A highly basic, 28 amino acid neuropeptide released from intestinal mucosa. It has a wide range of biological actions affecting the cardiovascular, gastrointestinal, and respiratory systems and is neuroprotective. It binds special receptors (RECEPTORS, VASOACTIVE INTESTINAL PEPTIDE).
Cell surface proteins that bind VASOACTIVE INTESTINAL PEPTIDE; (VIP); with high affinity and trigger intracellular changes which influence the behavior of cells.
A pituitary adenylate cyclase-activating peptide receptor subtype found in LYMPHOCYTES. It binds both PACAP and VASOACTIVE INTESTINAL PEPTIDE and regulates immune responses.
A pituitary adenylate cyclase-activating polypeptide receptor subtype that binds both PACAP and VASOACTIVE INTESTINAL PEPTIDE. It is found predominately in the BRAIN.
A multi-function neuropeptide that acts throughout the body by elevating intracellular cyclic AMP level via its interaction with PACAP RECEPTORS. Although first isolated from hypothalamic extracts and named for its action on the pituitary, it is widely distributed in the central and peripheral nervous systems. PACAP is important in the control of endocrine and homeostatic processes, such as secretion of pituitary and gut hormones and food intake.
A 27-amino acid peptide with histidine at the N-terminal and isoleucine amide at the C-terminal. The exact amino acid composition of the peptide is species dependent. The peptide is secreted in the intestine, but is found in the nervous system, many organs, and in the majority of peripheral tissues. It has a wide range of biological actions, affecting the cardiovascular, gastrointestinal, respiratory, and central nervous systems.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
HORMONES secreted by the gastrointestinal mucosa that affect the timing or the quality of secretion of digestive enzymes, and regulate the motor activity of the digestive system organs.
Cell surface proteins that bind gastrointestinal hormones with high affinity and trigger intracellular changes influencing the behavior of cells. Most gastrointestinal hormones also act as neurotransmitters so these receptors are also present in the central and peripheral nervous systems.
Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells.
A family of G-protein-coupled receptors that share significant homology with GLUCAGON RECEPTORS. They bind PITUITARY ADENYLATE CYCLASE ACTIVATING POLYPEPTIDE with high affinity and trigger intracellular changes that influence the behavior of CELLS.
A peptide hormone of about 27 amino acids from the duodenal mucosa that activates pancreatic secretion and lowers the blood sugar level. (USAN and the USP Dictionary of Drug Names, 1994, p597)
Cell surface proteins that bind pituitary hormones with high affinity and trigger intracellular changes influencing the behavior of cells. Since many pituitary hormones are also released by neurons as neurotransmitters, these receptors are also found in the nervous system.
Type I Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Receptor is a G protein-coupled receptor that binds PACAP and vasoactive intestinal polypeptide, activating adenylate cyclase and increasing intracellular cAMP levels upon activation.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses.
A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones.
One of two ganglionated neural networks which together form the enteric nervous system. The submucous (Meissner's) plexus is in the connective tissue of the submucosa. Its neurons innervate the epithelium, blood vessels, endocrine cells, other submucosal ganglia, and myenteric ganglia, and play an important role in regulating ion and water transport. (From FASEB J 1989;3:127-38)
Calcitonin gene-related peptide. A 37-amino acid peptide derived from the calcitonin gene. It occurs as a result of alternative processing of mRNA from the calcitonin gene. The neuropeptide is widely distributed in neural tissue of the brain, gut, perivascular nerves, and other tissue. The peptide produces multiple biological effects and has both circulatory and neurotransmitter modes of action. In particular, it is a potent endogenous vasodilator.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal.
Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland.
A biologically active tridecapeptide isolated from the hypothalamus. It has been shown to induce hypotension in the rat, to stimulate contraction of guinea pig ileum and rat uterus, and to cause relaxation of rat duodenum. There is also evidence that it acts as both a peripheral and a central nervous system neurotransmitter.
That phase of a muscle twitch during which a muscle returns to a resting position.
Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function.
An enzyme of the lyase class that catalyzes the formation of CYCLIC AMP and pyrophosphate from ATP. EC 4.6.1.1.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed)
Peptides whose amino and carboxy ends are linked together with a peptide bond forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS. Some of them are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL).
Large woodland game BIRDS in the subfamily Meleagridinae, family Phasianidae, order GALLIFORMES. Formerly they were considered a distinct family, Melegrididae.
The relationship between the dose of an administered drug and the response of the organism to the drug.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A collection of cloned peptides, or chemically synthesized peptides, frequently consisting of all possible combinations of amino acids making up an n-amino acid peptide.
An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6.
One of two salivary glands in the neck, located in the space bound by the two bellies of the digastric muscle and the angle of the mandible. It discharges through the submandibular duct. The secretory units are predominantly serous although a few mucous alveoli, some with serous demilunes, occur. (Stedman, 25th ed)
The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system.
A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety.
Two ganglionated neural plexuses in the gut wall which form one of the three major divisions of the autonomic nervous system. The enteric nervous system innervates the gastrointestinal tract, the pancreas, and the gallbladder. It contains sensory neurons, interneurons, and motor neurons. Thus the circuitry can autonomously sense the tension and the chemical environment in the gut and regulate blood vessel tone, motility, secretions, and fluid transport. The system is itself governed by the central nervous system and receives both parasympathetic and sympathetic innervation. (From Kandel, Schwartz, and Jessel, Principles of Neural Science, 3d ed, p766)
The rate dynamics in chemical or physical systems.
A 33-amino acid peptide derived from the C-terminal of PROGLUCAGON and mainly produced by the INTESTINAL L CELLS. It stimulates intestinal mucosal growth and decreased apoptosis of ENTEROCYTES. GLP-2 enhances gastrointestinal function and plays an important role in nutrient homeostasis.
The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi.
A benign neoplasm that usually arises from the sympathetic trunk in the mediastinum. Histologic features include spindle cell proliferation (resembling a neurofibroma) and the presence of large ganglion cells. The tumor may present clinically with HORNER SYNDROME or diarrhea due to ectopic production of vasoactive intestinal peptide. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, p966)
Glands of external secretion that release its secretions to the body's cavities, organs, or surface, through a duct.
One of two ganglionated neural networks which together form the ENTERIC NERVOUS SYSTEM. The myenteric (Auerbach's) plexus is located between the longitudinal and circular muscle layers of the gut. Its neurons project to the circular muscle, to other myenteric ganglia, to submucosal ganglia, or directly to the epithelium, and play an important role in regulating and patterning gut motility. (From FASEB J 1989;3:127-38)
An ovoid densely packed collection of small cells of the anterior hypothalamus lying close to the midline in a shallow impression of the OPTIC CHIASM.
A potent cyclic nucleotide phosphodiesterase inhibitor; due to this action, the compound increases cyclic AMP and cyclic GMP in tissue and thereby activates CYCLIC NUCLEOTIDE-REGULATED PROTEIN KINASES
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Peptides composed of between two and twelve amino acids.
A peptide of about 22-amino acids isolated from the DUODENUM. At low pH it inhibits gastric motor activity, whereas at high pH it has a stimulating effect.
Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant.
Small cationic peptides that are an important component, in most species, of early innate and induced defenses against invading microbes. In animals they are found on mucosal surfaces, within phagocytic granules, and on the surface of the body. They are also found in insects and plants. Among others, this group includes the DEFENSINS, protegrins, tachyplesins, and thionins. They displace DIVALENT CATIONS from phosphate groups of MEMBRANE LIPIDS leading to disruption of the membrane.
Neuropeptide and gut hormone that helps regulate GASTRIC ACID secretion and motor function. Once released from nerves in the antrum of the STOMACH, the neuropeptide stimulates release of GASTRIN from the GASTRIN-SECRETING CELLS.
Established cell cultures that have the potential to propagate indefinitely.
Agents affecting the function of, or mimicking the actions of, the autonomic nervous system and thereby having an effect on such processes as respiration, circulation, digestion, body temperature regulation, certain endocrine gland secretions, etc.
Peptide hormones secreted into the blood by cells in the ISLETS OF LANGERHANS of the pancreas. The alpha cells secrete glucagon; the beta cells secrete insulin; the delta cells secrete somatostatin; and the PP cells secrete pancreatic polypeptide.
The discharge of saliva from the SALIVARY GLANDS that keeps the mouth tissues moist and aids in digestion.
The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.
The superior portion of the body of the stomach above the level of the cardiac notch.
A compound tubular gland, located around the eyes and nasal passages in marine animals and birds, the physiology of which figures in water-electrolyte balance. The Pekin duck serves as a common research animal in salt gland studies. A rectal gland or rectal salt gland in the dogfish shark is attached at the junction of the intestine and cloaca and aids the kidneys in removing excess salts from the blood. (Storer, Usinger, Stebbins & Nybakken: General Zoology, 6th ed, p658)
Gastrointestinal symptoms resulting from an absent or nonfunctioning pylorus.
A tumor that secretes VASOACTIVE INTESTINAL PEPTIDE, a neuropeptide that causes VASODILATION; relaxation of smooth muscles; watery DIARRHEA; HYPOKALEMIA; and HYPOCHLORHYDRIA. Vipomas, derived from the pancreatic ISLET CELLS, generally are malignant and can secrete other hormones. In most cases, Vipomas are located in the PANCREAS but can be found in extrapancreatic sites.
A 36-amino acid pancreatic hormone that is secreted mainly by endocrine cells found at the periphery of the ISLETS OF LANGERHANS and adjacent to cells containing SOMATOSTATIN and GLUCAGON. Pancreatic polypeptide (PP), when administered peripherally, can suppress gastric secretion, gastric emptying, pancreatic enzyme secretion, and appetite. A lack of pancreatic polypeptide (PP) has been associated with OBESITY in rats and mice.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Use of electric potential or currents to elicit biological responses.
Sharks of the family Squalidae, also called dogfish sharks. They comprise at least eight genera and 44 species. Their LIVER is valued for its oil and its flesh is often made into fertilizer.
Drugs used to cause dilation of the blood vessels.
A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Raised area at the infundibular region of the HYPOTHALAMUS at the floor of the BRAIN, ventral to the THIRD VENTRICLE and adjacent to the ARCUATE NUCLEUS OF HYPOTHALAMUS. It contains the terminals of hypothalamic neurons and the capillary network of hypophyseal portal system, thus serving as a neuroendocrine link between the brain and the PITUITARY GLAND.
A tetradecapeptide originally obtained from the skins of toads Bombina bombina and B. variegata. It is also an endogenous neurotransmitter in many animals including mammals. Bombesin affects vascular and other smooth muscle, gastric secretion, and renal circulation and function.
A ring of tissue extending from the scleral spur to the ora serrata of the RETINA. It consists of the uveal portion and the epithelial portion. The ciliary muscle is in the uveal portion and the ciliary processes are in the epithelial portion.
A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition.
The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A neurotrophic factor that promotes the survival of various neuronal cell types and may play an important role in the injury response in the nervous system.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Fluids originating from the epithelial lining of the intestines, adjoining exocrine glands and from organs such as the liver, which empty into the cavity of the intestines.
The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION.
One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN.
The tear-forming and tear-conducting system which includes the lacrimal glands, eyelid margins, conjunctival sac, and the tear drainage system.
Cell surface receptors that bind specific neuropeptides with high affinity and trigger intracellular changes influencing the behavior of cells. Many neuropeptides are also hormones outside of the nervous system.
A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
Cell surface proteins that bind CALCITONIN GENE-RELATED PEPTIDE with high affinity and trigger intracellular changes which influence the behavior of cells. CGRP receptors are present in both the CENTRAL NERVOUS SYSTEM and the periphery. They are formed via the heterodimerization of the CALCITONIN RECEPTOR-LIKE PROTEIN and RECEPTOR ACTIVITY-MODIFYING PROTEIN 1.
The shortest and widest portion of the SMALL INTESTINE adjacent to the PYLORUS of the STOMACH. It is named for having the length equal to about the width of 12 fingers.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system.
An octapeptide hormone present in the intestine and brain. When secreted from the gastric mucosa, it stimulates the release of bile from the gallbladder and digestive enzymes from the pancreas.
A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate.
An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction.
A peptide of 44 amino acids in most species that stimulates the release and synthesis of GROWTH HORMONE. GHRF (or GRF) is synthesized by neurons in the ARCUATE NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, GHRF stimulates GH release by the SOMATOTROPHS in the PITUITARY GLAND.
The viscous secretion of mucous membranes. It contains mucin, white blood cells, water, inorganic salts, and exfoliated cells.
The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical.
The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A subclass of IMIDES with the general structure of pyrrolidinedione. They are prepared by the distillation of ammonium succinate. They are sweet-tasting compounds that are used as chemical intermediates and plant growth stimulants.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Sweat-producing structures that are embedded in the DERMIS. Each gland consists of a single tube, a coiled body, and a superficial duct.
Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases.
Cell surface proteins that bind somatostatin and trigger intracellular changes which influence the behavior of cells. Somatostatin is a hypothalamic hormone, a pancreatic hormone, and a central and peripheral neurotransmitter. Activated somatostatin receptors on pituitary cells inhibit the release of growth hormone; those on endocrine and gastrointestinal cells regulate the absorption and utilization of nutrients; and those on neurons mediate somatostatin's role as a neurotransmitter.
A neuropeptide of 29-30 amino acids depending on the species. Galanin is widely distributed throughout the BRAIN; SPINAL CORD; and INTESTINES. There are various subtypes of GALANIN RECEPTORS implicating roles of galanin in regulating FOOD INTAKE; pain perception; memory; and other neuroendocrine functions.
A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511)
Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON.
A slowly hydrolyzing muscarinic agonist with no nicotinic effects. Bethanechol is generally used to increase smooth muscle tone, as in the GI tract following abdominal surgery or in urinary retention in the absence of obstruction. It may cause hypotension, HEART RATE changes, and BRONCHIAL SPASM.
Bretylium compounds are pharmaceutical agents, primarily used in the treatment of life-threatening ventricular arrhythmias, that work by stabilizing the cardiac membrane and inhibiting the release of norepinephrine from sympathetic nerve endings.
The motor activity of the GASTROINTESTINAL TRACT.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
A group of amylolytic enzymes that cleave starch, glycogen, and related alpha-1,4-glucans. (Stedman, 25th ed) EC 3.2.1.-.
An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.

99mTc-labeled vasoactive intestinal peptide receptor agonist: functional studies. (1/299)

Vasoactive intestinal peptide (VIP) is a naturally occurring 28-amino acid peptide with a wide range of biological activities. Recent reports suggest that VIP receptors are expressed on a variety of malignant tumor cells and that the receptor density is higher than for somatostatin. Our aims were to label VIP with 99mTc--a generator-produced, inexpensive radionuclide that possesses ideal characteristics for scintigraphic imaging--and to evaluate 99mTc-VIP for bioactivity and its ability to detect experimental tumors. METHODS: VIP28 was modified at the carboxy terminus by the addition of four amino acids that provided an N4 configuration for a strong chelation of 99mTc. To eliminate steric hindrance, 4-aminobutyric acid (Aba) was used as a spacer. VIP28 was labeled with 1251, which served as a control. Biological activity of the modified VIP28 agonist (TP3654) was examined in vitro using a cell-binding assay and an opossum internal anal sphincter (IAS) smooth muscle relaxivity assay. Tissue distribution studies were performed at 4 and 24 h after injection, and receptor-blocking assays were also performed in nude mice bearing human colorectal cancer LS174T. Blood clearance was examined in normal Sprague-Dawley rats. RESULTS: The yield of 99mTc-TP3654 was quantitative, and the yields of 125I-VIP and 1251-TP3654 were >90%. All in vitro data strongly suggested that the biological activity of 99mTc-TP3654 agonist was equivalent to that of VIP28. As the time after injection increased, radioactivity in all tissues decreased, except in the receptor-enriched tumor (P = 0.84) and in the lungs (P = 0.78). The tumor uptake (0.23 percentage injected dose per gram of tissue [%ID/g]) was several-fold higher than 125I-VIP (0.06 %ID/g) at 24 h after injection in the similar system. In mice treated with unlabeled VIP or TP3654, the uptake of 99mTc-TP3654 decreased in all VIP receptor-rich tissues except the kidneys. The blood clearance was biphasic; the alpha half-time was 5 min and the beta half-time was approximately 120 min. CONCLUSION: VIP28 was modified and successfully labeled with 99mTc. The results of all in vitro examinations indicated that the biological activity of TP3654 was equivalent to that of native VIP28 and tumor binding was receptor specific.  (+info)

Actions of vasoactive intestinal peptide on the rat adrenal zona glomerulosa. (2/299)

Previous studies, by this group and others, have shown that vasoactive intestinal peptide (VIP) stimulates aldosterone secretion, and that the actions of VIP on aldosterone secretion by the rat adrenal cortex are blocked by beta adrenergic antagonists, suggesting that VIP may act by the local release of catecholamines. The present studies were designed to test this hypothesis further, by measuring catecholamine release by adrenal capsular tissue in response to VIP stimulation. Using intact capsular tissue it was found that VIP caused a dose-dependent increase in aldosterone secretion, with a concomitant increase in both adrenaline and noradrenaline release. The effects of VIP on aldosterone secretion were inhibited by atenolol, a beta1 adrenergic antagonist, but not by ICI-118,551, a beta2 adrenergic antagonist. Binding studies were carried out to investigate VIP receptors. It was found that adrenal zona glomerulosa tissue from control rats contained specific VIP binding sites (Bmax 853+/-101 fmol/mg protein; Kd 2.26+/-0.45 nmol/l). VIP binding was not displaced by ACTH, angiotensin II or by either of the beta adrenergic antagonists. The response to VIP in adrenals obtained from rats fed a low sodium diet was also investigated. Previous studies have found that adrenals from animals on a low sodium diet exhibit increased responsiveness to VIP. Specific VIP binding sites were identified, although the concentration or affinity of binding sites in the low sodium group was not significantly different from the controls. In the low sodium group VIP was found to increase catecholamine release to the same extent as in the control group, however, in contrast to the control group, the adrenal response to VIP was not altered by adrenergic antagonists in the low sodium group. These data provide strong support for the hypothesis that VIP acts by the local release of catecholamines in adrenal zona glomerulosa tissue in normal animals. It does not appear that VIP acts through the same mechanism in animals maintained on a low sodium diet. The mechanism by which VIP stimulates aldosterone in this group remains to be determined.  (+info)

Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide prevent inducible nitric oxide synthase transcription in macrophages by inhibiting NF-kappa B and IFN regulatory factor 1 activation. (3/299)

High-output nitric oxide (NO) production from activated macrophages, resulting from the induction of inducible NO synthase (iNOS) expression, represents a major mechanism for macrophage cytotoxicity against pathogens. However, despite its beneficial role in host defense, sustained high-output NO production was also implicated in a variety of acute inflammatory diseases and autoimmune diseases. Therefore, the down-regulation of iNOS expression during an inflammatory process plays a significant physiological role. This study examines the role of two immunomodulatory neuropeptides, the vasoactive intestinal peptide (VIP) and the pituitary adenylate cyclase-activating polypeptide (PACAP), on NO production by LPS-, IFN-gamma-, and LPS/IFN-gamma-stimulated peritoneal macrophages and the Raw 264.7 cell line. Both VIP and PACAP inhibit NO production in a dose- and time-dependent manner by reducing iNOS expression at protein and mRNA level. VPAC1, the type 1 VIP receptor, which is constitutively expressed in macrophages, and to a lesser degree VPAC2, the type 2 VIP receptor, which is induced upon macrophage activation, mediate the effect of VIP/PACAP. VIP/PACAP inhibit iNOS expression and activity both in vivo and in vitro. Two transduction pathways appear to be involved, a cAMP-dependent pathway that preferentially inhibits IFN regulatory factor-1 transactivation and a cAMP-independent pathway that blocks NF-kappa B binding to the iNOS promoter. The down-regulation of iNOS expression, together with previously reported inhibitory effects on the production of the proinflammatory cytokines IL-6, TNF-alpha, and IL-12, and the stimulation of the anti-inflammatory IL-10, define VIP and PACAP as "macrophage deactivating factors" with significant physiological relevance.  (+info)

Immunolocalization of muscarinic and VIP receptor subtypes and their role in stimulating goblet cell secretion. (4/299)

PURPOSE: To determine the subtypes of cholinergic muscarinic receptors and receptors for vasoactive intestinal peptide (VIP) present in rat conjunctival goblet cells and whether cholinergic agonists and VIP stimulate goblet cell secretion. METHODS: Immunofluorescence studies were performed using antibodies against the m1, m2, and m3 muscarinic receptor subtypes and VIP receptors 1 and 2 (VIPR1 and VIPR2). The lectin Ulex europeus agglutinin I was used to measure glycoconjugate secretion, the index of secretion, from goblet cells in an enzyme-linked lectin assay. In this assay, pieces of conjunctiva were placed on filter paper and incubated for 15 to 120 minutes, with or without increasing concentrations of the cholinergic agonist carbachol or VIP. The muscarinic antagonist atropine and the muscarinic receptor-subtype-selective antagonists pirenzepine (M1), gallamine (M2), and 4-4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride (4-DAMP mustard; M3) were incubated with carbachol to determine specificity of receptor activation. RESULTS: Immunoreactivity to M2 and M3 receptors was found on goblet cell membranes subjacent to the secretory granules. Immunoreactivity to M1 receptor was not on goblet cells but was on the stratitfied squamous cells. Immunoreactivity to VIPR2 was found on goblet cells with a localization similar to that of the M2 and M3 receptors. VIPR1 was not found on goblet cells or on the stratified squamous cells. Carbachol and VIP induced a time- and concentration-dependent stimulation of glycoconjugate secretion. Carbachol, at 10(-4) M, induced a threefold increase in glycoconjugate secretion, which was completely inhibited by atropine (10(-5) M). Carbachol-induced secretion was inhibited 54% +/- 8% by pirenzepine (10(-5) M), 69% +/- 14% by gallamine (10(-5) M), and 72% +/- 11% by 4-DAMP mustard (10(-5) M). A twofold increase in glycoconjugate secretion was obtained with VIP at 10(-8) M. CONCLUSIONS: Cholinergic agonists, through M2 and/or M3 muscarinic receptors, and VIP, through VIPR2, regulate conjunctival goblet cell secretion, suggesting that goblet cell secretion in vivo is under the control of parasympathetic nerves.  (+info)

Alternate coupling of receptors to Gs and Gi in pancreatic and submandibular gland cells. (5/299)

Many Gs-coupled receptors can activate both cAMP and Ca2+ signaling pathways. Three mechanisms for dual activation have been proposed. One is receptor coupling to both Gs and G15 (a Gq class heterotrimeric G protein) to initiate independent signaling cascades that elevate intracellular levels of cAMP and Ca+2, respectively. The other two mechanisms involve cAMP-dependent protein kinase-mediated activation of phospholipase Cbeta either directly or by switching receptor coupling from Gs to Gi. These mechanisms were primarily inferred from studies with transfected cell lines. In native cells we found that two Gs-coupled receptors (the vasoactive intestinal peptide and beta-adrenergic receptors) in pancreatic acinar and submandibular gland duct cells, respectively, evoke a Ca2+ signal by a mechanism involving both Gs and Gi. This inference was based on the inhibitory action of antibodies specific for Galphas, Galphai, and phosphatidylinositol 4,5-bisphosphate, pertussis toxin, RGS4, a fragment of beta-adrenergic receptor kinase and inhibitors of cAMP-dependent protein kinase. By contrast, Ca2+ signaling evoked by Gs-coupled receptor agonists was not blocked by Gq class-specific antibodies and was unaffected in Galpha15 -/- knockout mice. We conclude that sequential activation of Gs and Gi, mediated by cAMP-dependent protein kinase, may represent a general mechanism in native cells for dual stimulation of signaling pathways by Gs-coupled receptors.  (+info)

Expression, pharmacological, and functional evidence for PACAP/VIP receptors in human lung. (6/299)

Pituitary adenylate cyclase-activating peptide (PACAP) type 1 (PAC(1)) and common PACAP/vasoactive intestinal peptide (VIP) type 1 and 2 (VPAC(1) and VPAC(2), respectively) receptors were detected in the human lung by RT-PCR. The proteins were identified by immunoblotting at 72, 67, and 68 kDa, respectively. One class of PACAP receptors was defined from (125)I-labeled PACAP-27 binding experiments (dissociation constant = 5.2 nM; maximum binding capacity = 5.2 pmol/mg protein) with a specificity: PACAP-27 approximately VIP > helodermin approximately peptide histidine-methionine (PHM) >> secretin. Two classes of VIP receptors were established with (125)I-VIP (dissociation constants of 5.4 and 197 nM) with a specificity: VIP approximately helodermin approximately PACAP-27 >> PHM >> secretin. PACAP-27 and VIP were equipotent on adenylyl cyclase stimulation (EC(50) = 1.6 nM), whereas other peptides showed lower potency (helodermin > PHM >> secretin). PACAP/VIP antagonists supported that PACAP-27 acts in the human lung through either specific receptors or common PACAP/VIP receptors. The present results are the first demonstration of the presence of PAC(1) receptors and extend our knowledge of common PACAP/VIP receptors in the human lung.  (+info)

Structure of the human VIPR2 gene for vasoactive intestinal peptide receptor type 2. (7/299)

The VPAC(2) (vasoactive intestinal peptide (VIP)(2)) receptor is a seven-transmembrane spanning G protein-coupled receptor which responds similarly to VIP and pituitary adenylate cyclase activating polypeptide (PACAP) in stimulating cAMP production. Recently, we reported the localisation of the human VPAC(2) receptor gene (VIPR2) to chromosome 7q36.3 (Mackay, M. et al. (1996) Genomics 37, 345-353). Here, we describe the characterisation of the VIPR2 gene structure and promoter region. The VIPR2 gene is encoded by 13 exons, the initiator codon of the 438 amino acid open reading frame is located in exon 1 and the termination signal and a poly-adenylation signal sequence are located in exon 13. The 5' untranslated region extends 187 bp upstream of the initiator codon and is extremely GC-rich (80%). The poly-adenylation signal is located 2416 bp downstream of the stop codon. Intron sizes range from 68 bp (intron 11) to 45 kb (intron 4) and the human gene spans 117 kb.  (+info)

Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron neuropeptide Y release through PAC(1) receptor isoform activation of specific intracellular signaling pathways. (8/299)

Pituitary adenylate cyclase-activating polypeptides (PACAP) have potent regulatory and neurotrophic activities on superior cervical ganglion (SCG) sympathetic neurons with pharmacological profiles consistent for the PACAP-selective PAC(1) receptor. Multiple PAC(1) receptor isoforms are suggested to determine differential peptide potency and receptor coupling to multiple intracellular signaling pathways. The current studies examined rat SCG PAC(1) receptor splice variant expression and coupling to intracellular signaling pathways mediating PACAP-stimulated peptide release. PAC(1) receptor mRNA was localized in over 90% of SCG neurons, which correlated with the cells expressing receptor protein. The neurons expressed the PAC(1)(short)HOP1 receptor but not VIP/PACAP-nonselective VPAC(1) receptors; low VPAC(2) receptor mRNA levels were restricted to ganglionic nonneuronal cells. PACAP27 and PACAP38 potently and efficaciously stimulated both cAMP and inositol phosphate production; inhibition of phospholipase C augmented PACAP-stimulated cAMP production, but inhibition of adenylyl cyclase did not alter stimulated inositol phosphate production. Phospholipase C inhibition blunted neuron peptide release, suggesting that the phosphatidylinositol pathway was a prominent component of the secretory response. These studies demonstrate preferential sympathetic neuron expression of PACAP-selective receptor variants contributing to regulation of autonomic function.  (+info)

Vasoactive Intestinal Peptide (VIP) is a 28-amino acid polypeptide hormone that has potent vasodilatory, secretory, and neurotransmitter effects. It is widely distributed throughout the body, including in the gastrointestinal tract, where it is synthesized and released by nerve cells (neurons) in the intestinal mucosa. VIP plays a crucial role in regulating various physiological functions such as intestinal secretion, motility, and blood flow. It also has immunomodulatory effects and may play a role in neuroprotection. High levels of VIP are found in the brain, where it acts as a neurotransmitter or neuromodulator and is involved in various cognitive functions such as learning, memory, and social behavior.

Vasoactive Intestinal Peptide (VIP) receptors are a type of G-protein coupled receptor found in various tissues and organs throughout the body, including the heart, blood vessels, lungs, gastrointestinal tract, and nervous system. These receptors bind to VIP, a neuropeptide that acts as a potent vasodilator, increasing blood flow and reducing vascular resistance.

There are two main types of VIP receptors: VPAC1 and VPAC2. Both receptor subtypes have similar structures and functions, but they differ in their distribution throughout the body and their sensitivity to different ligands. For example, VPAC1 is more abundant in the heart, lungs, and gastrointestinal tract, while VPAC2 is more prevalent in the nervous system and endocrine organs.

VIP receptors play important roles in regulating various physiological processes, including cardiovascular function, smooth muscle relaxation, neurotransmission, and immune response. Abnormalities in VIP signaling have been implicated in a variety of diseases, including inflammatory disorders, neurological conditions, and cancer.

In summary, Vasoactive Intestinal Peptide (VIP) receptors are a type of G-protein coupled receptor that bind to the neuropeptide VIP and play important roles in regulating various physiological processes throughout the body.

Vasoactive Intestinal Peptide (VIP) Type II receptors are a type of G protein-coupled receptor that bind to and are activated by the neuropeptide Vasoactive Intestinal Peptide. These receptors are found in various tissues throughout the body, including the heart, blood vessels, lungs, gastrointestinal tract, and genitourinary system.

VIP is a potent vasodilator and inhibits the release of hormones from the anterior pituitary gland. VIP type II receptors are involved in regulating a variety of physiological functions, including smooth muscle relaxation, fluid and electrolyte balance, and neurotransmission.

VIP type II receptors differ from VIP type I receptors (also known as pituitary adenylate cyclase-activating polypeptide type I receptor) in their tissue distribution, signaling pathways, and pharmacological properties. Activation of VIP type II receptors primarily leads to the activation of adenylyl cyclase and an increase in intracellular cAMP levels, which in turn regulates various cellular responses.

Abnormalities in VIP type II receptor function have been implicated in several diseases, including cardiovascular disease, respiratory disorders, and gastrointestinal dysfunction. Therefore, VIP type II receptors are a potential target for the development of therapeutic agents to treat these conditions.

Vasoactive Intestinal Polypeptide (VIP) Type I receptors are a type of G protein-coupled receptor that bind to and are activated by the neuropeptide Vasoactive Intestinal Polypeptide. These receptors are widely distributed throughout the body, including in the cardiovascular system, gastrointestinal tract, and central nervous system.

VIP is a potent vasodilator, meaning that it causes blood vessels to relax and widen, which can lead to a decrease in blood pressure. VIP receptors are involved in regulating various physiological functions, including smooth muscle relaxation, fluid and electrolyte secretion, and immune cell function.

Type I VIP receptors (also known as VPAC1 receptors) have a high affinity for VIP and another neuropeptide called pituitary adenylate cyclase-activating polypeptide (PACAP). When activated, these receptors stimulate the production of intracellular second messengers such as cAMP, which can lead to a variety of cellular responses.

Defects in VIP Type I receptor function have been implicated in several diseases, including inflammatory bowel disease and certain types of cancer.

Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is a neuropeptide that belongs to the vasoactive intestinal polypeptide (VIP)/secretin/glucagon family. It was first isolated from the ovine hypothalamus and later found in various tissues and organs throughout the body, including the brain, pituitary gland, and peripheral nerves.

PACAP exists in two forms, PACAP-38 and PACAP-27, which differ in their length but share the same amino acid sequence at the N-terminus. PACAP exerts its effects through specific G protein-coupled receptors, including PAC1, VPAC1, and VPAC2 receptors, which are widely distributed throughout the body.

PACAP has a wide range of biological activities, including neurotrophic, neuroprotective, vasodilatory, and immunomodulatory effects. In the pituitary gland, PACAP stimulates adenylate cyclase activity, leading to an increase in intracellular cAMP levels, which in turn regulates the release of various hormones, including growth hormone, prolactin, and thyroid-stimulating hormone.

Overall, PACAP is a crucial neuropeptide involved in various physiological processes, and its dysregulation has been implicated in several pathological conditions, such as neurodegenerative diseases, mood disorders, and cancer.

I'm sorry for the confusion, but "Peptide PHI" is not a widely recognized or established medical term. It seems that there might be some misunderstanding or miscommunication related to this term.

If you are referring to a specific type of peptide or a research study, could you please provide more context or clarify the source of the term? I would be happy to help you with accurate and reliable information once I have a better understanding of what you are asking about.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Gastrointestinal (GI) hormones are a group of hormones that are secreted by cells in the gastrointestinal tract in response to food intake and digestion. They play crucial roles in regulating various physiological processes, including appetite regulation, gastric acid secretion, motility of the gastrointestinal tract, insulin secretion, and pancreatic enzyme release.

Examples of GI hormones include:

* Gastrin: Secreted by G cells in the stomach, gastrin stimulates the release of hydrochloric acid from parietal cells in the stomach lining.
* Ghrelin: Produced by the stomach, ghrelin is often referred to as the "hunger hormone" because it stimulates appetite and food intake.
* Cholecystokinin (CCK): Secreted by I cells in the small intestine, CCK promotes digestion by stimulating the release of pancreatic enzymes and bile from the liver. It also inhibits gastric emptying and reduces appetite.
* Gastric inhibitory peptide (GIP): Produced by K cells in the small intestine, GIP promotes insulin secretion and inhibits glucagon release.
* Secretin: Released by S cells in the small intestine, secretin stimulates the pancreas to produce bicarbonate-rich fluid that neutralizes stomach acid in the duodenum.
* Motilin: Secreted by MO cells in the small intestine, motilin promotes gastrointestinal motility and regulates the migrating motor complex (MMC), which is responsible for cleaning out the small intestine between meals.

These hormones work together to regulate digestion and maintain homeostasis in the body. Dysregulation of GI hormones can contribute to various gastrointestinal disorders, such as gastroparesis, irritable bowel syndrome (IBS), and diabetes.

Gastrointestinal (GI) hormone receptors are specialized protein structures found on the surface of cells in the gastrointestinal tract. These receptors recognize and respond to specific hormones that are released by enteroendocrine cells in the GI tract. Examples of GI hormones include gastrin, secretin, cholecystokinin (CCK), motilin, and ghrelin.

When a GI hormone binds to its specific receptor, it triggers a series of intracellular signaling events that ultimately lead to changes in cell function. These changes can include increased or decreased secretion of digestive enzymes, altered motility (movement) of the GI tract, and regulation of appetite and satiety.

Abnormalities in GI hormone receptors have been implicated in a variety of gastrointestinal disorders, including functional dyspepsia, irritable bowel syndrome, and obesity. Therefore, understanding the role of these receptors in GI physiology and pathophysiology is an important area of research.

Neuropeptides are small protein-like molecules that are used by neurons to communicate with each other and with other cells in the body. They are produced in the cell body of a neuron, processed from larger precursor proteins, and then transported to the nerve terminal where they are stored in secretory vesicles. When the neuron is stimulated, the vesicles fuse with the cell membrane and release their contents into the extracellular space.

Neuropeptides can act as neurotransmitters or neuromodulators, depending on their target receptors and the duration of their effects. They play important roles in a variety of physiological processes, including pain perception, appetite regulation, stress response, and social behavior. Some neuropeptides also have hormonal functions, such as oxytocin and vasopressin, which are produced in the hypothalamus and released into the bloodstream to regulate reproductive and cardiovascular function, respectively.

There are hundreds of different neuropeptides that have been identified in the nervous system, and many of them have multiple functions and interact with other signaling molecules to modulate neural activity. Dysregulation of neuropeptide systems has been implicated in various neurological and psychiatric disorders, such as chronic pain, addiction, depression, and anxiety.

Pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are a type of G protein-coupled receptor that bind and respond to PACAP, a neuropeptide involved in various physiological functions such as neurotransmission, vasodilation, and hormone release. There are two main types of PACAP receptors: PAC1 and VPAC1/VPAC2. These receptors play important roles in the regulation of various bodily processes, including the stress response, circadian rhythms, and energy metabolism. Upon activation by PACAP, these receptors trigger a signaling cascade that leads to the activation of adenylate cyclase and an increase in intracellular cAMP levels, which in turn regulates various cellular responses.

Secretin is a hormone that is produced and released by the S cells in the duodenum, which is the first part of the small intestine. It is released in response to the presence of acidic chyme (partially digested food) entering the duodenum from the stomach. Secretin stimulates the pancreas to produce bicarbonate-rich alkaline secretions, which help neutralize the acidity of the chyme and create an optimal environment for enzymatic digestion in the small intestine.

Additionally, secretin also promotes the production of watery fluids from the liver, which aids in the digestion process. Overall, secretin plays a crucial role in maintaining the pH balance and facilitating proper nutrient absorption in the gastrointestinal tract.

Pituitary hormone receptors are specialized protein molecules found on the surface of target cells in various organs and tissues throughout the body. These receptors selectively bind to specific pituitary hormones, which are released from the pituitary gland, a small endocrine gland located at the base of the brain. The binding of the hormone to its corresponding receptor triggers a series of intracellular signaling events that ultimately lead to physiological responses in the target cells.

There are several types of pituitary hormones, each with its own unique receptors, including:

1. Growth Hormone (GH) Receptors: These receptors are found on many tissues, such as liver, muscle, and bone. The binding of GH to these receptors stimulates the production of insulin-like growth factor 1 (IGF-1), which promotes cell growth and division, as well as other metabolic processes.
2. Adrenocorticotropic Hormone (ACTH) Receptors: These receptors are primarily located on cells in the adrenal gland, particularly in the adrenal cortex. The binding of ACTH to these receptors stimulates the production and release of cortisol, a steroid hormone involved in stress response, metabolism, and immune function.
3. Thyroid-Stimulating Hormone (TSH) Receptors: These receptors are found on the surface of thyroid follicular cells. The binding of TSH to these receptors triggers the production and release of thyroid hormones, triiodothyronine (T3) and thyroxine (T4), which regulate metabolism, growth, and development.
4. Follicle-Stimulating Hormone (FSH) Receptors: These receptors are present in the gonads (ovaries and testes). In females, FSH binds to these receptors to stimulate follicular growth and estrogen production, while in males, it promotes spermatogenesis.
5. Luteinizing Hormone (LH) Receptors: These receptors are also found in the gonads. In females, LH binding triggers ovulation and progesterone production, while in males, it stimulates testosterone production and sperm maturation.
6. Prolactin (PRL) Receptors: These receptors are located in various tissues, including the mammary glands, liver, and brain. The binding of PRL to these receptors promotes lactation, growth, and differentiation of mammary cells, as well as modulating immune function and behavior.
7. Melanocyte-Stimulating Hormone (MSH) Receptors: These receptors are found in the skin and central nervous system. The binding of MSH to these receptors regulates pigmentation, appetite, and energy balance.
8. Growth Hormone-Releasing Hormone (GHRH) Receptors: These receptors are present in the pituitary gland. The binding of GHRH to these receptors stimulates the release of growth hormone, which promotes growth, cell reproduction, and regeneration.
9. Somatostatin Receptors (SST): These receptors are located in various tissues, including the pancreas, brain, and gastrointestinal tract. The binding of somatostatin to these receptors inhibits the release of several hormones, such as growth hormone, insulin, and glucagon.
10. Corticotropin-Releasing Hormone (CRH) Receptors: These receptors are found in the hypothalamus and other brain regions. The binding of CRH to these receptors stimulates the release of adrenocorticotropic hormone (ACTH), which regulates stress response, metabolism, and immune function.
11. Thyrotropin-Releasing Hormone (TRH) Receptors: These receptors are present in the hypothalamus and pituitary gland. The binding of TRH to these receptors stimulates the release of thyroid-stimulating hormone (TSH), which regulates thyroid function and metabolism.
12. Gonadotropin-Releasing Hormone (GnRH) Receptors: These receptors are located in the hypothalamus and pituitary gland. The binding of GnRH to these receptors stimulates the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function.
13. Prolactin-Releasing Hormone (PRH) Receptors: These receptors are found in the hypothalamus and pituitary gland. The binding of PRH to these receptors stimulates the release of prolactin, which regulates lactation and other physiological processes.
14. Growth Hormone-Releasing Hormone (GHRH) Receptors: These receptors are located in the hypothalamus and pituitary gland. The binding of GHRH to these receptors stimulates the release of growth hormone, which regulates growth, metabolism, and other physiological processes.
15. Melanin-Concentrating Hormone (MCH) Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of MCH to these receptors regulates energy balance, feeding behavior, and sleep-wake cycles.
16. Neuropeptide Y (NPY) Receptors: These receptors are located in various brain regions and peripheral tissues. The binding of NPY to these receptors regulates energy balance, feeding behavior, stress response, and cardiovascular function.
17. Corticotropin-Releasing Hormone (CRH) Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of CRH to these receptors regulates the hypothalamic-pituitary-adrenal axis, stress response, and anxiety.
18. Oxytocin Receptors: These receptors are located in various brain regions and peripheral tissues. The binding of oxytocin to these receptors regulates social behavior, maternal care, and reproductive function.
19. Vasopressin Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of vasopressin to these receptors regulates water balance, blood pressure, and social behavior.
20. Substance P Receptors (Neurokinin 1 Receptors): These receptors are located in various brain regions and peripheral tissues. The binding of substance P to these receptors regulates pain transmission, neuroinflammation, and stress response.
21. Melanocortin Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of melanocortins to these receptors regulates energy balance, feeding behavior, and sexual function.
22. Endorphin Receptors (Mu, Delta, Kappa Opioid Receptors): These receptors are located in various brain regions and peripheral tissues. The binding of endorphins to these receptors modulates pain transmission, reward processing, and stress response.
23. Galanin Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of galanin to these receptors regulates feeding behavior, anxiety, and nociception.
24. Somatostatin Receptors: These receptors are located in various brain regions and peripheral tissues. The binding of somatostatin to these receptors modulates neurotransmitter release, hormone secretion, and cell proliferation.
25. Neuropeptide Y Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of neuropeptide Y to these receptors regulates feeding behavior, anxiety, and cardiovascular function.
26. Corticotropin-Releasing Hormone Receptors: These receptors are located in various brain regions and peripheral tissues. The binding of corticotropin-releasing hormone to these receptors modulates stress response, anxiety, and neuroinflammation.
27. Oxytocin Receptors: These receptors are found in various brain regions and peripheral tissues. The binding of oxytocin to these receptors regulates social behavior, maternal care, and anxiety.
28. Vasopressin Receptors: These receptors are located in various brain regions and peripheral tissues. The binding of vasopressin to these receptors modulates water balance, blood pressure, and social behavior.
2

Pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1-R) is a type of G protein-coupled receptor that binds to and is activated by the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). PAC1-R is widely expressed in various tissues, including the central nervous system, endocrine organs, and the cardiovascular system. Activation of PAC1-R leads to the activation of adenylate cyclase and an increase in intracellular cAMP levels, which in turn activates downstream signaling pathways involved in a variety of physiological processes such as neurotransmission, hormone secretion, and vasodilation. Abnormalities in PAC1-R function have been implicated in several diseases, including migraine, depression, and certain types of cancer.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Substance P is an undecapeptide neurotransmitter and neuromodulator, belonging to the tachykinin family of peptides. It is widely distributed in the central and peripheral nervous systems and is primarily found in sensory neurons. Substance P plays a crucial role in pain transmission, inflammation, and various autonomic functions. It exerts its effects by binding to neurokinin 1 (NK-1) receptors, which are expressed on the surface of target cells. Apart from nociception and inflammation, Substance P is also involved in regulating emotional behaviors, smooth muscle contraction, and fluid balance.

Neuropeptide Y (NPY) is a neurotransmitter and neuropeptide that is widely distributed in the central and peripheral nervous systems. It is a member of the pancreatic polypeptide family, which includes peptide YY and pancreatic polypeptide. NPY plays important roles in various physiological functions such as energy balance, feeding behavior, stress response, anxiety, memory, and cardiovascular regulation. It is involved in the modulation of neurotransmitter release, synaptic plasticity, and neural development. NPY is synthesized from a larger precursor protein called prepro-NPY, which is post-translationally processed to generate the mature NPY peptide. The NPY system has been implicated in various pathological conditions such as obesity, depression, anxiety disorders, hypertension, and drug addiction.

The submucosal plexus, also known as Meissner's plexus, is a component of the autonomic nervous system located in the submucosa layer of the gastrointestinal tract. It is a network of nerve fibers and ganglia that primarily regulates local reflexes and secretions, contributing to the control of gut motility, blood flow, and mucosal transport.

Meissner's plexus is part of the enteric nervous system (ENS), which can operate independently from the central nervous system (CNS). The ENS consists of two interconnected plexuses: Meissner's submucosal plexus and Auerbach's myenteric plexus.

Meissner's plexus is responsible for regulating functions such as absorption, secretion, vasodilation, and local immune responses in the gastrointestinal tract. Dysfunction of this plexus can lead to various gastrointestinal disorders, including irritable bowel syndrome (IBS) and other motility-related conditions.

Calcitonin gene-related peptide (CGRP) is a neurotransmitter and vasodilator peptide that is widely distributed in the nervous system. It is encoded by the calcitonin gene, which also encodes calcitonin and catestatin. CGRP is produced and released by sensory nerves and plays important roles in pain transmission, modulation of inflammation, and regulation of blood flow.

CGRP exists as two forms, α-CGRP and β-CGRP, which differ slightly in their amino acid sequences but have similar biological activities. α-CGRP is found primarily in the central and peripheral nervous systems, while β-CGRP is expressed mainly in the gastrointestinal tract.

CGRP exerts its effects by binding to specific G protein-coupled receptors, which are widely distributed in various tissues, including blood vessels, smooth muscles, and sensory neurons. Activation of CGRP receptors leads to increased intracellular cyclic AMP levels, activation of protein kinase A, and subsequent relaxation of vascular smooth muscle, resulting in vasodilation.

CGRP has been implicated in several clinical conditions, including migraine, cluster headache, and inflammatory pain. Inhibition of CGRP signaling has emerged as a promising therapeutic strategy for the treatment of these disorders.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Somatostatin is a hormone that inhibits the release of several hormones and also has a role in slowing down digestion. It is produced by the body in various parts of the body, including the hypothalamus (a part of the brain), the pancreas, and the gastrointestinal tract.

Somatostatin exists in two forms: somatostatin-14 and somatostatin-28, which differ in their length. Somatostatin-14 is the predominant form found in the brain, while somatostatin-28 is the major form found in the gastrointestinal tract.

Somatostatin has a wide range of effects on various physiological processes, including:

* Inhibiting the release of several hormones such as growth hormone, insulin, glucagon, and gastrin
* Slowing down digestion by inhibiting the release of digestive enzymes from the pancreas and reducing blood flow to the gastrointestinal tract
* Regulating neurotransmission in the brain

Somatostatin is used clinically as a diagnostic tool for detecting certain types of tumors that overproduce growth hormone or other hormones, and it is also used as a treatment for some conditions such as acromegaly (a condition characterized by excessive growth hormone production) and gastrointestinal disorders.

Colforsin is a drug that belongs to a class of medications called phosphodiesterase inhibitors. It works by increasing the levels of a chemical called cyclic AMP (cyclic adenosine monophosphate) in the body, which helps to relax and widen blood vessels.

Colforsin is not approved for use in humans in many countries, including the United States. However, it has been used in research settings to study its potential effects on heart function and other physiological processes. In animals, colforsin has been shown to have positive inotropic (contractility-enhancing) and lusitropic (relaxation-enhancing) effects on the heart, making it a potential therapeutic option for heart failure and other cardiovascular conditions.

It is important to note that while colforsin has shown promise in preclinical studies, more research is needed to establish its safety and efficacy in humans. Therefore, it should only be used under the supervision of a qualified healthcare professional and in the context of a clinical trial or research study.

Neurotensin is a neuropeptide that is widely distributed in the central nervous system and the gastrointestinal tract. It is composed of 13 amino acids and plays a role as a neurotransmitter or neuromodulator in various physiological functions, including pain regulation, temperature regulation, and feeding behavior. Neurotensin also has been shown to have potential roles in the development of certain diseases such as cancer and neurological disorders. It exerts its effects by binding to specific receptors, known as neurotensin receptors (NTSR1, NTSR2, and NTSR3), which are widely distributed throughout the body.

Muscle relaxation, in a medical context, refers to the process of reducing tension and promoting relaxation in the skeletal muscles. This can be achieved through various techniques, including progressive muscle relaxation (PMR), where individuals consciously tense and then release specific muscle groups in a systematic manner.

PMR has been shown to help reduce anxiety, stress, and muscle tightness, and improve overall well-being. It is often used as a complementary therapy in conjunction with other treatments for conditions such as chronic pain, headaches, and insomnia.

Additionally, muscle relaxation can also be facilitated through pharmacological interventions, such as the use of muscle relaxant medications. These drugs work by inhibiting the transmission of signals between nerves and muscles, leading to a reduction in muscle tone and spasticity. They are commonly used to treat conditions such as multiple sclerosis, cerebral palsy, and spinal cord injuries.

Neurotransmitter agents are substances that affect the synthesis, storage, release, uptake, degradation, or reuptake of neurotransmitters, which are chemical messengers that transmit signals across a chemical synapse from one neuron to another. These agents can be either agonists, which mimic the action of a neurotransmitter and bind to its receptor, or antagonists, which block the action of a neurotransmitter by binding to its receptor without activating it. They are used in medicine to treat various neurological and psychiatric disorders, such as depression, anxiety, and Parkinson's disease.

Adenylate cyclase is an enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). It plays a crucial role in various cellular processes, including signal transduction and metabolism. Adenylate cyclase is activated by hormones and neurotransmitters that bind to G-protein-coupled receptors on the cell membrane, leading to the production of cAMP, which then acts as a second messenger to regulate various intracellular responses. There are several isoforms of adenylate cyclase, each with distinct regulatory properties and subcellular localization.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Smooth muscle, also known as involuntary muscle, is a type of muscle that is controlled by the autonomic nervous system and functions without conscious effort. These muscles are found in the walls of hollow organs such as the stomach, intestines, bladder, and blood vessels, as well as in the eyes, skin, and other areas of the body.

Smooth muscle fibers are shorter and narrower than skeletal muscle fibers and do not have striations or sarcomeres, which give skeletal muscle its striped appearance. Smooth muscle is controlled by the autonomic nervous system through the release of neurotransmitters such as acetylcholine and norepinephrine, which bind to receptors on the smooth muscle cells and cause them to contract or relax.

Smooth muscle plays an important role in many physiological processes, including digestion, circulation, respiration, and elimination. It can also contribute to various medical conditions, such as hypertension, gastrointestinal disorders, and genitourinary dysfunction, when it becomes overactive or underactive.

Cyclic peptides are a type of peptides in which the N-terminus and C-terminus of the peptide chain are linked to form a circular structure. This is in contrast to linear peptides, which have a straight peptide backbone with a free N-terminus and C-terminus. The cyclization of peptides can occur through various mechanisms, including the formation of an amide bond between the N-terminal amino group and the C-terminal carboxylic acid group (head-to-tail cyclization), or through the formation of a bond between side chain functional groups.

Cyclic peptides have unique structural and chemical properties that make them valuable in medical and therapeutic applications. For example, they are more resistant to degradation by enzymes compared to linear peptides, which can increase their stability and half-life in the body. Additionally, the cyclic structure allows for greater conformational rigidity, which can enhance their binding affinity and specificity to target molecules.

Cyclic peptides have been explored as potential therapeutics for a variety of diseases, including cancer, infectious diseases, and neurological disorders. They have also been used as tools in basic research to study protein-protein interactions and cell signaling pathways.

I'm not aware of any recognized medical term or condition specifically referred to as "turkeys." The term "turkey" is most commonly used in a non-medical context to refer to the large, bird-like domesticated fowl native to North America, scientifically known as Meleagris gallopavo.

However, if you are referring to a medical condition called "turkey neck," it is a colloquial term used to describe sagging or loose skin around the neck area, which can resemble a turkey's wattle. This condition is not a formal medical diagnosis but rather a descriptive term for an aesthetic concern some people may have about their appearance.

If you meant something else by "turkeys," please provide more context so I can give you a more accurate answer.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

Atropine is an anticholinergic drug that blocks the action of the neurotransmitter acetylcholine in the central and peripheral nervous system. It is derived from the belladonna alkaloids, which are found in plants such as deadly nightshade (Atropa belladonna), Jimson weed (Datura stramonium), and Duboisia spp.

In clinical medicine, atropine is used to reduce secretions, increase heart rate, and dilate the pupils. It is often used before surgery to dry up secretions in the mouth, throat, and lungs, and to reduce salivation during the procedure. Atropine is also used to treat certain types of nerve agent and pesticide poisoning, as well as to manage bradycardia (slow heart rate) and hypotension (low blood pressure) caused by beta-blockers or calcium channel blockers.

Atropine can have several side effects, including dry mouth, blurred vision, dizziness, confusion, and difficulty urinating. In high doses, it can cause delirium, hallucinations, and seizures. Atropine should be used with caution in patients with glaucoma, prostatic hypertrophy, or other conditions that may be exacerbated by its anticholinergic effects.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

A peptide library is a collection of a large number of peptides, which are short chains of amino acids. Each peptide in the library is typically composed of a defined length and sequence, and may contain a variety of different amino acids. Peptide libraries can be synthesized using automated techniques and are often used in scientific research to identify potential ligands (molecules that bind to specific targets) or to study the interactions between peptides and other molecules.

In a peptide library, each peptide is usually attached to a solid support, such as a resin bead, and the entire library can be created using split-and-pool synthesis techniques. This allows for the rapid and efficient synthesis of a large number of unique peptides, which can then be screened for specific activities or properties.

Peptide libraries are used in various fields such as drug discovery, proteomics, and molecular biology to identify potential therapeutic targets, understand protein-protein interactions, and develop new diagnostic tools.

Choline O-Acetyltransferase (COAT, ChAT) is an enzyme that plays a crucial role in the synthesis of the neurotransmitter acetylcholine. It catalyzes the transfer of an acetyl group from acetyl CoA to choline, resulting in the formation of acetylcholine. Acetylcholine is a vital neurotransmitter involved in various physiological processes such as memory, cognition, and muscle contraction. COAT is primarily located in cholinergic neurons, which are nerve cells that use acetylcholine to transmit signals to other neurons or muscles. Inhibition of ChAT can lead to a decrease in acetylcholine levels and may contribute to neurological disorders such as Alzheimer's disease and myasthenia gravis.

The submandibular glands are one of the major salivary glands in the human body. They are located beneath the mandible (jawbone) and produce saliva that helps in digestion, lubrication, and protection of the oral cavity. The saliva produced by the submandibular glands contains enzymes like amylase and mucin, which aid in the digestion of carbohydrates and provide moisture to the mouth and throat. Any medical condition or disease that affects the submandibular gland may impact its function and could lead to problems such as dry mouth (xerostomia), swelling, pain, or infection.

The Parasympathetic Nervous System (PNS) is the part of the autonomic nervous system that primarily controls vegetative functions during rest, relaxation, and digestion. It is responsible for the body's "rest and digest" activities including decreasing heart rate, lowering blood pressure, increasing digestive activity, and stimulating sexual arousal. The PNS utilizes acetylcholine as its primary neurotransmitter and acts in opposition to the Sympathetic Nervous System (SNS), which is responsible for the "fight or flight" response.

Cholecystokinin (CCK) is a hormone that is produced in the duodenum (the first part of the small intestine) and in the brain. It is released into the bloodstream in response to food, particularly fatty foods, and plays several roles in the digestive process.

In the digestive system, CCK stimulates the contraction of the gallbladder, which releases bile into the small intestine to help digest fats. It also inhibits the release of acid from the stomach and slows down the movement of food through the intestines.

In the brain, CCK acts as a neurotransmitter and has been shown to have effects on appetite regulation, mood, and memory. It may play a role in the feeling of fullness or satiety after eating, and may also be involved in anxiety and panic disorders.

CCK is sometimes referred to as "gallbladder-stimulating hormone" or "pancreozymin," although these terms are less commonly used than "cholecystokinin."

The enteric nervous system (ENS) is a part of the autonomic nervous system that directly controls the gastrointestinal tract, including the stomach, small intestine, colon, and rectum. It is sometimes referred to as the "second brain" because it can operate independently of the central nervous system (CNS).

The ENS contains around 500 million neurons that are organized into two main plexuses: the myenteric plexus, which lies between the longitudinal and circular muscle layers of the gut, and the submucosal plexus, which is located in the submucosa. These plexuses contain various types of neurons that are responsible for regulating gastrointestinal motility, secretion, and blood flow.

The ENS can communicate with the CNS through afferent nerve fibers that transmit information about the state of the gut to the brain, and efferent nerve fibers that carry signals from the brain back to the ENS. However, the ENS is also capable of functioning independently of the CNS, allowing it to regulate gastrointestinal functions in response to local stimuli such as food intake, inflammation, or infection.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Glucagon-like peptide 2 (GLP-2) is a hormone that is produced in the intestines by the enteroendocrine L cells. It is a 33-amino acid peptide that is derived from the preproglucagon gene and has a variety of effects on the gastrointestinal system, including increasing nutrient absorption, stimulating intestinal growth, and reducing gut permeability.

GLP-2 acts by binding to its receptor, which is found on the surface of intestinal epithelial cells, as well as on blood vessels and immune cells in the gut. Activation of the GLP-2 receptor leads to a variety of intracellular signaling pathways that promote cell survival, proliferation, and differentiation.

In addition to its role in normal intestinal function, GLP-2 has been investigated as a potential therapeutic agent for various gastrointestinal disorders, including short bowel syndrome, inflammatory bowel disease, and intestinal injury. Synthetic GLP-2 agonists have been developed and are currently being studied in clinical trials for these indications.

The trachea, also known as the windpipe, is a tube-like structure in the respiratory system that connects the larynx (voice box) to the bronchi (the two branches leading to each lung). It is composed of several incomplete rings of cartilage and smooth muscle, which provide support and flexibility. The trachea plays a crucial role in directing incoming air to the lungs during inspiration and outgoing air to the larynx during expiration.

A ganglioneuroma is a type of benign (noncancerous) tumor that arises from the nerve cells called ganglia in the autonomic nervous system. These tumors typically develop in the abdomen or chest and are most commonly found in children and adolescents, although they can occur at any age.

Ganglioneuromas are composed of mature nerve cells (ganglion cells) and supporting tissue called stroma. They tend to grow slowly and usually do not cause any symptoms unless they become very large or press on nearby organs. In some cases, ganglioneuromas may produce hormones that can cause symptoms such as diarrhea, flushing, or heart palpitations.

While ganglioneuromas are generally benign, there is a small risk that they may become malignant (cancerous) and develop into a type of tumor called a ganglioneuroblastoma or neuroblastoma. For this reason, it is important to monitor these tumors closely and remove them if they grow too large or cause symptoms.

Treatment for ganglioneuromas typically involves surgical removal of the tumor. In some cases, radiation therapy or chemotherapy may also be recommended, particularly if there is a risk of malignant transformation.

Exocrine glands are a type of gland in the human body that produce and release substances through ducts onto an external or internal surface. These glands are responsible for secreting various substances such as enzymes, hormones, and lubricants that help in digestion, protection, and other bodily functions.

Exocrine glands can be further classified into three types based on their mode of secretion:

1. Merocrine glands: These glands release their secretions by exocytosis, where the secretory product is enclosed in a vesicle that fuses with the cell membrane and releases its contents outside the cell. Examples include sweat glands and mucous glands.
2. Apocrine glands: These glands release their secretions by pinching off a portion of the cytoplasm along with the secretory product. An example is the apocrine sweat gland found in the armpits and genital area.
3. Holocrine glands: These glands release their secretions by disintegrating and releasing the entire cell, including its organelles and secretory products. An example is the sebaceous gland found in the skin, which releases an oily substance called sebum.

The myenteric plexus, also known as Auerbach's plexus, is a component of the enteric nervous system located in the wall of the gastrointestinal tract. It is a network of nerve cells (neurons) and supporting cells (neuroglia) that lies between the inner circular layer and outer longitudinal muscle layers of the digestive system's muscularis externa.

The myenteric plexus plays a crucial role in controlling gastrointestinal motility, secretion, and blood flow, primarily through its intrinsic nerve circuits called reflex arcs. These reflex arcs regulate peristalsis (the coordinated muscle contractions that move food through the digestive tract) and segmentation (localized contractions that mix and churn the contents within a specific region of the gut).

Additionally, the myenteric plexus receives input from both the sympathetic and parasympathetic divisions of the autonomic nervous system, allowing for central nervous system regulation of gastrointestinal functions. Dysfunction in the myenteric plexus has been implicated in various gastrointestinal disorders, such as irritable bowel syndrome, achalasia, and intestinal pseudo-obstruction.

The suprachiasmatic nucleus (SCN) is a small region located in the hypothalamus of the brain, just above the optic chiasm where the optic nerves from each eye cross. It is considered to be the primary circadian pacemaker in mammals, responsible for generating and maintaining the body's internal circadian rhythm, which is a roughly 24-hour cycle that regulates various physiological processes such as sleep-wake cycles, hormone release, and metabolism.

The SCN receives direct input from retinal ganglion cells, which are sensitive to light and dark signals. This information helps the SCN synchronize the internal circadian rhythm with the external environment, allowing it to adjust to changes in day length and other environmental cues. The SCN then sends signals to other parts of the brain and body to regulate various functions according to the time of day.

Disruption of the SCN's function can lead to a variety of circadian rhythm disorders, such as jet lag, shift work disorder, and advanced or delayed sleep phase syndrome.

1-Methyl-3-isobutylxanthine is a chemical compound that belongs to the class of xanthines. It is a methylated derivative of xanthine and is commonly found in some types of tea, coffee, and chocolate. This compound acts as a non-selective phosphodiesterase inhibitor, which means it can increase the levels of intracellular cyclic AMP (cAMP) by preventing its breakdown.

In medical terms, 1-Methyl-3-isobutylxanthine is often used as a bronchodilator and a stimulant of central nervous system. It is also known to have diuretic properties. This compound is sometimes used in the treatment of asthma, COPD (chronic obstructive pulmonary disease), and other respiratory disorders.

It's important to note that 1-Methyl-3-isobutylxanthine can have side effects, including increased heart rate, blood pressure, and anxiety. It should be used under the supervision of a medical professional and its use should be carefully monitored to avoid potential adverse reactions.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Oligopeptides are defined in medicine and biochemistry as short chains of amino acids, typically containing fewer than 20 amino acid residues. These small peptides are important components in various biological processes, such as serving as signaling molecules, enzyme inhibitors, or structural elements in some proteins. They can be found naturally in foods and may also be synthesized for use in medical research and therapeutic applications.

Motilin is a hormone that is produced and released by specialized cells called endocrine cells, which are located in the duodenum, which is the first part of the small intestine. Motilin plays an important role in regulating the movements of the gastrointestinal (GI) tract, also known as peristalsis.

Motilin stimulates the contraction of the smooth muscle in the GI tract, which helps to move food and other contents through the digestive system. It is particularly important for initiating the "housekeeper" wave, also known as the migrating motor complex (MMC), which occurs during periods of fasting and helps to clear out any remaining undigested material from the stomach and small intestine.

Motilin has been studied as a potential target for the treatment of gastroparesis, a condition in which the stomach is unable to empty properly due to weak or abnormal contractions of the smooth muscle. Motilin agonists, which are drugs that bind to and activate motilin receptors, have been shown to improve gastric emptying in some people with gastroparesis.

Isoproterenol is a medication that belongs to a class of drugs called beta-adrenergic agonists. Medically, it is defined as a synthetic catecholamine with both alpha and beta adrenergic receptor stimulating properties. It is primarily used as a bronchodilator to treat conditions such as asthma and chronic obstructive pulmonary disease (COPD) by relaxing the smooth muscles in the airways, thereby improving breathing.

Isoproterenol can also be used in the treatment of bradycardia (abnormally slow heart rate), cardiac arrest, and heart blocks by increasing the heart rate and contractility. However, due to its non-selective beta-agonist activity, it may cause various side effects such as tremors, palpitations, and increased blood pressure. Its use is now limited due to the availability of more selective and safer medications.

Antimicrobial cationic peptides (ACPs) are a group of small, naturally occurring peptides that possess broad-spectrum antimicrobial activity against various microorganisms, including bacteria, fungi, viruses, and parasites. They are called "cationic" because they contain positively charged amino acid residues (such as lysine and arginine), which allow them to interact with and disrupt the negatively charged membranes of microbial cells.

ACPs are produced by a wide range of organisms, including humans, animals, and plants, as part of their innate immune response to infection. They play an important role in protecting the host from invading pathogens by directly killing them or inhibiting their growth.

The antimicrobial activity of ACPs is thought to be mediated by their ability to disrupt the membranes of microbial cells, leading to leakage of cellular contents and death. Some ACPs may also have intracellular targets, such as DNA or protein synthesis, that contribute to their antimicrobial activity.

ACPs are being studied for their potential use as therapeutic agents to treat infectious diseases, particularly those caused by drug-resistant bacteria. However, their clinical application is still in the early stages of development due to concerns about their potential toxicity to host cells and the emergence of resistance mechanisms in microbial pathogens.

Gastrin-Releasing Peptide (GRP) is defined as a 27-amino acid peptide that shares structural and functional similarities with the C-terminal part of gastrin. It is widely distributed in the central and peripheral nervous systems, where it functions as a neurotransmitter or neuromodulator. GRP plays a crucial role in various physiological processes such as regulation of gastrointestinal motility, smooth muscle relaxation, and mucous secretion. Additionally, GRP has been implicated in several pathophysiological conditions, including cancer, where it can act as a growth factor for certain types of tumors, such as small cell lung carcinoma.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

I'm sorry for any confusion, but "autonomic agents" is not a medical term or concept that has a specific definition in the field of medicine. The term "autonomic" refers to the part of the nervous system that regulates involuntary physiological functions, such as heart rate, digestion, and respiratory rate. The term "agents," on the other hand, is often used in computer science and artificial intelligence to refer to software entities that can act on behalf of a user or another entity.

Therefore, "autonomic agents" might refer to software programs that are designed to regulate physiological functions autonomously, but this would be more related to the field of biomedical engineering or artificial intelligence than to medicine itself. If you have more context or information about where you encountered this term, I may be able to provide a more specific answer.

Pancreatic hormones are chemical messengers produced and released by the pancreas, a gland located in the abdomen. The two main types of pancreatic hormones are insulin and glucagon, which are released by specialized cells called islets of Langerhans.

Insulin is produced by beta cells and helps regulate blood sugar levels by allowing cells in the body to take in sugar (glucose) from the bloodstream. It also helps the body store excess glucose in the liver for later use.

Glucagon is produced by alpha cells and has the opposite effect of insulin. When blood sugar levels are low, glucagon stimulates the release of stored glucose from the liver to raise blood sugar levels.

Together, insulin and glucagon help maintain balanced blood sugar levels and are essential for the proper functioning of the body's metabolism. Other hormones produced by the pancreas include somatostatin, which regulates the release of insulin and glucagon, and gastrin, which stimulates the production of digestive enzymes in the stomach.

Salivation is the process of producing and secreting saliva by the salivary glands in the mouth. It is primarily a reflex response to various stimuli such as thinking about or tasting food, chewing, and speaking. Saliva plays a crucial role in digestion by moistening food and helping to create a food bolus that can be swallowed easily. Additionally, saliva contains enzymes like amylase which begin the process of digesting carbohydrates even before food enters the stomach. Excessive salivation is known as hypersalivation or ptyalism, while reduced salivation is called xerostomia.

"Competitive binding" is a term used in pharmacology and biochemistry to describe the behavior of two or more molecules (ligands) competing for the same binding site on a target protein or receptor. In this context, "binding" refers to the physical interaction between a ligand and its target.

When a ligand binds to a receptor, it can alter the receptor's function, either activating or inhibiting it. If multiple ligands compete for the same binding site, they will compete to bind to the receptor. The ability of each ligand to bind to the receptor is influenced by its affinity for the receptor, which is a measure of how strongly and specifically the ligand binds to the receptor.

In competitive binding, if one ligand is present in high concentrations, it can prevent other ligands with lower affinity from binding to the receptor. This is because the higher-affinity ligand will have a greater probability of occupying the binding site and blocking access to the other ligands. The competition between ligands can be described mathematically using equations such as the Langmuir isotherm, which describes the relationship between the concentration of ligand and the fraction of receptors that are occupied by the ligand.

Competitive binding is an important concept in drug development, as it can be used to predict how different drugs will interact with their targets and how they may affect each other's activity. By understanding the competitive binding properties of a drug, researchers can optimize its dosage and delivery to maximize its therapeutic effect while minimizing unwanted side effects.

The gastric fundus is the upper, rounded portion of the stomach that lies above the level of the cardiac orifice and extends up to the left dome-shaped part of the diaphragm. It is the part of the stomach where food and liquids are first stored after entering through the esophagus. The gastric fundus contains parietal cells, which secrete hydrochloric acid, and chief cells, which produce pepsinogen, a precursor to the digestive enzyme pepsin. It is also the site where the hormone ghrelin is produced, which stimulates appetite.

A salt gland is a type of exocrine gland found in certain animals, including birds and reptiles, that helps regulate the balance of salt and water in their bodies. These glands are capable of excreting a highly concentrated solution of sodium chloride, or salt, which allows these animals to drink seawater and still maintain the proper osmotic balance in their tissues.

In birds, salt glands are typically located near the eyes and are responsible for producing tears that contain high levels of salt. These tears then drain into the nasal passages and are eventually expelled from the body. In reptiles, salt glands can be found in various locations, depending on the species, but they serve the same function of helping to regulate salt and water balance.

It's worth noting that mammals do not have salt glands and must rely on other mechanisms to regulate their salt and water balance, such as through the kidneys and the production of sweat.

Dumping syndrome, also known as rapid gastric emptying, is a condition that typically occurs in people who have had surgery to remove all or part of their stomach (gastrectomy) or have had a procedure called a gastrojejunostomy. These surgeries can lead to the stomach's contents entering the small intestine too quickly, causing symptoms such as nausea, vomiting, abdominal cramping, diarrhea, dizziness, and sweating.

There are two types of dumping syndrome: early and late. Early dumping syndrome occurs within 30 minutes after eating, while late dumping syndrome occurs 1-3 hours after eating. Symptoms of early dumping syndrome may include nausea, vomiting, abdominal cramping, diarrhea, bloating, dizziness, and fatigue. Late dumping syndrome symptoms may include hypoglycemia (low blood sugar), which can cause sweating, weakness, confusion, and rapid heartbeat.

Treatment for dumping syndrome typically involves dietary modifications, such as eating smaller, more frequent meals that are low in simple sugars, and avoiding fluids during meals. In some cases, medication may be prescribed to help slow down gastric emptying or manage symptoms. If these treatments are not effective, surgery may be necessary to correct the problem.

A vipoma, also known as a verner morrison syndrome or a non-insulin-secreting pancreatic tumor, is a rare medical condition characterized by the excessive production and secretion of vasoactive intestinal peptides (VIP) from a functional neuroendocrine tumor in the pancreas. This leads to a series of symptoms known as watery diarrhea, hypokalemia, and acidosis (WDHA) syndrome due to the effects of VIP on the gastrointestinal system. Symptoms include severe watery diarrhea, dehydration, electrolyte imbalances, and low blood pressure. Treatment typically involves surgical removal of the tumor, along with supportive care to manage symptoms and correct electrolyte abnormalities.

Pancreatic polypeptide (PP) is a hormone that is produced and released by the pancreas, specifically by the F cells located in the islets of Langerhans. It is a small protein consisting of 36 amino acids, and it plays a role in regulating digestive functions, particularly by inhibiting pancreatic enzyme secretion and gastric acid secretion.

PP is released into the bloodstream in response to food intake, especially when nutrients such as proteins and fats are present in the stomach. It acts on the brain to produce a feeling of fullness or satiety, which helps to regulate appetite and eating behavior. Additionally, PP has been shown to have effects on glucose metabolism, insulin secretion, and energy balance.

In recent years, there has been growing interest in the potential therapeutic uses of PP for a variety of conditions, including obesity, diabetes, and gastrointestinal disorders. However, more research is needed to fully understand its mechanisms of action and clinical applications.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

The small intestine is the portion of the gastrointestinal tract that extends from the pylorus of the stomach to the beginning of the large intestine (cecum). It plays a crucial role in the digestion and absorption of nutrients from food. The small intestine is divided into three parts: the duodenum, jejunum, and ileum.

1. Duodenum: This is the shortest and widest part of the small intestine, approximately 10 inches long. It receives chyme (partially digested food) from the stomach and begins the process of further digestion with the help of various enzymes and bile from the liver and pancreas.
2. Jejunum: The jejunum is the middle section, which measures about 8 feet in length. It has a large surface area due to the presence of circular folds (plicae circulares), finger-like projections called villi, and microvilli on the surface of the absorptive cells (enterocytes). These structures increase the intestinal surface area for efficient absorption of nutrients, electrolytes, and water.
3. Ileum: The ileum is the longest and final section of the small intestine, spanning about 12 feet. It continues the absorption process, mainly of vitamin B12, bile salts, and any remaining nutrients. At the end of the ileum, there is a valve called the ileocecal valve that prevents backflow of contents from the large intestine into the small intestine.

The primary function of the small intestine is to absorb the majority of nutrients, electrolytes, and water from ingested food. The mucosal lining of the small intestine contains numerous goblet cells that secrete mucus, which protects the epithelial surface and facilitates the movement of chyme through peristalsis. Additionally, the small intestine hosts a diverse community of microbiota, which contributes to various physiological functions, including digestion, immunity, and protection against pathogens.

Radioimmunoassay (RIA) is a highly sensitive analytical technique used in clinical and research laboratories to measure concentrations of various substances, such as hormones, vitamins, drugs, or tumor markers, in biological samples like blood, urine, or tissues. The method relies on the specific interaction between an antibody and its corresponding antigen, combined with the use of radioisotopes to quantify the amount of bound antigen.

In a typical RIA procedure, a known quantity of a radiolabeled antigen (also called tracer) is added to a sample containing an unknown concentration of the same unlabeled antigen. The mixture is then incubated with a specific antibody that binds to the antigen. During the incubation period, the antibody forms complexes with both the radiolabeled and unlabeled antigens.

After the incubation, the unbound (free) radiolabeled antigen is separated from the antibody-antigen complexes, usually through a precipitation or separation step involving centrifugation, filtration, or chromatography. The amount of radioactivity in the pellet (containing the antibody-antigen complexes) is then measured using a gamma counter or other suitable radiation detection device.

The concentration of the unlabeled antigen in the sample can be determined by comparing the ratio of bound to free radiolabeled antigen in the sample to a standard curve generated from known concentrations of unlabeled antigen and their corresponding bound/free ratios. The higher the concentration of unlabeled antigen in the sample, the lower the amount of radiolabeled antigen that will bind to the antibody, resulting in a lower bound/free ratio.

Radioimmunoassays offer high sensitivity, specificity, and accuracy, making them valuable tools for detecting and quantifying low levels of various substances in biological samples. However, due to concerns about radiation safety and waste disposal, alternative non-isotopic immunoassay techniques like enzyme-linked immunosorbent assays (ELISAs) have become more popular in recent years.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Electric stimulation, also known as electrical nerve stimulation or neuromuscular electrical stimulation, is a therapeutic treatment that uses low-voltage electrical currents to stimulate nerves and muscles. It is often used to help manage pain, promote healing, and improve muscle strength and mobility. The electrical impulses can be delivered through electrodes placed on the skin or directly implanted into the body.

In a medical context, electric stimulation may be used for various purposes such as:

1. Pain management: Electric stimulation can help to block pain signals from reaching the brain and promote the release of endorphins, which are natural painkillers produced by the body.
2. Muscle rehabilitation: Electric stimulation can help to strengthen muscles that have become weak due to injury, illness, or surgery. It can also help to prevent muscle atrophy and improve range of motion.
3. Wound healing: Electric stimulation can promote tissue growth and help to speed up the healing process in wounds, ulcers, and other types of injuries.
4. Urinary incontinence: Electric stimulation can be used to strengthen the muscles that control urination and reduce symptoms of urinary incontinence.
5. Migraine prevention: Electric stimulation can be used as a preventive treatment for migraines by applying electrical impulses to specific nerves in the head and neck.

It is important to note that electric stimulation should only be administered under the guidance of a qualified healthcare professional, as improper use can cause harm or discomfort.

A "dogfish" is a common name that refers to several species of small sharks. The term is not a formal medical or scientific term, but rather a colloquial one used to describe these marine animals. There are two main types of dogfish: the spiny dogfish (Squalus acanthias) and the smooth dogfish (Mustelus canis).

The spiny dogfish is characterized by two dorsal fins, the second of which is larger than the first and has a venomous spine. This species is found in both the Atlantic and Pacific Oceans and can grow up to about three feet in length. The smooth dogfish, on the other hand, lacks spines on its dorsal fins and is found primarily in warmer waters along the coasts of North and South America.

While not a medical term, it's worth noting that some species of dogfish are used in medical research and have contributed to our understanding of various physiological processes. For example, the electric organs of certain types of dogfish have been studied for their potential applications in nerve impulse transmission and muscle contraction.

Vasodilator agents are pharmacological substances that cause the relaxation or widening of blood vessels by relaxing the smooth muscle in the vessel walls. This results in an increase in the diameter of the blood vessels, which decreases vascular resistance and ultimately reduces blood pressure. Vasodilators can be further classified based on their site of action:

1. Systemic vasodilators: These agents cause a generalized relaxation of the smooth muscle in the walls of both arteries and veins, resulting in a decrease in peripheral vascular resistance and preload (the volume of blood returning to the heart). Examples include nitroglycerin, hydralazine, and calcium channel blockers.
2. Arterial vasodilators: These agents primarily affect the smooth muscle in arterial vessel walls, leading to a reduction in afterload (the pressure against which the heart pumps blood). Examples include angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and direct vasodilators like sodium nitroprusside.
3. Venous vasodilators: These agents primarily affect the smooth muscle in venous vessel walls, increasing venous capacitance and reducing preload. Examples include nitroglycerin and other organic nitrates.

Vasodilator agents are used to treat various cardiovascular conditions such as hypertension, heart failure, angina, and pulmonary arterial hypertension. It is essential to monitor their use carefully, as excessive vasodilation can lead to orthostatic hypotension, reflex tachycardia, or fluid retention.

The pancreas is a glandular organ located in the abdomen, posterior to the stomach. It has both exocrine and endocrine functions. The exocrine portion of the pancreas consists of acinar cells that produce and secrete digestive enzymes into the duodenum via the pancreatic duct. These enzymes help in the breakdown of proteins, carbohydrates, and fats in food.

The endocrine portion of the pancreas consists of clusters of cells called islets of Langerhans, which include alpha, beta, delta, and F cells. These cells produce and secrete hormones directly into the bloodstream, including insulin, glucagon, somatostatin, and pancreatic polypeptide. Insulin and glucagon are critical regulators of blood sugar levels, with insulin promoting glucose uptake and storage in tissues and glucagon stimulating glycogenolysis and gluconeogenesis to raise blood glucose when it is low.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

The median eminence is a small, elevated region located at the base of the hypothalamus in the brain. It plays a crucial role in the regulation of the endocrine system by controlling the release of hormones from the pituitary gland. The median eminence contains numerous specialized blood vessels called portal capillaries that carry hormones and neurotransmitters from the hypothalamus to the anterior pituitary gland.

The median eminence is also the site where several releasing and inhibiting hormones produced in the hypothalamus are secreted into the portal blood vessels, which then transport them to the anterior pituitary gland. These hormones include thyroid-stimulating hormone (TSH) releasing hormone, growth hormone-releasing hormone, prolactin-inhibiting hormone, and gonadotropin-releasing hormone, among others.

Once these hormones reach the anterior pituitary gland, they bind to specific receptors on the surface of target cells, triggering a cascade of intracellular signals that ultimately lead to the synthesis and release of various pituitary hormones. In this way, the median eminence serves as an essential link between the nervous system and the endocrine system, allowing for precise regulation of hormone secretion and overall homeostasis in the body.

Bombesin is a type of peptide that occurs naturally in the body. It is a small protein-like molecule made up of amino acids, and it is involved in various physiological processes, including regulating appetite and digestion. Bombesin was first discovered in the skin of a frog species called Bombina bombina, hence its name. In the human body, bombesin-like peptides are produced by various tissues, including the stomach and brain. They bind to specific receptors in the body, triggering a range of responses, such as stimulating the release of hormones and increasing gut motility. Bombesin has been studied for its potential role in treating certain medical conditions, including cancer, although more research is needed to establish its safety and efficacy.

The ciliary body is a part of the eye's internal structure that is located between the choroid and the iris. It is composed of muscle tissue and is responsible for adjusting the shape of the lens through a process called accommodation, which allows the eye to focus on objects at varying distances. Additionally, the ciliary body produces aqueous humor, the clear fluid that fills the anterior chamber of the eye and helps to nourish the eye's internal structures. The ciliary body is also responsible for maintaining the shape and position of the lens within the eye.

Cyclic AMP (cAMP)-dependent protein kinases, also known as protein kinase A (PKA), are a family of enzymes that play a crucial role in intracellular signaling pathways. These enzymes are responsible for the regulation of various cellular processes, including metabolism, gene expression, and cell growth and differentiation.

PKA is composed of two regulatory subunits and two catalytic subunits. When cAMP binds to the regulatory subunits, it causes a conformational change that leads to the dissociation of the catalytic subunits. The freed catalytic subunits then phosphorylate specific serine and threonine residues on target proteins, thereby modulating their activity.

The cAMP-dependent protein kinases are activated in response to a variety of extracellular signals, such as hormones and neurotransmitters, that bind to G protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). These signals lead to the activation of adenylyl cyclase, which catalyzes the conversion of ATP to cAMP. The resulting increase in intracellular cAMP levels triggers the activation of PKA and the downstream phosphorylation of target proteins.

Overall, cAMP-dependent protein kinases are essential regulators of many fundamental cellular processes and play a critical role in maintaining normal physiology and homeostasis. Dysregulation of these enzymes has been implicated in various diseases, including cancer, diabetes, and neurological disorders.

The ileum is the third and final segment of the small intestine, located between the jejunum and the cecum (the beginning of the large intestine). It plays a crucial role in nutrient absorption, particularly for vitamin B12 and bile salts. The ileum is characterized by its thin, lined walls and the presence of Peyer's patches, which are part of the immune system and help surveil for pathogens.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Ciliary Neurotrophic Factor (CNTF) is a protein that belongs to the neurotrophin family and plays a crucial role in the survival, development, and maintenance of certain neurons in the nervous system. It was initially identified as a factor that supports the survival of ciliary ganglion neurons, hence its name.

CNTF has a broad range of effects on various types of neurons, including motor neurons, sensory neurons, and autonomic neurons. It promotes the differentiation and survival of these cells during embryonic development and helps maintain their function in adulthood. CNTF also exhibits neuroprotective properties, protecting neurons from various forms of injury and degeneration.

In addition to its role in the nervous system, CNTF has been implicated in the regulation of immune responses and energy metabolism. It is primarily produced by glial cells, such as astrocytes and microglia, in response to inflammation or injury. The receptors for CNTF are found on various cell types, including neurons, muscle cells, and immune cells.

Overall, CNTF is an essential protein that plays a critical role in the development, maintenance, and protection of the nervous system. Its functions have attracted significant interest in the context of neurodegenerative diseases and potential therapeutic applications.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Intestinal secretions refer to the fluids and electrolytes that are released by the cells lining the small intestine in response to various stimuli. These secretions play a crucial role in the digestion and absorption of nutrients from food. The major components of intestinal secretions include water, electrolytes (such as sodium, chloride, bicarbonate, and potassium), and enzymes that help break down carbohydrates, proteins, and fats.

The small intestine secretes these substances in response to hormonal signals, neural stimulation, and the presence of food in the lumen of the intestine. The secretion of water and electrolytes helps maintain the proper hydration and pH of the intestinal contents, while the enzymes facilitate the breakdown of nutrients into smaller molecules that can be absorbed across the intestinal wall.

Abnormalities in intestinal secretions can lead to various gastrointestinal disorders, such as diarrhea, malabsorption, and inflammatory bowel disease.

The anterior pituitary, also known as the adenohypophysis, is the front portion of the pituitary gland. It is responsible for producing and secreting several important hormones that regulate various bodily functions. These hormones include:

* Growth hormone (GH), which stimulates growth and cell reproduction in bones and other tissues.
* Thyroid-stimulating hormone (TSH), which regulates the production of thyroid hormones by the thyroid gland.
* Adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and other steroid hormones.
* Follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function in both males and females by controlling the development and release of eggs or sperm.
* Prolactin, which stimulates milk production in pregnant and nursing women.
* Melanocyte-stimulating hormone (MSH), which regulates skin pigmentation and appetite.

The anterior pituitary gland is controlled by the hypothalamus, a small region of the brain located just above it. The hypothalamus produces releasing and inhibiting hormones that regulate the secretion of hormones from the anterior pituitary. These hormones are released into a network of blood vessels called the portal system, which carries them directly to the anterior pituitary gland.

Damage or disease of the anterior pituitary can lead to hormonal imbalances and various medical conditions, such as growth disorders, thyroid dysfunction, adrenal insufficiency, reproductive problems, and diabetes insipidus.

Enkephalins are naturally occurring opioid peptides in the body that bind to opiate receptors and help reduce pain and produce a sense of well-being. There are two major types of enkephalins: Leu-enkephalin and Met-enkephalin, which differ by only one amino acid at the N-terminus.

Methionine-enkephalin (Met-enkephalin) is a type of enkephalin that contains methionine as its N-terminal amino acid. Its chemical formula is Tyr-Gly-Gly-Phe-Met, and it is derived from the precursor protein proenkephalin. Met-enkephalin has a shorter half-life than Leu-enkephalin due to its susceptibility to enzymatic degradation by aminopeptidases.

Met-enkephalin plays an essential role in pain modulation, reward processing, and addiction. It is also involved in various physiological functions, including respiration, cardiovascular regulation, and gastrointestinal motility. Dysregulation of enkephalins has been implicated in several pathological conditions, such as chronic pain, drug addiction, and neurodegenerative disorders.

The lacrimal apparatus is a complex system in the eye that produces, stores, and drains tears. It consists of several components including:

1. Lacrimal glands: These are located in the upper outer part of the eyelid and produce tears to keep the eye surface moist and protected from external agents.
2. Tear ducts (lacrimal canaliculi): These are small tubes that drain tears from the surface of the eye into the lacrimal sac.
3. Lacrimal sac: This is a small pouch-like structure located in the inner part of the eyelid, which collects tears from the tear ducts and drains them into the nasolacrimal duct.
4. Nasolacrimal duct: This is a tube that runs from the lacrimal sac to the nose and drains tears into the nasal cavity.

The lacrimal apparatus helps maintain the health and comfort of the eye by keeping it lubricated, protecting it from infection, and removing any foreign particles or debris.

Neuropeptide receptors are a type of cell surface receptor that bind to neuropeptides, which are small signaling molecules made up of short chains of amino acids. These receptors play an important role in the nervous system by mediating the effects of neuropeptides on various physiological processes, including neurotransmission, pain perception, and hormone release.

Neuropeptide receptors are typically composed of seven transmembrane domains and are classified into several families based on their structure and function. Some examples of neuropeptide receptor families include the opioid receptors, somatostatin receptors, and vasoactive intestinal peptide (VIP) receptors.

When a neuropeptide binds to its specific receptor, it activates a signaling pathway within the cell that leads to various cellular responses. These responses can include changes in gene expression, ion channel activity, and enzyme function. Overall, the activation of neuropeptide receptors helps to regulate many important functions in the body, including mood, appetite, and pain sensation.

Carbachol is a cholinergic agonist, which means it stimulates the parasympathetic nervous system by mimicking the action of acetylcholine, a neurotransmitter that is involved in transmitting signals between nerves and muscles. Carbachol binds to both muscarinic and nicotinic receptors, but its effects are more pronounced on muscarinic receptors.

Carbachol is used in medical treatments to produce miosis (pupil constriction), lower intraocular pressure, and stimulate gastrointestinal motility. It can also be used as a diagnostic tool to test for certain conditions such as Hirschsprung's disease.

Like any medication, carbachol can have side effects, including sweating, salivation, nausea, vomiting, diarrhea, bradycardia (slow heart rate), and bronchoconstriction (narrowing of the airways in the lungs). It should be used with caution and under the supervision of a healthcare professional.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Muscle contraction is the physiological process in which muscle fibers shorten and generate force, leading to movement or stability of a body part. This process involves the sliding filament theory where thick and thin filaments within the sarcomeres (the functional units of muscles) slide past each other, facilitated by the interaction between myosin heads and actin filaments. The energy required for this action is provided by the hydrolysis of adenosine triphosphate (ATP). Muscle contractions can be voluntary or involuntary, and they play a crucial role in various bodily functions such as locomotion, circulation, respiration, and posture maintenance.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Calcitonin gene-related peptide (CGRP) receptors are a type of cell surface receptor found in various tissues and cells, including the nervous system and blood vessels. CGRP is a neuropeptide that plays a role in regulating vasodilation, inflammation, and nociception (the sensation of pain).

The CGRP receptor is a complex of two proteins: calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). When CGRP binds to the CLR-RAMP1 complex, it activates a signaling pathway that leads to vasodilation and increased pain sensitivity.

CGRP receptors have been identified as important targets for the treatment of migraine headaches, as CGRP levels are known to increase during migraine attacks. Several drugs that target CGRP receptors have been developed and approved for the prevention and acute treatment of migraines.

The duodenum is the first part of the small intestine, immediately following the stomach. It is a C-shaped structure that is about 10-12 inches long and is responsible for continuing the digestion process that begins in the stomach. The duodenum receives partially digested food from the stomach through the pyloric valve and mixes it with digestive enzymes and bile produced by the pancreas and liver, respectively. These enzymes help break down proteins, fats, and carbohydrates into smaller molecules, allowing for efficient absorption in the remaining sections of the small intestine.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Acetylcholine is a neurotransmitter, a type of chemical messenger that transmits signals across a chemical synapse from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell. It is involved in both peripheral and central nervous system functions.

In the peripheral nervous system, acetylcholine acts as a neurotransmitter at the neuromuscular junction, where it transmits signals from motor neurons to activate muscles. Acetylcholine also acts as a neurotransmitter in the autonomic nervous system, where it is involved in both the sympathetic and parasympathetic systems.

In the central nervous system, acetylcholine plays a role in learning, memory, attention, and arousal. Disruptions in cholinergic neurotransmission have been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, and myasthenia gravis.

Acetylcholine is synthesized from choline and acetyl-CoA by the enzyme choline acetyltransferase and is stored in vesicles at the presynaptic terminal of the neuron. When a nerve impulse arrives, the vesicles fuse with the presynaptic membrane, releasing acetylcholine into the synapse. The acetylcholine then binds to receptors on the postsynaptic membrane, triggering a response in the target cell. Acetylcholine is subsequently degraded by the enzyme acetylcholinesterase, which terminates its action and allows for signal transduction to be repeated.

Sincalide is a synthetic hormone that stimulates the contraction of the gallbladder and the release of digestive enzymes from the pancreas. It is used in diagnostic procedures to help diagnose conditions such as gallstones or obstructions of the bile ducts.

Sincalide is a synthetic form of cholecystokinin (CCK), a hormone that is naturally produced in the body and stimulates the contraction of the gallbladder and the release of digestive enzymes from the pancreas. When sincalide is administered, it mimics the effects of CCK and causes the gallbladder to contract and release bile into the small intestine. This can help doctors see if there are any obstructions or abnormalities in the bile ducts or gallbladder.

Sincalide is usually given as an injection, and its effects can be monitored through imaging tests such as ultrasound or CT scans. It is important to note that sincalide should only be used under the supervision of a healthcare professional, as it can cause side effects such as abdominal pain, nausea, and vomiting.

Prolactin is a hormone produced by the pituitary gland, a small gland located at the base of the brain. Its primary function is to stimulate milk production in women after childbirth, a process known as lactation. However, prolactin also plays other roles in the body, including regulating immune responses, metabolism, and behavior. In men, prolactin helps maintain the sexual glands and contributes to paternal behaviors.

Prolactin levels are usually low in both men and non-pregnant women but increase significantly during pregnancy and after childbirth. Various factors can affect prolactin levels, including stress, sleep, exercise, and certain medications. High prolactin levels can lead to medical conditions such as amenorrhea (absence of menstruation), galactorrhea (spontaneous milk production not related to childbirth), infertility, and reduced sexual desire in both men and women.

Tetrodotoxin (TTX) is a potent neurotoxin that is primarily found in certain species of pufferfish, blue-ringed octopuses, and other marine animals. It blocks voltage-gated sodium channels in nerve cell membranes, leading to muscle paralysis and potentially respiratory failure. TTX has no known antidote, and medical treatment focuses on supportive care for symptoms. Exposure can occur through ingestion, inhalation, or skin absorption, depending on the route of toxicity.

Growth Hormone-Releasing Hormone (GHRH) is a hormone that is produced and released by the hypothalamus, a small gland located in the brain. Its primary function is to stimulate the anterior pituitary gland to release growth hormone (GH) into the bloodstream. GH plays a crucial role in growth and development, particularly during childhood and adolescence, by promoting the growth of bones and muscles.

GHRH is a 44-amino acid peptide that binds to specific receptors on the surface of pituitary cells, triggering a series of intracellular signals that ultimately lead to the release of GH. The production and release of GHRH are regulated by various factors, including sleep, stress, exercise, and nutrition.

Abnormalities in the production or function of GHRH can lead to growth disorders, such as dwarfism or gigantism, as well as other hormonal imbalances. Therefore, understanding the role of GHRH in regulating GH release is essential for diagnosing and treating these conditions.

Mucus is a viscous, slippery secretion produced by the mucous membranes that line various body cavities such as the respiratory and gastrointestinal tracts. It serves to lubricate and protect these surfaces from damage, infection, and foreign particles. Mucus contains water, proteins, salts, and other substances, including antibodies, enzymes, and glycoproteins called mucins that give it its characteristic gel-like consistency.

In the respiratory system, mucus traps inhaled particles such as dust, allergens, and pathogens, preventing them from reaching the lungs. The cilia, tiny hair-like structures lining the airways, move the mucus upward toward the throat, where it can be swallowed or expelled through coughing or sneezing. In the gastrointestinal tract, mucus helps protect the lining of the stomach and intestines from digestive enzymes and other harmful substances.

Excessive production of mucus can occur in various medical conditions such as allergies, respiratory infections, chronic lung diseases, and gastrointestinal disorders, leading to symptoms such as coughing, wheezing, nasal congestion, and diarrhea.

A chemical stimulation in a medical context refers to the process of activating or enhancing physiological or psychological responses in the body using chemical substances. These chemicals can interact with receptors on cells to trigger specific reactions, such as neurotransmitters and hormones that transmit signals within the nervous system and endocrine system.

Examples of chemical stimulation include the use of medications, drugs, or supplements that affect mood, alertness, pain perception, or other bodily functions. For instance, caffeine can chemically stimulate the central nervous system to increase alertness and decrease feelings of fatigue. Similarly, certain painkillers can chemically stimulate opioid receptors in the brain to reduce the perception of pain.

It's important to note that while chemical stimulation can have therapeutic benefits, it can also have adverse effects if used improperly or in excessive amounts. Therefore, it's essential to follow proper dosing instructions and consult with a healthcare provider before using any chemical substances for stimulation purposes.

The jejunum is the middle section of the small intestine, located between the duodenum and the ileum. It is responsible for the majority of nutrient absorption that occurs in the small intestine, particularly carbohydrates, proteins, and some fats. The jejunum is characterized by its smooth muscle structure, which allows it to contract and mix food with digestive enzymes and absorb nutrients through its extensive network of finger-like projections called villi.

The jejunum is also lined with microvilli, which further increase the surface area available for absorption. Additionally, the jejunum contains numerous lymphatic vessels called lacteals, which help to absorb fats and fat-soluble vitamins into the bloodstream. Overall, the jejunum plays a critical role in the digestion and absorption of nutrients from food.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Succinimides are a group of anticonvulsant medications used to treat various types of seizures. They include drugs such as ethosuximide, methsuximide, and phensuximide. These medications work by reducing the abnormal electrical activity in the brain that leads to seizures.

The name "succinimides" comes from their chemical structure, which contains a five-membered ring containing two nitrogen atoms and a carbonyl group. This structure is similar to that of other anticonvulsant medications, such as barbiturates, but the succinimides have fewer side effects and are less likely to cause sedation or respiratory depression.

Succinimides are primarily used to treat absence seizures, which are characterized by brief periods of staring and lack of responsiveness. They may also be used as adjunctive therapy in the treatment of generalized tonic-clonic seizures and other types of seizures.

Like all medications, succinimides can cause side effects, including nausea, vomiting, dizziness, headache, and rash. More serious side effects, such as blood dyscrasias, liver toxicity, and Stevens-Johnson syndrome, are rare but have been reported. It is important for patients taking succinimides to be monitored regularly by their healthcare provider to ensure safe and effective use of the medication.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Sweat glands are specialized tubular structures in the skin that produce and secrete sweat, also known as perspiration. They are part of the body's thermoregulatory system, helping to maintain optimal body temperature by releasing water and heat through evaporation. There are two main types of sweat glands: eccrine and apocrine.

1. Eccrine sweat glands: These are distributed throughout the body, with a higher concentration on areas like the palms, soles, and forehead. They are responsible for producing a watery, odorless sweat that primarily helps to cool down the body through evaporation.

2. Apocrine sweat glands: These are mainly found in the axillary (armpit) region and around the anogenital area. They become active during puberty and produce a thick, milky fluid that does not have a strong odor on its own but can mix with bacteria on the skin's surface, leading to body odor.

Sweat glands are controlled by the autonomic nervous system, meaning they function involuntarily in response to various stimuli such as emotions, physical activity, or changes in environmental temperature.

Peptide mapping is a technique used in proteomics and analytical chemistry to analyze and identify the sequence and structure of peptides or proteins. This method involves breaking down a protein into smaller peptide fragments using enzymatic or chemical digestion, followed by separation and identification of these fragments through various analytical techniques such as liquid chromatography (LC) and mass spectrometry (MS).

The resulting peptide map serves as a "fingerprint" of the protein, providing information about its sequence, modifications, and structure. Peptide mapping can be used for a variety of applications, including protein identification, characterization of post-translational modifications, and monitoring of protein degradation or cleavage.

In summary, peptide mapping is a powerful tool in proteomics that enables the analysis and identification of proteins and their modifications at the peptide level.

Somatostatin receptors (SSTRs) are a group of G protein-coupled receptors that bind to the neuropeptide hormone somatostatin. There are five subtypes of SSTRs, named SSTR1 through SSTR5, each with distinct physiological roles and tissue distributions.

Somatostatin is a small peptide that is widely distributed throughout the body, including in the central nervous system, gastrointestinal tract, pancreas, and other endocrine organs. It has multiple functions, including inhibition of hormone release, regulation of cell proliferation, and modulation of neurotransmission.

SSTRs are expressed on the surface of many different types of cells, including neurons, endocrine cells, and immune cells. They play important roles in regulating various physiological processes, such as inhibiting the release of hormones like insulin, glucagon, and growth hormone. SSTRs have also been implicated in a number of pathophysiological conditions, including cancer, neurodegenerative diseases, and inflammatory disorders.

In recent years, SSTRs have become an important target for the development of new therapeutic strategies, particularly in the treatment of neuroendocrine tumors (NETs). Several radiolabeled somatostatin analogues have been developed that can selectively bind to SSTRs on NET cells and deliver targeted radiation therapy. These agents have shown promising results in clinical trials and are now being used as standard of care for patients with advanced NETs.

Galanin is a neuropeptide, which is a type of small protein molecule that functions as a neurotransmitter or neuromodulator in the nervous system. It is widely distributed throughout the central and peripheral nervous systems of vertebrates and plays important roles in various physiological functions, including modulation of pain perception, regulation of feeding behavior, control of circadian rhythms, and cognitive processes such as learning and memory.

Galanin is synthesized from a larger precursor protein called preprogalanin, which is cleaved into several smaller peptides, including galanin itself, galanin message-associated peptide (GMAP), and alarin. Galanin exerts its effects by binding to specific G protein-coupled receptors, known as the galanin receptor family, which includes three subtypes: GalR1, GalR2, and GalR3. These receptors are widely expressed in various tissues and organs, including the brain, spinal cord, gastrointestinal tract, pancreas, and cardiovascular system.

Galanin has been implicated in several pathological conditions, such as chronic pain, depression, anxiety, epilepsy, and neurodegenerative disorders like Alzheimer's disease and Parkinson's disease. As a result, there is ongoing research into the development of galanin-based therapies for these conditions.

Glucagon is a hormone produced by the alpha cells of the pancreas. Its main function is to regulate glucose levels in the blood by stimulating the liver to convert stored glycogen into glucose, which can then be released into the bloodstream. This process helps to raise blood sugar levels when they are too low, such as during hypoglycemia.

Glucagon is a 29-amino acid polypeptide that is derived from the preproglucagon protein. It works by binding to glucagon receptors on liver cells, which triggers a series of intracellular signaling events that lead to the activation of enzymes involved in glycogen breakdown.

In addition to its role in glucose regulation, glucagon has also been shown to have other physiological effects, such as promoting lipolysis (the breakdown of fat) and inhibiting gastric acid secretion. Glucagon is often used clinically in the treatment of hypoglycemia, as well as in diagnostic tests to assess pancreatic function.

Iodine radioisotopes are radioactive isotopes of the element iodine, which decays and emits radiation in the form of gamma rays. Some commonly used iodine radioisotopes include I-123, I-125, I-131. These radioisotopes have various medical applications such as in diagnostic imaging, therapy for thyroid disorders, and cancer treatment.

For example, I-131 is commonly used to treat hyperthyroidism and differentiated thyroid cancer due to its ability to destroy thyroid tissue. On the other hand, I-123 is often used in nuclear medicine scans of the thyroid gland because it emits gamma rays that can be detected by a gamma camera, allowing for detailed images of the gland's structure and function.

It is important to note that handling and administering radioisotopes require specialized training and safety precautions due to their radiation-emitting properties.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

The colon, also known as the large intestine, is a part of the digestive system in humans and other vertebrates. It is an organ that eliminates waste from the body and is located between the small intestine and the rectum. The main function of the colon is to absorb water and electrolytes from digested food, forming and storing feces until they are eliminated through the anus.

The colon is divided into several regions, including the cecum, ascending colon, transverse colon, descending colon, sigmoid colon, rectum, and anus. The walls of the colon contain a layer of muscle that helps to move waste material through the organ by a process called peristalsis.

The inner surface of the colon is lined with mucous membrane, which secretes mucus to lubricate the passage of feces. The colon also contains a large population of bacteria, known as the gut microbiota, which play an important role in digestion and immunity.

Bethanechol is a parasympathomimetic drug, which means it stimulates the parasympathetic nervous system. This system is responsible for regulating many automatic functions in the body, including digestion and urination. Bethanechol works by causing the smooth muscles of the bladder to contract, which can help to promote urination in people who have difficulty emptying their bladder completely due to certain medical conditions such as surgery, spinal cord injury, or multiple sclerosis.

The medical definition of 'Bethanechol' is:

A parasympathomimetic agent that stimulates the muscarinic receptors of the autonomic nervous system, causing contraction of smooth muscle and increased secretion of exocrine glands. It is used to treat urinary retention and associated symptoms, such as those caused by bladder-neck obstruction due to prostatic hypertrophy or neurogenic bladder dysfunction. Bethanechol may also be used to diagnose urinary tract obstruction and to test the integrity of the bladder's innervation.

Bretylium compounds are a class of medications that are primarily used in the management of life-threatening cardiac arrhythmias (abnormal heart rhythms). Bretylium tosylate is the most commonly used formulation. It works by stabilizing the membranes of certain types of heart cells, which can help to prevent or stop ventricular fibrillation and other dangerous arrhythmias.

Bretylium compounds are typically administered intravenously in a hospital setting under close medical supervision. They may be used in conjunction with other medications and treatments for the management of cardiac emergencies. It's important to note that bretylium compounds have a narrow therapeutic index, which means that the difference between an effective dose and a toxic one is relatively small. Therefore, they should only be administered by healthcare professionals who are experienced in their use.

Like all medications, bretylium compounds can cause side effects, including but not limited to:
- Increased heart rate
- Low blood pressure
- Nausea and vomiting
- Dizziness or lightheadedness
- Headache
- Tremors or muscle twitching
- Changes in mental status or behavior

Healthcare providers will monitor patients closely for any signs of adverse reactions while they are receiving bretylium compounds.

Gastrointestinal motility refers to the coordinated muscular contractions and relaxations that propel food, digestive enzymes, and waste products through the gastrointestinal tract. This process involves the movement of food from the mouth through the esophagus into the stomach, where it is mixed with digestive enzymes and acids to break down food particles.

The contents are then emptied into the small intestine, where nutrients are absorbed, and the remaining waste products are moved into the large intestine for further absorption of water and electrolytes and eventual elimination through the rectum and anus.

Gastrointestinal motility is controlled by a complex interplay between the autonomic nervous system, hormones, and local reflexes. Abnormalities in gastrointestinal motility can lead to various symptoms such as bloating, abdominal pain, nausea, vomiting, diarrhea, or constipation.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Amylases are enzymes that break down complex carbohydrates, such as starch and glycogen, into simpler sugars like maltose, glucose, and maltotriose. There are several types of amylases found in various organisms, including humans.

In humans, amylases are produced by the pancreas and salivary glands. Pancreatic amylase is released into the small intestine where it helps to digest dietary carbohydrates. Salivary amylase, also known as alpha-amylase, is secreted into the mouth and begins breaking down starches in food during chewing.

Deficiency or absence of amylases can lead to difficulties in digesting carbohydrates and may cause symptoms such as bloating, diarrhea, and abdominal pain. Elevated levels of amylase in the blood may indicate conditions such as pancreatitis, pancreatic cancer, or other disorders affecting the pancreas.

In anatomical terms, the stomach is a muscular, J-shaped organ located in the upper left portion of the abdomen. It is part of the gastrointestinal tract and plays a crucial role in digestion. The stomach's primary functions include storing food, mixing it with digestive enzymes and hydrochloric acid to break down proteins, and slowly emptying the partially digested food into the small intestine for further absorption of nutrients.

The stomach is divided into several regions, including the cardia (the area nearest the esophagus), the fundus (the upper portion on the left side), the body (the main central part), and the pylorus (the narrowed region leading to the small intestine). The inner lining of the stomach, called the mucosa, is protected by a layer of mucus that prevents the digestive juices from damaging the stomach tissue itself.

In medical contexts, various conditions can affect the stomach, such as gastritis (inflammation of the stomach lining), peptic ulcers (sores in the stomach or duodenum), gastroesophageal reflux disease (GERD), and stomach cancer. Symptoms related to the stomach may include abdominal pain, bloating, nausea, vomiting, heartburn, and difficulty swallowing.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) receptors are activated by the ... There are two known receptors for the vasoactive intestinal peptide (VIP) termed VPAC1 and VPAC2. These receptors bind both VIP ... Receptors,+Vasoactive+Intestinal+Peptide at the U.S. National Library of Medicine Medical Subject Headings (MeSH) v t e ( ... and peptide histidine valine (PHV). "PACAP type II receptors" (VPAC1 and VPAC2 receptors) display comparable affinity for PACAP ...
Hypothalamic-pituitary-prolactin axis Vasoactive intestinal peptide receptor VPAC1 VPAC2 GRCh38: Ensembl release 89: ... Vasoactive intestinal peptide, also known as vasoactive intestinal polypeptide or VIP, is a peptide hormone that is vasoactive ... "Vasoactive intestinal peptide: expression of the prohormone in bacterial cells". Peptides. 6 (Suppl 1): 95-102. doi:10.1016/ ... "Structure and expression of the vasoactive intestinal peptide (VIP) gene in a human tumor". Peptides. 7 (Suppl 1): 1-6. doi: ...
VPAC1 is a receptor for vasoactive intestinal peptide (VIP), a small neuropeptide. Vasoactive intestinal peptide is involved in ... "Expression of vasoactive intestinal peptide (VIP) receptors in human uterus". Peptides. 21 (9): 1383-8. doi:10.1016/S0196-9781( ... "Functional expression of receptors for calcitonin gene-related peptide, calcitonin, and vasoactive intestinal peptide in the ... "Entrez Gene: VIPR1 vasoactive intestinal peptide receptor 1". Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S (Apr 1992 ...
"Secretin and vasoactive intestinal peptide receptors: members of a unique family of G protein-coupled receptors". ... "Cloning and functional expression of a human neuroendocrine vasoactive intestinal peptide receptor". Biochemical and ... The secretin receptor has been shown to interact with pituitary adenylate cyclase activating peptide. GRCh38: Ensembl release ... The secretin receptor is a protein that in humans is encoded by the SCTR gene. This protein is a G protein-coupled receptor ...
The secretin-receptor family of GPCRs include vasoactive intestinal peptide receptors and receptors for secretin, calcitonin ... IPR002144 SCTR Vasoactive intestinal peptide receptor InterPro: IPR001571 VIPR1; VIPR2 Subfamily B2 contains receptors with ... Secretin receptor family (class B GPCR subfamily) consists of secretin receptors regulated by peptide hormones from the ... These receptors activate adenylyl cyclase and the phosphatidyl-inositol-calcium pathway. The receptors in this family have 7 ...
Vasoactive intestinal peptide receptor 2 also known as VPAC2, is a G-protein coupled receptor that in humans is encoded by the ... 2001). "Expression of vasoactive intestinal peptide (VIP) receptors in human uterus". Peptides. 21 (9): 1383-8. doi:10.1016/ ... "Vasoactive intestinal peptide (VIP) receptor type 2 (VPAC2) is the predominant receptor expressed in human thymocytes". Ann. N ... "Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their ...
VIP, vasoactive intestinal peptide, acts positively on δ-cells resulting in more somatostatin being released. In the stomach, ... The δ-cells in the stomach contain CCKBR (which respond to gastrin) and M3 receptors (which respond to Ach). Respectively, ... In both species, the peptide hormone Urocortin III (Ucn3) is a major local signal that is released from beta cells (and alpha ... v t e v t e (Peptide hormone secreting cells, Stomach, All stub articles, Digestive system stubs, Cell biology stubs). ...
"5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin ... 5-HT1 receptor 5-HT2 receptor 5-HT4 receptor 5-HT5 receptor 5-HT6 receptor 5-HT7 receptor Barnes NM, Hales TG, Lummis SC, ... The 5-HT3 receptor differs markedly in structure and mechanism from the other 5-HT receptor subtypes, which are all G-protein- ... or serotonin receptors) which are G protein-coupled receptors. This ion channel is cation-selective and mediates neuronal ...
"Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their ... "Characterization of vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptors in human benign ... This receptor binds pituitary adenylate cyclase activating peptide. PAC1 is a membrane-associated protein and shares ... expression of different human receptor types for pituitary adenylate cyclase activating polypeptide and vasoactive intestinal ...
It binds to vasoactive intestinal peptide receptor and to the pituitary adenylate cyclase-activating polypeptide receptor. This ... "Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP-27, but not PACAP-38) degradation ... pituitary adenylate cyclase-activating polypeptide is similar to vasoactive intestinal peptide. One of its effects is to ... Pituitary adenylate cyclase-activating peptide has been shown to interact with secretin receptor. Adenylate cyclase Pituitary ...
Dorsam G, Goetzl EJ (April 2002). "Vasoactive intestinal peptide receptor-1 (VPAC-1) is a novel gene target of the ... of B cell development during VDJ recombination in switch class of the antibody isotypes and expression of the B cell receptor. ...
... s express somatostatin and sometimes calbindin, but not parvalbumin or vasoactive intestinal peptide. ... Furthermore, Martinotti cells in layer V have been shown to express the nicotinic acetylcholine receptor α2 subunit (Chrna2). ...
1994). "Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is ... 1997). "GLP-1/GIP chimeric peptides define the structural requirements for specific ligand-receptor interaction of GLP-1". ... "Glucagon Receptor Family: GIP". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical ... 2000). "Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors". Endocrinology. 141 (3 ...
This GPCR protein was earlier thought to be a receptor for vasoactive intestinal peptide (VIP) and was considered to be an ... "Cloning and expression of the human vasoactive intestinal peptide receptor". Proceedings of the National Academy of Sciences of ... Atypical chemokine receptor 3 also known as C-X-C chemokine receptor type 7 (CXCR-7) and G-protein coupled receptor 159 (GPR159 ... "Chromosomal mapping of A1 and A2 adenosine receptors, VIP receptor, and a new subtype of serotonin receptor". Genomics. 11 (1 ...
Expression of vasoactive intestinal peptide, a potent vasodilator with anti-inflammatory and immune-modulatory roles, is ... It acts on the endothelin receptors ETA and ETB in various cell types including vascular smooth muscle cells and fibroblasts, ... It also acts on ETB receptors in endothelial cells; this leads to the release of both vasoconstrictors and vasodilators from ... In vascular smooth muscle cells, prostacyclin binds mainly to the prostaglandin I receptor. This sends a signal to increase ...
Some are similar in action of the vasoactive intestinal peptide (VIP), which relaxes smooth muscle and regulates water and ... These bioactive peptides are able to bind to VIP receptors in many different human tissues. One of these, helodermin, has been ... Maruno K, Said SI (1993). "Small-cell lung carcinoma: inhibition of proliferation by vasoactive intestinal peptide and ... The antidiabetic exenatide (Byetta) from the venomous Gila monster is also an example of a medical value of venom peptides, ...
The PDF receptor, along with the receptor of its mammalian homolog, vasoactive intestinal peptide (VIP), is known to be a G- ... Vosko, Andrew M.; Schroeder, Analyne; Loh, Dawn H.; Colwell, Christopher S. (June 2007). "Vasoactive intestinal peptide and the ... protein-coupled receptor of the B1 subfamily. Flies with mutant PDF receptors are arrhythmic or show weak short-period ... The PDF receptor is necessary for rhythmicity since it acts as a binding site for PDF on the pacemaker or 'clock' neurons. ...
... and vasoactive intestinal peptide. Serotonergic agents such as serotonin precursors (e.g., tryptophan), serotonin reuptake ... Whereas D2 receptor agonists suppress prolactin secretion, dopamine D2 receptor antagonists like domperidone and metoclopramide ... D2 receptor agonists that are described as prolactin inhibitors include the approved medications bromocriptine, cabergoline, ... Other prolactin releasers besides D2 receptor antagonists include estrogens (e.g., estradiol), progestogens (e.g., progesterone ...
Other members of the structurally similar group include secretin, gastric inhibitory peptide, vasoactive intestinal peptide, ... peptide hormones are a family of evolutionarily related peptide hormones that regulate activity of G-protein-coupled receptors ... ADCYAP1; GCG; GHRH; GIP; SCT; VIP; Mutt V (1988). "Vasoactive intestinal polypeptide and related peptides. Isolation and ... Pollock HG, Hamilton JW, Rouse JB, Ebner KE, Rawitch AB (July 1988). "Isolation of peptide hormones from the pancreas of the ...
... calcitonin gene-related peptide, vasoactive intestinal peptide and neuropeptide Y. Leptin binds to its receptors in the ... Leptin receptor activation inhibits neuropeptide Y and agouti-related peptide (AgRP), and activates α-melanocyte-stimulating ... The leptin receptor is found on a wide range of cell types. It is a single-transmembrane-domain type I cytokine receptor, a ... Leptin receptors are expressed by a variety of brain and peripheral cell types. These include cell receptors in the arcuate and ...
... is an experimental peptide drug derived from vasoactive intestinal peptide (VIP) that can change the behavior of ... LBT-3627 specifically targets the VIP2 receptor, unlike VIP. The drug also affects microglia. In addition, LBT-3627 is more ... "Research programme: peptide-based therapeutics - Longevity Biotech". AdisInsight. January 8, 2018. Highest Development Phases: ... Preclinical : Neurological disorders; Type 2 diabetes mellitus (Antiparkinsonian agents, Peptides, Receptor agonists). ...
... acetylcholine and vasoactive intestinal peptide). Acetylcholine binds to the receptor on the basolateral membrane of the gland ... by the stimulus of central and peripheral osmoreceptors and volume receptors. The need for salt excretion in reptiles (such as ...
... and vasoactive intestinal peptide (VIP). There are three distinct types of RAMPs in mammals (though more in fish), designated ... "Calcitonin Receptors: Introduction". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical ... "Calcitonin Receptors". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology. ... When associated with the Calcitonin receptor (CTR) or Calcitonin receptor-like (CALCRL) (below), RAMPs can change the ...
ADRB-1 receptors can play a role in modulating the release of neuropeptides like vasoactive intestinal peptide (VIP) and ... receptors Alpha-1 adrenergic receptor Alpha-2 adrenergic receptor Beta-2 adrenergic receptor Beta-3 adrenergic receptor GRCh38 ... Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate ... Actions of the β1 receptor include: The receptor is also present in the cerebral cortex. Other pathways that play ADRB-1 ...
... gastroinhibitory peptide), VIP (vasoactive intestinal peptide), glucagon and calcitonin. The presence of gastrin stimulates ... This is done both directly on the parietal cell[failed verification] and indirectly via binding onto CCK2/gastrin receptors on ... Gastrin is a peptide hormone that stimulates secretion of gastric acid (HCl) by the parietal cells of the stomach and aids in ... In humans, the GAS gene is located on the long arm of the seventeenth chromosome (17q21). Gastrin is a linear peptide hormone ...
Cardin and her team recently[when?] probed the role of vasoactive intestinal peptide (VIP) expressing interneurons in cortical ... By removing a critical signalling receptor, ErbB4, from VIP neurons, Cardin and her team saw deficits in sensory processing and ...
Isotropic Projection Reconstruction of Phase contrast magnetic resonance imaging Vasoactive intestinal peptide receptor This ... a G protein-coupled receptor EMC ViPR, a software-defined storage offering Vastly undersampled ...
... vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP)) do not influence the FAA. Sirtuin ... Mice without a functional Dopamine D1 receptor have attenuated FAA. Mice that are given a D1 receptor agonist show FAA without ... source of FEO is that they contain many nutrient sensing and dependent receptors that can trigger section of gut peptides ... RGS16, a gene regulating G-protein coupled receptor signaling, attenuates FAA but is also not necessary for it. Up until the ...
... vasoactive intestinal peptide (VIP) and bombesin/gastrin-releasing peptide. Neuroendocrine tumor cells express cytokeratins ... calcitonin and bombesin/gastrin-releasing peptide, while lacking, or rarely and weakly expressing, androgen receptor and ... vasoactive intestinal peptide (VIP), neuropeptide Y, vascular endothelial growth factor (VEGF), and adrenomedullin. The ... calcitonin and other peptides of the calcitonin family (calcitonin gene-related peptide (CGRP) and katacalcin, which colocalize ...
ACh-vasoactive intestinal peptide (VIP) co-release. ACh-calcitonin gene-related peptide (CGRP) co-release. Glutamate-dynorphin ... Ionotropic receptors allow for ions to pass through when agonized by a ligand. The main model involves a receptor composed of ... G protein coupled receptors, also called metabotropic receptors, when bound to by a ligand undergo conformational changes ... Once released, a neurotransmitter enters the synapse and encounters receptors. Neurotransmitter receptors can either be ...
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) receptors are activated by the ... There are two known receptors for the vasoactive intestinal peptide (VIP) termed VPAC1 and VPAC2. These receptors bind both VIP ... Receptors,+Vasoactive+Intestinal+Peptide at the U.S. National Library of Medicine Medical Subject Headings (MeSH) v t e ( ... and peptide histidine valine (PHV). "PACAP type II receptors" (VPAC1 and VPAC2 receptors) display comparable affinity for PACAP ...
Scanning with radiolabeled VIP can visualize intestinal tumors and metastases that express receptors for VIP. ... Vasoactive intestinal peptide-receptor imaging for the localization of intestinal adenocarcinomas and endocrine tumors N Engl J ... adenocarcinomas and various endocrine tumors express large numbers of high-affinity receptors for vasoactive intestinal peptide ... Conclusions: Scanning with radiolabeled VIP can visualize intestinal tumors and metastases that express receptors for VIP. ...
"Vasoactive intestinal peptide (VIP) receptors in the canine gastrointestinal tract." Peptides, vol. 9, no. 6, 1988, pp. 1241-53 ... "Vasoactive intestinal peptide (VIP) receptors in the canine gastrointestinal tract." Peptides 9, no. 6 (1988): 1241-53. https ... Vasoactive intestinal peptide (VIP) receptors in the canine gastrointestinal tract. Peptides. 1988;9(6):1241-53. ... Vasoactive intestinal peptide (VIP) receptors in the canine gastrointestinal tract. Peptides. 1988;9(6):1241-1253. ...
The expression of 280?kDa, 150?kDa, and 53?kDa proteins were seen in several tumor cell lines also, including ECV304, U87-MG, HMY2-CIR, Raji, HEL, NCI-H292, 95-D, UC-CUC, HLMVEC ...
Posted by By cahrr May 2, 2023Posted inVasoactive Intestinal Peptide Receptors ... Posted by By cahrr March 23, 2022Posted inVasoactive Intestinal Peptide Receptors ... Posted by By cahrr March 2, 2022Posted inVasoactive Intestinal Peptide Receptors ... Posted by By cahrr January 4, 2022Posted inVasoactive Intestinal Peptide Receptors ...
... receptor family. RPR4 was identified by PCR of rat pituitary cDNA, and a full-l... ... The VIP2 receptor: Molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. ... production was stimulated by vasoactive intestinal peptide (VIP), pituitary adenylate cyclase activating peptides (PACAP-38 and ... This suggests that RPR4 encodes a novel VIP receptor which we have designated the VIP2 receptor. In situ hybridisation showed ...
... and the VIP2 receptors. Their messenger RNAs have been mapped in rat brain by in situ hybridization. A cyclic peptide (RO 25- ... exerts its biological effects through interaction with two high affinity receptors named the VIP1- ... Receptors, Vasoactive Intestinal Peptide * Receptors, Vasoactive Intestinal Peptide, Type II * Receptors, Vasoactive Intestinal ... Autoradiographic visualization of the receptor subclasses for vasoactive intestinal polypeptide (VIP) in rat brain Peptides. ...
... the clinical picture appears to be transiently impaired propulsion of intestinal contents. ... Vasoactive intestinal peptide and substance P receptor antagonists improve postoperative ileus. J Surg Res. 1995 Jun. 58(6):719 ... Nitric oxide and vasoactive intestinal peptide inhibitors and substance P receptor antagonists have been demonstrated to ... 11] Calcitonin gene-related peptide, nitric oxide, vasoactive intestinal peptide, and substance P function as inhibitory ...
... the clinical picture appears to be transiently impaired propulsion of intestinal contents. ... Vasoactive intestinal peptide and substance P receptor antagonists improve postoperative ileus. J Surg Res. 1995 Jun. 58(6):719 ... CD11b+ dendritic cells and the intestinal microbiome regulate monocyte and macrophage activation and intestinal peristalsis in ... Shibata Y, Toyoda S, Nimura Y, Miyati M. Patterns of intestinal motility recovery during the early stage following abdominal ...
vasoactive intestinal peptide receptor 2. ISO. RGD. PMID:8224221. RGD:70054. Ensembl chr 7:162,306,477...162,422,788 ... natriuretic peptide receptor 3. ISO. RGD. PMID:8702617. RGD:1601497. NCBI chr 5:77,542,200...77,621,983 Ensembl chr 5: ... histamine receptor H3. ISO. RGD. PMID:10869375. RGD:632981. NCBI chr20:58,581,228...58,586,585 Ensembl chr20:59,901,327... ... luteinizing hormone/choriogonadotropin receptor. ISO. RGD. PMID:8440169. RGD:2292602. NCBI chr2A:48,808,822...48,879,021 ...
Avoiders exhibited higher CRF peptide levels in CeA that did not appear to be locally synthesized. Intra-CeA CRF infusion ... Systemic blockade of corticotropin-releasing factor (CRF) type 1 receptors (CRFR1s) reduces stress-induced thermal hyperalgesia ... but not with cholecystokinin or vasoactive intestinal peptide, in neurons of the rat amygdala. Brain Res 500: 37-45. ... Bale TL, Vale WW (2004). CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 44 ...
... and vasoactive intestinal peptide (VIP); receptors, such as transient receptor potential (TRP) channels; intracellular ... such as pituitary adenylate cyclase-activating peptide (PACAP) ... novel putative targets as calcitonin gene-related peptide (CGRP ...
2002) The developmental expression of vasoactive intestinal peptide (VIP) in cholinergic sympathetic neurons depends on ... Presynaptic kainate receptors onto somatostatin interneurons are recruited by activity throughout development and contribute to ... 1985) Placodal sensory neurons in culture: nodose ganglion neurons are unresponsive to NGF, lack NGF receptors but are ... 2009) Neuromedin B and gastrin-releasing peptide excite arcuate nucleus neuropeptide Y neurons in a novel transgenic mouse ...
Structure, expression, and chromosomal localization of the type I human vasoactive intestinal peptide receptor gene. Sreedharan ... CCKA and CCKB receptors are expressed in small cell lung cancer lines and mediate Ca2+ mobilization and clonal growth. Sethi, T ... Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. Virmani, A.K., Rathi, A., ... Partial purification and characterization of a peptide with growth hormone-releasing activity from extrapituitary tumors in ...
... the parathyroid hormone receptors (PTHR1, PTHR2); the secretin receptor (SCTR); and the vasoactive intestinal peptide receptors ... the glucagon receptor (GCGR); the gastric inhibitory polypeptide receptor (GIPR); the glucagon-like peptide receptors (GLP1R, ... 1] CGRP receptors: a headache to study, but will antagonists prove therapeutic in migraine? S.D. Brain, D.R. Poyner, R.G. Hill ... GLP2R); the growth-hormone-releasing hormone receptor (GHRHR); the adenylate cyclase activating polypeptide receptor (PAC1/ ...
NV-VPAC1 is a unique proprietary peptide construct that targets a specific receptor, called vasoactive intestinal peptide ... Bishoff, the peptide analog series will: *Eliminate unnecessary diagnostic testing. Unlike predictive analysis of specimen ... "There is no other technology like it today-the peptide targets a variety of cancer cells with extreme precision, providing a ... Utah-based oncology firm NuView Life Sciences is developing a first-of-its-kind peptide analog, NV-VPAC1, which helps eliminate ...
These duplications impact a gene coding for the brain receptor VIPR2.. Formally known as the Vasoactive Intestinal Peptide ... "This suggests that the mutations increase signaling in the Vasoactive Intestinal Peptide pathway," says Professor Corvin. "We ... they found that individuals with mutations had greater expression of VIPR2 and greater activity of the receptor. ... Receptor 2, VIPR2 is expressed in the nervous system, including in the brain, blood vessels and gastrointestinal tract. ...
1995) Superactive lipophilic peptides discriminate multiple vasoactive intestinal peptide receptors. J Pharmacol Exp Ther 273: ... Using the Cre-LoxP system, the mTOR gene was specifically knocked out in cells expressing Vip (vasoactive intestinal peptide), ... 2014) Vasoactive intestinal polypeptide mediates circadian rhythms in mammalian olfactory bulb and olfaction. J Neurosci 34: ... Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity ...
... antagonists would be used to determine the synaptic coupling to down stream cholinergic or vasoactive intestinal peptide- ... Cloning the neurokinin receptor genes in guinea pig epithelial cells and their expression in epithelial cells lines would allow ... Neural Control of Large Intestinal Mucosa. Objective. The overall goal is to identify the role of substance P in neural reflex ... Substance P which is found in extrinsic and intrinsic neurons is elevated along with its receptor during inflammation. The ...
... vasoactive intestinal peptide receptor 2), Wdr60 (WD repeat-containing protein 60), Esyt2 (extended synaptotagmin-like protein ... 2), Ncapg2 (non-SMC condensin II complex, subunit G2), and Ptprn2 (protein tyrosine phosphatase, receptor type, N polypeptide 2 ...
We previously showed that peroxisome proliferator-activated receptor (PPAR)-γ in β-cells regulates pdx-1 transcription through ... Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely ... Expression and functional activity of glucagon, glucagon-like peptide I, and glucose-dependent insulinotropic peptide receptors ... studies of incretin receptor knockout mice and in vivo usage of GIP-R peptide agonists have demonstrated a necessary role for ...
... vasoactive intestinal peptide, substance P and calcitonin gene-related peptide) through nerve endings in the trigeminal system ... Zolmitriptan binds with high affinity to human recombinant 5-HT1D and 5-HT1B receptors, and moderate affinity for 5-HT1A ... The N-desmethyl metabolite also has high affinity for 5-HT1B/1D and moderate affinity for 5-HT1A receptors. ... Zolmitriptan tablets are a serotonin (5-HT)1B/1D receptor agonist (triptan) indicated for the acute treatment of migraine with ...
A comprehensive review of the role vasoactive intestinal peptide (VIP) plays in human biology, including its production and ... Vasoactive Intestinal Peptide Receptor 2 (VIPR2). Vasoactive intestinal peptide receptor 2 (VIP2) is a protein that is found in ... Vasoactive Intestinal Peptide Receptor (VIPR1). The Vasoactive Intestinal Peptide Receptor (VIPR1) is a protein that is encoded ... 1. The Role of Vasoactive Intestinal Peptide VIP (Review) 1.1. Vasoactive Intestinal Peptide Receptor (VIPR1) ...
Vasoactive Intestinal Peptide 54% * Nicotinic Receptors 17% * Pyramidal Cells 16% * Dendrites 16% ...
... of the Ciona GPCR repertoire wherein the LGR-like subfamily exhibits a lineage specific gene expansion of a group of receptors ... constitute a large family of integral transmembrane receptor proteins that play a central role in signal transduction in ... The Secretin family includes receptors for calcitonin (CALCR), vasoactive intestinal peptide (VIPR2), glucagon-like peptide ( ... Among the peptide receptors, Ciona has a single copy of an authentic Tachykinin receptor which has been proposed to play an ...
The small intestine secretes the hormone vasoactive intestinal peptide ... you can find peptides for sale, including VIP, here, for research purposes only. ... If you are a researcher interested in learning more about vasoactive intestinal peptide (VIP) and its functions in the body, ... Receptor for Vasoactive Intestinal Peptide (VIPR1). VIPR1 interacts with vasoactive intestinal peptides, triggering an ...
Posted in Vasoactive Intestinal Peptide Receptors Data Availability StatementCurrently, I cannot talk about data, because We ... Posted in Vasoactive Intestinal Peptide Receptors Background Recent research suggest many lengthy non-coding RNAs (lncRNAs) ... Abbreviations: ER, estrogen receptor; PR, progesterone receptor; Her-2, individual epidermal-growth-factor receptor 2, HER-2. ... which were diagnosed as other intestinal disease (i.e. colitis, terminal ileitis, intestinal tuberculosis, intestinal polyps, ...
Notably, PDF and PDFR function in a similar manner to vasoactive intestinal peptide (VIP) and its receptor VPAC2 in mammals, ... the genomes of Apis and Anopheles contain orthologs of the RCP receptor and DH31 peptide . Additionally, a receptor that was ... Dietary Stimuli, Intestinal Bacteria and Peptide Hormones Regulate Female Drosophila Defecation Rate. Metabolites 13(2). PubMed ... The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria. PLoS ...
... expression of vasoactive intestinal peptide receptor 2 (VPACR2),levels of NK phenotypes (CD56bright and CD56dim) and regulatory ...
Vasoactive Intestinal Peptide) for sale from Limitless Life Nootropics. Fantastic prices, fast international shipping and ... What is the role of the VIP receptor?. The vasoactive intestinal peptide receptor is a receptor protein that binds to VIP ... What is a Peptide. Peptide Reconstitution. Peptide Storage. Peptide Purity. Peptide Synthesis. Peptide Bonds. Peptides Made in ... What are the Benefits of VIP Peptide?. VIP peptide, or Vasoactive Intestinal Peptide, confers multiple benefits. It can ...
  • These receptors bind both VIP and pituitary adenylate cyclase-activating polypeptide (PACAP) to some degree. (wikipedia.org)
  • Vasoactive Intestinal Polypeptide (VIP) exerts its biological effects through interaction with two high affinity receptors named the VIP1- and the VIP2 receptors. (nih.gov)
  • The CaMKIIα-tTA transgene inserted on chromosome 12, resulting in a 508 kb deletion that affects five mouse genes: Vipr2 (vasoactive intestinal peptide receptor 2), Wdr60 (WD repeat-containing protein 60), Esyt2 (extended synaptotagmin-like protein 2), Ncapg2 (non-SMC condensin II complex, subunit G2), and Ptprn2 (protein tyrosine phosphatase, receptor type, N polypeptide 2). (alzforum.org)
  • Gene Bank blast for a homologous nucleotide sequence revealed the same PPRE within the rat glucose-dependent insulinotropic polypeptide receptor (GIP-R) promoter sequence. (diabetesjournals.org)
  • Glucose-dependent insulinotropic polypeptide (GIP) is a 42-amino acid incretin hormone that binds to a seven-transmembrane G-protein-coupled receptor (GIP-R) that is expressed in numerous tissues including islet β-cells and α-cells ( 1 , 2 ). (diabetesjournals.org)
  • Vasoactive intestinal peptide (VIP) is structurally related to pituitary adenylate cyclase-activating polypeptide (PACAP). (genx.bio)
  • Evidence for a direct interaction between the Thr11 residue of vasoactive intestinal polypeptide and Tyr184 located in the first extracellular loop of the VPAC2 receptor. (ac.be)
  • Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC2, play important roles in the functioning of the SCN pacemaker. (ljmu.ac.uk)
  • and the vasoactive intestinal peptide receptors (VIPR1, VIPR2). (axonmedchem.com)
  • Mice lacking VPAC2 receptors (Vipr2−/−) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. (ljmu.ac.uk)
  • There are two known receptors for the vasoactive intestinal peptide (VIP) termed VPAC1 and VPAC2. (wikipedia.org)
  • PACAP type II receptors" (VPAC1 and VPAC2 receptors) display comparable affinity for PACAP and VIP, whereas PACAP-27 and PACAP-38 are >100 fold more potent than VIP as agonists of most isoforms of the PAC1 receptor. (wikipedia.org)
  • Utah-based oncology firm NuView Life Sciences is developing a first-of-its-kind peptide analog, NV-VPAC1, which helps eliminate the need for costly, less accurate diagnostic tests and 'scorched earth' treatment methods. (prweb.com)
  • NV-VPAC1 is a unique proprietary peptide construct that targets a specific receptor, called vasoactive intestinal peptide receptor type 1 (VPAC1), which is over-expressed on the surface of cancer cells. (prweb.com)
  • Vasoactive Intestinal Peptide (VIP) termed VPAC1 is a neuropeptide that performs many physiological functions. (genx.bio)
  • The neuropeptide known as vasoactive intestinal peptide (VIP) or VPAC1 has a wide range of physiological roles. (healthbenefitstimes.com)
  • Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) receptors are activated by the endogenous peptides VIP, PACAP-38, PACAP-27, peptide histidine isoleucineamide (PHI), peptide histidine methionineamide (PHM) and peptide histidine valine (PHV). (wikipedia.org)
  • We have cloned and sequenced a cDNA (RPR4) encoding a new member of the secretin/calcitonin/parathyroid hormone (PTH) receptor family. (wiley.com)
  • A cyclic peptide (RO 25-1553) and a secretion analogue ([R16]chicken secretin) were identified as selective agonist peptides for the VIP2- and VIP1 receptors, respectively. (nih.gov)
  • The Secretin family is a small family of 15 GPCRs (GPCR-B1) that all have an extracellular hormone-binding domain and bind peptide hormones . (axonmedchem.com)
  • Vasoactive intestinal peptide (VIP) is a neuropeptide that acts on both the central nervous system (CNS) and the peripheral nervous system (PNS). (genx.bio)
  • VIP, or vasoactive intestinal peptide, is a neuropeptide that affects the central and peripheral neural systems ( PNS ). (healthbenefitstimes.com)
  • It was then demonstrated that both ROS and TRPA1 are required in a subset of anterior enteroendocrine cells for the release of the DH31 neuropeptide which activates its receptor in the neighboring visceral muscles. (sdbonline.org)
  • VIP is broken down into two peptides, VIP1 and VIP2, which have different functions. (genx.bio)
  • Two different peptides, VIP1 and VIP2, are derived from VIP and have distinct purposes. (healthbenefitstimes.com)
  • Intestinal adenocarcinomas and various endocrine tumors express large numbers of high-affinity receptors for vasoactive intestinal peptide (VIP). (nih.gov)
  • The Vasoactive Intestinal Peptide Receptor (VIPR1) is a protein that is encoded by the VIPR1 gene. (genx.bio)
  • VIPR1 is responsible for the binding and activation of vasoactive intestinal peptide (VIP). (genx.bio)
  • VIP binds to VIPR1 and activates the receptor, which leads to several different downstream effects. (genx.bio)
  • VIPR1 interacts with vasoactive intestinal peptides, triggering an inflammatory response (VIP). (healthbenefitstimes.com)
  • VIP binds to VIPR1, activating the receptor and triggering a chain reaction of subsequent events. (healthbenefitstimes.com)
  • Siltuximab (SylvantTM) is certainly a individual murine chimeric monoclonal antibody that binds IL-6 straight, as opposed to tocilizumab that binds towards the IL-6 receptor. (thetechnoant.info)
  • The complex interaction between autonomic and central nervous system function, as well as local and regional substances, may alter the intestinal equilibrium, resulting in disorganized electrical activity and paralysis of intestinal segments. (medscape.com)
  • 1] CGRP receptors: a headache to study, but will antagonists prove therapeutic in migraine? (axonmedchem.com)
  • Release of substance P and the effects of specific antagonists would be used to determine the synaptic coupling to down stream cholinergic or vasoactive intestinal peptide-immunoreactive neurons. (usda.gov)
  • These studies also have important applications toward defining the IGF-1 binding domain on the IGF-1 receptor and the development of IGF-1 receptor antagonists. (musc.edu)
  • Central sensitization is a process whereby nociceptive neurons and circuits exhibit increased function in response to activity, inflammation, or injury through a variety of processes that include changes in receptor field size, increases in neuronal excitability, increases in synaptic efficiency/coupling, and changes in neuronal connectivity ( Latremoliere and Woolf, 2009 ). (nature.com)
  • Substance P which is found in extrinsic and intrinsic neurons is elevated along with its receptor during inflammation. (usda.gov)
  • The first aim addresses whether neural secretory reflexes triggered by mucosal stroking and activation of 5-HT1P receptors present on intrinsic afferent neurons stimulate chloride secretion. (usda.gov)
  • In general, these studies are expected to provide important insights into the neural reflex pathways that govern the fluidity of the intestinal contents, and in particular, the role of substance P-containing neurons during normal or pathophysiologic states of inflammation. (usda.gov)
  • VIP1 receptors were present in the cerebral cortex, the piriform cortex, the claustrum, the caudate-putamen, the dentate gyrus, the lateral amygdaloïd nucleus, the anteroventral thalamic nucleus, the rhomboïd nucleus, the supraoptic nucleus and the choroïd plexus. (nih.gov)
  • Peptide histidine isoleucine (PHI) and rat growth hormone releasing hormone (rGHRH) also stimulated cAMP production at lower potency. (wiley.com)
  • dopa decarboxylase (Ddc), histidine decarboxylase (Hdc), tyrosine hydroxylase (Th), and vasoactive intestinal peptide (Vip). (lu.se)
  • Vasoactive intestinal peptide (VIP) is a hormone that is secreted by the small intestine in response to food. (genx.bio)
  • The small intestine secretes the hormone vasoactive intestinal peptide (VIP) in reaction to ingested food. (healthbenefitstimes.com)
  • However, the progresses in unravelling the migraine pathophysiology allowed identifying novel putative targets as calcitonin gene-related peptide (CGRP). (iasp-pain.org)
  • The calcitonin gene-related peptide ( CGRP ) is an alternative product of the calcitonin gene and was first described in 1982. (axonmedchem.com)
  • Using the Cre-LoxP system, the mTOR gene was specifically knocked out in cells expressing Vip (vasoactive intestinal peptide), which represent a major population of interneurons widely distributed in the neocortex, suprachiasmatic nucleus (SCN), olfactory bulb (OB), and other brain regions. (concordia.ca)
  • Gene expression and cellular localization of neurokinin receptors would be examined by reverse transcription-polymerase chain reaction and in situ hybridization. (usda.gov)
  • The Rhodopsin family accounts for ~68% of the Ciona GPCR repertoire wherein the LGR-like subfamily exhibits a lineage specific gene expansion of a group of receptors that possess a novel domain organisation hitherto unobserved in metazoan genomes. (biomedcentral.com)
  • both VPAC2 receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. (ljmu.ac.uk)
  • LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC2 receptor. (ljmu.ac.uk)
  • From NCBI Gene: This gene encodes a member of the G-protein coupled receptor family. (nih.gov)
  • Vasoactive intestinal peptide gene polymorphisms, associated with its serum levels, predict treatment requirements in early rheumatoid arthritis. (phoenixpeptide.com)
  • The functional role of VPAC2 receptors in rhythm generation and maintenance in these tissues is, however, unknown. (ljmu.ac.uk)
  • When RPR4 was functionally expressed in COS 7 cells, cyclic adenosine monophosphate (cAMP) production was stimulated by vasoactive intestinal peptide (VIP), pituitary adenylate cyclase activating peptides (PACAP-38 and PACAP-27) and helodermin, with equal potency. (wiley.com)
  • Palmieri reported the outcome of 17 patients with extensive advanced thymoma selected because of the significant uptake of indium-labeled octreotide, indicating the presence of somatostatin receptors. (medscape.com)
  • The third aim is to determine whether substance P activates neurokinin receptors on epithelial cells to stimulate chloride secretion and prostaglandin synthesis. (usda.gov)
  • We previously reported that early arthritis (EA) patients with low vasoactive intestinal peptide (VIP) serum levels demonstrate a worse clinical disease course. (phoenixpeptide.com)
  • Serum levels of vasoactive intestinal peptide as a prognostic marker in early arthritis. (phoenixpeptide.com)
  • Although this protein was earlier thought to be a receptor for vasoactive intestinal peptide (VIP), it is now considered to be an orphan receptor, in that its endogenous ligand has not been identified. (nih.gov)
  • Both receptors are members of the 7 transmembrane G protein-coupled receptor family. (wikipedia.org)
  • G protein-coupled receptors (GPCRs) constitute a large family of integral transmembrane receptor proteins that play a central role in signal transduction in eukaryotes. (biomedcentral.com)
  • In correlation with physiological data, VIP sites appear to be involved in the regulation of a variety of gastrointestinal functions including epithelial ion transport, gastric secretion, hemodynamic regulation, immune response, esophageal, gastric and intestinal motility. (duke.edu)
  • Shibata Y, Toyoda S, Nimura Y, Miyati M. Patterns of intestinal motility recovery during the early stage following abdominal surgery: clinical and manometric study. (medscape.com)
  • Vasoactive intestinal peptide (VIP) is a putative neurotransmitter in both the brain and peripheral tissues. (duke.edu)
  • Cloning the neurokinin receptor genes in guinea pig epithelial cells and their expression in epithelial cells lines would allow study of their function. (usda.gov)
  • The iodinated peptides retained the high affinity and selectivity of the unlabelled peptides and were used for the mapping of each receptor subclass in rat brain. (nih.gov)
  • Binding of the labeled peptide by primary tumors and metastases was visible shortly after the injection and was still demonstrable at 24 hours. (nih.gov)
  • In vitro binding studies confirmed the presence of VIP receptors on gastrointestinal tumors. (nih.gov)
  • To define possible target tissues of VIP we have used quantitative receptor autoradiography to localize and quantify the distribution of 125I-VIP receptor binding sites in the canine gastrointestinal tract. (duke.edu)
  • 125 I-Bolton Hunter substance P binding would be done to verify the presence of the neurokinin receptor protein. (usda.gov)
  • The IGFBPs interact with a specific binding domain on IGF-1 that is distinct from its receptor binding domain. (musc.edu)
  • Electrical stimulation of CeA in rodents produces analgesic effects that are blocked either by lidocaine 'silencing' of PAG or by blocking opioid receptors in PAG, suggesting that CeA-to-PAG projections are critical for the role of CeA signaling in modulating the nocifensive response ( Oliveira and Prado, 2001 ). (nature.com)
  • 9. Banko JL, Hou L, Poulin F, Sonenberg N, Klann E (2006) Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. (concordia.ca)
  • In breast cancer and head and neck squamous cell carcinoma cells, we are examining IGF-1 receptor crosstalk to vascular endothelial growth factor (VEGF) signaling in mediating enhanced tumorigenicity and metastasis. (musc.edu)
  • Using retinal pigment epithelial cells as a model, we are studying the interplay between IGF-1 receptor signaling and hypoxia in the regulation of vascular endothelial growth factor production and the loss of intercellular tight junctions. (musc.edu)
  • There is no other technology like it today-the peptide targets a variety of cancer cells with extreme precision, providing a binary approach to cancer diagnosis. (prweb.com)
  • While normal, healthy cells may have a few of these receptors, cancerous cells typically express millions of them, making them an ideal target for new diagnostic and theranostic technologies. (prweb.com)
  • We previously showed that peroxisome proliferator-activated receptor (PPAR)-γ in β-cells regulates pdx-1 transcription through a functional PPAR response element (PPRE). (diabetesjournals.org)
  • Glucose levels are stabilized, and new intestinal cells are encouraged to form, thanks to this hormone's presence. (healthbenefitstimes.com)
  • In addition to controlling blood sugar, vasoactive intestinal peptide also stimulates the development and repair of intestinal cells. (healthbenefitstimes.com)
  • Allparticipants were assessed on natural killer (NK) and CD8+T cellcytotoxic activities, Th1 and Th2 cytokine profile of CD4+T cells,expression of vasoactive intestinal peptide receptor 2 (VPACR2),levels of NK phenotypes (CD56bright and CD56dim) and regulatory Tcells expressing FoxP3 transcription factor. (vitality101.com)
  • CRTH2: Chemoattractant receptor-homologous molecule expressed includes nonallergic asthma phenotypes, such as asthma on TH2 cells associated with exposure to air pollution, infection, or obesity, ILC: Innate lymphoid cell that require innate rather than adaptive immunity. (cdc.gov)
  • In situ hybridisation showed that mRNA for this receptor was present mainly in the thalamus, hippocampus and in the suprachiasmatic nucleus. (wiley.com)
  • The peptide seems to possibly be extremely effective in a variety of fibrotic pathways and may give therapeutic advantages in the process of fibrosis that causes so much morbidity and death. (limitlesslifenootropics.com)
  • Systemic blockade of corticotropin-releasing factor (CRF) type 1 receptors (CRFR1s) reduces stress-induced thermal hyperalgesia. (nature.com)
  • Scholars@Duke publication: Vasoactive intestinal peptide (VIP) receptors in the canine gastrointestinal tract. (duke.edu)
  • This suggests that RPR4 encodes a novel VIP receptor which we have designated the VIP 2 receptor. (wiley.com)
  • These visceral muscle contractions are induced by immune reactive oxygen species (ROS) that accumulate in the lumen and depend on the ROS-sensing TRPA1 receptor. (sdbonline.org)