A KIR receptor that has specificity for HLA-C ANTIGENS. It is an inhibitory receptor that contains D1 and D2 extracellular immunoglobulin-like domains and a long cytoplasmic tail. It is similar in structure and function to the KIR2DL1 RECEPTORS and the KIR2DL3 RECEPTORS.
A KIR receptor that has specificity for HLA-A3 ANTIGEN. It is an inhibitory receptor that contains D0, D1, and D2 extracellular immunoglobulin-like domains and a long cytoplasmic tail.
A KIR receptor that has specificity for HLA-B ANTIGENS. It is an inhibitory receptor that contains D0, D1, and D2 extracellular immunoglobulin-like domains and a long cytoplasmic tail.
An activating KIR receptor that contains D0, D1, and D2 extracellular immunoglobulin-like domains and a short cytoplasmic tail.
A KIR receptor that has specificity for HLA-G antigen. It contains D0 and D2 extracellular immunoglobulin-like domains and a long cytoplasmic tail.
A KIR receptor that has specificity for HLA-C ANTIGENS. It is an inhibitory receptor that contains D1 and D2 extracellular immunoglobulin-like domains and a long cytoplasmic tail. It is similar in structure and function to the KIR2DL2 RECEPTOR and the KIR2DL3 RECEPTORS.
Class I human histocompatibility (HLA) antigens encoded by a small cluster of structural genes at the C locus on chromosome 6. They have significantly lower immunogenicity than the HLA-A and -B determinants and are therefore of minor importance in donor/recipient crossmatching. Their primary role is their high-risk association with certain disease manifestations (e.g., spondylarthritis, psoriasis, multiple myeloma).
Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type.
Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere.
A KIR receptor that has specificity for HLA-C ANTIGEN. It is an inhibitory receptor that contains D1 and D2 extracellular immunoglobulin-like domains and a long cytoplasmic tail. It is similar in structure and function to the KIR2DL2 RECEPTORS and the KIR2DL3 RECEPTORS.
A family of receptors found on NK CELLS that have specificity for a variety of HLA ANTIGENS. KIR receptors contain up to three different extracellular immunoglobulin-like domains referred to as D0, D1, and D2 and play an important role in blocking NK cell activation against cells expressing the appropriate HLA antigens thus preventing cell lysis. Although they are often referred to as being inhibitory receptors, a subset of KIR receptors may also play an activating role in NK cells.
Potassium channels where the flow of K+ ions into the cell is greater than the outward flow.
An inhibitory KIR receptor that contains D0 and D1 extracellular immunoglobulin-like domains and a long cytoplasmic tail.
ATP-BINDING CASSETTE PROTEINS that are highly conserved and widely expressed in nature. They form an integral part of the ATP-sensitive potassium channel complex which has two intracellular nucleotide folds that bind to sulfonylureas and their analogs.
A family of inwardly-rectifying potassium channels that are activated by PERTUSSIS TOXIN sensitive G-PROTEIN-COUPLED RECEPTORS. GIRK potassium channels are primarily activated by the complex of GTP-BINDING PROTEIN BETA SUBUNITS and GTP-BINDING PROTEIN GAMMA SUBUNITS.
Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits.
Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified.
Class I human histocompatibility (HLA) surface antigens encoded by more than 30 detectable alleles on locus B of the HLA complex, the most polymorphic of all the HLA specificities. Several of these antigens (e.g., HLA-B27, -B7, -B8) are strongly associated with predisposition to rheumatoid and other autoimmune disorders. Like other class I HLA determinants, they are involved in the cellular immune reactivity of cytolytic T lymphocytes.
The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability.
An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used.
A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein.
The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).
Sulfonylurea compounds are a class of medications used in the treatment of diabetes mellitus type 2 that promote insulin secretion from pancreatic beta-cells by closing ATP-sensitive potassium channels in their membranes.
An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
A class of drugs that act by inhibition of potassium efflux through cell membranes. Blockade of potassium channels prolongs the duration of ACTION POTENTIALS. They are used as ANTI-ARRHYTHMIA AGENTS and VASODILATOR AGENTS.

A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. (1/11)

Human natural killer (NK) cells express several killer cell immunoglobulin (Ig)-like receptors (KIRs) that inhibit their cytotoxicity upon recognition of human histocompatibility leukocyte antigen (HLA) class I molecules on target cells. Additional members of the KIR family, including some that deliver activation signals, have unknown ligand specificity and function. One such KIR, denoted KIR2DL4, is structurally divergent from other KIRs in the configuration of its two extracellular Ig domains and of its transmembrane and cytoplasmic domains. Here we show that recombinant soluble KIR2DL4 binds to cells expressing HLA-G but not to cells expressing other HLA class I molecules. Unlike other HLA class I-specific KIRs, which are clonally distributed on NK cells, KIR2DL4 is expressed at the surface of all NK cells. Furthermore, functional transfer of KIR2DL4 into the cell line NK-92 resulted in inhibition of lysis of target cells that express HLA-G, but not target cells that express other class I molecules including HLA-E. Therefore, given that HLA-G expression is restricted to fetal trophoblast cells, KIR2DL4 may provide important signals to maternal NK decidual cells that interact with trophoblast cells at the maternal-fetal interface during pregnancy.  (+info)

Inhibitory receptors sensing HLA-G1 molecules in pregnancy: decidua-associated natural killer cells express LIR-1 and CD94/NKG2A and acquire p49, an HLA-G1-specific receptor. (2/11)

Trophoblastic cells lack classical HLA class I and class II molecules but express HLA-G1. Although this may prevent allorecognition by maternal T cells, it renders trophoblastic cells potentially susceptible to lysis by natural killer (NK) cells. As shown here, only a fraction of peripheral-blood NK cells in pregnant women express the HLA-G1-specific CD94/NKG2A and/or LIR-1 receptors. However, all NK cells isolated from maternal decidua during the first trimester expressed either one or both of these receptors. Perhaps more importantly, a fraction of cells expressed p49, an HLA-G1-specific inhibitory receptor, undetectable in peripheral-blood NK cells. p49 was expressed on virtually all NK cells isolated from placenta at term. Functional analyses revealed that the HLA class I-negative 221 lymphoblastoid cell line transfected with HLA-G1 was only partially protected from lysis by peripheral-blood NK cells isolated from pregnant women, whereas it was fully protected from decidual NK cells. As indicated by the addition of specific antibodies to cytolytic tests, all the above receptors contributed to HLA-G1 recognition by decidual NK cells, although p49 would appear to play a predominant role.  (+info)

HLA-G and immune tolerance in pregnancy. (3/11)

Multiple mechanisms underlie the surprising willingness of mothers to tolerate genetically different fetal tissues during pregnancy. Chief among these is the choice of HLA-G, a gene with few alleles, rather than the highly polymorphic HLA-A and -B genes, for expression by the placental cells that interface directly with maternal blood and tissues. Novel aspects of this major histocompatibility complex class Ib gene include alternative splicing to permit production of membrane and soluble isoforms, deletions that dampen responses to interferons, and a shortened cytoplasmic tail that affects expression at the cell surface. Placental cells migrating into the maternal uterus synthesize both membrane and soluble isoforms, which interact with inhibitory receptors on leukocytes such as ILT2 and ILT4. Cytotoxic T lymphocytes either die or reduce production of one of their major coreceptor/activator cell surface molecules, CD8; natural killer cells are immobilized and mononuclear phagocytes are programmed into suppressive modes characterized by high production of anti-inflammatory cytokines. The idea that placental HLA-G proteins facilitate semiallogeneic pregnancy by inhibiting maternal immune responses to foreign (paternal) antigens via these actions on immune cells is now well established, and the postulate that the recombinant counterparts of these proteins may be used as powerful tools for preventing immune rejection of transplanted organs is gaining in popularity.  (+info)

Activation of NK cells by an endocytosed receptor for soluble HLA-G. (4/11)

Signaling from endosomes is emerging as a mechanism by which selected receptors provide sustained signals distinct from those generated at the plasma membrane. The activity of natural killer (NK) cells, which are important effectors of innate immunity and regulators of adaptive immunity, is controlled primarily by receptors that are at the cell surface. Here we show that cytokine secretion by resting human NK cells is induced by soluble, but not solid-phase, antibodies to the killer cell immunoglobulin-like receptor (KIR) 2DL4, a receptor for human leukocyte antigen (HLA)-G. KIR2DL4 was constitutively internalized into Rab5-positive compartments via a dynamin-dependent process. Soluble HLA-G was endocytosed into KIR2DL4-containing compartments in NK cells and in 293T cells transfected with KIR2DL4. Chemokine secretion induced by KIR2DL4 transfection into 293T cells occurred only with recombinant forms of KIR2DL4 that trafficked to endosomes. The profile of genes up-regulated by KIR2DL4 engagement on resting NK cells revealed a proinflammatory/proangiogenic response. Soluble HLA-G induced secretion of a similar set of cytokines and chemokines. This unique stimulation of resting NK cells by soluble HLA-G, which is endocytosed by KIR2DL4, implies that NK cells may provide useful functions at sites of HLA-G expression, such as promotion of vascularization in maternal decidua during early pregnancy.  (+info)

A commentary on gestational programming and functions of HLA-G in pregnancy. (5/11)

HLA-G is an HLA class Ib gene that is highly expressed in human trophoblast cells. The single HLA-G mRNA is alternatively spliced to generate at least seven transcripts, three of which encode soluble isoforms. Many studies have shown that high levels of soluble antigens are associated with successful implantation and graft acceptance. To study expression, regulation and functions of two of the soluble isoforms, HLA-G5 and HLA-G6, we generated recombinant proteins in eukaryotic cells and developed monoclonal antibodies specific for each of the two proteins. In addition, we investigated the olive baboon Paan-AG gene as a potential functional correlate of HLA-G. Here, we present summaries of the studies that have been conducted in our laboratory using these tools and discuss the results within the context of the research on this topic that is ongoing in ours and other laboratories worldwide. Collectively, the data indicate that soluble HLA-G is a critical contributor to immune privilege in pregnancy and imply that this placenta-derived substance may impact other pathways leading to successful reproduction.  (+info)

Human KIR2DL5 is an inhibitory receptor expressed on the surface of NK and T lymphocyte subsets. (6/11)

Human NK cells, by means of a repertoire of clonally distributed killer cell Ig-like receptors (KIR), survey the expression of individual self HLA class I molecules, which is often altered in infections and tumors. KIR2DL5 (CD158f) is the last identified KIR gene and, with KIR2DL4, constitutes a structurally divergent lineage conserved in different primate species. Research on KIR2DL5 has thus far been limited to its genetic aspects due to a lack of reagents to detect its product. We report here the identification and characterization of the receptor encoded by KIR2DL5 using a newly generated specific mAb that recognizes its most commonly expressed allele, KIR2DL5A*001. KIR2DL5 displays a variegated distribution on the surface of CD56(dim) NK cells. This contrasts with the expression pattern of its structural homolog KIR2DL4 (ubiquitous transcription, surface expression restricted to CD56(bright) NK cells) and resembles the profile of KIR recognizing classical HLA class I molecules. Like other MHC class I receptors, KIR2DL5 is also found in a variable proportion of T lymphocytes. KIR2DL5 is detected on the cell surface as a monomer of approximately 60 kDa that, upon tyrosine phosphorylation, recruits the Src homology region 2-containing protein tyrosine phosphatase-2 and, to a lesser extent, Src homology region 2-containing protein tyrosine phosphatase-1. Ab-mediated cross-linking of KIR2DL5 inhibits NK cell cytotoxicity against murine FcR+ P815 cells. KIR2DL5 is thus an inhibitory receptor gathering a combination of genetic, structural, and functional features unique among KIR, which suggests that KIR2DL5 plays a specialized role in innate immunity.  (+info)

Polymorphisms of killer cell immunoglobulin-like receptor gene: possible association with susceptibility to or clearance of hepatitis B virus infection in Chinese Han population. (7/11)

AIM: To explore whether killer cell immunoglobulin-like receptors (KIR) gene polymorphisms are associated with susceptibility to persistent hepatitis B virus (HBV) infection or HBV clearance. METHODS: Fifteen known KIR genes were determined in 150 chronic hepatitis B patients, 251 spontaneously recovered controls, and 412 healthy controls by the sequence specific primer polymerase chain reaction (SSP-PCR) method. KIR genotype frequency (gf) differences were tested for significance by two-tailed Fisher exact test or chi(2) test. Multifactorial analysis was also performed by logistic analysis (the SAS system). RESULTS: Framework genes KIR2DL4, KIR3DL2, KIR3DL3, and KIRZ were present in all individuals. The frequencies of KIR2DS2 and KIR2DS3 were higher in chronic hepatitis B patients, than in both healthy and spontaneously recovered controls. The frequencies of activating KIR2DS1, KIR3DS1, and the inhibitory KIR2DL5 were higher in spontaneously recovered controls than in chronic hepatitis B patients and healthy controls. CONCLUSION: KIR polymorphisms may be associated with susceptibility to HBV infection or HBV clearance. It could be suggested that KIR2DS2 and KIR2DS3 were HBV-susceptive genes, which induced a persistent yet weak inflammatory reaction that resulted in continuous injury of live tissues and chronic hepatitis. KIR2DS1, KIR3DS1, and KIR2DL5, on the other hand, may be protective genes that facilitated the clearance of HBV.  (+info)

Chimpanzees use more varied receptors and ligands than humans for inhibitory killer cell Ig-like receptor recognition of the MHC-C1 and MHC-C2 epitopes. (8/11)

 (+info)

KIR2DL2 (Killer-cell Immunoglobulin-like Receptor 2DL2) is a type of receptor found on the surface of natural killer (NK) cells, which are a type of white blood cell in the human body's immune system. KIR2DL2 belongs to the family of KIR receptors that recognize and interact with Human Leukocyte Antigens (HLAs) expressed on the surface of other cells.

More specifically, KIR2DL2 is an inhibitory receptor that recognizes HLA-C group 2 molecules, which are a type of class I major histocompatibility complex (MHC) molecule. When KIR2DL2 binds to its ligand, it sends a negative signal that dampens the NK cell's activation and prevents it from attacking and killing the target cell.

Therefore, KIR2DL2 plays an essential role in regulating NK cell activity and maintaining immune tolerance by preventing the destruction of healthy cells. Variations in KIR genes, including KIR2DL2, have been associated with susceptibility to various diseases, including autoimmune disorders, viral infections, and cancer.

KIR3DL2 (Killer-cell Immunoglobulin-like Receptor 3DL2) is a type of receptor found on the surface of natural killer (NK) cells, which are a type of white blood cell in the human body's immune system. KIR3DL2 belongs to a family of receptors called KIRs (Killer-cell Immunoglobulin-like Receptors) that help NK cells recognize and respond to infected or abnormal cells.

KIR3DL2 is a inhibitory receptor, which means it can transmit a negative signal that dampens the NK cell's activation and prevents it from attacking normal, healthy cells. Specifically, KIR3DL2 recognizes and binds to HLA-A3 and HLA-A11 molecules, which are found on the surface of many human cells. When KIR3DL2 binds to these HLA molecules, it sends a signal that inhibits NK cell activation and helps prevent an immune response against normal cells.

Abnormalities in KIR3DL2 have been associated with various diseases, including certain types of cancer and autoimmune disorders. For example, some studies suggest that changes in KIR3DL2 expression or function may contribute to the development of certain leukemias and lymphomas. Additionally, variations in KIR3DL2 genes have been linked to susceptibility to autoimmune diseases such as rheumatoid arthritis and multiple sclerosis.

KIR3DL1 (Killer-cell Immunoglobulin-like Receptor 3DL1) is a type of receptor found on the surface of natural killer (NK) cells, which are a type of white blood cell in the human body's immune system. KIR3DL1 belongs to the family of KIR receptors that recognize and interact with Human Leukocyte Antigens (HLAs) expressed on the surface of other cells.

More specifically, KIR3DL1 recognizes HLA-A and HLA-B allotypes that have a specific motif called the Bw4 epitope. The interaction between KIR3DL1 and HLA-Bw4 can either inhibit or activate NK cell function, depending on the presence of other co-stimulatory signals.

The binding of KIR3DL1 to its ligands plays an essential role in regulating NK cell activity during immune responses against viral infections and cancer. The genetic variability in KIR3DL1 and its ligands has been associated with differences in susceptibility to various diseases, including HIV/AIDS, hepatitis C virus infection, and certain types of cancer.

KIR3DS1 is a type of killer-cell immunoglobulin-like receptor (KIR) that is expressed on the surface of natural killer (NK) cells. These receptors are involved in the regulation of NK cell activation and function. KIR3DS1 is a stimulatory receptor, which means that it transmits an activating signal upon engagement with its ligand.

The ligand for KIR3DS1 is thought to be the human leukocyte antigen-F (HLA-F) molecule, which is a member of the HLA class I family. The interaction between KIR3DS1 and HLA-F is believed to play a role in the immune response against viral infections and tumors.

It's worth noting that the presence of KIR3DS1 has been associated with a reduced risk of HIV disease progression, as well as with a better clinical outcome in hematopoietic stem cell transplantation. However, more research is needed to fully understand the functional role and clinical relevance of this receptor.

KIR2DL4 is a type of killer-cell immunoglobulin-like receptor (KIR) that is primarily expressed on natural killer (NK) cells and some T-cell subsets. The "2D" designation indicates that it belongs to the second subgroup of KIRs, which have two extracellular immunoglobulin-like domains. The "L4" specifies its long cytoplasmic tail containing inhibitory signaling motifs, such as immunoreceptor tyrosine-based inhibition motifs (ITIMs).

KIR2DL4 is unique among KIRs because it can interact with both classical and nonclassical major histocompatibility complex class I molecules. Its primary ligand is the nonclassical HLA-G, which is involved in maternal-fetal tolerance during pregnancy. The activation of KIR2DL4 by HLA-G has been shown to induce the release of proinflammatory cytokines and chemokines, making it a potentially important player in immune responses and inflammation.

In summary, KIR2DL4 is a type of inhibitory receptor found on NK cells and some T-cells that can interact with HLA-G to modulate immune responses.

KIR2DL1 (Killer-cell Immunoglobulin-like Receptor, Two Ig Domains and Long Cytoplasmic Tail 1) is a type of receptor found on the surface of natural killer (NK) cells, which are a type of white blood cell in the human body's immune system.

KIR2DL1 belongs to the KIR family of receptors, which recognize and interact with Human Leukocyte Antigen (HLA) class I molecules expressed on the surface of other cells. Specifically, KIR2DL1 recognizes HLA-C group 2 molecules, which have a specific motif at position 80 in their heavy chain (HLA-C2).

KIR2DL1 is an inhibitory receptor, meaning that its activation leads to the dampening of NK cell responses. When KIR2DL1 binds to its ligand HLA-C2 on target cells, it transmits a negative signal that helps prevent NK cell-mediated killing of healthy cells. However, if a cell lacks or has altered expression of HLA-C2 molecules, KIR2DL1 may not be able to transmit the inhibitory signal effectively, leading to NK cell activation and target cell destruction.

In summary, KIR2DL1 is an inhibitory receptor on NK cells that recognizes specific HLA class I molecules (HLA-C2) and helps regulate NK cell responses to maintain immune homeostasis.

HLA-C antigens are a type of human leukocyte antigen (HLA) found on the surface of cells in the human body. They are part of the major histocompatibility complex (MHC) class I molecules, which play a critical role in the immune system's ability to differentiate between "self" and "non-self" cells.

HLA-C antigens are responsible for presenting peptide fragments from inside the cell to CD8+ T cells, also known as cytotoxic T lymphocytes (CTLs). This presentation allows the CTLs to recognize and destroy infected or damaged cells, helping to prevent the spread of viruses and other pathogens.

Like other HLA antigens, HLA-C antigens are highly polymorphic, meaning that there are many different variations of these molecules in the human population. This diversity allows for a better match between an individual's immune system and the pathogens they encounter, increasing the chances of mounting an effective immune response. However, this same diversity can also make it more challenging to find compatible organ donors for transplantation.

Natural Killer (NK) cells are a type of lymphocyte, which are large granular innate immune cells that play a crucial role in the host's defense against viral infections and malignant transformations. They do not require prior sensitization to target and destroy abnormal cells, such as virus-infected cells or tumor cells. NK cells recognize their targets through an array of germline-encoded activating and inhibitory receptors that detect the alterations in the cell surface molecules of potential targets. Upon activation, NK cells release cytotoxic granules containing perforins and granzymes to induce target cell apoptosis, and they also produce a variety of cytokines and chemokines to modulate immune responses. Overall, natural killer cells serve as a critical component of the innate immune system, providing rapid and effective responses against infected or malignant cells.

Immunologic receptors are specialized proteins found on the surface of immune cells that recognize and bind to specific molecules, known as antigens, on the surface of pathogens or infected cells. This binding triggers a series of intracellular signaling events that activate the immune cell and initiate an immune response.

There are several types of immunologic receptors, including:

1. T-cell receptors (TCRs): These receptors are found on the surface of T cells and recognize antigens presented in the context of major histocompatibility complex (MHC) molecules.
2. B-cell receptors (BCRs): These receptors are found on the surface of B cells and recognize free antigens in solution.
3. Pattern recognition receptors (PRRs): These receptors are found inside immune cells and recognize conserved molecular patterns associated with pathogens, such as lipopolysaccharides and flagellin.
4. Fc receptors: These receptors are found on the surface of various immune cells and bind to the constant region of antibodies, mediating effector functions such as phagocytosis and antibody-dependent cellular cytotoxicity (ADCC).

Immunologic receptors play a critical role in the recognition and elimination of pathogens and infected cells, and dysregulation of these receptors can lead to immune disorders and diseases.

KIR2DL3 is a type of killer-cell immunoglobulin-like receptor (KIR) that is expressed on the surface of natural killer (NK) cells and some T cells. These receptors are involved in the regulation of the immune response, particularly in recognizing and responding to virally infected or cancerous cells.

KIR2DL3 is a inhibitory receptor, which means that it transmits a negative signal upon engagement with its ligand, helping to prevent NK cell activation and subsequent destruction of healthy cells. The ligand for KIR2DL3 is HLA-C2, a type of human leukocyte antigen (HLA) class I molecule.

It's important to note that the function of KIR2DL3 and other KIR receptors can be highly variable due to genetic differences in their expression and specificity for different HLA ligands. This variability can have implications for an individual's susceptibility to certain diseases, including viral infections and cancer.

KIR (Killer-cell Immunoglobulin-like Receptors) are a group of receptors found on the surface of natural killer (NK) cells and some T-cells. These receptors play a crucial role in the regulation of the immune system's response to virally infected or cancerous cells.

KIR receptors can be further classified into two main groups: inhibitory receptors and activating receptors. Inhibitory KIR receptors recognize major histocompatibility complex (MHC) class I molecules on the surface of healthy cells, transmitting an inhibitory signal that prevents NK cells from attacking these cells. Activating KIR receptors, on the other hand, recognize viral or stress-induced ligands and transmit an activating signal, leading to the destruction of infected or abnormal cells.

The interaction between KIR receptors and their ligands is critical for maintaining immune tolerance and preventing autoimmune diseases. Variations in KIR genes and their MHC class I ligands can influence susceptibility to various diseases, including viral infections, cancer, and pregnancy-related complications.

Inwardly rectifying potassium channels (Kir) are a type of potassium channel that allow for the selective passage of potassium ions (K+) across cell membranes. The term "inwardly rectifying" refers to their unique property of allowing potassium ions to flow more easily into the cell (inward current) than out of the cell (outward current). This characteristic is due to the voltage-dependent blockage of these channels by intracellular magnesium and polyamines at depolarized potentials.

These channels play crucial roles in various physiological processes, including:

1. Resting membrane potential maintenance: Kir channels help establish and maintain the negative resting membrane potential in cells by facilitating potassium efflux when the membrane potential is near the potassium equilibrium potential (Ek).
2. Action potential repolarization: In excitable cells like neurons and muscle fibers, Kir channels contribute to the rapid repolarization phase of action potentials, allowing for proper electrical signaling.
3. Cell volume regulation: Kir channels are involved in regulating cell volume by mediating potassium influx during osmotic stress or changes in intracellular ion concentrations.
4. Insulin secretion: In pancreatic β-cells, Kir channels control the membrane potential and calcium signaling necessary for insulin release.
5. Renal function: Kir channels are essential for maintaining electrolyte balance and controlling renal tubular transport in the kidneys.

There are several subfamilies of inwardly rectifying potassium channels (Kir1-7), each with distinct biophysical properties, tissue distributions, and functions. Mutations in genes encoding these channels can lead to various human diseases, including cardiac arrhythmias, epilepsy, and Bartter syndrome.

KIR2DL5 is a type of killer-cell immunoglobulin-like receptor (KIR) that is expressed on the surface of natural killer (NK) cells and some T cells. These receptors are involved in the regulation of the immune response, particularly in recognizing and responding to virally infected or cancerous cells.

KIR2DL5 is a subtype of KIR2D receptors, which have two immunoglobulin-like domains. Specifically, KIR2DL5 is a inhibitory receptor, meaning that it transmits a negative signal upon engagement with its ligand, which helps to prevent the destruction of healthy cells.

The ligands for KIR2DL5 are thought to be HLA-C molecules, which are found on the surface of many types of cells and play a critical role in the immune response by presenting pieces of proteins from viruses or cancer cells to T cells. However, the specificity and function of KIR2DL5 are still being studied, and more research is needed to fully understand its role in the immune system.

Sulfonylurea receptors (SURs) are a type of transmembrane protein found in the beta cells of the pancreas. They are part of the ATP-sensitive potassium (KATP) channel complex, which plays a crucial role in regulating insulin secretion.

SURs have two subtypes, SUR1 and SUR2, which are associated with different KATP channel subunits. SUR1 is primarily found in the pancreas and brain, while SUR2 is expressed in various tissues, including skeletal muscle and heart.

Sulfonylurea drugs, used to treat type 2 diabetes, bind to SURs and stimulate insulin secretion by closing the KATP channel, which leads to membrane depolarization and subsequent calcium influx, triggering insulin release from beta cells.

G protein-coupled inwardly-rectifying potassium channels (GIRK channels) are a type of potassium channel that are activated by G proteins, which are molecules that help transmit signals within cells. These channels are characterized by their ability to allow potassium ions to flow into the cell more easily than they allow potassium ions to flow out of the cell, hence the term "inwardly-rectifying."

GIRK channels play a role in regulating various physiological processes, including neurotransmission, heart rate, and insulin secretion. They are activated by several different G proteins, including those that are activated by certain neurotransmitters and hormones. When these G proteins bind to the channel, they cause it to open, allowing potassium ions to flow into the cell. This can have various effects on the cell, depending on the type of cell and the specific signals being transmitted.

GIRK channels are composed of four subunits, each of which contains a pore through which potassium ions can pass. These subunits can be made up of different types of proteins, and the specific combination of subunits in a channel can affect its properties and regulation. Mutations in genes that encode GIRK channel subunits have been linked to various diseases, including certain forms of epilepsy and cardiac arrhythmias.

Potassium channels are membrane proteins that play a crucial role in regulating the electrical excitability of cells, including cardiac, neuronal, and muscle cells. These channels facilitate the selective passage of potassium ions (K+) across the cell membrane, maintaining the resting membrane potential and shaping action potentials. They are composed of four or six subunits that assemble to form a central pore through which potassium ions move down their electrochemical gradient. Potassium channels can be modulated by various factors such as voltage, ligands, mechanical stimuli, or temperature, allowing cells to fine-tune their electrical properties and respond to different physiological demands. Dysfunction of potassium channels has been implicated in several diseases, including cardiac arrhythmias, epilepsy, and neurodegenerative disorders.

Drug receptors are specific protein molecules found on the surface of cells, to which drugs can bind. These receptors are part of the cell's communication system and are responsible for responding to neurotransmitters, hormones, and other signaling molecules in the body. When a drug binds to its corresponding receptor, it can alter the receptor's function and trigger a cascade of intracellular events that ultimately lead to a biological response.

Drug receptors can be classified into several types based on their function, including:

1. G protein-coupled receptors (GPCRs): These are the largest family of drug receptors and are involved in various physiological processes such as vision, olfaction, neurotransmission, and hormone signaling. They activate intracellular signaling pathways through heterotrimeric G proteins.
2. Ion channel receptors: These receptors form ion channels that allow the flow of ions across the cell membrane when activated. They are involved in rapid signal transduction and can be directly gated by ligands or indirectly through G protein-coupled receptors.
3. Enzyme-linked receptors: These receptors have an intracellular domain that functions as an enzyme, activating intracellular signaling pathways when bound to a ligand. Examples include receptor tyrosine kinases and receptor serine/threonine kinases.
4. Nuclear receptors: These receptors are located in the nucleus and function as transcription factors, regulating gene expression upon binding to their ligands.

Understanding drug receptors is crucial for developing new drugs and predicting their potential therapeutic and adverse effects. By targeting specific receptors, drugs can modulate cellular responses and produce desired pharmacological actions.

HLA-B antigens are human leukocyte antigen (HLA) proteins found on the surface of cells that play an important role in the body's immune system. They are part of the major histocompatibility complex (MHC) class I molecules, which present pieces of proteins from inside the cell to T-cells, a type of white blood cell involved in immune responses.

HLA-B antigens are highly polymorphic, meaning that there are many different variations or alleles of this gene in the human population. This genetic diversity allows for a wide range of potential HLA-B proteins to be expressed, which can help recognize and respond to a variety of foreign substances, such as viruses and cancer cells.

The HLA-B antigens are inherited from both parents, and an individual may express one or two different HLA-B antigens depending on their genetic makeup. The specific combination of HLA-B antigens that a person expresses can have implications for their susceptibility to certain diseases, as well as their compatibility with organ transplants.

Ion channel gating refers to the process by which ion channels in cell membranes open and close in response to various stimuli, allowing ions such as sodium, potassium, and calcium to flow into or out of the cell. This movement of ions is crucial for many physiological processes, including the generation and transmission of electrical signals in nerve cells, muscle contraction, and the regulation of hormone secretion.

Ion channel gating can be regulated by various factors, including voltage changes across the membrane (voltage-gated channels), ligand binding (ligand-gated channels), mechanical stress (mechanosensitive channels), or other intracellular signals (second messenger-gated channels). The opening and closing of ion channels are highly regulated and coordinated processes that play a critical role in maintaining the proper functioning of cells and organ systems.

Patch-clamp techniques are a group of electrophysiological methods used to study ion channels and other electrical properties of cells. These techniques were developed by Erwin Neher and Bert Sakmann, who were awarded the Nobel Prize in Physiology or Medicine in 1991 for their work. The basic principle of patch-clamp techniques involves creating a high resistance seal between a glass micropipette and the cell membrane, allowing for the measurement of current flowing through individual ion channels or groups of channels.

There are several different configurations of patch-clamp techniques, including:

1. Cell-attached configuration: In this configuration, the micropipette is attached to the outer surface of the cell membrane, and the current flowing across a single ion channel can be measured. This configuration allows for the study of the properties of individual channels in their native environment.
2. Whole-cell configuration: Here, the micropipette breaks through the cell membrane, creating a low resistance electrical connection between the pipette and the inside of the cell. This configuration allows for the measurement of the total current flowing across all ion channels in the cell membrane.
3. Inside-out configuration: In this configuration, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the inner surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in isolation from other cellular components.
4. Outside-out configuration: Here, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the outer surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in their native environment, but with the ability to control the composition of the extracellular solution.

Patch-clamp techniques have been instrumental in advancing our understanding of ion channel function and have contributed to numerous breakthroughs in neuroscience, pharmacology, and physiology.

ATP-binding cassette (ABC) transporters are a family of membrane proteins that utilize the energy from ATP hydrolysis to transport various substrates across extra- and intracellular membranes. These transporters play crucial roles in several biological processes, including detoxification, drug resistance, nutrient uptake, and regulation of cellular cholesterol homeostasis.

The structure of ABC transporters consists of two nucleotide-binding domains (NBDs) that bind and hydrolyze ATP, and two transmembrane domains (TMDs) that form the substrate-translocation pathway. The NBDs are typically located adjacent to each other in the cytoplasm, while the TMDs can be either integral membrane domains or separate structures associated with the membrane.

The human genome encodes 48 distinct ABC transporters, which are classified into seven subfamilies (ABCA-ABCG) based on their sequence similarity and domain organization. Some well-known examples of ABC transporters include P-glycoprotein (ABCB1), multidrug resistance protein 1 (ABCC1), and breast cancer resistance protein (ABCG2).

Dysregulation or mutations in ABC transporters have been implicated in various diseases, such as cystic fibrosis, neurological disorders, and cancer. In cancer, overexpression of certain ABC transporters can contribute to drug resistance by actively effluxing chemotherapeutic agents from cancer cells, making them less susceptible to treatment.

"Xenopus laevis" is not a medical term itself, but it refers to a specific species of African clawed frog that is often used in scientific research, including biomedical and developmental studies. Therefore, its relevance to medicine comes from its role as a model organism in laboratories.

In a broader sense, Xenopus laevis has contributed significantly to various medical discoveries, such as the understanding of embryonic development, cell cycle regulation, and genetic research. For instance, the Nobel Prize in Physiology or Medicine was awarded in 1963 to John R. B. Gurdon and Sir Michael J. Bishop for their discoveries concerning the genetic mechanisms of organism development using Xenopus laevis as a model system.

An oocyte, also known as an egg cell or female gamete, is a large specialized cell found in the ovary of female organisms. It contains half the number of chromosomes as a normal diploid cell, as it is the product of meiotic division. Oocytes are surrounded by follicle cells and are responsible for the production of female offspring upon fertilization with sperm. The term "oocyte" specifically refers to the immature egg cell before it reaches full maturity and is ready for fertilization, at which point it is referred to as an ovum or egg.

Membrane potential is the electrical potential difference across a cell membrane, typically for excitable cells such as nerve and muscle cells. It is the difference in electric charge between the inside and outside of a cell, created by the selective permeability of the cell membrane to different ions. The resting membrane potential of a typical animal cell is around -70 mV, with the interior being negative relative to the exterior. This potential is generated and maintained by the active transport of ions across the membrane, primarily through the action of the sodium-potassium pump. Membrane potentials play a crucial role in many physiological processes, including the transmission of nerve impulses and the contraction of muscle cells.

Sulfonylurea compounds are a group of medications used in the management of type 2 diabetes. They work by stimulating the release of insulin from the pancreas, thereby lowering blood glucose levels. These compounds bind to specific receptors on the beta cells of the pancreas, which triggers the release of insulin.

Examples of sulfonylurea compounds include glipizide, glyburide, and glimepiride. It's important to note that these medications can cause hypoglycemia (low blood sugar) if not properly monitored and dosed. They are often used in combination with other medications, such as metformin, to achieve optimal blood glucose control.

As with any medication, sulfonylurea compounds should be taken under the supervision of a healthcare provider, who can monitor their effectiveness and potential side effects.

Potassium is a essential mineral and an important electrolyte that is widely distributed in the human body. The majority of potassium in the body (approximately 98%) is found within cells, with the remaining 2% present in blood serum and other bodily fluids. Potassium plays a crucial role in various physiological processes, including:

1. Regulation of fluid balance and maintenance of normal blood pressure through its effects on vascular tone and sodium excretion.
2. Facilitation of nerve impulse transmission and muscle contraction by participating in the generation and propagation of action potentials.
3. Protein synthesis, enzyme activation, and glycogen metabolism.
4. Regulation of acid-base balance through its role in buffering systems.

The normal serum potassium concentration ranges from 3.5 to 5.0 mEq/L (milliequivalents per liter) or mmol/L (millimoles per liter). Potassium levels outside this range can have significant clinical consequences, with both hypokalemia (low potassium levels) and hyperkalemia (high potassium levels) potentially leading to serious complications such as cardiac arrhythmias, muscle weakness, and respiratory failure.

Potassium is primarily obtained through the diet, with rich sources including fruits (e.g., bananas, oranges, and apricots), vegetables (e.g., leafy greens, potatoes, and tomatoes), legumes, nuts, dairy products, and meat. In cases of deficiency or increased needs, potassium supplements may be recommended under the guidance of a healthcare professional.

Potassium channel blockers are a class of medications that work by blocking potassium channels, which are proteins in the cell membrane that control the movement of potassium ions into and out of cells. By blocking these channels, potassium channel blockers can help to regulate electrical activity in the heart, making them useful for treating certain types of cardiac arrhythmias (irregular heart rhythms).

There are several different types of potassium channel blockers, including:

1. Class III antiarrhythmic drugs: These medications, such as amiodarone and sotalol, are used to treat and prevent serious ventricular arrhythmias (irregular heart rhythms that originate in the lower chambers of the heart).
2. Calcium channel blockers: While not strictly potassium channel blockers, some calcium channel blockers also have effects on potassium channels. These medications, such as diltiazem and verapamil, are used to treat hypertension (high blood pressure), angina (chest pain), and certain types of arrhythmias.
3. Non-selective potassium channel blockers: These medications, such as 4-aminopyridine and tetraethylammonium, have a broader effect on potassium channels and are used primarily in research settings to study the electrical properties of cells.

It's important to note that potassium channel blockers can have serious side effects, particularly when used in high doses or in combination with other medications that affect heart rhythms. They should only be prescribed by a healthcare provider who is familiar with their use and potential risks.

No FAQ available that match "receptors kir2dl5"

No images available that match "receptors kir2dl5"