A species of gram-negative, aerobic bacteria that is found in soil and which causes formation of root nodules on some, but not all, types of field pea, lentil, kidney bean, and clover.
A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.
The large family of plants characterized by pods. Some are edible and some cause LATHYRISM or FAVISM and other forms of poisoning. Other species yield useful materials like gums from ACACIA and various LECTINS like PHYTOHEMAGGLUTININS from PHASEOLUS. Many of them harbor NITROGEN FIXATION bacteria on their roots. Many but not all species of "beans" belong to this family.
The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds.
The relationship between two different species of organisms that are interdependent; each gains benefits from the other or a relationship between different species where both of the organisms in question benefit from the presence of the other.
A variable annual leguminous vine (Pisum sativum) that is cultivated for its rounded smooth or wrinkled edible protein-rich seeds, the seed of the pea, and the immature pods with their included seeds. (From Webster's New Collegiate Dictionary, 1973)
Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals.
A plant species of the genus VICIA, family FABACEAE. The seed is used for food and contains THIOCYANATES such as prunasin, cyanoalanine, cyanogen, and vicine.
A species of gram-negative bacteria and nitrogen innoculant of PHASEOLUS VULGARIS.
A plant genus of the family FABACEAE that is widely used as ground cover and forage and known for the edible beans, VICIA FABA.
A plant genus of the family FABACEAE.
The functional hereditary units of BACTERIA.
Proteins found in any species of bacterium.
A species of gram-negative, aerobic bacteria that causes formation of root nodules on some, but not all, types of sweet clover, MEDICAGO SATIVA, and fenugreek.
Knobbed structures formed from and attached to plant roots, especially of LEGUMES, which result from symbiotic infection by nitrogen fixing bacteria such as RHIZOBIUM or FRANKIA. Root nodules are structures related to MYCORRHIZAE formed by symbiotic associations with fungi.
A family of gram-negative bacteria which are saprophytes, symbionts, or plant pathogens.
A plant genus of the family FABACEAE. It is distinct from Sweet Clover (MELILOTUS), from Bush Clover (LESPEDEZA), and from Red Clover (TRIFOLIUM).
Plasmids containing at least one cos (cohesive-end site) of PHAGE LAMBDA. They are used as cloning vehicles.
A plant genus of the FABACEAE family known for the seeds used as food.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A species of gram-negative bacteria and an nitrogen inoculum that displays a high intrinsic tolerance to acidity.
The formation of a nitrogen-fixing cell mass on PLANT ROOTS following symbiotic infection by nitrogen-fixing bacteria such as RHIZOBIUM or FRANKIA.
An enzyme found in bacteria. It catalyzes the reduction of FERREDOXIN and other substances in the presence of molecular hydrogen and is involved in the electron transport of bacterial photosynthesis.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.
Lipid A is the biologically active component of lipopolysaccharides. It shows strong endotoxic activity and exhibits immunogenic properties.
The usually underground portions of a plant that serve as support, store food, and through which water and mineral nutrients enter the plant. (From American Heritage Dictionary, 1982; Concise Dictionary of Biology, 1990)
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Polysaccharides found in bacteria and in capsules thereof.
A group of FLAVONOIDS characterized with a 4-ketone.
A genus of gram-negative, aerobic, nonsporeforming rods which usually contain granules of poly-beta-hydroxybutyrate. (From Bergey's Manual of Determinative Bacteriology, 9th ed)
A plant species of the family FABACEAE widely cultivated for ANIMAL FEED.
Dicarboxylic acids are organic compounds containing two carboxyl (-COOH) groups in their structure, making them capable of forming salts and esters by losing two hydrogen ions.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
A family of organic anion transporters that specifically transport DICARBOXYLIC ACIDS such as alpha-ketoglutaric acid across cellular membranes.
A genus of gram-negative, aerobic, rod-shaped bacteria usually containing granules of poly-beta-hydroxybutyrate. They characteristically invade the root hairs of leguminous plants and act as intracellular symbionts.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A plant genus in the family FABACEAE which is the source of edible beans and the lectin PHYTOHEMAGGLUTININS.
'Sugar acids' are organic compounds derived from sugars through various processes, characterized by the presence of both a carboxyl group (-COOH) and a hydroxyl group (-OH) in their molecular structure, often found in food sources like fruits and used in industries such as food, pharmaceutical, and cosmetic.
Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation.
An enzyme system that catalyzes the fixing of nitrogen in soil bacteria and blue-green algae (CYANOBACTERIA). EC 1.18.6.1.
The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS.
In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.
A class of enzymes that catalyzes the phosphorylation of fructose in the presence of ATP. EC 2.7.1.-.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Substances released by PLANTS such as PLANT GUMS and PLANT RESINS.
Acetylene is not typically considered a medical term, but rather a chemical compound (C2H2) commonly used in industrial and laboratory settings for its high energy content and reactivity, which may have various applications in medicine such as wound healing and surgical procedures, but it is not a medical diagnosis or disease.
Organic compounds containing both the hydroxyl and carboxyl radicals.
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The in vitro fusion of GENES by RECOMBINANT DNA techniques to analyze protein behavior or GENE EXPRESSION REGULATION, or to merge protein functions for specific medical or industrial uses.
A species of gram-negative, aerobic bacteria isolated from soil and the stems, leafs, and roots of plants. Some biotypes are pathogenic and cause the formation of PLANT TUMORS in a wide variety of higher plants. The species is a major research tool in biotechnology.
A nucleoside diphosphate sugar which can be converted to the deoxy sugar GDPfucose, which provides fucose for lipopolysaccharides of bacterial cell walls. Also acts as mannose donor for glycolipid synthesis.
One of the FURANS with a carbonyl thereby forming a cyclic lactone. It is an endogenous compound made from gamma-aminobutyrate and is the precursor of gamma-hydroxybutyrate. It is also used as a pharmacological agent and solvent.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
A methylpentose whose L- isomer is found naturally in many plant glycosides and some gram-negative bacterial lipopolysaccharides.
Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.
The presence of bacteria, viruses, and fungi in the soil. This term is not restricted to pathogenic organisms.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The relationships of groups of organisms as reflected by their genetic makeup.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A water-soluble, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. It is also used in foods as a sequestrant, buffer, and a neutralizing agent. (Hawley's Condensed Chemical Dictionary, 12th ed, p1099; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1851)
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes.
The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.
Consists of a polypeptide chain and 4'-phosphopantetheine linked to a serine residue by a phosphodiester bond. Acyl groups are bound as thiol esters to the pantothenyl group. Acyl carrier protein is involved in every step of fatty acid synthesis by the cytoplasmic system.
Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.

Comparison of characteristics of the nodX genes from various Rhizobium leguminosarum strains. (1/309)

We have analyzed the nucleotide sequences of the nodX genes from two strains of Rhizobium leguminosarum bv. viciae able to nodulate Afghan peas (strains A1 and Himalaya) and from two strains of R. leguminosarum bv. trifolii (ANU843 and CSF). The nodX genes of strains A1 and ANU843 were shown to be functional for the induction of nodules on Afghan peas. To analyze the cause of phenotypic differences of strain A1 and strain TOM we have studied the composition of the lipochitin-oligosaccharides (LCOs) produced by strain A1 after induction by the flavonoid naringenin or various pea root exudates. The structural analysis of the LCOs by mass spectrometry revealed that strain A1 synthesizes a family of at least 23 different LCOs. The use of exudates instead of naringenin resulted only in quantitative differences in the ratios of various LCOs produced.  (+info)

A phosphotransferase that generates phosphatidylinositol 4-phosphate (PtdIns-4-P) from phosphatidylinositol and lipid A in Rhizobium leguminosarum. A membrane-bound enzyme linking lipid a and ptdins-4-p biosynthesis. (2/309)

Membranes of Rhizobium leguminosarum contain a 3-deoxy-D-manno-octulosonic acid (Kdo)-activated lipid A 4'-phosphatase required for generating the unusual phosphate-deficient lipid A found in this organism. The enzyme has been solubilized with Triton X-100 and purified 80-fold. As shown by co-purification and thermal inactivation studies, the 4'-phosphatase catalyzes not only the hydrolysis of (Kdo)2-[4'-32P]lipid IVA but also the transfer the 4'-phosphate of Kdo2-[4'-32P]lipid IVA to the inositol headgroup of phosphatidylinositol (PtdIns) to generate PtdIns-4-P. Like the 4'-phosphatase, the phosphotransferase activity is not present in Escherichia coli, Rhizobium meliloti, or the nodulation-defective mutant 24AR of R. leguminosarum. The specific activity for the phosphotransferase reaction is about 2 times higher than that of the 4'-phosphatase. The phosphotransferase assay conditions are similar to those used for PtdIns kinases, except that ATP and Mg2+ are omitted. The apparent Km for PtdIns is approximately 500 microM versus 20-100 microM for most PtdIns kinases, but the phosphotransferase specific activity in crude cell extracts is higher than that of most PtdIns kinases. The phosphotransferase is absolutely specific for the 4-position of PtdIns and is highly selective for PtdIns as the acceptor. The 4'-phosphatase/phosphotransferase can be eluted from heparin- or Cibacron blue-agarose with PtdIns. A phosphoenzyme intermediate may account for the dual function of this enzyme, since a single 32P-labeled protein species (Mr approximately 68,000) can be trapped and visualized by SDS gel electrophoresis of enzyme preparations incubated with Kdo2-[4'-32P]lipid IVA. Although PtdIns is not detected in cultures of R. leguminosarum/etli (CE3), PtdIns may be synthesized during nodulation or supplied by plant membranes, given that soybean PtdIns is an excellent phosphate acceptor. A bacterial enzyme for generating PtdIns-4-P and a direct link between lipid A and PtdIns-4-P biosynthesis have not been reported previously.  (+info)

A deacylase in Rhizobium leguminosarum membranes that cleaves the 3-O-linked beta-hydroxymyristoyl moiety of lipid A precursors. (3/309)

Lipid A from the nitrogen-fixing bacterium Rhizobium leguminosarum displays many structural differences compared with lipid A of Escherichia coli. R. leguminosarum lipid A lacks the usual 1- and 4'-phosphate groups but is derivatized with a galacturonic acid substituent at position 4'. R. leguminosarum lipid A often contains an aminogluconic acid moiety in place of the proximal glucosamine 1-phosphate unit. Striking differences also exist in the secondary acyl chains attached to E. coli versus R. leguminosarum lipid A, specifically the presence of 27-hydroxyoctacosanoate and the absence of laurate and myristate in R. leguminosarum. Recently, we have found that lipid A isolated by pH 4.5 hydrolysis of R. leguminosarum cells is more heterogeneous than previously reported (Que, N. L. S., Basu, S. S., White, K. A., and Raetz, C. R. H. (1998) FASEB J. 12, A1284 (abstr.)). Lipid A species lacking the 3-O-linked beta-hydroxymyristoyl residue on the proximal unit contribute to this heterogeneity. We now describe a membrane-bound deacylase from R. leguminosarum that removes a single ester-linked beta-hydroxymyristoyl moiety from some lipid A precursors, including lipid X, lipid IVA, and (3-deoxy-D-manno-octulosonic acid)2-lipid IVA. The enzyme does not cleave E. coli lipid A or lipid A precursors containing an acyloxyacyl moiety on the distal glucosamine unit. The enzyme is not present in extracts of E. coli or Rhizobium meliloti, but it is readily demonstrable in membranes of Pseudomonas aeruginosa, which also contains a significant proportion of 3-O-deacylated lipid A species. Optimal reaction rates are seen between pH 5.5 and 6.5. The enzyme requires a nonionic detergent and divalent metal ions for activity. It cleaves the monosaccharide lipid X at about 5% the rate of lipid IVA and (3-deoxy-D-manno-octulosonic acid)2-lipid IVA. 1H NMR spectroscopy of the deacylase reaction product, generated with lipid IVA as the substrate, confirms unequivocally that the enzyme cleaves only the ester-linked beta-hydroxymyristoyl residue at the 3-position of the glucosamine disaccharide.  (+info)

The fhu genes of Rhizobium leguminosarum, specifying siderophore uptake proteins: fhuDCB are adjacent to a pseudogene version of fhuA. (4/309)

A mutant of Rhizobium leguminosarum was isolated which fails to take up the siderophore vicibactin. The mutation is in a homologue of fhuB, which in Escherichia coli specifies an inner-membrane protein of the ferric hydroxamate uptake system. In Rhizobium, fhuB is in an operon fhuDCB, which specifies the cytoplasmic membrane and periplasmic proteins involved in siderophore uptake. fhuDCB mutants make vicibactin when grown in Fe concentrations that inhibit its production in the wild-type. Nodules on peas induced by fhuDCB mutants were apparently normal in N2 fixation. Transcription of an fhuDCB-lacZ fusion was Fe-regulated, being approximately 10-fold higher in Fe-depleted cells. Downstream of fhuB, in the opposite orientation, is a version of fhuA whose homologues in other bacteria specify hydroxamate outer-membrane receptors. This fhuA gene appears to be a pseudogene with stop codons and undetectable expression.  (+info)

Functional identification of ATP-driven Ca2+ pump in the peribacteroid membrane of broad bean root nodules. (5/309)

A Ca2+ indicator arsenazo III was used to demonstrate calcium uptake activity of symbiosomes and the peribacteroid membrane (PBM) vesicles isolated from broad bean root nodules and placed in the medium containing ATP and Mg2+ ions. This process was shown to be rapidly stopped by vanadate, completely reversed in the presence of the calcium ionophore A23187 but insensitive to agents abolishing electrical potential or pH difference across the PBM. The presence of an endogenous calcium pool within isolated symbiosomes and bacteroids was detected using a Ca2+ indicator chlortetracycline. These results prove a primary active transport of Ca2+ through the PBM of legume root nodules and provide the first functional identification of an ATP-driven Ca2+-pump, most likely Mg2+-dependent Ca2+-translocating ATPase, in this membrane.  (+info)

Susceptibility to hydrogen peroxide and catalase activity of root nodule bacteria. (6/309)

The root nodule bacteria (free-living cells) tested had higher susceptibility to hydrogen peroxide (H2O2) than the other genera of aerobic or facultative anaerobic bacteria tested. The catalase activities tended to have a positive correlation with H2O2 resistance among all bacteria tested. Addition of a catalase inhibitor such as 3-amino-1, 2, 4-triazole increased the susceptibility to H2O2. These results suggest that the lower catalase activity brings about the higher susceptibility of root nodule bacteria to H2O2. Root nodule bacteria seemed to have two or three catalase isozymes during growth and their catalase activities were higher in log phase than in stationary phase, contrary to other genera of bacteria tested.  (+info)

High-efficiency transformation of Rhizobium leguminosarum by electroporation. (7/309)

Electrotransformation of Rhizobium leguminosarum was successfully carried out with a 15.1-kb plasmid, pMP154 (Cmr), containing a nodABC-lacZ fusion by electroporation. The maximum transformation efficiency, 10(8) transformants/microg of DNA, was achieved at a field strength of 14 kV/cm with a pulse of 7.3 ms (186 Omega). The number of transformants was found to increase with increasing cell density, with no sign of saturation. In relation to DNA dosage, the maximum transformation efficiency (5.8 x 10(8) transformants/microg of DNA) was obtained with 0.5 microg of DNA/ml of cell suspension, and a further increase in the DNA concentration resulted in a decline in transformation efficiency.  (+info)

Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. (8/309)

The rhi genes of Rhizobium leguminosarum biovar viciae are expressed in the rhizosphere and play a role in the interaction with legumes, such as the pea. Previously (K. M. Gray, J. P. Pearson, J. A. Downie, B. E. A. Boboye, and E. P. Greenberg, J. Bacteriol. 178:372-376, 1996) the rhiABC operon had been shown to be regulated by RhiR and to be induced by added N-(3-hydroxy-7-cis-tetradecenoyl)-L-homoserine lactone (3OH, C14:1-HSL). Mutagenesis of a cosmid carrying the rhiABC and rhiR gene region identified a gene (rhiI) that affects the level of rhiA expression. Mutation of rhiI slightly increased the number of nodules formed on the pea. The rhiI gene is (like rhiA) regulated by rhiR in a cell density-dependent manner. RhiI is similar to LuxI and other proteins involved in the synthesis of N-acyl-homoserine lactones (AHLs). Chemical analyses of spent culture supernatants demonstrated that RhiI produces N-(hexanoyl)-L-homoserine lactone (C6-HSL) and N-(octanoyl)-L-homoserine lactone (C8-HSL). Both of these AHLs induced rhiA-lacZ and rhiI-lacZ expression on plasmids introduced into an Agrobacterium strain that produces no AHLs, showing that rhiI is positively regulated by autoinduction. However, in this system no induction of rhiA or rhiI with 3OH,C14:1-HSL was observed. Analysis of the spent culture supernatant of the wild-type R. leguminosarum bv. viciae revealed that at least seven different AHLs are made. Mutation of rhiI decreased the amounts of C6-HSL and C8-HSL but did not block their formation, and in this background the rhiI mutation did not significantly affect the expression levels of the rhiI gene or rhiABC genes or the accumulation of RhiA protein. These observations suggest that there are additional loci involved in AHL production in R. leguminosarum bv. viciae and that they affect rhiI and rhiABC expression. We postulate that the previously observed induction of rhiA by 3OH,C14:1-HSL may be due to an indirect effect caused by induction of other AHL production loci.  (+info)

'Rhizobium leguminosarum' is a species of bacteria that can form nitrogen-fixing nodules on the roots of certain leguminous plants, such as clover, peas, and beans. These bacteria have the ability to convert atmospheric nitrogen into ammonia, a form of nitrogen that plants can use for growth. This process, known as biological nitrogen fixation, benefits both the bacteria and the host plant, as the plant provides carbon sources to the bacteria, while the bacteria provide fixed nitrogen to the plant. The formation of this symbiotic relationship is facilitated by a molecular signaling process between the bacterium and the plant.

It's important to note that 'Rhizobium leguminosarum' is not a medical term per se, but rather a term used in microbiology, botany, and agriculture.

Rhizobium is not a medical term, but rather a term used in microbiology and agriculture. It refers to a genus of gram-negative bacteria that can fix nitrogen from the atmosphere into ammonia, which can then be used by plants as a nutrient. These bacteria live in the root nodules of leguminous plants (such as beans, peas, and clover) and form a symbiotic relationship with them.

The host plant provides Rhizobium with carbon sources and a protected environment within the root nodule, while the bacteria provide the plant with fixed nitrogen. This mutualistic interaction plays a crucial role in maintaining soil fertility and promoting plant growth.

While Rhizobium itself is not directly related to human health or medicine, understanding its symbiotic relationship with plants can have implications for agricultural practices, sustainable farming, and global food security.

Fabaceae is the scientific name for a family of flowering plants commonly known as the legume, pea, or bean family. This family includes a wide variety of plants that are important economically, agriculturally, and ecologically. Many members of Fabaceae have compound leaves and produce fruits that are legumes, which are long, thin pods that contain seeds. Some well-known examples of plants in this family include beans, peas, lentils, peanuts, clover, and alfalfa.

In addition to their importance as food crops, many Fabaceae species have the ability to fix nitrogen from the atmosphere into the soil through a symbiotic relationship with bacteria that live in nodules on their roots. This makes them valuable for improving soil fertility and is one reason why they are often used in crop rotation and as cover crops.

It's worth noting that Fabaceae is sometimes still referred to by its older scientific name, Leguminosae.

Nitrogen fixation is a process by which nitrogen gas (N2) in the air is converted into ammonia (NH3) or other chemically reactive forms, making it available to plants and other organisms for use as a nutrient. This process is essential for the nitrogen cycle and for the growth of many types of plants, as most plants cannot utilize nitrogen gas directly from the air.

In the medical field, nitrogen fixation is not a commonly used term. However, in the context of microbiology and infectious diseases, some bacteria are capable of fixing nitrogen and this ability can contribute to their pathogenicity. For example, certain species of bacteria that colonize the human body, such as those found in the gut or on the skin, may be able to fix nitrogen and use it for their own growth and survival. In some cases, these bacteria may also release fixed nitrogen into the environment, which can have implications for the ecology and health of the host and surrounding ecosystems.

In the context of medicine and biology, symbiosis is a type of close and long-term biological interaction between two different biological organisms. Generally, one organism, called the symbiont, lives inside or on another organism, called the host. This interaction can be mutually beneficial (mutualistic), harmful to the host organism (parasitic), or have no effect on either organism (commensal).

Examples of mutualistic symbiotic relationships in humans include the bacteria that live in our gut and help us digest food, as well as the algae that live inside corals and provide them with nutrients. Parasitic symbioses, on the other hand, involve organisms like viruses or parasitic worms that live inside a host and cause harm to it.

It's worth noting that while the term "symbiosis" is often used in popular culture to refer to any close relationship between two organisms, in scientific contexts it has a more specific meaning related to long-term biological interactions.

I'm sorry for any confusion, but "peas" is not a term typically used in medical definitions. Peas are a type of legume that is commonly consumed as a vegetable. They are rich in nutrients such as protein, fiber, vitamin C, and vitamin K. If you have any questions about the health benefits or potential risks of consuming peas, I would be happy to try to help with that.

Medicinal plants are defined as those plants that contain naturally occurring chemical compounds which can be used for therapeutic purposes, either directly or indirectly. These plants have been used for centuries in various traditional systems of medicine, such as Ayurveda, Chinese medicine, and Native American medicine, to prevent or treat various health conditions.

Medicinal plants contain a wide variety of bioactive compounds, including alkaloids, flavonoids, tannins, terpenes, and saponins, among others. These compounds have been found to possess various pharmacological properties, such as anti-inflammatory, analgesic, antimicrobial, antioxidant, and anticancer activities.

Medicinal plants can be used in various forms, including whole plant material, extracts, essential oils, and isolated compounds. They can be administered through different routes, such as oral, topical, or respiratory, depending on the desired therapeutic effect.

It is important to note that while medicinal plants have been used safely and effectively for centuries, they should be used with caution and under the guidance of a healthcare professional. Some medicinal plants can interact with prescription medications or have adverse effects if used inappropriately.

"Vicia sativa" is the scientific name for a type of plant commonly known as "Spring Vetch" or "Garden Vetch." It belongs to the legume family (Fabaceae) and is native to Europe, western Asia, and northwest Africa. The plant can grow up to 1 meter tall and has pinnate leaves with 8-14 oval leaflets. Its pea-like flowers are typically pink or purple.

While "Vicia sativa" has been used in traditional medicine for various purposes, such as treating skin conditions and respiratory issues, it is not commonly recognized as a medical term or treatment in modern Western medicine. As with any plant or herbal remedy, it's essential to consult a healthcare professional before using it for medicinal purposes, especially if you have pre-existing health conditions or are taking medications.

Rhizobium etli is a gram-negative, aerobic, motile, non-spore forming bacteria that belongs to the Rhizobiaceae family. It has the ability to fix atmospheric nitrogen in a symbiotic relationship with certain leguminous plants, particularly common bean (Phaseolus vulgaris). This bacterium infects the roots of these plants and forms nodules where it converts nitrogen gas into ammonia, a form that can be used by the plant for growth. The nitrogen-fixing ability of Rhizobium etli makes it an important bacteria in agriculture and environmental science.

"Vicia" is a genus of plants, commonly known as vetch or faba beans. It's not a medical term, but rather a term used in botany to describe a group of leguminous plants that are part of the Fabaceae family. Some species of Vicia have been used in traditional medicine for various purposes, such as treating skin conditions and respiratory issues. However, I am an assistant and do not have real-time access to databases or medical resources, so please consult a reliable medical source for more detailed and accurate information.

"Trifolium" is not a medical term. It is actually the genus name for a group of plants commonly known as clover. These plants belong to the family Fabaceae and are found in many temperate regions around the world. Some species, like red clover (Trifolium pratense), are used in herbal medicine for various purposes, such as treating respiratory conditions, skin inflammations, and menopausal symptoms. However, it's important to consult with a healthcare professional before using any herbal remedies.

A bacterial gene is a segment of DNA (or RNA in some viruses) that contains the genetic information necessary for the synthesis of a functional bacterial protein or RNA molecule. These genes are responsible for encoding various characteristics and functions of bacteria such as metabolism, reproduction, and resistance to antibiotics. They can be transmitted between bacteria through horizontal gene transfer mechanisms like conjugation, transformation, and transduction. Bacterial genes are often organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule.

It's important to note that the term "bacterial gene" is used to describe genetic elements found in bacteria, but not all genetic elements in bacteria are considered genes. For example, some DNA sequences may not encode functional products and are therefore not considered genes. Additionally, some bacterial genes may be plasmid-borne or phage-borne, rather than being located on the bacterial chromosome.

Bacterial proteins are a type of protein that are produced by bacteria as part of their structural or functional components. These proteins can be involved in various cellular processes, such as metabolism, DNA replication, transcription, and translation. They can also play a role in bacterial pathogenesis, helping the bacteria to evade the host's immune system, acquire nutrients, and multiply within the host.

Bacterial proteins can be classified into different categories based on their function, such as:

1. Enzymes: Proteins that catalyze chemical reactions in the bacterial cell.
2. Structural proteins: Proteins that provide structural support and maintain the shape of the bacterial cell.
3. Signaling proteins: Proteins that help bacteria to communicate with each other and coordinate their behavior.
4. Transport proteins: Proteins that facilitate the movement of molecules across the bacterial cell membrane.
5. Toxins: Proteins that are produced by pathogenic bacteria to damage host cells and promote infection.
6. Surface proteins: Proteins that are located on the surface of the bacterial cell and interact with the environment or host cells.

Understanding the structure and function of bacterial proteins is important for developing new antibiotics, vaccines, and other therapeutic strategies to combat bacterial infections.

"Sinorhizobium meliloti" is a species of nitrogen-fixing bacteria that forms nodules on the roots of leguminous plants, such as alfalfa and clover. These bacteria have the ability to convert atmospheric nitrogen into ammonia, which can then be used by the plant for growth and development. This symbiotic relationship benefits both the bacterium and the plant, as the plant provides carbon sources to the bacterium, while the bacterium provides the plant with a source of nitrogen.

"Sinorhizobium meliloti" is gram-negative, motile, and rod-shaped, and it can be found in soil and root nodules of leguminous plants. It has a complex genome consisting of a circular chromosome and several plasmids, which carry genes involved in nitrogen fixation and other important functions. The bacteria are able to sense and respond to various environmental signals, allowing them to adapt to changing conditions and establish successful symbioses with their host plants.

In addition to its agricultural importance, "Sinorhizobium meliloti" is also a model organism for studying the molecular mechanisms of symbiotic nitrogen fixation and bacterial genetics.

Root nodules in plants refer to the specialized structures formed through the symbiotic relationship between certain leguminous plants and nitrogen-fixing bacteria, most commonly belonging to the genus Rhizobia. These nodules typically develop on the roots of the host plant, providing an ideal environment for the bacteria to convert atmospheric nitrogen into ammonia, a form that can be directly utilized by the plant for growth and development.

The formation of root nodules begins with the infection of the plant's root hair cells by Rhizobia bacteria. This interaction triggers a series of molecular signals leading to the differentiation of root cortical cells into nodule primordia, which eventually develop into mature nodules. The nitrogen-fixing bacteria reside within these nodules in membrane-bound compartments called symbiosomes, where they reduce atmospheric nitrogen into ammonia through an enzyme called nitrogenase.

The plant, in turn, provides the bacteria with carbon sources and other essential nutrients required for their growth and survival within the nodules. The fixed nitrogen is then transported from the root nodules to other parts of the plant, enhancing its overall nitrogen nutrition and promoting sustainable growth without the need for external nitrogen fertilizers.

In summary, root nodules in plants are essential structures formed through symbiotic associations with nitrogen-fixing bacteria, allowing leguminous plants to convert atmospheric nitrogen into a usable form while also benefiting the environment by reducing the reliance on chemical nitrogen fertilizers.

Rhizobiaceae is a family of bacteria that have the ability to fix nitrogen. These bacteria are gram-negative, motile, and rod-shaped. They are commonly found in the root nodules of leguminous plants, where they form a symbiotic relationship with the plant. The bacteria provide the plant with fixed nitrogen, while the plant provides the bacteria with carbon and a protected environment.

The most well-known genus of Rhizobiaceae is Rhizobium, which includes several species that are important for agriculture because of their ability to fix nitrogen in the root nodules of legumes. Other genera in this family include Bradyrhizobium, Mesorhizobium, and Sinorhizobium.

It's worth noting that while Rhizobiaceae bacteria are generally beneficial, they can sometimes cause disease in plants under certain conditions. For example, some strains of Rhizobium can cause leaf spots on certain crops.

"Medicago" is a genus of flowering plants in the family Fabaceae, also known as the legume or pea family. It includes several species that are important forage crops and green manure, such as Medicago sativa (alfalfa or lucerne) and Medicago lupulina (black medic). These plants have the ability to fix nitrogen from the atmosphere through their root nodules, which benefits the soil and other nearby plants. They are often used in rotational grazing systems and for erosion control.

Cosmids are a type of cloning vector, which are self-replicating DNA molecules that can be used to introduce foreign DNA fragments into a host organism. Cosmids are plasmids that contain the cos site from bacteriophage λ, allowing them to be packaged into bacteriophage heads during an in vitro packaging reaction. This enables the transfer of large DNA fragments (up to 45 kb) into a host cell through transduction. Cosmids are widely used in molecular biology for the construction and analysis of genomic libraries, physical mapping, and DNA sequencing.

I'm sorry for any confusion, but "Lens Plant" is not a term commonly used in medicine. It seems that you might be referring to a type of plant that is known by that name in some contexts. The Len's Plant, also known as *Lenophyllum consanguineum*, is a species of flowering plant in the family Crassulaceae, which is native to Texas and Mexico. It is a small, low-growing succulent with fleshy leaves that forms mats or cushions.

If you were asking about a medical condition related to the eye's lens, there are various conditions that can affect the lens of the eye, such as cataracts (clouding of the lens), presbyopia (age-related loss of near vision due to hardening of the lens), or astigmatism (irregular curvature of the lens). If you have any concerns about your eyes or vision, I would recommend consulting with an eye care professional.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Rhizobium tropici is a gram-negative, aerobic, motile, non-spore forming bacteria that belongs to the Rhizobiaceae family. It has the ability to fix atmospheric nitrogen in a symbiotic relationship with certain leguminous plants, particularly beans and other tropical legumes. The bacterium infects the roots of these plants and forms nodules where it converts nitrogen gas into ammonia, which is then used by the plant for growth. Rhizobium tropici is known for its ability to survive in a wide range of temperatures and soil conditions, making it an important contributor to sustainable agriculture in tropical regions.

Plant root nodulation is a type of symbiotic relationship between certain plants (mostly legumes) and nitrogen-fixing bacteria, such as Rhizobia species. This process involves the formation of specialized structures called nodules on the roots of the host plant. The bacteria inhabit these nodules and convert atmospheric nitrogen into ammonia, a form of nitrogen that plants can use for growth. In return, the plant provides the bacteria with carbon sources and a protected environment for growth. This mutualistic relationship helps improve soil fertility and promotes sustainable agriculture.

Hydrogenase is not a medical term per se, but a biochemical term. It is used to describe an enzyme that catalyzes the reversible conversion between molecular hydrogen (H2) and protons (H+) or vice versa. These enzymes are found in certain bacteria, algae, and archaea, and they play a crucial role in their energy metabolism, particularly in processes like hydrogen production and consumption.

While not directly related to medical terminology, understanding the function of hydrogenase can be important in fields such as microbiology, molecular biology, and environmental science, which can have implications for human health in areas like infectious diseases, biofuels, and waste management.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Gene expression regulation in bacteria refers to the complex cellular processes that control the production of proteins from specific genes. This regulation allows bacteria to adapt to changing environmental conditions and ensure the appropriate amount of protein is produced at the right time.

Bacteria have a variety of mechanisms for regulating gene expression, including:

1. Operon structure: Many bacterial genes are organized into operons, which are clusters of genes that are transcribed together as a single mRNA molecule. The expression of these genes can be coordinately regulated by controlling the transcription of the entire operon.
2. Promoter regulation: Transcription is initiated at promoter regions upstream of the gene or operon. Bacteria have regulatory proteins called sigma factors that bind to the promoter and recruit RNA polymerase, the enzyme responsible for transcribing DNA into RNA. The binding of sigma factors can be influenced by environmental signals, allowing for regulation of transcription.
3. Attenuation: Some operons have regulatory regions called attenuators that control transcription termination. These regions contain hairpin structures that can form in the mRNA and cause transcription to stop prematurely. The formation of these hairpins is influenced by the concentration of specific metabolites, allowing for regulation of gene expression based on the availability of those metabolites.
4. Riboswitches: Some bacterial mRNAs contain regulatory elements called riboswitches that bind small molecules directly. When a small molecule binds to the riboswitch, it changes conformation and affects transcription or translation of the associated gene.
5. CRISPR-Cas systems: Bacteria use CRISPR-Cas systems for adaptive immunity against viruses and plasmids. These systems incorporate short sequences from foreign DNA into their own genome, which can then be used to recognize and cleave similar sequences in invading genetic elements.

Overall, gene expression regulation in bacteria is a complex process that allows them to respond quickly and efficiently to changing environmental conditions. Understanding these regulatory mechanisms can provide insights into bacterial physiology and help inform strategies for controlling bacterial growth and behavior.

Lipid A is the biologically active component of lipopolysaccharides (LPS), which are found in the outer membrane of Gram-negative bacteria. It is responsible for the endotoxic activity of LPS and plays a crucial role in the pathogenesis of gram-negative bacterial infections. Lipid A is a glycophosphatidylinositol (GPI) anchor, consisting of a glucosamine disaccharide backbone with multiple fatty acid chains and phosphate groups attached to it. It can induce the release of proinflammatory cytokines, fever, and other symptoms associated with sepsis when introduced into the bloodstream.

A plant root is not a medical term per se, but it is a term from botany, which is the study of plants. However, I can certainly provide a definition for you.

Plant roots are the underground organs of a plant that typically grow downward into the soil. They serve several important functions, including:

1. Anchorage: Roots help to stabilize the plant and keep it upright in the ground.
2. Absorption: Roots absorb water and nutrients from the soil, which are essential for the plant's growth and development.
3. Conduction: Roots conduct water and nutrients up to the above-ground parts of the plant, such as the stem and leaves.
4. Vegetative reproduction: Some plants can reproduce vegetatively through their roots, producing new plants from root fragments or specialized structures called rhizomes or tubers.

Roots are composed of several different tissues, including the epidermis, cortex, endodermis, and vascular tissue. The epidermis is the outermost layer of the root, which secretes a waxy substance called suberin that helps to prevent water loss. The cortex is the middle layer of the root, which contains cells that store carbohydrates and other nutrients. The endodermis is a thin layer of cells that surrounds the vascular tissue and regulates the movement of water and solutes into and out of the root. The vascular tissue consists of xylem and phloem, which transport water and nutrients throughout the plant.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Bacterial polysaccharides are complex carbohydrates that consist of long chains of sugar molecules (monosaccharides) linked together by glycosidic bonds. They are produced and used by bacteria for various purposes such as:

1. Structural components: Bacterial polysaccharides, such as peptidoglycan and lipopolysaccharide (LPS), play a crucial role in maintaining the structural integrity of bacterial cells. Peptidoglycan is a major component of the bacterial cell wall, while LPS forms the outer layer of the outer membrane in gram-negative bacteria.
2. Nutrient storage: Some bacteria synthesize and store polysaccharides as an energy reserve, similar to how plants store starch. These polysaccharides can be broken down and utilized by the bacterium when needed.
3. Virulence factors: Bacterial polysaccharides can also function as virulence factors, contributing to the pathogenesis of bacterial infections. For example, certain bacteria produce capsular polysaccharides (CPS) that surround and protect the bacterial cells from host immune defenses, allowing them to evade phagocytosis and persist within the host.
4. Adhesins: Some polysaccharides act as adhesins, facilitating the attachment of bacteria to surfaces or host cells. This is important for biofilm formation, which helps bacteria resist environmental stresses and antibiotic treatments.
5. Antigenic properties: Bacterial polysaccharides can be highly antigenic, eliciting an immune response in the host. The antigenicity of these molecules can vary between different bacterial species or even strains within a species, making them useful as targets for vaccines and diagnostic tests.

In summary, bacterial polysaccharides are complex carbohydrates that serve various functions in bacteria, including structural support, nutrient storage, virulence factor production, adhesion, and antigenicity.

Flavanones are a type of flavonoid, which is a class of plant pigments widely found in fruits, vegetables, and other plants. Flavanones are known for their antioxidant properties and potential health benefits. They are typically found in citrus fruits such as oranges, lemons, and grapefruits. Some common flavanones include hesperetin, naringenin, and eriodictyol. These compounds have been studied for their potential effects on cardiovascular health, cancer prevention, and neuroprotection, although more research is needed to fully understand their mechanisms of action and therapeutic potential.

"Sinorhizobium" is a genus of bacteria that can form nitrogen-fixing nodules on the roots of certain leguminous plants, such as beans and alfalfa. These bacteria are able to convert atmospheric nitrogen into ammonia, which the plant can then use for growth. This symbiotic relationship benefits both the plant and the bacteria - the plant receives a source of nitrogen, while the bacteria receive carbon and other nutrients from the plant.

The genus "Sinorhizobium" is part of the family Rhizobiaceae and includes several species that are important for agriculture and the global nitrogen cycle. Some examples of "Sinorhizobium" species include S. meliloti, which forms nodules on alfalfa and other Medicago species, and S. fredii, which forms nodules on soybeans and other Glycine species.

It's worth noting that the taxonomy of nitrogen-fixing bacteria has undergone significant revisions in recent years, and some "Sinorhizobium" species have been reclassified as members of other genera. However, the genus "Sinorhizobium" remains a valid and important group of nitrogen-fixing bacteria.

'Medicago sativa' is the scientific name for a plant species more commonly known as alfalfa. In a medical context, alfalfa is often considered a herbal supplement and its medicinal properties include being a source of vitamins, minerals, and antioxidants. It has been used in traditional medicine to treat a variety of conditions such as kidney problems, asthma, arthritis, and high cholesterol levels. However, it's important to note that the effectiveness of alfalfa for these uses is not conclusively established by scientific research and its use may have potential risks or interactions with certain medications. Always consult a healthcare provider before starting any new supplement regimen.

Dicarboxylic acids are organic compounds containing two carboxyl groups (-COOH) in their molecular structure. The general formula for dicarboxylic acids is HOOC-R-COOH, where R represents a hydrocarbon chain or a functional group.

The presence of two carboxyl groups makes dicarboxylic acids stronger acids than monocarboxylic acids (compounds containing only one -COOH group). This is because the second carboxyl group contributes to the acidity of the molecule, allowing it to donate two protons in solution.

Examples of dicarboxylic acids include oxalic acid (HOOC-COOH), malonic acid (CH2(COOH)2), succinic acid (HOOC-CH2-CH2-COOH), glutaric acid (HOOC-(CH2)3-COOH), and adipic acid (HOOC-(CH2)4-COOH). These acids have various industrial applications, such as in the production of polymers, dyes, and pharmaceuticals.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

A genetic complementation test is a laboratory procedure used in molecular genetics to determine whether two mutated genes can complement each other's function, indicating that they are located at different loci and represent separate alleles. This test involves introducing a normal or wild-type copy of one gene into a cell containing a mutant version of the same gene, and then observing whether the presence of the normal gene restores the normal function of the mutated gene. If the introduction of the normal gene results in the restoration of the normal phenotype, it suggests that the two genes are located at different loci and can complement each other's function. However, if the introduction of the normal gene does not restore the normal phenotype, it suggests that the two genes are located at the same locus and represent different alleles of the same gene. This test is commonly used to map genes and identify genetic interactions in a variety of organisms, including bacteria, yeast, and animals.

Dicarboxylic acid transporters are a type of membrane transport protein that are responsible for the transportation of dicarboxylic acids across biological membranes. Dicarboxylic acids are organic compounds that contain two carboxyl groups, and they play important roles in various metabolic processes within the body.

The sodium-dependent dicarboxylic acid transporters (NaDCs) are a subfamily of these transporters that are widely expressed in many tissues, including the kidney, intestine, and brain. NaDCs mediate the uptake of dicarboxylates, such as succinate and glutarate, into cells in an energy-dependent manner, using the gradient of sodium ions across the membrane to drive the transport process.

The other subfamily of dicarboxylic acid transporters are the proton-coupled dicarboxylate transporters (PCDTs), which use a proton gradient to transport dicarboxylates. These transporters play important roles in the absorption and metabolism of dietary fibers, as well as in the regulation of intracellular pH.

Defects in dicarboxylic acid transporters have been implicated in several human diseases, including renal tubular acidosis, a condition characterized by impaired ability to excrete hydrogen ions and reabsorb bicarbonate ions in the kidney.

'Bradyrhizobium' is a genus of bacteria that can form nitrogen-fixing nodules on the roots of certain leguminous plants, such as soybeans and alfalfa. These bacteria are able to convert atmospheric nitrogen into ammonia, which the plant can then use for growth. This process, known as nitrogen fixation, is important for maintaining soil fertility and is beneficial for agricultural production.

The name 'Bradyrhizobium' comes from the Greek words "brady," meaning slow, and "rhiza," meaning root, reflecting the slower growth rate of these bacteria compared to other rhizobia. The bacteria are typically rod-shaped and motile, with a single polar flagellum for movement. They are gram-negative and have a complex cell envelope that includes an outer membrane, peptidoglycan layer, and cytoplasmic membrane.

Bradyrhizobium species are able to form symbiotic relationships with leguminous plants by colonizing the root nodules of the plant. The bacteria enter the plant through root hairs or wounds on the root surface, and then migrate to the inner cortex of the root where they induce the formation of nodules. Once inside the nodule, the bacteria differentiate into bacteroids that are able to fix nitrogen gas from the atmosphere into ammonia, which is then used by the plant for growth. In return, the plant provides carbon and other nutrients to the bacteria.

Bradyrhizobium species are important for sustainable agriculture because they can reduce the need for chemical fertilizers and improve soil health. They have also been studied for their potential use in bioremediation and as biofertilizers for non-leguminous crops.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

"Phaseolus" is a term that refers to a genus of plants in the legume family Fabaceae, also known as the pea family. The most common and well-known species in this genus is "Phaseolus vulgaris," which is commonly called the common bean. This includes many familiar varieties such as kidney beans, black beans, navy beans, pinto beans, and green beans.

These plants are native to the Americas and have been cultivated for thousands of years for their edible seeds (beans) and pods (green beans). They are an important source of protein, fiber, vitamins, and minerals in many diets around the world.

It's worth noting that "Phaseolus" is a taxonomic term used in the scientific classification of plants, and it does not have a specific medical definition. However, the beans from these plants do have various health benefits and potential medicinal properties, such as being associated with reduced risk of heart disease, improved gut health, and better blood sugar control.

Sugar acids are a type of organic acid that are derived from sugars through the process of hydrolysis or oxidation. They have complex structures and can be found in various natural sources such as fruits, vegetables, and honey. In the medical field, sugar acids may be used in the production of pharmaceuticals and other chemical products.

Some common examples of sugar acids include:

* Gluconic acid, which is derived from glucose and has applications in the food industry as a preservative and stabilizer.
* Lactic acid, which is produced by fermentation of carbohydrates and is used in the production of various pharmaceuticals, foods, and cosmetics.
* Citric acid, which is found in citrus fruits and is widely used as a flavoring agent, preservative, and chelating agent in food, beverages, and personal care products.

It's worth noting that while sugar acids have important applications in various industries, they can also contribute to tooth decay and other health problems when consumed in excess. Therefore, it's important to consume them in moderation as part of a balanced diet.

Insertional mutagenesis is a process of introducing new genetic material into an organism's genome at a specific location, which can result in a change or disruption of the function of the gene at that site. This technique is often used in molecular biology research to study gene function and regulation. The introduction of the foreign DNA is typically accomplished through the use of mobile genetic elements, such as transposons or viruses, which are capable of inserting themselves into the genome.

The insertion of the new genetic material can lead to a loss or gain of function in the affected gene, resulting in a mutation. This type of mutagenesis is called "insertional" because the mutation is caused by the insertion of foreign DNA into the genome. The effects of insertional mutagenesis can range from subtle changes in gene expression to the complete inactivation of a gene.

This technique has been widely used in genetic research, including the study of developmental biology, cancer, and genetic diseases. It is also used in the development of genetically modified organisms (GMOs) for agricultural and industrial applications.

Nitrogenase is not a medical term, but a biological term used in the field of microbiology and biochemistry. It refers to an enzyme complex found in certain bacteria and archaea that have the ability to fix nitrogen gas (N2) from the atmosphere into ammonia (NH3), a form of nitrogen that can be utilized by plants and other organisms for growth and development. This process is known as biological nitrogen fixation, which is essential for maintaining the global nitrogen cycle and supporting life on Earth.

The medical field may refer to nitrogenase in relation to human health in the context of understanding the role of nitrogen-fixing bacteria in soil fertility and their impact on agriculture and food production. However, there is no direct medical definition or application for nitrogenase.

A "carbohydrate sequence" refers to the specific arrangement or order of monosaccharides (simple sugars) that make up a carbohydrate molecule, such as a polysaccharide or an oligosaccharide. Carbohydrates are often composed of repeating units of monosaccharides, and the sequence in which these units are arranged can have important implications for the function and properties of the carbohydrate.

For example, in glycoproteins (proteins that contain carbohydrate chains), the specific carbohydrate sequence can affect how the protein is processed and targeted within the cell, as well as its stability and activity. Similarly, in complex carbohydrates like starch or cellulose, the sequence of glucose units can determine whether the molecule is branched or unbranched, which can have implications for its digestibility and other properties.

Therefore, understanding the carbohydrate sequence is an important aspect of studying carbohydrate structure and function in biology and medicine.

An operon is a genetic unit in prokaryotic organisms (like bacteria) consisting of a cluster of genes that are transcribed together as a single mRNA molecule, which then undergoes translation to produce multiple proteins. This genetic organization allows for the coordinated regulation of genes that are involved in the same metabolic pathway or functional process. The unit typically includes promoter and operator regions that control the transcription of the operon, as well as structural genes encoding the proteins. Operons were first discovered in bacteria, but similar genetic organizations have been found in some eukaryotic organisms, such as yeast.

Fructokinase is an enzyme that phosphorylates fructose into fructose-1-phosphate in the metabolism of dietary sugars. It plays a crucial role in fructose metabolism, particularly in the liver, kidneys, and intestines. In humans, there are several isoforms of fructokinase, including ketohexokinase (KHK-A and KHK-C) and liver fructokinase (KHK-B). Disorders in fructose metabolism, such as hereditary fructose intolerance, can result from mutations in the gene encoding for fructokinase.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

I apologize for any confusion, but "plants" is not a term that has a medical definition. The term "plants" refers to a large and diverse group of organisms that obtain their energy through photosynthesis, which is the process of converting sunlight into chemical energy. Plants are typically characterized by having cells with cell walls containing cellulose, chloroplasts containing the pigment chlorophyll, and the ability to synthesize their own food through photosynthesis.

In a medical or biological context, you might be thinking of "plant-based" or "phytomedicine," which refer to the use of plants or plant extracts as a form of medicine or treatment. Phytomedicines have been used for thousands of years in many traditional systems of medicine, and some plant-derived compounds have been found to have therapeutic benefits in modern medicine as well. However, "plants" itself does not have a medical definition.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Medical definitions typically focus on the relevance of a term to medical practice, and I'm not sure if there is a specific medical definition for "plant exudates." However, in a broader context, plant exudates refer to the various substances that are released or exuded by plants, often as a result of damage or stress. These can include a wide variety of compounds, such as sap, resins, latex, gums, essential oils, and tannins. Some of these compounds can have medicinal properties and are used in various forms of traditional and modern medicine. For example, the resin from certain pine trees (rosin) has been used to treat respiratory ailments, while willow bark, which contains salicin (a precursor to aspirin), has been used for pain relief for centuries.

Acetylene is defined as a colorless, highly flammable gas with a distinctive odor, having the chemical formula C2H2. It is the simplest and lightest hydrocarbon in which two carbon atoms are bonded together by a triple bond. Acetylene is used as a fuel in welding and cutting torches, and it can also be converted into other chemicals, such as vinyl acetate and acetic acid. In medical terms, acetylene is not a substance that is commonly used or discussed.

Hydroxy acids are a class of chemical compounds that contain both a carboxylic acid group and a hydroxyl group. They are commonly used in dermatology and cosmetic products for their exfoliating, moisturizing, and anti-aging properties. The two main types of hydroxy acids used in skincare are alpha-hydroxy acids (AHAs) and beta-hydroxy acids (BHAs).

Alpha-hydroxy acids include compounds such as glycolic acid, lactic acid, malic acid, tartaric acid, and citric acid. They work by breaking down the "glue" that holds dead skin cells together, promoting cell turnover and helping to improve the texture and tone of the skin. AHAs are also known for their ability to improve the appearance of fine lines, wrinkles, and age spots.

Beta-hydroxy acids, on the other hand, are primarily represented by salicylic acid. BHAs are oil-soluble, which allows them to penetrate deeper into the pores and exfoliate dead skin cells and excess sebum that can lead to clogged pores and acne breakouts.

It is important to note that hydroxy acids can cause skin irritation and sensitivity to sunlight, so it is recommended to use sunscreen and start with lower concentrations when first incorporating them into a skincare routine.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Artificial gene fusion refers to the creation of a new gene by joining together parts or whole sequences from two or more different genes. This is achieved through genetic engineering techniques, where the DNA segments are cut and pasted using enzymes called restriction endonucleases and ligases. The resulting artificial gene may encode for a novel protein with unique functions that neither of the parental genes possess. This approach has been widely used in biomedical research to study gene function, create new diagnostic tools, and develop gene therapies.

'Agrobacterium tumefaciens' is a gram-negative, soil-dwelling bacterium that is known for its ability to cause plant tumors or crown galls. It does this through the transfer and integration of a segment of DNA called the Ti (Tumor-inducing) plasmid into the plant's genome. This transferred DNA includes genes that encode enzymes for the production of opines, which serve as a nutrient source for the bacterium, and genes that cause unregulated plant cell growth leading to tumor formation.

This unique ability of 'Agrobacterium tumefaciens' to transfer and integrate foreign DNA into plants has been exploited in genetic engineering to create transgenic plants with desired traits. The Ti plasmid is often used as a vector to introduce new genes into the plant genome, making it an essential tool in plant biotechnology.

Guanosine diphosphate mannose (GDP-mannose) is a nucleotide sugar that plays a crucial role in the biosynthesis of various glycans, including those found on proteins and lipids. It is formed from mannose-1-phosphate through the action of the enzyme mannose-1-phosphate guanylyltransferase, using guanosine triphosphate (GTP) as a source of energy.

GDP-mannose serves as a donor substrate for several glycosyltransferases involved in the biosynthesis of complex carbohydrates, such as those found in glycoproteins and glycolipids. It is also used in the synthesis of certain polysaccharides, like bacterial cell wall components.

Defects in the metabolism or utilization of GDP-mannose can lead to various genetic disorders, such as congenital disorders of glycosylation (CDG), which can affect multiple organ systems and present with a wide range of clinical manifestations.

4-Butyrolactone, also known as gamma-butyrolactone (GBL) or 1,4-butanolide, is a chemical compound with the formula C4H6O2. It is a colorless oily liquid that is used in various industrial and commercial applications, including as an intermediate in the production of other chemicals, as a solvent, and as a flavoring agent.

In the medical field, 4-butyrolactone has been studied for its potential use as a sleep aid and muscle relaxant. However, it is not currently approved by regulatory agencies such as the US Food and Drug Administration (FDA) for these uses. It is also known to have abuse potential and can cause intoxication, sedation, and other central nervous system effects when ingested or inhaled.

It's important to note that 4-butyrolactone is not a medication and should only be used under the supervision of a qualified healthcare professional for approved medical purposes.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Rhamnose is a naturally occurring sugar or monosaccharide, that is commonly found in various plants and some fruits. It is a type of deoxy sugar, which means it lacks one hydroxyl group (-OH) compared to a regular hexose sugar. Specifically, rhamnose has a hydrogen atom instead of a hydroxyl group at the 6-position of its structure.

Rhamnose is an essential component of various complex carbohydrates and glycoconjugates found in plant cell walls, such as pectins and glycoproteins. It also plays a role in bacterial cell wall biosynthesis and is used in the production of some antibiotics.

In medical contexts, rhamnose may be relevant to research on bacterial infections, plant-derived medicines, or the metabolism of certain sugars. However, it is not a commonly used term in clinical medicine.

DNA transposable elements, also known as transposons or jumping genes, are mobile genetic elements that can change their position within a genome. They are composed of DNA sequences that include genes encoding the enzymes required for their own movement (transposase) and regulatory elements. When activated, the transposase recognizes specific sequences at the ends of the element and catalyzes the excision and reintegration of the transposable element into a new location in the genome. This process can lead to genetic variation, as the insertion of a transposable element can disrupt the function of nearby genes or create new combinations of gene regulatory elements. Transposable elements are widespread in both prokaryotic and eukaryotic genomes and are thought to play a significant role in genome evolution.

I apologize, but there seems to be a misunderstanding. "Soil microbiology" is not a medical term; rather, it is a branch of microbiology that deals with the study of microorganisms in soil. It involves understanding the diversity, ecology, and biochemistry of bacteria, fungi, algae, protozoa, and other microscopic life forms found in soil. This field has applications in agriculture, environmental science, and waste management but is not directly related to medical definitions or human health.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Succinic acid, also known as butanedioic acid, is an organic compound with the chemical formula HOOC(CH2)2COOH. It is a white crystalline powder that is soluble in water and has a slightly acerbic taste. In medicine, succinic acid is not used as a treatment for any specific condition. However, it is a naturally occurring substance found in the body and plays a role in the citric acid cycle, which is a key process in energy production within cells. It can also be found in some foods and is used in the manufacturing of various products such as pharmaceuticals, resins, and perfumes.

Acyltransferases are a group of enzymes that catalyze the transfer of an acyl group (a functional group consisting of a carbon atom double-bonded to an oxygen atom and single-bonded to a hydrogen atom) from one molecule to another. This transfer involves the formation of an ester bond between the acyl group donor and the acyl group acceptor.

Acyltransferases play important roles in various biological processes, including the biosynthesis of lipids, fatty acids, and other metabolites. They are also involved in the detoxification of xenobiotics (foreign substances) by catalyzing the addition of an acyl group to these compounds, making them more water-soluble and easier to excrete from the body.

Examples of acyltransferases include serine palmitoyltransferase, which is involved in the biosynthesis of sphingolipids, and cholesteryl ester transfer protein (CETP), which facilitates the transfer of cholesteryl esters between lipoproteins.

Acyltransferases are classified based on the type of acyl group they transfer and the nature of the acyl group donor and acceptor molecules. They can be further categorized into subclasses based on their sequence similarities, three-dimensional structures, and evolutionary relationships.

Genetic conjugation is a type of genetic transfer that occurs between bacterial cells. It involves the process of one bacterium (the donor) transferring a piece of its DNA to another bacterium (the recipient) through direct contact or via a bridge-like connection called a pilus. This transferred DNA may contain genes that provide the recipient cell with new traits, such as antibiotic resistance or virulence factors, which can make the bacteria more harmful or difficult to treat. Genetic conjugation is an important mechanism for the spread of antibiotic resistance and other traits among bacterial populations.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

Acyl Carrier Protein (ACP) is a small, acidic protein that plays a crucial role in the fatty acid synthesis process. It functions as a cofactor by carrying acyl groups during the elongation cycles of fatty acid chains. The ACP molecule has a characteristic prosthetic group known as 4'-phosphopantetheine, to which the acyl groups get attached covalently. This protein is highly conserved across different species and is essential for the production of fatty acids in both prokaryotic and eukaryotic organisms.

Restriction mapping is a technique used in molecular biology to identify the location and arrangement of specific restriction endonuclease recognition sites within a DNA molecule. Restriction endonucleases are enzymes that cut double-stranded DNA at specific sequences, producing fragments of various lengths. By digesting the DNA with different combinations of these enzymes and analyzing the resulting fragment sizes through techniques such as agarose gel electrophoresis, researchers can generate a restriction map - a visual representation of the locations and distances between recognition sites on the DNA molecule. This information is crucial for various applications, including cloning, genome analysis, and genetic engineering.

... is a Gram-negative, motile, rod-shaped, aerobic bacterium. Rhizobium leguminosarum biovar trifolii, and ... leguminosarum, with certain studies seemingly treating R. trifolii as its own species. Rhizobium leguminosarum's acyl carrier ... Rhizobium leguminosarum is a bacterium which lives in a mutualistic symbiotic relationship with legumes, and has the ability to ... Type strain of Rhizobium leguminosarum at BacDive - the Bacterial Diversity Metadatabase v t e (Articles with short description ...
... (EC 2.5.1.98, PssM) is an enzyme with systematic ... Rhizobium+leguminosarum+exopolysaccharide+glucosyl+ketal-pyruvate-transferase at the U.S. National Library of Medicine Medical ... "Mutation in the pssM gene encoding ketal pyruvate transferase leads to disruption of Rhizobium leguminosarum bv. viciae-Pisum ... of subterminal glucose in the acidic octasaccharide repeating unit of the exopolysaccharide of Rhizobium leguminosarum. ...
phaseoli Rhizobium leguminosarum bv. trifolii Rhizobium leguminosarum bv. viciae also known as Rhizobium leguminosarum ... biovar cowpea), synonym for Rhizobium sp. IRc78 Pasteurella pneumotropica biovar Heyl, synonym for Rodentibacter heylii ... synonym for Ralstonia mannitolilytica Rhizobium leguminosarum bv. ...
For example, Rhizobium leguminosarum bv. trifolii works with clover; Sinorhizobium meliloti works with alfalfa; and ... inhibitive strains of Rhizobia and to the inoculant product comprising a mixture of mutually non-inhibitive strains of Rhizobia ... These bacteria include six species of the genus Rhizobium. No one species works with all species of leguminous plants, but each ... Thus, he was able to provide a mixed culture of Rhizobia capable of inoculating plants belonging to several groups. Kalo ...
Rhizobium leguminosarum bv.viciae, R. leguminosarum bv. trifolii and R. etli), as well as in the human and plant pathogens ... two copies in Rhizobium leguminosarum bv. viciae (chromosome and plasmid pRL11), two copies in Rhizobium leguminosarumbv. ... Exceptions are SmrB35 homologs of R. leguminosarum bv. viciae (Rlvr35C),and R. etli CFN 42 plasmid p42f (ReCFNr35f), which are ... trifolii WSM1325 (plasmid pR132504 and plasmid pR132502), in Rhizobium etli CFN 42 plasmid p42f and in the chromosomes of ...
Bullerjahn, G. S.; Benzinger, R. H. (April 1982). "Genetic transformation of Rhizobium leguminosarum by plasmid DNA". Journal ... Bullerjahn's early work focused on the genetics of Rhizobium spp. He published his first studies on thylakoid structure of the ...
One member of this family is a putative malonate transporter (MatC of Rhizobium leguminosarum bv trifolii, TC# 2.A.101.1.2). " ... "matC - Malonate carrier protein - Rhizobium leguminosarum - matC gene & protein". www.uniprot.org. Retrieved 2016-03-03. Chen, ... It consists of proteins from Gram-negative and Gram-positive bacteria (e.g., Xanthomonas, Rhizobium and Streptomyces species), ...
... Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. ... Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov". Int J Syst Evol Microbiol ... "Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, ... "Rhizobium phaseoli". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved May 28, 2021. v t e (Articles ...
Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. ... Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov". Int J Syst Evol Microbiol ... trifolii K3.22 harboring nod genes of the Rhizobium leguminosarum sv. trifolii cluster". Systematic and Applied Microbiology. ... "Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, ...
Rhizobium leguminosarum bv.viciae, R. leguminosarum bv. trifolii, R. etli, and several Mesorhizobium species), in the plant ... The Rhizobium group, presented also a well conserved motif in this region for which no significant similarity could be found ( ... The Sinorhizobium, Rhizobium, and Agrobacterium groups presented a very well conserved motif that matches the consensus ... The genomic regions of the αr45 sRNAs from Sinorhizobium, Rhizobium, A. vitis and A. radiobacter exhibited a great degree of ...
Frey, Serita D. (1992). "Genetic relatedness and competition between strains of rhizobium leguminosarum biovar phaseoli". " ... where she studied relationships between strains of rhizobium leguminosarum biovar phaseoli. Frey studies how anthropogenic ...
Rhizobium trifolii, Pseudomonas putida, Candida tropicalis, Candida maltose, Rhizobium leguminosarum, and Nocardia sp.. These ... Chen YP, Lovell CR (June 1990). "Purification and Properties of Catechol 1,2-Dioxygenase from Rhizobium leguminosarum biovar ... Chen Y, Glenn A, Dilworth M (1985). "Aromatic metabolism in Rhizobium trifolii-catechol 1,2-dioxygenase". Arch. Microbiol. 141 ...
Mutch, Lesley A.; Young, J. Peter W. (2004). "Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and ... "Human selection and the relaxation of legume defences against ineffective rhizobia". Proceedings of the Royal Society B: ...
"Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov". Int J Syst ... "Rhizobium etli". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved May 28, 2021. v t e (Articles with ... Rhizobium etli is a Gram-negative root-nodule bacterium. Segovia L, Young JP, Martínez-Romero E (1993). " ...
The first known species of rhizobia, Rhizobium leguminosarum, was identified in 1889, and all further species were initially ... Rhizobia are a "group of soil bacteria that infect the roots of legumes to form root nodules". Rhizobia are found in the soil ... The legume-rhizobium symbiosis is a classic example of mutualism-rhizobia supply ammonia or amino acids to the plant and in ... "Current taxonomy of rhizobia". Archived from the original on 2013-06-04. Retrieved 2013-12-02. "Bacteria confused with rhizobia ...
"The Fur-like protein Mur of Rhizobium leguminosarum is a Mn(2+)-responsive transcriptional regulator". Microbiology. 150 (Pt 5 ... Prevalent in Rhizobium, Bradyrhizobium and many other alphaproteobacteria. The iron dependent repressor family is a ... O'Brian MR (2015). "Perception and Homeostatic Control of Iron in the Rhizobia and Related Bacteria". Annual Review of ...
Rhizobium leguminosarum bv. viciae 3841 (NC_008380), Rlt1325r7C = Rhizobium leguminosarum bv. trifolii WSM1325 (NC_012850), ... Rhizobium leguminosarum bv. trifolii WSM2304 chromosome (NC_011369), Avr7CI = Agrobacterium vitis S4 chromosome 1 (NC_011989), ... leguminosarum bv.viciae, R. leguminosarum bv. trifolii, R. etli, and several Mesorhizobium species), in the plant pathogens ... The rhizobial species encoding the closer homologs to Smr7C were: S. medicae and S. fredii, two R. leguminosarum trifolii ...
Members of this family include: CycK from Rhizobium leguminosarum, CcmC from Escherichia coli and Paracoccus denitrificans, and ... One member, R. leguminosarum CycK, contains a putative haem-binding motif. Wheat orf240 also contains a putative haem-binding ... of the cycHJKL genes involved in cytochrome c biogenesis and symbiotic nitrogen fixation in Rhizobium leguminosarum". J. ...
... on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli". Molecular Plant-Microbe Interactions. 5 (3): 199 ...
Rhizobium leguminosarum exopolysaccharide glucosyl ketal-pyruvate-transferase, an enzyme This disambiguation page lists ...
Moreover, full-length Smr14C homologs have been identified in several nitrogen-fixing symbiotic rhizobia (i.e. R. leguminosarum ... The rhizobial species encoding the 36 closer homologs to Smr14C2 were: S. medicae and S. fredii, two R. leguminosarum trifolii ... MacLellan SR, MacLean AM, Finan TM (June 2006). "Promoter prediction in the rhizobia". Microbiology. 152 (Pt 6): 1751-63. doi: ... and in the Rhizobium group genomes (ReCFNr14C3, Rlt1325r14C3, Rlvr14C3, Rlt2304r14C3). The second group is formed by the first ...
2013 "Rhizobium kunmingense" Shen et al. 2010 Rhizobium laguerreae Saïdi et al. 2014 Rhizobium leguminosarum (Frank 1879) Frank ... 2017 Rhizobium alamii Berge et al. 2009 "Rhizobium album" Hang et al. 2019 "Rhizobium albus" Li et al. 2017 Rhizobium altiplani ... 2016 Rhizobium alvei Sheu et al. 2015 Rhizobium anhuiense Zhang et al. 2015 Rhizobium aquaticum Máthé et al. 2019 "Rhizobium ... 2021 Rhizobium freirei Dall'Agnol et al. 2013 Rhizobium gallicum Amarger et al. 1997 Rhizobium gei Shi et al. 2016 "Rhizobium ...
Sami, Dhaoui; Mokhtar, Rejili; Peter, Mergaert; Mohamed, Mars (2016). "Rhizobium leguminosarum symbiovar trifolii, Ensifer ... "Diversity of rhizobia isolated from Tunisian arid soils capable of forming nitrogen-fixing symbiosis with Anthyllis henoniana ...
Several nitrogen-fixing symbionts of legumes such as Rhizobium leguminosarum and Sinorhizobium meliloti form biofilms on legume ... They can either contribute to crop disease or, as in the case of nitrogen-fixing rhizobia on root nodules, exist symbiotically ...
Sami, Dhaoui; Mokhtar, Rejili; Peter, Mergaert; Mohamed, Mars (August 2016). Sessitsch, Angela (ed.). "Rhizobium leguminosarum ... "Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense To ... "Growth capacity and biochemical mechanisms involved in rhizobia tolerance to salinity and water deficit: Free living rhizobia ... The species Rhizobium mediterraneum was subsequently transferred to Mesorhizobium mediterraneum. This species, along with many ...
"The use of transposon-induced non-motile mutants in assessing the significance of motility of Rhizobium leguminosarum biovar ... doi:10.1016/0038-0717(90)90109-D. DOI.org Gitte, Ramesh R.; Rai, P. Vittal; Patil, R. B. (1978). "Chemotaxis of Rhizobium sp. ...
"Unexpectedly Diverse Mesorhizobium Strains and Rhizobium leguminosarum Nodulate Native Legume Genera of New Zealand, while ... "Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov". International Journal of ...
Rashid, M.H., Gonzalez, H., Young, J.P.W., and Wink, M. (2014) Rhizobium leguminosarum is the symbiont of lentil in the Middle ... Rhizobium lentis are rod-shaped bacteria found in the soil. They require oxygen and do not form spores. Rhizobium lentis grow ... Rhizobium lentis is genetically very closely related to the related species Rhizobium etli and Rhizobum phaseoli. The GC- ... nov., Rhizobium bangladeshense sp. nov. And Rhizobium binae sp. nov. From lentil (Lens culinaris) nodules". International ...
Rashid, M.H., Gonzalez, H., Young, J.P.W., and Wink, M. (2014) Rhizobium leguminosarum is the symbiont of lentil in the Middle ... Rhizobium binae are rod-shaped bacteria found in the soil. They require oxygen and do not form spores. Rhizobium binae grow ... nov., Rhizobium bangladeshense sp. nov. And Rhizobium binae sp. nov. From lentil (Lens culinaris) nodules". International ... Rhizobium binae was first described in 2015 by M. Harun-or Rashid and others. It was isolated from the root nodules of Lens ...
Rashid, M.H., Gonzalez, H., Young, J.P.W., and Wink, M. (2014) Rhizobium leguminosarum is the symbiont of lentil in the Middle ... Rhizobium bangladeshense is a gram-negative bacterium which was isolated from root nodules of lentils in Bangladesh. Rhizobium ... nov., Rhizobium bangladeshense sp. nov. And Rhizobium binae sp. nov. From lentil (Lens culinaris) nodules". International ... Genetic analysis of R. bangladeshense has shown it to be most closely related to Rhizobium etli and Rhizobium phaseoli. The DNA ...
Rhizobium leguminosarum is a Gram-negative, motile, rod-shaped, aerobic bacterium. Rhizobium leguminosarum biovar trifolii, and ... leguminosarum, with certain studies seemingly treating R. trifolii as its own species. Rhizobium leguminosarums acyl carrier ... Rhizobium leguminosarum is a bacterium which lives in a mutualistic symbiotic relationship with legumes, and has the ability to ... Type strain of Rhizobium leguminosarum at BacDive - the Bacterial Diversity Metadatabase v t e (Articles with short description ...
Formulation of a highly effective inoculant for common bean based on an autochthonous elite strain of rhizobium leguminosarum ... Formulation of a highly effective inoculant for common bean based on an autochthonous elite strain of rhizobium leguminosarum ...
Bottle Copies - Dr Hulda Clarks Recommended Source for Homeographic Drops
Funciton: Ferric hydroxamate ABC transporter (TC 3.A.1.14.3), periplasmic substrate binding protein FhuD ...
Pereira, S. I. A., Lima, A. I. G., & Figueira, E. M. D. A. P. (2006). Heavy metal toxicity in Rhizobium leguminosarum biovar ... In this context, Rhizobium leguminosarum biovar viciae was isolated from areas with different heavy metal contents and their ... In this context, Rhizobium leguminosarum biovar viciae was isolated from areas with different heavy metal contents and their ... In this context, Rhizobium leguminosarum biovar viciae was isolated from areas with different heavy metal contents and their ...
... mutant of Rhizobium leguminosarum biovar viciae 3841 (Rlv3841) was characterised. It fails to efficiently utilise various ... plays an essential role in growth and symbiotic capacity of rhizobia, a glutathione synthetase (gshB) ... Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation. ... Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation. ...
... to ammonia by rhizobia in symbiosis with legumes. Plants supply dicarboxylic acids as a carbon source to bacteroids, and in ... However, metabolic exchange must be more complex, because effective N(2) fixation by Rhizobium leguminosarum bv viciae ... Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids Proc Natl Acad Sci ... One of the largest contributions to biologically available nitrogen comes from the reduction of N(2) to ammonia by rhizobia in ...
R Factor Transfer in Rhizobium leguminosarum J. E. Beringer * * A Classification of Micrococci and Staphylococci Based on ...
Rhizobium etli; Rhizobium leguminosarum; Acyl-Butyrolactones; Bacterial Proteins; Gene Expression Regulation, Bacterial; Genes ... Rhizobium etli; Rhizobium leguminosarum; biological model; biosynthesis; gene expression regulation; metabolism; physiology; ... The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biology 7:R34; Zhu, J., Oger, P.M ... Finnie, C., Hartley, N.M., Findlay, K.C., Downie, J.A., The Rhizobium leguminosarum prsDE genes are required for secretion of ...
Rhizobium tropici strain CIAT 899 is a bacterial type strain that was isolated in 1978 from nodules on Phaseolus vulgaris in ... Rhizobium tropici Martinez-Romero et al. 49672 â„¢ Download Genome Learn about our Enhanced Authentication Initiative Rhizobium ... Rhizobium leguminosarum Jordan Depositors. P Graham Year of origin. 1978 Legal disclaimers. ... To download a certificate of analysis for Rhizobium tropici Martinez-Romero et al. (49672), enter the lot number exactly as it ...
Diversity of Rhizobium leguminosarum from pea fields in Washington State - (Peer Reviewed Journal) ... Diversity of Rhizobium leguminosarum from pea fields in Washington State. International Scholarly Research Network (ISRN). ...
Kneen, B.E.; Larue, T.A. Congo Red Absorption by Rhizobium leguminosarum. Appl. Environ. Microbiol. 1983, 45, 340-342. [Google ... Hooykaas, P.J.J.; van Brussel, A.A.N.; den Dulk-Ras, H.; van Slogteren, G.M.S.; Schilperoort, R.A. Sym plasmid of Rhizobium ... Hahn, N. The congo red reaction in bacteria and its usefulness in the identification of rhizobia. Can. J. Microbiol. 1966, 12, ... CR binding has also been often renounced in assays distinguishing Agrobacterium isolates from those in the genus Rhizobium [81, ...
Next message: Need strains of Rhizobium leguminosarum biovar vicea * Messages sorted by: [ date ] [ thread ] [ subject ] [ ... Next message: Need strains of Rhizobium leguminosarum biovar vicea * Messages sorted by: [ date ] [ thread ] [ subject ] [ ...
nigra - Rhizobium leguminosarum bv. viciae symbiotic interaction is improved by Azospirillum brasilense. Lara Star, Ofra Matan ... Rhizobium alamii improves water stress tolerance in a non-legume. Joris Tulumello, Nicolas Chabert, Julie Rodriguez, Justine ... Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Mariangela ... Symbiotic performance of common bean and soybean co-inoculated with rhizobia and Chryseobacterium balustinum Aur9 under ...
Rhizobium leguminosarum bv. viciae (strain 3841) [216596] Number of TMSs:. 12. Location1 / Topology2 / Orientation3:. Cell ...
MctP of Rhizobium leguminosarum. 2.A.21.4.2. Uncharacterized symporter YodF. It is regulated by the global transcriptional ...
Woolfenden, R. POPULATION DYNAMICS OF RHIZOBIUM JAPONICUMAND RHIZOBIUM LEGUMINOSARUM IN HOST AND NON-HOST RHIZOSPHERES.WORD PDF ... Competition among Rhizobium leguminosarum bv. phaseoli strains for nodulation of common bean. Can J Microbiol 38:157-160. WORD ... Competition among Rhizobium leguminosarum strains for nodulation of lentils (Lens esculenta). Appl Environ Microbiol 45(3):960- ... Caces, L. INTERSTRAIN COMPETITIOW AND HOST CONTROL OF NODULATION IN THE Phaseolus vulgaris-Rhizobium leguminosarum bv. phaseoli ...
Plant symbiont: Rhizobium leguminosarum. Plant pathogen: Xanthomonas campestris. Advances. We have set up a general pipeline to ...
Rhizobium leguminosarum HupE is a highly-specific diffusion facilitator for nickel uptake. "Metallomics", v. 7 ; pp. 691-701. ... hydrogenase in Rhizobium leguminosarum.. In: "II IBEMPA. Conference. Microorganisms for future Agriculture", 02/09/2013 - 06/09 ... Differential roles of HypC and HupF proteins for hydrogenase synthesis in Rhizobium leguminosarum.. In: "XIII Congreso ... Molecular physiology of nickel and cobalt homeostasis in Rhizobium leguminosarum.. In: "II Conferencia Iberoamericana de ...
Single inoculate with Rhizobium leguminosarum.. *The maximum safe rate of seed-placed phosphorus is 40 lbs P2O5/ac. ...
tr,Q1M606,Q1M606_RHIL3 Potassium-transporting ATPase B chain OS=Rhizobium leguminosarum bv. viciae (strain 3841) GN=kdpB PE=3 ...
Modificaci n gen tica de leguminosas y rhizobium para su uso en biorremediaci n. An lisis molecular del efecto del ars nico y ... Interacci n Rhizobium-Leguminosa Como Herramienta para la Rizorremediaci n de Metales Pesados en Suelos: un Experimento "in ... La Simbiosis Rhizobium-Leguminosa Como Herramienta para la Biorremediaci n de Suelos Contaminados con Metales Pesados. Poster ... La Simbiosis Rhizobium-Leguminosa Como Metodo de Descontaminacion de Suelos. Ponencia en Congreso. Reuni n Nacional del ...
Transcriptomic Analysis of Rhizobium leguminosarum Biovar viciae in Symbiosis with Host Plants Pisum sativum and Vicia cracca ... Transcriptomic Analysis of Rhizobium leguminosarum Biovar viciae in Symbiosis with Host Plants Pisum sativum and Vicia cracca. ...
2022, Immobilization mechanism of Cd2+/HCrO4-/CrO42- ions and carboxin on montmorillonite modified with Rhizobium leguminosarum ... 2022, Rhizobium leguminosarum bv. trifolii exopolysaccharide and sunflower husk biochar as factors affecting immobilization of ...
Peas inoculated with the proper Rhizobium (Rhizobium leguminosarum) strain have the potential to fix up to 80% of nitrogen ... Rhizobium leguminosarum strains will nodulate peas, faba beans, and lentils but some strains may be more effective on certain ... Generally, native soil strains of Rhizobium leguminosarum are not the optimum strains. This reinforces the recommendation to ... Rhizobium enters the root hairs of the plant and induces nodule formation, while the plant provides energy for the Rhizobium. ...
The nodI gene product of Rhizobium leguminosarum is closely related to ATP-binding bacterial transport proteins; nucleotide ... The nucleotide sequence of a 2-kb fragment immediately downstream of the nodABC genes of the Rhizobium leguminosarum symbiotic ... The nodI gene product of Rhizobium leguminosarum is closely related to ATP-binding bacterial transport proteins; nucleotide ...
Inoculation with Rhizobium leguminosarum did not significantly affect the N2 fixed by fababean in the drought year, whereas ...
Expression cloning and biochemical characterization of a Rhizobium leguminosarum lipid A 1-phosphatase. ...
... range related structural features of the acidic extracellular polysaccharides of Rhizobium trifolii and Rhizobium leguminosarum ... Structure and role in symbiosis of the exoB gene of Rhizobium leguminosarum bv. trifolii. Molecular Genetics and Genomics 255: ... Rhizobium leguminosarum bv. trifolii and its interactions with rice plants. In C. Elmerich, A. Kondorosi, and W. Newton (eds), ... The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Australian Journal ...
... by Rhizobium leguminosarum biovar trifolii in the presence of the earthworm Aporrectodea trapezoides (Lumbricidae)," Biology ...

No FAQ available that match "rhizobium leguminosarum"