Photosensitive afferent neurons located in the peripheral retina, with their density increases radially away from the FOVEA CENTRALIS. Being much more sensitive to light than the RETINAL CONE CELLS, the rod cells are responsible for twilight vision (at scotopic intensities) as well as peripheral vision, but provide no color discrimination.
Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade.
The portion of a retinal rod cell situated between the ROD INNER SEGMENT and the RETINAL PIGMENT EPITHELIUM. It contains a stack of photosensitive disk membranes laden with RHODOPSIN.
A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm.
A heterotrimeric GTP-binding protein that mediates the light activation signal from photolyzed rhodopsin to cyclic GMP phosphodiesterase and is pivotal in the visual excitation process. Activation of rhodopsin on the outer membrane of rod and cone cells causes GTP to bind to transducin followed by dissociation of the alpha subunit-GTP complex from the beta/gamma subunits of transducin. The alpha subunit-GTP complex activates the cyclic GMP phosphodiesterase which catalyzes the hydrolysis of cyclic GMP to 5'-GMP. This leads to closure of the sodium and calcium channels and therefore hyperpolarization of the rod cells. EC 3.6.1.-.
Specialized PHOTOTRANSDUCTION neurons in the vertebrates, such as the RETINAL ROD CELLS and the RETINAL CONE CELLS. Non-visual photoreceptor neurons have been reported in the deep brain, the PINEAL GLAND and organs of the circadian system.
Photosensitive afferent neurons located primarily within the FOVEA CENTRALIS of the MACULA LUTEA. There are three major types of cone cells (red, blue, and green) whose photopigments have different spectral sensitivity curves. Retinal cone cells operate in daylight vision (at photopic intensities) providing color recognition and central visual acuity.
The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent.
'Eye proteins' are structural or functional proteins, such as crystallins, opsins, and collagens, located in various parts of the eye, including the cornea, lens, retina, and aqueous humor, that contribute to maintaining transparency, refractive power, phototransduction, and overall integrity of the visual system.
A retrogressive pathological change in the retina, focal or generalized, caused by genetic defects, inflammation, trauma, vascular disease, or aging. Degeneration affecting predominantly the macula lutea of the retina is MACULAR DEGENERATION. (Newell, Ophthalmology: Principles and Concepts, 7th ed, p304)
Photosensitive proteins expressed in the ROD PHOTORECEPTOR CELLS. They are the protein components of rod photoreceptor pigments such as RHODOPSIN.
That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range.
Specialized cells in the invertebrates that detect and transduce light. They are predominantly rhabdomeric with an array of photosensitive microvilli. Illumination depolarizes invertebrate photoreceptors by stimulating Na+ influx across the plasma membrane.
A 48-Kd protein of the outer segment of the retinal rods and a component of the phototransduction cascade. Arrestin quenches G-protein activation by binding to phosphorylated photolyzed rhodopsin. Arrestin causes experimental autoimmune uveitis when injected into laboratory animals.
A PROTEIN-SERINE-THREONINE KINASE that is found in PHOTORECEPTOR CELLS. It mediates light-dependent PHOSPHORYLATION of RHODOPSIN and plays an important role in PHOTOTRANSDUCTION.
Enzymes that catalyze the hydrolysis of cyclic GMP to yield guanosine-5'-phosphate.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
The process in which light signals are transformed by the PHOTORECEPTOR CELLS into electrical signals which can then be transmitted to the brain.
Recording of electric potentials in the retina after stimulation by light.
Photosensitive protein complexes of varied light absorption properties which are expressed in the PHOTORECEPTOR CELLS. They are OPSINS conjugated with VITAMIN A-based chromophores. Chromophores capture photons of light, leading to the activation of opsins and a biochemical cascade that ultimately excites the photoreceptor cells.
A cyclic nucleotide phosphodiesterase subfamily that is highly specific for CYCLIC GMP. It is found predominantly in the outer segment PHOTORECEPTOR CELLS of the RETINA. It is comprised of two catalytic subunits, referred to as alpha and beta, that form a dimer. In addition two regulatory subunits, referred to as gamma and delta, modulate the activity and localization of the enzyme.
Adjustment of the eyes under conditions of low light. The sensitivity of the eye to light is increased during dark adaptation.
A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose.
A neuronal calcium-sensor protein that is found in ROD PHOTORECEPTORS and CONE PHOTORECEPTORS. It interacts with G-PROTEIN-COUPLED RECEPTOR KINASE 1 in a Ca2+ dependent manner and plays an important role in PHOTOTRANSDUCTION.
Hereditary, progressive degeneration of the neuroepithelium of the retina characterized by night blindness and progressive contraction of the visual field.
The conversion of absorbed light energy into molecular signals.
A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals.
Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed)
INTERNEURONS of the vertebrate RETINA containing two processes. They receive inputs from the RETINAL PHOTORECEPTOR CELLS and send outputs to the RETINAL GANGLION CELLS. The bipolar cells also make lateral connections in the retina with the RETINAL HORIZONTAL CELLS and with the AMACRINE CELLS.
The absence of light.
A subgroup of cyclic nucleotide-regulated ION CHANNELS within the superfamily of pore-loop cation channels. They are expressed in OLFACTORY NERVE cilia and in PHOTORECEPTOR CELLS and some PLANTS.

Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors. (1/1358)

The retinal analogue beta-ionone was used to investigate possible physiological effects of the noncovalent interaction between rod opsin and its chromophore 11-cis retinal. Isolated salamander rod photoreceptors were exposed to bright light that bleached a significant fraction of their pigment, were allowed to recover to a steady state, and then were exposed to beta-ionone. Our experiments show that in bleach-adapted rods beta-ionone causes a decrease in light sensitivity and dark current and an acceleration of the dim flash photoresponse and the rate constants of guanylyl cyclase and cGMP phosphodiesterase. Together, these observations indicate that in bleach-adapted rods beta-ionone activates phototransduction in the dark. Control experiments showed no effect of beta-ionone in either fully dark-adapted or background light-adapted cells, indicating direct interaction of beta-ionone with the free opsin produced by bleaching. We speculate that beta-ionone binds specifically in the chromophore pocket of opsin to produce a complex that is more catalytically potent than free opsin alone. We hypothesize that a similar reaction may occur in the intact retina during pigment regeneration. We propose a model of rod pigment regeneration in which binding of 11-cis retinal to opsin leads to activation of the complex accompanied by a decrease in light sensitivity. The subsequent covalent attachment of retinal to opsin completely inactivates opsin and leads to the recovery of sensitivity. Our findings resolve the conflict between biochemical and physiological data concerning the effect of the occupancy of the chromophore binding site on the catalytic potency of opsin. We show that binding of beta-ionone to rod opsin produces effects opposite to its previously described effects on cone opsin. We propose that this distinction is due to a fundamental difference in the interaction of rod and cone opsins with retinal, which may have implications for the different physiology of the two types of photoreceptors.  (+info)

Properties and functional roles of hyperpolarization-gated currents in guinea-pig retinal rods. (2/1358)

1. The inward rectification induced by membrane hyperpolarization was studied in adult guinea-pig rods by the perforated-patch-clamp technique. 2. CsCl blocked the rectification observed in both voltage- and current-clamp recordings at voltages negative to -60 mV, while BaCl2 blocked the inward relaxation observed at voltages positive to -60 mV. The current activated at -90 mV had a low selectivity between sodium and potassium and reversed at -31.0 mV. 3. These observations suggest that two inward rectifiers are present in guinea-pig rods: a hyperpolarization-activated (Ih) and a hyperpolarization-deactivated (Ikx) current. The functional roles of Ih and Ikx were evaluated by stimulating rods with currents sinusoidally modulated in time. 4. Rods behave like bandpass amplifiers, with a peak amplification of 1.5 at about 2 Hz. For hyperpolarizations that mainly gate Ikx, amplification and phase shifts are fully accounted for by a rod membrane analogue model that includes an inductance. For hyperpolarizations that also gate Ih, a harmonic distortion became apparent. 5. Bandpass filtering and amplification of rod signals, associated with Ih and Ikx gating by membrane hyperpolarization, are strategically located to extend, beyond the limits imposed by the slow phototransductive cascade, the temporal resolution of signals spreading to the rod synapse.  (+info)

Formate-induced inhibition of photoreceptor function in methanol intoxication. (3/1358)

Formic acid is the toxic metabolite responsible for the retinal and optic nerve toxicity produced in methanol intoxication. Previous studies in our laboratory have documented formate-induced retinal dysfunction and histopathology in a rodent model of methanol intoxication. The present studies define the time and concentration dependence of formate-induced retinal toxicity in methanol-intoxicated rats. Retinal function was assessed 24, 48, and 72 h after the initial dose of methanol by flicker electroretinographic measurements. Retinal histopathology was assessed at the same time intervals. Rod- and cone-mediated electroretinogram (ERG) responses were attenuated in a formate concentration- and time-dependent manner, and both retinal sensitivity and maximal responsiveness to light were diminished. Attenuation of UV-cone-mediated responses was temporally delayed in comparison to the functional deficits observed in the 15 Hz/510 nm responses, which have a rod-mediated component and occurred at significantly higher formate concentrations. Both 15 Hz/510 nm and UV-cone-mediated ERG responses were undetectable by 72 h; however, if light intensity was increased, a retinal ERG response could be recorded, indicating that photoreceptor function was profoundly attenuated, but not abolished, under these intoxication conditions. Functional changes preceded structural alterations. Histopathological changes were most pronounced in the outer retina with evidence of inner segment swelling, photoreceptor mitochondrial disruption, and the appearance of fragmented photoreceptor nuclei in the outer nuclear layer. The nature of both the functional and structural alterations observed are consistent with formate-induced inhibition of mitochondrial energy production, resulting in photoreceptor dysfunction and pathology.  (+info)

Sensitivity and kinetics of mouse rod flash responses determined in vivo from paired-flash electroretinograms. (4/1358)

1. Electroretinograms (ERGs) were recorded corneally from C57BL/6J mice using a paired-flash procedure in which a brief test flash at time zero was followed at time tprobe by a bright probe flash of fixed strength, and in which the probe response amplitude was determined at time t = tprobe + 6 ms. Probe responses obtained in a series of paired-flash trials were analysed to derive A(t), a family of amplitudes that putatively represents the massed response of the rod photoreceptors to the test flash. A central aim was to obtain a mathematical description of the normalized derived response A(t)/Amo as a function of Itest, the test flash strength. 2. With fixed tprobe (80 <= tprobe <= 1200 ms), A(t)/Amo was described by the saturating exponential function [1 - exp(-ktItest)], where kt is a time-dependent sensitivity parameter. For t = 86 ms, a time near the peak of A(t), k86 was 7.0 +/- 1.2 (scotopic cd s m-2)-1 (mean +/- s. d.; n = 4). 3. A(t)/Amo data were analysed in relation to the equation below, a time-generalized form of the above exponential function in which (k86Itest) is replaced by the product [k86Itestu(t)], and where u(t) is independent of the test flash strength. The function u(t) was modelled as the product of a scaling factor gamma, an activation term 1 - exp[-alpha(t - td)2]), and a decay term exp(-t/tauomega): A(t)/Amo = 1 - exp[-k86Itestu(t)]; u(t) = gamma(1 - exp[-alpha(t - td)2](exp(-t/tauomega) where td is a brief delay, tauomega is an exponential time constant, and alpha characterizes the acceleration of the activation term. For Itest up to approximately 2.57 scotopic cd s m-2, the overall time course of A(t) was well described by the above equation with gamma = 2.21, td = 3.1 ms, tauomega = 132 ms and alpha = 2.32 x 10-4 ms-2. An approximate halving of alpha improved the fit of the above equation to ERG a-wave and A(t)/Amo data obtained at t about 0-20 ms. 4. Kinetic and sensitivity properties of A(t) suggest that it approximates the in vivo massed photocurrent response of the rods to a test flash, and imply that u(t) in the above equation is the approximate kinetic description of a unit, i.e. single photon, response.  (+info)

Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. (5/1358)

Phosphorylation is thought to be an essential first step in the prompt deactivation of photoexcited rhodopsin. In vitro, the phosphorylation can be catalyzed either by rhodopsin kinase (RK) or by protein kinase C (PKC). To investigate the specific role of RK, we inactivated both alleles of the RK gene in mice. This eliminated the light-dependent phosphorylation of rhodopsin and caused the single-photon response to become larger and longer lasting than normal. These results demonstrate that RK is required for normal rhodopsin deactivation. When the photon responses of RK-/- rods did finally turn off, they did so abruptly and stochastically, revealing a first-order backup mechanism for rhodopsin deactivation. The rod outer segments of RK-/- mice raised in 12-hr cyclic illumination were 50% shorter than those of normal (RK+/+) rods or rods from RK-/- mice raised in constant darkness. One day of constant light caused the rods in the RK-/- mouse retina to undergo apoptotic degeneration. Mice lacking RK provide a valuable model for the study of Oguchi disease, a human RK deficiency that causes congenital stationary night blindness.  (+info)

Reciprocity between light intensity and rhodopsin concentration across the rat retina. (6/1358)

1. If a purpose of photostasis - absorption of a constant number of photons by the retina, regardless of incident light levels - is to maintain rods at saturation during the light period, then in retinal regions where light intensity is low, rhodopsin concentration should be high, and vice versa. 2. Our ocular transmission photometric measurements revealed that the distribution of light intensity across the rat retina was not as simple as had been thought and, furthermore, that the local concentration of rhodopsin had a high negative correlation with the light intensity. 3. The reciprocity between these two parameters leads to nearly uniform rates of photon absorption in rods across the retina.  (+info)

Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. (7/1358)

Circadian rhythms of mammals are entrained by light to follow the daily solar cycle (photoentrainment). To determine whether retinal rods and cones are required for this response, the effects of light on the regulation of circadian wheel-running behavior were examined in mice lacking these photoreceptors. Mice without cones (cl) or without both rods and cones (rdta/cl) showed unattenuated phase-shifting responses to light. Removal of the eyes abolishes this behavior. Thus, neither rods nor cones are required for photoentrainment, and the murine eye contains additional photoreceptors that regulate the circadian clock.  (+info)

Is the rod visual field temporally homogeneous? (8/1358)

Cone vision has been shown to be temporally inhomogeneous across the visual field. In the periphery, contrast sensitivity is lower for low temporal frequencies and higher for high temporal frequencies. Here we ask a similar question for rod vision at mesopic luminances. Isolation is obtained by testing a well documented rod monochromat. We show that the rod visual field exhibits only a modest degree of temporal inhomogeneity.  (+info)

Retinal rod photoreceptor cells are specialized neurons in the retina of the eye that are primarily responsible for vision in low light conditions. They contain a light-sensitive pigment called rhodopsin, which undergoes a chemical change when struck by a single photon of light. This triggers a cascade of biochemical reactions that ultimately leads to the generation of electrical signals, which are then transmitted to the brain via the optic nerve.

Rod cells do not provide color vision or fine detail, but they allow us to detect motion and see in dim light. They are more sensitive to light than cone cells, which are responsible for color vision and detailed sight in bright light conditions. Rod cells are concentrated at the outer edges of the retina, forming a crescent-shaped region called the peripheral retina, with fewer rod cells located in the central region of the retina known as the fovea.

Photoreceptor cells are specialized neurons in the retina of the eye that convert light into electrical signals. These cells consist of two types: rods and cones. Rods are responsible for vision at low light levels and provide black-and-white, peripheral, and motion sensitivity. Cones are active at higher light levels and are capable of color discrimination and fine detail vision. Both types of photoreceptor cells contain light-sensitive pigments that undergo chemical changes when exposed to light, triggering a series of electrical signals that ultimately reach the brain and contribute to visual perception.

A rod cell outer segment is a specialized structure in the retina of the eye that is responsible for photoreception, or the conversion of light into electrical signals. Rod cells are one of the two types of photoreceptor cells in the retina, with the other type being cone cells. Rod cells are more sensitive to light than cone cells and are responsible for low-light vision and peripheral vision.

The outer segment of a rod cell is a long, thin structure that contains stacks of discs filled with the visual pigment rhodopsin. When light hits the rhodopsin molecules in the discs, it causes a chemical reaction that leads to the activation of a signaling pathway within the rod cell. This ultimately results in the generation of an electrical signal that is transmitted to the brain via the optic nerve.

The outer segment of a rod cell is constantly being regenerated and broken down through a process called shedding and renewal. The tips of the outer segments are shed and phagocytosed by cells called retinal pigment epithelial (RPE) cells, which help to maintain the health and function of the rod cells.

Rhodopsin, also known as visual purple, is a light-sensitive pigment found in the rods of the vertebrate retina. It is a complex protein molecule made up of two major components: an opsin protein and retinal, a form of vitamin A. When light hits the retinal in rhodopsin, it changes shape, which initiates a series of chemical reactions leading to the activation of the visual pathway and ultimately results in vision. This process is known as phototransduction. Rhodopsin plays a crucial role in low-light vision or scotopic vision.

Transducin is a G protein found in the rod cells of the retina and plays a crucial role in the visual signal transduction pathway. It is responsible for converting the light-induced isomerization of rhodopsin into a biochemical signal, which ultimately leads to the activation of downstream effectors and the generation of a neural response.

Transducin has three subunits: alpha (Tα), beta (Tβ), and gamma (Tγ). When light activates rhodopsin, it interacts with the Tα subunit, causing it to exchange GDP for GTP and dissociate from the Tβγ complex. The activated Tα then interacts with a downstream effector called phosphodiesterase (PDE), which leads to the hydrolysis of cGMP and the closure of cGMP-gated ion channels in the plasma membrane. This results in the hyperpolarization of the rod cell, which is the initial step in the visual signal transduction pathway.

Overall, transducin is a key player in the conversion of light energy into neural signals, allowing us to see and perceive our visual world.

Photoreceptor cells in vertebrates are specialized types of neurons located in the retina of the eye that are responsible for converting light stimuli into electrical signals. These cells are primarily responsible for the initial process of vision and have two main types: rods and cones.

Rods are more numerous and are responsible for low-light vision or scotopic vision, enabling us to see in dimly lit conditions. They do not contribute to color vision but provide information about the shape and movement of objects.

Cones, on the other hand, are less numerous and are responsible for color vision and high-acuity vision or photopic vision. There are three types of cones, each sensitive to different wavelengths of light: short (S), medium (M), and long (L) wavelengths, which correspond to blue, green, and red, respectively. The combination of signals from these three types of cones allows us to perceive a wide range of colors.

Both rods and cones contain photopigments that consist of a protein called opsin and a light-sensitive chromophore called retinal. When light hits the photopigment, it triggers a series of chemical reactions that ultimately lead to the generation of an electrical signal that is transmitted to the brain via the optic nerve. This process enables us to see and perceive our visual world.

Retinal cone photoreceptor cells are specialized neurons located in the retina of the eye, responsible for visual phototransduction and color vision. They are one of the two types of photoreceptors, with the other being rods, which are more sensitive to low light levels. Cones are primarily responsible for high-acuity, color vision during daylight or bright-light conditions.

There are three types of cone cells, each containing different photopigments that absorb light at distinct wavelengths: short (S), medium (M), and long (L) wavelengths, which correspond to blue, green, and red light, respectively. The combination of signals from these three types of cones allows the human visual system to perceive a wide range of colors and discriminate between them. Cones are densely packed in the central region of the retina, known as the fovea, which provides the highest visual acuity.

The retina is the innermost, light-sensitive layer of tissue in the eye of many vertebrates and some cephalopods. It receives light that has been focused by the cornea and lens, converts it into neural signals, and sends these to the brain via the optic nerve. The retina contains several types of photoreceptor cells including rods (which handle vision in low light) and cones (which are active in bright light and are capable of color vision).

In medical terms, any pathological changes or diseases affecting the retinal structure and function can lead to visual impairment or blindness. Examples include age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinitis pigmentosa among others.

Eye proteins, also known as ocular proteins, are specific proteins that are found within the eye and play crucial roles in maintaining proper eye function and health. These proteins can be found in various parts of the eye, including the cornea, iris, lens, retina, and other structures. They perform a wide range of functions, such as:

1. Structural support: Proteins like collagen and elastin provide strength and flexibility to the eye's tissues, enabling them to maintain their shape and withstand mechanical stress.
2. Light absorption and transmission: Proteins like opsins and crystallins are involved in capturing and transmitting light signals within the eye, which is essential for vision.
3. Protection against damage: Some eye proteins, such as antioxidant enzymes and heat shock proteins, help protect the eye from oxidative stress, UV radiation, and other environmental factors that can cause damage.
4. Regulation of eye growth and development: Various growth factors and signaling molecules, which are protein-based, contribute to the proper growth, differentiation, and maintenance of eye tissues during embryonic development and throughout adulthood.
5. Immune defense: Proteins involved in the immune response, such as complement components and immunoglobulins, help protect the eye from infection and inflammation.
6. Maintenance of transparency: Crystallin proteins in the lens maintain its transparency, allowing light to pass through unobstructed for clear vision.
7. Neuroprotection: Certain eye proteins, like brain-derived neurotrophic factor (BDNF), support the survival and function of neurons within the retina, helping to preserve vision.

Dysfunction or damage to these eye proteins can contribute to various eye disorders and diseases, such as cataracts, age-related macular degeneration, glaucoma, diabetic retinopathy, and others.

Retinal degeneration is a broad term that refers to the progressive loss of photoreceptor cells (rods and cones) in the retina, which are responsible for converting light into electrical signals that are sent to the brain. This process can lead to vision loss or blindness. There are many different types of retinal degeneration, including age-related macular degeneration, retinitis pigmentosa, and Stargardt's disease, among others. These conditions can have varying causes, such as genetic mutations, environmental factors, or a combination of both. Treatment options vary depending on the specific type and progression of the condition.

Rhodopsin, also known as visual purple, is a light-sensitive protein found in the rods of the eye's retina. It is a type of opsin, a class of proteins that are activated by light and play a crucial role in vision. Rhodopsin is composed of two parts: an apoprotein called opsin and a chromophore called 11-cis-retinal. When light hits the retina, it changes the shape of the 11-cis-retinal, which in turn activates the rhodopsin protein. This activation triggers a series of chemical reactions that ultimately lead to the transmission of a visual signal to the brain. Rhodopsin is highly sensitive to light and allows for vision in low-light conditions.

In the context of medical terminology, "light" doesn't have a specific or standardized definition on its own. However, it can be used in various medical terms and phrases. For example, it could refer to:

1. Visible light: The range of electromagnetic radiation that can be detected by the human eye, typically between wavelengths of 400-700 nanometers. This is relevant in fields such as ophthalmology and optometry.
2. Therapeutic use of light: In some therapies, light is used to treat certain conditions. An example is phototherapy, which uses various wavelengths of ultraviolet (UV) or visible light for conditions like newborn jaundice, skin disorders, or seasonal affective disorder.
3. Light anesthesia: A state of reduced consciousness in which the patient remains responsive to verbal commands and physical stimulation. This is different from general anesthesia where the patient is completely unconscious.
4. Pain relief using light: Certain devices like transcutaneous electrical nerve stimulation (TENS) units have a 'light' setting, indicating lower intensity or frequency of electrical impulses used for pain management.

Without more context, it's hard to provide a precise medical definition of 'light'.

Photoreceptor cells in invertebrates are specialized sensory neurons that convert light stimuli into electrical signals. These cells are primarily responsible for the ability of many invertebrates to detect and respond to light, enabling behaviors such as phototaxis (movement towards or away from light) and vision.

Invertebrate photoreceptor cells typically contain light-sensitive pigments that absorb light at specific wavelengths. The most common type of photopigment is rhodopsin, which consists of a protein called opsin and a chromophore called retinal. When light hits the photopigment, it changes the conformation of the chromophore, triggering a cascade of molecular events that ultimately leads to the generation of an electrical signal.

Invertebrate photoreceptor cells can be found in various locations throughout the body, depending on their function. For example, simple eyespots containing a few photoreceptor cells may be scattered over the surface of the body in some species, while more complex eyes with hundreds or thousands of photoreceptors may be present in other groups. In addition to their role in vision, photoreceptor cells can also serve as sensory organs for regulating circadian rhythms, detecting changes in light intensity, and mediating social behaviors.

Arrestin is a type of protein that plays a crucial role in regulating the signaling of G protein-coupled receptors (GPCRs) in cells. These receptors are involved in various cellular responses to hormones, neurotransmitters, and other signaling molecules.

When a signaling molecule binds to a GPCR, it activates the receptor and triggers a cascade of intracellular events, including the activation of G proteins. Arrestin binds to the activated GPCR and prevents further interaction with G proteins, effectively turning off the signal.

There are two main types of arrestins: visual arrestin (or rod arrestin) and non-visual arrestins (which include β-arrestin1 and β-arrestin2). Visual arrestin is primarily found in the retina and plays a role in regulating the light-sensitive proteins rhodopsin and cone opsin. Non-visual arrestins, on the other hand, are expressed throughout the body and regulate various GPCRs involved in diverse physiological processes such as cell growth, differentiation, and migration.

By modulating GPCR signaling, arrestins help maintain proper cellular function and prevent overactivation of signaling pathways that could lead to disease. Dysregulation of arrestin function has been implicated in various pathologies, including cancer, cardiovascular diseases, and neurological disorders.

G-Protein-Coupled Receptor Kinase 1 (GRK1) is a serine/threonine kinase that specifically phosphorylates and desensitizes G-protein-coupled receptors (GPCRs) upon agonist activation. GRK1 plays a crucial role in the regulation of GPCR signaling, which is involved in various physiological processes, including sensory perception, neurotransmission, and hormonal regulation.

GRK1 is primarily expressed in the retina and testis, where it regulates the activity of rhodopsin and β-adrenergic receptors, respectively. The kinase activity of GRK1 leads to the recruitment of arrestin proteins, which uncouple the receptor from its G protein, thereby terminating the signaling response. Additionally, GRK1-mediated phosphorylation creates binding sites for β-arrestins, leading to receptor internalization and subsequent degradation or recycling.

Mutations in GRK1 have been associated with various diseases, including retinitis pigmentosa, a genetic disorder that causes progressive vision loss. Therefore, understanding the function and regulation of GRK1 is essential for developing therapeutic strategies targeting GPCR-mediated diseases.

3',5'-Cyclic guanosine monophosphate (cGMP) phosphodiesterases are a group of enzymes that play a role in regulating the levels of cGMP, an important intracellular signaling molecule involved in various biological processes. These enzymes catalyze the hydrolysis of cGMP to 5'-GMP, thereby terminating cGMP-mediated signals within cells.

There are several isoforms of cGMP phosphodiesterases, which differ in their regulatory properties, substrate specificity, and cellular distribution. These enzymes can be activated or inhibited by various factors, including drugs, hormones, and neurotransmitters, and play a crucial role in modulating the activity of cGMP-dependent signaling pathways in different tissues and organs.

Dysregulation of cGMP phosphodiesterase activity has been implicated in various diseases, including cardiovascular disorders, pulmonary hypertension, neurodegenerative diseases, and cancer. Therefore, these enzymes are considered important targets for the development of novel therapeutic strategies for the treatment of these conditions.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Ocular vision refers to the ability to process and interpret visual information that is received by the eyes. This includes the ability to see clearly and make sense of the shapes, colors, and movements of objects in the environment. The ocular system, which includes the eye and related structures such as the optic nerve and visual cortex of the brain, works together to enable vision.

There are several components of ocular vision, including:

* Visual acuity: the clarity or sharpness of vision
* Field of vision: the extent of the visual world that is visible at any given moment
* Color vision: the ability to distinguish different colors
* Depth perception: the ability to judge the distance of objects in three-dimensional space
* Contrast sensitivity: the ability to distinguish an object from its background based on differences in contrast

Disorders of ocular vision can include refractive errors such as nearsightedness or farsightedness, as well as more serious conditions such as cataracts, glaucoma, and macular degeneration. These conditions can affect one or more aspects of ocular vision and may require medical treatment to prevent further vision loss.

Electroretinography (ERG) is a medical test used to evaluate the functioning of the retina, which is the light-sensitive tissue located at the back of the eye. The test measures the electrical responses of the retina to light stimulation.

During the procedure, a special contact lens or electrode is placed on the surface of the eye to record the electrical activity generated by the retina's light-sensitive cells (rods and cones) and other cells in the retina. The test typically involves presenting different levels of flashes of light to the eye while the electrical responses are recorded.

The resulting ERG waveform provides information about the overall health and function of the retina, including the condition of the photoreceptors, the integrity of the inner retinal layers, and the health of the retinal ganglion cells. This test is often used to diagnose and monitor various retinal disorders, such as retinitis pigmentosa, macular degeneration, and diabetic retinopathy.

Retinal pigments refer to the light-sensitive chemicals found in the retina, specifically within the photoreceptor cells called rods and cones. The main types of retinal pigments are rhodopsin (also known as visual purple) in rods and iodopsins in cones. These pigments play a crucial role in the process of vision by absorbing light and initiating a series of chemical reactions that ultimately trigger nerve impulses, which are then transmitted to the brain and interpreted as visual images. Rhodopsin is more sensitive to lower light levels and is responsible for night vision, while iodopsins are sensitive to specific wavelengths of light and contribute to color vision.

Cyclic nucleotide phosphodiesterases (PDEs) are a family of enzymes that play a crucial role in regulating intracellular levels of cyclic nucleotides, which are important second messengers in various cellular signaling pathways. Among the different types of PDEs, type 6 (PDE6) is specifically expressed in the photoreceptor cells of the retina and is involved in the visual signal transduction cascade.

PDE6 is composed of two catalytic subunits, PDE6α and PDE6β, which are arranged in a heterodimeric complex. These subunits have distinct roles in the enzyme's activity: PDE6α contains the catalytic site that hydrolyzes cyclic guanosine monophosphate (cGMP) to GMP, while PDE6β regulates the activity of PDE6α through its inhibitory γ subunit.

In the visual signal transduction pathway, light stimulation leads to the activation of rhodopsin, which triggers a cascade of events that ultimately results in the hydrolysis of cGMP by PDE6. This reduction in cGMP levels causes the closure of cyclic nucleotide-gated channels in the plasma membrane, leading to hyperpolarization of the photoreceptor cells and the transmission of visual signals to the brain.

Defects in PDE6 have been implicated in various retinal disorders, including congenital stationary night blindness, retinitis pigmentosa, and age-related macular degeneration. Therefore, understanding the structure and function of PDE6 is essential for developing novel therapeutic strategies to treat these vision-threatening diseases.

Dark adaptation is the process by which the eyes adjust to low levels of light. This process allows the eyes to become more sensitive to light and see better in the dark. It involves the dilation of the pupils, as well as chemical changes in the rods and cones (photoreceptor cells) of the retina. These changes allow the eye to detect even small amounts of light and improve visual acuity in low-light conditions. Dark adaptation typically takes several minutes to occur fully, but can be faster or slower depending on various factors such as age, prior exposure to light, and certain medical conditions. It is an important process for maintaining good vision in a variety of lighting conditions.

"Ambystoma" is a genus of salamanders, also known as the mole salamanders. These amphibians are characterized by their fossorial (burrowing) habits and typically have four limbs, a tail, and moist skin. They are found primarily in North America, with a few species in Asia and Europe. Some well-known members of this genus include the axolotl (A. mexicanum), which is famous for its ability to regenerate lost body parts, and the spotted salamander (A. maculatum). The name "Ambystoma" comes from the Greek words "amblys," meaning blunt, and "stoma," meaning mouth, in reference to the wide, blunt snout of these animals.

Recoverin is a protein found in the retina of the eye that plays a role in protecting photoreceptor cells from light-induced damage. It is a member of the neuronal calcium sensor family and functions as a calmodulin-binding protein, which means it can bind to calcium ions and regulate various cellular processes.

Recoverin is particularly important for the regulation of visual transduction, the process by which light is converted into electrical signals in the eye. When exposed to light, photoreceptor cells release calcium ions, which then bind to recoverin and cause it to change shape. This shape change allows recoverin to inhibit a key enzyme involved in the visual transduction cascade, helping to prevent excessive signaling and protect the photoreceptor cells from damage.

Mutations in the gene that encodes recoverin have been associated with certain inherited eye diseases, such as congenital stationary night blindness and retinitis pigmentosa. These mutations can disrupt the normal function of recoverin and lead to progressive vision loss.

Retinitis pigmentosa (RP) is a group of rare, genetic disorders that involve a breakdown and loss of cells in the retina - a light-sensitive tissue located at the back of the eye. The retina converts light into electrical signals which are then sent to the brain and interpreted as visual images.

In RP, the cells that detect light (rods and cones) degenerate more slowly than other cells in the retina, leading to a progressive loss of vision. Symptoms typically begin in childhood with night blindness (difficulty seeing in low light), followed by a gradual narrowing of the visual field (tunnel vision). Over time, this can lead to significant vision loss and even blindness.

The condition is usually inherited and there are several different genes that have been associated with RP. The diagnosis is typically made based on a combination of genetic testing, family history, and clinical examination. Currently, there is no cure for RP, but researchers are actively working to develop new treatments that may help slow or stop the progression of the disease.

Light signal transduction is a biological process that refers to the way in which cells convert light signals into chemical or electrical responses. This process typically involves several components, including a light-sensitive receptor (such as a photopigment), a signaling molecule (like a G-protein or calcium ion), and an effector protein that triggers a downstream response.

In the visual system, for example, light enters the eye and activates photoreceptor cells in the retina. These cells contain a light-sensitive pigment called rhodopsin, which undergoes a chemical change when struck by a photon of light. This change triggers a cascade of signaling events that ultimately lead to the transmission of visual information to the brain.

Light signal transduction is also involved in other biological processes, such as the regulation of circadian rhythms and the synthesis of vitamin D. In these cases, specialized cells contain light-sensitive receptors that allow them to detect changes in ambient light levels and adjust their physiology accordingly.

Overall, light signal transduction is a critical mechanism by which organisms are able to sense and respond to their environment.

'Bufo marinus' is the scientific name for a species of toad commonly known as the Cane Toad or Giant Toad. This toad is native to Central and South America, but has been introduced to various parts of the world including Florida, Australia, and several Pacific islands. The toad produces a toxic secretion from glands on its back and neck, which can be harmful or fatal if ingested by pets or humans.

Cyclic guanosine monophosphate (cGMP) is a important second messenger molecule that plays a crucial role in various biological processes within the human body. It is synthesized from guanosine triphosphate (GTP) by the enzyme guanylyl cyclase.

Cyclic GMP is involved in regulating diverse physiological functions, such as smooth muscle relaxation, cardiovascular function, and neurotransmission. It also plays a role in modulating immune responses and cellular growth and differentiation.

In the medical field, changes in cGMP levels or dysregulation of cGMP-dependent pathways have been implicated in various disease states, including pulmonary hypertension, heart failure, erectile dysfunction, and glaucoma. Therefore, pharmacological agents that target cGMP signaling are being developed as potential therapeutic options for these conditions.

Retinal bipolar cells are a type of neuron located in the inner nuclear layer of the retina, an light-sensitive tissue that lines the interior of the eye. These cells play a crucial role in the visual system by transmitting visual signals from photoreceptors (rods and cones) to ganglion cells, which then relay this information to the brain via the optic nerve.

Bipolar cells have two processes or "arms" that connect to either photoreceptors or ganglion cells: one process receives input from photoreceptors and the other transmits output to ganglion cells. They are called "bipolar" because of this dual connection. These cells can be classified into different types based on their morphology, neurotransmitter usage, and synaptic connections with photoreceptors and ganglion cells.

There are two primary types of retinal bipolar cells: rod bipolar cells and cone bipolar cells. Rod bipolar cells mainly transmit signals from rod photoreceptors, which are responsible for low-light vision, while cone bipolar cells connect to cone photoreceptors that handle color vision and high visual acuity in bright light conditions.

Retinal bipolar cells help process and encode visual information based on contrast, spatial patterns, and temporal changes in light intensity. Their output contributes significantly to the formation of visual perceptions such as brightness, contrast, and motion detection. Dysfunction or damage to retinal bipolar cells can lead to various visual impairments and diseases, including some forms of vision loss.

I am not aware of a medical definition for the term "darkness." In general, darkness refers to the absence of light. It is not a term that is commonly used in the medical field, and it does not have a specific clinical meaning. If you have a question about a specific medical term or concept, I would be happy to try to help you understand it.

Cyclic nucleotide-gated (CNG) channels are a type of ion channel found in the membranes of certain cells, particularly in the sensory neurons of the visual and olfactory systems. They are called cyclic nucleotide-gated because they can be activated or regulated by the binding of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) or cyclic guanosine monophosphate (cGMP), to the intracellular domain of the channel.

CNG channels are permeable to cations, including sodium (Na+) and calcium (Ca2+) ions, and their activation allows these ions to flow into the cell. This influx of cations can trigger a variety of cellular responses, such as the initiation of visual or olfactory signaling pathways.

CNG channels are composed of four subunits that form a functional channel. Each subunit has a cyclic nucleotide-binding domain (CNBD) in its intracellular region, which can bind to cyclic nucleotides and regulate the opening and closing of the channel. The CNBD is connected to the pore-forming region of the channel by a flexible linker, allowing for conformational changes in the CNBD to be transmitted to the pore and modulate ion conductance.

CNG channels play important roles in various physiological processes, including sensory perception, neurotransmission, and cellular signaling. Dysfunction of CNG channels has been implicated in several human diseases, such as retinitis pigmentosa, congenital stationary night blindness, and cystic fibrosis.

No FAQ available that match "retinal rod photoreceptor cells"

No images available that match "retinal rod photoreceptor cells"