Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure.
The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE.
Specific molecular sites or proteins on or in cells to which VASOPRESSINS bind or interact in order to modify the function of the cells. Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The V1 receptor can be subdivided into V1a and V1b (formerly V3) receptors.
A synthetic analog of the pituitary hormone, ARGININE VASOPRESSIN. Its action is mediated by the VASOPRESSIN receptor V2. It has prolonged antidiuretic activity, but little pressor effects. It also modulates levels of circulating FACTOR VIII and VON WILLEBRAND FACTOR.
A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION.
A mutant strain of Rattus norvegicus used in research on renal function and hypertension and as a disease model for diabetes insipidus.
The porcine antidiuretic hormone (VASOPRESSINS). It is a cyclic nonapeptide that differs from ARG-VASOPRESSIN by one amino acid, containing a LYSINE at residue 8 instead of an ARGININE. Lys-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE.
Carrier proteins for OXYTOCIN and VASOPRESSIN. They are polypeptides of about 10-kDa, synthesized in the HYPOTHALAMUS. Neurophysin I is associated with oxytocin and neurophysin II is associated with vasopressin in their respective precursors and during transportation down the axons to the neurohypophysis (PITUITARY GLAND, POSTERIOR).
Drugs used for their effects on the kidneys' regulation of body fluid composition and volume. The most commonly used are the diuretics. Also included are drugs used for their antidiuretic and uricosuric actions, for their effects on the kidneys' clearance of other drugs, and for diagnosis of renal function.
A disease that is characterized by frequent urination, excretion of large amounts of dilute URINE, and excessive THIRST. Etiologies of diabetes insipidus include deficiency of antidiuretic hormone (also known as ADH or VASOPRESSIN) secreted by the NEUROHYPOPHYSIS, impaired KIDNEY response to ADH, and impaired hypothalamic regulation of thirst.
Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland.
A nonapeptide that contains the ring of OXYTOCIN and the side chain of ARG-VASOPRESSIN with the latter determining the specific recognition of hormone receptors. Vasotocin is the non-mammalian vasopressin-like hormone or antidiuretic hormone regulating water and salt metabolism.
Agents that reduce the excretion of URINE, most notably the octapeptide VASOPRESSINS.
Hypothalamic nucleus overlying the beginning of the OPTIC TRACT.
Aquaporin 2 is a water-specific channel protein that is expressed in KIDNEY COLLECTING DUCTS. The translocation of aquaporin 2 to the apical PLASMA MEMBRANE is regulated by VASOPRESSIN, and MUTATIONS in AQP2 have been implicated in a variety of kidney disorders including DIABETES INSIPIDUS.
Hormones released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). They include a number of peptides which are formed in the NEURONS in the HYPOTHALAMUS, bound to NEUROPHYSINS, and stored in the nerve terminals in the posterior pituitary. Upon stimulation, these peptides are released into the hypophysial portal vessel blood.
Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla.
The withholding of water in a structured experimental situation.
An increase in the excretion of URINE. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The balance of fluid in the BODY FLUID COMPARTMENTS; total BODY WATER; BLOOD VOLUME; EXTRACELLULAR SPACE; INTRACELLULAR SPACE, maintained by processes in the body that regulate the intake and excretion of WATER and ELECTROLYTES, particularly SODIUM and POTASSIUM.
Cell surface proteins that bind oxytocin with high affinity and trigger intracellular changes which influence the behavior of cells. Oxytocin receptors in the uterus and the mammary glands mediate the hormone's stimulation of contraction and milk ejection. The presence of oxytocin and oxytocin receptors in neurons of the brain probably reflects an additional role as a neurotransmitter.
Aquaporin 6 is an aquaglyceroporin that is found primarily in KIDNEY COLLECTING DUCTS. AQP6 protein functions as an anion-selective channel.
The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent.
Deficiency of sodium in the blood; salt depletion. (Dorland, 27th ed)
A condition of HYPONATREMIA and renal salt loss attributed to overexpansion of BODY FLUIDS resulting from sustained release of ANTIDIURETIC HORMONES which stimulates renal resorption of water. It is characterized by normal KIDNEY function, high urine OSMOLALITY, low serum osmolality, and neurological dysfunction. Etiologies include ADH-producing neoplasms, injuries or diseases involving the HYPOTHALAMUS, the PITUITARY GLAND, and the LUNG. This syndrome can also be drug-induced.
The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces.
The ability of the kidney to excrete in the urine high concentrations of solutes from the blood plasma.
A genetic or acquired polyuric disorder characterized by persistent hypotonic urine and HYPOKALEMIA. This condition is due to renal tubular insensitivity to VASOPRESSIN and failure to reduce urine volume. It may be the result of mutations of genes encoding VASOPRESSIN RECEPTORS or AQUAPORIN-2; KIDNEY DISEASES; adverse drug effects; or complications from PREGNANCY.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
Nucleus in the anterior part of the HYPOTHALAMUS.
A drive stemming from a physiological need for WATER.
Drugs used to cause constriction of the blood vessels.
Hypertonic sodium chloride solution. A solution having an osmotic pressure greater than that of physiologic salt solution (0.9 g NaCl in 100 ml purified water).
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells.
Urination of a large volume of urine with an increase in urinary frequency, commonly seen in diabetes (DIABETES MELLITUS; DIABETES INSIPIDUS).
Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE.
A class of porins that allow the passage of WATER and other small molecules across CELL MEMBRANES.
The condition that results from excessive loss of water from a living organism.
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.
A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS.
Compounds with BENZENE fused to AZEPINES.
Liquid by-product of excretion produced in the kidneys, temporarily stored in the bladder until discharge through the URETHRA.
An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS.
Injections into the cerebral ventricles.
A synthetic analog of vasopressin with ORNITHINE substitution at residue 8 of the cyclic nonapeptide. It is used as a local vasoconstrictor and hemostatic.
A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
An anterior pituitary hormone that stimulates the ADRENAL CORTEX and its production of CORTICOSTEROIDS. ACTH is a 39-amino acid polypeptide of which the N-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotrophic activity. Upon further tissue-specific processing, ACTH can yield ALPHA-MSH and corticotrophin-like intermediate lobe peptide (CLIP).
Chemical substances which inhibit the function of the endocrine glands, the biosynthesis of their secreted hormones, or the action of hormones upon their specific sites.
The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS.
The front portion of the HYPOTHALAMUS separated into the preoptic region and the supraoptic region. The preoptic region is made up of the periventricular GRAY MATTER of the rostral portion of the THIRD VENTRICLE and contains the preoptic ventricular nucleus and the medial preoptic nucleus. The supraoptic region contains the PARAVENTRICULAR HYPOTHALAMIC NUCLEUS, the SUPRAOPTIC NUCLEUS, the ANTERIOR HYPOTHALAMIC NUCLEUS, and the SUPRACHIASMATIC NUCLEUS.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
Tendency of fluids (e.g., water) to move from the less concentrated to the more concentrated side of a semipermeable membrane.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.
The consumption of liquids.
A group of compounds consisting in part of two rings sharing one atom (usually a carbon) in common.
A genetic or acquired polyuric disorder caused by a deficiency of VASOPRESSINS secreted by the NEUROHYPOPHYSIS. Clinical signs include the excretion of large volumes of dilute URINE; HYPERNATREMIA; THIRST; and polydipsia. Etiologies include HEAD TRAUMA; surgeries and diseases involving the HYPOTHALAMUS and the PITUITARY GLAND. This disorder may also be caused by mutations of genes such as ARVP encoding vasopressin and its corresponding neurophysin (NEUROPHYSINS).
The relationship between the dose of an administered drug and the response of the organism to the drug.
Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls.
Excessive amount of sodium in the blood. (Dorland, 27th ed)
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
The production and release of substances such as NEUROTRANSMITTERS or HORMONES from nerve cells.
Pyrrolidines are saturated, heterocyclic organic compounds containing a five-membered ring with four carbon atoms and one nitrogen atom (NRCH2CH2), commonly found as structural components in various alkaloids and used in the synthesis of pharmaceuticals and other organic materials.
A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
A tetradecapeptide originally obtained from the skins of toads Bombina bombina and B. variegata. It is also an endogenous neurotransmitter in many animals including mammals. Bombesin affects vascular and other smooth muscle, gastric secretion, and renal circulation and function.
An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent.
Sodium excretion by URINATION.
An octapeptide analog of angiotensin II (bovine) with amino acids 1 and 8 replaced with sarcosine and alanine, respectively. It is a highly specific competitive inhibitor of angiotensin II that is used in the diagnosis of HYPERTENSION.
In animals, the social relationship established between a male and female for reproduction. It may include raising of young.
The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM.
A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511)
The number of times the HEART VENTRICLES contract per unit of time, usually per minute.
A system of NEURONS that has the specialized function to produce and secrete HORMONES, and that constitutes, in whole or in part, an ENDOCRINE SYSTEM or organ.
Fluids composed mainly of water found within the body.
Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID.
Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER.
An enzyme of the lyase class that catalyzes the formation of CYCLIC AMP and pyrophosphate from ATP. EC 4.6.1.1.
A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals.
A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19.
The active form of GLYCOGEN PHOSPHORYLASE that is derived from the phosphorylation of PHOSPHORYLASE B. Phosphorylase a is deactivated via hydrolysis of phosphoserine by PHOSPHORYLASE PHOSPHATASE to form PHOSPHORYLASE B.
The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT.
A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS.
Elements of limited time intervals, contributing to particular results or situations.
A hormone secreted by the ADRENAL CORTEX that regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium.
The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical.
The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary.
Sepsis associated with HYPOTENSION or hypoperfusion despite adequate fluid resuscitation. Perfusion abnormalities may include, but are not limited to LACTIC ACIDOSIS; OLIGURIA; or acute alteration in mental status.
Raised area at the infundibular region of the HYPOTHALAMUS at the floor of the BRAIN, ventral to the THIRD VENTRICLE and adjacent to the ARCUATE NUCLEUS OF HYPOTHALAMUS. It contains the terminals of hypothalamic neurons and the capillary network of hypophyseal portal system, thus serving as a neuroendocrine link between the brain and the PITUITARY GLAND.
A class of glucosyltransferases that catalyzes the degradation of storage polysaccharides, such as glucose polymers, by phosphorolysis in animals (GLYCOGEN PHOSPHORYLASE) and in plants (STARCH PHOSPHORYLASE).

Oxytocin and vasopressin receptors in human and uterine myomas during menstrual cycle and early pregnancy. (1/961)

The purpose of this study was to determine the specificity and concentration of oxytocin (OT) and arginine vasopressin (AVP) binding sites in non-pregnant (NP) human and rhesus monkey endometrium, myometrium and fibromyomas, and to determine the cellular localization of OT receptor (OTR). Besides [3H]AVP, [125I]LVA, a specific VP1 receptor subtype antagonist, was used to determine vasopressin receptor (VPR) concentrations. Samples were obtained from 42 pre-menopausal and three pregnant women (5, 13 and 35 weeks gestation), and several NP and pregnant monkeys. Specificity of binding was assessed in competition experiments with unlabelled agonists and antagonists of known pharmacological potency. Cellular localization of OTR was determined by immunohistochemistry. In NP human uterine tissues, [3H]AVP was bound with higher affinity and greater binding capacity than [3H]OT, whereas in pregnant women and in NP and pregnant rhesus monkeys, uterine OT binding capacity was greater. OT and AVP binding sites discriminated very poorly between OT and AVP; [125I]LVA binding sites were more selective than [3H]AVP. Their ligand specificity and binding kinetics indicated the presence of two distinct populations of binding sites for OT and AVP in primate uterus. Endometrium of NP women and monkeys had low OTR and VPR concentrations. Myometrial and endometrial OTR and VPR were down-regulated in midcycle and in early human pregnancy, they were up-regulated in the secretory phase and second half of pregnancy. Immunoreactive OTR in NP uterus was localized in patches of myometrial muscle cells and small numbers of endometrial epithelial cells.  (+info)

Adenoviral gene transfer of the human V2 vasopressin receptor improves contractile force of rat cardiomyocytes. (2/961)

BACKGROUND: In congestive heart failure, high systemic levels of the hormone arginine vasopressin (AVP) result in vasoconstriction and reduced cardiac contractility. These effects are mediated by the V1 vasopressin receptor (V1R) coupled to phospholipase C beta-isoforms. The V2 vasopressin receptor (V2R), which promotes activation of the Gs/adenylyl cyclase system, is physiologically expressed in the kidney but not in the myocardium. Expression of a recombinant V2R (rV2R) in the myocardium could result in a positive inotropic effect via the endogenous high concentrations of AVP in heart failure. METHODS AND RESULTS: A recombinant adenovirus encoding the human V2R (Ad-V2R) was tested for its ability to modulate the cardiac Gs/adenylyl cyclase system and to potentiate contractile force in rat ventricular cardiomyocytes and in H9c2 cardiomyoblasts. Ad-V2R infection resulted in a virus concentration-dependent expression of the transgene and led to a marked increase in cAMP formation in rV2R-expressing cardiomyocytes after exposure to AVP. Single-cell shortening measurements showed a significant agonist-induced contraction amplitude enhancement, which was blocked by the V2R antagonist, SR 121463A. Pretreatment of Ad-V2R-infected cardiomyocytes with AVP led to desensitization of the rV2R after short-term agonist exposure but did not lead to further loss of receptor function or density after long-term agonist incubation, thus demonstrating resistance of the rV2R to downregulation. CONCLUSIONS: Adenoviral gene transfer of the V2R in cardiomyocytes can modulate the endogenous adenylyl cyclase-signal transduction cascade and can potentiate contraction amplitude in cardiomyocytes. Heterologous expression of cAMP-forming receptors in the myocardium could lead to novel strategies in congestive heart failure by bypassing the desensitized beta-adrenergic receptor signaling.  (+info)

Effects of arginine vasopressin on cell volume regulation in brain astrocyte in culture. (3/961)

Astrocytes initially swell when exposed to hypotonic medium but rapidly return to normal volume by the process of regulatory volume decrease (RVD). The role that arginine vasopressin (AVP) plays in hypotonically mediated RVD in astrocytes is unknown. This study was therefore designed to determine whether AVP might play a role in astrocyte RVD. With the use of 3-O-[3H]methyl-D-glucose to determine water space, AVP treatment resulted in significantly increased 3-O-methyl-D-glucose water space within 30 s of hypotonic exposure (P = 0.0001) and remained significantly elevated above baseline (1. 75 microliter/mg protein) at 5 min (P < 0.021). In contrast, in untreated cells, complete RVD was achieved by 5 min. At 30 s, cell volume with AVP treatment was 37% greater than in cells that received no treatment (2.9 vs. 2.26 microliter/mg protein, respectively; P < 0.006). The rate of cell volume increase (dV/dt) over 30 s was highly significant (0.038 vs. 0.019 microliter. mg protein-1. s-1 in the AVP-treated vs. untreated group; P = 0.0004 by regression analysis). Additionally, the rate of cell volume decrease over the next 4.5 min was also significantly greater with vasopressin treatment (-dV/dt = 0.0027 vs. 0.0013 microliter. mg protein-1. s-1; P = 0.0306). The effect of AVP was concentration dependent with EC50 = 3.5 nM. To determine whether AVP action was receptor mediated, we performed RVD studies in the presence of the V1-receptor antagonists benzamil and ethylisopropryl amiloride and the V2-receptor agonist 1-desamino-8-D-arginine vasopressin (DDAVP). Both V1-receptor antagonists significantly inhibited AVP-mediated volume increase by 40-47% (P < 0.005), whereas DDAVP had no stimulatory effects above control. Taken together, these data suggest that AVP treatment of brain astrocytes in culture appears to increase 3-O-methyl-D-glucose water space during RVD through V1 receptor-mediated mechanisms. The significance of these findings is presently unclear.  (+info)

Vasopressin V2 receptor enhances gain of baroreflex in conscious spontaneously hypertensive rats. (4/961)

The aim of the present study was to determine the receptor subtype involved in arginine vasopressin (AVP)-induced modulation of baroreflex function in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats using novel nonpeptide AVP V1- and V2-receptor antagonists. Baroreceptor heart rate (HR) reflex was investigated in both SHR and WKY rats which were intravenously administered the selective V1- and V2-receptor antagonists OPC-21268 and OPC-31260, respectively. Baroreflex function was assessed by obtaining alternate pressor and depressor responses to phenylephrine and sodium nitroprusside, respectively, to construct baroreflex curves. In both SHR and WKY rats baroreflex activity was tested before and after intravenous administration of vehicle (20% DMSO), OPC-21268 (10 mg/kg), and OPC-31260 (1 and 10 mg/kg). Vehicle did not significantly alter basal mean arterial pressure (MAP) and HR values or baroreflex function in SHR or WKY rats. The V1-receptor antagonist had no significant effect on resting MAP or HR values or on baroreflex parameters in both groups of rats, although this dose was shown to significantly inhibit the pressor response to AVP (5 ng iv; ANOVA, P < 0.05). In SHR but not WKY rats the V2-receptor antagonist significantly attenuated the gain (or slope) of the baroreflex curve (to 73 +/- 3 and 79 +/- 7% of control for 1 and 10 mg/kg, respectively), although AVP-induced pressor responses were also attenuated with the higher dose of the V2-receptor antagonist. These findings suggest that AVP tonically enhances baroreflex function through a V2 receptor in the SHR.  (+info)

AVP inhibits LPS- and IL-1beta-stimulated NO and cGMP via V1 receptor in cultured rat mesangial cells. (5/961)

The present study examined how arginine vasopressin (AVP) affects nitric oxide (NO) metabolism in cultured rat glomerular mesangial cells (GMC). GMC were incubated with test agents and nitrite, and intracellular cGMP content, inducible nitric oxide synthase (iNOS) mRNA, and iNOS protein were analyzed by the Griess method, enzyme immunoassay, and Northern and Western blotting, respectively. AVP inhibited lipopolysaccharide (LPS)- and interleukin-1beta (IL-1beta)-induced nitrite production in a dose- and time-dependent manner, with concomitant changes in cGMP content, iNOS mRNA, and iNOS protein. This inhibition by AVP was reversed by V1- but not by oxytocin-receptor antagonist. Inhibition by AVP was also reproduced on LPS and interferon-gamma (IFN-gamma). Protein kinase C (PKC) inhibitors reversed AVP inhibition, whereas PKC activator inhibited nitrite production. Although dexamethasone and pyrrolidinedithiocarbamate (PDTC), inhibitors of nuclear factor-kappaB, inhibited nitrite production, further inhibition by AVP was not observed. AVP did not show further inhibition of nitrite production with actinomycin D, an inhibitor of transcription, or cycloheximide, an inhibitor of protein synthesis. In conclusion, AVP inhibits LPS- and IL-1beta-induced NO production through a V1 receptor. The inhibitory action of AVP involves both the activation of PKC and the transcription of iNOS mRNA in cultured rat GMC.  (+info)

Separate receptors mediate oxytocin and vasopressin stimulation of cAMP in rat inner medullary collecting duct cells. (6/961)

The two neurohypophysial hormones arginine vasopressin (AVP) and oxytocin have actions in the inner medullary collecting duct (IMCD) where both peptides induce an increase in cAMP accumulation. The present study has employed a novel IMCD cell line to determine whether these two hormones induce cAMP accumulation via common or separate receptors, and to characterize the potential receptors responsible. Equal volumes of vehicle (150 mM NaCl) or hormone/antagonist solutions were added to aliquots of 10(4) IMCD cells in the presence of 10(-3) M 3-isobutylmethylxanthine (IBMX) and incubated at 37 degrees C for 4 min. cAMP levels were determined by radioimmunoassay and protein concentration by Bradford assay. Both AVP and oxytocin elicited dose-dependent increases in cAMP generation, though oxytocin was less potent than AVP (EC50 = 1.6 x 10(-8) M vs. 7.4 x 10(-10) M). AVP at 10(-8) M and oxytocin at 10(-8) M, concentrations sufficient to elicit near-maximal cAMP accumulation, resulted in cAMP levels of 73.4 +/- 1.7 and 69.0 +/- 3.3 pmol (mg protein)-1 (4 min)-1, respectively (n = 10), compared with the vehicle-treated basal value of 37.7 +/- 2.2 pmol (mg protein)-1 (4 min)-1 (P < 0.001, n = 10). Combined AVP (10(-8) M) and oxytocin 10(-6) M) resulted in cAMP accumulation of 63.8 +/- 3.1 pmol (mg protein)-1 (4 min)-1 (n = 10), which was not significantly different from the effect of oxytocin alone, but slightly less than that for AVP alone (P < 0.05). A submaximal concentration of AVP (10(-10) M) induced cAMP accumulation of 48.6 +/- 2.5 pmol (mg protein)-1 (4 min)-1 (P < 0.01 compared with basal level of 34.9 +/- 2.4 pmol (mg protein)-1 (4 min)-1, n = 10), which was blocked in the presence of a vasopressin V2 receptor antagonist (10(-7) M OPC-31260) but not by the oxytocin receptor antagonist (10(-6) M [Pen1,pMePhe2, Thr4,Orn8]oxytocin) (36.3 +/- 6.1 and 45.1 +/- 1.3 pmol (mg protein)-1 (4 min)-1 respectively, P < 0.05, n = 10). A submaximal concentration of oxytocin (10(-7) M) induced a cAMP accumulation of 45.8 +/- 1.8 pmol (mg protein)-1 (4 min)-1 (n = 10), which was reduced by addition of 10(-6) M oxytocin antagonist (36.3 +/- 2.1 pmol (mg protein)-1 (4 min)-1, P < 0.05, n = 10), whereas co-incubation with 10(-6) M of the V2 receptor antagonist had no effect (43.2 +/- 1.3 pmol (mg protein)-1 (4 min)-1, n = 10). These results indicate that AVP and oxytocin induce cAMP accumulation from a common ATP pool in IMCD cells, and that separate vasopressin V2 and oxytocin receptor systems are involved, perhaps coupled to a common adenylate cyclase system.  (+info)

Comparison of two aquaretic drugs (niravoline and OPC-31260) in cirrhotic rats with ascites and water retention. (7/961)

kappa-Opioid receptor agonists (niravoline) or nonpeptide antidiuretic hormone (ADH) V2 receptor antagonists (OPC-31260) possess aquaretic activity in cirrhosis; however, there is no information concerning the effects induced by the chronic administration of these drugs under this condition. To compare the renal and hormonal effects induced by the long-term oral administration of niravoline, OPC-31260, or vehicle, urine volume, urinary osmolality, sodium excretion, and urinary excretion of aldosterone (ALD) and ADH were measured in basal conditions and for 10 days after the daily oral administration of niravoline, OPC-31260, or vehicle to cirrhotic rats with ascites and water retention. Creatinine clearance, serum osmolality, ADH mRNA expression, and systemic hemodynamics were also measured at the end of the study. Niravoline increased water excretion, peripheral resistance, serum osmolality, and sodium excretion and reduced creatinine clearance, ALD and ADH excretion, and mRNA expression of ADH. OPC-31260 also increased water metabolism and sodium excretion and reduced urinary ALD, although the aquaretic effect was only evident during the first 2 days, and no effects on serum osmolality, renal filtration, and systemic hemodynamics were observed. Therefore, both agents have aquaretic efficacy, but the beneficial therapeutic effects of the long-term oral administration of niravoline are more consistent than those of OPC-31260 in cirrhotic rats with ascites and water retention.  (+info)

Effects of exogenous [Arg8]-vasopressin on borderline-hypertensive Hiroshima rats. (8/961)

The interaction between [Arg8]-vasopressin and a vasopressin receptor antagonist, [d(CH2)5(1), O-Me-Tyr2, Arg8]-vasopressin, was examined in Hiroshima rats and normotensive control rats under pentobarbital anesthesia. [Arg8]-vasopressin dose-dependently increased the arterial pressure in both the Hiroshima and control rats, the pressor effect being greater in the Hiroshima rats. After the administration of a vasopressin antagonist (0.01 mg/kg), which by itself decreased arterial pressure only in the Hiroshima rats, the dose-response curve for [Arg8]-vasopressin was much more greatly shifted to the right in the control rats. These results indicate that with or without a vasopressin antagonist, the exogenous [Arg8]-vasopressin induced more powerful pressor actions in the Hiroshima rats compared to the control rats.  (+info)

Vasopressin, also known as antidiuretic hormone (ADH), is a hormone that helps regulate water balance in the body. It is produced by the hypothalamus and stored in the posterior pituitary gland. When the body is dehydrated or experiencing low blood pressure, vasopressin is released into the bloodstream, where it causes the kidneys to decrease the amount of urine they produce and helps to constrict blood vessels, thereby increasing blood pressure. This helps to maintain adequate fluid volume in the body and ensure that vital organs receive an adequate supply of oxygen-rich blood. In addition to its role in water balance and blood pressure regulation, vasopressin also plays a role in social behaviors such as pair bonding and trust.

Arginine vasopressin (AVP), also known as antidiuretic hormone (ADH), is a hormone produced in the hypothalamus and stored in the posterior pituitary gland. It plays a crucial role in regulating water balance and blood pressure in the body.

AVP acts on the kidneys to promote water reabsorption, which helps maintain adequate fluid volume and osmotic balance in the body. It also constricts blood vessels, increasing peripheral vascular resistance and thereby helping to maintain blood pressure. Additionally, AVP has been shown to have effects on cognitive function, mood regulation, and pain perception.

Deficiencies or excesses of AVP can lead to a range of medical conditions, including diabetes insipidus (characterized by excessive thirst and urination), hyponatremia (low sodium levels in the blood), and syndrome of inappropriate antidiuretic hormone secretion (SIADH).

Vasopressin receptors are a type of G protein-coupled receptor that bind to and are activated by the hormone vasopressin (also known as antidiuretic hormone or ADH). There are two main types of vasopressin receptors, V1 and V2.

V1 receptors are found in various tissues throughout the body, including vascular smooth muscle, heart, liver, and kidney. Activation of V1 receptors leads to vasoconstriction (constriction of blood vessels), increased heart rate and force of heart contractions, and release of glycogen from the liver.

V2 receptors are primarily found in the kidney's collecting ducts. When activated, they increase water permeability in the collecting ducts, allowing for the reabsorption of water into the bloodstream and reducing urine production. This helps to regulate fluid balance and maintain normal blood pressure.

Abnormalities in vasopressin receptor function can contribute to various medical conditions, including hypertension, heart failure, and kidney disease.

Desmopressin, also known as 1-deamino-8-D-arginine vasopressin (dDAVP), is a synthetic analogue of the natural hormone arginine vasopressin. It is commonly used in medical practice for the treatment of diabetes insipidus, a condition characterized by excessive thirst and urination due to lack of antidiuretic hormone (ADH).

Desmopressin works by binding to V2 receptors in the kidney, which leads to increased water reabsorption and reduced urine production. It also has some effect on V1 receptors, leading to vasoconstriction and increased blood pressure. However, its primary use is for its antidiuretic effects.

In addition to its use in diabetes insipidus, desmopressin may also be used to treat bleeding disorders such as hemophilia and von Willebrand disease, as it can help to promote platelet aggregation and reduce bleeding times. It is available in various forms, including nasal sprays, injectable solutions, and oral tablets or dissolvable films.

Oxytocin is a hormone that is produced in the hypothalamus and released by the posterior pituitary gland. It plays a crucial role in various physiological processes, including social bonding, childbirth, and breastfeeding. During childbirth, oxytocin stimulates uterine contractions to facilitate labor and delivery. After giving birth, oxytocin continues to be released in large amounts during breastfeeding, promoting milk letdown and contributing to the development of the maternal-infant bond.

In social contexts, oxytocin has been referred to as the "love hormone" or "cuddle hormone," as it is involved in social bonding, trust, and attachment. It can be released during physical touch, such as hugging or cuddling, and may contribute to feelings of warmth and closeness between individuals.

In addition to its roles in childbirth, breastfeeding, and social bonding, oxytocin has been implicated in other physiological functions, including regulating blood pressure, reducing anxiety, and modulating pain perception.

I'm sorry for any confusion, but "Rats, Brattleboro" is not a recognized medical term or condition. It seems like it could be a nonsensical phrase or a reference to something specific, such as a place (Brattleboro, a town in Vermont) and an exclamation of frustration or surprise ("rats"). If you're referring to a specific medical condition or concept, please provide more context so I can give you a more accurate and helpful response.

Lypressin is a synthetic analogue of a natural hormone called vasopressin, which is produced by the pituitary gland in the brain. The primary function of vasopressin, also known as antidiuretic hormone (ADH), is to regulate water balance in the body by controlling the amount of urine produced by the kidneys.

Lypressin has similar physiological effects to vasopressin and is used in medical treatments for conditions related to the regulation of water balance, such as diabetes insipidus. Diabetes insipidus is a condition characterized by excessive thirst and the production of large amounts of dilute urine due to a deficiency in vasopressin or an impaired response to it.

In summary, Lypressin is a synthetic form of vasopressin, a hormone that helps regulate water balance in the body by controlling urine production in the kidneys. It is used as a therapeutic agent for treating diabetes insipidus and related conditions.

Neurophysins are small protein molecules that are derived from the larger precursor protein, pro-neurophysin. They are synthesized in the hypothalamus of the brain and are stored in and released from neurosecretory granules, along with neurohypophysial hormones such as oxytocin and vasopressin.

Neurophysins serve as carrier proteins for these hormones, helping to stabilize them and facilitate their transport and release into the bloodstream. There are two main types of neurophysins, neurophysin I and neurophysin II, which are associated with oxytocin and vasopressin, respectively.

Neurophysins have been studied for their potential role in various physiological processes, including water balance, social behavior, and reproductive functions. However, their precise mechanisms of action and functional significance are still not fully understood.

"Renal agents" is not a standardized medical term with a single, widely accepted definition. However, in a general sense, renal agents could refer to medications or substances that have an effect on the kidneys or renal function. This can include drugs that are primarily used to treat kidney diseases or disorders (such as certain types of diuretics, ACE inhibitors, or ARBs), as well as chemicals or toxins that can negatively impact renal function if they are not properly eliminated from the body.

It's worth noting that the term "renal agent" is not commonly used in medical literature or clinical practice, and its meaning may vary depending on the context in which it is used. If you have any specific questions about a particular medication or substance and its effect on renal function, I would recommend consulting with a healthcare professional for more accurate information.

Diabetes Insipidus is a medical condition characterized by the excretion of large amounts of dilute urine (polyuria) and increased thirst (polydipsia). It is caused by a deficiency in the hormone vasopressin (also known as antidiuretic hormone or ADH), which regulates the body's water balance.

In normal physiology, vasopressin is released from the posterior pituitary gland in response to an increase in osmolality of the blood or a decrease in blood volume. This causes the kidneys to retain water and concentrate the urine. In Diabetes Insipidus, there is either a lack of vasopressin production (central diabetes insipidus) or a decreased response to vasopressin by the kidneys (nephrogenic diabetes insipidus).

Central Diabetes Insipidus can be caused by damage to the hypothalamus or pituitary gland, such as from tumors, trauma, or surgery. Nephrogenic Diabetes Insipidus can be caused by genetic factors, kidney disease, or certain medications that interfere with the action of vasopressin on the kidneys.

Treatment for Diabetes Insipidus depends on the underlying cause. In central diabetes insipidus, desmopressin, a synthetic analogue of vasopressin, can be administered to replace the missing hormone. In nephrogenic diabetes insipidus, treatment may involve addressing the underlying kidney disease or adjusting medications that interfere with vasopressin action. It is important for individuals with Diabetes Insipidus to maintain adequate hydration and monitor their fluid intake and urine output.

The posterior pituitary gland, also known as the neurohypophysis, is the posterior portion of the pituitary gland. It is primarily composed of nerve fibers that originate from the hypothalamus, a region of the brain. These nerve fibers release two important hormones: oxytocin and vasopressin (also known as antidiuretic hormone or ADH).

Oxytocin plays a role in social bonding, sexual reproduction, and childbirth. During childbirth, it stimulates uterine contractions to help facilitate delivery, and after birth, it helps to trigger the release of milk from the mother's breasts during breastfeeding.

Vasopressin, on the other hand, helps regulate water balance in the body by controlling the amount of water that is excreted by the kidneys. It does this by increasing the reabsorption of water in the collecting ducts of the kidney, which leads to a more concentrated urine and helps prevent dehydration.

Overall, the posterior pituitary gland plays a critical role in maintaining fluid balance, social bonding, and reproduction.

Vasotocin is not generally recognized as a medical term or a well-established physiological concept in human medicine. However, it is a term used in comparative endocrinology and animal physiology to refer to a nonapeptide hormone that is functionally and structurally similar to arginine vasopressin (AVP) or antidiuretic hormone (ADH) in mammals.

Vasotocin is found in various non-mammalian vertebrates, including fish, amphibians, and reptiles, where it plays roles in regulating water balance, blood pressure, social behaviors, and reproduction. In these animals, vasotocin is produced by the hypothalamus and stored in the posterior pituitary gland before being released into the circulation to exert its effects on target organs.

Therefore, while not a medical definition per se, vasotocin can be defined as a neuropeptide hormone that regulates various physiological functions in non-mammalian vertebrates, with structural and functional similarities to mammalian arginine vasopressin.

Antidiuretic agents are medications or substances that reduce the amount of urine produced by the body. They do this by increasing the reabsorption of water in the kidneys, which leads to a decrease in the excretion of water and solutes in the urine. This can help to prevent dehydration and maintain fluid balance in the body.

The most commonly used antidiuretic agent is desmopressin, which works by mimicking the action of a natural hormone called vasopressin (also known as antidiuretic hormone or ADH). Vasopressin is produced by the pituitary gland and helps to regulate water balance in the body. When the body's fluid levels are low, vasopressin is released into the bloodstream, where it causes the kidneys to reabsorb more water and produce less urine.

Antidiuretic agents may be used to treat a variety of medical conditions, including diabetes insipidus (a rare disorder that causes excessive thirst and urination), bedwetting in children, and certain types of headaches. They may also be used to manage fluid balance in patients with kidney disease or heart failure.

It is important to use antidiuretic agents only under the supervision of a healthcare provider, as they can have side effects and may interact with other medications. Overuse or misuse of these drugs can lead to water retention, hyponatremia (low sodium levels in the blood), and other serious complications.

The supraoptic nucleus (SON) is a collection of neurons located in the hypothalamus, near the optic chiasm, in the brain. It plays a crucial role in regulating osmoregulation and fluid balance within the body through the production and release of vasopressin, also known as antidiuretic hormone (ADH).

Vasopressin is released into the bloodstream and acts on the kidneys to promote water reabsorption, thereby helping to maintain normal blood pressure and osmolarity. The supraoptic nucleus receives input from osmoreceptors in the circumventricular organs of the brain, which detect changes in the concentration of solutes in the extracellular fluid. When the osmolarity increases, such as during dehydration, the supraoptic nucleus is activated to release vasopressin and help restore normal fluid balance.

Additionally, the supraoptic nucleus also contains oxytocin-producing neurons, which play a role in social bonding, maternal behavior, and childbirth. Oxytocin is released into the bloodstream and acts on various tissues, including the uterus and mammary glands, to promote contraction and milk ejection.

Aquaporin 2 (AQP2) is a type of aquaporin, which is a water channel protein found in the membranes of cells. Specifically, AQP2 is located in the principal cells of the collecting ducts in the kidneys. It plays a crucial role in regulating water reabsorption and urine concentration by facilitating the movement of water across the cell membrane in response to the hormone vasopressin (also known as antidiuretic hormone). When vasopressin binds to receptors on the cell surface, it triggers a cascade of intracellular signals that lead to the translocation of AQP2 water channels from intracellular vesicles to the apical membrane. This increases the permeability of the apical membrane to water, allowing for efficient reabsorption of water and concentration of urine. Dysfunction in AQP2 has been implicated in various kidney disorders, such as nephrogenic diabetes insipidus.

Pituitary hormones refer to the chemical messengers produced and released by the pituitary gland, which is a small endocrine gland located at the base of the brain. The pituitary gland is divided into two main parts: the anterior lobe (also known as the adenohypophysis) and the posterior lobe (also known as the neurohypophysis).

Posterior pituitary hormones are those that are produced by the hypothalamus, a region of the brain located above the pituitary gland, and stored in the posterior pituitary before being released. There are two main posterior pituitary hormones:

1. Oxytocin: This hormone plays a role in social bonding, sexual reproduction, and childbirth. During childbirth, oxytocin stimulates uterine contractions to help facilitate delivery of the baby. After delivery, oxytocin continues to be released to stimulate milk production and letdown during breastfeeding.
2. Vasopressin (also known as antidiuretic hormone or ADH): This hormone helps regulate water balance in the body by controlling the amount of urine that is produced by the kidneys. When vasopressin is released, it causes the kidneys to retain water and increase blood volume, which can help to maintain blood pressure.

Together, these posterior pituitary hormones play important roles in regulating various physiological processes in the body.

Collecting kidney tubules, also known as collecting ducts, are the final portion of the renal tubule in the nephron of the kidney. They collect filtrate from the distal convoluted tubules and glomeruli and are responsible for the reabsorption of water and electrolytes back into the bloodstream under the influence of antidiuretic hormone (ADH) and aldosterone. The collecting ducts then deliver the remaining filtrate to the ureter, which transports it to the bladder for storage until urination.

Water deprivation is a condition that occurs when an individual is deliberately or unintentionally not given access to adequate water for a prolonged period. This can lead to dehydration, which is the excessive loss of body water and electrolytes. In severe cases, water deprivation can result in serious health complications, including seizures, kidney damage, brain damage, coma, and even death. It's important to note that water is essential for many bodily functions, including maintaining blood pressure, regulating body temperature, and removing waste products from the body. Therefore, it's crucial to stay hydrated by drinking an adequate amount of water each day.

Diuresis is a medical term that refers to an increased production of urine by the kidneys. It can occur as a result of various factors, including certain medications, medical conditions, or as a response to a physiological need, such as in the case of dehydration. Diuretics are a class of drugs that promote diuresis and are often used to treat conditions such as high blood pressure, heart failure, and edema.

Diuresis can be classified into several types based on its underlying cause or mechanism, including:

1. Osmotic diuresis: This occurs when the kidneys excrete large amounts of urine in response to a high concentration of solutes (such as glucose) in the tubular fluid. The high osmolarity of the tubular fluid causes water to be drawn out of the bloodstream and into the urine, leading to an increase in urine output.
2. Forced diuresis: This is a medical procedure in which large amounts of intravenous fluids are administered to promote diuresis. It is used in certain clinical situations, such as to enhance the excretion of toxic substances or to prevent kidney damage.
3. Natriuretic diuresis: This occurs when the kidneys excrete large amounts of sodium and water in response to the release of natriuretic peptides, which are hormones that regulate sodium balance and blood pressure.
4. Aquaresis: This is a type of diuresis that occurs in response to the ingestion of large amounts of water, leading to dilute urine production.
5. Pathological diuresis: This refers to increased urine production due to underlying medical conditions such as diabetes insipidus or pyelonephritis.

It is important to note that excessive diuresis can lead to dehydration and electrolyte imbalances, so it should be monitored carefully in clinical settings.

Water-electrolyte balance refers to the regulation of water and electrolytes (sodium, potassium, chloride, bicarbonate) in the body to maintain homeostasis. This is crucial for various bodily functions such as nerve impulse transmission, muscle contraction, fluid balance, and pH regulation. The body maintains this balance through mechanisms that control water intake, excretion, and electrolyte concentration in various body fluids like blood and extracellular fluid. Disruptions in water-electrolyte balance can lead to dehydration or overhydration, and imbalances in electrolytes can cause conditions such as hyponatremia (low sodium levels) or hyperkalemia (high potassium levels).

Oxytocin receptors are specialized protein structures found on the surface of cells, primarily in the uterus and mammary glands. They bind to the hormone oxytocin, which is produced in the hypothalamus and released into the bloodstream by the posterior pituitary gland.

When oxytocin binds to its receptor, it triggers a series of intracellular signaling events that lead to various physiological responses. In the uterus, oxytocin receptors play a crucial role in promoting contractions during labor and childbirth. In the mammary glands, they stimulate milk letdown and ejection during breastfeeding.

Oxytocin receptors have also been identified in other tissues, including the brain, heart, and kidneys, where they are involved in a variety of functions such as social bonding, sexual behavior, stress response, and cardiovascular regulation. Dysregulation of oxytocin receptor function has been implicated in several pathological conditions, including anxiety disorders, autism spectrum disorder, and hypertension.

Aquaporin 6 (AQP6) is a protein that functions as a water channel in the membranes of certain cells. It is a member of the aquaporin family, which are proteins that allow the selective transport of water and small solutes across biological membranes. Aquaporin 6 is primarily expressed in the kidney, where it is localized to the intracellular vesicles of intercalated cells in the collecting ducts. It is thought to play a role in acid-base balance and urine concentration by regulating the movement of water and hydrogen ions (protons) across cell membranes. Aquaporin 6 has also been found to be permeable to anions, making it unique among aquaporins. Additionally, AQP6 has been identified in other tissues such as the brain, lung, and testis, but its function in these tissues is not well understood.

Osmolar concentration is a measure of the total number of solute particles (such as ions or molecules) dissolved in a solution per liter of solvent (usually water), which affects the osmotic pressure. It is expressed in units of osmoles per liter (osmol/L). Osmolarity and osmolality are related concepts, with osmolarity referring to the number of osmoles per unit volume of solution, typically measured in liters, while osmolality refers to the number of osmoles per kilogram of solvent. In clinical contexts, osmolar concentration is often used to describe the solute concentration of bodily fluids such as blood or urine.

Hyponatremia is a condition characterized by abnormally low sodium levels in the blood, specifically levels less than 135 mEq/L. Sodium is an essential electrolyte that helps regulate water balance in and around your cells and plays a crucial role in nerve and muscle function. Hyponatremia can occur due to various reasons, including certain medical conditions, medications, or excessive water intake leading to dilution of sodium in the body. Symptoms may range from mild, such as nausea, confusion, and headache, to severe, like seizures, coma, or even death in extreme cases. It's essential to seek medical attention if you suspect hyponatremia, as prompt diagnosis and treatment are vital for a favorable outcome.

Inappropriate Antidiuretic Hormone (ADH) Syndrome, also known as the Syndrome of Inappropriate Antidiuresis (SIAD), is a condition characterized by the excessive release or action of antidiuretic hormone (ADH) leading to an imbalance of water and electrolytes in the body.

ADH is a hormone produced by the pituitary gland that helps regulate water balance in the body by controlling the amount of urine produced by the kidneys. In normal conditions, ADH levels increase in response to dehydration or decreased blood volume, causing the kidneys to retain water and decrease urine output.

However, in Inappropriate ADH Syndrome, there is an overproduction or inappropriate release of ADH, even when the body does not need it. This can lead to a condition called hyponatremia, which is low sodium levels in the blood. Hyponatremia can cause symptoms such as headache, confusion, seizures, and in severe cases, coma or death.

Inappropriate ADH Syndrome can be caused by various factors, including certain medications, brain tumors, lung diseases, and other medical conditions that affect the production or release of ADH. It is important to diagnose and treat Inappropriate ADH Syndrome promptly to prevent serious complications from hyponatremia. Treatment typically involves addressing the underlying cause and adjusting fluid intake and electrolyte levels as needed.

The kidney medulla is the inner portion of the renal pyramids in the kidney, consisting of multiple conical structures found within the kidney. It is composed of loops of Henle and collecting ducts responsible for concentrating urine by reabsorbing water and producing a hyperosmotic environment. The kidney medulla has a unique blood supply and is divided into an inner and outer zone, with the inner zone having a higher osmolarity than the outer zone. This region of the kidney helps regulate electrolyte and fluid balance in the body.

Kidney concentrating ability refers to the capacity of the kidneys to increase the concentration of solutes, such as urea and minerals, and remove waste products while reabsorbing water to maintain fluid balance in the body. This is primarily regulated by the hormone vasopressin (ADH), which signals the collecting ducts in the nephrons of the kidneys to absorb more water, resulting in the production of concentrated urine. A decreased kidney concentrating ability may indicate a variety of renal disorders or diseases, such as diabetes insipidus or chronic kidney disease.

Nephrogenic diabetes insipidus is a type of diabetes insipidus that occurs due to the inability of the kidneys to respond to the antidiuretic hormone (ADH), also known as vasopressin. This results in excessive thirst and the production of large amounts of dilute urine.

In nephrogenic diabetes insipidus, the problem lies in the kidney tubules, which fail to absorb water from the urine due to a defect in the receptors or channels that respond to ADH. This can be caused by genetic factors, certain medications, kidney diseases, and electrolyte imbalances.

Treatment for nephrogenic diabetes insipidus typically involves addressing the underlying cause, if possible, as well as managing symptoms through a low-salt diet, increased fluid intake, and medications that increase water reabsorption in the kidneys.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

The Paraventricular Hypothalamic Nucleus (PVN) is a nucleus in the hypothalamus, which is a part of the brain that regulates various autonomic functions and homeostatic processes. The PVN plays a crucial role in the regulation of neuroendocrine and autonomic responses to stress, as well as the control of fluid and electrolyte balance, cardiovascular function, and energy balance.

The PVN is composed of several subdivisions, including the magnocellular and parvocellular divisions. The magnocellular neurons produce and release two neuropeptides, oxytocin and vasopressin (also known as antidiuretic hormone), into the circulation via the posterior pituitary gland. These neuropeptides play important roles in social behavior, reproduction, and fluid balance.

The parvocellular neurons, on the other hand, project to various brain regions and the pituitary gland, where they release neurotransmitters and neuropeptides that regulate the hypothalamic-pituitary-adrenal (HPA) axis, which is responsible for the stress response. The PVN also contains neurons that produce corticotropin-releasing hormone (CRH), a key neurotransmitter involved in the regulation of the HPA axis and the stress response.

Overall, the Paraventricular Hypothalamic Nucleus is an essential component of the brain's regulatory systems that help maintain homeostasis and respond to stressors. Dysfunction of the PVN has been implicated in various pathological conditions, including hypertension, obesity, and mood disorders.

Thirst, also known as dry mouth or polydipsia, is a physiological need or desire to drink fluids to maintain fluid balance and hydration in the body. It is primarily regulated by the hypothalamus in response to changes in osmolality and volume of bodily fluids, particularly blood. Thirst can be triggered by various factors such as dehydration, excessive sweating, diarrhea, vomiting, fever, burns, certain medications, and medical conditions affecting the kidneys, adrenal glands, or other organs. It is a vital homeostatic mechanism to ensure adequate hydration and proper functioning of various bodily systems.

Vasoconstrictor agents are substances that cause the narrowing of blood vessels by constricting the smooth muscle in their walls. This leads to an increase in blood pressure and a decrease in blood flow. They work by activating the sympathetic nervous system, which triggers the release of neurotransmitters such as norepinephrine and epinephrine that bind to alpha-adrenergic receptors on the smooth muscle cells of the blood vessel walls, causing them to contract.

Vasoconstrictor agents are used medically for a variety of purposes, including:

* Treating hypotension (low blood pressure)
* Controlling bleeding during surgery or childbirth
* Relieving symptoms of nasal congestion in conditions such as the common cold or allergies

Examples of vasoconstrictor agents include phenylephrine, oxymetazoline, and epinephrine. It's important to note that prolonged use or excessive doses of vasoconstrictor agents can lead to rebound congestion and other adverse effects, so they should be used with caution and under the guidance of a healthcare professional.

A hypertonic saline solution is a type of medical fluid that contains a higher concentration of salt (sodium chloride) than is found in the average person's blood. This solution is used to treat various medical conditions, such as dehydration, brain swelling, and increased intracranial pressure.

The osmolarity of a hypertonic saline solution typically ranges from 1500 to 23,400 mOsm/L, with the most commonly used solutions having an osmolarity of around 3000 mOsm/L. The high sodium concentration in these solutions creates an osmotic gradient that draws water out of cells and into the bloodstream, helping to reduce swelling and increase fluid volume in the body.

It is important to note that hypertonic saline solutions should be administered with caution, as they can cause serious side effects such as electrolyte imbalances, heart rhythm abnormalities, and kidney damage if not used properly. Healthcare professionals must carefully monitor patients receiving these solutions to ensure safe and effective treatment.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Angiotensin receptors are a type of G protein-coupled receptor that binds the angiotensin peptides, which are important components of the renin-angiotensin-aldosterone system (RAAS). The RAAS is a hormonal system that regulates blood pressure and fluid balance.

There are two main types of angiotensin receptors: AT1 and AT2. Activation of AT1 receptors leads to vasoconstriction, increased sodium and water reabsorption in the kidneys, and cell growth and proliferation. On the other hand, activation of AT2 receptors has opposite effects, such as vasodilation, natriuresis (increased excretion of sodium in urine), and anti-proliferative actions.

Angiotensin II is a potent activator of AT1 receptors, while angiotensin IV has high affinity for AT2 receptors. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) are two classes of drugs that target the RAAS by blocking the formation or action of angiotensin II, leading to decreased activation of AT1 receptors and improved cardiovascular outcomes.

Polyuria is a medical term that describes the production of large volumes of urine, typically defined as exceeding 2.5-3 liters per day in adults. This condition can lead to frequent urination, sometimes as often as every one to two hours, and often worsens during the night (nocturia). Polyuria is often a symptom of an underlying medical disorder such as diabetes mellitus or diabetes insipidus, rather than a disease itself. Other potential causes include kidney diseases, heart failure, liver cirrhosis, and certain medications. Proper diagnosis and treatment of the underlying condition are essential to manage polyuria effectively.

The hypothalamus is a small, vital region of the brain that lies just below the thalamus and forms part of the limbic system. It plays a crucial role in many important functions including:

1. Regulation of body temperature, hunger, thirst, fatigue, sleep, and circadian rhythms.
2. Production and regulation of hormones through its connection with the pituitary gland (the hypophysis). It controls the release of various hormones by producing releasing and inhibiting factors that regulate the anterior pituitary's function.
3. Emotional responses, behavior, and memory formation through its connections with the limbic system structures like the amygdala and hippocampus.
4. Autonomic nervous system regulation, which controls involuntary physiological functions such as heart rate, blood pressure, and digestion.
5. Regulation of the immune system by interacting with the autonomic nervous system.

Damage to the hypothalamus can lead to various disorders like diabetes insipidus, growth hormone deficiency, altered temperature regulation, sleep disturbances, and emotional or behavioral changes.

Aquaporins are a type of membrane protein that function as water channels, allowing the selective and efficient transport of water molecules across biological membranes. They play crucial roles in maintaining fluid homeostasis, regulating cell volume, and supporting various physiological processes in the body. In humans, there are 13 different aquaporin subtypes (AQP0 to AQP12) that have been identified, each with distinct tissue expression patterns and functions. Some aquaporins also facilitate the transport of small solutes such as glycerol and urea. Dysfunction or misregulation of aquaporins has been implicated in several pathological conditions, including neurological disorders, cancer, and water balance-related diseases.

Dehydration is a condition that occurs when your body loses more fluids than it takes in. It's normal to lose water throughout the day through activities like breathing, sweating, and urinating; however, if you don't replenish this lost fluid, your body can become dehydrated.

Mild to moderate dehydration can cause symptoms such as:
- Dry mouth
- Fatigue or weakness
- Dizziness or lightheadedness
- Headache
- Dark colored urine
- Muscle cramps

Severe dehydration can lead to more serious health problems, including heat injury, urinary and kidney problems, seizures, and even hypovolemic shock, a life-threatening condition that occurs when your blood volume is too low.

Dehydration can be caused by various factors such as illness (e.g., diarrhea, vomiting), excessive sweating, high fever, burns, alcohol consumption, and certain medications. It's essential to stay hydrated by drinking plenty of fluids, especially during hot weather, exercise, or when you're ill.

Sodium is an essential mineral and electrolyte that is necessary for human health. In a medical context, sodium is often discussed in terms of its concentration in the blood, as measured by serum sodium levels. The normal range for serum sodium is typically between 135 and 145 milliequivalents per liter (mEq/L).

Sodium plays a number of important roles in the body, including:

* Regulating fluid balance: Sodium helps to regulate the amount of water in and around your cells, which is important for maintaining normal blood pressure and preventing dehydration.
* Facilitating nerve impulse transmission: Sodium is involved in the generation and transmission of electrical signals in the nervous system, which is necessary for proper muscle function and coordination.
* Assisting with muscle contraction: Sodium helps to regulate muscle contractions by interacting with other minerals such as calcium and potassium.

Low sodium levels (hyponatremia) can cause symptoms such as confusion, seizures, and coma, while high sodium levels (hypernatremia) can lead to symptoms such as weakness, muscle cramps, and seizures. Both conditions require medical treatment to correct.

Corticotropin-Releasing Hormone (CRH) is a hormone that is produced and released by the hypothalamus, a small gland located in the brain. CRH plays a critical role in the body's stress response system.

When the body experiences stress, the hypothalamus releases CRH, which then travels to the pituitary gland, another small gland located at the base of the brain. Once there, CRH stimulates the release of adrenocorticotropic hormone (ACTH) from the pituitary gland.

ACTH then travels through the bloodstream to the adrenal glands, which are located on top of the kidneys. ACTH stimulates the adrenal glands to produce and release cortisol, a hormone that helps the body respond to stress by regulating metabolism, immune function, and blood pressure, among other things.

Overall, CRH is an important part of the hypothalamic-pituitary-adrenal (HPA) axis, which regulates many bodily functions related to stress response, mood, and cognition. Dysregulation of the HPA axis and abnormal levels of CRH have been implicated in various psychiatric and medical conditions, including depression, anxiety disorders, post-traumatic stress disorder (PTSD), and Cushing's syndrome.

Benzazepines are a class of heterocyclic compounds that contain a benzene fused to a diazepine ring. In the context of pharmaceuticals, benzazepines refer to a group of drugs with various therapeutic uses, such as antipsychotics and antidepressants. Some examples of benzazepine-derived drugs include clozapine, olanzapine, and loxoprofen. These drugs have complex mechanisms of action, often involving multiple receptor systems in the brain.

Urine is a physiological excretory product that is primarily composed of water, urea, and various ions (such as sodium, potassium, chloride, and others) that are the byproducts of protein metabolism. It also contains small amounts of other substances like uric acid, creatinine, ammonia, and various organic compounds. Urine is produced by the kidneys through a process called urination or micturition, where it is filtered from the blood and then stored in the bladder until it is excreted from the body through the urethra. The color, volume, and composition of urine can provide important diagnostic information about various medical conditions.

Angiotensin II is a potent vasoactive peptide hormone that plays a critical role in the renin-angiotensin-aldosterone system (RAAS), which is a crucial regulator of blood pressure and fluid balance in the body. It is formed from angiotensin I through the action of an enzyme called angiotensin-converting enzyme (ACE).

Angiotensin II has several physiological effects on various organs, including:

1. Vasoconstriction: Angiotensin II causes contraction of vascular smooth muscle, leading to an increase in peripheral vascular resistance and blood pressure.
2. Aldosterone release: Angiotensin II stimulates the adrenal glands to release aldosterone, a hormone that promotes sodium reabsorption and potassium excretion in the kidneys, thereby increasing water retention and blood volume.
3. Sympathetic nervous system activation: Angiotensin II activates the sympathetic nervous system, leading to increased heart rate and contractility, further contributing to an increase in blood pressure.
4. Thirst regulation: Angiotensin II stimulates the hypothalamus to increase thirst, promoting water intake and helping to maintain intravascular volume.
5. Cell growth and fibrosis: Angiotensin II has been implicated in various pathological processes, such as cell growth, proliferation, and fibrosis, which can contribute to the development of cardiovascular and renal diseases.

Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are two classes of medications commonly used in clinical practice to target the RAAS by blocking the formation or action of angiotensin II, respectively. These drugs have been shown to be effective in managing hypertension, heart failure, and chronic kidney disease.

Intraventricular injections are a type of medical procedure where medication is administered directly into the cerebral ventricles of the brain. The cerebral ventricles are fluid-filled spaces within the brain that contain cerebrospinal fluid (CSF). This procedure is typically used to deliver drugs that target conditions affecting the central nervous system, such as infections or tumors.

Intraventricular injections are usually performed using a thin, hollow needle that is inserted through a small hole drilled into the skull. The medication is then injected directly into the ventricles, allowing it to circulate throughout the CSF and reach the brain tissue more efficiently than other routes of administration.

This type of injection is typically reserved for situations where other methods of drug delivery are not effective or feasible. It carries a higher risk of complications, such as bleeding, infection, or damage to surrounding tissues, compared to other routes of administration. Therefore, it is usually performed by trained medical professionals in a controlled clinical setting.

Ornipressin is not a commonly used medication in modern clinical practice, and it's possible that you may be referring to desmopressin, which is an analog of the natural hormone vasopressin. Here is the definition for desmopressin:

Desmopressin: A synthetic analog of the natural hormone arginine vasopressin, used as a nasal spray, injection, or tablet to treat diabetes insipidus (a condition in which the kidneys can't regulate the body's water balance) and von Willebrand disease (a genetic disorder that affects blood clotting). It works by decreasing the amount of urine produced by the kidneys, increasing the concentration of certain substances in the urine, and helping the blood to clot. Desmopressin is also used off-label for the treatment of nocturnal enuresis (bedwetting) in children.

The Hypothalamo-Hypophyseal system, also known as the hypothalamic-pituitary system, is a crucial part of the endocrine system that regulates many bodily functions. It consists of two main components: the hypothalamus and the pituitary gland.

The hypothalamus is a region in the brain that receives information from various parts of the body and integrates them to regulate vital functions such as body temperature, hunger, thirst, sleep, and emotional behavior. It also produces and releases neurohormones that control the secretion of hormones from the pituitary gland.

The pituitary gland is a small gland located at the base of the brain, just below the hypothalamus. It consists of two parts: the anterior pituitary (also called adenohypophysis) and the posterior pituitary (also called neurohypophysis). The anterior pituitary produces and releases several hormones that regulate various bodily functions such as growth, metabolism, reproduction, and stress response. The posterior pituitary stores and releases hormones produced by the hypothalamus, including antidiuretic hormone (ADH) and oxytocin.

The hypothalamo-hypophyseal system works together to maintain homeostasis in the body by regulating various physiological processes through hormonal signaling. Dysfunction of this system can lead to several endocrine disorders, such as diabetes insipidus, pituitary tumors, and hypothalamic-pituitary axis disorders.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Adrenocorticotropic Hormone (ACTH) is a hormone produced and released by the anterior pituitary gland, a small endocrine gland located at the base of the brain. ACTH plays a crucial role in the regulation of the body's stress response and has significant effects on various physiological processes.

The primary function of ACTH is to stimulate the adrenal glands, which are triangular-shaped glands situated on top of the kidneys. The adrenal glands consist of two parts: the outer cortex and the inner medulla. ACTH specifically targets the adrenal cortex, where it binds to specific receptors and initiates a series of biochemical reactions leading to the production and release of steroid hormones, primarily cortisol (a glucocorticoid) and aldosterone (a mineralocorticoid).

Cortisol is involved in various metabolic processes, such as regulating blood sugar levels, modulating the immune response, and helping the body respond to stress. Aldosterone plays a vital role in maintaining electrolyte and fluid balance by promoting sodium reabsorption and potassium excretion in the kidneys.

ACTH release is controlled by the hypothalamus, another part of the brain, which produces corticotropin-releasing hormone (CRH). CRH stimulates the anterior pituitary gland to secrete ACTH, which in turn triggers cortisol production in the adrenal glands. This complex feedback system helps maintain homeostasis and ensures that appropriate amounts of cortisol are released in response to various physiological and psychological stressors.

Disorders related to ACTH can lead to hormonal imbalances, resulting in conditions such as Cushing's syndrome (excessive cortisol production) or Addison's disease (insufficient cortisol production). Proper diagnosis and management of these disorders typically involve assessing the function of the hypothalamic-pituitary-adrenal axis and addressing any underlying issues affecting ACTH secretion.

Hormone antagonists are substances or drugs that block the action of hormones by binding to their receptors without activating them, thereby preventing the hormones from exerting their effects. They can be classified into two types: receptor antagonists and enzyme inhibitors. Receptor antagonists bind directly to hormone receptors and prevent the hormone from binding, while enzyme inhibitors block the production or breakdown of hormones by inhibiting specific enzymes involved in their metabolism. Hormone antagonists are used in the treatment of various medical conditions, such as cancer, hormonal disorders, and cardiovascular diseases.

Epinephrine, also known as adrenaline, is a hormone and a neurotransmitter that is produced in the body. It is released by the adrenal glands in response to stress or excitement, and it prepares the body for the "fight or flight" response. Epinephrine works by binding to specific receptors in the body, which causes a variety of physiological effects, including increased heart rate and blood pressure, improved muscle strength and alertness, and narrowing of the blood vessels in the skin and intestines. It is also used as a medication to treat various medical conditions, such as anaphylaxis (a severe allergic reaction), cardiac arrest, and low blood pressure.

The anterior hypothalamus is a region in the brain that has various functions related to endocrine regulation, autonomic function, and behavior. It contains several nuclei, including the paraventricular nucleus and the supraoptic nucleus, which are involved in the release of hormones from the pituitary gland. The anterior hypothalamus helps regulate body temperature, hunger, thirst, fatigue, and sleep-wake cycles. It also plays a role in processing emotions and stress responses. Damage to the anterior hypothampus can result in various endocrine and behavioral disorders.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Osmosis is a physiological process in which solvent molecules move from an area of lower solute concentration to an area of higher solute concentration, through a semi-permeable membrane, with the goal of equalizing the solute concentrations on the two sides. This process occurs naturally and is essential for the functioning of cells and biological systems.

In medical terms, osmosis plays a crucial role in maintaining water balance and regulating the distribution of fluids within the body. For example, it helps to control the flow of water between the bloodstream and the tissues, and between the different fluid compartments within the body. Disruptions in osmotic balance can lead to various medical conditions, such as dehydration, swelling, and electrolyte imbalances.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Norepinephrine, also known as noradrenaline, is a neurotransmitter and a hormone that is primarily produced in the adrenal glands and is released into the bloodstream in response to stress or physical activity. It plays a crucial role in the "fight-or-flight" response by preparing the body for action through increasing heart rate, blood pressure, respiratory rate, and glucose availability.

As a neurotransmitter, norepinephrine is involved in regulating various functions of the nervous system, including attention, perception, motivation, and arousal. It also plays a role in modulating pain perception and responding to stressful or emotional situations.

In medical settings, norepinephrine is used as a vasopressor medication to treat hypotension (low blood pressure) that can occur during septic shock, anesthesia, or other critical illnesses. It works by constricting blood vessels and increasing heart rate, which helps to improve blood pressure and perfusion of vital organs.

The term "drinking" is commonly used to refer to the consumption of beverages, but in a medical context, it usually refers to the consumption of alcoholic drinks. According to the Merriam-Webster Medical Dictionary, "drinking" is defined as:

1. The act or habit of swallowing liquid (such as water, juice, or alcohol)
2. The ingestion of alcoholic beverages

It's important to note that while moderate drinking may not pose significant health risks for some individuals, excessive or binge drinking can lead to a range of negative health consequences, including addiction, liver disease, heart disease, and increased risk of injury or violence.

"Spiro compounds" are not specifically classified as medical terms, but they are a concept in organic chemistry. However, I can provide a general definition:

Spiro compounds are a type of organic compound that contains two or more rings, which share a single common atom, known as the "spiro center." The name "spiro" comes from the Greek word for "spiral" or "coiled," reflecting the three-dimensional structure of these molecules.

The unique feature of spiro compounds is that they have at least one spiro atom, typically carbon, which is bonded to four other atoms, two of which belong to each ring. This arrangement creates a specific geometry where the rings are positioned at right angles to each other, giving spiro compounds distinctive structural and chemical properties.

While not directly related to medical terminology, understanding spiro compounds can be essential in medicinal chemistry and pharmaceutical research since these molecules often exhibit unique biological activities due to their intricate structures.

Neurogenic diabetes insipidus is a condition characterized by the production of large amounts of dilute urine (polyuria) and increased thirst (polydipsia) due to deficiency of antidiuretic hormone (ADH), also known as vasopressin, which is produced by the hypothalamus and stored in the posterior pituitary gland.

Neurogenic diabetes insipidus can occur when there is damage to the hypothalamus or pituitary gland, leading to a decrease in ADH production or release. Causes of neurogenic diabetes insipidus include brain tumors, head trauma, surgery, meningitis, encephalitis, and autoimmune disorders.

In this condition, the kidneys are unable to reabsorb water from the urine due to the lack of ADH, resulting in the production of large volumes of dilute urine. This can lead to dehydration, electrolyte imbalances, and other complications if not properly managed. Treatment typically involves replacing the missing ADH with a synthetic hormone called desmopressin, which can be administered as a nasal spray, oral tablet, or injection.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Pressoreceptors are specialized sensory nerve endings found in the walls of blood vessels, particularly in the carotid sinus and aortic arch. They respond to changes in blood pressure by converting the mechanical stimulus into electrical signals that are transmitted to the brain. This information helps regulate cardiovascular function and maintain blood pressure homeostasis.

Hypernatremia is a medical condition characterized by an abnormally high concentration of sodium (na+) in the blood, specifically a serum sodium level greater than 145 mEq/L. Sodium is an essential electrolyte that helps regulate water balance in and around your cells. It's crucial for many body functions, including the maintenance of blood pressure, regulation of nerve and muscle function, and regulation of fluid balance.

Hypernatremia typically results from a deficit of total body water relative to solute, which can be caused by decreased water intake, increased water loss, or a combination of both. Common causes include dehydration due to severe vomiting or diarrhea, excessive sweating, burns, kidney diseases, and the use of certain medications such as diuretics.

Symptoms of hypernatremia can range from mild to severe and may include thirst, muscle weakness, lethargy, irritability, confusion, seizures, and in extreme cases, coma or even death. Treatment typically involves correcting the underlying cause and gradually rehydrating the individual with intravenous fluids to restore normal sodium levels.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Neurosecretion is the process by which certain neurons, known as neurosecretory cells, release chemical messengers called neurosecretory hormones or neurotransmitters into the bloodstream or directly into the extracellular space. These neurosecretory hormones can have endocrine effects by acting on distant target organs via the bloodstream, or they can have paracrine or autocrine effects by acting on neighboring cells or on the same cell that released them, respectively.

Neurosecretory cells are found in specialized regions of the brain called neurosecretory nuclei. These cells have long processes called axons that terminate in swellings known as neurosecretory terminals. The neurosecretory hormones are synthesized within the cell body and then transported along the axon to the terminals, where they are stored in secretory vesicles.

The release of neurosecretory hormones is triggered by a variety of stimuli, including neural activity, changes in ion concentrations, and hormonal signals. The process of neurosecretion involves the fusion of the secretory vesicles with the plasma membrane, resulting in the exocytosis of the neurosecretory hormones into the extracellular space or bloodstream.

Neurosecretion plays important roles in regulating a variety of physiological processes, including growth, development, reproduction, and stress responses. Dysregulation of neurosecretion can contribute to the development of various diseases, such as diabetes, hypertension, and neurological disorders.

Pyrrolidines are not a medical term per se, but they are a chemical compound that can be encountered in the field of medicine and pharmacology. Pyrrolidine is an organic compound with the molecular formula (CH2)4NH. It is a cyclic secondary amine, which means it contains a nitrogen atom surrounded by four carbon atoms in a ring structure.

Pyrrolidines can be found in certain natural substances and are also synthesized for use in pharmaceuticals and research. They have been used as building blocks in the synthesis of various drugs, including some muscle relaxants, antipsychotics, and antihistamines. Additionally, pyrrolidine derivatives can be found in certain plants and fungi, where they may contribute to biological activity or toxicity.

It is important to note that while pyrrolidines themselves are not a medical condition or diagnosis, understanding their chemical properties and uses can be relevant to the study and development of medications.

Medical definitions of water generally describe it as a colorless, odorless, tasteless liquid that is essential for all forms of life. It is a universal solvent, making it an excellent medium for transporting nutrients and waste products within the body. Water constitutes about 50-70% of an individual's body weight, depending on factors such as age, sex, and muscle mass.

In medical terms, water has several important functions in the human body:

1. Regulation of body temperature through perspiration and respiration.
2. Acting as a lubricant for joints and tissues.
3. Facilitating digestion by helping to break down food particles.
4. Transporting nutrients, oxygen, and waste products throughout the body.
5. Helping to maintain healthy skin and mucous membranes.
6. Assisting in the regulation of various bodily functions, such as blood pressure and heart rate.

Dehydration can occur when an individual does not consume enough water or loses too much fluid due to illness, exercise, or other factors. This can lead to a variety of symptoms, including dry mouth, fatigue, dizziness, and confusion. Severe dehydration can be life-threatening if left untreated.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Bombesin is a type of peptide that occurs naturally in the body. It is a small protein-like molecule made up of amino acids, and it is involved in various physiological processes, including regulating appetite and digestion. Bombesin was first discovered in the skin of a frog species called Bombina bombina, hence its name. In the human body, bombesin-like peptides are produced by various tissues, including the stomach and brain. They bind to specific receptors in the body, triggering a range of responses, such as stimulating the release of hormones and increasing gut motility. Bombesin has been studied for its potential role in treating certain medical conditions, including cancer, although more research is needed to establish its safety and efficacy.

Phenylephrine is a medication that belongs to the class of drugs known as sympathomimetic amines. It primarily acts as an alpha-1 adrenergic receptor agonist, which means it stimulates these receptors, leading to vasoconstriction (constriction of blood vessels). This effect can be useful in various medical situations, such as:

1. Nasal decongestion: When applied topically in the nose, phenylephrine causes constriction of the blood vessels in the nasal passages, which helps to relieve congestion and swelling. It is often found in over-the-counter (OTC) cold and allergy products.
2. Ocular circulation: In ophthalmology, phenylephrine is used to dilate the pupils before eye examinations. The increased pressure from vasoconstriction helps to open up the pupil, allowing for a better view of the internal structures of the eye.
3. Hypotension management: In some cases, phenylephrine may be given intravenously to treat low blood pressure (hypotension) during medical procedures like spinal anesthesia or septic shock. The vasoconstriction helps to increase blood pressure and improve perfusion of vital organs.

It is essential to use phenylephrine as directed, as improper usage can lead to adverse effects such as increased heart rate, hypertension, arrhythmias, and rebound congestion (when used as a nasal decongestant). Always consult with a healthcare professional for appropriate guidance on using this medication.

Natriuresis is the process or condition of excreting an excessive amount of sodium (salt) through urine. It is a physiological response to high sodium levels in the body, which can be caused by various factors such as certain medical conditions (e.g., kidney disease, heart failure), medications, or dietary habits. The increased excretion of sodium helps regulate the body's water balance and maintain normal blood pressure. However, persistent natriuresis may indicate underlying health issues that require medical attention.

Saralasin is a synthetic analog of the natural hormone angiotensin II, which is used in research and medicine. It acts as an antagonist of the angiotensin II receptor, blocking its effects. Saralasin is primarily used in research to study the role of the renin-angiotensin system in various physiological processes. In clinical medicine, it has been used in the diagnosis and treatment of conditions such as hypertension and pheochromocytoma, although its use is not widespread due to the availability of more effective and selective drugs.

A pair bond, in the context of human and animal behavior, refers to a long-term emotional and social attachment between two individuals, usually characterized by a strong affection, shared activities, and often sexual interaction. In humans, this concept is often discussed in the context of romantic relationships and marriage. From a medical or scientific perspective, pair bonding involves neurological and hormonal processes that help to create and maintain the attachment, such as the release of oxytocin and vasopressin during physical touch and sexual activity. The strength and duration of pair bonds can vary widely between different species and individuals.

Hemodynamics is the study of how blood flows through the cardiovascular system, including the heart and the vascular network. It examines various factors that affect blood flow, such as blood volume, viscosity, vessel length and diameter, and pressure differences between different parts of the circulatory system. Hemodynamics also considers the impact of various physiological and pathological conditions on these variables, and how they in turn influence the function of vital organs and systems in the body. It is a critical area of study in fields such as cardiology, anesthesiology, and critical care medicine.

Glucagon is a hormone produced by the alpha cells of the pancreas. Its main function is to regulate glucose levels in the blood by stimulating the liver to convert stored glycogen into glucose, which can then be released into the bloodstream. This process helps to raise blood sugar levels when they are too low, such as during hypoglycemia.

Glucagon is a 29-amino acid polypeptide that is derived from the preproglucagon protein. It works by binding to glucagon receptors on liver cells, which triggers a series of intracellular signaling events that lead to the activation of enzymes involved in glycogen breakdown.

In addition to its role in glucose regulation, glucagon has also been shown to have other physiological effects, such as promoting lipolysis (the breakdown of fat) and inhibiting gastric acid secretion. Glucagon is often used clinically in the treatment of hypoglycemia, as well as in diagnostic tests to assess pancreatic function.

Heart rate is the number of heartbeats per unit of time, often expressed as beats per minute (bpm). It can vary significantly depending on factors such as age, physical fitness, emotions, and overall health status. A resting heart rate between 60-100 bpm is generally considered normal for adults, but athletes and individuals with high levels of physical fitness may have a resting heart rate below 60 bpm due to their enhanced cardiovascular efficiency. Monitoring heart rate can provide valuable insights into an individual's health status, exercise intensity, and response to various treatments or interventions.

Neurosecretory systems are specialized components of the nervous system that produce and release chemical messengers called neurohormones. These neurohormones are released into the bloodstream and can have endocrine effects on various target organs in the body. The cells that make up neurosecretory systems, known as neurosecretory cells, are found in specific regions of the brain, such as the hypothalamus, and in peripheral nerves.

Neurosecretory systems play a critical role in regulating many physiological processes, including fluid and electrolyte balance, stress responses, growth and development, reproductive functions, and behavior. The neurohormones released by these systems can act synergistically or antagonistically to maintain homeostasis and coordinate the body's response to internal and external stimuli.

Neurosecretory cells are characterized by their ability to synthesize and store neurohormones in secretory granules, which are released upon stimulation. The release of neurohormones can be triggered by a variety of signals, including neural impulses, hormonal changes, and other physiological cues. Once released into the bloodstream, neurohormones can travel to distant target organs, where they bind to specific receptors and elicit a range of responses.

Overall, neurosecretory systems are an essential component of the neuroendocrine system, which plays a critical role in regulating many aspects of human physiology and behavior.

Body water refers to the total amount of water present in the human body. It is an essential component of life and makes up about 60-70% of an adult's body weight. Body water is distributed throughout various fluid compartments within the body, including intracellular fluid (water inside cells), extracellular fluid (water outside cells), and transcellular fluid (water found in specific bodily spaces such as the digestive tract, eyes, and joints). Maintaining proper hydration and balance of body water is crucial for various physiological processes, including temperature regulation, nutrient transportation, waste elimination, and overall health.

Inositol phosphates are a family of molecules that consist of an inositol ring, which is a six-carbon heterocyclic compound, linked to one or more phosphate groups. These molecules play important roles as intracellular signaling intermediates and are involved in various cellular processes such as cell growth, differentiation, and metabolism.

Inositol hexakisphosphate (IP6), also known as phytic acid, is a form of inositol phosphate that is found in plant-based foods. IP6 has the ability to bind to minerals such as calcium, magnesium, and iron, which can reduce their bioavailability in the body.

Inositol phosphates have been implicated in several diseases, including cancer, diabetes, and neurodegenerative disorders. For example, altered levels of certain inositol phosphates have been observed in cancer cells, suggesting that they may play a role in tumor growth and progression. Additionally, mutations in enzymes involved in the metabolism of inositol phosphates have been associated with several genetic diseases.

Kidney tubules are the structural and functional units of the kidney responsible for reabsorption, secretion, and excretion of various substances. They are part of the nephron, which is the basic unit of the kidney's filtration and reabsorption process.

There are three main types of kidney tubules:

1. Proximal tubule: This is the initial segment of the kidney tubule that receives the filtrate from the glomerulus. It is responsible for reabsorbing approximately 65% of the filtrate, including water, glucose, amino acids, and electrolytes.
2. Loop of Henle: This U-shaped segment of the tubule consists of a thin descending limb, a thin ascending limb, and a thick ascending limb. The loop of Henle helps to concentrate urine by creating an osmotic gradient that allows water to be reabsorbed in the collecting ducts.
3. Distal tubule: This is the final segment of the kidney tubule before it empties into the collecting duct. It is responsible for fine-tuning the concentration of electrolytes and pH balance in the urine by selectively reabsorbing or secreting substances such as sodium, potassium, chloride, and hydrogen ions.

Overall, kidney tubules play a critical role in maintaining fluid and electrolyte balance, regulating acid-base balance, and removing waste products from the body.

Adenylate cyclase is an enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). It plays a crucial role in various cellular processes, including signal transduction and metabolism. Adenylate cyclase is activated by hormones and neurotransmitters that bind to G-protein-coupled receptors on the cell membrane, leading to the production of cAMP, which then acts as a second messenger to regulate various intracellular responses. There are several isoforms of adenylate cyclase, each with distinct regulatory properties and subcellular localization.

'Bufo marinus' is the scientific name for a species of toad commonly known as the Cane Toad or Giant Toad. This toad is native to Central and South America, but has been introduced to various parts of the world including Florida, Australia, and several Pacific islands. The toad produces a toxic secretion from glands on its back and neck, which can be harmful or fatal if ingested by pets or humans.

Renin is a medically recognized term and it is defined as:

"A protein (enzyme) that is produced and released by specialized cells (juxtaglomerular cells) in the kidney. Renin is a key component of the renin-angiotensin-aldosterone system (RAAS), which helps regulate blood pressure and fluid balance in the body.

When the kidney detects a decrease in blood pressure or a reduction in sodium levels, it releases renin into the bloodstream. Renin then acts on a protein called angiotensinogen, converting it to angiotensin I. Angiotensin-converting enzyme (ACE) subsequently converts angiotensin I to angiotensin II, which is a potent vasoconstrictor that narrows blood vessels and increases blood pressure.

Additionally, angiotensin II stimulates the adrenal glands to release aldosterone, a hormone that promotes sodium reabsorption in the kidneys and increases water retention, further raising blood pressure.

Therefore, renin plays a critical role in maintaining proper blood pressure and electrolyte balance in the body."

Phosphorylase a is an enzyme that plays a crucial role in the breakdown and metabolism of glycogen, a complex carbohydrate stored primarily in the liver and muscles. It is a phosphorylated form of the enzyme glycogen phosphorylase, which is activated by the addition of a phosphate group.

Phosphorylase a catalyzes the rate-limiting step in glycogenolysis, the process of breaking down glycogen into glucose-1-phosphate, which can then be converted into glucose and used for energy production. The activation of phosphorylase a is mediated by hormones such as adrenaline (epinephrine) and glucagon, which stimulate the enzyme phosphorylase kinase to add a phosphate group to inactive phosphorylase b, converting it to active phosphorylase a.

Phosphorylase a is composed of two identical subunits, each containing a catalytic site and a regulatory site that binds to ATP, glucose, and other molecules. The enzyme's activity is regulated by several factors, including the concentration of glucose, the presence of calcium ions, and the phosphorylation state of the enzyme.

In summary, Phosphorylase a is a key enzyme in glycogen metabolism that catalyzes the breakdown of glycogen into glucose-1-phosphate, providing energy for the body's cells. Its activity is regulated by hormones and other factors, making it an important component of the body's energy homeostasis.

Vascular resistance is a measure of the opposition to blood flow within a vessel or a group of vessels, typically expressed in units of mmHg/(mL/min) or sometimes as dynes*sec/cm^5. It is determined by the diameter and length of the vessels, as well as the viscosity of the blood flowing through them. In general, a decrease in vessel diameter, an increase in vessel length, or an increase in blood viscosity will result in an increase in vascular resistance, while an increase in vessel diameter, a decrease in vessel length, or a decrease in blood viscosity will result in a decrease in vascular resistance. Vascular resistance is an important concept in the study of circulation and cardiovascular physiology because it plays a key role in determining blood pressure and blood flow within the body.

Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is a hormone that is primarily produced and secreted by the atria of the heart in response to stretching of the cardiac muscle cells due to increased blood volume. ANF plays a crucial role in regulating body fluid homeostasis, blood pressure, and cardiovascular function.

The main physiological action of ANF is to promote sodium and water excretion by the kidneys, which helps lower blood volume and reduce blood pressure. ANF also relaxes vascular smooth muscle, dilates blood vessels, and inhibits the renin-angiotensin-aldosterone system (RAAS), further contributing to its blood pressure-lowering effects.

Defects in ANF production or action have been implicated in several cardiovascular disorders, including heart failure, hypertension, and kidney disease. Therefore, ANF and its analogs are being investigated as potential therapeutic agents for the treatment of these conditions.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Aldosterone is a hormone produced by the adrenal gland. It plays a key role in regulating sodium and potassium balance and maintaining blood pressure through its effects on the kidneys. Aldosterone promotes the reabsorption of sodium ions and the excretion of potassium ions in the distal tubules and collecting ducts of the nephrons in the kidneys. This increases the osmotic pressure in the blood, which in turn leads to water retention and an increase in blood volume and blood pressure.

Aldosterone is released from the adrenal gland in response to a variety of stimuli, including angiotensin II (a peptide hormone produced as part of the renin-angiotensin-aldosterone system), potassium ions, and adrenocorticotropic hormone (ACTH) from the pituitary gland. The production of aldosterone is regulated by a negative feedback mechanism involving sodium levels in the blood. High sodium levels inhibit the release of aldosterone, while low sodium levels stimulate its release.

In addition to its role in maintaining fluid and electrolyte balance and blood pressure, aldosterone has been implicated in various pathological conditions, including hypertension, heart failure, and primary hyperaldosteronism (a condition characterized by excessive production of aldosterone).

A chemical stimulation in a medical context refers to the process of activating or enhancing physiological or psychological responses in the body using chemical substances. These chemicals can interact with receptors on cells to trigger specific reactions, such as neurotransmitters and hormones that transmit signals within the nervous system and endocrine system.

Examples of chemical stimulation include the use of medications, drugs, or supplements that affect mood, alertness, pain perception, or other bodily functions. For instance, caffeine can chemically stimulate the central nervous system to increase alertness and decrease feelings of fatigue. Similarly, certain painkillers can chemically stimulate opioid receptors in the brain to reduce the perception of pain.

It's important to note that while chemical stimulation can have therapeutic benefits, it can also have adverse effects if used improperly or in excessive amounts. Therefore, it's essential to follow proper dosing instructions and consult with a healthcare provider before using any chemical substances for stimulation purposes.

The pituitary-adrenal system, also known as the hypothalamic-pituitary-adrenal (HPA) axis, is a complex set of interactions between the hypothalamus, the pituitary gland, and the adrenal glands. This system plays a crucial role in the body's response to stress through the release of hormones that regulate various physiological processes.

The hypothalamus, located within the brain, receives information from the nervous system about the internal and external environment and responds by releasing corticotropin-releasing hormone (CRH) and vasopressin. These hormones then travel to the anterior pituitary gland, where they stimulate the release of adrenocorticotropic hormone (ACTH).

ACTH is transported through the bloodstream to the adrenal glands, which are located on top of the kidneys. The adrenal glands consist of two parts: the outer cortex and the inner medulla. ACTH specifically targets the adrenal cortex, causing it to release cortisol and other glucocorticoids, as well as androgens such as dehydroepiandrosterone (DHEA).

Cortisol has numerous effects on metabolism, immune function, and cardiovascular regulation. It helps regulate blood sugar levels, suppresses the immune system, and aids in the breakdown of fats, proteins, and carbohydrates to provide energy during stressful situations. DHEA can be converted into male and female sex hormones (androgens and estrogens) in various tissues throughout the body.

The pituitary-adrenal system is tightly regulated through negative feedback mechanisms. High levels of cortisol, for example, inhibit the release of CRH and ACTH from the hypothalamus and pituitary gland, respectively, thereby limiting further cortisol production. Dysregulation of this system has been implicated in several medical conditions, including Cushing's syndrome (overproduction of cortisol) and Addison's disease (underproduction of cortisol).

Septic shock is a serious condition that occurs as a complication of an infection that has spread throughout the body. It's characterized by a severe drop in blood pressure and abnormalities in cellular metabolism, which can lead to organ failure and death if not promptly treated.

In septic shock, the immune system overreacts to an infection, releasing an overwhelming amount of inflammatory chemicals into the bloodstream. This leads to widespread inflammation, blood vessel dilation, and leaky blood vessels, which can cause fluid to leak out of the blood vessels and into surrounding tissues. As a result, the heart may not be able to pump enough blood to vital organs, leading to organ failure.

Septic shock is often caused by bacterial infections, but it can also be caused by fungal or viral infections. It's most commonly seen in people with weakened immune systems, such as those who have recently undergone surgery, have chronic medical conditions, or are taking medications that suppress the immune system.

Prompt diagnosis and treatment of septic shock is critical to prevent long-term complications and improve outcomes. Treatment typically involves aggressive antibiotic therapy, intravenous fluids, vasopressors to maintain blood pressure, and supportive care in an intensive care unit (ICU).

The median eminence is a small, elevated region located at the base of the hypothalamus in the brain. It plays a crucial role in the regulation of the endocrine system by controlling the release of hormones from the pituitary gland. The median eminence contains numerous specialized blood vessels called portal capillaries that carry hormones and neurotransmitters from the hypothalamus to the anterior pituitary gland.

The median eminence is also the site where several releasing and inhibiting hormones produced in the hypothalamus are secreted into the portal blood vessels, which then transport them to the anterior pituitary gland. These hormones include thyroid-stimulating hormone (TSH) releasing hormone, growth hormone-releasing hormone, prolactin-inhibiting hormone, and gonadotropin-releasing hormone, among others.

Once these hormones reach the anterior pituitary gland, they bind to specific receptors on the surface of target cells, triggering a cascade of intracellular signals that ultimately lead to the synthesis and release of various pituitary hormones. In this way, the median eminence serves as an essential link between the nervous system and the endocrine system, allowing for precise regulation of hormone secretion and overall homeostasis in the body.

Phosphorylases are enzymes that catalyze the phosphorolytic cleavage of a bond, often a glycosidic bond, in a carbohydrate molecule, releasing a sugar moiety and a phosphate group. This reaction is important in metabolic pathways such as glycogenolysis, where glycogen is broken down into glucose-1-phosphate by the action of glycogen phosphorylase. The resulting glucose-1-phosphate can then be further metabolized to produce energy. Phosphorylases are widely found in nature and play a crucial role in various biological processes, including energy metabolism and signal transduction.

... antagonists (VRAs) are drugs that block vasopressin receptors. Most commonly VRAs are used to treat ... There are three subtypes of vasopressin receptor: V1A (V1), V1B (V3) and V2. V1 receptors (V1Rs) are found in high density on ... called vasopressin receptors that are classified into the V1 (V1A), V2, and V3 (V1B) receptor subtypes. These three subtypes ... "Vasopressin and Oxytocin Receptors". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical ...
A vasopressin receptor antagonist (VRA) is an agent that interferes with action at the vasopressin receptors. Most commonly ... The "vaptan" drugs act by directly blocking the action of vasopressin at its receptors (V1A, V1B and V2). These receptors have ... Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands. ... V2 receptor antagonism increases plasma vasopressin concentration, which may cause unopposed hyperstimulation of the ...
Vasopressin V1b receptor (V1BR) also known as vasopressin 3 receptor (VPR3) or antidiuretic hormone receptor 1B is a protein ... arginine vasopressin receptor 1B) gene. V1BR acts as a receptor for vasopressin. AVPR1B belongs to the subfamily of G protein- ... Nelivaptan (SSR149415) and D-[Leu4-Lys8]-vasopressin are a specific antagonist and agonist for the vasopressin 1b receptor, ... Zemo DA, McCabe JT (2001). "Salt-loading increases vasopressin and vasopressin 1b receptor mRNA in the hypothalamus and choroid ...
V1a vasopressin receptor antidiuretic hormone receptor 1A SCCL vasopressin subtype 1a receptor V1-vascular vasopressin receptor ... Vasopressin receptor 1A (V1AR), or arginine vasopressin receptor 1A (officially called AVPR1A) is one of the three major ... "Vasopressin and Oxytocin Receptors: AVPR1A". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and ... the vasopressin receptor AVPR1A distribution differs both between and within species; vasopressin production occurs in the ...
... (V2R), or arginine vasopressin receptor 2 (officially called AVPR2), is a protein that acts as receptor ... Vasopressin receptor antagonists that are selective for the V2 receptor include: Tolvaptan (FDA-approved) Lixivaptan Mozavaptan ... "Vasopressin and Oxytocin Receptors: V2". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and ... Vasopressin receptor 2 function has been shown to be deleteriously effected by point mutations in its gene. Some of these ...
... non-selective over vasopressin receptors TC OT 39 - non-selective over vasopressin receptors WAY-267,464 - anxiolytic in mice; ... "Vasopressin and Oxytocin Receptors: OT". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and ... Devost D, Wrzal P, Zingg HH (2008). "Oxytocin receptor signalling". Advances in Vasopressin and Oxytocin - from Genes to ... Chini B, Manning M (August 2007). "Agonist selectivity in the oxytocin/vasopressin receptor family: new insights and challenges ...
Syndrome of Inappropriate Antidiuretic Hormone secretion (SIADH) Oxytocin Vasopressin receptor Vasopressin receptor antagonists ... Hyponatremia can be treated pharmaceutically through the use of vasopressin receptor antagonists. Vasopressin was elucidated ... which indicate that the precise distribution of vasopressin and vasopressin receptors in the brain is associated with species- ... Types of AVP receptors and their actions: The vasopressins are peptides consisting of nine amino acids (nonapeptides). The ...
Thibonnier M, Coles P, Thibonnier A, Shoham M (2002). Molecular pharmacology and modeling of vasopressin receptors. Progress in ... Other adrenergic receptors Alpha-1 adrenergic receptor Alpha-2 adrenergic receptor Beta-1 adrenergic receptor Beta-3 adrenergic ... The beta-2 adrenergic receptor (β2 adrenoreceptor), also known as ADRB2, is a cell membrane-spanning beta-adrenergic receptor ... This appears to be mediated by cAMP induced PKA phosphorylation of the receptor. Interestingly, Beta-2 adrenergic receptor was ...
Thibonnier M, Coles P, Thibonnier A, Shoham M (2002). Molecular pharmacology and modeling of vasopressin receptors. Progress in ... Angiotensin II receptor type 1 (AT1) is the best characterized angiotensin receptor. It is encoded in humans by the AGTR1 gene ... The angiotensin receptor is activated by the vasoconstricting peptide angiotensin II. The activated receptor in turn couples to ... "Angiotensin Receptors: AT1". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical ...
... is a vasopressin receptor agonist. Terlipressin was approved for medical use in the United States in 2022. The US ... Terlipressin, sold under the brand name Terlivaz among others, is an analogue of vasopressin used as a vasoactive drug in the ...
V2 receptor antagonists inhibit the binding of arginine vasopressin to vasopressin receptor 2 (V2R) in kidney tubular ... Because intracellular cAMP is a secondary messenger for vasopressin acting at V2R (vasopressin receptor 2), V2 receptor ... Lixivaptan is a potent, non-peptide, selective vasopressin receptor antagonist. It is a member of the vaptan class of drugs. ... Wang X, Constans MM, Chebib FT, Torres VE, Pellegrini L (2019). "Effect of a Vasopressin V2 Receptor Antagonist on Polycystic ...
... a Non-Peptide Ligand for Vasopressin V1a Receptors". Journal of Natural Products. 57 (10): 1329-1335. doi:10.1021/np50112a001. ...
Young, Larry J. (1999). "Oxytocin and Vasopressin Receptors and Species-Typical Social Behaviors". Hormones and Behavior. 36 (3 ... In addition, an increase in maternal grooming has been shown to increase the number of glucocorticoid receptors in the brains ... For example, monogamous prairie voles have a high density of oxytocin receptors (OTRs) in the nucleus accumbens, while non- ... The manner in which hormones alter these receptors is an important behavioral regulator. For example, gonads affect OTRs in ...
Conivaptan - an antagonist of both V1A and V2 vasopressin receptors. Tolvaptan - an antagonist of the V2 vasopressin receptor. ... ADH activates V2 receptors on the basolateral membrane of principal cells in the renal collecting duct, initiating a cyclic AMP ... Because not all people with this syndrome have elevated levels of vasopressin, the term "syndrome of inappropriate antidiuresis ... needs update] Baylis, PH; Thompson, CJ (November 1988). "Osmoregulation of vasopressin secretion and thirst in health and ...
... vasopressin; NP: Neuropeptides; KOR, MOR, DOR: kappa-, mu- and delta-opioid receptors correspondingly; sANS - sympathetic ... It became clear that an impressive diversity of neurotransmitters and their receptors is necessary to meet a wide range of ... The FET points out that opioid receptor systems are involved not only in regulation of emotional dispositions but also amplify ... Yoshioka M, Matsumoto M, Togashi H, Smith CB, Saito H (1993). "Opioid receptor regulation of 5-hydroxytryptamine release from ...
Studies have also found that testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. There ... The T-receptor or DHT-receptor complex undergoes a structural change that allows it to move into the cell nucleus and bind ... "Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus". Physiology & Behavior. 60 (1): 25 ... receptors reduces androgen receptor expression in the rat anteroventral periventricular nucleus and sexually dimorphic preoptic ...
2003). "Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, ... Tolvaptan is a selective vasopressin V2 receptor antagonist. Tolvaptan is a racemate, a 1:1 mixture of the following two ... competitive vasopressin receptor 2 (V2) antagonist used to treat hyponatremia (low blood sodium levels) associated with ... Vasopressin receptor antagonists, Otsuka Pharmaceutical, World Anti-Doping Agency prohibited substances, Orphan drugs, 2-Tolyl ...
Expression of functional CRH and vasopressin V3 receptors increase in number. Additionally, there are two isoforms of ... Heterozygosity loss in the glucocorticoid receptor can occur in the tumors present in Nelson's syndrome. Overall, not all ... Mutations with genes and with the glucocorticoid receptor can affect the tumor as well. Furthermore, differences between Nelson ...
Advances in Vasopressin and Oxytocin - from Genes to Behaviour to Disease. pp. 379-88. doi:10.1016/S0079-6123(08)00431-7. ISBN ... Membrane glucocorticoid receptors (mGRs) are a group of receptors which bind and are activated by glucocorticoids such as ... G protein-coupled receptors, Glucocorticoids, Human proteins, All stub articles, Receptor stubs). ... Membrane steroid receptor Tasker JG, Di S, Malcher-Lopes R (2006). "Minireview: rapid glucocorticoid signaling via membrane- ...
Neural AQP-1 receptors are regulated by vasopressin AVPR1A receptor activity. Aquaporins are a family of small integral ... Rauen K, Pop V, Trabold R, Badaut J, Plesnila N (February 2020). "Vasopressin V1a Receptors Regulate Cerebral Aquaporin 1 after ...
When it is needed, vasopressin binds to the cell surface vasopressin receptor thereby activating a signaling pathway that ... Mutations in the vasopressin receptor cause a similar X-linked phenotype. Lithium, which is often used to treat bipolar ... Robben JH, Knoers NV, Deen PM (August 2006). "Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water ... Bouley R, Hasler U, Lu HA, Nunes P, Brown D (May 2008). "Bypassing vasopressin receptor signaling pathways in nephrogenic ...
The underlying beneficial mechanism of increased water intake may be related to effects on the vasopressin V2 receptor or may ... Tolvaptan, an aquaretic drug, is a vasopressin receptor 2 (V2) antagonist. Pre-clinical studies had suggested that the molecule ... with vasopressin receptor 2 (V2) antagonists (i.e. tolvaptan). Tolvaptan treatment does not halt or reverse disease progression ... "The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors". American Journal of ...
1976 as cited in ATSDR 2005 Baribeau, Danielle A; Anagnostou, Evdokia (2015). "Oxytocin and vasopressin: linking pituitary ... and receptor interactions. The biological half-life of water in a human is about 7 to 14 days. It can be altered by behavior. ... neuropeptides and their receptors to social neurocircuits". Frontiers in Neuroscience. 9: 335. doi:10.3389/fnins.2015.00335. ...
... receptor agonists, Posterior pituitary hormones, Vasopressin receptor agonists, Orphan drugs, Nonapeptides). ... Its actions are mediated by specific oxytocin receptors. The oxytocin receptor is a G-protein-coupled receptor, OT-R, which ... Baribeau DA, Anagnostou E (2015). "Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social ... perhaps the vasopressin V1A receptor where oxytocin is known to weakly bind as an agonist. Oxytocin mediates the antidepressant ...
... lack of selectivity over vasopressin receptors has so far limited the potential usefulness of small-molecule oxytocin receptor ... Baribeau DA, Anagnostou E (2015). "Oxytocin and vasopressin: linking pituitary neuropeptides and their receptors to social ... Oxytocin receptor agonists, Peptides, Peripherally selective drugs, Wikipedia medicine articles ready to translate, Vasopressin ... The tocolytic agent atosiban (Tractocile) acts as an antagonist of oxytocin receptors. It is registered in many countries for ...
... (INN) is a vasopressin receptor antagonist marketed by Otsuka. In Japan, it was approved in October 2006 for ... Vasopressin receptor antagonists, 2-Tolyl compounds, All stub articles, Antihypertensive agent stubs). ...
... a Selective Oral Vasopressin V2-Receptor Antagonist, for Hyponatremia". New England Journal of Medicine. 355 (20): 2099-2112. ... Alternatively, an antidiuretic, such as vasopressin (antidiuretic hormone), is an agent or drug which reduces the excretion of ... ISBN 978-0-08-092046-7. L. Kovács; B. Lichardus (6 December 2012). Vasopressin: Disturbed Secretion and Its Effects. Springer ...
Arginine vasopressin receptor 2 is also expressed in the DCT. Thiazide diuretics inhibit Na+/Cl− reabsorption from the DCT by ...
Vasopressin receptors activated by vasopressin are found on the basolateral membrane of the cells lining the collecting ducts ... Through the process of aquaresis, conivapten which is a vasopressin receptor antagonist improves serum sodium concentration ... Targets identified includes: NKCC1, SUR1/ TRPM4 channel, Vasopressin receptor antagonist. During early and reperfusion stage of ...
This increase correlates with increase in vasopressin receptors in this area of the paternal brain. With age, this effect is ... "Naturally occurring differences in maternal care are associated with the expression of oxytocin and vasopressin (V1a) receptors ... "Fatherhood affects dendritic spines and vasopressin V1a receptors in the primate prefrontal cortex". Nature Neuroscience. 9 (9 ... Rat mothers who received low levels of maternal care as pups have lower levels of expression of the glucocorticoid receptor ...
Vasopressin receptor antagonists (VRAs) are drugs that block vasopressin receptors. Most commonly VRAs are used to treat ... There are three subtypes of vasopressin receptor: V1A (V1), V1B (V3) and V2. V1 receptors (V1Rs) are found in high density on ... called vasopressin receptors that are classified into the V1 (V1A), V2, and V3 (V1B) receptor subtypes. These three subtypes ... "Vasopressin and Oxytocin Receptors". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical ...
Decades of research on this receptor has demonstrated its importance to the modulation of social recognition memory, social ... Decades of research on this receptor has demonstrated its importance to the modulation of social recognition memory, social ... The arginine vasopressin 1b receptor (Avpr1b) is involved in the modulation of a variety of behaviors and is an important part ... The arginine vasopressin 1b receptor (Avpr1b) is involved in the modulation of a variety of behaviors and is an important part ...
Osmotic Regulation of Estrogen Receptor-β in Rat Vasopressin and Oxytocin Neurons. Suwit J. Somponpun and Celia D. Sladek ... Somponpun S, Sladek CD ( 2002) Role of estrogen receptor-beta in regulation of vasopressin and oxytocin release in vitro. ... Osmotic Regulation of Estrogen Receptor-β in Rat Vasopressin and Oxytocin Neurons ... Osmotic Regulation of Estrogen Receptor-β in Rat Vasopressin and Oxytocin Neurons ...
... and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these ... and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these ... In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as ... In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (like ...
Table 2: Vasopressin V2 Receptor (V2R) Agonist Therapeutic Products in Clinical Stages. Table 3: Vasopressin V2 Receptor (V2R) ... Figure 2: Vasopressin V2 Receptor (V2R) Agonist Therapeutic Products in Clinical Stages. Figure 3: Vasopressin V2 Receptor (V2R ... 5. Vasopressin V2 Receptor (V2R) Agonist Pipeline Products in Clinical Stages. 5.1 Drug Name: Company Name. *Product ... 6. Vasopressin V2 Receptor (V2R) Agonist Pipeline Products in Non-clinical Stages ...
... is considered a standard vasopressin V2 receptor-selective agonist with a potent antidiuretic effect through V2 receptor ... without the induction of vasoconstriction through V1a receptor. Furthermore, DDAVP was reported to act as an agonist on non-V1a ... 1-desamino-8-D-arginine vasopressin (DDAVP) as an agonist on V1b vasopressin receptor Biochem Pharmacol. 1997 Jun 1;53(11):1711 ... Hence, we compared the characteristics of DDAVP on V1b receptor with those on the other vasopressin receptors. In binding ...
Clinical Trials, FDA, Hepatology, Hepatorenal Syndrome Type 1 (HRS-1), New Drug Applications, R&D, Vasopressin 1a (V1a) ... Advisory Committees, FDA, Hepatorenal Syndrome Type 1 (HRS-1), Kidney Failure, Liver Cirrhosis, PDUFA, Vasopressin 1a (V1a) ... receptor antagonists The Cardiovascular and Renal Drugs Advisory Committee of the U.S. Food and Drug Administration voted to ... receptor antagonists Mallinckrodt plc announced that the company achieved target enrollment of 300 participants in the Phase 3 ...
Receptor for arginine vasopressin. The activity of this receptor is mediated by G proteins which activate adenylate cyclase. ... A V2 vasopressin receptor unable to stimulate adenylyl cyclase. J Biol Chem. 1993 Jun 25;268(18):13030-3. [PubMed:8514744 ] ... Showing Protein Vasopressin V2 receptor (HMDBP01725). IdentificationBiological propertiesGene propertiesProtein properties ... Faa V, Ventruto ML, Loche S, Bozzola M, Podda R, Cao A, Rosatelli MC: Mutations in the vasopressin V2-receptor gene in three ...
Vasopressin-Related. Class Summary. Desmopressin is a synthetic antidiuretic hormone with actions mimicking vasopressin. It is ... Ramelteon is a melatonin receptor agonist with high selectivity for human melatonin MT1 and MT2 receptors. MT1 and MT2 are ... receptors at binding domains close to, or allosterically coupled to, benzodiazepine receptors. ... Melatonin Receptor Agonists. Class Summary. In patients with circadian rhythm disorders, melatonin agonists may be used. ...
Furthermore, we identified an oxytocin/vasopressin-like peptide and receptor in the recently sequenced genome from the water ... Furthermore, we identified an oxytocin/vasopressin-like peptide and receptor in the recently sequenced genome from the water ... Cloning and identification of an oxytocin/vasopressin-like receptor and its ligand from insects. *Mark ... for insect oxytocin/vasopressin-like peptide) and a gene coding for an inotocin G protein-coupled receptor (GPCR). We cloned ...
... oxytocin and vasopressin receptor distributions in monogamous and non-monogamous Eulemur ... We performed oxytocin and arginine vasopressin 1a receptor autoradiography on 12 Eulemur brains from seven closely related ... Neural correlates of mating system diversity: oxytocin and vasopressin receptor distributions in monogamous and non-monogamous ... Neural correlates of mating system diversity: oxytocin and vasopressin receptor distributions in monogamous and non-monogamous ...
... receptors , hormone receptors , neurohormone receptors , neuropeptide receptors , vasopressin receptors ... receptors , neurotransmitter receptors , neurohormone receptors , neuropeptide receptors , vasopressin receptors ... hormone receptors , neurohormone receptors , neuropeptide receptors , vasopressin receptors ... neurotransmitter receptors , neurohormone receptors , neuropeptide receptors , vasopressin receptors ...
Vasopressin and oxytocin receptors. Detailed annotation on the structure, function, physiology, pharmacology and clinical ... Vasopressin V3 receptor , VPR3 , vasopressin V1b receptor , V3/V1b pituitary vasopressin receptor ... 2005) Effects of YM218, a nonpeptide vasopressin V1A receptor-selective antagonist, on human vasopressin and oxytocin receptors ... 1986) Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol ...
Two types of vasopressin receptor exist, the V1 receptor in the vascular smooth muscle and the V2 receptor in the kidneys. The ... Vasopressin" by people in UAMS Profiles by year, and whether "Receptors, Vasopressin" was a major or minor topic of these ... "Receptors, Vasopressin" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH (Medical ... Below are the most recent publications written about "Receptors, Vasopressin" by people in Profiles over the past ten years. ...
Conivaptan hydrochloride (CH) is a synthetic vasopressin V2 receptor antagonist that has been used in clinical trials for the ... GST RAR/RXR NAMPT IDH PDE Thrombin HMGCR Adenosine Receptor MAO FXR Phospholipase Carbonic Anhydrase ... NK Receptor AChE Adrenergic Receptor 5-HT Receptor Dopamine Receptor CaMK More ...
keywords = "arginine vasopressin 1a receptor, diazepine, oxytocin receptor, WAY-267,464",. author = "Jorgensen, {William T.} ... T2 - synthesis and pharmacology at the human oxytocin and vasopressin-1a receptors ... synthesis and pharmacology at the human oxytocin and vasopressin-1a receptors. European Journal of Medicinal Chemistry, 143, ... synthesis and pharmacology at the human oxytocin and vasopressin-1a receptors, European Journal of Medicinal Chemistry, vol. ...
... Vasopressin receptors are G-protein coupled receptors that mediate coagulation factor release, ... A vasopressin V1a receptor antagonist * GC30764 Argipressin (Vasopressin) Argipressin (Vasopressin) (Arg8-vasopressin) 与 V1、V2、 ... GC10622 OPC 21268 A nonpeptide antagonist of vasopressin V1 receptors * GC15154 d[Leu4,Lys8]-VP D[LEU4,LYS8]-VP 是血管加压素 V1b 受体的选 ... and bovine receptors. Furthermore, it showed a high V-1b/V-2 specificity for both bovine and human vasopressin receptors
Vasopressin Receptor. The actions of vasopressin are mediated by stimulation of tissue-specific G protein-coupled receptors. ...
Binding of estrogen receptor alpha to the vasopressin gene promoter area in the mouse brain. ... Dive into the research topics of Binding of estrogen receptor alpha to the vasopressin gene promoter area in the mouse brain ...
The results showed vasopressin receptor agonists use was associated with reduced mortality (relative risk (RR) 0.92; 95% ... but vasopressin receptor agonists administration could significantly increase the risk of digital ischemia (RR 4.85, 95% CI ... and Cochrane library were searched for randomized controlled trials evaluating the effects of vasopressin receptor agonists in ... Eggers test showed there was no significant publication bias among studies (P = 0.36). The use of vasopressin might result in ...
Although vasopressin V-1B receptor (V1BR) mRNA has been detected in the kidney, the precise renal localization as well as ... Characterization of a functional V-1B vasopressin receptor in the male rat kidne evidence for cross talk between V-1B and V-2 ... of arginine vasopressin-stimulated cAMP production in human embryonic kidney-293 cells coexpressing the two receptor isoforms ... both receptors. This cooperation arises from a cross talk between second messenger cascade involving PKC rather than receptor ...
To understand the regulation of vasopressin receptors in an animal model of hypertension, localization and age-related changes ... Autoradiographic localization and age-related changes in vasopressin receptors in spontaneously hypertensive rats. In: Nephron ... N2 - To understand the regulation of vasopressin receptors in an animal model of hypertension, localization and age-related ... AB - To understand the regulation of vasopressin receptors in an animal model of hypertension, localization and age-related ...
Dynamic modulation of mouse locus coeruleus neurons by vasopressin 1a and 1b receptors. Frontiers in Neuroscience. 2018 Dec 10; ... Dynamic modulation of mouse locus coeruleus neurons by vasopressin 1a and 1b receptors. In: Frontiers in Neuroscience. 2018 ; ... Dynamic modulation of mouse locus coeruleus neurons by vasopressin 1a and 1b receptors. / Campos-Lira, Elba; Kelly, Louise; ... Dive into the research topics of Dynamic modulation of mouse locus coeruleus neurons by vasopressin 1a and 1b receptors. ...
Home » Roche discloses vasopressin V1A receptor antagonists. X. Upgrade your daily dose of biopharma and medtech news. ... Altimmune Inc.s peptide-based glucagon-like peptide-1/glucagon dual receptor agonist pemvidutide hiccupped in a phase I study ...
Generation of anti-idiotypic monoclonal antibodies recognizing vasopressin receptors in cultured cells and kidney sections ... The anti-idiotypic antibodies were employed to visualize vasopressin receptors on LLC-PK1 and A7r5 (V1-receptor-expressing) ... Antibody-mediated fluorescence was not observed in receptor-deficient mutant cell lines or vasopressin-receptor-down-regulated ... To produce anti-idiotypic antibodies against receptors for the neurohypophyseal hormone vasopressin, an anti-vasopressin ...
Vasopressin Receptor. The actions of vasopressin are mediated by stimulation of tissue-specific G protein-coupled receptors. ... nevertheless Killer cell immunoglobulin-like receptor significantly encourages them to secret far more alkaline phosphatase ( ...
If vasopressin-2 receptor antagonists are unavailable or if local experience with them is limited, other agents to be ... Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006 Nov 16. 355(20):2099-112. ... V1a receptor is the vascular smooth muscle cell receptor but is also found on a number of other cells, such as hepatocytes, ... Nephrogenic syndrome of inappropriate antidiuresis secondary to an activating mutation in the arginine vasopressin receptor ...
Partial vasopressin 1a receptor agonism reduces portal hypertension and hyperaldosteronism Partial vasopressin 1a receptor ... Clinically available vasopressin agonists are limited by preferential selectivity for V1 receptors that also have steep ... OCE-205 is a novel, selective, partial V1a receptor agonist with mixed agonist/antagonist activity and no V2 receptor ... The vasopressin system has emerged as a therapeutic focus for lowering portal hypertension and reducing splanchnic vasodilation ...
Investigation of mechanism of desmopressin binding in vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors: ... Investigation of mechanism of desmopressin binding in vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors: ... Investigation of mechanism of desmopressin binding in vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors: ... the interactions responsible for binding of dDAVP to vasopressin V2 receptor versus vasopressin V1a and oxytocin receptors has ...
Vasopressin receptors in rat brain and kidney: studies using a radio-iodinated V1 receptor antagonist.. ... Arginine8-vasopressin (AVP) acts via V1 receptors (blood vessels, liver and brain) and V2 receptors (renal collecting duct). To ... Iodine-125[d(CH2)5,Sar7]AVP bound to single classes of rat liver and kidney V1 receptors with high affinity (liver: Kd = 3.0 ... In the kidney [3H]AVP bound to the inner and outer medulla, probably to vascular V1 and collecting duct V2 receptors. In ...

No FAQ available that match "receptors vasopressin"