of the family MYRICACEAE. Members contain myricanol. The common name of bayberry is similar to the name barberry which is used for BERBERIS and MAHONIA.
A plant genus of the family FABACEAE. Some Pachyrhizus have been reclassified to PUERARIA. Do not confuse with yam (IPOMOEA; or DIOSCOREA) or African yam bean (SPHENOSTYLIS).
An endosymbiont that is either a bacterium or fungus living part of its life in a plant. Endophytes can benefit host plants by preventing pathogenic organisms from colonizing them.
A cone-shaped structure in plants made up of a mass of meristematic cells that covers and protects the tip of a growing root. It is the putative site of gravity sensing in plant roots.
A plant genus of the family SOLANACEAE. Members contain NICOTINE and other biologically active chemicals; its dried leaves are used for SMOKING.
A class in the phylum PROTEOBACTERIA comprised mostly of two major phenotypes: purple non-sulfur bacteria and aerobic bacteriochlorophyll-containing bacteria.
An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1.
The unconsolidated mineral or organic matter on the surface of the earth that serves as a natural medium for the growth of land plants.
Inorganic compounds that include a positively charged tetrahedral nitrogen (ammonium ion) as part of their structure. This class of compounds includes a broad variety of simple ammonium salts and derivatives.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.
The inherent or induced capacity of plants to withstand or ward off biological attack by pathogens.
A genus of gram-negative, aerobic, nonsporeforming rods which usually contain granules of poly-beta-hydroxybutyrate. (From Bergey's Manual of Determinative Bacteriology, 9th ed)
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Peroxidases that utilize ASCORBIC ACID as an electron donor to reduce HYDROGEN PEROXIDE to WATER. The reaction results in the production of monodehydroascorbic acid and DEHYDROASCORBIC ACID.
Resorption in which cementum or dentin is lost from the root of a tooth owing to cementoclastic or osteoclastic activity in conditions such as trauma of occlusion or neoplasms. (Dorland, 27th ed)
An order of gram-positive, primarily aerobic BACTERIA that tend to form branching filaments.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC 6.3.1.2.
Proteins found in any species of bacterium.
Acetylene is not typically considered a medical term, but rather a chemical compound (C2H2) commonly used in industrial and laboratory settings for its high energy content and reactivity, which may have various applications in medicine such as wound healing and surgical procedures, but it is not a medical diagnosis or disease.
Ribonucleic acid in plants having regulatory and catalytic roles as well as involvement in protein synthesis.
DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA.
A FLAVOPROTEIN enzyme for AMMONIA assimilation in BACTERIA, microorganisms and PLANTS. It catalyzes the oxidation of 2 molecules of L-GLUTAMATE to generate L-GLUTAMINE and 2-oxoglutarate in the presence of NAD+.
A species of gram-negative, aerobic bacteria that is a fast-growing and soybean-nodulating innoculant.
Very young plant after GERMINATION of SEEDS.
A plant division of GYMNOSPERMS consisting of cone-bearing trees and shrubs.
A thin layer of cells forming the outer integument of seed plants and ferns. (Random House Unabridged Dictionary, 2d ed)
A furanyl adenine found in PLANTS and FUNGI. It has plant growth regulation effects.
A plant species of the genus VICIA, family FABACEAE. The edible beans are well known but they cause FAVISM in some individuals with GLUCOSEPHOSPHATE DEHYDROGENASE DEFICIENCY. This plant contains vicine, convicine, Vicia lectins, unknown seed protein, AAP2 transport protein, and Vicia faba DNA-binding protein 1.
Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical.
A genus of gram-negative bacteria in the family OXALOBACTERACEAE, comprised of vibrioid or sometimes helical cells. They are chemoorganotrophic nitrogen fixers and are found free-living in the soil or in association with the roots of members of the GRAMINEAE. (From Bergey's Manual of Determinative Bacteriology, 9th ed)
Closable openings in the epidermis of plants on the underside of leaves. They allow the exchange of gases between the internal tissues of the plant and the outside atmosphere.
The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms.
A plant genus of the family FABACEAE. Members contain ISOFLAVONES, some of which show molluscicidal and schistosomicidal activity. Some species of Pongamia have been reclassified to this genus and some to DERRIS.
The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A genus of gram-positive bacteria that forms a branched mycelium. It commonly occurs as a saprophytic form in soil and aquatic environments.
A plant genus in the family FABACEAE, subfamily Papilionaceae, order Fabales, subclass Rosidae. Many of the species are associated with poisoning of grazing animals. Some of the species are used medicinally.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
The loss of water vapor by plants to the atmosphere. It occurs mainly from the leaves through pores (stomata) whose primary function is gas exchange. The water is replaced by a continuous column of water moving upwards from the roots within the xylem vessels. (Concise Dictionary of Biology, 1990)
A plant species of the family SOLANACEAE, native of South America, widely cultivated for their edible, fleshy, usually red fruit.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
The functional hereditary units of BACTERIA.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
The rose plant family in the order ROSALES and class Magnoliopsida. They are generally woody plants. A number of the species of this family contain cyanogenic compounds.
Glucuronidase is an enzyme (specifically, a glycosidase) that catalyzes the hydrolysis of glucuronic acid from various substrates, playing crucial roles in metabolic processes like detoxification and biotransformation within organisms.
Total mass of all the organisms of a given type and/or in a given area. (From Concise Dictionary of Biology, 1990) It includes the yield of vegetative mass produced from any given crop.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
A plant genus of the family FABACEAE. Members contain SWAINSONINE.
A group of plant cells that are capable of dividing infinitely and whose main function is the production of new growth at the growing tip of a root or stem. (From Concise Dictionary of Biology, 1990)
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
The reproductive organs of plants.
Dental caries involving the tooth root, cementum, or cervical area of the tooth.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
A technique for growing plants in culture solutions rather than in soil. The roots are immersed in an aerated solution containing the correct proportions of essential mineral salts. (From Concise Dictionary of Biology, 1990)
A species of gram-negative bacteria and nitrogen innoculant of PHASEOLUS VULGARIS.
Preparatory activities in ROOT CANAL THERAPY by partial or complete extirpation of diseased pulp, cleaning and sterilization of the empty canal, enlarging and shaping the canal to receive the sealing material. The cavity may be prepared by mechanical, sonic, chemical, or other means. (From Dorland, 28th ed, p1700)
Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome.
A localized proliferation of plant tissue forming a swelling or outgrowth, commonly with a characteristic shape and unlike any organ of the normal plant. Plant tumors or galls usually form in response to the action of a pathogen or a pest. (Holliday, P., A Dictionary of Plant Pathology, 1989, p330)
Substances released by PLANTS such as PLANT GUMS and PLANT RESINS.
Poisoning by the ingestion of plants or its leaves, berries, roots or stalks. The manifestations in both humans and animals vary in severity from mild to life threatening. In animals, especially domestic animals, it is usually the result of ingesting moldy or fermented forage.
Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of PLANTS.
A genus of gram-negative, aerobic, rod-shaped bacteria. Organisms in this genus had originally been classified as members of the PSEUDOMONAS genus but overwhelming biochemical and chemical findings indicated the need to separate them from other Pseudomonas species, and hence, this new genus was created.
A plant genus of the family FABACEAE that contains linarin (acaciin) and LECTINS.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
A procedure for smoothing of the roughened root surface or cementum of a tooth after subgingival curettage or scaling, as part of periodontal therapy.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Using fine needles (finer than 22-gauge) to remove tissue or fluid specimens from the living body for examination in the pathology laboratory and for disease diagnosis.
The above-ground plant without the roots.
Genes, found in both prokaryotes and eukaryotes, which are transcribed to produce the RNA which is incorporated into RIBOSOMES. Prokaryotic rRNA genes are usually found in OPERONS dispersed throughout the GENOME, whereas eukaryotic rRNA genes are clustered, multicistronic transcriptional units.
Proteins that contain an iron-porphyrin, or heme, prosthetic group resembling that of hemoglobin. (From Lehninger, Principles of Biochemistry, 1982, p480)
Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-.
Eighteen-carbon cyclopentyl polyunsaturated fatty acids derived from ALPHA-LINOLENIC ACID via an oxidative pathway analogous to the EICOSANOIDS in animals. Biosynthesis is inhibited by SALICYLATES. A key member, jasmonic acid of PLANTS, plays a similar role to ARACHIDONIC ACID in animals.
Phase of endodontic treatment in which a root canal system that has been cleaned is filled through use of special materials and techniques in order to prevent reinfection.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
Material prepared from plants.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.
A group of alicyclic hydrocarbons with the general formula R-C5H9.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Units that convert some other form of energy into electrical energy.
The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001)
A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER.
The outer layer of the woody parts of plants.
The act of feeding on plants by animals.
Prolonged dry periods in natural climate cycle. They are slow-onset phenomena caused by rainfall deficit combined with other predisposing factors.
Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain.
Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
A small round or oval, mostly subcutaneous nodule made up chiefly of a mass of Aschoff bodies and seen in cases of rheumatic fever. It is differentiated from the RHEUMATOID NODULE which appears in rheumatoid arthritis, most frequently over bony prominences. (From Dorland, 27th ed)
Plant tissue that carries water up the root and stem. Xylem cell walls derive most of their strength from LIGNIN. The vessels are similar to PHLOEM sieve tubes but lack companion cells and do not have perforated sides and pores.
Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
Materials placed inside a root canal for the purpose of obturating or sealing it. The materials may be gutta-percha, silver cones, paste mixtures, or other substances. (Dorland, 28th ed, p631 & Boucher's Clinical Dental Terminology, 4th ed, p187)
The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid.
A plant species of the genus SOLANUM, family SOLANACEAE. The starchy roots are used as food. SOLANINE is found in green parts.
Tumors or cancer of the THYROID GLAND.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.
Abscission-accelerating plant growth substance isolated from young cotton fruit, leaves of sycamore, birch, and other plants, and from potatoes, lemons, avocados, and other fruits.
The initial stages of the growth of SEEDS into a SEEDLINGS. The embryonic shoot (plumule) and embryonic PLANT ROOTS (radicle) emerge and grow upwards and downwards respectively. Food reserves for germination come from endosperm tissue within the seed and/or from the seed leaves (COTYLEDON). (Concise Dictionary of Biology, 1990)
An enzyme that catalyzes the formation of asparagine from ammonia and aspartic acid, in the presence of ATP. EC 6.3.1.1.
A functional system which includes the organisms of a natural community together with their environment. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed)
Chemicals used mainly to disinfect root canals after pulpectomy and before obturation. The major ones are camphorated monochlorophenol, EDTA, formocresol, hydrogen peroxide, metacresylacetate, and sodium hypochlorite. Root canal irrigants include also rinsing solutions of distilled water, sodium chloride, etc.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
A large family of narrow-leaved herbaceous grasses of the order Cyperales, subclass Commelinidae, class Liliopsida (monocotyledons). Food grains (EDIBLE GRAIN) come from members of this family. RHINITIS, ALLERGIC, SEASONAL can be induced by POLLEN of many of the grasses.
Sugar-rich liquid produced in plant glands called nectaries. It is either produced in flowers or other plant structures, providing a source of attraction for pollinating insects and animals, as well as being a nutrient source to animal mutualists which provide protection of plants against herbivores.
A plant genus of the family POACEAE. The EDIBLE GRAIN, barley, is widely used as food.
Protein or glycoprotein substances of plant origin that bind to sugar moieties in cell walls or membranes. Some carbohydrate-metabolizing proteins (ENZYMES) from PLANTS also bind to carbohydrates, however they are not considered lectins. Many plant lectins change the physiology of the membrane of BLOOD CELLS to cause agglutination, mitosis, or other biochemical changes. They may play a role in plant defense mechanisms.
A compound obtained from the bark of the white willow and wintergreen leaves. It has bacteriostatic, fungicidal, and keratolytic actions.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies.
A plant genus of the family POACEAE that is the source of EDIBLE GRAIN. A hybrid with rye (SECALE CEREALE) is called TRITICALE. The seed is ground into FLOUR and used to make BREAD, and is the source of WHEAT GERM AGGLUTININS.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Any method used for determining the location of and relative distances between genes on a chromosome.
Use of plants or herbs to treat diseases or to alleviate pain.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Physiological functions characteristic of plants.
Genotypic differences observed among individuals in a population.
The space in a tooth bounded by the dentin and containing the dental pulp. The portion of the cavity within the crown of the tooth is the pulp chamber; the portion within the root is the pulp canal or root canal.
A creeping annual plant species of the CUCURBITACEAE family. It has a rough succulent, trailing stem and hairy leaves with three to five pointed lobes.
Systems of medicine based on cultural beliefs and practices handed down from generation to generation. The concept includes mystical and magical rituals (SPIRITUAL THERAPIES); PHYTOTHERAPY; and other treatments which may not be explained by modern medicine.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide to water, while oxidizing various organic and inorganic compounds, playing crucial roles in diverse biological processes including stress response, immune defense, and biosynthetic reactions.
A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both.
The directional growth of organisms in response to gravity. In plants, the main root is positively gravitropic (growing downwards) and a main stem is negatively gravitropic (growing upwards), irrespective of the positions in which they are placed. Plant gravitropism is thought to be controlled by auxin (AUXINS), a plant growth substance. (From Concise Dictionary of Biology, 1990)
A plant genus of the family Cruciferae. It contains many species and cultivars used as food including cabbage, cauliflower, broccoli, Brussel sprouts, kale, collard greens, MUSTARD PLANT; (B. alba, B. junica, and B. nigra), turnips (BRASSICA NAPUS) and rapeseed (BRASSICA RAPA).
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
A large plant family of the order Asterales, subclass Asteridae, class Magnoliopsida. The family is also known as Compositae. Flower petals are joined near the base and stamens alternate with the corolla lobes. The common name of "daisy" refers to several genera of this family including Aster; CHRYSANTHEMUM; RUDBECKIA; TANACETUM.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Woody, usually tall, perennial higher plants (Angiosperms, Gymnosperms, and some Pterophyta) having usually a main stem and numerous branches.
A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
The reproductive cells of plants.
Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.

Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. (1/328)

Plant growth promoting rhizobacteria (PGPR) are known to influence plant growth by various direct or indirect mechanisms. In search of efficient PGPR strains with multiple activities, a total of 72 bacterial isolates belonging to Azotobacter, fluorescent Pseudomonas, Mesorhizobium and Bacillus were isolated from different rhizospheric soil and plant root nodules in the vicinity of Aligarh. These test isolates were biochemically characterized. These isolates were screened in vitro for their plant growth promoting traits like production of indoleacetic acid (IAA), ammonia (NH(3)), hydrogen cyanide (HCN), siderophore, phosphate solubilization and antifungal activity. More than 80% of the isolates of Azotobacter, fluorescent Pseudomonas and Mesorhizobium ciceri produced IAA, whereas only 20% of Bacillus isolates was IAA producer. Solubilization of phosphate was commonly detected in the isolates of Bacillus (80%) followed by Azotobacter (74.47%), Pseudomonas (55.56%) and Mesorhizobium (16.67%). All test isolates could produce ammonia but none of the isolates hydrolyzed chitin. Siderophore production and antifungal activity of these isolates except Mesorhizobium were exhibited by 10-12.77% isolates. HCN production was more common trait of Pseudomonas (88.89%) and Bacillus (50%). On the basis of multiple plant growth promoting activities, eleven bacterial isolates (seven Azotobacter, three Pseudomonas and one Bacillus) were evaluated for their quantitative IAA production, and broad-spectrum (active against three test fungi) antifungal activity. Almost at all concentration of tryptophan (50-500 microg/ml), IAA production was highest in the Pseudomonas followed by Azotobacter and Bacillus isolates. Azotobacter isolates (AZT(3), AZT(13), AZT(23)), Pseudomonas (Ps(5)) and Bacillus (B(1)) showed broad-spectrum antifungal activity on Muller-Hinton medium against Aspergillus, one or more species of Fusarium and Rhizoctonia bataticola. Further evaluation of the isolates exhibiting multiple plant growth promoting (PGP) traits on soil-plant system is needed to uncover their efficacy as effective PGPR.  (+info)

Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. (2/328)

Legumes form symbioses with rhizobia, which initiate the development of a new plant organ, the nodule. Flavonoids have long been hypothesized to regulate nodule development through their action as auxin transport inhibitors, but genetic proof has been missing. To test this hypothesis, we used RNA interference to silence chalcone synthase (CHS), the enzyme that catalyzes the first committed step of the flavonoid pathway, in Medicago truncatula. Agrobacterium rhizogenes transformation was used to create hairy roots that showed strongly reduced CHS transcript levels and reduced levels of flavonoids in silenced roots. Flavonoid-deficient roots were unable to initiate nodules, even though normal root hair curling was observed. Nodule formation and flavonoid accumulation could be rescued by supplementation of plants with the precursor flavonoids naringenin and liquiritigenin. The flavonoid-deficient roots showed increased auxin transport compared with control roots. Inoculation with rhizobia reduced auxin transport in control roots after 24 h, similar to the action of the auxin transport inhibitor N-(1-naphthyl)phthalamic acid (NPA). Rhizobia were unable to reduce auxin transport in flavonoid-deficient roots, even though NPA inhibited auxin transport. Our results present genetic evidence that root flavonoids are necessary for nodule initiation in M. truncatula and suggest that they act as auxin transport regulators.  (+info)

Nitrogen fixation by white lupin under phosphorus deficiency. (3/328)

BACKGROUND AND AIMS: White lupin is highly adapted to growth in a low-P environment. The objective of the present study was to evaluate whether white lupin grown under P-stress has adaptations in nodulation and N2 fixation that facilitate continued functioning. METHODS: Nodulated plants were grown in silica sand supplied with N-free nutrient solution containing 0 to 0.5 mm P. At 21 and 37 d after inoculation (DAI) growth, nodulation, P and N concentration, N2 fixation (15N2 uptake and H2 evolution), root/nodule net CO2 evolution and CO2 fixation (14CO2 uptake) were measured. Furthermore, at 21 DAI in-vitro activities and transcript abundance of key enzymes of the C and N metabolism in nodules were determined. Moreover, nodulation in cluster root zones was evaluated. KEY RESULTS: Treatment without P led to a lower P concentration in shoots, roots, and nodules. In both treatments, with or without P, the P concentration in nodules was greater than that in the other organs. At 21 DAI nitrogen fixation rates did not differ between treatments and the plants displayed no symptoms of P or N deficiency on their shoots. Although nodule number at 21 DAI increased in response to P-deficiency, total nodule mass remained constant. Increased nodule number in P-deficient plants was associated with cluster root formation. A higher root/nodule CO2 fixation in the treatment without P led to a lower net CO2 release per unit fixed N, although the total CO2 released per unit fixed N was higher in the treatment without P. The higher CO2 fixation was correlated with increased transcript abundance and enzyme activities of phosphoenolpyruvate carboxylase and malate dehydrogenase in nodules. Between 21 and 37 DAI, shoots of plants grown without P developed symptoms of N- and P-deficiency. By 37 DAI the P concentration had decreased in all organs of the plants treated with no P. At 37 DAI, nitrogen fixation in the treatment without P had almost ceased. CONCLUSIONS: Enhanced nodulation in cluster root zones and increased potential for organic acid production in root nodules appear to contribute to white lupin's resilience to P-deficiency.  (+info)

Siderophore cross-utilization amongst nodule isolates of the cowpea miscellany group and its effect on plant growth in the presence of antagonistic organisms. (4/328)

Nodule isolates from the cowpea miscellany group of legumes produced varying concentrations of catecholate and hydroxamate types of siderophores under iron-limiting conditions. The nodule isolates differed with respect to siderophore cross-utilizing abilities; some were proficient at using siderophores of other nodule isolates (homologous siderophores) while others could utilize siderophores produced by other rhizospheric bacteria (heterologous siderophores). Utilization of siderophore of rhizospheric bacterium PsB, a plant pathogen, benefited the nodule isolate G11 in terms of growth under iron-limiting laboratory conditions, while PsB was clearly inhibited in the presence of G11. Plate assays showed that siderophore of G11 could withhold iron from PsB and hence PsB was inhibited in the presence of G11. Isolates G11 and PsB when applied simultaneously to peanut seedlings under sterile soil conditions, provided a clear advantage to the plant in terms of reduction in the inhibitory effect of PsB. The count of the nodule isolate G11 increased in the soil when co-inoculated with PsB, as compared to when inoculated alone. Thus, the increased growth of the plant can be attributed to the iron sequestration and plant growth promoting properties of G11. The isolate G11 could utilize the siderophores produced by many other rhizospheric isolates while the siderophore of G11 was not being utilized by these rhizospheric isolates.  (+info)

The Sinorhizobium medicae WSM419 lpiA gene is transcriptionally activated by FsrR and required to enhance survival in lethal acid conditions. (5/328)

Sinorhizobium medicae WR101 was identified as a mutant of WSM419 that contained a minitransposon-induced transcriptional gusA fusion activated at least 20-fold at pH 5.7. The expression of this fusion in moderately acid conditions was dependent on the calcium concentration; increasing the calcium concentration to enhance cell growth and survival in acid conditions decreased the expression of the fusion. A gene region containing the gusA fusion was sequenced, revealing five S. medicae genes: tcsA, tcrA, fsrR, lpiA and acvB. The gusA reporter in WR101 was fused to lpiA, which encodes a putative transmembrane protein also found in other Alphaproteobacteria such as Sinorhizobium meliloti, Rhizobium tropici and Agrobacterium tumefaciens. As LpiA has partial sequence similarity to the lysyl-phosphatidylglycerol (LPG) synthetase FmtC/MprF from Staphylococcus aureus, membrane lipid compositions of S. medicae strains were analysed. Cells cultured under neutral or acidic growth conditions did not induce any detectable LPG and therefore this lipid cannot be a major constituent of S. medicae membranes. Expression studies in S. medicae localized the acid-activated lpiA promoter within a 372 bp region upstream of the start codon. The acid-activated transcription of lpiA required the fused sensor-regulator product of the fsrR gene, because expression of lpiA was severely reduced in an S. medicae fsrR mutant. S. meliloti strain 1021 does not contain fsrR and acid-activated expression of the lpiA-gusA fusion did not occur in this species. Although acid-activated lpiA transcription was not required for cell growth, its expression was crucial in enhancing the viability of cells subsequently exposed to lethal acid (pH 4.5) conditions.  (+info)

Negotiation of mutualism: rhizobia and legumes. (6/328)

The evolution and persistence of biological cooperation have been an important puzzle in evolutionary theory. Here, we suggest a new approach based on bargaining theory to tackle the question. We present a mechanistic model for negotiation of benefits between a nitrogen-fixing nodule and a legume plant. To that end, we first derive growth rates for the nodule and plant from metabolic models of each as a function of material fluxes between them. We use these growth rates as pay-off functions in the negotiation process, which is analogous to collective bargaining between a firm and a workers' union. Our model predicts that negotiations lead to the Nash bargaining solution, maximizing the product of players' pay-offs. This work introduces elements of cooperative game theory into the field of mutualistic interactions. In the discussion of the paper, we argue for the benefits of such an approach in studying the question of biological cooperation.  (+info)

Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. (7/328)

A new nodulation-defective mutant of Lotus japonicus does not initiate nodule cortical cell division in response to Mesorhizobium loti, but induces root hair deformation, Nod factor-induced calcium spiking, and mycorrhization. This phenotype, together with mapping data, suggested that the mutation could be in the ortholog of the Medicago truncatula NSP1 gene (MtNSP1). The sequence of the orthologous gene (LjNSP1) in the L. japonicus mutant (Ljnsp1-1) revealed a mutation causing a premature stop resulting in loss of the C-terminal 23 amino acids. We also sequenced the NSP2 gene from L. japonicus (LjNSP2). A mutant (Ljnsp2-3) with a premature stop codon was identified by TILLING showing a similar phenotype to Ljnsp1-1. Both LjNSP1 and LjNSP2 are predicted GRAS (GAI, RGA, SCR) domain transcriptional regulators. Transcript steady-state levels of LjNSP1 and LjNSP2 initially decreased and then increased following infection by M. loti. In hairy root transformations, LjNSP1 and MtNSP1 complemented both Mtnsp1-1 and Ljnsp1-1 mutants, demonstrating that these orthologous proteins have a conserved biochemical function. A Nicotiana benthamiana NSP1-like gene (NbNSP1) was shown to restore nodule formation in both Ljnsp1-1 and Mtnsp1-1 mutants, indicating that NSP1 regulators from legumes and non-legumes can propagate the Nod factor-induced signal, activating appropriate downstream targets. The L. japonicus nodules complemented with NbNSP1 contained some cells with abnormal bacteroids and could fix nitrogen. However, the NbNSP1-complemented M. truncatula nodules did not fix nitrogen and contained very few bacteria released from infection threads. These observations suggest that NSP1 is also involved in infection, bacterial release, and normal bacteroid formation in nodule cells.  (+info)

Nodulation and plant-growth promotion by methylotrophic bacteria isolated from tropical legumes. (8/328)

The nitrogen fixing methylotrophic bacteria were isolated from the nodules of tropical legumes. Two isolates CMCJ317 and CMSA322 isolated from Crotalaria juncea and Sesbania aculeata possessing high nitrogenase activities under pure culture conditions and able to form nodules under inoculated conditions were further characterized. The biochemical characteristics revealed their close relationship with Methylobacterium nodulans type strain ORS2060. The PCR amplification of nodA and mxaF genes showed the expected 584 and 555 bp products, respectively, similar to M. nodulans ORS2060 and digestion with restriction enzymes revealed that the two isolates differed. The strains showed significantly higher nitrogenase activity and also improved nodulation and shoot nitrogen of the plants when inoculated to Macroptilum atropurpureum. CMCJ317 and CMSA322 formed nodules on C. juncea and M. atropurpureum under green house conditions and also significantly increased the nitrogen concentration in shoots. These findings show that the ability to establish symbiosis with legumes is more widespread in Methylobacterium.  (+info)

Root nodules in plants refer to the specialized structures formed through the symbiotic relationship between certain leguminous plants and nitrogen-fixing bacteria, most commonly belonging to the genus Rhizobia. These nodules typically develop on the roots of the host plant, providing an ideal environment for the bacteria to convert atmospheric nitrogen into ammonia, a form that can be directly utilized by the plant for growth and development.

The formation of root nodules begins with the infection of the plant's root hair cells by Rhizobia bacteria. This interaction triggers a series of molecular signals leading to the differentiation of root cortical cells into nodule primordia, which eventually develop into mature nodules. The nitrogen-fixing bacteria reside within these nodules in membrane-bound compartments called symbiosomes, where they reduce atmospheric nitrogen into ammonia through an enzyme called nitrogenase.

The plant, in turn, provides the bacteria with carbon sources and other essential nutrients required for their growth and survival within the nodules. The fixed nitrogen is then transported from the root nodules to other parts of the plant, enhancing its overall nitrogen nutrition and promoting sustainable growth without the need for external nitrogen fertilizers.

In summary, root nodules in plants are essential structures formed through symbiotic associations with nitrogen-fixing bacteria, allowing leguminous plants to convert atmospheric nitrogen into a usable form while also benefiting the environment by reducing the reliance on chemical nitrogen fertilizers.

A plant root is not a medical term per se, but it is a term from botany, which is the study of plants. However, I can certainly provide a definition for you.

Plant roots are the underground organs of a plant that typically grow downward into the soil. They serve several important functions, including:

1. Anchorage: Roots help to stabilize the plant and keep it upright in the ground.
2. Absorption: Roots absorb water and nutrients from the soil, which are essential for the plant's growth and development.
3. Conduction: Roots conduct water and nutrients up to the above-ground parts of the plant, such as the stem and leaves.
4. Vegetative reproduction: Some plants can reproduce vegetatively through their roots, producing new plants from root fragments or specialized structures called rhizomes or tubers.

Roots are composed of several different tissues, including the epidermis, cortex, endodermis, and vascular tissue. The epidermis is the outermost layer of the root, which secretes a waxy substance called suberin that helps to prevent water loss. The cortex is the middle layer of the root, which contains cells that store carbohydrates and other nutrients. The endodermis is a thin layer of cells that surrounds the vascular tissue and regulates the movement of water and solutes into and out of the root. The vascular tissue consists of xylem and phloem, which transport water and nutrients throughout the plant.

In the context of medicine and biology, symbiosis is a type of close and long-term biological interaction between two different biological organisms. Generally, one organism, called the symbiont, lives inside or on another organism, called the host. This interaction can be mutually beneficial (mutualistic), harmful to the host organism (parasitic), or have no effect on either organism (commensal).

Examples of mutualistic symbiotic relationships in humans include the bacteria that live in our gut and help us digest food, as well as the algae that live inside corals and provide them with nutrients. Parasitic symbioses, on the other hand, involve organisms like viruses or parasitic worms that live inside a host and cause harm to it.

It's worth noting that while the term "symbiosis" is often used in popular culture to refer to any close relationship between two organisms, in scientific contexts it has a more specific meaning related to long-term biological interactions.

Genetically modified plants (GMPs) are plants that have had their DNA altered through genetic engineering techniques to exhibit desired traits. These modifications can be made to enhance certain characteristics such as increased resistance to pests, improved tolerance to environmental stresses like drought or salinity, or enhanced nutritional content. The process often involves introducing genes from other organisms, such as bacteria or viruses, into the plant's genome. Examples of GMPs include Bt cotton, which has a gene from the bacterium Bacillus thuringiensis that makes it resistant to certain pests, and golden rice, which is engineered to contain higher levels of beta-carotene, a precursor to vitamin A. It's important to note that genetically modified plants are subject to rigorous testing and regulation to ensure their safety for human consumption and environmental impact before they are approved for commercial use.

"Plant proteins" refer to the proteins that are derived from plant sources. These can include proteins from legumes such as beans, lentils, and peas, as well as proteins from grains like wheat, rice, and corn. Other sources of plant proteins include nuts, seeds, and vegetables.

Plant proteins are made up of individual amino acids, which are the building blocks of protein. While animal-based proteins typically contain all of the essential amino acids that the body needs to function properly, many plant-based proteins may be lacking in one or more of these essential amino acids. However, by consuming a variety of plant-based foods throughout the day, it is possible to get all of the essential amino acids that the body needs from plant sources alone.

Plant proteins are often lower in calories and saturated fat than animal proteins, making them a popular choice for those following a vegetarian or vegan diet, as well as those looking to maintain a healthy weight or reduce their risk of chronic diseases such as heart disease and cancer. Additionally, plant proteins have been shown to have a number of health benefits, including improving gut health, reducing inflammation, and supporting muscle growth and repair.

Leghemoglobin is a type of protein known as a hemeprotein, found in the root nodules of leguminous plants (plants belonging to the family Fabaceae or Leguminosae). These root nodules are formed through a symbiotic relationship with nitrogen-fixing bacteria called Rhizobia.

The primary function of leghemoglobin is to facilitate the process of nitrogen fixation by maintaining an optimal oxygen concentration within the root nodule cells, where the Rhizobia reside. By binding and releasing oxygen reversibly, leghemoglobin protects the nitrogen-fixing enzyme, nitrogenase, from being inactivated by excess oxygen. This ensures that the Rhizobia can effectively convert atmospheric nitrogen gas (N2) into ammonia (NH3), which is then utilized by the plant for its growth and development.

In summary, leghemoglobin is a crucial protein in the process of biological nitrogen fixation, allowing leguminous plants to grow without the need for added nitrogen fertilizers.

I'm sorry for any confusion, but the term "Lotus" does not have a specific medical definition in the context of human health or medicine. The lotus is a flowering plant that is often used as a symbol in various cultural and spiritual contexts, but it does not directly relate to medical terminology. If you have any questions related to medical topics, I'd be happy to help answer those!

Nitrogen fixation is a process by which nitrogen gas (N2) in the air is converted into ammonia (NH3) or other chemically reactive forms, making it available to plants and other organisms for use as a nutrient. This process is essential for the nitrogen cycle and for the growth of many types of plants, as most plants cannot utilize nitrogen gas directly from the air.

In the medical field, nitrogen fixation is not a commonly used term. However, in the context of microbiology and infectious diseases, some bacteria are capable of fixing nitrogen and this ability can contribute to their pathogenicity. For example, certain species of bacteria that colonize the human body, such as those found in the gut or on the skin, may be able to fix nitrogen and use it for their own growth and survival. In some cases, these bacteria may also release fixed nitrogen into the environment, which can have implications for the ecology and health of the host and surrounding ecosystems.

Fabaceae is the scientific name for a family of flowering plants commonly known as the legume, pea, or bean family. This family includes a wide variety of plants that are important economically, agriculturally, and ecologically. Many members of Fabaceae have compound leaves and produce fruits that are legumes, which are long, thin pods that contain seeds. Some well-known examples of plants in this family include beans, peas, lentils, peanuts, clover, and alfalfa.

In addition to their importance as food crops, many Fabaceae species have the ability to fix nitrogen from the atmosphere into the soil through a symbiotic relationship with bacteria that live in nodules on their roots. This makes them valuable for improving soil fertility and is one reason why they are often used in crop rotation and as cover crops.

It's worth noting that Fabaceae is sometimes still referred to by its older scientific name, Leguminosae.

Rhizobium is not a medical term, but rather a term used in microbiology and agriculture. It refers to a genus of gram-negative bacteria that can fix nitrogen from the atmosphere into ammonia, which can then be used by plants as a nutrient. These bacteria live in the root nodules of leguminous plants (such as beans, peas, and clover) and form a symbiotic relationship with them.

The host plant provides Rhizobium with carbon sources and a protected environment within the root nodule, while the bacteria provide the plant with fixed nitrogen. This mutualistic interaction plays a crucial role in maintaining soil fertility and promoting plant growth.

While Rhizobium itself is not directly related to human health or medicine, understanding its symbiotic relationship with plants can have implications for agricultural practices, sustainable farming, and global food security.

I believe there may be a slight misunderstanding in your question. "Plant leaves" are not a medical term, but rather a general biological term referring to a specific organ found in plants.

Leaves are organs that are typically flat and broad, and they are the primary site of photosynthesis in most plants. They are usually green due to the presence of chlorophyll, which is essential for capturing sunlight and converting it into chemical energy through photosynthesis.

While leaves do not have a direct medical definition, understanding their structure and function can be important in various medical fields, such as pharmacognosy (the study of medicinal plants) or environmental health. For example, certain plant leaves may contain bioactive compounds that have therapeutic potential, while others may produce allergens or toxins that can impact human health.

Medicinal plants are defined as those plants that contain naturally occurring chemical compounds which can be used for therapeutic purposes, either directly or indirectly. These plants have been used for centuries in various traditional systems of medicine, such as Ayurveda, Chinese medicine, and Native American medicine, to prevent or treat various health conditions.

Medicinal plants contain a wide variety of bioactive compounds, including alkaloids, flavonoids, tannins, terpenes, and saponins, among others. These compounds have been found to possess various pharmacological properties, such as anti-inflammatory, analgesic, antimicrobial, antioxidant, and anticancer activities.

Medicinal plants can be used in various forms, including whole plant material, extracts, essential oils, and isolated compounds. They can be administered through different routes, such as oral, topical, or respiratory, depending on the desired therapeutic effect.

It is important to note that while medicinal plants have been used safely and effectively for centuries, they should be used with caution and under the guidance of a healthcare professional. Some medicinal plants can interact with prescription medications or have adverse effects if used inappropriately.

A gene in plants, like in other organisms, is a hereditary unit that carries genetic information from one generation to the next. It is a segment of DNA (deoxyribonucleic acid) that contains the instructions for the development and function of an organism. Genes in plants determine various traits such as flower color, plant height, resistance to diseases, and many others. They are responsible for encoding proteins and RNA molecules that play crucial roles in the growth, development, and reproduction of plants. Plant genes can be manipulated through traditional breeding methods or genetic engineering techniques to improve crop yield, enhance disease resistance, and increase nutritional value.

'Medicago truncatula' is not a medical term, but a scientific name for a plant species. It is commonly known as barrel medic or yellow trefoil and is native to the Mediterranean region. It is a model organism in the field of plant genetics and molecular biology due to its small genome size and ease of transformation. While it does not have direct medical applications, studies on this plant can contribute to our understanding of fundamental biological processes and may have indirect implications for human health.

Rhizobiaceae is a family of bacteria that have the ability to fix nitrogen. These bacteria are gram-negative, motile, and rod-shaped. They are commonly found in the root nodules of leguminous plants, where they form a symbiotic relationship with the plant. The bacteria provide the plant with fixed nitrogen, while the plant provides the bacteria with carbon and a protected environment.

The most well-known genus of Rhizobiaceae is Rhizobium, which includes several species that are important for agriculture because of their ability to fix nitrogen in the root nodules of legumes. Other genera in this family include Bradyrhizobium, Mesorhizobium, and Sinorhizobium.

It's worth noting that while Rhizobiaceae bacteria are generally beneficial, they can sometimes cause disease in plants under certain conditions. For example, some strains of Rhizobium can cause leaf spots on certain crops.

'Medicago sativa' is the scientific name for a plant species more commonly known as alfalfa. In a medical context, alfalfa is often considered a herbal supplement and its medicinal properties include being a source of vitamins, minerals, and antioxidants. It has been used in traditional medicine to treat a variety of conditions such as kidney problems, asthma, arthritis, and high cholesterol levels. However, it's important to note that the effectiveness of alfalfa for these uses is not conclusively established by scientific research and its use may have potential risks or interactions with certain medications. Always consult a healthcare provider before starting any new supplement regimen.

"Sinorhizobium meliloti" is a species of nitrogen-fixing bacteria that forms nodules on the roots of leguminous plants, such as alfalfa and clover. These bacteria have the ability to convert atmospheric nitrogen into ammonia, which can then be used by the plant for growth and development. This symbiotic relationship benefits both the bacterium and the plant, as the plant provides carbon sources to the bacterium, while the bacterium provides the plant with a source of nitrogen.

"Sinorhizobium meliloti" is gram-negative, motile, and rod-shaped, and it can be found in soil and root nodules of leguminous plants. It has a complex genome consisting of a circular chromosome and several plasmids, which carry genes involved in nitrogen fixation and other important functions. The bacteria are able to sense and respond to various environmental signals, allowing them to adapt to changing conditions and establish successful symbioses with their host plants.

In addition to its agricultural importance, "Sinorhizobium meliloti" is also a model organism for studying the molecular mechanisms of symbiotic nitrogen fixation and bacterial genetics.

Plant root nodulation is a type of symbiotic relationship between certain plants (mostly legumes) and nitrogen-fixing bacteria, such as Rhizobia species. This process involves the formation of specialized structures called nodules on the roots of the host plant. The bacteria inhabit these nodules and convert atmospheric nitrogen into ammonia, a form of nitrogen that plants can use for growth. In return, the plant provides the bacteria with carbon sources and a protected environment for growth. This mutualistic relationship helps improve soil fertility and promotes sustainable agriculture.

A medical definition for "plant shoots" may not be readily available, as the term is primarily used in botany and horticulture. However, I can provide you with a general definition:

Plant shoots refer to the above-ground portion of a plant, which typically includes structures like stems, leaves, flowers, and buds. Shoots originate from the seed or the growing tip of the plant and are responsible for photosynthesis, nutrient absorption, and reproduction. In some contexts, "plant shoots" might also refer to new growth that emerges from an existing plant, such as when a leaf or stem sprouts a new branch or flower.

I'm sorry for any confusion, but "soybeans" are not a medical term. They are a type of legume that is commonly used in agriculture and food production. The medical community might discuss soybeans in the context of nutrition or allergies, but there isn't a formal medical definition for this term.

Here's some general information: Soybeans, scientifically known as Glycine max, are native to East Asia and are now grown worldwide. They are a significant source of plant-based protein and oil. Soybeans contain various nutrients, including essential amino acids, fiber, B vitamins, and minerals like calcium, iron, magnesium, and zinc. They are used in various food products such as tofu, soy milk, tempeh, and miso. Additionally, soybeans are also used in the production of industrial products, including biodiesel, plastics, and inks. Some people may have allergic reactions to soybeans or soy products.

'Bradyrhizobium' is a genus of bacteria that can form nitrogen-fixing nodules on the roots of certain leguminous plants, such as soybeans and alfalfa. These bacteria are able to convert atmospheric nitrogen into ammonia, which the plant can then use for growth. This process, known as nitrogen fixation, is important for maintaining soil fertility and is beneficial for agricultural production.

The name 'Bradyrhizobium' comes from the Greek words "brady," meaning slow, and "rhiza," meaning root, reflecting the slower growth rate of these bacteria compared to other rhizobia. The bacteria are typically rod-shaped and motile, with a single polar flagellum for movement. They are gram-negative and have a complex cell envelope that includes an outer membrane, peptidoglycan layer, and cytoplasmic membrane.

Bradyrhizobium species are able to form symbiotic relationships with leguminous plants by colonizing the root nodules of the plant. The bacteria enter the plant through root hairs or wounds on the root surface, and then migrate to the inner cortex of the root where they induce the formation of nodules. Once inside the nodule, the bacteria differentiate into bacteroids that are able to fix nitrogen gas from the atmosphere into ammonia, which is then used by the plant for growth. In return, the plant provides carbon and other nutrients to the bacteria.

Bradyrhizobium species are important for sustainable agriculture because they can reduce the need for chemical fertilizers and improve soil health. They have also been studied for their potential use in bioremediation and as biofertilizers for non-leguminous crops.

"Frankia" is not a term that has a widely accepted medical definition. However, in the field of microbiology, "Frankia" refers to a genus of nitrogen-fixing bacteria that can form symbiotic relationships with various plants, particularly those in the order Fagales such as alders and casuarinas. These bacteria are capable of converting atmospheric nitrogen into ammonia, which the host plant can then use for growth. This relationship is beneficial to both the bacterium and the plant, as the plant provides carbon sources and a protected environment for the bacterium to live in.

In a medical context, "Frankia" may be mentioned in relation to rare cases of infection in humans, particularly in individuals with weakened immune systems. However, such infections are extremely uncommon.

A plant extract is a preparation containing chemical constituents that have been extracted from a plant using a solvent. The resulting extract may contain a single compound or a mixture of several compounds, depending on the extraction process and the specific plant material used. These extracts are often used in various industries including pharmaceuticals, nutraceuticals, cosmetics, and food and beverage, due to their potential therapeutic or beneficial properties. The composition of plant extracts can vary widely, and it is important to ensure their quality, safety, and efficacy before use in any application.

A Rheumatoid nodule is defined as a type of non-suppurative inflammatory lesion that occurs in the subcutaneous tissue, commonly associated with rheumatoid arthritis (RA). These nodules are firm, round to oval shaped, and usually range from 0.5 to 5 cm in size. They are typically found over bony prominences such as the elbow, heel, or fingers, but can occur in various locations throughout the body.

Histologically, rheumatoid nodules are characterized by a central area of fibrinoid necrosis surrounded by palisading histiocytes and fibroblasts, with an outer layer of chronic inflammatory cells, including lymphocytes and plasma cells. Rheumatoid nodules can be asymptomatic or cause pain and discomfort, depending on their size and location. They are more common in patients with severe RA and are associated with a poorer prognosis.

DNA, or deoxyribonucleic acid, is the genetic material present in the cells of all living organisms, including plants. In plants, DNA is located in the nucleus of a cell, as well as in chloroplasts and mitochondria. Plant DNA contains the instructions for the development, growth, and function of the plant, and is passed down from one generation to the next through the process of reproduction.

The structure of DNA is a double helix, formed by two strands of nucleotides that are linked together by hydrogen bonds. Each nucleotide contains a sugar molecule (deoxyribose), a phosphate group, and a nitrogenous base. There are four types of nitrogenous bases in DNA: adenine (A), guanine (G), cytosine (C), and thymine (T). Adenine pairs with thymine, and guanine pairs with cytosine, forming the rungs of the ladder that make up the double helix.

The genetic information in DNA is encoded in the sequence of these nitrogenous bases. Large sequences of bases form genes, which provide the instructions for the production of proteins. The process of gene expression involves transcribing the DNA sequence into a complementary RNA molecule, which is then translated into a protein.

Plant DNA is similar to animal DNA in many ways, but there are also some differences. For example, plant DNA contains a higher proportion of repetitive sequences and transposable elements, which are mobile genetic elements that can move around the genome and cause mutations. Additionally, plant cells have cell walls and chloroplasts, which are not present in animal cells, and these structures contain their own DNA.

Elaeagnaceae is a family of flowering plants that includes around 50–60 species in 3–4 genera: Elaeagnus, Hippophae, Shepherdia, and Tetradiclis. These plants are often found in temperate and subtropical regions of the world, and they are known for their small, inconspicuous flowers and silvery or brownish scales that cover their leaves and stems.

Some species of Elaeagnus and Hippophae produce edible fruits that are high in antioxidants and other nutrients, making them popular in traditional medicine and as functional foods. For example, the fruit of sea buckthorn (Hippophae rhamnoides) is rich in vitamin C, vitamin E, and carotenoids, while the fruit of autumn olive (Elaeagnus umbellata) contains high levels of lycopene and other antioxidants.

Overall, Elaeagnaceae is a diverse family of plants that includes both ornamental and medicinal species, as well as some invasive species that can cause problems in certain ecosystems.

Mycorrhizae are symbiotic associations between fungi and the roots of most plant species. In a mycorrhizal association, fungi colonize the root tissues of plants and extend their mycelial networks into the surrounding soil. This association enhances the nutrient uptake capacity of the host plant, particularly with regards to phosphorus and nitrogen, while the fungi receive carbohydrates from the plant for their own growth and metabolism.

Mycorrhizal fungi can be broadly classified into two types: ectomycorrhizae and endomycorrhizae (or arbuscular mycorrhizae). Ectomycorrhizae form a sheath around the root surface, while endomycorrhizae penetrate the root cells and form structures called arbuscules, where nutrient exchange occurs. Mycorrhizal associations play crucial roles in maintaining ecosystem stability, promoting plant growth, and improving soil structure and fertility.

"Medicago" is a genus of flowering plants in the family Fabaceae, also known as the legume or pea family. It includes several species that are important forage crops and green manure, such as Medicago sativa (alfalfa or lucerne) and Medicago lupulina (black medic). These plants have the ability to fix nitrogen from the atmosphere through their root nodules, which benefits the soil and other nearby plants. They are often used in rotational grazing systems and for erosion control.

'Rhizobium leguminosarum' is a species of bacteria that can form nitrogen-fixing nodules on the roots of certain leguminous plants, such as clover, peas, and beans. These bacteria have the ability to convert atmospheric nitrogen into ammonia, a form of nitrogen that plants can use for growth. This process, known as biological nitrogen fixation, benefits both the bacteria and the host plant, as the plant provides carbon sources to the bacteria, while the bacteria provide fixed nitrogen to the plant. The formation of this symbiotic relationship is facilitated by a molecular signaling process between the bacterium and the plant.

It's important to note that 'Rhizobium leguminosarum' is not a medical term per se, but rather a term used in microbiology, botany, and agriculture.

I am not aware of a widely recognized medical definition for the term "Mimosa." In general, it may refer to a type of plant or a cocktail made with champagne and orange juice. If you are looking for information on a specific medical condition or concept, please provide more context so that I can give you a more accurate and helpful response. Is there something specific you had in mind?

'Plant development' is not a term typically used in medical definitions, as it is more commonly used in the field of botany to describe the growth and differentiation of plant cells, tissues, and organs over time. However, in a broader context, plant development can be defined as the series of changes and processes that occur from the fertilization of a plant seed to the formation of a mature plant, including germination, emergence, organ formation, growth, and reproduction.

In medicine, terms related to plant development may include "phytotherapy" or "herbal medicine," which refer to the use of plants or plant extracts as medicinal treatments for various health conditions. The study of how these plants develop and produce their active compounds is an important area of research in pharmacology and natural products chemistry.

"Phaseolus" is a term that refers to a genus of plants in the legume family Fabaceae, also known as the pea family. The most common and well-known species in this genus is "Phaseolus vulgaris," which is commonly called the common bean. This includes many familiar varieties such as kidney beans, black beans, navy beans, pinto beans, and green beans.

These plants are native to the Americas and have been cultivated for thousands of years for their edible seeds (beans) and pods (green beans). They are an important source of protein, fiber, vitamins, and minerals in many diets around the world.

It's worth noting that "Phaseolus" is a taxonomic term used in the scientific classification of plants, and it does not have a specific medical definition. However, the beans from these plants do have various health benefits and potential medicinal properties, such as being associated with reduced risk of heart disease, improved gut health, and better blood sugar control.

I'm sorry for any confusion, but "peas" is not a term typically used in medical definitions. Peas are a type of legume that is commonly consumed as a vegetable. They are rich in nutrients such as protein, fiber, vitamin C, and vitamin K. If you have any questions about the health benefits or potential risks of consuming peas, I would be happy to try to help with that.

Gene expression regulation in plants refers to the processes that control the production of proteins and RNA from the genes present in the plant's DNA. This regulation is crucial for normal growth, development, and response to environmental stimuli in plants. It can occur at various levels, including transcription (the first step in gene expression, where the DNA sequence is copied into RNA), RNA processing (such as alternative splicing, which generates different mRNA molecules from a single gene), translation (where the information in the mRNA is used to produce a protein), and post-translational modification (where proteins are chemically modified after they have been synthesized).

In plants, gene expression regulation can be influenced by various factors such as hormones, light, temperature, and stress. Plants use complex networks of transcription factors, chromatin remodeling complexes, and small RNAs to regulate gene expression in response to these signals. Understanding the mechanisms of gene expression regulation in plants is important for basic research, as well as for developing crops with improved traits such as increased yield, stress tolerance, and disease resistance.

"Acacia" is a scientific name for a genus of shrubs and trees that belong to the pea family, Fabaceae. It includes over 1,350 species found primarily in Australia and Africa, but also in Asia, America, and Europe. Some acacia species are known for their hardwood, others for their phyllodes (flattened leaf stalks) or compound leaves, and yet others for their flowers, which are typically small and yellow or cream-colored.

It is important to note that "Acacia" is not a medical term or concept, but rather a botanical one. While some acacia species have medicinal uses, the name itself does not have a specific medical definition.

A plant stem is not typically defined in a medical context, but rather in the field of botany. However, I can certainly provide a general biological definition for you.

In plants, stems are organs that serve primarily as support structures, holding leaves, flowers, and fruits aloft where they can receive sunlight and exchange gases. They also act as conduits, transporting water, nutrients, and sugars made during photosynthesis between the roots and shoots of a plant.

The stem is usually composed of three main tissue systems: dermal, vascular, and ground. The dermal tissue system forms the outermost layer(s) of the stem, providing protection and sometimes participating in gas exchange. The vascular tissue system contains the xylem (which transports water and nutrients upward) and phloem (which transports sugars and other organic compounds downward). The ground tissue system, located between the dermal and vascular tissues, is responsible for food storage and support.

While not a direct medical definition, understanding the structure and function of plant stems can be relevant in fields such as nutrition, agriculture, and environmental science, which have implications for human health.

'Toxic plants' refer to those species of plants that contain toxic substances capable of causing harmful effects or adverse health reactions in humans and animals when ingested, touched, or inhaled. These toxins can cause a range of symptoms from mild irritation to serious conditions such as organ failure, paralysis, or even death depending on the plant, the amount consumed, and the individual's sensitivity to the toxin.

Toxic plants may contain various types of toxins, including alkaloids, glycosides, proteins, resinous substances, and essential oils. Some common examples of toxic plants include poison ivy, poison oak, nightshade, hemlock, oleander, castor bean, and foxglove. It is important to note that some parts of a plant may be toxic while others are not, and the toxicity can also vary depending on the stage of growth or environmental conditions.

If you suspect exposure to a toxic plant, it is essential to seek medical attention immediately and, if possible, bring a sample of the plant for identification.

A tooth root is the part of a tooth that is embedded in the jawbone and cannot be seen when looking at a person's smile. It is the lower portion of a tooth that typically has a conical shape and anchors the tooth to the jawbone through a periodontal ligament. The tooth root is covered by cementum, a specialized bone-like tissue, and contains nerve endings and blood vessels within its pulp chamber.

The number of roots in a tooth can vary depending on the type of tooth. For example, incisors typically have one root, canines may have one or two roots, premolars usually have one or two roots, and molars often have two to four roots. The primary function of the tooth root is to provide stability and support for the crown of the tooth, allowing it to withstand the forces of biting and chewing.

Medical Definition: Multiple pulmonary nodules refer to multiple small rounded or irregularly shaped masses in the lungs, usually measuring less than 3 cm in diameter. These nodules can be caused by various conditions such as benign tumors, infections, inflammation, or malignancies like lung cancer. The presence of multiple pulmonary nodules often requires further evaluation with imaging studies and sometimes biopsy to determine the underlying cause and appropriate treatment.

'Arabidopsis' is a genus of small flowering plants that are part of the mustard family (Brassicaceae). The most commonly studied species within this genus is 'Arabidopsis thaliana', which is often used as a model organism in plant biology and genetics research. This plant is native to Eurasia and Africa, and it has a small genome that has been fully sequenced. It is known for its short life cycle, self-fertilization, and ease of growth, making it an ideal subject for studying various aspects of plant biology, including development, metabolism, and response to environmental stresses.

"Lupinus" is not a medical term. It is the genus name for the group of plants commonly known as lupines or bluebonnets. Some people may use "lupinus" in a medical context to refer to an allergy or sensitivity to lupine beans or other parts of the lupine plant, which can cause symptoms such as rash, itching, and digestive issues. However, this is not a widely recognized medical condition and reactions to lupines are relatively rare. If you have any concerns about a potential allergy or sensitivity to lupines, it is best to consult with a healthcare professional for proper evaluation and treatment.

A plant cell is defined as a type of eukaryotic cell that makes up the structural basis of plants and other forms of multicellular plant-like organisms, such as algae and mosses. These cells are typically characterized by their rigid cell walls, which provide support and protection, and their large vacuoles, which store nutrients and help maintain turgor pressure within the cell.

Plant cells also contain chloroplasts, organelles that carry out photosynthesis and give plants their green color. Other distinctive features of plant cells include a large central vacuole, a complex system of membranes called the endoplasmic reticulum, and numerous mitochondria, which provide energy to the cell through cellular respiration.

Plant cells are genetically distinct from animal cells, and they have unique structures and functions that allow them to carry out photosynthesis, grow and divide, and respond to their environment. Understanding the structure and function of plant cells is essential for understanding how plants grow, develop, and interact with their surroundings.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

A plant genome refers to the complete set of genetic material or DNA present in the cells of a plant. It contains all the hereditary information necessary for the development and functioning of the plant, including its structural and functional characteristics. The plant genome includes both coding regions that contain instructions for producing proteins and non-coding regions that have various regulatory functions.

The plant genome is composed of several types of DNA molecules, including chromosomes, which are located in the nucleus of the cell. Each chromosome contains one or more genes, which are segments of DNA that code for specific proteins or RNA molecules. Plants typically have multiple sets of chromosomes, with each set containing a complete copy of the genome.

The study of plant genomes is an active area of research in modern biology, with important applications in areas such as crop improvement, evolutionary biology, and medical research. Advances in DNA sequencing technologies have made it possible to determine the complete sequences of many plant genomes, providing valuable insights into their structure, function, and evolution.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Plant growth regulators (PGRs) are natural or synthetic chemical substances that, when present in low concentrations, can influence various physiological and biochemical processes in plants. These processes include cell division, elongation, and differentiation; flowering and fruiting; leaf senescence; and stress responses. PGRs can be classified into several categories based on their mode of action and chemical structure, including auxins, gibberellins, cytokinins, abscisic acid, ethylene, and others. They are widely used in agriculture to improve crop yield and quality, regulate plant growth and development, and enhance stress tolerance.

I'm sorry for any confusion, but "Plant Structures" is not a medical term. It is a term used in the field of botany to refer to the different parts of a plant, such as roots, stems, leaves, flowers, and fruits. Each of these structures has specific functions that contribute to the overall growth, reproduction, and survival of the plant. If you have any questions related to biology or botany, I'd be happy to try and help answer them!

"Alnus" is a genus of flowering plants in the family Betulaceae, commonly known as alders. They are deciduous or evergreen trees or shrubs with simple, alternate leaves and catkins. The term "Alnus" itself is the genus name and does not have a medical definition. However, various species of alders have been used in traditional medicine for their anti-inflammatory, astringent, and diuretic properties. For example, the bark of Alnus glutinosa (common alder) has been used to treat skin diseases, wounds, and diarrhea. It is important to note that the use of alders in modern medicine is limited and further research is needed to establish their safety and efficacy.

Rhizobium tropici is a gram-negative, aerobic, motile, non-spore forming bacteria that belongs to the Rhizobiaceae family. It has the ability to fix atmospheric nitrogen in a symbiotic relationship with certain leguminous plants, particularly beans and other tropical legumes. The bacterium infects the roots of these plants and forms nodules where it converts nitrogen gas into ammonia, which is then used by the plant for growth. Rhizobium tropici is known for its ability to survive in a wide range of temperatures and soil conditions, making it an important contributor to sustainable agriculture in tropical regions.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Edible plants are those that can be safely consumed by humans and other animals as a source of nutrition. They have various parts (such as fruits, vegetables, seeds, roots, stems, and leaves) that can be used for food after being harvested and prepared properly. Some edible plants have been cultivated and domesticated for agricultural purposes, while others are gathered from the wild. It is important to note that not all plants are safe to eat, and some may even be toxic or deadly if consumed. Proper identification and knowledge of preparation methods are crucial before consuming any plant material.

Arabidopsis proteins refer to the proteins that are encoded by the genes in the Arabidopsis thaliana plant, which is a model organism commonly used in plant biology research. This small flowering plant has a compact genome and a short life cycle, making it an ideal subject for studying various biological processes in plants.

Arabidopsis proteins play crucial roles in many cellular functions, such as metabolism, signaling, regulation of gene expression, response to environmental stresses, and developmental processes. Research on Arabidopsis proteins has contributed significantly to our understanding of plant biology and has provided valuable insights into the molecular mechanisms underlying various agronomic traits.

Some examples of Arabidopsis proteins include transcription factors, kinases, phosphatases, receptors, enzymes, and structural proteins. These proteins can be studied using a variety of techniques, such as biochemical assays, protein-protein interaction studies, and genetic approaches, to understand their functions and regulatory mechanisms in plants.

I apologize for any confusion, but "plants" is not a term that has a medical definition. The term "plants" refers to a large and diverse group of organisms that obtain their energy through photosynthesis, which is the process of converting sunlight into chemical energy. Plants are typically characterized by having cells with cell walls containing cellulose, chloroplasts containing the pigment chlorophyll, and the ability to synthesize their own food through photosynthesis.

In a medical or biological context, you might be thinking of "plant-based" or "phytomedicine," which refer to the use of plants or plant extracts as a form of medicine or treatment. Phytomedicines have been used for thousands of years in many traditional systems of medicine, and some plant-derived compounds have been found to have therapeutic benefits in modern medicine as well. However, "plants" itself does not have a medical definition.

I'm sorry for any confusion, but "Lespedeza" is not a medical term. It is a genus of plants commonly known as bush clover or lespedeza. These plants are native to warm temperate and subtropical regions of the world, including parts of North America, Asia, and Africa. They have been used in some traditional medicine practices, but there is no widely recognized medical definition associated with "Lespedeza." If you have any questions related to a specific medical term or concept, I'd be happy to help if I can!

I apologize for any confusion, but "Rosales" is not a medical term. It is a botanical term used in the classification of plants. Rosales is an order of flowering plants that includes roses, as well as many other plants such as apples, cherries, almonds, and strawberries. The plants in this group are characterized by having flowers with multiple stamens and styles. I hope this clarifies any confusion. If you have any medical terms you would like defined, please let me know!

Indole-3-acetic acid (IAA) is not exactly a medical term, but rather a scientific term used in the field of biochemistry and physiology. It is a type of auxin, which is a plant hormone that regulates various growth and development processes in plants. IAA is the most abundant and best-studied natural auxin.

Medically, indole-3-acetic acid may be mentioned in the context of certain medical conditions or treatments related to plants or plant-derived substances. For example, some research has investigated the potential use of IAA in promoting wound healing in plants or in agricultural applications. However, it is not a substance that is typically used in medical treatment for humans or animals.

Spinal nerve roots are the initial parts of spinal nerves that emerge from the spinal cord through the intervertebral foramen, which are small openings between each vertebra in the spine. These nerve roots carry motor, sensory, and autonomic fibers to and from specific regions of the body. There are 31 pairs of spinal nerve roots in total, with 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal pair. Each root has a dorsal (posterior) and ventral (anterior) ramus that branch off to form the peripheral nervous system. Irritation or compression of these nerve roots can result in pain, numbness, weakness, or loss of reflexes in the affected area.

Cucurbitaceae is the scientific name for the gourd family of plants, which includes a variety of vegetables and fruits such as cucumbers, melons, squashes, and pumpkins. These plants are characterized by their trailing or climbing growth habits and their large, fleshy fruits that have hard seeds enclosed in a protective coat. The fruits of these plants are often used as food sources, while other parts of the plant may also have various uses such as medicinal or ornamental purposes.

Nitrogen is not typically referred to as a medical term, but it is an element that is crucial to medicine and human life.

In a medical context, nitrogen is often mentioned in relation to gas analysis, respiratory therapy, or medical gases. Nitrogen (N) is a colorless, odorless, and nonreactive gas that makes up about 78% of the Earth's atmosphere. It is an essential element for various biological processes, such as the growth and maintenance of organisms, because it is a key component of amino acids, nucleic acids, and other organic compounds.

In some medical applications, nitrogen is used to displace oxygen in a mixture to create a controlled environment with reduced oxygen levels (hypoxic conditions) for therapeutic purposes, such as in certain types of hyperbaric chambers. Additionally, nitrogen gas is sometimes used in cryotherapy, where extremely low temperatures are applied to tissues to reduce pain, swelling, and inflammation.

However, it's important to note that breathing pure nitrogen can be dangerous, as it can lead to unconsciousness and even death due to lack of oxygen (asphyxiation) within minutes.

Angiosperms, also known as flowering plants, are a group of plants that produce seeds enclosed within an ovary. The term "angiosperm" comes from the Greek words "angeion," meaning "case" or "capsule," and "sperma," meaning "seed." This group includes the majority of plant species, with over 300,000 known species.

Angiosperms are characterized by their reproductive structures, which consist of flowers. The flower contains male and female reproductive organs, including stamens (which produce pollen) and carpels (which contain the ovules). After fertilization, the ovule develops into a seed, while the ovary matures into a fruit, which provides protection and nutrition for the developing embryo.

Angiosperms are further divided into two main groups: monocots and eudicots. Monocots have one cotyledon or embryonic leaf, while eudicots have two. Examples of monocots include grasses, lilies, and orchids, while examples of eudicots include roses, sunflowers, and legumes.

Angiosperms are ecologically and economically important, providing food, shelter, and other resources for many organisms, including humans. They have evolved a wide range of adaptations to different environments, from the desert to the ocean floor, making them one of the most diverse and successful groups of plants on Earth.

Cytokinins are a type of plant growth hormone that play a crucial role in cell division, differentiation, and growth. They were first discovered in 1950s and named for their ability to promote cytokinesis, the process of cell division. Cytokinins belong to a class of compounds called adenine derivatives, which are structurally similar to nucleotides, the building blocks of DNA and RNA.

Cytokinins are produced in the roots and shoots of plants and are transported throughout the plant via the vascular system. They have been shown to regulate various aspects of plant growth and development, including shoot initiation, leaf expansion, apical dominance, and senescence. Cytokinins also interact with other hormones such as auxins, gibberellins, and abscisic acid to modulate plant responses to environmental stresses.

Cytokinins have been used in horticulture and agriculture to enhance crop yields, improve plant quality, and delay senescence. They are also being studied for their potential role in human health, particularly in the context of cancer research.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

I'm sorry for any confusion, but "Myrica" is not a medical term. It is a genus of flowering plants in the family Myricaceae, commonly known as bayberries or wax myrtles. The plants have some traditional uses in folk medicine, but there is no widely recognized or established medical definition associated with "Myrica." If you have any questions related to medical terminology or health concerns, I'd be happy to try and help with those instead!

"Pachyrhizus" is a genus of plants in the family Fabaceae, also known as the legume or pea family. The term itself does not have a specific medical definition, but two species within this genus, Pachyrhizus erosus (also known as Jicama) and Pachyrhizus tuberosus, have been used in traditional medicine.

Jicama, or Pachyrhizus erosus, is a root vegetable that has been used in traditional medicine for its potential diuretic, anti-inflammatory, and hypoglycemic effects. However, it's important to note that the tuberous roots are the only edible and medicinally useful part of the plant, while other parts of the plant contain rotenone, a toxic compound.

Pachyrhizus tuberosus, on the other hand, is not widely consumed or used in traditional medicine, but like Pachyrhizus erosus, its roots have been reported to possess potential medicinal properties such as antimicrobial and anti-inflammatory activities.

As with any use of traditional remedies, it's crucial to consult a healthcare professional before incorporating these plants into a medical treatment plan, especially considering the limited scientific research on their safety and efficacy.

Endophytes are microorganisms, typically bacteria or fungi, that live inside the tissues of plants without causing any visible disease or harm to the plant. They can be found in almost all plant species and are known to exist in a mutualistic relationship with their host plants. Endophytes can provide various benefits to the plants such as growth promotion, increased resistance to pathogens, and protection against herbivores. Some endophytic fungi also produce bioactive compounds that have potential applications in medicine, agriculture, and industry.

The plant root cap, also known as the calyptra, is the protective tissue found at the extreme tip of the primary root and lateral roots in plants. It consists of a group of cells that encloses and shields the apical meristem, which is the region responsible for the growth and elongation of the root.

The root cap plays a crucial role in guiding the direction of root growth by sensing and responding to environmental stimuli such as gravity, touch, and moisture gradients. As the root grows and penetrates the soil, the root cap cells are constantly worn away and replaced by new cells produced by the underlying meristematic tissue.

In addition to its protective function, the root cap also secretes a slimy mucilage that helps reduce friction between the root and the soil, facilitating the movement of the root through the substrate. This mucilage also contains enzymes and other compounds that aid in the breakdown and uptake of nutrients from the soil.

Tobacco is not a medical term, but it refers to the leaves of the plant Nicotiana tabacum that are dried and fermented before being used in a variety of ways. Medically speaking, tobacco is often referred to in the context of its health effects. According to the World Health Organization (WHO), "tobacco" can also refer to any product prepared from the leaf of the tobacco plant for smoking, sucking, chewing or snuffing.

Tobacco use is a major risk factor for a number of diseases, including cancer, heart disease, stroke, lung disease, and various other medical conditions. The smoke produced by burning tobacco contains thousands of chemicals, many of which are toxic and can cause serious health problems. Nicotine, one of the primary active constituents in tobacco, is highly addictive and can lead to dependence.

Alphaproteobacteria is a class of proteobacteria, a group of gram-negative bacteria. This class includes a diverse range of bacterial species that can be found in various environments, such as soil, water, and the surfaces of plants and animals. Some notable members of Alphaproteobacteria include the nitrogen-fixing bacteria Rhizobium and Bradyrhizobium, which form symbiotic relationships with the roots of leguminous plants, as well as the pathogenic bacteria Rickettsia, which are responsible for causing diseases such as typhus and Rocky Mountain spotted fever.

The Alphaproteobacteria class is further divided into several orders, including Rhizobiales, Rhodobacterales, and Caulobacterales. These orders contain a variety of bacterial species that have different characteristics and ecological roles. For example, members of the order Rhizobiales are known for their ability to fix nitrogen, while members of the order Rhodobacterales include photosynthetic bacteria that can use light as an energy source.

Overall, Alphaproteobacteria is a diverse and important group of bacteria that play various roles in the environment and in the health of plants and animals.

Nitrogenase is not a medical term, but a biological term used in the field of microbiology and biochemistry. It refers to an enzyme complex found in certain bacteria and archaea that have the ability to fix nitrogen gas (N2) from the atmosphere into ammonia (NH3), a form of nitrogen that can be utilized by plants and other organisms for growth and development. This process is known as biological nitrogen fixation, which is essential for maintaining the global nitrogen cycle and supporting life on Earth.

The medical field may refer to nitrogenase in relation to human health in the context of understanding the role of nitrogen-fixing bacteria in soil fertility and their impact on agriculture and food production. However, there is no direct medical definition or application for nitrogenase.

I'm sorry for any confusion, but "soil" is not a term that has a medical definition. Soil is defined as the top layer of earth in which plants grow, a mixture of organic material, clay, sand, and silt. If you have any questions related to medicine or health, I would be happy to try to help answer them for you.

Ammonium compounds are chemical substances that contain the ammonium ion (NH4+). The ammonium ion is formed when ammonia (NH3) reacts with a hydrogen ion (H+) to form a bond. Ammonium compounds can be found in a variety of forms, including salts, acids, and bases.

In medicine, ammonium compounds may be used for various purposes. For example, ammonium chloride is sometimes used as a expectorant to help loosen mucus in the airways, while ammonium bicarbonate is used as a systemic alkalizer to treat metabolic acidosis.

However, it's important to note that some ammonium compounds can be toxic in high concentrations. For instance, exposure to high levels of ammonia gas (NH3) can cause respiratory irritation and damage to the lungs. Similarly, ingesting large amounts of ammonium chloride can lead to stomach upset, vomiting, and potentially life-threatening electrolyte imbalances.

Therefore, it's essential to use ammonium compounds only under the guidance of a healthcare professional and to follow recommended dosages carefully to avoid adverse effects.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Ribosomal RNA (rRNA) is a type of RNA that combines with proteins to form ribosomes, which are complex structures inside cells where protein synthesis occurs. The "16S" refers to the sedimentation coefficient of the rRNA molecule, which is a measure of its size and shape. In particular, 16S rRNA is a component of the smaller subunit of the prokaryotic ribosome (found in bacteria and archaea), and is often used as a molecular marker for identifying and classifying these organisms due to its relative stability and conservation among species. The sequence of 16S rRNA can be compared across different species to determine their evolutionary relationships and taxonomic positions.

"Plant immunity" refers to the complex defense mechanisms that plants have evolved to protect themselves from pathogens, such as bacteria, viruses, fungi, and nematodes. Plants do not have an adaptive immune system like humans, so they rely on their innate immune responses to detect and respond to pathogen invasion.

Plant immunity can be broadly categorized into two types: PTI (PAMP-triggered immunity) and ETI (Effector-triggered immunity). PTI is activated when the plant recognizes conserved microbial patterns, known as PAMPs (Pathogen-Associated Molecular Patterns), through pattern recognition receptors (PRRs) located on the cell surface. This recognition triggers a series of defense responses, such as the production of reactive oxygen species, the activation of mitogen-activated protein kinases (MAPKs), and the expression of defense genes.

ETI is activated when the plant recognizes effector proteins produced by pathogens to suppress PTI. Effector recognition typically occurs through resistance (R) proteins that can directly or indirectly recognize effectors, leading to the activation of stronger defense responses, such as the hypersensitive response (HR), which involves localized programmed cell death to limit pathogen spread.

Overall, plant immunity is a complex and dynamic process involving multiple layers of defense mechanisms that help plants protect themselves from pathogens and maintain their health and productivity.

"Sinorhizobium" is a genus of bacteria that can form nitrogen-fixing nodules on the roots of certain leguminous plants, such as beans and alfalfa. These bacteria are able to convert atmospheric nitrogen into ammonia, which the plant can then use for growth. This symbiotic relationship benefits both the plant and the bacteria - the plant receives a source of nitrogen, while the bacteria receive carbon and other nutrients from the plant.

The genus "Sinorhizobium" is part of the family Rhizobiaceae and includes several species that are important for agriculture and the global nitrogen cycle. Some examples of "Sinorhizobium" species include S. meliloti, which forms nodules on alfalfa and other Medicago species, and S. fredii, which forms nodules on soybeans and other Glycine species.

It's worth noting that the taxonomy of nitrogen-fixing bacteria has undergone significant revisions in recent years, and some "Sinorhizobium" species have been reclassified as members of other genera. However, the genus "Sinorhizobium" remains a valid and important group of nitrogen-fixing bacteria.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Ascorbate peroxidases (AHPX) are a group of enzymes that use ascorbic acid (vitamin C) as a reducing cofactor to catalyze the conversion of hydrogen peroxide (H2O2) into water (H2O) and oxygen (O2). This reaction helps protect cells from oxidative damage caused by the accumulation of H2O2, a byproduct of various metabolic processes. Ascorbate peroxidases are primarily found in plants, algae, and cyanobacteria, where they play a crucial role in the detoxification of reactive oxygen species generated during photosynthesis.

Root resorption is a process that occurs when the body's own cells, called odontoclasts, break down and destroy the hard tissue of the tooth root. This can occur as a result of various factors such as trauma, infection, or orthodontic treatment. In some cases, it may be a normal part of the tooth development and eruption process in children. However, excessive or pathological root resorption can lead to weakening and loss of the tooth. It is often asymptomatic and discovered during routine dental x-rays.

Actinomycetales is an order of Gram-positive bacteria that are characterized by their filamentous morphology and branching appearance, resembling fungi. These bacteria are often found in soil and water, and some species can cause diseases in humans and animals. The name "Actinomycetales" comes from the Greek words "actis," meaning ray or beam, and "mykes," meaning fungus.

The order Actinomycetales includes several families of medical importance, such as Mycobacteriaceae (which contains the tuberculosis-causing Mycobacterium tuberculosis), Corynebacteriaceae (which contains the diphtheria-causing Corynebacterium diphtheriae), and Actinomycetaceae (which contains the actinomycosis-causing Actinomyces israelii).

Actinomycetales are known for their complex cell walls, which contain a unique type of lipid called mycolic acid. This feature makes them resistant to many antibiotics and contributes to their ability to cause chronic infections. They can also form resistant structures called spores, which allow them to survive in harsh environments and contribute to their ability to cause disease.

Overall, Actinomycetales are important both as beneficial soil organisms and as potential pathogens that can cause serious diseases in humans and animals.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Glutamate-ammonia ligase, also known as glutamine synthetase, is an enzyme that plays a crucial role in nitrogen metabolism. It catalyzes the formation of glutamine from glutamate and ammonia in the presence of ATP, resulting in the conversion of ammonia to a less toxic form. This reaction is essential for maintaining nitrogen balance in the body and for the synthesis of various amino acids, nucleotides, and other biomolecules. The enzyme is widely distributed in various tissues, including the brain, liver, and muscle, and its activity is tightly regulated through feedback inhibition by glutamine and other metabolites.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

Acetylene is defined as a colorless, highly flammable gas with a distinctive odor, having the chemical formula C2H2. It is the simplest and lightest hydrocarbon in which two carbon atoms are bonded together by a triple bond. Acetylene is used as a fuel in welding and cutting torches, and it can also be converted into other chemicals, such as vinyl acetate and acetic acid. In medical terms, acetylene is not a substance that is commonly used or discussed.

Ribonucleic acid (RNA) in plants refers to the long, single-stranded molecules that are essential for the translation of genetic information from deoxyribonucleic acid (DNA) into proteins. RNA is a nucleic acid, like DNA, and it is composed of a ribose sugar backbone with attached nitrogenous bases (adenine, uracil, guanine, and cytosine).

In plants, there are several types of RNA that play specific roles in the gene expression process:

1. Messenger RNA (mRNA): This type of RNA carries genetic information copied from DNA in the form of a sequence of three-base code units called codons. These codons specify the order of amino acids in a protein.
2. Transfer RNA (tRNA): tRNAs are small RNA molecules that serve as adaptors between the mRNA and the amino acids during protein synthesis. Each tRNA has a specific anticodon sequence that base-pairs with a complementary codon on the mRNA, and it carries a specific amino acid that corresponds to that codon.
3. Ribosomal RNA (rRNA): rRNAs are structural components of ribosomes, which are large macromolecular complexes where protein synthesis occurs. In plants, there are several types of rRNAs, including the 18S, 5.8S, and 25S/28S rRNAs, that form the core of the ribosome and help catalyze peptide bond formation during protein synthesis.
4. Small nuclear RNA (snRNA): These are small RNA molecules that play a role in RNA processing, such as splicing, where introns (non-coding sequences) are removed from pre-mRNA and exons (coding sequences) are joined together to form mature mRNAs.
5. MicroRNA (miRNA): These are small non-coding RNAs that regulate gene expression by binding to complementary sequences in target mRNAs, leading to their degradation or translation inhibition.

Overall, these different types of RNAs play crucial roles in various aspects of RNA metabolism, gene regulation, and protein synthesis in plants.

Ribosomal DNA (rDNA) refers to the specific regions of DNA in a cell that contain the genes for ribosomal RNA (rRNA). Ribosomes are complex structures composed of proteins and rRNA, which play a crucial role in protein synthesis by translating messenger RNA (mRNA) into proteins.

In humans, there are four types of rRNA molecules: 18S, 5.8S, 28S, and 5S. These rRNAs are encoded by multiple copies of rDNA genes that are organized in clusters on specific chromosomes. In humans, the majority of rDNA genes are located on the short arms of acrocentric chromosomes 13, 14, 15, 21, and 22.

Each cluster of rDNA genes contains both transcribed and non-transcribed spacer regions. The transcribed regions contain the genes for the four types of rRNA, while the non-transcribed spacers contain regulatory elements that control the transcription of the rRNA genes.

The number of rDNA copies varies between species and even within individuals of the same species. The copy number can also change during development and in response to environmental factors. Variations in rDNA copy number have been associated with various diseases, including cancer and neurological disorders.

"Sinorhizobium fredii" is a gram-negative, rod-shaped bacterium that belongs to the family Rhizobiaceae. It has the ability to fix atmospheric nitrogen in a symbiotic relationship with certain leguminous plants, particularly soybeans and other related species. This bacterium infects the roots of these plants and forms nodules where it converts nitrogen gas into ammonia, a form that can be used by the plant for growth.

"Sinorhizobium fredii" is widely distributed in soil and is known to have a broad host range, including many important agricultural crops. It has been studied extensively due to its potential use as a biofertilizer, which could help reduce the need for chemical nitrogen fertilizers and improve soil health.

It's worth noting that while "Sinorhizobium fredii" is an important bacterium in agriculture and environmental science, it can also be a pathogen of some plants under certain conditions. Therefore, understanding its biology and ecology is crucial for optimizing its benefits and minimizing any potential negative impacts.

I'm sorry for any confusion, but "seedling" is not a term that has a specific medical definition. It is an agricultural and horticultural term that refers to a young plant grown from a seed, typically during the early stages of its growth. If you have any questions related to health or medicine, I'd be happy to try to help with those!

Coniferophyta is a division of vascular plants that includes the conifers. It is an informal name and not commonly used in modern taxonomy, but it can still be found in some older textbooks and resources. The more widely accepted classification system places conifers within the gymnosperms, which are a group of seed-bearing plants characterized by the absence of fruits or flowers.

Conifers are a diverse group of woody plants that include trees and shrubs such as pines, firs, spruces, hemlocks, cedars, and redwoods. They are known for their cone-bearing seeds and needle-shaped leaves, which are often evergreen. Conifers are widely distributed throughout the world and play important ecological roles in many ecosystems, particularly in temperate and boreal forests.

In summary, while "Coniferophyta" is an outdated term for the division that includes conifers, it refers to a group of plants characterized by their cone-bearing seeds and needle-shaped leaves. Modern classification systems place conifers within the gymnosperms.

I apologize for the confusion, but "Plant Epidermis" is not a medical term. Instead, it is a term used in botany to describe the outermost layer of cells in plant tissues. The epidermis serves as a protective barrier for the plant, regulating gas exchange and water loss through stomata, and producing cutin, a waxy substance that helps prevent water loss.

In summary, "Plant Epidermis" is a term related to plant biology and not medicine.

Kinetin is a type of plant growth hormone, specifically a cytokinin. It plays a crucial role in cell division and differentiation, as well as promoting growth and delaying senescence (aging) in plants. Kinetin has also been studied for its potential use in various medical applications, including wound healing, tissue culture, and skin care products. However, it is primarily known for its role in plant biology.

'Vicia faba' is the scientific name for the fava bean plant, which belongs to the legume family (Fabaceae). It is also known as broad bean or horse bean. The plant is widely cultivated as a vegetable crop, and its seeds, pods, and young leaves are all edible. Fava beans are rich in proteins, dietary fiber, vitamins, and minerals, making them an essential component of many diets around the world. However, some people may have an adverse reaction to fava beans due to a genetic disorder called favism, which can cause hemolytic anemia.

Nitrates are chemical compounds that consist of a nitrogen atom bonded to three oxygen atoms (NO3-). In the context of medical science, nitrates are often discussed in relation to their use as medications or their presence in food and water.

As medications, nitrates are commonly used to treat angina (chest pain) caused by coronary artery disease. Nitrates work by relaxing and widening blood vessels, which improves blood flow and reduces the workload on the heart. Some examples of nitrate medications include nitroglycerin, isosorbide dinitrate, and isosorbide mononitrate.

In food and water, nitrates are naturally occurring compounds that can be found in a variety of vegetables, such as spinach, beets, and lettuce. They can also be present in fertilizers and industrial waste, which can contaminate groundwater and surface water sources. While nitrates themselves are not harmful, they can be converted into potentially harmful compounds called nitrites under certain conditions, particularly in the digestive system of young children or in the presence of bacteria such as those found in unpasteurized foods. Excessive levels of nitrites can react with hemoglobin in the blood to form methemoglobin, which cannot transport oxygen effectively and can lead to a condition called methemoglobinemia.

"Herbaspirillum" is a genus of bacteria that are commonly found in the roots and stems of various plants. They are capable of fixing nitrogen, which can benefit the growth of the host plant. These bacteria are Gram-negative, motile rods that can be curved or spiraled in shape. They are facultative anaerobes, meaning they can grow with or without oxygen. Some species of Herbaspirillum have been associated with plant diseases, but their exact role in the disease process is not always clear. Further research is needed to fully understand the interactions between these bacteria and their host plants.

Stomata are microscopic pores found in the epidermis of plant leaves, stems, and other organs. They are essential for gas exchange between the plant and the atmosphere, allowing the uptake of carbon dioxide for photosynthesis and the release of oxygen. Plant stomata consist of two guard cells that surround and regulate the size of the pore. The opening and closing of the stomatal pore are influenced by environmental factors such as light, humidity, and temperature, as well as internal signals within the plant.

I apologize, but there seems to be a misunderstanding. "Soil microbiology" is not a medical term; rather, it is a branch of microbiology that deals with the study of microorganisms in soil. It involves understanding the diversity, ecology, and biochemistry of bacteria, fungi, algae, protozoa, and other microscopic life forms found in soil. This field has applications in agriculture, environmental science, and waste management but is not directly related to medical definitions or human health.

"Millettia" is a genus of flowering plants in the family Fabaceae, also known as the legume family. These plants are primarily found in tropical and subtropical regions of the world, particularly in Africa, Asia, and Australia. Some species of Millettia have been used in traditional medicine for various purposes, such as treating fever, malaria, and skin diseases. However, it's important to note that the medicinal properties and safety of these plants can vary widely depending on the specific species and preparation methods, so they should only be used under the guidance of a qualified healthcare provider.

In medical terms, "seeds" are often referred to as a small amount of a substance, such as a radioactive material or drug, that is inserted into a tissue or placed inside a capsule for the purpose of treating a medical condition. This can include procedures like brachytherapy, where seeds containing radioactive materials are used in the treatment of cancer to kill cancer cells and shrink tumors. Similarly, in some forms of drug delivery, seeds containing medication can be used to gradually release the drug into the body over an extended period of time.

It's important to note that "seeds" have different meanings and applications depending on the medical context. In other cases, "seeds" may simply refer to small particles or structures found in the body, such as those present in the eye's retina.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Micromonospora is a genus of aerobic, Gram-positive bacteria that are widely distributed in soil and aquatic environments. These bacteria are known for their ability to produce a variety of bioactive compounds, including antibiotics, antifungal agents, and enzyme inhibitors. They are characterized by their filamentous morphology and the production of aerial hyphae that fragment into rod-shaped or coccoid cells. Some species of Micromonospora have been investigated for their potential use in biotechnology and medicine due to their ability to produce useful compounds. However, some species can also be opportunistic pathogens in humans, causing infections in immunocompromised individuals.

Astragalus membranaceus, also known as Astragalus propinquus, is a plant that is native to China and has been used in traditional Chinese medicine for centuries. It is often referred to simply as "astragalus" and its root is used in herbal remedies.

In traditional Chinese medicine, astragalus is considered to have warming and drying properties, and is often used to strengthen the body's defenses, or "wei qi," which is believed to help protect against external pathogens. It is also used to treat a variety of conditions, including fatigue, weakness, and respiratory infections.

In modern scientific research, astragalus has been studied for its potential immune-boosting, anti-inflammatory, and antioxidant effects. Some studies have suggested that it may help to improve immune function, reduce inflammation, and protect against oxidative stress. However, more research is needed to confirm these potential benefits and determine the optimal dosage and safety of astragalus supplements.

It's important to note that astragalus should not be used as a substitute for conventional medical treatment, and anyone considering taking it as a supplement should speak with their healthcare provider first to discuss the potential risks and benefits.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Plant transpiration is the process by which water vapor escapes from leaves and other aerial parts of plants to the atmosphere. It is a type of evapotranspiration, which refers to both evaporation from land surfaces and transpiration from plants. Water molecules are absorbed by plant roots from the soil, move up through the xylem tissue to the leaves, and then evaporate from the leaf surface through stomatal pores. This process helps in the transportation of nutrients from the soil to various parts of the plant, regulates the temperature of the plant, and maintains the turgor pressure within the cells. Plant transpiration is influenced by environmental factors such as light intensity, temperature, humidity, and wind speed.

"Lycopersicon esculentum" is the scientific name for the common red tomato. It is a species of fruit from the nightshade family (Solanaceae) that is native to western South America and Central America. Tomatoes are widely grown and consumed in many parts of the world as a vegetable, although they are technically a fruit. They are rich in nutrients such as vitamin C, potassium, and lycopene, which has been studied for its potential health benefits.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Rosaceae is not a medical term but a taxonomic category in biology, specifically an family of flowering plants. However, many physicians and dermatologists are familiar with some members of this family because they cause several common skin conditions.

Rosaceae refers to a family of plants that include roses, strawberries, blackberries, and many other ornamental and edible plants. Some genera within this family contain species known to cause various dermatologic conditions in humans, particularly affecting the face.

The most well-known skin disorders associated with Rosaceae are:

1. Acne rosacea (or rosacea): A chronic inflammatory skin condition primarily affecting the central face, characterized by flushing, persistent erythema (redness), telangiectasia (dilated blood vessels), papules, pustules, and sometimes rhinophyma (enlarged, bulbous nose).
2. Erythematotelangiectatic rosacea: A subtype of rosacea characterized by persistent central facial erythema, flushing, and telangiectasia without papules or pustules.
3. Phymatous rosacea: A subtype of rosacea characterized by thickening skin, irregular surface nodularities, and enlargement, particularly of the nose (rhinophyma).
4. Ocular rosacea: Inflammation of the eyes and eyelids associated with rosacea, causing symptoms like dryness, grittiness, foreign body sensation, burning, stinging, itching, watering, redness, and occasional blurry vision.

While not a medical term itself, Rosaceae is an essential concept in dermatology due to the skin conditions it encompasses.

Glucuronidase is an enzyme that catalyzes the hydrolysis of glucuronic acid from various substrates, including molecules that have been conjugated with glucuronic acid as part of the detoxification process in the body. This enzyme plays a role in the breakdown and elimination of certain drugs, toxins, and endogenous compounds, such as bilirubin. It is found in various tissues and organisms, including humans, bacteria, and insects. In clinical contexts, glucuronidase activity may be measured to assess liver function or to identify the presence of certain bacterial infections.

Biomass is defined in the medical field as a renewable energy source derived from organic materials, primarily plant matter, that can be burned or converted into fuel. This includes materials such as wood, agricultural waste, and even methane gas produced by landfills. Biomass is often used as a source of heat, electricity, or transportation fuels, and its use can help reduce greenhouse gas emissions and dependence on fossil fuels.

In the context of human health, biomass burning can have both positive and negative impacts. On one hand, biomass can provide a source of heat and energy for cooking and heating, which can improve living standards and reduce exposure to harmful pollutants from traditional cooking methods such as open fires. On the other hand, biomass burning can also produce air pollution, including particulate matter and toxic chemicals, that can have negative effects on respiratory health and contribute to climate change.

Therefore, while biomass has the potential to be a sustainable and low-carbon source of energy, it is important to consider the potential health and environmental impacts of its use and implement appropriate measures to minimize any negative effects.

A genetic complementation test is a laboratory procedure used in molecular genetics to determine whether two mutated genes can complement each other's function, indicating that they are located at different loci and represent separate alleles. This test involves introducing a normal or wild-type copy of one gene into a cell containing a mutant version of the same gene, and then observing whether the presence of the normal gene restores the normal function of the mutated gene. If the introduction of the normal gene results in the restoration of the normal phenotype, it suggests that the two genes are located at different loci and can complement each other's function. However, if the introduction of the normal gene does not restore the normal phenotype, it suggests that the two genes are located at the same locus and represent different alleles of the same gene. This test is commonly used to map genes and identify genetic interactions in a variety of organisms, including bacteria, yeast, and animals.

Oxytropis is a genus of flowering plants in the legume family, Fabaceae. It is native to temperate regions of the Northern Hemisphere, primarily in North America and Asia. Some common names for Oxytropis include locoweeds and wild peas.

In a medical context, Oxytropis species are most well-known for containing toxic alkaloids that can cause serious poisoning in livestock, particularly cattle, sheep, and goats. The toxins, including swainsonine and other indolizidine alkaloids, can affect the nervous system and cause symptoms such as weakness, tremors, blindness, and ultimately death.

While Oxytropis poisoning is not a direct concern for human health, it is important for medical professionals to be aware of its potential impact on animal health in rural and agricultural communities.

A meristem, in the context of plant biology, refers to a type of tissue found in plants that is responsible for their growth. These tissues are composed of cells that have the ability to divide and differentiate into various specialized cell types. Meristems are typically located at the tips of roots and shoots (apical meristems), as well as within the vascular bundles (cambial meristems) and in the cork layers (phellogen meristems). They contribute to the increase in length and girth of plant organs, allowing plants to grow throughout their life.

A multigene family is a group of genetically related genes that share a common ancestry and have similar sequences or structures. These genes are arranged in clusters on a chromosome and often encode proteins with similar functions. They can arise through various mechanisms, including gene duplication, recombination, and transposition. Multigene families play crucial roles in many biological processes, such as development, immunity, and metabolism. Examples of multigene families include the globin genes involved in oxygen transport, the immune system's major histocompatibility complex (MHC) genes, and the cytochrome P450 genes associated with drug metabolism.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

I'm sorry for any confusion, but "flowers" is not a term that has a medical definition. The term "flowers" is commonly used to refer to the reproductive structures of flowering plants (angiosperms), which are characterized by having both male and female reproductive organs or separate male and female flowers.

If you have any questions related to medical terminology or health conditions, I would be happy to try to help answer those for you!

Root caries is a type of dental decay that occurs on the root surface of teeth, which is typically exposed due to gingival recession or periodontal disease. These caries lesions often progress rapidly because the root surface lacks the protective enamel layer and has more porous cementum that is susceptible to acid dissolution. Root caries are most commonly found in older adults, but can also occur in younger individuals with poor oral hygiene or who have orthodontic appliances or crowns that expose root surfaces. If left untreated, root caries can lead to tooth sensitivity, pain, infection, and even tooth loss.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

I'm sorry for any confusion, but "hydroponics" is not a medical term. It is an agricultural technique and term. Hydroponics refers to the practice of growing plants in nutrient-rich water solutions, without soil. This method allows plants to obtain their necessary nutrients directly from the water, which is enriched with dissolved minerals. Common hydroponic systems include wick systems, deep water culture, nutrient film technique, ebb and flow system, aeroponics, and drip systems.

Rhizobium etli is a gram-negative, aerobic, motile, non-spore forming bacteria that belongs to the Rhizobiaceae family. It has the ability to fix atmospheric nitrogen in a symbiotic relationship with certain leguminous plants, particularly common bean (Phaseolus vulgaris). This bacterium infects the roots of these plants and forms nodules where it converts nitrogen gas into ammonia, a form that can be used by the plant for growth. The nitrogen-fixing ability of Rhizobium etli makes it an important bacteria in agriculture and environmental science.

Root canal preparation is a procedure in endodontics, which is the branch of dentistry dealing with the dental pulp and tissues surrounding the root of a tooth. The goal of root canal preparation is to thoroughly clean, shape, and disinfect the root canal system of an infected or damaged tooth, in order to prepare it for a filling material that will seal and protect the tooth from further infection or damage.

The procedure involves the use of specialized dental instruments, such as files and reamers, to remove the infected or necrotic pulp tissue and debris from within the root canal. The root canal is then shaped using progressively larger files to create a tapering preparation that facilitates the placement of the filling material. Irrigation solutions are used to help flush out any remaining debris and disinfect the canal.

The success of root canal preparation depends on several factors, including the thoroughness of cleaning and shaping, the effectiveness of disinfection, and the sealing ability of the filling material. Properly performed, root canal preparation can alleviate pain, save a tooth from extraction, and restore function and aesthetics to the mouth.

Genetic transformation is the process by which an organism's genetic material is altered or modified, typically through the introduction of foreign DNA. This can be achieved through various techniques such as:

* Gene transfer using vectors like plasmids, phages, or artificial chromosomes
* Direct uptake of naked DNA using methods like electroporation or chemically-mediated transfection
* Use of genome editing tools like CRISPR-Cas9 to introduce precise changes into the organism's genome.

The introduced DNA may come from another individual of the same species (cisgenic), from a different species (transgenic), or even be synthetically designed. The goal of genetic transformation is often to introduce new traits, functions, or characteristics that do not exist naturally in the organism, or to correct genetic defects.

This technique has broad applications in various fields, including molecular biology, biotechnology, and medical research, where it can be used to study gene function, develop genetically modified organisms (GMOs), create cell lines for drug screening, and even potentially treat genetic diseases through gene therapy.

A plant tumor, also known as a gall or neoplasm, is an abnormal growth that occurs in plants. These growths can be caused by various factors such as genetic mutations, bacterial or viral infections, and physical injuries. However, the most well-known cause of plant tumors are crown galls, which are induced by the bacterium Agrobacterium tumefaciens.

When this bacterium infects a plant through a wound, it transfers a portion of its DNA (T-DNA) into the plant's cells. The T-DNA contains genes that encode enzymes responsible for the production of auxins and cytokinins, two types of plant hormones that promote cell division and growth. As a result, the infected plant cells start to divide uncontrollably, leading to the formation of a tumor-like growth.

Plant tumors can vary in size and appearance, ranging from small bumps to large, disfigured growths. While they are not typically harmful to the plant, they can reduce its aesthetic value and economic productivity. In some cases, plant tumors may also provide a habitat for pests and diseases, which can further harm the plant.

Medical definitions typically focus on the relevance of a term to medical practice, and I'm not sure if there is a specific medical definition for "plant exudates." However, in a broader context, plant exudates refer to the various substances that are released or exuded by plants, often as a result of damage or stress. These can include a wide variety of compounds, such as sap, resins, latex, gums, essential oils, and tannins. Some of these compounds can have medicinal properties and are used in various forms of traditional and modern medicine. For example, the resin from certain pine trees (rosin) has been used to treat respiratory ailments, while willow bark, which contains salicin (a precursor to aspirin), has been used for pain relief for centuries.

Plant poisoning is a form of poisoning that occurs when someone ingests, inhales, or comes into contact with any part of a plant that contains toxic substances. These toxins can cause a range of symptoms, depending on the type and amount of plant consumed or exposed to, as well as the individual's age, health status, and sensitivity to the toxin.

Symptoms of plant poisoning may include nausea, vomiting, diarrhea, abdominal pain, difficulty breathing, skin rashes, seizures, or in severe cases, even death. Some common plants that can cause poisoning include poison ivy, poison oak, foxglove, oleander, and hemlock, among many others.

If you suspect plant poisoning, it is important to seek medical attention immediately and bring a sample of the plant or information about its identity if possible. This will help healthcare providers diagnose and treat the poisoning more effectively.

Chromosomes in plants are thread-like structures that contain genetic material, DNA, and proteins. They are present in the nucleus of every cell and are inherited from the parent plants during sexual reproduction. Chromosomes come in pairs, with each pair consisting of one chromosome from each parent.

In plants, like in other organisms, chromosomes play a crucial role in inheritance, development, and reproduction. They carry genetic information that determines various traits and characteristics of the plant, such as its physical appearance, growth patterns, and resistance to diseases.

Plant chromosomes are typically much larger than those found in animals, making them easier to study under a microscope. The number of chromosomes varies among different plant species, ranging from as few as 2 in some ferns to over 1000 in certain varieties of wheat.

During cell division, the chromosomes replicate and then separate into two identical sets, ensuring that each new cell receives a complete set of genetic information. This process is critical for the growth and development of the plant, as well as for the production of viable seeds and offspring.

Burkholderia is a genus of gram-negative, rod-shaped bacteria that are widely distributed in the environment, including soil, water, and associated with plants. Some species of Burkholderia are opportunistic pathogens, meaning they can cause infection in individuals with weakened immune systems or underlying medical conditions.

One of the most well-known species of Burkholderia is B. cepacia, which can cause respiratory infections in people with cystic fibrosis and chronic granulomatous disease. Other notable species include B. pseudomallei, the causative agent of melioidosis, a potentially serious infection that primarily affects the respiratory system; and B. mallei, which causes glanders, a rare but severe disease that can affect humans and animals.

Burkholderia species are known for their resistance to many antibiotics, making them difficult to treat in some cases. Proper identification of the specific Burkholderia species involved in an infection is important for determining the most appropriate treatment approach.

"Robinia" is not a medical term. It refers to a genus of flowering plants in the legume family, also known as black locust trees. The wood of these trees can be used in various applications, but it does not have direct relevance to medical definitions or healthcare. If you have any questions related to a specific medical topic, I would be happy to help clarify further!

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Root planing is a dental procedure that involves the cleaning and smoothing of the root surfaces of teeth. It is typically performed as a part of periodontal therapy to treat and manage gum disease. The goal of root planing is to remove tartar, calculus, and bacterial toxins from the roots of teeth, which helps to promote the reattachment of the gums to the teeth and prevent further progression of periodontal disease. This procedure is usually performed under local anesthesia and may require multiple appointments depending on the severity of the case.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

A fine-needle biopsy (FNB) is a medical procedure in which a thin, hollow needle is used to obtain a sample of cells or tissue from a suspicious or abnormal area in the body, such as a lump or mass. The needle is typically smaller than that used in a core needle biopsy, and it is guided into place using imaging techniques such as ultrasound, CT scan, or MRI.

The sample obtained during an FNB can be used to diagnose various medical conditions, including cancer, infection, or inflammation. The procedure is generally considered safe and well-tolerated, with minimal risks of complications such as bleeding, infection, or discomfort. However, the accuracy of the diagnosis depends on the skill and experience of the healthcare provider performing the biopsy, as well as the adequacy of the sample obtained.

Overall, FNB is a valuable diagnostic tool that can help healthcare providers make informed decisions about treatment options and improve patient outcomes.

Aerial parts of plants refer to the above-ground portions of a plant, including leaves, stems, flowers, and fruits. These parts are often used in medicine, either in their entirety or as isolated extracts, to take advantage of their medicinal properties. The specific components of aerial parts that are used in medicine can vary depending on the plant species and the desired therapeutic effects. For example, the leaves of some plants may contain active compounds that have anti-inflammatory or analgesic properties, while the flowers of others may be rich in antioxidants or compounds with sedative effects. In general, aerial parts of plants are used in herbal medicine to treat a wide range of conditions, including respiratory, digestive, and nervous system disorders, as well as skin conditions and infections.

rRNA (ribosomal RNA) is not a type of gene itself, but rather a crucial component that is transcribed from genes known as ribosomal DNA (rDNA). In cells, rRNA plays an essential role in protein synthesis by assembling with ribosomal proteins to form ribosomes. Ribosomes are complex structures where the translation of mRNA into proteins occurs. There are multiple types of rRNA molecules, including 5S, 5.8S, 18S, and 28S rRNAs in eukaryotic cells, each with specific functions during protein synthesis.

In summary, 'Genes, rRNA' would refer to the genetic regions (genes) that code for ribosomal RNA molecules, which are vital components of the protein synthesis machinery within cells.

Heme proteins are a type of protein that contain a heme group, which is a prosthetic group composed of an iron atom contained in the center of a large organic ring called a porphyrin. The heme group gives these proteins their characteristic red color. Hemeproteins have various important functions in biological systems, including oxygen transport (e.g., hemoglobin), electron transfer (e.g., cytochromes), and enzymatic catalysis (e.g., peroxidases and catalases). The heme group can bind and release gases, such as oxygen and carbon monoxide, and can participate in redox reactions due to the ease with which iron can change its oxidation state.

Glucosyltransferases (GTs) are a group of enzymes that catalyze the transfer of a glucose molecule from an activated donor to an acceptor molecule, resulting in the formation of a glycosidic bond. These enzymes play crucial roles in various biological processes, including the biosynthesis of complex carbohydrates, cell wall synthesis, and protein glycosylation. In some cases, GTs can also contribute to bacterial pathogenesis by facilitating the attachment of bacteria to host tissues through the formation of glucans, which are polymers of glucose molecules.

GTs can be classified into several families based on their sequence similarities and catalytic mechanisms. The donor substrates for GTs are typically activated sugars such as UDP-glucose, TDP-glucose, or GDP-glucose, which serve as the source of the glucose moiety that is transferred to the acceptor molecule. The acceptor can be a wide range of molecules, including other sugars, proteins, lipids, or small molecules.

In the context of human health and disease, GTs have been implicated in various pathological conditions, such as cancer, inflammation, and microbial infections. For example, some GTs can modify proteins on the surface of cancer cells, leading to increased cell proliferation, migration, and invasion. Additionally, GTs can contribute to bacterial resistance to antibiotics by modifying the structure of bacterial cell walls or by producing biofilms that protect bacteria from host immune responses and antimicrobial agents.

Overall, Glucosyltransferases are essential enzymes involved in various biological processes, and their dysregulation has been associated with several human diseases. Therefore, understanding the structure, function, and regulation of GTs is crucial for developing novel therapeutic strategies to target these enzymes and treat related pathological conditions.

Oxylipins are a class of bioactive lipid molecules derived from the oxygenation of polyunsaturated fatty acids (PUFAs). They play crucial roles in various physiological and pathophysiological processes, including inflammation, immunity, and cellular signaling. Oxylipins can be further categorized based on their precursor PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and linoleic acid (LA). These oxylipins are involved in the regulation of vascular tone, platelet aggregation, neurotransmission, and pain perception. They exert their effects through various receptors and downstream signaling pathways, making them important targets for therapeutic interventions in several diseases, such as cardiovascular disorders, cancer, and neurological conditions.

Root canal obturation is the process of filling and sealing the root canal system of a tooth after it has been cleaned and shaped during endodontic treatment. The goal of obturation is to prevent reinfection or contamination of the root canal system by completely filling and sealing the space with an inert, biocompatible material such as gutta-percha and a suitable sealant. This procedure helps to preserve the natural tooth structure, alleviate pain, and maintain proper dental function.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

"Plant preparations" is not a term with a specific medical definition in the field of medicine or pharmacology. However, it is commonly used to refer to various forms of plant material that have been prepared for medicinal use. This can include dried and powdered plant parts, such as leaves, roots, or flowers, as well as extracts or concentrates made from plants. These preparations may be used in traditional medicine or as the basis for modern pharmaceuticals. It is important to note that the safety, effectiveness, and quality of plant preparations can vary widely, and they should only be used under the guidance of a qualified healthcare provider.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

Cyclopentanes are a class of hydrocarbons that contain a cycloalkane ring of five carbon atoms. The chemical formula for cyclopentane is C5H10. It is a volatile, flammable liquid that is used as a solvent and in the production of polymers. Cyclopentanes are also found naturally in petroleum and coal tar.

Cyclopentanes have a unique structure in which the carbon atoms are arranged in a pentagonal shape, with each carbon atom bonded to two other carbon atoms and one or two hydrogen atoms. This structure gives cyclopentane its characteristic "bowl-shaped" geometry, which allows it to undergo various chemical reactions, such as ring-opening reactions, that can lead to the formation of other chemicals.

Cyclopentanes have a variety of industrial and commercial applications. For example, they are used in the production of plastics, resins, and synthetic rubbers. They also have potential uses in the development of new drugs and medical technologies, as their unique structure and reactivity make them useful building blocks for the synthesis of complex molecules.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

I'm sorry for any confusion, but "power plants" is not a term used in medical definitions. It is a term commonly used to refer to industrial facilities that generate and distribute power, typically in the form of electricity. If you have any questions related to medicine or health, I would be happy to try to help answer those!

Photosynthesis is not strictly a medical term, but it is a fundamental biological process with significant implications for medicine, particularly in understanding energy production in cells and the role of oxygen in sustaining life. Here's a general biological definition:

Photosynthesis is a process by which plants, algae, and some bacteria convert light energy, usually from the sun, into chemical energy in the form of organic compounds, such as glucose (or sugar), using water and carbon dioxide. This process primarily takes place in the chloroplasts of plant cells, specifically in structures called thylakoids. The overall reaction can be summarized as:

6 CO2 + 6 H2O + light energy → C6H12O6 + 6 O2

In this equation, carbon dioxide (CO2) and water (H2O) are the reactants, while glucose (C6H12O6) and oxygen (O2) are the products. Photosynthesis has two main stages: the light-dependent reactions and the light-independent reactions (Calvin cycle). The light-dependent reactions occur in the thylakoid membrane and involve the conversion of light energy into ATP and NADPH, which are used to power the Calvin cycle. The Calvin cycle takes place in the stroma of chloroplasts and involves the synthesis of glucose from CO2 and water using the ATP and NADPH generated during the light-dependent reactions.

Understanding photosynthesis is crucial for understanding various biological processes, including cellular respiration, plant metabolism, and the global carbon cycle. Additionally, research into artificial photosynthesis has potential applications in renewable energy production and environmental remediation.

'Zea mays' is the biological name for corn or maize, which is not typically considered a medical term. However, corn or maize can have medical relevance in certain contexts. For example, cornstarch is sometimes used as a diluent for medications and is also a component of some skin products. Corn oil may be found in topical ointments and creams. In addition, some people may have allergic reactions to corn or corn-derived products. But generally speaking, 'Zea mays' itself does not have a specific medical definition.

I'm sorry for any confusion, but "Plant Bark" is not a term with a specific medical definition. In general, the bark refers to the outermost covering of a tree or other plant, which serves as protection and provides a barrier against external threats. It is composed of layers including the inner bark (phloem), which transports nutrients throughout the plant, and the outer bark (periderm), which is made up of dead cells that form a protective layer.

While some plants or plant parts do have medicinal properties and are used in various forms of traditional or alternative medicine, "Plant Bark" by itself does not have any specific medical connotations. If you're referring to a specific type of plant bark with potential medicinal uses, please provide more details so I can give a more accurate response.

Herbivory is not a medical term, but rather a term used in biology and ecology. It refers to the practice of consuming plants or plant matter for food. Herbivores are animals that eat only plants, and their diet can include leaves, stems, roots, flowers, fruits, seeds, and other parts of plants.

While herbivory is not a medical term, it is still relevant to the field of medicine in certain contexts. For example, understanding the diets and behaviors of herbivores can help inform public health initiatives related to food safety and disease transmission. Additionally, research on herbivory has contributed to our understanding of the evolution of plant-animal interactions and the development of ecosystems.

"Drought" is not a medical term. It is a term used in meteorology and environmental science to refer to a prolonged period of abnormally low rainfall, leading to water shortage and scarcity in the affected areas. Droughts can have various impacts on human health, including dehydration, heat-related illnesses, reduced air quality, increased transmission of waterborne diseases, and mental health issues related to stress and displacement. However, drought itself is not a medical condition.

Spinal ganglia, also known as dorsal root ganglia, are clusters of nerve cell bodies located in the peripheral nervous system. They are situated along the length of the spinal cord and are responsible for transmitting sensory information from the body to the brain. Each spinal ganglion contains numerous neurons, or nerve cells, with long processes called axons that extend into the periphery and innervate various tissues and organs. The cell bodies within the spinal ganglia receive sensory input from these axons and transmit this information to the central nervous system via the dorsal roots of the spinal nerves. This allows the brain to interpret and respond to a wide range of sensory stimuli, including touch, temperature, pain, and proprioception (the sense of the position and movement of one's body).

Nucleic acid hybridization is a process in molecular biology where two single-stranded nucleic acids (DNA, RNA) with complementary sequences pair together to form a double-stranded molecule through hydrogen bonding. The strands can be from the same type of nucleic acid or different types (i.e., DNA-RNA or DNA-cDNA). This process is commonly used in various laboratory techniques, such as Southern blotting, Northern blotting, polymerase chain reaction (PCR), and microarray analysis, to detect, isolate, and analyze specific nucleic acid sequences. The hybridization temperature and conditions are critical to ensure the specificity of the interaction between the two strands.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

A rheumatic nodule is not a specific medical definition, but rather a descriptive term for a type of nodule that can be found in certain medical conditions. These nodules are typically associated with rheumatoid arthritis (RA), although they can also occur in other diseases such as systemic lupus erythematosus (SLE) and dermatomyositis.

Rheumatic nodules are small, firm, round or oval-shaped lumps that develop under the skin or in certain organs such as the lungs. They can vary in size from a few millimeters to several centimeters in diameter. In RA, these nodules usually appear on the forearms, elbows, fingers, knees, and ankles, although they can occur in other areas of the body as well.

Histologically, rheumatic nodules are characterized by a central area of fibrinoid necrosis surrounded by palisading histiocytes and fibroblasts. They may also contain lymphocytes, plasma cells, and eosinophils. The presence of these nodules is thought to be related to the immune system's response to the underlying disease process, although their exact cause and significance are not fully understood.

It is important to note that rheumatic nodules can also occur in individuals without any known medical condition, and their presence does not necessarily indicate the presence of a specific disease. However, if you notice any new or unusual lumps or bumps on your body, it is always a good idea to consult with a healthcare professional for further evaluation and diagnosis.

Xylem is a term used in the field of botany and plant anatomy, but I understand you're asking for a medical definition. In human anatomy, there isn't a direct structure equivalent to xylem. However, I can provide the general definition of xylem from its botanical context:

Xylem is one of the two types of vascular tissues in plants (the other being phloem). It is responsible for transporting water and dissolved nutrients from the roots to various parts of the plant, including stems, leaves, and flowers. Xylem consists of several types of cells, including vessels, tracheids, xylem fibers, and xylem parenchyma. The transportation in xylem occurs due to the cohesion-tension mechanism, where water is pulled up through the plant via transpiration pull.

Insertional mutagenesis is a process of introducing new genetic material into an organism's genome at a specific location, which can result in a change or disruption of the function of the gene at that site. This technique is often used in molecular biology research to study gene function and regulation. The introduction of the foreign DNA is typically accomplished through the use of mobile genetic elements, such as transposons or viruses, which are capable of inserting themselves into the genome.

The insertion of the new genetic material can lead to a loss or gain of function in the affected gene, resulting in a mutation. This type of mutagenesis is called "insertional" because the mutation is caused by the insertion of foreign DNA into the genome. The effects of insertional mutagenesis can range from subtle changes in gene expression to the complete inactivation of a gene.

This technique has been widely used in genetic research, including the study of developmental biology, cancer, and genetic diseases. It is also used in the development of genetically modified organisms (GMOs) for agricultural and industrial applications.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

Root canal filling materials are substances used to fill and seal the root canal system inside a tooth following root canal treatment. The main goal of using these materials is to prevent reinfection, provide structural support to the weakened tooth, and restore its functionality.

Commonly used root canal filling materials include:

1. Gutta-percha: A rubber-like material derived from the sap of the Palaquium gutta tree. It is widely used as the primary filling material due to its biocompatibility, malleability, and ability to be compacted into the root canal space. Gutta-percha points or cones are typically used in conjunction with a sealer for optimal adaptation and seal.

2. Sealers: These are adhesive materials that help bond gutta-percha to dentin walls and improve the seal between the filling material and root canal walls. Some commonly used sealers include zinc oxide eugenol, calcium hydroxide-based sealers, and resin-based sealers.

3. Silver points: These are silver cones with a sharp tip that can be inserted into the root canal space as an alternative to gutta-percha. However, their use has declined due to concerns about corrosion and potential tooth discoloration.

4. Mineral trioxide aggregate (MTA): A biocompatible cement composed primarily of Portland cement, bismuth oxide, and other additives. MTA is used for various applications in endodontics, including root-end filling, perforation repair, and apexification. It has excellent sealing ability, antibacterial properties, and promotes hard tissue formation.

5. Bioceramics: These are advanced materials with similar properties to MTA but with improved handling characteristics and setting times. They include materials like Bioaggregate, EndoSequence BC Sealer, and iRoot SP.

6. Thermoplasticized gutta-percha: This technique involves heating and softening gutta-percha using a specialized device called a thermomechanical compactor or an oven. The softened gutta-percha is then injected into the root canal space, providing better adaptation to the root canal walls and creating a more uniform seal.

The choice of materials depends on various factors, including the clinical situation, patient's needs, and practitioner's preference.

Base composition in genetics refers to the relative proportion of the four nucleotide bases (adenine, thymine, guanine, and cytosine) in a DNA or RNA molecule. In DNA, adenine pairs with thymine, and guanine pairs with cytosine, so the base composition is often expressed in terms of the ratio of adenine + thymine (A-T) to guanine + cytosine (G-C). This ratio can vary between species and even between different regions of the same genome. The base composition can provide important clues about the function, evolution, and structure of genetic material.

"Solanum tuberosum" is the scientific name for a plant species that is commonly known as the potato. According to medical and botanical definitions, Solanum tuberosum refers to the starchy, edible tubers that grow underground from this plant. Potatoes are native to the Andes region of South America and are now grown worldwide. They are an important food source for many people and are used in a variety of culinary applications.

Potatoes contain several essential nutrients, including carbohydrates, fiber, protein, vitamin C, and some B vitamins. However, they can also be high in calories, especially when prepared with added fats like butter or oil. Additionally, potatoes are often consumed in forms that are less healthy, such as French fries and potato chips, which can contribute to weight gain and other health problems if consumed excessively.

In a medical context, potatoes may also be discussed in relation to food allergies or intolerances. While uncommon, some people may have adverse reactions to potatoes, including skin rashes, digestive symptoms, or difficulty breathing. These reactions are typically caused by an immune response to proteins found in the potato plant, rather than the tubers themselves.

Thyroid neoplasms refer to abnormal growths or tumors in the thyroid gland, which can be benign (non-cancerous) or malignant (cancerous). These growths can vary in size and may cause a noticeable lump or nodule in the neck. Thyroid neoplasms can also affect the function of the thyroid gland, leading to hormonal imbalances and related symptoms. The exact causes of thyroid neoplasms are not fully understood, but risk factors include radiation exposure, family history, and certain genetic conditions. It is important to note that most thyroid nodules are benign, but a proper medical evaluation is necessary to determine the nature of the growth and develop an appropriate treatment plan.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

Abscisic acid (ABA) is a plant hormone that plays a crucial role in the regulation of various physiological processes, including seed dormancy, bud dormancy, leaf senescence, and response to abiotic stresses such as drought, salinity, and cold temperatures. It is a sesquiterpene compound that is synthesized in plants primarily in response to environmental stimuli that trigger the onset of stress responses.

ABA functions by regulating gene expression, cell growth and development, and stomatal closure, which helps prevent water loss from plants under drought conditions. It also plays a role in the regulation of plant metabolism and the activation of defense mechanisms against pathogens and other environmental stressors. Overall, abscisic acid is an essential hormone that enables plants to adapt to changing environmental conditions and optimize their growth and development.

In the context of medical terminology, "germination" is not typically used as a term to describe a physiological process in humans or animals. It is primarily used in the field of botany to refer to the process by which a seed or spore sprouts and begins to grow into a new plant.

However, if you are referring to the concept of germination in the context of bacterial or viral growth, then it could be defined as:

The process by which bacteria, viruses, or other microorganisms become active and start to multiply, often after a period of dormancy or latency. This can occur when the microorganisms encounter favorable conditions, such as moisture, warmth, or nutrients, that allow them to grow and reproduce. In medical contexts, this term is more commonly used in relation to infectious diseases caused by these microorganisms.

Aspartate-ammonia ligase, also known as aspartate transcarbamylase or ATC, is an enzyme that catalyzes the first reaction in the synthesis of pyrimidines, which are essential components of nucleotides and nucleic acids. The reaction catalyzed by aspartate-ammonia ligase is the condensation of aspartate and ammonia to form N-carbamoyl-L-aspartate and releases ADP and Pi. This enzyme plays a crucial role in the regulation of pyrimidine biosynthesis, and its activity is tightly regulated in response to changes in cellular demand for nucleotides. Defects in aspartate-ammonia ligase have been implicated in several genetic disorders, including ornithine transcarbamylase deficiency and citrullinemia.

An "ecosystem" is not a term that has a specific medical definition, as it is a concept that is more commonly used in the fields of ecology and environmental science. However, I can provide you with the general ecological definition of an ecosystem:

An ecosystem is a community of living organisms interacting with each other and their non-living environment, including both biotic factors (plants, animals, microorganisms) and abiotic factors (climate, soil, water, and air). These interactions create a complex network of relationships that form the foundation of ecological processes, such as energy flow, nutrient cycling, and population dynamics.

While there is no direct medical definition for an ecosystem, understanding the principles of ecosystems can have important implications for human health. For example, healthy ecosystems can provide clean air and water, regulate climate, support food production, and offer opportunities for recreation and relaxation, all of which contribute to overall well-being. Conversely, degraded ecosystems can lead to increased exposure to environmental hazards, reduced access to natural resources, and heightened risks of infectious diseases. Therefore, maintaining the health and integrity of ecosystems is crucial for promoting human health and preventing disease.

Root canal irrigants are substances used during root canal treatment to clean, disinfect and rinse the root canal system. The main goal is to remove tissue remnants, dentinal debris, and microorganisms from the root canal space, thus reducing the risk of reinfection and promoting healing. Commonly used irrigants include sodium hypochlorite (NaOCl), which is a potent antimicrobial agent, and ethylenediaminetetraacetic acid (EDTA), which is used to remove the smear layer and improve the penetration of other irrigants and root canal sealers. The choice of irrigant, concentration, and application technique may vary depending on the specific case and clinician's preference.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Poaceae is not a medical term but a taxonomic category, specifically the family name for grasses. In a broader sense, you might be asking for a medical context where knowledge of this plant family could be relevant. For instance, certain members of the Poaceae family can cause allergies or negative reactions in some people.

In a medical definition, Poaceae would be defined as:

The family of monocotyledonous plants that includes grasses, bamboo, and sedges. These plants are characterized by narrow leaves with parallel veins, jointed stems (called "nodes" and "internodes"), and flowers arranged in spikelets. Some members of this family are important food sources for humans and animals, such as rice, wheat, corn, barley, oats, and sorghum. Other members can cause negative reactions, like skin irritation or allergies, due to their silica-based defense structures called phytoliths.

I apologize for any confusion, but "Plant Nectar" is not a term used in medical definitions. Nectar is a sweet liquid produced by plants in flowers to attract pollinators such as insects and birds. It's a sugar-rich substance that serves as a source of energy for these animals. While it may have some nutritional value, it's not something that would be relevant to medical definitions or human health in a direct sense.

I'm sorry for any confusion, but "Hordeum" is not a medical term. It is actually the genus name for barley in botany. If you have any medical terms or concepts that you would like me to explain, please let me know!

Plant lectins are proteins or glycoproteins that are abundantly found in various plant parts such as seeds, leaves, stems, and roots. They have the ability to bind specifically to carbohydrate structures present on cell membranes, known as glycoconjugates. This binding property of lectins is reversible and non-catalytic, meaning it does not involve any enzymatic activity.

Lectins play several roles in plants, including defense against predators, pathogens, and herbivores. They can agglutinate red blood cells, stimulate the immune system, and have been implicated in various biological processes such as cell growth, differentiation, and apoptosis (programmed cell death). Some lectins also exhibit mitogenic activity, which means they can stimulate the proliferation of certain types of cells.

In the medical field, plant lectins have gained attention due to their potential therapeutic applications. For instance, some lectins have been shown to possess anti-cancer properties and are being investigated as potential cancer treatments. However, it is important to note that some lectins can be toxic or allergenic to humans and animals, so they must be used with caution.

Salicylic Acid is a type of beta hydroxy acid (BHA) that is commonly used in dermatology due to its keratolytic and anti-inflammatory properties. It works by causing the cells of the epidermis to shed more easily, preventing the pores from becoming blocked and promoting the growth of new skin cells. Salicylic Acid is also a potent anti-inflammatory agent, which makes it useful in the treatment of inflammatory acne and other skin conditions associated with redness and irritation. It can be found in various over-the-counter skincare products, such as cleansers, creams, and peels, as well as in prescription-strength formulations.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Fungi, in the context of medical definitions, are a group of eukaryotic organisms that include microorganisms such as yeasts and molds, as well as the more familiar mushrooms. The study of fungi is known as mycology.

Fungi can exist as unicellular organisms or as multicellular filamentous structures called hyphae. They are heterotrophs, which means they obtain their nutrients by decomposing organic matter or by living as parasites on other organisms. Some fungi can cause various diseases in humans, animals, and plants, known as mycoses. These infections range from superficial, localized skin infections to systemic, life-threatening invasive diseases.

Examples of fungal infections include athlete's foot (tinea pedis), ringworm (dermatophytosis), candidiasis (yeast infection), histoplasmosis, coccidioidomycosis, and aspergillosis. Fungal infections can be challenging to treat due to the limited number of antifungal drugs available and the potential for drug resistance.

"Triticum" is the genus name for a group of cereal grains that includes common wheat (T. aestivum), durum wheat (T. durum), and spelt (T. spelta). These grains are important sources of food for humans, providing carbohydrates, proteins, and various nutrients. They are used to make a variety of foods such as bread, pasta, and breakfast cereals. Triticum species are also known as "wheat" in layman's terms.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

Phytotherapy is the use of extracts of natural origin, especially plants or plant parts, for therapeutic purposes. It is also known as herbal medicine and is a traditional practice in many cultures. The active compounds in these plant extracts are believed to have various medicinal properties, such as anti-inflammatory, analgesic, or sedative effects. Practitioners of phytotherapy may use the whole plant, dried parts, or concentrated extracts to prepare teas, capsules, tinctures, or ointments for therapeutic use. It is important to note that the effectiveness and safety of phytotherapy are not always supported by scientific evidence, and it should be used with caution and preferably under the guidance of a healthcare professional.

RNA interference (RNAi) is a biological process in which RNA molecules inhibit the expression of specific genes. This process is mediated by small RNA molecules, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), that bind to complementary sequences on messenger RNA (mRNA) molecules, leading to their degradation or translation inhibition.

RNAi plays a crucial role in regulating gene expression and defending against foreign genetic elements, such as viruses and transposons. It has also emerged as an important tool for studying gene function and developing therapeutic strategies for various diseases, including cancer and viral infections.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

I'm sorry for any confusion, but "Plant Physiological Processes" is not a standard medical term. Instead, it falls under the domain of plant science or botany.

In a broad sense, plant physiological processes refer to the functions and mechanisms that occur within plants at the cellular and molecular levels, which enable them to grow, develop, reproduce, and respond to their environment. These processes include photosynthesis, respiration, nutrient uptake and translocation, hormone signaling, water relations, and various other biochemical reactions.

If you're looking for a term related to medical definitions, please provide more context or clarify your request, and I would be happy to help.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

The dental pulp cavity, also known as the pulp chamber, is the innermost part of a tooth that contains the dental pulp. It is located in the crown portion of the tooth and is shaped like an upside-down pyramid with the narrow end point towards the root of the tooth.

The dental pulp is a soft tissue that contains nerves, blood vessels, and connective tissue. It plays an important role in the development and maintenance of the tooth, including providing nutrients to the dentin and producing reparative dentin.

The dental pulp cavity can become infected or inflamed due to tooth decay, trauma, or other factors, leading to symptoms such as pain, sensitivity, and swelling. In such cases, treatment options may include root canal therapy, which involves removing the infected or inflamed pulp tissue from the dental pulp cavity and sealing the space to prevent further infection.

'Cucumis sativus' is the scientific name for the vegetable we commonly know as a cucumber. It belongs to the family Cucurbitaceae and is believed to have originated in South Asia. Cucumbers are widely consumed raw in salads, pickled, or used in various culinary applications. They have a high water content and contain various nutrients such as vitamin K, vitamin C, and potassium.

Traditional medicine (TM) refers to health practices, approaches, knowledge and beliefs incorporating plant, animal and mineral-based medicines, spiritual therapies, manual techniques and exercises, applied singularly or in combination to treat, diagnose and prevent illnesses or maintain well-being. Although traditional medicine has been practiced since prehistoric times, it is still widely used today and may include:

1. Traditional Asian medicines such as acupuncture, herbal remedies, and qigong from China; Ayurveda, Yoga, Unani and Siddha from India; and Jamu from Indonesia.
2. Traditional European herbal medicines, also known as phytotherapy.
3. North American traditional indigenous medicines, including Native American and Inuit practices.
4. African traditional medicines, such as herbal, spiritual, and manual techniques practiced in various African cultures.
5. South American traditional medicines, like Mapuche, Curanderismo, and Santo Daime practices from different countries.

It is essential to note that traditional medicine may not follow the scientific principles, evidence-based standards, or quality control measures inherent to conventional (also known as allopathic or Western) medicine. However, some traditional medicines have been integrated into modern healthcare systems and are considered complementary or alternative medicines (CAM). The World Health Organization encourages member states to develop policies and regulations for integrating TM/CAM practices into their healthcare systems, ensuring safety, efficacy, and quality while respecting cultural diversity.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Peroxidases are a group of enzymes that catalyze the oxidation of various substrates using hydrogen peroxide (H2O2) as the electron acceptor. These enzymes contain a heme prosthetic group, which plays a crucial role in their catalytic activity. Peroxidases are widely distributed in nature and can be found in plants, animals, and microorganisms. They play important roles in various biological processes, including defense against oxidative stress, lignin degradation, and host-pathogen interactions. Some common examples of peroxidases include glutathione peroxidase, which helps protect cells from oxidative damage, and horseradish peroxidase, which is often used in laboratory research.

Cluster analysis is a statistical method used to group similar objects or data points together based on their characteristics or features. In medical and healthcare research, cluster analysis can be used to identify patterns or relationships within complex datasets, such as patient records or genetic information. This technique can help researchers to classify patients into distinct subgroups based on their symptoms, diagnoses, or other variables, which can inform more personalized treatment plans or public health interventions.

Cluster analysis involves several steps, including:

1. Data preparation: The researcher must first collect and clean the data, ensuring that it is complete and free from errors. This may involve removing outlier values or missing data points.
2. Distance measurement: Next, the researcher must determine how to measure the distance between each pair of data points. Common methods include Euclidean distance (the straight-line distance between two points) or Manhattan distance (the distance between two points along a grid).
3. Clustering algorithm: The researcher then applies a clustering algorithm, which groups similar data points together based on their distances from one another. Common algorithms include hierarchical clustering (which creates a tree-like structure of clusters) or k-means clustering (which assigns each data point to the nearest centroid).
4. Validation: Finally, the researcher must validate the results of the cluster analysis by evaluating the stability and robustness of the clusters. This may involve re-running the analysis with different distance measures or clustering algorithms, or comparing the results to external criteria.

Cluster analysis is a powerful tool for identifying patterns and relationships within complex datasets, but it requires careful consideration of the data preparation, distance measurement, and validation steps to ensure accurate and meaningful results.

Gravitropism is the growth or movement of a plant in response to gravity. It is a type of tropism, which is the growth or movement of an organism in response to a stimulus. In gravitropism, plant cells can sense the direction of gravity and grow or bend towards or away from it. Roots typically exhibit positive gravitropism, growing downwards in response to gravity, while shoots exhibit negative gravitropism, growing upwards against gravity. This growth pattern helps plants establish themselves in their environment and optimize their access to resources such as water and light.

'Brassica' is a term used in botanical nomenclature, specifically within the family Brassicaceae. It refers to a genus of plants that includes various vegetables such as broccoli, cabbage, cauliflower, kale, and mustard greens. These plants are known for their nutritional value and health benefits. They contain glucosinolates, which have been studied for their potential anti-cancer properties. However, it is not a medical term per se, but rather a taxonomic category used in the biological sciences.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Asteraceae is a family of flowering plants commonly known as the daisy family or sunflower family. It is one of the largest and most diverse families of vascular plants, with over 1,900 genera and 32,000 species. The family includes a wide variety of plants, ranging from annual and perennial herbs to shrubs and trees.

The defining characteristic of Asteraceae is the presence of a unique type of inflorescence called a capitulum, which resembles a single flower but is actually composed of many small flowers (florets) arranged in a dense head. The florets are typically bisexual, with both male and female reproductive structures, and are radially symmetrical.

Asteraceae includes many economically important plants, such as sunflowers, daisies, artichokes, lettuce, chicory, and ragweed. Some species of Asteraceae are also used in traditional medicine and have been found to contain bioactive compounds with potential therapeutic uses.

It's worth noting that the taxonomy of this family has undergone significant revisions in recent years, and some genera and species have been moved to other families or renamed.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

I'm sorry for any confusion, but "trees" is not a medical term. It is a common term used in various fields, including biology, ecology, and dendrology, to refer to a woody perennial plant with a single stem or trunk that supports branches and leaves in most species.

If you have any questions related to medical terminology or health-related topics, please provide more context so I can offer an accurate and helpful response.

Southern blotting is a type of membrane-based blotting technique that is used in molecular biology to detect and locate specific DNA sequences within a DNA sample. This technique is named after its inventor, Edward M. Southern.

In Southern blotting, the DNA sample is first digested with one or more restriction enzymes, which cut the DNA at specific recognition sites. The resulting DNA fragments are then separated based on their size by gel electrophoresis. After separation, the DNA fragments are denatured to convert them into single-stranded DNA and transferred onto a nitrocellulose or nylon membrane.

Once the DNA has been transferred to the membrane, it is hybridized with a labeled probe that is complementary to the sequence of interest. The probe can be labeled with radioactive isotopes, fluorescent dyes, or chemiluminescent compounds. After hybridization, the membrane is washed to remove any unbound probe and then exposed to X-ray film (in the case of radioactive probes) or scanned (in the case of non-radioactive probes) to detect the location of the labeled probe on the membrane.

The position of the labeled probe on the membrane corresponds to the location of the specific DNA sequence within the original DNA sample. Southern blotting is a powerful tool for identifying and characterizing specific DNA sequences, such as those associated with genetic diseases or gene regulation.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

I'm sorry for any confusion, but the term "germ cells" is typically used in the context of animals and humans, referring to the reproductive cells (sperm and eggs) that can give rise to new individuals. It is not commonly used to describe plants.

In plants, the terms often used to refer to the reproductive cells are "male gametophyte" and "female gametophyte." The male gametophyte produces sperm cells, while the female gametophyte produces egg cells. These gametophytes are found within the pollen grains (male) and ovules (female) of plants.

Therefore, there isn't a medical definition for "germ cells, plant," as the term is not applicable in this context.

DNA transposable elements, also known as transposons or jumping genes, are mobile genetic elements that can change their position within a genome. They are composed of DNA sequences that include genes encoding the enzymes required for their own movement (transposase) and regulatory elements. When activated, the transposase recognizes specific sequences at the ends of the element and catalyzes the excision and reintegration of the transposable element into a new location in the genome. This process can lead to genetic variation, as the insertion of a transposable element can disrupt the function of nearby genes or create new combinations of gene regulatory elements. Transposable elements are widespread in both prokaryotic and eukaryotic genomes and are thought to play a significant role in genome evolution.

A plant disease is a disorder that affects the normal growth and development of plants, caused by pathogenic organisms such as bacteria, viruses, fungi, parasites, or nematodes, as well as environmental factors like nutrient deficiencies, extreme temperatures, or physical damage. These diseases can cause various symptoms, including discoloration, wilting, stunted growth, necrosis, and reduced yield or productivity, which can have significant economic and ecological impacts.

Bacterial RNA refers to the genetic material present in bacteria that is composed of ribonucleic acid (RNA). Unlike higher organisms, bacteria contain a single circular chromosome made up of DNA, along with smaller circular pieces of DNA called plasmids. These bacterial genetic materials contain the information necessary for the growth and reproduction of the organism.

Bacterial RNA can be divided into three main categories: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). mRNA carries genetic information copied from DNA, which is then translated into proteins by the rRNA and tRNA molecules. rRNA is a structural component of the ribosome, where protein synthesis occurs, while tRNA acts as an adapter that brings amino acids to the ribosome during protein synthesis.

Bacterial RNA plays a crucial role in various cellular processes, including gene expression, protein synthesis, and regulation of metabolic pathways. Understanding the structure and function of bacterial RNA is essential for developing new antibiotics and other therapeutic strategies to combat bacterial infections.

Physiological adaptation refers to the changes or modifications that occur in an organism's biological functions or structures as a result of environmental pressures or changes. These adaptations enable the organism to survive and reproduce more successfully in its environment. They can be short-term, such as the constriction of blood vessels in response to cold temperatures, or long-term, such as the evolution of longer limbs in animals that live in open environments.

In the context of human physiology, examples of physiological adaptation include:

1. Acclimatization: The process by which the body adjusts to changes in environmental conditions, such as altitude or temperature. For example, when a person moves to a high-altitude location, their body may produce more red blood cells to compensate for the lower oxygen levels, leading to improved oxygen delivery to tissues.

2. Exercise adaptation: Regular physical activity can lead to various physiological adaptations, such as increased muscle strength and endurance, enhanced cardiovascular function, and improved insulin sensitivity.

3. Hormonal adaptation: The body can adjust hormone levels in response to changes in the environment or internal conditions. For instance, during prolonged fasting, the body releases stress hormones like cortisol and adrenaline to help maintain energy levels and prevent muscle wasting.

4. Sensory adaptation: Our senses can adapt to different stimuli over time. For example, when we enter a dark room after being in bright sunlight, it takes some time for our eyes to adjust to the new light level. This process is known as dark adaptation.

5. Aging-related adaptations: As we age, various physiological changes occur that help us adapt to the changing environment and maintain homeostasis. These include changes in body composition, immune function, and cognitive abilities.

In the context of medical terminology, "light" doesn't have a specific or standardized definition on its own. However, it can be used in various medical terms and phrases. For example, it could refer to:

1. Visible light: The range of electromagnetic radiation that can be detected by the human eye, typically between wavelengths of 400-700 nanometers. This is relevant in fields such as ophthalmology and optometry.
2. Therapeutic use of light: In some therapies, light is used to treat certain conditions. An example is phototherapy, which uses various wavelengths of ultraviolet (UV) or visible light for conditions like newborn jaundice, skin disorders, or seasonal affective disorder.
3. Light anesthesia: A state of reduced consciousness in which the patient remains responsive to verbal commands and physical stimulation. This is different from general anesthesia where the patient is completely unconscious.
4. Pain relief using light: Certain devices like transcutaneous electrical nerve stimulation (TENS) units have a 'light' setting, indicating lower intensity or frequency of electrical impulses used for pain management.

Without more context, it's hard to provide a precise medical definition of 'light'.

Nitrate reductases are a group of enzymes that catalyze the reduction of nitrate (NO3-) to nitrite (NO2-). This process is an essential part of the nitrogen cycle, where nitrate serves as a terminal electron acceptor in anaerobic respiration for many bacteria and archaea. In plants, this enzyme plays a crucial role in nitrogen assimilation by reducing nitrate to ammonium (NH4+), which can then be incorporated into organic compounds. Nitrate reductases require various cofactors, such as molybdenum, heme, and/or FAD, for their activity. There are three main types of nitrate reductases: membrane-bound (which use menaquinol as an electron donor), cytoplasmic (which use NADH or NADPH as an electron donor), and assimilatory (which also use NADH or NADPH as an electron donor).

Chloroplasts are specialized organelles found in the cells of green plants, algae, and some protists. They are responsible for carrying out photosynthesis, which is the process by which these organisms convert light energy from the sun into chemical energy in the form of organic compounds, such as glucose.

Chloroplasts contain the pigment chlorophyll, which absorbs light energy from the sun. They also contain a system of membranes and enzymes that convert carbon dioxide and water into glucose and oxygen through a series of chemical reactions known as the Calvin cycle. This process not only provides energy for the organism but also releases oxygen as a byproduct, which is essential for the survival of most life forms on Earth.

Chloroplasts are believed to have originated from ancient cyanobacteria that were engulfed by early eukaryotic cells and eventually became integrated into their host's cellular machinery through a process called endosymbiosis. Over time, chloroplasts evolved to become an essential component of plant and algal cells, contributing to their ability to carry out photosynthesis and thrive in a wide range of environments.

Plastids are membrane-bound organelles found in the cells of plants and algae. They are responsible for various cellular functions, including photosynthesis, storage of starch, lipids, and proteins, and the production of pigments that give plants their color. The most common types of plastids are chloroplasts (which contain chlorophyll and are involved in photosynthesis), chromoplasts (which contain pigments such as carotenoids and are responsible for the yellow, orange, and red colors of fruits and flowers), and leucoplasts (which do not contain pigments and serve mainly as storage organelles). Plastids have their own DNA and can replicate themselves within the cell.

Pollen, in a medical context, refers to the fine powder-like substance produced by the male reproductive organ of seed plants. It contains microscopic grains known as pollen grains, which are transported by various means such as wind, water, or insects to the female reproductive organ of the same or another plant species for fertilization.

Pollen can cause allergic reactions in some individuals, particularly during the spring and summer months when plants release large amounts of pollen into the air. These allergies, also known as hay fever or seasonal allergic rhinitis, can result in symptoms such as sneezing, runny nose, congestion, itchy eyes, and coughing.

It is important to note that while all pollen has the potential to cause allergic reactions, certain types of plants, such as ragweed, grasses, and trees, are more likely to trigger symptoms in sensitive individuals.

Physiological stress is a response of the body to a demand or threat that disrupts homeostasis and activates the autonomic nervous system and hypothalamic-pituitary-adrenal (HPA) axis. This results in the release of stress hormones such as adrenaline, cortisol, and noradrenaline, which prepare the body for a "fight or flight" response. Increased heart rate, rapid breathing, heightened sensory perception, and increased alertness are some of the physiological changes that occur during this response. Chronic stress can have negative effects on various bodily functions, including the immune, cardiovascular, and nervous systems.

A hypocotyl is not a medical term per se, but it is a term used in the field of botany, which is a branch of biology that deals with the study of plants. Therefore, I'd be happy to provide you with a definition of hypocotyl in a botanical context:

The hypocotyl is the portion of the embryo or seedling of a plant that lies between the cotyledons (the embryonic leaves) and the radicle (the embryonic root). In other words, it is the stem-like structure that connects the shoot and the root systems in a developing plant.

When a seed germinates, the hypocotyl elongates and pushes the cotyledons upward through the soil, allowing the young plant to emerge into the light. The hypocotyl can vary in length depending on the species of plant, and its growth is influenced by various environmental factors such as light and temperature.

While the term "hypocotyl" may not be commonly used in medical contexts, understanding basic botanical concepts like this one can still be useful for healthcare professionals who work with patients who have plant-related allergies or other health issues related to plants.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

In the context of medical definitions, 'carbon' is not typically used as a standalone term. Carbon is an element with the symbol C and atomic number 6, which is naturally abundant in the human body and the environment. It is a crucial component of all living organisms, forming the basis of organic compounds, such as proteins, carbohydrates, lipids, and nucleic acids (DNA and RNA).

Carbon forms strong covalent bonds with various elements, allowing for the creation of complex molecules that are essential to life. In this sense, carbon is a fundamental building block of life on Earth. However, it does not have a specific medical definition as an isolated term.

"Trifolium" is not a medical term. It is actually the genus name for a group of plants commonly known as clover. These plants belong to the family Fabaceae and are found in many temperate regions around the world. Some species, like red clover (Trifolium pratense), are used in herbal medicine for various purposes, such as treating respiratory conditions, skin inflammations, and menopausal symptoms. However, it's important to consult with a healthcare professional before using any herbal remedies.

Aerobiosis is the process of living, growing, and functioning in the presence of oxygen. It refers to the metabolic processes that require oxygen to break down nutrients and produce energy in cells. This is in contrast to anaerobiosis, which is the ability to live and grow in the absence of oxygen.

In medical terms, aerobiosis is often used to describe the growth of microorganisms, such as bacteria and fungi, that require oxygen to survive and multiply. These organisms are called aerobic organisms, and they play an important role in many biological processes, including decomposition and waste breakdown.

However, some microorganisms are unable to grow in the presence of oxygen and are instead restricted to environments where oxygen is absent or limited. These organisms are called anaerobic organisms, and their growth and metabolism are referred to as anaerobiosis.

"Mesorhizobium" is a genus of bacteria that can form nitrogen-fixing nodules on the roots of certain leguminous plants. These bacteria are able to convert atmospheric nitrogen into ammonia, which the plant can then use as a nutrient for growth. This process, known as biological nitrogen fixation, is an important part of the nitrogen cycle and helps to fertilize the soil naturally.

Mesorhizobium species are gram-negative rods that are motile by means of a single polar flagellum. They are able to grow both aerobically and facultatively anaerobically, and are found in a variety of environments, including soil, water, and the root nodules of leguminous plants.

Mesorhizobium species are able to form nitrogen-fixing symbioses with a wide range of legumes, including important crop plants such as soybeans, chickpeas, and lentils. The bacteria infect the roots of the plant and induce the formation of nodules, which provide a protected environment for the bacteria to fix nitrogen. In return, the plant provides the bacteria with carbon sources and other nutrients.

Mesorhizobium species are important for agriculture because they help to reduce the need for chemical fertilizers, which can be expensive and harmful to the environment. By forming nitrogen-fixing symbioses with leguminous plants, Mesorhizobium species contribute to sustainable agricultural practices and help to maintain soil fertility.

The tooth apex is the tip or the narrowed end of the root of a tooth. It is the portion that is located deepest within the jawbone and it contains dental pulp tissue, which includes nerves and blood vessels. The apex plays an essential role in the development and maintenance of a tooth, as well as in the process of root canal treatment, where instruments and materials are introduced through it to clean and fill the root canals. It is also a crucial landmark in endodontic surgery and dental imaging.

Nitrate reductase is an enzyme that catalyzes the reduction of nitrate (NO3-) to nitrite (NO2-). It is widely distributed in nature and plays a crucial role in the nitrogen cycle, particularly in the process of nitrate assimilation by plants, fungi, and some bacteria.

In plants, nitrate reductase is primarily located in the cytoplasm and chloroplasts of plant cells. It requires reduced forms of nicotinamide adenine dinucleotide phosphate (NADPH) or flavin adenine dinucleotide (FADH2) as electron donors to facilitate the reduction of nitrate to nitrite.

The reaction catalyzed by nitrate reductase can be summarized as follows:
NO3- + NAD(P)H + H+ -> NO2- + NAD(P)+ + H2O

It is worth noting that there are different types of nitrate reductases, each with distinct properties and functions. For example, some nitrate reductases require molybdenum cofactor as a prosthetic group for their catalytic activity, while others do not. Additionally, some nitrate reductases are membrane-bound, while others are soluble enzymes.

Overall, nitrate reductase is an essential enzyme in the global nitrogen cycle and has significant implications for agriculture, environmental science, and microbiology.

A protoplast is not a term that is typically used in medical definitions, but rather it is a term commonly used in cell biology and botany. A protoplast refers to a plant or bacterial cell that has had its cell wall removed, leaving only the plasma membrane and the cytoplasmic contents, including organelles such as mitochondria, chloroplasts, ribosomes, and other cellular structures.

Protoplasts can be created through enzymatic or mechanical means to isolate the intracellular components for various research purposes, such as studying membrane transport, gene transfer, or cell fusion. In some cases, protoplasts may be used in medical research, particularly in areas related to plant pathology and genetic engineering of plants for medical applications.

'Plant infertility' is not a standard medical term, as it is typically used in the context of agriculture and plant biology. However, I can provide you with a general definition related to this context:

Plant infertility refers to the inability of a plant to produce viable seeds, fruits, or propagules due to various factors affecting its reproductive system. These factors may include genetic disorders, environmental stressors (such as extreme temperatures, drought, or nutrient deficiencies), pathogens, pests, or poor pollination. In some cases, assisted reproduction techniques, such as hand-pollination or embryo rescue, might be employed to overcome infertility issues in plants.

Botany is the scientific study of plants, encompassing various disciplines such as plant structure, function, evolution, diversity, distribution, ecology, and application. It involves examining different aspects like plant anatomy, physiology, genetics, molecular biology, systematics, and ethnobotany. The field of botany has contributed significantly to our understanding of the natural world, agriculture, medicine, and environmental conservation.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Bacterial typing techniques are methods used to identify and differentiate bacterial strains or isolates based on their unique characteristics. These techniques are essential in epidemiological studies, infection control, and research to understand the transmission dynamics, virulence, and antibiotic resistance patterns of bacterial pathogens.

There are various bacterial typing techniques available, including:

1. **Bacteriophage Typing:** This method involves using bacteriophages (viruses that infect bacteria) to identify specific bacterial strains based on their susceptibility or resistance to particular phages.
2. **Serotyping:** It is a technique that differentiates bacterial strains based on the antigenic properties of their cell surface components, such as capsules, flagella, and somatic (O) and flagellar (H) antigens.
3. **Biochemical Testing:** This method uses biochemical reactions to identify specific metabolic pathways or enzymes present in bacterial strains, which can be used for differentiation. Commonly used tests include the catalase test, oxidase test, and various sugar fermentation tests.
4. **Molecular Typing Techniques:** These methods use genetic markers to identify and differentiate bacterial strains at the DNA level. Examples of molecular typing techniques include:
* **Pulsed-Field Gel Electrophoresis (PFGE):** This method uses restriction enzymes to digest bacterial DNA, followed by electrophoresis in an agarose gel under pulsed electrical fields. The resulting banding patterns are analyzed and compared to identify related strains.
* **Multilocus Sequence Typing (MLST):** It involves sequencing specific housekeeping genes to generate unique sequence types that can be used for strain identification and phylogenetic analysis.
* **Whole Genome Sequencing (WGS):** This method sequences the entire genome of a bacterial strain, providing the most detailed information on genetic variation and relatedness between strains. WGS data can be analyzed using various bioinformatics tools to identify single nucleotide polymorphisms (SNPs), gene deletions or insertions, and other genetic changes that can be used for strain differentiation.

These molecular typing techniques provide higher resolution than traditional methods, allowing for more accurate identification and comparison of bacterial strains. They are particularly useful in epidemiological investigations to track the spread of pathogens and identify outbreaks.

CCAAT-binding factor (CBF) is a transcription factor that binds to the CCAAT box, a specific DNA sequence found in the promoter regions of many genes. The CBF complex is composed of three subunits, NF-YA, NF-YB, and NF-YC, which are required for its DNA binding activity. The CBF complex plays important roles in various biological processes, including cell cycle regulation, differentiation, and stress response.

Lung neoplasms refer to abnormal growths or tumors in the lung tissue. These tumors can be benign (non-cancerous) or malignant (cancerous). Malignant lung neoplasms are further classified into two main types: small cell lung carcinoma and non-small cell lung carcinoma. Lung neoplasms can cause symptoms such as cough, chest pain, shortness of breath, and weight loss. They are often caused by smoking or exposure to secondhand smoke, but can also occur due to genetic factors, radiation exposure, and other environmental carcinogens. Early detection and treatment of lung neoplasms is crucial for improving outcomes and survival rates.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

A goiter is an abnormal enlargement of the thyroid gland, which is a butterfly-shaped endocrine gland located in the front of the neck. Goiters can be either diffuse (uniformly enlarged) or nodular (lumpy with distinct nodules). Nodular goiter refers to a thyroid gland that has developed one or more discrete lumps or nodules while the remaining tissue is normal or may also be diffusely enlarged.

Nodular goiters can be classified into two types: multinodular goiter and solitary thyroid nodule. Multinodular goiter consists of multiple nodules in the thyroid gland, while a solitary thyroid nodule is an isolated nodule within an otherwise normal or diffusely enlarged thyroid gland.

The majority of nodular goiters are benign and do not cause symptoms. However, some patients may experience signs and symptoms related to compression of nearby structures (such as difficulty swallowing or breathing), hyperthyroidism (overactive thyroid), or hypothyroidism (underactive thyroid). The evaluation of a nodular goiter typically includes a physical examination, imaging studies like ultrasound, and sometimes fine-needle aspiration biopsy to determine the nature of the nodules and assess the risk of malignancy. Treatment options depend on various factors, including the size and number of nodules, the presence of compressive symptoms, and the patient's thyroid function.

"Vicia" is a genus of plants, commonly known as vetch or faba beans. It's not a medical term, but rather a term used in botany to describe a group of leguminous plants that are part of the Fabaceae family. Some species of Vicia have been used in traditional medicine for various purposes, such as treating skin conditions and respiratory issues. However, I am an assistant and do not have real-time access to databases or medical resources, so please consult a reliable medical source for more detailed and accurate information.

A cell wall is a rigid layer found surrounding the plasma membrane of plant cells, fungi, and many types of bacteria. It provides structural support and protection to the cell, maintains cell shape, and acts as a barrier against external factors such as chemicals and mechanical stress. The composition of the cell wall varies among different species; for example, in plants, it is primarily made up of cellulose, hemicellulose, and pectin, while in bacteria, it is composed of peptidoglycan.

Medical definitions generally do not include plant oils as a specific term. However, in a biological or biochemical context, plant oils, also known as vegetable oils, are defined as lipid extracts derived from various parts of plants such as seeds, fruits, and leaves. They mainly consist of triglycerides, which are esters of glycerol and three fatty acids. The composition of fatty acids can vary between different plant sources, leading to a range of physical and chemical properties that make plant oils useful for various applications in the pharmaceutical, cosmetic, and food industries. Some common examples of plant oils include olive oil, coconut oil, sunflower oil, and jojoba oil.

'Agrobacterium tumefaciens' is a gram-negative, soil-dwelling bacterium that is known for its ability to cause plant tumors or crown galls. It does this through the transfer and integration of a segment of DNA called the Ti (Tumor-inducing) plasmid into the plant's genome. This transferred DNA includes genes that encode enzymes for the production of opines, which serve as a nutrient source for the bacterium, and genes that cause unregulated plant cell growth leading to tumor formation.

This unique ability of 'Agrobacterium tumefaciens' to transfer and integrate foreign DNA into plants has been exploited in genetic engineering to create transgenic plants with desired traits. The Ti plasmid is often used as a vector to introduce new genes into the plant genome, making it an essential tool in plant biotechnology.

Disease resistance, in a medical context, refers to the inherent or acquired ability of an organism to withstand or limit infection by a pathogen, such as bacteria, viruses, fungi, or parasites. This resistance can be due to various factors including the presence of physical barriers (e.g., intact skin), chemical barriers (e.g., stomach acid), and immune responses that recognize and eliminate the pathogen.

Inherited disease resistance is often determined by genetics, where certain genetic variations can make an individual more or less susceptible to a particular infection. For example, some people are naturally resistant to certain diseases due to genetic factors that prevent the pathogen from infecting their cells or replicating within them.

Acquired disease resistance can occur through exposure to a pathogen, which triggers an immune response that confers immunity or resistance to future infections by the same pathogen. This is the basis of vaccination, where a weakened or dead form of a pathogen is introduced into the body to stimulate an immune response without causing disease.

Overall, disease resistance is an important factor in maintaining health and preventing the spread of infectious diseases.

A cotyledon is a seed leaf in plants, which is part of the embryo within the seed. Cotyledons are often referred to as "seed leaves" because they are the first leaves to emerge from the seed during germination and provide nutrients to the developing plant until it can produce its own food through photosynthesis.

In some plants, such as monocotyledons, there is only one cotyledon, while in other plants, such as dicotyledons, there are two cotyledons. The number of cotyledons is a characteristic that is used to classify different types of plants.

Cotyledons serve important functions during the early stages of plant growth, including providing energy and nutrients to the developing plant, protecting the embryo, and helping to anchor the seed in the soil. Once the plant has established its root system and begun to produce true leaves through photosynthesis, the cotyledons may wither or fall off, depending on the species.

Bacterial polysaccharides are complex carbohydrates that consist of long chains of sugar molecules (monosaccharides) linked together by glycosidic bonds. They are produced and used by bacteria for various purposes such as:

1. Structural components: Bacterial polysaccharides, such as peptidoglycan and lipopolysaccharide (LPS), play a crucial role in maintaining the structural integrity of bacterial cells. Peptidoglycan is a major component of the bacterial cell wall, while LPS forms the outer layer of the outer membrane in gram-negative bacteria.
2. Nutrient storage: Some bacteria synthesize and store polysaccharides as an energy reserve, similar to how plants store starch. These polysaccharides can be broken down and utilized by the bacterium when needed.
3. Virulence factors: Bacterial polysaccharides can also function as virulence factors, contributing to the pathogenesis of bacterial infections. For example, certain bacteria produce capsular polysaccharides (CPS) that surround and protect the bacterial cells from host immune defenses, allowing them to evade phagocytosis and persist within the host.
4. Adhesins: Some polysaccharides act as adhesins, facilitating the attachment of bacteria to surfaces or host cells. This is important for biofilm formation, which helps bacteria resist environmental stresses and antibiotic treatments.
5. Antigenic properties: Bacterial polysaccharides can be highly antigenic, eliciting an immune response in the host. The antigenicity of these molecules can vary between different bacterial species or even strains within a species, making them useful as targets for vaccines and diagnostic tests.

In summary, bacterial polysaccharides are complex carbohydrates that serve various functions in bacteria, including structural support, nutrient storage, virulence factor production, adhesion, and antigenicity.

Molecular evolution is the process of change in the DNA sequence or protein structure over time, driven by mechanisms such as mutation, genetic drift, gene flow, and natural selection. It refers to the evolutionary study of changes in DNA, RNA, and proteins, and how these changes accumulate and lead to new species and diversity of life. Molecular evolution can be used to understand the history and relationships among different organisms, as well as the functional consequences of genetic changes.

Ferns are a group of vascular plants that reproduce by means of spores rather than seeds. They are characterized by their frond-like leaves and lack of flowers or fruits. Ferns have been around for millions of years, with some fossilized ferns dating back to the Devonian period, over 360 million years ago.

Ferns are an important part of many ecosystems, particularly in tropical rainforests where they provide habitat and food for a variety of animals. They also play a role in soil erosion control and nutrient cycling.

Medically, some ferns have been used in traditional medicine to treat various ailments, such as bracken fern which has been used to treat wounds, burns, and skin diseases. However, it is important to note that not all ferns are safe for consumption or use as medicines, and some can be toxic if ingested or applied topically. It is always recommended to consult with a healthcare professional before using any plant-based remedies.

Chlorophyll is a green pigment found in the chloroplasts of photosynthetic plants, algae, and some bacteria. It plays an essential role in light-dependent reactions of photosynthesis by absorbing light energy, primarily from the blue and red parts of the electromagnetic spectrum, and converting it into chemical energy to fuel the synthesis of carbohydrates from carbon dioxide and water. The structure of chlorophyll includes a porphyrin ring, which binds a central magnesium ion, and a long phytol tail. There are several types of chlorophyll, including chlorophyll a and chlorophyll b, which have distinct absorption spectra and slightly different structures. Chlorophyll is crucial for the process of photosynthesis, enabling the conversion of sunlight into chemical energy and the release of oxygen as a byproduct.

Thoracic radiography is a type of diagnostic imaging that involves using X-rays to produce images of the chest, including the lungs, heart, bronchi, great vessels, and the bones of the spine and chest wall. It is a commonly used tool in the diagnosis and management of various respiratory, cardiovascular, and thoracic disorders such as pneumonia, lung cancer, heart failure, and rib fractures.

During the procedure, the patient is positioned between an X-ray machine and a cassette containing a film or digital detector. The X-ray beam is directed at the chest, and the resulting image is captured on the film or detector. The images produced can help identify any abnormalities in the structure or function of the organs within the chest.

Thoracic radiography may be performed as a routine screening test for certain conditions, such as lung cancer, or it may be ordered when a patient presents with symptoms suggestive of a respiratory or cardiovascular disorder. It is a safe and non-invasive procedure that can provide valuable information to help guide clinical decision making and improve patient outcomes.

Phytosterols are a type of plant-derived sterol that have a similar structure to cholesterol, a compound found in animal products. They are found in small quantities in many fruits, vegetables, nuts, seeds, legumes, and vegetable oils. Phytosterols are known to help lower cholesterol levels by reducing the absorption of dietary cholesterol in the digestive system.

In medical terms, phytosterols are often referred to as "plant sterols" or "phytostanols." They have been shown to have a modest but significant impact on lowering LDL (or "bad") cholesterol levels when consumed in sufficient quantities, typically in the range of 2-3 grams per day. As a result, foods fortified with phytosterols are sometimes recommended as part of a heart-healthy diet for individuals with high cholesterol or a family history of cardiovascular disease.

It's worth noting that while phytosterols have been shown to be safe and effective in reducing cholesterol levels, they should not be used as a substitute for other lifestyle changes such as regular exercise, smoking cessation, and weight management. Additionally, individuals with sitosterolemia, a rare genetic disorder characterized by an abnormal accumulation of plant sterols in the body, should avoid consuming foods fortified with phytosterols.

The chemical element aluminum (or aluminium in British English) is a silvery-white, soft, non-magnetic, ductile metal. The atomic number of aluminum is 13 and its symbol on the periodic table is Al. It is the most abundant metallic element in the Earth's crust and is found in a variety of minerals such as bauxite.

Aluminum is resistant to corrosion due to the formation of a thin layer of aluminum oxide on its surface that protects it from further oxidation. It is lightweight, has good thermal and electrical conductivity, and can be easily formed and machined. These properties make aluminum a widely used metal in various industries such as construction, packaging, transportation, and electronics.

In the medical field, aluminum is used in some medications and medical devices. For example, aluminum hydroxide is commonly used as an antacid to neutralize stomach acid and treat heartburn, while aluminum salts are used as adjuvants in vaccines to enhance the immune response. However, excessive exposure to aluminum can be harmful and has been linked to neurological disorders such as Alzheimer's disease, although the exact relationship between aluminum and these conditions is not fully understood.

Restriction mapping is a technique used in molecular biology to identify the location and arrangement of specific restriction endonuclease recognition sites within a DNA molecule. Restriction endonucleases are enzymes that cut double-stranded DNA at specific sequences, producing fragments of various lengths. By digesting the DNA with different combinations of these enzymes and analyzing the resulting fragment sizes through techniques such as agarose gel electrophoresis, researchers can generate a restriction map - a visual representation of the locations and distances between recognition sites on the DNA molecule. This information is crucial for various applications, including cloning, genome analysis, and genetic engineering.

A bacterial genome is the complete set of genetic material, including both DNA and RNA, found within a single bacterium. It contains all the hereditary information necessary for the bacterium to grow, reproduce, and survive in its environment. The bacterial genome typically includes circular chromosomes, as well as plasmids, which are smaller, circular DNA molecules that can carry additional genes. These genes encode various functional elements such as enzymes, structural proteins, and regulatory sequences that determine the bacterium's characteristics and behavior.

Bacterial genomes vary widely in size, ranging from around 130 kilobases (kb) in Mycoplasma genitalium to over 14 megabases (Mb) in Sorangium cellulosum. The complete sequencing and analysis of bacterial genomes have provided valuable insights into the biology, evolution, and pathogenicity of bacteria, enabling researchers to better understand their roles in various diseases and potential applications in biotechnology.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

"Pseudomonas syringae" is a gram-negative, aerobic bacterium that is widely found in various environments, including water, soil, and plant surfaces. It is known to be a plant pathogen, causing diseases in a wide range of plants such as beans, peas, tomatoes, and other crops. The bacteria can infect plants through wounds or natural openings, leading to symptoms like spots on leaves, wilting, and dieback. Some strains of "P. syringae" are also associated with frost damage on plants, as they produce a protein that facilitates ice crystal formation at higher temperatures.

It's important to note that while "Pseudomonas syringae" can cause disease in plants, it is not typically considered a human pathogen and does not usually cause illness in humans.

Bryopsida is a class within the division Bryophyta, which includes the mosses. It is a large and diverse group that contains the majority of moss species. Members of this class are characterized by their stalked, spore-producing structures called sporangia, which are typically borne on specialized leaves called perichaetial leaves. The spores produced within these sporangia are released and can germinate to form new moss individuals.

It is important to note that the classification of plants, including mosses, has undergone significant revisions in recent years, and some sources may use different terminology or groupings than what is described here. However, Bryopsida remains a widely recognized and well-established class within the mosses.

Oligonucleotide Array Sequence Analysis is a type of microarray analysis that allows for the simultaneous measurement of the expression levels of thousands of genes in a single sample. In this technique, oligonucleotides (short DNA sequences) are attached to a solid support, such as a glass slide, in a specific pattern. These oligonucleotides are designed to be complementary to specific target mRNA sequences from the sample being analyzed.

During the analysis, labeled RNA or cDNA from the sample is hybridized to the oligonucleotide array. The level of hybridization is then measured and used to determine the relative abundance of each target sequence in the sample. This information can be used to identify differences in gene expression between samples, which can help researchers understand the underlying biological processes involved in various diseases or developmental stages.

It's important to note that this technique requires specialized equipment and bioinformatics tools for data analysis, as well as careful experimental design and validation to ensure accurate and reproducible results.

Carbohydrate metabolism is the process by which the body breaks down carbohydrates into glucose, which is then used for energy or stored in the liver and muscles as glycogen. This process involves several enzymes and chemical reactions that convert carbohydrates from food into glucose, fructose, or galactose, which are then absorbed into the bloodstream and transported to cells throughout the body.

The hormones insulin and glucagon regulate carbohydrate metabolism by controlling the uptake and storage of glucose in cells. Insulin is released from the pancreas when blood sugar levels are high, such as after a meal, and promotes the uptake and storage of glucose in cells. Glucagon, on the other hand, is released when blood sugar levels are low and signals the liver to convert stored glycogen back into glucose and release it into the bloodstream.

Disorders of carbohydrate metabolism can result from genetic defects or acquired conditions that affect the enzymes or hormones involved in this process. Examples include diabetes, hypoglycemia, and galactosemia. Proper management of these disorders typically involves dietary modifications, medication, and regular monitoring of blood sugar levels.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

The thyroid gland is a major endocrine gland located in the neck, anterior to the trachea and extends from the lower third of the Adams apple to the suprasternal notch. It has two lateral lobes, connected by an isthmus, and sometimes a pyramidal lobe. This gland plays a crucial role in the metabolism, growth, and development of the human body through the production of thyroid hormones (triiodothyronine/T3 and thyroxine/T4) and calcitonin. The thyroid hormones regulate body temperature, heart rate, and the production of protein, while calcitonin helps in controlling calcium levels in the blood. The function of the thyroid gland is controlled by the hypothalamus and pituitary gland through the thyroid-stimulating hormone (TSH).

'Cucurbita' is a genus of herbaceous vines in the gourd family, Cucurbitaceae. This genus includes several species of plants that are commonly known as squashes or gourds, such as pumpkins, zucchinis, and acorn squashes. The fruits of these plants are widely cultivated and consumed for their nutritional value and versatility in cooking.

The name 'Cucurbita' comes from the Latin word for "gourd" or "pumpkin." Plants in this genus are native to the Americas, with some species originating in Mexico and Central America and others in the southern United States. They have been cultivated by humans for thousands of years and are an important part of many traditional diets around the world.

In a medical context, 'Cucurbita' may be mentioned in relation to the use of certain species as traditional remedies or in nutritional studies. For example, pumpkin seeds have been used in traditional medicine to treat parasitic infections, and some research suggests that they may have anti-inflammatory and antioxidant properties. However, it is important to note that the scientific evidence for these potential health benefits is still limited, and more research is needed before any firm conclusions can be drawn.

Gibberellins (GAs) are a type of plant hormones that regulate various growth and developmental processes, including stem elongation, germination of seeds, leaf expansion, and flowering. They are a large family of diterpenoid compounds that are synthesized from geranylgeranyl pyrophosphate (GGPP) in the plastids and then modified through a series of enzymatic reactions in the endoplasmic reticulum and cytoplasm.

GAs exert their effects by binding to specific receptors, which activate downstream signaling pathways that ultimately lead to changes in gene expression and cellular responses. The biosynthesis and perception of GAs are tightly regulated, and disruptions in these processes can result in various developmental abnormalities and growth disorders in plants.

In addition to their role in plant growth and development, GAs have also been implicated in the regulation of various physiological processes, such as stress tolerance, nutrient uptake, and senescence. They have also attracted interest as potential targets for crop improvement, as modulating GA levels and sensitivity can enhance traits such as yield, disease resistance, and abiotic stress tolerance.

I'm sorry for any confusion, but "Mustard Plant" is not a term typically used in medical definitions. Mustard plants are actually a type of crop plant from the Brassicaceae family, which also includes vegetables like broccoli and cabbage. The seeds from these plants are often ground to make mustard condiments and spices. If you're looking for information related to potential medicinal uses or health effects of mustard plants or their derivatives, I would be happy to help with that.

Ascomycota is a phylum in the kingdom Fungi, also known as sac fungi. This group includes both unicellular and multicellular organisms, such as yeasts, mold species, and morel mushrooms. Ascomycetes are characterized by their reproductive structures called ascus, which contain typically eight haploid spores produced sexually through a process called ascogony. Some members of this phylum have significant ecological and economic importance, as they can be decomposers, mutualistic symbionts, or plant pathogens causing various diseases. Examples include the baker's yeast Saccharomyces cerevisiae, ergot fungus Claviceps purpurea, and morel mushroom Morchella esculenta.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

I am not aware of a specific medical definition for the term "China." Generally, it is used to refer to:

1. The People's Republic of China (PRC), which is a country in East Asia. It is the most populous country in the world and the fourth largest by geographical area. Its capital city is Beijing.
2. In a historical context, "China" was used to refer to various dynasties and empires that existed in East Asia over thousands of years. The term "Middle Kingdom" or "Zhongguo" (中国) has been used by the Chinese people to refer to their country for centuries.
3. In a more general sense, "China" can also be used to describe products or goods that originate from or are associated with the People's Republic of China.

If you have a specific context in which you encountered the term "China" related to medicine, please provide it so I can give a more accurate response.

Volatile Organic Compounds (VOCs) are organic chemicals that have a low boiling point and easily evaporate at room temperature. They can be liquids or solids. VOCs include a variety of chemicals, such as benzene, toluene, xylene, and formaldehyde, which are found in many household products, including paints, paint strippers, and other solvents; cleaning supplies; pesticides; building materials and furnishings; office equipment such as copiers and printers, correction fluids and carbonless copy paper; and glues and adhesives.

VOCs can cause both short- and long-term health effects. Short-term exposure to high levels of VOCs can cause headaches, dizziness, visual disturbances, and memory problems. Long-term exposure can cause damage to the liver, kidneys, and central nervous system. Some VOCs are also suspected or known carcinogens.

It is important to properly use, store, and dispose of products that contain VOCs to minimize exposure. Increasing ventilation by opening windows and doors or using fans can also help reduce exposure to VOCs.

Biodiversity is the variety of different species of plants, animals, and microorganisms that live in an ecosystem. It also includes the variety of genes within a species and the variety of ecosystems (such as forests, grasslands, deserts, and oceans) that exist in a region or on Earth as a whole. Biodiversity is important for maintaining the health and balance of ecosystems, providing resources and services such as food, clean water, and pollination, and contributing to the discovery of new medicines and other useful products. The loss of biodiversity can have negative impacts on the functioning of ecosystems and the services they provide, and can threaten the survival of species and the livelihoods of people who depend on them.

Aphids, also known as plant lice, are small sap-sucking insects that belong to the superfamily Aphidoidea in the order Hemiptera. They are soft-bodied and pear-shaped, with most species measuring less than 1/8 inch (3 millimeters) long.

Aphids feed on a wide variety of plants by inserting their needle-like mouthparts into the plant's vascular system to extract phloem sap. This feeding can cause stunted growth, yellowing, curling, or distortion of leaves and flowers, and may even lead to the death of the plant in severe infestations.

Aphids reproduce rapidly and can produce several generations per year. Many species give birth to live young (nymphs) rather than laying eggs, which allows them to increase their population numbers quickly. Aphids also have a complex life cycle that may involve sexual reproduction, parthenogenesis (reproduction without fertilization), and winged or wingless forms.

Aphids are an important pest in agriculture and horticulture, causing significant damage to crops and ornamental plants. They can also transmit plant viruses and produce honeydew, a sticky substance that attracts ants and supports the growth of sooty mold fungi.

Controlling aphids may involve cultural practices such as pruning, watering, and removing weeds; biological control using natural enemies such as lady beetles, lacewings, and parasitic wasps; or chemical control using insecticides.

'Brassica napus' is the scientific name for a species of plant that includes both rapeseed and canola. It is a type of cruciferous vegetable that is widely cultivated for its seeds, which are used to produce oil, as well as for its leaves and stems, which are eaten as vegetables in some parts of the world.

Rapeseed oil, which is produced from the seeds of 'Brassica napus', has historically been used as a source of industrial lubricant and as a fuel for diesel engines. However, modern canola oil, which is also produced from 'Brassica napus' but has been bred to have lower levels of erucic acid and glucosinolates, is more commonly used as a food oil due to its mild flavor and high smoke point.

The leaves and stems of 'Brassica napus' are also edible and are commonly consumed in parts of Europe and Asia. They can be prepared in a variety of ways, including boiling, steaming, or stir-frying. The plant is also sometimes used as a cover crop or green manure due to its ability to improve soil health and reduce erosion.

Organogenesis is the process of formation and development of organs during embryonic growth. It involves the complex interactions of cells, tissues, and signaling molecules that lead to the creation of specialized structures in the body. This process begins in the early stages of embryonic development, around week 4-8, and continues until birth. During organogenesis, the three primary germ layers (ectoderm, mesoderm, and endoderm) differentiate into various cell types and organize themselves into specific structures that will eventually form the functional organs of the body. Abnormalities in organogenesis can result in congenital disorders or birth defects.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

An Asparagus plant, scientifically known as *Asparagus officinalis*, is a perennial vegetable that belongs to the family *Asparagaceae*. It is native to Europe and western Asia. The plant is characterized by its long, thin green spears that grow out of the ground. These spears are harvested and eaten as a spring vegetable. The plant also produces fern-like foliage and small red berries. Asparagus is rich in nutrients, including fiber, vitamin C, vitamin A, and folate. It is also a good source of antioxidants.

I'm sorry for any confusion, but "Helianthus" is not a medical term. It is the genus name for sunflowers in the family Asteraceae. Sunflowers are native to North America and are known for their large, daisy-like flowers and tall stems. They have various uses, including ornamental purposes, food (seeds and oil), and medicinal applications in some traditional systems of medicine. However, there isn't a widely accepted medical definition associated with the term "Helianthus."

Sodium Chloride is defined as the inorganic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is commonly known as table salt or halite, and it is used extensively in food seasoning and preservation due to its ability to enhance flavor and inhibit bacterial growth. In medicine, sodium chloride is used as a balanced electrolyte solution for rehydration and as a topical wound irrigant and antiseptic. It is also an essential component of the human body's fluid balance and nerve impulse transmission.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

Liver neoplasms refer to abnormal growths in the liver that can be benign or malignant. Benign liver neoplasms are non-cancerous tumors that do not spread to other parts of the body, while malignant liver neoplasms are cancerous tumors that can invade and destroy surrounding tissue and spread to other organs.

Liver neoplasms can be primary, meaning they originate in the liver, or secondary, meaning they have metastasized (spread) to the liver from another part of the body. Primary liver neoplasms can be further classified into different types based on their cell of origin and behavior, including hepatocellular carcinoma, cholangiocarcinoma, and hepatic hemangioma.

The diagnosis of liver neoplasms typically involves a combination of imaging studies, such as ultrasound, CT scan, or MRI, and biopsy to confirm the type and stage of the tumor. Treatment options depend on the type and extent of the neoplasm and may include surgery, radiation therapy, chemotherapy, or liver transplantation.

Cytosol refers to the liquid portion of the cytoplasm found within a eukaryotic cell, excluding the organelles and structures suspended in it. It is the site of various metabolic activities and contains a variety of ions, small molecules, and enzymes. The cytosol is where many biochemical reactions take place, including glycolysis, protein synthesis, and the regulation of cellular pH. It is also where some organelles, such as ribosomes and vesicles, are located. In contrast to the cytosol, the term "cytoplasm" refers to the entire contents of a cell, including both the cytosol and the organelles suspended within it.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

Restriction Fragment Length Polymorphism (RFLP) is a term used in molecular biology and genetics. It refers to the presence of variations in DNA sequences among individuals, which can be detected by restriction enzymes. These enzymes cut DNA at specific sites, creating fragments of different lengths.

In RFLP analysis, DNA is isolated from an individual and treated with a specific restriction enzyme that cuts the DNA at particular recognition sites. The resulting fragments are then separated by size using gel electrophoresis, creating a pattern unique to that individual's DNA. If there are variations in the DNA sequence between individuals, the restriction enzyme may cut the DNA at different sites, leading to differences in the length of the fragments and thus, a different pattern on the gel.

These variations can be used for various purposes, such as identifying individuals, diagnosing genetic diseases, or studying evolutionary relationships between species. However, RFLP analysis has largely been replaced by more modern techniques like polymerase chain reaction (PCR)-based methods and DNA sequencing, which offer higher resolution and throughput.

'Agrobacterium' is a genus of Gram-negative, rod-shaped bacteria that are known for their ability to genetically transform plants. The most well-known species in this genus is 'Agrobacterium tumefaciens,' which causes a plant disease called crown gall. This bacterium has the natural ability to transfer a portion of its own DNA (called T-DNA) into the plant's genome, leading to the overproduction of certain plant hormones and ultimately resulting in the formation of tumor-like growths on the infected plant tissue.

This unique ability to transfer genetic material between species has made 'Agrobacterium' a valuable tool in molecular biology and genetic engineering. Scientists can use this bacterium as a vector to introduce foreign DNA into plants, allowing for the study and manipulation of plant genes. This technique is widely used in research and agriculture to create genetically modified organisms (GMOs) with desired traits such as resistance to pests, improved nutritional content, or increased yield.

Zeatin is not a medical term per se, but it is a significant compound in the field of plant biology and agriculture. It is a type of cytokinin, which is a class of hormones that play crucial roles in plant growth and development. Specifically, zeatin is involved in cell division, differentiation, and delaying senescence (aging) in plants.

In a broader biological context, understanding the functions of phytohormones like zeatin can have implications for agricultural practices and crop management, which may indirectly impact human health through improved food production and quality.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

Northern blotting is a laboratory technique used in molecular biology to detect and analyze specific RNA molecules (such as mRNA) in a mixture of total RNA extracted from cells or tissues. This technique is called "Northern" blotting because it is analogous to the Southern blotting method, which is used for DNA detection.

The Northern blotting procedure involves several steps:

1. Electrophoresis: The total RNA mixture is first separated based on size by running it through an agarose gel using electrical current. This separates the RNA molecules according to their length, with smaller RNA fragments migrating faster than larger ones.

2. Transfer: After electrophoresis, the RNA bands are denatured (made single-stranded) and transferred from the gel onto a nitrocellulose or nylon membrane using a technique called capillary transfer or vacuum blotting. This step ensures that the order and relative positions of the RNA fragments are preserved on the membrane, similar to how they appear in the gel.

3. Cross-linking: The RNA is then chemically cross-linked to the membrane using UV light or heat treatment, which helps to immobilize the RNA onto the membrane and prevent it from washing off during subsequent steps.

4. Prehybridization: Before adding the labeled probe, the membrane is prehybridized in a solution containing blocking agents (such as salmon sperm DNA or yeast tRNA) to minimize non-specific binding of the probe to the membrane.

5. Hybridization: A labeled nucleic acid probe, specific to the RNA of interest, is added to the prehybridization solution and allowed to hybridize (form base pairs) with its complementary RNA sequence on the membrane. The probe can be either a DNA or an RNA molecule, and it is typically labeled with a radioactive isotope (such as ³²P) or a non-radioactive label (such as digoxigenin).

6. Washing: After hybridization, the membrane is washed to remove unbound probe and reduce background noise. The washing conditions (temperature, salt concentration, and detergent concentration) are optimized based on the stringency required for specific hybridization.

7. Detection: The presence of the labeled probe is then detected using an appropriate method, depending on the type of label used. For radioactive probes, this typically involves exposing the membrane to X-ray film or a phosphorimager screen and analyzing the resulting image. For non-radioactive probes, detection can be performed using colorimetric, chemiluminescent, or fluorescent methods.

8. Data analysis: The intensity of the signal is quantified and compared to controls (such as housekeeping genes) to determine the relative expression level of the RNA of interest. This information can be used for various purposes, such as identifying differentially expressed genes in response to a specific treatment or comparing gene expression levels across different samples or conditions.

I'm sorry for any confusion, but "lettuce" is not a medical term. It is a type of vegetable that belongs to the family Asteraceae. It is commonly used in salads and sandwiches due to its crisp leaves and mild flavor. If you have any questions about lettuce or its nutritional value, I would be happy to help with that instead.

I'm sorry for any confusion, but "Hemiptera" is not a medical term. It is a taxonomic order in the classification of living things, also known as "true bugs." This group includes species such as cicadas, aphids, and bedbugs. If you have a medical term in mind, please provide it so I can give you an accurate definition.

Host-parasite interactions refer to the relationship between a parasitic organism (the parasite) and its host, which can be an animal, plant, or human body. The parasite lives on or inside the host and derives nutrients from it, often causing harm in the process. This interaction can range from relatively benign to severe, depending on various factors such as the species of the parasite, the immune response of the host, and the duration of infection.

The host-parasite relationship is often categorized based on the degree of harm caused to the host. Parasites that cause little to no harm are called commensals, while those that cause significant damage or disease are called parasitic pathogens. Some parasites can even manipulate their hosts' behavior and physiology to enhance their own survival and reproduction, leading to complex interactions between the two organisms.

Understanding host-parasite interactions is crucial for developing effective strategies to prevent and treat parasitic infections, as well as for understanding the ecological relationships between different species in natural ecosystems.

Phosphorus is an essential mineral that is required by every cell in the body for normal functioning. It is a key component of several important biomolecules, including adenosine triphosphate (ATP), which is the primary source of energy for cells, and deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), which are the genetic materials in cells.

Phosphorus is also a major constituent of bones and teeth, where it combines with calcium to provide strength and structure. In addition, phosphorus plays a critical role in various metabolic processes, including energy production, nerve impulse transmission, and pH regulation.

The medical definition of phosphorus refers to the chemical element with the atomic number 15 and the symbol P. It is a highly reactive non-metal that exists in several forms, including white phosphorus, red phosphorus, and black phosphorus. In the body, phosphorus is primarily found in the form of organic compounds, such as phospholipids, phosphoproteins, and nucleic acids.

Abnormal levels of phosphorus in the body can lead to various health problems. For example, high levels of phosphorus (hyperphosphatemia) can occur in patients with kidney disease or those who consume large amounts of phosphorus-rich foods, and can contribute to the development of calcification of soft tissues and cardiovascular disease. On the other hand, low levels of phosphorus (hypophosphatemia) can occur in patients with malnutrition, vitamin D deficiency, or alcoholism, and can lead to muscle weakness, bone pain, and an increased risk of infection.

Computer-assisted radiographic image interpretation is the use of computer algorithms and software to assist and enhance the interpretation and analysis of medical images produced by radiography, such as X-rays, CT scans, and MRI scans. The computer-assisted system can help identify and highlight certain features or anomalies in the image, such as tumors, fractures, or other abnormalities, which may be difficult for the human eye to detect. This technology can improve the accuracy and speed of diagnosis, and may also reduce the risk of human error. It's important to note that the final interpretation and diagnosis is always made by a qualified healthcare professional, such as a radiologist, who takes into account the computer-assisted analysis in conjunction with their clinical expertise and knowledge.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Glomeromycota is a phylum of fungi that form arbuscular mycorrhizae, which are symbiotic associations with the roots of most land plants. These fungi exist exclusively as tiny, threadlike structures called hyphae, which penetrate the cells of plant roots and form unique structures called arbuscules where nutrient exchange occurs. The fungi receive carbon from the plant in the form of sugars, while they provide essential mineral nutrients like phosphorus and nitrogen to the plant.

Glomeromycota fungi have a mutualistic relationship with plants, helping them to grow and survive in nutrient-poor soils. They also play a crucial role in soil ecology by promoting aggregate formation, improving soil structure, and increasing its water-holding capacity. These fungi are found worldwide and can be detected in almost all terrestrial ecosystems.

It is worth noting that Glomeromycota fungi lack a sexual reproductive stage, and their identification and classification rely on the morphology of their vegetative structures and molecular data.

Host-pathogen interactions refer to the complex and dynamic relationship between a living organism (the host) and a disease-causing agent (the pathogen). This interaction can involve various molecular, cellular, and physiological processes that occur between the two entities. The outcome of this interaction can determine whether the host will develop an infection or not, as well as the severity and duration of the illness.

During host-pathogen interactions, the pathogen may release virulence factors that allow it to evade the host's immune system, colonize tissues, and obtain nutrients for its survival and replication. The host, in turn, may mount an immune response to recognize and eliminate the pathogen, which can involve various mechanisms such as inflammation, phagocytosis, and the production of antimicrobial agents.

Understanding the intricacies of host-pathogen interactions is crucial for developing effective strategies to prevent and treat infectious diseases. This knowledge can help identify new targets for therapeutic interventions, inform vaccine design, and guide public health policies to control the spread of infectious agents.

'Bryophyta' is the formal scientific name for a division of non-vascular plants that includes mosses. These plants are small, typically range in size from a few millimeters to a few centimeters, and lack true roots, stems, and leaves. They have simple reproductive structures and obtain water and nutrients directly from the environment through their body surfaces. Mosses are an important part of many ecosystems, particularly in damp or shaded habitats, where they play a role in soil stabilization, nutrient cycling, and water retention.

Soybean roots. Robinia pseudoacacia nodules Close up of dissected Medicago Root nodule of the Fabaceae plants family. Fabaceae ... family root nodules. Medicago italica nodules. Cross section of the nodule. Cowpea (Vigna unguiculata spp.) roots. Root gall ... Root nodules are found on the roots of plants, primarily legumes, that form a symbiosis with nitrogen-fixing bacteria. Under ... The propensity of these plants to develop root nodules seems to relate to their root structure. In particular, a tendency to ...
strain B2 was isolated from Casuarina cunninghamiana nodules. Here, we report the 5.3-Mbp draft genome sequence of Frankia sp. ... Host Plant Compatibility Shapes the Proteogenome of Frankia coriariae. Authors: Amir Ktari, Abdellatif Gueddou, Imen Nouioui … ... strain B2 isolated from root nodules of Casuarina cunninghamiana found in Algeria. research-article ... strain B2 was isolated from Casuarina cunninghamiana nodules . Here, we report the 5.3-Mbp draft genome sequence of Frankia sp ...
... Becana Ausejo, Manuel; Klucas, R. V. ... Oxidation and Reduction of Leghemoglobin in Root Nodules of Leguminous Plants. Login ... Because Lb3+ is nearly nonexistent in nodules and undergoes observable reduction in vivo, mechanisms must operate in nodules to ... The chemical nature of Lb and conditions inside nodules, such as slightly acid pH and the presence of metal ions, chelators, ...
Root Nodule of Mungbean. September 17, 2018. Md. Abdul Baset Mia Leave a comment ... Digital Herbarium of Crop Plants. Establishment of Digital Herbarium and Herbal museum for Crop plant by Department of Crop ...
... japonicus root and nodule cell types have been identified. Root expression patterns are independent of infection with rhizobial ... expression stability was further demonstrated in whole plant transgenics as well as in active nodules. 11 promoters from ... ultimately triggering changes of root cell fates. The progression of legume root interactions with rhizobial bacteria has been ... However, tools to globally resolve the succession of molecular events in the host root at the cell type level have been lacking ...
... the root nodules. While rather deep molecular insights into plant-rhizobia recognition, early nodule organogenesis, regulation ... Symbiotic nitrogen fixation by rhizobia takes place in specialized organs of legume host plants, ... the root nodules. While rather deep molecular insights into plant-rhizobia recognition, early nodule organogenesis, regulation ... In WP2, the nodule-to-root conversion characteristic for B. diazoefficiens ΔecfG mutants will be studied at the cellular level ...
... : ... The Rhizobium bacteria present in the root nodules of pea plants can fix one of the following from the atmosphere. This one is: ... The Rhizobium bacteria present in the root nodules of pea plants can fix nitrogen. ...
NADH-glutamate synthase in alfalfa root nodules. Genetic regulation and cellular expression. Plant Physiology. 119:817-828. [ ... Suppression of the root-lesion nematode (Pratylenchus penetrans) in alfalfa (Medicago sativa) by Streptomyces spp. Plant and ... Analyses of phosphoenolpyruvate carboxylase gene structure and expression in alfalfa nodules. The Plant Journal. 12(2):293-304 ... Aspartate aminotransferase in alfalfa nodules: localization of mRNA during effective and ineffective nodule development and ...
Induced organogenesis in parasitic plants and root nodule symbiosis. Curr. Opin. Plant Biol. 76: 102473 ... Review article) Developing for nutrient uptake: Induced organogenesis in parasitic plants and root nodule symbiosis. Songkui ... Plant Biol.) summaries recent advances on the molecular control of haustorium development in Orobanchaceae species and root ... As a reflection, parasitic plants and legume species produce specialized organs, the haustorium and the nodule, respectively, ...
... in the root and/or shoot nodules of legumes fix atmospheric nitrogen to make it available for plants. Meanwhile, the plants ... living in root nodules of leguminous plants. Other examples include reef-building corals containing single-celled algae, and ... and the roots of almost all plant species. There are different degrees of complexity in the association. Plants benefit by ... The fungus, in return, receives an organic food supply from the plants. Mycorrhiza can be used to enhance the growth of plants ...
The test is the formation of nodules on the roots. Nodules are more likely to occur on poor soil, especially if it he of a ... And these nodules are capable of being produced on many plants of the bean family, such as clover, alfalfa, peas, vetches and ... If the roots of clover are found to possess nodules, then there is no need of inoculation for that form which grows upon clover ... If so, air is kept from the roots of the plants. Baking of the soil can be largely controlled by the farmer with certain crops ...
This is done in nodules on legume roots. To increase the growth of these nitrogen-fixing nodules, after soaking and just prior ... Or, try planting alternate strips, each 1-2 m wide, of grasses and legumes. Fertilizer application. 50-60 kg nitrogen/ha and 20 ... Establishing pasture by rooted slips Establishing pasture by rooted slips Some grasses do not produce seeds. For these, rooted ... Consider erecting a stone wall, making a trench and mound barrier, or planting a live hedge. Adopt proper soil and water ...
The plant is not self-fertile. It can fix Nitrogen. Suitable for: light (sandy), medium (loamy) and heavy (clay) soils and ... It has a strong taproot and the roots have root nodules. The leaves are spirally arranged, narrow, and simple. The pea-shaped ... Plant Uses. Edible Uses Medicinal Uses Other Plant uses Woodland Gardening. Why Perennial Plants?. Top Edible Plants. Top ... The plants selected are the plants in our book Plants For Your Food Forest: 500 Plants for Temperate Food Forests and ...
... these bacteria form nodules on the roots and fix atmospheric nitrogen. Some of this nitrogen is utilized by the growing plant ... Plant Uses. Edible Uses Medicinal Uses Other Plant uses Woodland Gardening. Why Perennial Plants?. Top Edible Plants. Top ... The plants selected are the plants in our book Plants For Your Food Forest: 500 Plants for Temperate Food Forests and ... Native Plant Search. Search over 900 plants ideal for food forests and permaculture gardens. Filter to search native plants to ...
To determine if host plant abundance determined the size of clover root weevil (CRW) Sitona obsoletus larval populations, a ... To determine if host plant abundance determined the size of clover root weevil (CRW) Sitona obsoletus larval populations, a ... Hackell, D. L., and Gerard, P. J. (2004). Nodule preference by first instar clover root weevil. N. Z. Plant Prot. 57, 319-322. ... Gerard, P. J. (2002). Nodule damage by clover root weevil larvae in white clover swards. N. Z. Plant Prot. 55, 246-251. ...
... plants. Rhizobia infect legumes, which provide them a home in the form of nodules in their roots. The rhizobia return the favor ... But now you can introduce many genes into plants-and not just the plants, but the soil microbes associated with plants," Voigt ... In her presentation, Gehring showed two photographs of bean plants. The seed that produced one plant had been coated with ... In her research, she is focusing on a certain gene in a plant called Arabidopsis thaliana that is linked to asexual development ...
Carefully fold the soil back around the roots, shaking the plant. That settles soil in and around the roots and up to the ... Broad bean root carrying nodules formed around colonies of nitrogen fixing bacteria. Broad beans are pollinated by bees and ... Plunge the roots deeply in a bucket of water and plant as quickly as possible. These crops need rich fertile soil which is weed ... Take out a deep planting hole and soak with water. Place the new bush into the hole, spreading out the root system in all ...
... trees were planted for soil erosion, but are spreading and disrupting native ecosystems. Learn how you can stop the spread. ... Autumn olives nitrogen-fixing root nodules allow the plant to grow in even the most unfavorable soils. Once it takes root, it ... If the plant is too big to pull, herbicides will be necessary to eradicate the plant from the general area of invasion. ... This plant takes advantage of changing seasons, leafing out early before native plants and keeping its foliage deep into the ...
Inoculate peas to encourage formation of nitrogen-producing nodules on the plant roots. This enriches the soil, results in ... Plants can be Annuals (single growing season), Perennials (grow year after year), Tender Perennials (grow year after year in ... Plants can be Annuals (single growing season), Perennials (grow year after year), Tender Perennials (grow year after year in ... Suspend the bottom of the trellis or chicken wire just above the young plants. The best time to install a trellis is at ...
The work of fixing nitrogen is done by bacteria that live on root nodules, seen in this image. Researchers in Denmark promote ... Drawing on wild plants to introduce more diverse genetic material will help keep our essential food plants robust and ... These practices-such as boosting plants genetic diversity and planting "cover crops" that fix nitrogen from the atmosphere and ... In Kenya, for example, farmers are responding to climate threats by adjusting their planting and harvesting times, planting new ...
Nodulation occurs when nodules, which form on the roots of plants (primarily legumes), form a symbiotic relationship with ... ... Conversations With Plants: Can We Provide Plants With Advance Warning of Impending Dangers? ... This Parasitic Plant Convinces Hosts to Grow Into Its Own Flesh--Its Also an Extreme Example of Genome Shrinkage ... 10, 2022 New research finds that the consumption of healthy plant-based foods, including fruits, vegetables, nuts, coffee, and ...
Farming ants deposit nitrogen-rich feces directly inside plants, which has led to the evolution of these ultra-absorptive plant ... Research has demonstrated that millions of years of ant agriculture has remodeled plant physiology. ... Nodulation occurs when nodules, which form on the roots of plants (primarily legumes), form a symbiotic relationship with ... ... The speed at which plants can take up nitrogen is a key limitation to plant growth rate. Most plants, including our crops, take ...
Despite this attributes, a deep understanding of the mechanism employed by endophytes in protecting the plant from diseases is ... Despite this attributes, a deep understanding of the mechanism employed by endophytes in protecting the plant from diseases is ... The advantage that endophytes have over other biocontrol agents is the ability to colonize plants internal tissues. ... This study elucidates the mechanisms employed by endophytes in protecting the plant from diseases and different bioactivities ...
The additional transport proteins sped up the overall export of nitrogen from root nodules. In effect, a feedback loop was ... According to Tegederm the soybean plants become bigger, grow faster, and generally look better than conventional soybean plants ... Boosting nitrogen fixation could enhance overall plant productivity for farmers who grow legumes while reducing or eliminating ... Technical Meeting with Stakeholders on Supplementary Guidance for Allergenicity Assessment of GM Plants ...
All species of Elaeagnaceae have root nodules with nitrogen-fixing bacteria (Frankia). The capacity to fix nitrogen is ... Annotated Checklist of the Flowering Plants of Nepal*Chinese Plant Names*Flora of China*Flora of Missouri*Flora of Pakistan* ... Some species treated here have been reported as naturalized and caution should be used in selecting plants for landscape use; ... Flowers unisexual; plants dioecious; inflorescences appearing before leaves; leaves petiolate or sessile, alternate; calyces 2- ...
A precise balance between the actions of major plant hormones auxin and cytokinin are crucial for proper nodule development in ... Sites and Sounds of MicroRNA160 in Soybean Roots and Nodules Revealed by Quantitative Imaging. SENTHIL SUBRAMANIAN Associate ... Our results identified specific root and nodule zones where microRNA160 affects auxin-cytokinin balance and pathways acting ... we mapped auxin and cytokinin outputs in soybean roots and nodules with reduced microRNA160 levels using quantitative 3- ...
A manual for the practical study of root nodule bacteria. Blackwell, Oxford.). To isolate Gram-positive bacteria, suspensions ... Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J. Exp. Bot. 55:27-34 ... Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J. Exp. Bot. 55:27-34 ... Environmental uses of plant growth-promoting bacteria. Plant-Microbe Interactions 69-93.). Vriesea gigantea has a water ...
In legumes, the nitrogen-fixing microbes live in nodules that form on plants roots. But other important crops lack the ability ... And it is difficult to cost-effectively deliver nitrogen to plant roots without causing environmental damage from fertilizer ... Plants such as soybeans, peas, peanuts, and other legumes benefit from symbiotic microbes that live in the soil and in plant ... As ammonia, the nitrogen becomes biologically available for plants to take up and use for biosynthesis. ...
Study their effectiveness in plant growth and nitrogen fixation. Findings suggest Bradyrhizobium elkanii LauBG38 as a promising ... The black gram plants were cut at the cotyledonary nodes. Then, the black gram roots with intact nodules were placed in a 100 ... ARA per plant, nodule, root and shoot dry weight were determined after four weeks. Data were analyzed using the STATISTIX 8 ... On the other hand, the B. elkanii LauBG38 showed the highest nodule and shoot dry weights of 9.17 mg plant−1, 0.17 g plant−1 in ...
  • Root nodules are found on the roots of plants, primarily legumes, that form a symbiosis with nitrogen-fixing bacteria. (wikipedia.org)
  • however, it may be that the basic genetic and physiological requirements were present in an incipient state in the last common ancestors of all these plants, but only evolved to full function in some of them: Two main types of nodule have been described in legumes: determinate and indeterminate. (wikipedia.org)
  • Indeterminate nodules are found in the majority of legumes from all three sub-families, whether in temperate regions or in the tropics. (wikipedia.org)
  • Altogether, results of this project will provide insight into determinants and mechanisms used by the economically important group of soybean plants to maintain the integrity of specialized, root-derived organs, an aspect that is relevant also in the light of ongoing attempts to engineer non-legumes into rhizobial hosts. (europa.eu)
  • The symbiotic relationship between rhizobia, a type of soil bacteria, and some legumes may offer a blueprint for developing these "self-fertilizing" plants. (technologyreview.com)
  • Rhizobia infect legumes, which provide them a home in the form of nodules in their roots. (technologyreview.com)
  • Boosting nitrogen fixation could enhance overall plant productivity for farmers who grow legumes while reducing or eliminating nitrogen fertilizer use. (isaaa.org)
  • Plants such as soybeans, peas, peanuts, and other legumes benefit from symbiotic microbes that live in the soil and in plant tissues. (acs.org)
  • In legumes, the nitrogen-fixing microbes live in nodules that form on plants' roots. (acs.org)
  • Recently, peat-based root nodule bacterial inoculants containing TAL strains are using as biofertilizer in seven legumes distributed by Ministry of Agriculture and Irrigation, Myanmar [9]. (scirp.org)
  • Bergersen F.J. 1982 Roots Nodules of legumes: Structure and Functions. (microbiologyresearch.org)
  • Legumes, such as soybeans, alfalfa and clovers, are plants that can convert atmospheric nitrogen into plant-usable nitrogen. (missouri.edu)
  • The co-colonization of the roots of legumes with arbuscular mycorrhizal (AM) fungi and the effects on P and Mn uptake are discussed. (intechopen.com)
  • The answer has been provided by special strains of bacteria which colonise the roots of legumes such as subterranean ('sub') clover and extract nitrogen from the air for the use of the plant. (the-rathouse.com)
  • My lab's major area of interest is root-microbe interactions in legumes. (sdstate.edu)
  • Legumes such as soybean form symbiotic association with nitrogen-fixing rhizobia bacteria resulting in root nodules. (sdstate.edu)
  • The nodules are specialized structures where atmospheric nitrogen is fixed by the bacterium, which in turn, is utilized by legumes for growth and development. (usda.gov)
  • However, some plant species, including legumes, are able to generate their own nitrogen-fixing because they host bacteria in their roots. (nationalpeanutboard.org)
  • A cover crop is a ready-to-sow seeds of fast-growing plants-often legumes or grasses-planted in late summer or fall into empty or fallow garden beds. (almanac.com)
  • Legumes work in harmony with bacteria that lives on their roots. (almanac.com)
  • Another type of determinate nodule is found in a wide range of herbs, shrubs and trees, such as Arachis (peanut). (wikipedia.org)
  • Here, we propose to decipher the molecular determinants that maintain determinate nodule identity using the B. diazoefficiens - soybean model. (europa.eu)
  • A 15-day-old Sesbania stem nodule revealed typical ultrastructure features of a determinate nodule, containing several bacteroids within symbiosomes. (usda.gov)
  • Indeed, high nitrogen content blocks nodule development as there is no benefit for the plant of forming the symbiosis. (wikipedia.org)
  • Cui S , Inaba S, Suzaki T, Yoshida S (2023) Developing for nutrient uptake: Induced organogenesis in parasitic plants and root nodule symbiosis. (parasiticplants.org)
  • Arbuscular mycorrhizal (AM) fungi, in symbiosis with plants, facilitate acquisition of nutrients from the soil to their host. (uni-koeln.de)
  • The possibility that glutamate might serve as a source of reducing power, supporting fixation of N 2 to NH 3 by bacteroids in soybean root nodules, was investigated. (microbiologyresearch.org)
  • Nitrogen fixation by excised soybean root nodules. (microbiologyresearch.org)
  • Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. (mpg.de)
  • Nitrogen fixation in the nodule is very oxygen sensitive. (wikipedia.org)
  • Symbiotic nitrogen fixation by rhizobia takes place in specialized organs of legume host plants, the root nodules. (europa.eu)
  • While rather deep molecular insights into plant-rhizobia recognition, early nodule organogenesis, regulation of nodulation and nitrogen fixation are available, much less is known about how nodule integrity is maintained and the origin of the underlying morphogenetic program. (europa.eu)
  • Evaluation of the effectiveness of Myanmar Bradyrhizobim strains isolated from soil samples of major black gram growing areas of Myanmar for plant growth and nitrogen fixation w as studied in pot experiments with completely randomized design and three replicates. (scirp.org)
  • In addition to the enhancement of scientific knowledge and scholarship, this research has economic and environmental benefits since symbiotic nitrogen fixation in legume root nodules alleviates the use of chemical fertilizers. (sdstate.edu)
  • Q6: How does nitrogen fixation occur in plants? (virtualtourist.com)
  • A6: Nitrogen fixation occurs when nitrogen-fixing bacteria convert atmospheric nitrogen into ammonia, which is then used by plants. (virtualtourist.com)
  • Differentiation of plant cells during symbiotic nitrogen fixation. (mpg.de)
  • As a result, the plants require far less applied nitrogen fertilizer than other staple crops. (technologyreview.com)
  • In subsequent vegetable and fruit crops, plant water uptake, nutrient use efficiency, and photosynthesis are all impaired. (soci.org)
  • Plant breeders, especially in Asia, are actively seeking genetic solutions that will create crops capable of withstanding erratic environments. (soci.org)
  • These practices-such as boosting plants' genetic diversity and planting "cover crops" that fix nitrogen from the atmosphere and add it to the soil-can help improve soil health and return more carbon to the earth. (nationalgeographic.com)
  • Farmers plant sunflowers as part of a mix of cover crops to improve soil, conserve water, and reduce pesticide use. (nationalgeographic.com)
  • Most plants, including our crops, take up nitrogen from the soil and are thus not naturally exposed to very high nitrogen concentrations. (sciencedaily.com)
  • Ongoing work aims to decipher the genetic basis of the ultra-absorptive plant structures discovered in this study, which may ultimately be transferred to our crops and thereby increase their nitrogen uptake rate. (sciencedaily.com)
  • 4. Crop Rotation and Cover Crops: Rotating crops and planting cover crops can help improve soil fertility by increasing the nitrogen content. (virtualtourist.com)
  • Because plants use nitrogen from the soil, farming crops can often deplete the available fixed nitrogen in the soil faster than it can be regenerated. (nationalpeanutboard.org)
  • All of these attributes make peanuts an excellent crop to plant in rotation with other crops. (nationalpeanutboard.org)
  • Planting cover crops at the end of the growing season is becoming more popular, even in small gardens. (almanac.com)
  • Here's advice and our charts for planting cover crops by region. (almanac.com)
  • Cover crops literally make a living "cover" to sustain soil life until spring planting. (almanac.com)
  • When Do You Plant Cover Crops? (almanac.com)
  • Oats are fast-growing, cool-season crops with fibrous roots that loosens tight soil. (almanac.com)
  • Soybean field not previously planted to soybeans. (pioneer.com)
  • Field not previously planted to soybeans shows symptoms of nitrogen deficiency. (pioneer.com)
  • These bacteria form a symbiotic relationship with leguminous plants like soybeans, peas, and clover. (virtualtourist.com)
  • Outlines are given for genetic engineering and plant breeding. (mdpi.com)
  • The bacteria reside in nodules on the plant's roots and convert nitrogen gas into ammonia, which can be utilized by the plant. (virtualtourist.com)
  • The rhizobium bacteria, or more specifically Bradyrhizobium , that develop in nodules on the peanut plant's roots live off of the plant itself. (nationalpeanutboard.org)
  • So the team plans to reduce the carbon footprint of fertilizer by genetically engineering plants and soil microbes to, in effect, make their own. (technologyreview.com)
  • But now you can introduce many genes into plants-and not just the plants, but the soil microbes associated with plants," Voigt explains. (technologyreview.com)
  • Endophytic microorganisms are referred to as the microbes that inhabit the internal parts of a plant. (frontiersin.org)
  • Only a few microorganisms such as endophytic microbes and mycorrhiza fungi can be exceptional and find their way into the inner tissues of a plant. (frontiersin.org)
  • Root exudates are complex mixtures making up a chemical language for recruiting and establishing beneficial rhizosphere microbes. (unl.edu)
  • Rhizosphere microbes, in turn, help maintain the long-term health of the plant. (unl.edu)
  • Bayer and Ginkgo Bioworks are forming a new company to exploit the potential of synthetic biology to improve microbes that help plants grow. (acs.org)
  • A major scientific target of the two firms' technology will be to design microbes with an improved ability to deliver nitrogen to plants. (acs.org)
  • Two major research thrusts in the lab are to determine plant mechanisms that (i) dictate the development of symbiotic root nodules and (ii) recruit beneficial microbes. (sdstate.edu)
  • these bacteria form nodules on the roots and fix atmospheric nitrogen. (pfaf.org)
  • In effect, a feedback loop was initiated that caused the rhizobia to start fixing more atmospheric nitrogen, which the plant then use to make more seeds. (isaaa.org)
  • The bacteria reside in these root nodules, where they use a nitrogenase enzyme to convert atmospheric nitrogen (N2) to ammonium (NH4+), a form of nitrogen available to the plant. (pioneer.com)
  • A survey of agricultural technologies influencing the biosynthesis and accumulation of phenolic compounds in crop plants is presented, including observations on the effects of light, temperature, mineral nutrition, water management, grafting, elevated atmospheric CO 2 , growth and differentiation of the plant and application of elicitors, stimulating agents and plant activators. (mdpi.com)
  • However, atmospheric nitrogen cannot be directly utilized by plants. (virtualtourist.com)
  • 3. Nitrogen-Fixing Bacteria: Certain bacteria, known as nitrogen-fixing bacteria, have the ability to convert atmospheric nitrogen into a usable form for plants. (virtualtourist.com)
  • And once the nodules are formed [the bacteria] takes the atmospheric nitrogen from the air and fixes the nitrogen from the air to the plant, from the plant to the soil. (nationalpeanutboard.org)
  • As a reflection, p arasitic plants and legume species produce specialized organs, the haustorium and the nodule, respectively, in order to acquire unique routes for nutrient uptake through intimate interaction with surrounding organisms. (parasiticplants.org)
  • summaries recent advances on the molecular control of haustorium development in Orobanchaceae species and root nodule establishment in legume family with step-by-step comparisons, with the focus on the common regulatory roles of phytohormones and environmental nitrogen at different stages of corresponding organogenesis. (parasiticplants.org)
  • As the climate warms, resilient invasive species like Autumn olive can gain even more of a foothold over native plants. (nature.org)
  • In the farmed plant species, specialized ants exclusively defecate on hyper-absorptive warts on the walls inside the plant. (sciencedaily.com)
  • In closely-related non-farmed plant species living in the same Fijian rainforests, the ants do not show this farming behaviour. (sciencedaily.com)
  • All species of Elaeagnaceae have root nodules with nitrogen-fixing bacteria ( Frankia ). (efloras.org)
  • The capacity to fix nitrogen is advantageous to species colonizing disturbed habitats and may account, in part, for the occurrence of Russian olive ( Elaeagnus angustifolia ) as an invasive plant in parts of North America. (efloras.org)
  • Bromeliaceae is a diversified family of plants with terrestrial or epiphytic habitats, encompassing about 2,900 described species ( Holst & Luther 2004 HOLST, B.K. & LUTHER, H.E. 2004. (scielo.br)
  • Several Bradyrhizobium species are able to induce effective nodules in black gram cultivars. (scirp.org)
  • They are nitrogen-fixing root-nodule symbionts of many species of woody dicotyledonous plants. (bvsalud.org)
  • To this end, we aimed to identify promoters exhibiting cell type enriched expression in roots of the model legume Lotus japonicus , as no comprehensive set of such promoters usable in legume roots is available to date. (biomedcentral.com)
  • This is done in nodules on legume roots. (nzdl.org)
  • Although by far the majority of plants able to form nitrogen-fixing root nodules are in the legume family Fabaceae, there are a few exceptions: Actinorhizal plants such as alder and bayberry can form (less complex) nitrogen-fixing nodules, thanks to a symbiotic association with Frankia bacteria. (wikipedia.org)
  • Evidence that associated soil bacteria may influence root hair infection of actinorhizal plants by Frankia. (who.int)
  • Nodulation of actinorhizal plants (Alnus rubra Bong, and others) by isolated Frankia strains occurred either at a low frequency or not at all under axenic conditions. (who.int)
  • But nodulation was achieved under nonsterile conditions and four strains of bacteria were isolated which promoted nodulation when plants were inoculated with the bacteria plus Frankia. (who.int)
  • Root hair deformation occurred when roots of A. rubra were inoculated with these bacterial isolates, or with the bacteria plus Frankia, but rarely or not at all when roots were inoculated with the actinomycete alone. (who.int)
  • Establishment and maintenance of mutualistic plant-microbial interactions in the rhizosphere and within plant roots involve several root cell types. (biomedcentral.com)
  • The progression of legume root interactions with rhizobial bacteria has been addressed in numerous studies. (biomedcentral.com)
  • Molecular Plant-Microbe Interactions. (usda.gov)
  • These causes are a result of interactions between the plant genotype and the prevailing or changing environment. (soci.org)
  • The Rhizobium bacteria present in the root nodules of pea plants can fix one of the following from the atmosphere. (philoid.com)
  • The Rhizobium bacteria present in the root nodules of pea plants can fix nitrogen. (philoid.com)
  • To increase the growth of these nitrogen-fixing nodules, after soaking and just prior to planting, mix legume seeds with rhizobium culture powder. (nzdl.org)
  • Interestingly, soybean nodules elicited by a Bradyrhizobium diazoefficiens mutant lacking the general stress response sigma factor σEcfG also formed ectopic roots (host's project), pointing to a bacteria-plant signalling system that is crucial for nodule persistence and integrity. (europa.eu)
  • The nodule dry weight, shoot dry weight and acetylene reduction activity of the plant inoculated with Bradyrhizobium elkanii LauBG38 were significantly higher in ARA per plant, nodule and shoot dry weights than the other tested isolates in both Yezin -4 and Yezin-7 black gram varieties. (scirp.org)
  • Effects of O 2 concentrations and various haemoglobins on respiration and nitrogenase activity of bacteroids from stem and root nodules of Sesbania rostrata and of the same bacteria from continuous cultures. (microbiologyresearch.org)
  • strain MUS10 forms nodules on the roots and stems of Sesbania rostrata, a green manure crop. (usda.gov)
  • strain MUS10 forms nitrogen-fixing stem nodules on Sesbania rostrata, a tropical green-manure crop. (usda.gov)
  • These determinate nodules lose meristematic activity shortly after initiation, thus growth is due to cell expansion resulting in mature nodules which are spherical in shape. (wikipedia.org)
  • Initiation and developmental progression of haustorium and nodule require signal guidance from the interacting partners and acquisition of new cell fates regulated by intrinsic hormonal and gene networks. (parasiticplants.org)
  • For this relationship to develop, rhizobia bacteria must be present in the root initiation area. (pioneer.com)
  • They gain entrance into the seed, leaf, stem, and root of a plant and they are not harmful to the host plant ( Yadav, 2018 ). (frontiersin.org)
  • RhizoDive is an exciting high school laboratory opportunity where students learn about nitrogen sustainability, microbial biodiversity and/or plant meristems (stem cells). (sdstate.edu)
  • In this study, anatomical and morphological changes leading to the formation of stem nodules are reported. (usda.gov)
  • In this study, the ultrastructural events associated with the formation of stem nodules were investigated. (usda.gov)
  • A2: Nitrogen promotes healthy leaf and stem growth, enhances chlorophyll production, and stimulates root development, leading to increased productivity and higher crop yields. (virtualtourist.com)
  • Gel filtration of nitrogenase from soybean root nodule bacteroids. (microbiologyresearch.org)
  • Properties of terminal oxidase systems of bacteroids from root nodules of soybean and cowpea and of N 2 -fixing bacteria grown in continuous culture. (microbiologyresearch.org)
  • Abstract Many antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. (scienceopen.com)
  • In fact, when a farmer plows under a crop of rye he does not add any material to the soil excepting what the plant obtained from the air, and this is always available from the air. (wikisource.org)
  • The plant is widely grown in the tropics as a green manure, often as a cover crop. (pfaf.org)
  • Further research in this area will help farmers to increase crop yield through less chemical fertilizer input and more recycling of plant nutrients. (usda.gov)
  • Two main fields of interest form the background of actual demand for optimized levels of phenolic compounds in crop plants. (mdpi.com)
  • Peanut hay, or the plant material left behind after the peanut pods are harvested, also has residual nitrogen in the vines and leaves that can be tilled back into the soil to decompose and naturally fertilize the field for the next crop to be planted. (nationalpeanutboard.org)
  • Hairy Vetch (Vicia villosa) , a legume, is used as a cover crop to restore nitrogen to the soil for healthier plants. (almanac.com)
  • Under nitrogen-limiting conditions, capable plants form a symbiotic relationship with a host-specific strain of bacteria known as rhizobia. (wikipedia.org)
  • Root expression patterns are independent of infection with rhizobial bacteria, providing a stable read-out in the root section responsive to symbiotic bacteria. (biomedcentral.com)
  • Keeping nodules in check: Interplay of rhizobial and host factors controlling nodule morphogenesis and identity in legume plants. (europa.eu)
  • Inoculate peas to encourage formation of nitrogen-producing nodules on the plant roots. (johnnyseeds.com)
  • The situation improved dramatically when the role of the bacteria in the root nodules came to light, followed by techniques to inoculate the seed with compatible varieties of bacteria. (the-rathouse.com)
  • The regulation of plant thiol metabolism highlights nature's ability to engineer pathways that respond to multiple inputs and cellular demands using mechanisms that range from the simple to the elaborate. (unl.edu)
  • Role of abscisic acid in the regulation of cell expansion in roots at low water potentials. (agri.gov.il)
  • Rapid isolation of high molecular weight plant DNA. (scienceopen.com)
  • A method is presented for the rapid isolation of high molecular weight plant DNA (50,000 base pairs or more in length) which is free of contaminants which interfere with complete digestion by restriction endonucleases. (scienceopen.com)
  • These molecular events coordinate host responses across root cell layers during microbe invasion, ultimately triggering changes of root cell fates. (biomedcentral.com)
  • However, tools to globally resolve the succession of molecular events in the host root at the cell type level have been lacking. (biomedcentral.com)
  • GUS fusions to characterize promoters stemming from Arabidopsis, tomato ( Lycopersicon esculentum ) or L. japonicus with respect to their expression in major cell types of the L. japonicus root differentiation zone, which shows molecular and morphological responses to symbiotic bacteria and fungi. (biomedcentral.com)
  • We will combine plant molecular genetics, cell biology with transcriptomics and metabolomics to unravel cells, genes and metabolic networks that contribute to the checkpoint system ensuring nodule integrity. (europa.eu)
  • Plant Molecular Biology. (usda.gov)
  • We examine the role of miRNAs in nodule development using a number of different approaches including genetics, genomics, molecular and cellular biology and microscopy. (sdstate.edu)
  • Aspartate aminotransferase in alfalfa nodules: localization of mRNA during effective and ineffective nodule development and promoter analysis. (usda.gov)
  • The tools for manipulating plants have been pretty ineffective to date. (technologyreview.com)
  • These are always associated with the axils of lateral or adventitious roots and are formed following infection via cracks where these roots emerge and not using root hairs. (wikipedia.org)
  • Increased herbage yield in alfalfa associated with selection for fibrous and lateral roots. (usda.gov)
  • Research article describing soybean nodule and lateral root GRNs work by post-doc Shuchi Smita published in collaboration with Qin Ma lab ( in silico plants ). (sdstate.edu)
  • Sixty-eight bacterial strains were isolated from 3 different microhabitats of V. gigantea and from 2 microhabitats of T. aeranthos bromeliad plants. (scielo.br)
  • The nonendophytic bacterial strains were not detected within the nodule tissue. (who.int)
  • Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces . (usda.gov)
  • Suppression of the root-lesion nematode ( Pratylenchus penetrans ) in alfalfa ( Medicago sativa ) by Streptomyces spp. (usda.gov)
  • Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa ( Medicago sativa L.) transformed with an antisense glutamate synthase transgene. (usda.gov)
  • NADH-glutamate synthase in alfalfa root nodules. (usda.gov)
  • Analyses of phosphoenolpyruvate carboxylase gene structure and expression in alfalfa nodules. (usda.gov)
  • Fertility may be defined as that condition of the soil which yields the maximum of that material which the plant is capable of using for the best development of those qualities which the farmer desires. (wikisource.org)
  • Soil compaction limits rooting and root hair development. (pioneer.com)
  • Their role in nodule development is largely unknown. (sdstate.edu)
  • We are proud to be part of this center and lead efforts on infrastructure development for plant imaging and informatics. (sdstate.edu)
  • A1: Nitrogen is a vital nutrient required for various plant processes, including photosynthesis, protein synthesis, and overall growth and development. (virtualtourist.com)
  • nodule development on the lower peanut root. (nationalpeanutboard.org)
  • Plant Physiology. (usda.gov)
  • Research has demonstrated that millions of years of ant agriculture has remodeled plant physiology. (sciencedaily.com)
  • Research, led by Dr Guillaume Chomicki from the Department of Plant Sciences, University of Oxford, has demonstrated that millions of years of ant agriculture has remodelled plant physiology. (sciencedaily.com)
  • This supports the notion that millions of years of ant agriculture have remodelled plant physiology, shifting from ant-derived nutrients as by-products to active and targeted fertilization on hyper-absorptive sites. (sciencedaily.com)
  • Plants have evolved various strategies to adapt nutrient limited condition. (parasiticplants.org)
  • After penetration, intracellular hyphae form fine-branched structures in cortical cells termed arbuscules, representing the major site where bidirectional nutrient exchange takes place between the host plant and fungus. (uni-koeln.de)
  • A9: Yes, excessive nitrogen can lead to an imbalance in soil nutrients, causing nutrient deficiencies or toxicity in plants. (virtualtourist.com)
  • Soil Microbiology and Its Effects on Nutrient Availability and Uptake in Plants (and other things)! (jakesonline.org)
  • Microorganisms that live inside and around a plant can supply it with essential substances, such as phytohormones and essential nutrients. (scielo.br)
  • Nitrogen from the air (N 2 ) enters the nitrogen cycle through several unique types of microorganisms that can convert N 2 gas to inorganic forms usable by plants. (missouri.edu)
  • Some of these microorganisms live in the soil, while others live in nodules of roots of certain plants. (missouri.edu)
  • Soil microorganisms naturally break down components in soil, such as dead plants and organisms. (jakesonline.org)
  • How do we use plant and microbial engineering, and biotechnology, to chip away at carbon emissions from agriculture? (technologyreview.com)
  • A better understanding of the relationships between soil pH, organic matter content (SOM), microbial community, soil P content and the plant strategies to mobilize it, as well as plant effects on the soil solution concentrations of Mn, is important for the management of these systems. (intechopen.com)
  • We are also interested in determining plant mechanisms that influence the microbial diversity in the rhizosphere and plant intercellular spaces. (sdstate.edu)
  • The energy for splitting the nitrogen gas in the nodule comes from sugar that is translocated from the leaf (a product of photosynthesis). (wikipedia.org)
  • Here, we show that among 45 transcription factors up-regulated in mycorrhizal roots of the legume Lotus japonicus, expression of a unique GRAS protein particularly increases in arbuscule-containing cells under low phosphate conditions and displays a phylogenetic pattern characteristic of symbiotic genes. (uni-koeln.de)
  • Out of 24 tested promoters, 11 showed cell type enriched activity in L. japonicus roots. (biomedcentral.com)
  • 11 promoters from Arabidopsis (10) or tomato (1) with enriched activity in major L. japonicus root and nodule cell types have been identified. (biomedcentral.com)
  • Cross-section of L. japonicus root (differentiation zone). (biomedcentral.com)
  • As related plants are actinorhizal, it is believed that the plant "switched partner" in its evolution. (wikipedia.org)
  • Once it takes root, it is a prolific seed producer, creating 200,000 seeds from a single plant each year. (nature.org)
  • These plants have seeds that are easy to scatter, and they do the hard work of fixing nutrients in the soil and improving soil condition over the winter before spring planting. (almanac.com)
  • Having a genome map is a key step in understanding how these remarkable plants thrive in stressful environments. (nationalgeographic.com)
  • Parasponia, a tropical genus in the Cannabaceae is also able to interact with rhizobia and form nitrogen-fixing nodules. (wikipedia.org)
  • There has to be a native bacteria present in the soil and that has to come into contact with the root of the peanut plant to form a nodule on the roots. (nationalpeanutboard.org)
  • To determine if host plant abundance determined the size of clover root weevil (CRW) Sitona obsoletus larval populations, a study was conducted over 4 years in plots sown in ryegrass ( Lolium perenne ) (cv. (frontiersin.org)
  • This study elucidates the mechanisms employed by endophytes in protecting the plant from diseases and different bioactivities of importance to humans with a focus on endophytic bacteria and fungi. (frontiersin.org)
  • This review aimed to present the various mechanisms of action used by endophytes in protecting a plant and report some bioactivities of importance to people with special emphasis on endophytic bacteria and fungi. (frontiersin.org)
  • These are human health and plant resistance to pathogens and to biotic and abiotic stress factors. (mdpi.com)
  • In WP3, a combination of metabolomics and transcriptomics will be applied to identify metabolites and gene networks involved in the nodule-to-root conversion elicited by ΔecfG and nbcl mutants. (europa.eu)
  • defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. (usda.gov)
  • The soybean GmN6L gene encodes a late nodulin expressed in the infected zone of nitrogen-fixing nodules. (mpg.de)
  • MIT is not historically known as a leader in the agricultural research space," team member Mary Gehring, a plant biologist at the Whitehead Institute for Biomedical Research and an associate professor of biology at MIT, said in a public presentation of the group's project in April. (technologyreview.com)
  • But it has never been decided just what the chemical composition should be to produce the best results, for the simple reason that it is not known exactly what the requirements of the plants are. (wikisource.org)
  • Nor does a chemical analysis of the plant itself answer the question. (wikisource.org)
  • The bacteria adhere to the roots and create a chemical bond, forming root tissue (nodules) around the bacteria. (pioneer.com)
  • In such cases the soybean plant will not recognize the bacteria chemical reaction, and thus will not initiate nodular tissue formation. (pioneer.com)
  • Chemical signals from the roots that invite the bacteria to colonize can be reduced with limited rooting. (pioneer.com)
  • At the present time, the more thoughtful and cautious among those studying the question of plant growth from a scientific standpoint are by no means settled upon the point. (wikisource.org)
  • There are certain elements which are no doubt necessary for proper growth, but the analysis of the content of the plant and of the soil does not give a very complete notion of the proper conditions under which certain substances should exist when in the soil. (wikisource.org)
  • As a result, plant growth is erratic and exhibits abiotic disorders. (soci.org)
  • Dr Chomicki, the lead author of the study, says: 'The speed at which plants can take up nitrogen is a key limitation to plant growth rate. (sciencedaily.com)
  • Root growth of avocado [ Persea Americana Mill] is more sensitive to salinity than shoot growth. (agri.gov.il)
  • Almost all the soils in Australia are low in natural fertility, lacking nitrogen, potassium and phosphorus, the three major nutrients needed for plant growth. (the-rathouse.com)
  • Many also lack one or more 'trace elements', which, like vitamins, are required in minute quantities for healthy plant and animal growth. (the-rathouse.com)
  • Fertilizers play a vital role in promoting healthy plant growth and increasing agricultural productivity. (virtualtourist.com)
  • Manure is often used as a natural fertilizer, as it provides not only nitrogen but also other essential nutrients for plant growth. (virtualtourist.com)
  • Q1: Why is nitrogen important for plant growth? (virtualtourist.com)
  • A3: While synthetic nitrogen fertilizers can enhance plant growth, excessive use can lead to environmental issues like water pollution and greenhouse gas emissions. (virtualtourist.com)
  • Fertilisers are substances that can be supplied to the soil so as to improve the soil quality and promote the growth of any plants grown in this soil. (appropedia.org)
  • One of the main reasons of the annual reduction in plant production all around the world is the occurrence of abiotic stresses as a result of an unpredicted changes in environmental conditions. (techscience.com)
  • Within legume root nodules, nitrogen gas (N2) from the atmosphere is converted into ammonia (NH3), which is then assimilated into amino acids (the building blocks of proteins), nucleotides (the building blocks of DNA and RNA as well as the important energy molecule ATP), and other cellular constituents such as vitamins, flavones, and hormones[citation needed]. (wikipedia.org)
  • The additional transport proteins sped up the overall export of nitrogen from root nodules. (isaaa.org)
  • Nitrogen is taken up by plant roots and combined into organic substances in the plant, such as enzymes, proteins and chlorophyll. (missouri.edu)
  • GRAS proteins are an important family of transcriptional regulators in plants, named after the first three members: GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW. (uni-koeln.de)
  • The very small proteins encoded by plant viruses are often overlooked due to their short sequences and uncertain significance. (techscience.com)
  • strain MUS10 entered the host tissue through cracks created by the emerging adventitious root primordia and multiplied within the intercellular spaces. (usda.gov)
  • Endophytes are abundant in plants and studies are continuously emanating on their ability to protect plants from pathogens that cause diseases especially in the field of agriculture. (frontiersin.org)