A family of proteins that were originally identified by their ability to cause NECROSIS of NEOPLASMS. Their necrotic effect on cells is mediated through TUMOR NECROSIS FACTOR RECEPTORS which induce APOPTOSIS.
A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1).
A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family.
Specific molecular sites or structures on cell membranes that react with FIBROBLAST GROWTH FACTORS (both the basic and acidic forms), their analogs, or their antagonists to elicit or to inhibit the specific response of the cell to these factors. These receptors frequently possess tyrosine kinase activity.
A 17-kDa single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. It binds to HEPARIN, which potentiates its biological activity and protects it from proteolysis. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages, and also has chemotactic and mitogenic activities. It was originally named acidic fibroblast growth factor based upon its chemical properties and to distinguish it from basic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 2).
A fibroblast growth factor receptor with specificity for FIBROBLAST GROWTH FACTORS; HEPARAN SULFATE PROTEOGLYCAN; and NEURONAL CELL ADHESION MOLECULES. Several variants of the receptor exist due to multiple ALTERNATIVE SPLICING of its mRNA. Fibroblast growth factor receptor 1 is a tyrosine kinase that transmits signals through the MAP KINASE SIGNALING SYSTEM.
A fibroblast growth factor receptor that is found in two isoforms. One receptor isoform is found in the MESENCHYME and is activated by FIBROBLAST GROWTH FACTOR 2. A second isoform of fibroblast growth factor receptor 2 is found mainly in EPITHELIAL CELLS and is activated by FIBROBLAST GROWTH FACTOR 7 and FIBROBLAST GROWTH FACTOR 10. Mutation of the gene for fibroblast growth factor receptor 2 can result in craniosynostotic syndromes (e.g., APERT SYNDROME; and CROUZON SYNDROME).
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
A fibroblast growth factor receptor that regulates CHONDROCYTE growth and CELL DIFFERENTIATION. Mutations in the gene for fibroblast growth factor receptor 3 have been associated with ACHONDROPLASIA; THANATOPHORIC DYSPLASIA and NEOPLASTIC CELL TRANSFORMATION.
A fibroblast growth factor that is a mitogen for KERATINOCYTES. It activates FIBROBLAST GROWTH FACTOR RECEPTOR 2B and is involved in LUNG and limb development.
A fibroblast growth factor receptor that is mainly expressed in LUNG; KIDNEY; PANCREAS; and SPLEEN. It also plays an important role in SKELETAL MUSCLE development and can contribute to NEOPLASTIC CELL TRANSFORMATION.
A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form.
A fibroblast growth factor that was originally identified as a mitogen for GLIAL CELLS. It is expressed primarily in NEURONS.
A HEPARIN binding fibroblast growth factor that may play a role in LIMB BUDS development.
A fibroblast growth factor that is a specific mitogen for EPITHELIAL CELLS. It binds a complex of HEPARAN SULFATE and FIBROBLAST GROWTH FACTOR RECEPTOR 2B.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The original member of the family of endothelial cell growth factors referred to as VASCULAR ENDOTHELIAL GROWTH FACTORS. Vascular endothelial growth factor-A was originally isolated from tumor cells and referred to as "tumor angiogenesis factor" and "vascular permeability factor". Although expressed at high levels in certain tumor-derived cells it is produced by a wide variety of cell types. In addition to stimulating vascular growth and vascular permeability it may play a role in stimulating VASODILATION via NITRIC OXIDE-dependent pathways. Alternative splicing of the mRNA for vascular endothelial growth factor A results in several isoforms of the protein being produced.
Signal molecules that are involved in the control of cell growth and differentiation.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
A fibroblast growth factor that preferentially activates FIBROBLAST GROWTH FACTOR RECEPTOR 4. It was initially identified as an androgen-induced growth factor and plays a role in regulating growth of human BREAST NEOPLASMS and PROSTATIC NEOPLASMS.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Mitogenic peptide growth hormone carried in the alpha-granules of platelets. It is released when platelets adhere to traumatized tissues. Connective tissue cells near the traumatized region respond by initiating the process of replication.
A fibroblast growth factor that may play a role in regulation of HAIR FOLLICLE phenotype. Spontaneous mutation of the gene for this protein results in a strain of MICE with abnormally long hair, referred to as angora mice.
A cell surface receptor involved in regulation of cell growth and differentiation. It is specific for EPIDERMAL GROWTH FACTOR and EGF-related peptides including TRANSFORMING GROWTH FACTOR ALPHA; AMPHIREGULIN; and HEPARIN-BINDING EGF-LIKE GROWTH FACTOR. The binding of ligand to the receptor causes activation of its intrinsic tyrosine kinase activity and rapid internalization of the receptor-ligand complex into the cell.
These growth factors are soluble mitogens secreted by a variety of organs. The factors are a mixture of two single chain polypeptides which have affinity to heparin. Their molecular weight are organ and species dependent. They have mitogenic and chemotactic effects and can stimulate endothelial cells to grow and synthesize DNA. The factors are related to both the basic and acidic FIBROBLAST GROWTH FACTORS but have different amino acid sequences.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins.
A class of cellular receptors that have an intrinsic PROTEIN-TYROSINE KINASE activity.
A family of angiogenic proteins that are closely-related to VASCULAR ENDOTHELIAL GROWTH FACTOR A. They play an important role in the growth and differentiation of vascular as well as lymphatic endothelial cells.
Hormonally active polypeptides that can induce the transformed phenotype when added to normal, non-transformed cells. They have been found in culture fluids from retrovirally transformed cells and in tumor-derived cells as well as in non-neoplastic sources. Their transforming activities are due to the simultaneous action of two otherwise unrelated factors, TRANSFORMING GROWTH FACTOR ALPHA and TRANSFORMING GROWTH FACTOR BETA.
Established cell cultures that have the potential to propagate indefinitely.
A fibroblast growth factor that is expressed primarily during development.
A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor.
Multifunctional growth factor which regulates both cell growth and cell motility. It exerts a strong mitogenic effect on hepatocytes and primary epithelial cells. Its receptor is PROTO-ONCOGENE PROTEINS C-MET.
Factors which enhance the growth potentialities of sensory and sympathetic nerve cells.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A fibroblast growth factor that was initially identified based on its sequence similarity to FIBROBLAST GROWTH FACTOR 4. It is found in MYOBLASTS and plays an important role in MUSCLE DEVELOPMENT.
Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity.
An EPIDERMAL GROWTH FACTOR related protein that is found in a variety of tissues including EPITHELIUM, and maternal DECIDUA. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form which binds to the EGF RECEPTOR.
The development of new BLOOD VESSELS during the restoration of BLOOD CIRCULATION during the healing process.
A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts.
Cell surface receptors that bind growth or trophic factors with high affinity, triggering intracellular responses which influence the growth, differentiation, or survival of cells.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
The most divergent of the known fibroblast growth factor receptors. It does not contain an intracellular TYROSINE KINASE domain and has been shown to interact with FIBROBLAST GROWTH FACTOR 2. Fibroblast growth factor receptor 5 is found primarily in skeletal tissue.
Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.
Regulatory proteins and peptides that are signaling molecules involved in the process of PARACRINE COMMUNICATION. They are generally considered factors that are expressed by one cell and are responded to by receptors on another nearby cell. They are distinguished from HORMONES in that their actions are local rather than distal.
A subtype of transforming growth factor beta that is synthesized by a wide variety of cells. It is synthesized as a precursor molecule that is cleaved to form mature TGF-beta 1 and TGF-beta1 latency-associated peptide. The association of the cleavage products results in the formation a latent protein which must be activated to bind its receptor. Defects in the gene that encodes TGF-beta1 are the cause of CAMURATI-ENGELMANN SYNDROME.
Proteins prepared by recombinant DNA technology.
A pathologic process consisting of the proliferation of blood vessels in abnormal tissues or in abnormal positions.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
NERVE GROWTH FACTOR is the first of a series of neurotrophic factors that were found to influence the growth and differentiation of sympathetic and sensory neurons. It is comprised of alpha, beta, and gamma subunits. The beta subunit is responsible for its growth stimulating activity.

Increased expression of fibroblast growth factor 8 in human breast cancer. (1/1714)

Fibroblast growth factor 8 (FGF8) is an important developmental protein which is oncogenic and able to cooperate with wnt-1 to produce mouse mammary carcinoma. The level of expression of FGF8 mRNA was measured in 68 breast cancers and 24 non-malignant breast tissues. Elevated levels of FGF8 mRNA were found in malignant compared to non-malignant breast tissues with significantly more malignant tissues expressing FGF8 (P=0.019) at significantly higher levels (P=0.031). In situ hybridization of breast cancer tissues and analysis of purified populations of normal epithelial cells and breast cancer cell lines showed that malignant epithelial cells expressed FGF8 mRNA at high levels compared to non-malignant epithelial and myoepithelial cells and fibroblasts. Although two of the receptors which FGF8 binds to (FGFR2-IIIc, FGFR3-IIIc) are not expressed in breast cancer cells, an autocrine activation loop is possible since expression of fibroblast growth factor receptor (FGFR) 4 and FGFR1 are retained in malignant epithelial cells. This is the first member of the FGF family to have increased expression in breast cancer and a potential autocrine role in its progression.  (+info)

A novel skeletal dysplasia with developmental delay and acanthosis nigricans is caused by a Lys650Met mutation in the fibroblast growth factor receptor 3 gene. (2/1714)

We have identified a novel fibroblast growth factor receptor 3 (FGFR3) missense mutation in four unrelated individuals with skeletal dysplasia that approaches the severity observed in thanatophoric dysplasia type I (TD1). However, three of the four individuals developed extensive areas of acanthosis nigricans beginning in early childhood, suffer from severe neurological impairments, and have survived past infancy without prolonged life-support measures. The FGFR3 mutation (A1949T: Lys650Met) occurs at the nucleotide adjacent to the TD type II (TD2) mutation (A1948G: Lys650Glu) and results in a different amino acid substitution at a highly conserved codon in the kinase domain activation loop. Transient transfection studies with FGFR3 mutant constructs show that the Lys650Met mutation causes a dramatic increase in constitutive receptor kinase activity, approximately three times greater than that observed with the Lys650Glu mutation. We refer to the phenotype caused by the Lys650Met mutation as "severe achondroplasia with developmental delay and acanthosis nigricans" (SADDAN) because it differs significantly from the phenotypes of other known FGFR3 mutations.  (+info)

Overexpression of fibroblast growth factor receptor 3 in a human thyroid carcinoma cell line results in overgrowth of the confluent cultures. (3/1714)

Recent reports indicate that a gain-of-function mutation in fibroblast growth factor receptor 3 (FGFR-3) inhibits cell growth in the cartilaginous growth plates. These results suggest that FGFR-3 may be the receptor transducing growth inhibitory signals. Using reverse transcription-PCR we examined seven papillary thyroid carcinomas to determine FGFR-3 expression. Six out of the seven papillary carcinomas expressed FGFR-3. To clarify the role of FGFR-3 in thyroid carcinoma, FGFR-3 was overexpressed in an established human papillary thyroid carcinoma cell line. High levels of FGFR-3 protein were identified in cells stably transfected with the vector containing FGFR-3 cDNA. The specific binding of 125I-FGF-2 of these cells was threefold higher than that of control cells. Growth rates of cells overexpressing FGFR-3 were similar to those of control cells. However, cells overexpressing FGFR-3 continued to grow beyond the density at which control cells stopped proliferating. These results suggest that FGFR-3 in thyroid carcinoma is not involved strongly in the cell proliferation mechanism but may contribute to the malignant extension of some of the carcinomas by modifying cell contact signaling.  (+info)

Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. (4/1714)

Multipotent, self-renewing neural stem cells reside in the embryonic mouse telencephalic germinal zone. Using an in vitro neurosphere assay for neural stem cell proliferation, we demonstrate that FGF-responsive neural stem cells are present as early as E8.5 in the anterior neural plate, but EGF-responsive neural stem cells emerge later in development in a temporally and spatially specific manner. By separately blocking EGF and FGF2 signaling, we also show that EGF alone and FGF2 alone can independently elicit neural stem cell proliferation and at relatively high cell densities separate cell nonautonomous effects can substantially enhance the mitogen-induced proliferation. At lower cell densities, neural stem cell proliferation is additive in the presence of EGF and FGF2 combined, revealing two different stem cell populations. However, both FGF-responsive and EGF-responsive neural stem cells retain their self-renewal and multilineage potential, regardless of growth factor conditions. These results support a model in which separate, lineage-related EGF- and FGF-responsive neural stem cells are present in the embryonic telencephalic germinal zone.  (+info)

Differential expression assay of chromosome arm 8p genes identifies Frizzled-related (FRP1/FRZB) and Fibroblast Growth Factor Receptor 1 (FGFR1) as candidate breast cancer genes. (5/1714)

Deletions and amplifications are frequent alterations of the short arm of chromosome 8 associated with various types of cancers, including breast cancers. This indicates the likely presence of tumor suppressor genes and oncogenes. In the present study, we have used the expressed sequence tag (EST) map of 8p11-21 to assemble a set of available cDNAs representing genes from this region. DNA arrays were prepared for expression analysis and search for genes potentially involved in breast cancer. Underexpresion in tumoral breast cells (versus normal breast) was observed for 15 transcripts. Among these, the Frizzled-related gene FRP1/FRZB, was turned off in 78% of breast carcinomas, suggesting that the lack of its product may be associated with malignant transformation. Overexpression in tumoral breast cells was observed for 13 genes. The FGFR1 gene, that encodes a tyrosine kinase receptor for members of the fibroblast growth factor family, was identified as a good candidate for one amplification unit. Taken together, our results demonstrate that such a strategy can rapidly identify genes with an altered pattern of expression and provide candidate genes for malignancies.  (+info)

Mutations within or upstream of the basic helix-loop-helix domain of the TWIST gene are specific to Saethre-Chotzen syndrome. (6/1714)

Saethre-Chotzen syndrome (ACS III) is an autosomal dominant craniosynostosis syndrome recently ascribed to mutations in the TWIST gene, a basic helix-loop-helix (b-HLH) transcription factor regulating head mesenchyme cell development during cranial neural tube formation in mouse. Studying a series of 22 unrelated ACS III patients, we have found TWIST mutations in 16/22 cases. Interestingly, these mutations consistently involved the b-HLH domain of the protein. Indeed, mutant genotypes included frameshift deletions/insertions, nonsense and missense mutations, either truncating or disrupting the b-HLH motif of the protein. This observation gives additional support to the view that most ACS III cases result from loss-of-function mutations at the TWIST locus. The P250R recurrent FGFR 3 mutation was found in 2/22 cases presenting mild clinical manifestations of the disease but 4/22 cases failed to harbour TWIST or FGFR 3 mutations. Clinical re-examination of patients carrying TWIST mutations failed to reveal correlations between the mutant genotype and severity of the phenotype. Finally, since no TWIST mutations were detected in 40 cases of isolated coronal craniosynostosis, the present study suggests that TWIST mutations are specific to Saethre-Chotzen syndrome.  (+info)

The Xenopus Ets transcription factor XER81 is a target of the FGF signaling pathway. (7/1714)

We report the cloning of a cDNA encoding a Xenopus laevis Ets-type transcription factor. This new Xenopus gene belongs to the PEA3 subfamily of Ets proteins and shows the highest degree of sequence similarity to the mouse and human ER81 genes. The Xenopus ER81 gene (XER81) is transcribed in the embryo after mid blastula transition (MBT) and three transcripts of 3, 4 and 6 kb are detected throughout embryogenesis. XER81 mRNA is localized in the animal pole of the late blastula stage and higher levels of XER81 transcripts are detected in the marginal zone at the onset of gastrulation. In later embryogenesis XER81 transcripts are found in neural crest cells, eyes, otic vesicles and pronephros. The transcription of XER81 can be stimulated by bFGF and eFGF in animal and vegetal cap explants. Expression of the dominant negative FGF receptor mutant in animal caps and embryos blocks XER81 transcription, arguing that the expression of this Ets gene requires active FGF signaling. The spatial overlap of eFGF and XER81 expression domains supports the idea that XER81 transcription could be a marker for regions with active FGF signaling in the embryo.  (+info)

Molecular characteristics of fibroblast growth factor-fibroblast growth factor receptor-heparin-like glycosaminoglycan complex. (8/1714)

Fibroblast growth factor (FGF) family plays key roles in development, wound healing, and angiogenesis. Understanding of the molecular nature of interactions of FGFs with their receptors (FGFRs) has been seriously limited by the absence of structural information on FGFR or FGF-FGFR complex. In this study, based on an exhaustive analysis of the primary sequences of the FGF family, we determined that the residues that constitute the primary receptor-binding site of FGF-2 are conserved throughout the FGF family, whereas those of the secondary receptor binding site of FGF-2 are not. We propose that the FGF-FGFR interaction mediated by the 'conserved' primary site interactions is likely to be similar if not identical for the entire FGF family, whereas the 'variable' secondary sites, on both FGF as well as FGFR mediates specificity of a given FGF to a given FGFR isoform. Furthermore, as the pro-inflammatory cytokine interleukin 1 (IL-1) and FGF-2 share the same structural scaffold, we find that the spatial orientation of the primary receptor-binding site of FGF-2 coincides structurally with the IL-1beta receptor-binding site when the two molecules are superimposed. The structural similarities between the IL-1 and the FGF system provided a framework to elucidate molecular principles of FGF-FGFR interactions. In the FGF-FGFR model proposed here, the two domains of a single FGFR wrap around a single FGF-2 molecule such that one domain of FGFR binds to the primary receptor-binding site of the FGF molecule, while the second domain of the same FGFR binds to the secondary receptor-binding site of the same FGF molecule. Finally, the proposed model is able to accommodate not only heparin-like glycosaminoglycan (HLGAG) interactions with FGF and FGFR but also FGF dimerization or oligomerization mediated by HLGAG.  (+info)

Tumor Necrosis Factor (TNF) is a type of cytokine, which is a category of proteins that are crucial to cell signaling. TNF plays a significant role in the body's immune response and inflammation process. Specifically, it's primarily produced by activated macrophages as a defensive response against infection, but it can also be produced by other cells such as T-cells and NK cells.

TNF has two types of receptors, TNFR1 and TNFR2, through which it exerts its biological effects. These effects include:

1. Activation of immune cells: TNF helps in the activation of other inflammatory cells like more macrophages and stimulates the release of other cytokines.
2. Cell survival or death: Depending on the context, TNF can promote cell survival or induce programmed cell death (apoptosis), particularly in cancer cells.
3. Fever and acute phase response: TNF is one of the mediators that cause fever and the acute phase reaction during an infection.

The term 'Tumor Necrosis Factor' comes from its historical discovery where it was noted to cause necrosis (death) of tumor cells in certain conditions, although this is not its primary function in the body. Overproduction or dysregulation of TNF has been implicated in several diseases such as rheumatoid arthritis, inflammatory bowel disease, and some types of cancer.

Fibroblast Growth Factor 2 (FGF-2), also known as basic fibroblast growth factor, is a protein involved in various biological processes such as cell growth, proliferation, and differentiation. It plays a crucial role in wound healing, embryonic development, and angiogenesis (the formation of new blood vessels). FGF-2 is produced and secreted by various cells, including fibroblasts, and exerts its effects by binding to specific receptors on the cell surface, leading to activation of intracellular signaling pathways. It has been implicated in several diseases, including cancer, where it can contribute to tumor growth and progression.

Fibroblast Growth Factors (FGFs) are a family of growth factors that play crucial roles in various biological processes, including cell survival, proliferation, migration, and differentiation. They bind to specific tyrosine kinase receptors (FGFRs) on the cell surface, leading to intracellular signaling cascades that regulate gene expression and downstream cellular responses. FGFs are involved in embryonic development, tissue repair, and angiogenesis (the formation of new blood vessels). There are at least 22 distinct FGFs identified in humans, each with unique functions and patterns of expression. Some FGFs, like FGF1 and FGF2, have mitogenic effects on fibroblasts and other cell types, while others, such as FGF7 and FGF10, are essential for epithelial-mesenchymal interactions during organ development. Dysregulation of FGF signaling has been implicated in various pathological conditions, including cancer, fibrosis, and developmental disorders.

Fibroblast growth factor (FGF) receptors are a group of cell surface tyrosine kinase receptors that play crucial roles in various biological processes, including embryonic development, tissue repair, and tumor growth. There are four high-affinity FGF receptors (FGFR1-4) in humans, which share a similar structure, consisting of an extracellular ligand-binding domain, a transmembrane region, and an intracellular tyrosine kinase domain.

These receptors bind to FGFs with different specificities and affinities, triggering a cascade of intracellular signaling events that regulate cell proliferation, differentiation, migration, and survival. Aberrant FGFR signaling has been implicated in several diseases, such as cancer, developmental disorders, and fibrotic conditions. Dysregulation of FGFRs can occur through various mechanisms, including genetic mutations, amplifications, or aberrant expression, leading to uncontrolled cell growth and malignant transformation. Therefore, FGFRs are considered promising targets for therapeutic intervention in several diseases.

Fibroblast Growth Factor 1 (FGF-1), also known as acidic fibroblast growth factor, is defined medically as a protein with mitogenic and chemotactic properties that play an essential role in various biological processes such as embryonic development, wound healing, tissue repair, and angiogenesis. It is produced by many cell types, including fibroblasts, endothelial cells, and macrophages. FGF-1 binds to specific tyrosine kinase receptors (FGFRs) on the cell surface, leading to intracellular signaling cascades that regulate cell proliferation, differentiation, and survival. It is involved in several diseases, including cancer, fibrotic disorders, and neurological conditions.

Fibroblast Growth Factor Receptor 1 (FGFR1) is a type of receptor tyrosine kinase that plays a crucial role in various biological processes such as cell survival, proliferation, differentiation, and migration. It is a transmembrane protein that binds to fibroblast growth factors (FGFs), leading to the activation of intracellular signaling pathways.

FGFR1 is specifically involved in the regulation of embryonic development, tissue repair, and angiogenesis. Mutations in the FGFR1 gene have been associated with several human diseases, including various types of cancer, skeletal dysplasias, and developmental disorders.

In summary, Fibroblast Growth Factor Receptor 1 (FGFR1) is a cell surface receptor that binds to fibroblast growth factors (FGFs) and activates intracellular signaling pathways involved in various biological processes, including cell survival, proliferation, differentiation, and migration.

Fibroblast Growth Factor Receptor 2 (FGFR2) is a type of receptor tyrosine kinase that plays a crucial role in various biological processes such as cell survival, proliferation, differentiation, and migration. Specifically, FGFR2 is activated by binding to its specific ligands, fibroblast growth factors (FGFs), leading to the activation of downstream signaling pathways.

FGFR2 has several isoforms generated by alternative splicing, including FGFR2-IIIb and FGFR2-IIIc. These isoforms differ in their extracellular ligand-binding domains and have distinct expression patterns and functions. FGFR2-IIIb is primarily expressed in epithelial cells and binds to FGFs 1, 3, 7, 10, and 22, while FGFR2-IIIc is mainly expressed in mesenchymal cells and binds to FGFs 1, 2, 4, 6, 9, 10, and 22.

Mutations in the FGFR2 gene have been associated with various human diseases, including developmental disorders, cancers, and fibrosis. In particular, activating mutations or amplifications of FGFR2 have been identified in several types of cancer, such as breast, lung, gastric, and endometrial cancers, making it an attractive therapeutic target for cancer treatment.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

Fibroblast Growth Factor Receptor 3 (FGFR3) is a type of cell surface receptor that binds to fibroblast growth factors (FGFs), which are signaling proteins involved in various biological processes such as cell division, growth, and wound healing.

FGFR3 is a transmembrane protein with an extracellular domain that contains the binding site for FGFs, a transmembrane domain, and an intracellular tyrosine kinase domain that activates downstream signaling pathways upon FGF binding.

Mutations in the FGFR3 gene have been associated with several human genetic disorders, including thanatophoric dysplasia, achondroplasia, and hypochondroplasia, which are characterized by abnormal bone growth and development. In these conditions, gain-of-function mutations in FGFR3 lead to increased receptor activity and activation of downstream signaling pathways, resulting in impaired endochondral ossification and short-limbed dwarfism.

In addition to its role in bone growth and development, FGFR3 has been implicated in the regulation of cell proliferation, differentiation, and survival in various tissues, including the brain, lung, and kidney. Dysregulation of FGFR3 signaling has also been associated with cancer, including bladder, breast, and cervical cancers.

Fibroblast Growth Factor 10 (FGF10) is a growth factor that belongs to the fibroblast growth factor family. It is a protein involved in cell signaling and plays a crucial role in embryonic development, tissue repair, and regeneration. Specifically, FGF10 binds to its receptor, FGFR2b, and activates intracellular signaling pathways that regulate various biological processes such as cell proliferation, differentiation, migration, and survival. In the developing embryo, FGF10 is essential for the normal development of organs, including the lungs, teeth, and limbs. In adults, it contributes to tissue repair and regeneration in various organs.

Fibroblast Growth Factor Receptor 4 (FGFR4) is a type of receptor tyrosine kinase that plays a crucial role in various biological processes such as cell survival, proliferation, differentiation, and migration. Specifically, FGFR4 is a member of the fibroblast growth factor (FGF) receptor family, which consists of four members (FGFR1-4) that bind to FGF ligands to initiate intracellular signaling cascades.

FGFR4 is composed of an extracellular domain containing three immunoglobulin-like domains, a transmembrane domain, and an intracellular tyrosine kinase domain. The receptor binds to FGF ligands, leading to the activation of downstream signaling pathways such as RAS/MAPK, PI3K/AKT, and PLCγ.

FGFR4 is widely expressed in various tissues, including the liver, kidney, heart, brain, and reproductive organs. In the liver, FGFR4 has been implicated in regulating bile acid synthesis and metabolism, as well as in hepatocellular carcinoma (HCC) development and progression.

Mutations or aberrant expression of FGFR4 have been associated with several human diseases, including cancer, skeletal dysplasia, and developmental disorders. In particular, FGFR4 has been identified as a potential therapeutic target in HCC, where its overexpression is associated with poor prognosis and resistance to chemotherapy.

Epidermal Growth Factor (EGF) is a small polypeptide that plays a significant role in various biological processes, including cell growth, proliferation, differentiation, and survival. It primarily binds to the Epidermal Growth Factor Receptor (EGFR) on the surface of target cells, leading to the activation of intracellular signaling pathways that regulate these functions.

EGF is naturally produced in various tissues, such as the skin, and is involved in wound healing, tissue regeneration, and maintaining the integrity of epithelial tissues. In addition to its physiological roles, EGF has been implicated in several pathological conditions, including cancer, where it can contribute to tumor growth and progression by promoting cell proliferation and survival.

As a result, EGF and its signaling pathways have become targets for therapeutic interventions in various diseases, particularly cancer. Inhibitors of EGFR or downstream signaling components are used in the treatment of several types of malignancies, such as non-small cell lung cancer, colorectal cancer, and head and neck cancer.

Fibroblast Growth Factor 9 (FGF9) is a protein that belongs to the fibroblast growth factor family, which plays crucial roles in various biological processes such as cell survival, proliferation, migration, and differentiation. Specifically, FGF9 is involved in the development of several organs, including the lungs, heart, and reproductive system. It signals through a specific tyrosine kinase receptor called FGFR3 and can also bind to heparin sulfate proteoglycans, which help to stabilize and present the growth factor to its receptor. Mutations in the FGF9 gene have been associated with skeletal malformations, such as achondrogenesis type II and hypochondroplasia.

Fibroblast Growth Factor 4 (FGF4) is a growth factor that belongs to the fibroblast growth factor family. It plays a crucial role in various biological processes, including embryonic development, cell survival, proliferation, and differentiation. Specifically, FGF4 has been implicated in the development of the musculoskeletal system, where it helps regulate the growth and patterning of limbs and bones.

FGF4 exerts its effects by binding to specific receptors on the surface of target cells, known as fibroblast growth factor receptors (FGFRs). This interaction triggers a cascade of intracellular signaling events that ultimately lead to changes in gene expression and cell behavior.

In addition to its role in development, FGF4 has also been implicated in various pathological processes, including cancer. For example, elevated levels of FGF4 have been observed in certain types of tumors, where it may contribute to tumor growth and progression by promoting the survival and proliferation of cancer cells.

Fibroblast Growth Factor 7 (FGF-7), also known as Keratinocyte Growth Factor (KGF), is a protein that belongs to the fibroblast growth factor family. It plays an essential role in the regulation of cell growth, survival, and differentiation. Specifically, FGF-7/KGF primarily targets epithelial cells, including those found in the skin, lungs, and gastrointestinal tract. In the skin, FGF-7/KGF is produced by fibroblasts and stimulates the growth and migration of keratinocytes, which are crucial for wound healing and epidermal maintenance. Additionally, FGF-7/KGF has been implicated in various physiological and pathological processes, such as tissue repair, development, and cancer progression.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Vascular Endothelial Growth Factor A (VEGFA) is a specific isoform of the vascular endothelial growth factor (VEGF) family. It is a well-characterized signaling protein that plays a crucial role in angiogenesis, the process of new blood vessel formation from pre-existing vessels. VEGFA stimulates the proliferation and migration of endothelial cells, which line the interior surface of blood vessels, thereby contributing to the growth and development of new vasculature. This protein is essential for physiological processes such as embryonic development and wound healing, but it has also been implicated in various pathological conditions, including cancer, age-related macular degeneration, and diabetic retinopathy. The regulation of VEGFA expression and activity is critical to maintaining proper vascular function and homeostasis.

Growth substances, in the context of medical terminology, typically refer to natural hormones or chemically synthesized agents that play crucial roles in controlling and regulating cell growth, differentiation, and division. They are also known as "growth factors" or "mitogens." These substances include:

1. Proteins: Examples include insulin-like growth factors (IGFs), transforming growth factor-beta (TGF-β), platelet-derived growth factor (PDGF), and fibroblast growth factors (FGFs). They bind to specific receptors on the cell surface, activating intracellular signaling pathways that promote cell proliferation, differentiation, and survival.

2. Steroids: Certain steroid hormones, such as androgens and estrogens, can also act as growth substances by binding to nuclear receptors and influencing gene expression related to cell growth and division.

3. Cytokines: Some cytokines, like interleukins (ILs) and hematopoietic growth factors (HGFs), contribute to the regulation of hematopoiesis, immune responses, and inflammation, thus indirectly affecting cell growth and differentiation.

These growth substances have essential roles in various physiological processes, such as embryonic development, tissue repair, and wound healing. However, abnormal or excessive production or response to these growth substances can lead to pathological conditions, including cancer, benign tumors, and other proliferative disorders.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

Fibroblast Growth Factor 8 (FGF-8) is a growth factor that belongs to the fibroblast growth factor family. It plays crucial roles in various biological processes, including embryonic development, tissue repair, and cancer progression. Specifically, FGF-8 has been implicated in the regulation of cell proliferation, differentiation, migration, and survival.

During embryonic development, FGF-8 is involved in the formation of the nervous system, limbs, and other organs. It acts as a signaling molecule that helps to establish patterns of gene expression and cell behavior during development. In tissue repair, FGF-8 can stimulate the proliferation and migration of cells involved in wound healing, such as fibroblasts and endothelial cells.

In cancer, FGF-8 has been shown to promote tumor growth, angiogenesis (the formation of new blood vessels), and metastasis. It can do this by activating signaling pathways that promote cell proliferation, survival, and migration. Overexpression of FGF-8 has been found in various types of cancer, including breast, lung, prostate, and ovarian cancer.

In summary, Fibroblast Growth Factor 8 (FGF-8) is a signaling molecule that plays important roles in embryonic development, tissue repair, and cancer progression by regulating cell proliferation, differentiation, migration, and survival.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Platelet-Derived Growth Factor (PDGF) is a dimeric protein with potent mitogenic and chemotactic properties that plays an essential role in wound healing, blood vessel growth, and cellular proliferation and differentiation. It is released from platelets during the process of blood clotting and binds to specific receptors on the surface of target cells, including fibroblasts, smooth muscle cells, and glial cells. PDGF exists in several isoforms, which are generated by alternative splicing of a single gene, and have been implicated in various physiological and pathological processes, such as tissue repair, atherosclerosis, and tumor growth.

Fibroblast Growth Factor 5 (FGF5) is a protein that belongs to the fibroblast growth factor family, which plays crucial roles in various biological processes such as cell survival, proliferation, migration, and differentiation. Specifically, FGF5 is involved in regulating hair growth and development. It has been shown to inhibit the transition of hair follicles from the anagen (growth) phase to the catagen (regression) phase, thereby affecting the length and cycle of hair growth.

In medical terms, FGF5 is a gene that encodes for this particular fibroblast growth factor protein. Mutations in the FGF5 gene can lead to abnormalities in hair growth and development, such as those observed in certain forms of inherited hair disorders. Additionally, FGF5 has been implicated in various physiological and pathological conditions, including cancer progression and metastasis, making it a potential target for therapeutic interventions.

The Epidermal Growth Factor Receptor (EGFR) is a type of receptor found on the surface of many cells in the body, including those of the epidermis or outer layer of the skin. It is a transmembrane protein that has an extracellular ligand-binding domain and an intracellular tyrosine kinase domain.

EGFR plays a crucial role in various cellular processes such as proliferation, differentiation, migration, and survival. When EGF (Epidermal Growth Factor) or other ligands bind to the extracellular domain of EGFR, it causes the receptor to dimerize and activate its intrinsic tyrosine kinase activity. This leads to the autophosphorylation of specific tyrosine residues on the receptor, which in turn recruits and activates various downstream signaling molecules, resulting in a cascade of intracellular signaling events that ultimately regulate gene expression and cell behavior.

Abnormal activation of EGFR has been implicated in several human diseases, including cancer. Overexpression or mutation of EGFR can lead to uncontrolled cell growth and division, angiogenesis, and metastasis, making it an important target for cancer therapy.

Endothelial growth factors (ECGFs or EGFs) are a group of signaling proteins that stimulate the growth, proliferation, and survival of endothelial cells, which line the interior surface of blood vessels. These growth factors play crucial roles in various physiological processes, including angiogenesis (the formation of new blood vessels), wound healing, and vascular development during embryogenesis.

One of the most well-studied EGFs is the vascular endothelial growth factor (VEGF) family, which consists of several members like VEGFA, VEGFB, VEGFC, VEGFD, and placental growth factor (PlGF). These factors bind to specific receptors on the surface of endothelial cells, leading to a cascade of intracellular signaling events that ultimately result in cell proliferation, migration, and survival.

Other EGFs include fibroblast growth factors (FGFs), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), and transforming growth factor-beta (TGF-β). Dysregulation of endothelial growth factors has been implicated in various pathological conditions, such as cancer, diabetic retinopathy, age-related macular degeneration, and cardiovascular diseases. Therefore, understanding the functions and regulation of EGFs is essential for developing novel therapeutic strategies to treat these disorders.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Transforming Growth Factor-beta (TGF-β) is a type of cytokine, which is a cell signaling protein involved in the regulation of various cellular processes, including cell growth, differentiation, and apoptosis (programmed cell death). TGF-β plays a critical role in embryonic development, tissue homeostasis, and wound healing. It also has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

TGF-β exists in multiple isoforms (TGF-β1, TGF-β2, and TGF-β3) that are produced by many different cell types, including immune cells, epithelial cells, and fibroblasts. The protein is synthesized as a precursor molecule, which is cleaved to release the active TGF-β peptide. Once activated, TGF-β binds to its receptors on the cell surface, leading to the activation of intracellular signaling pathways that regulate gene expression and cell behavior.

In summary, Transforming Growth Factor-beta (TGF-β) is a multifunctional cytokine involved in various cellular processes, including cell growth, differentiation, apoptosis, embryonic development, tissue homeostasis, and wound healing. It has been implicated in several pathological conditions such as fibrosis, cancer, and autoimmune diseases.

Receptor Protein-Tyrosine Kinases (RTKs) are a type of transmembrane receptors found on the cell surface that play a crucial role in signal transduction and regulation of various cellular processes, including cell growth, differentiation, metabolism, and survival. They are called "tyrosine kinases" because they possess an intrinsic enzymatic activity that catalyzes the transfer of a phosphate group from ATP to tyrosine residues on target proteins, thereby modulating their function.

RTKs are composed of three main domains: an extracellular domain that binds to specific ligands (growth factors, hormones, or cytokines), a transmembrane domain that spans the cell membrane, and an intracellular domain with tyrosine kinase activity. Upon ligand binding, RTKs undergo conformational changes that lead to their dimerization or oligomerization, which in turn activates their tyrosine kinase activity. Activated RTKs then phosphorylate specific tyrosine residues on downstream signaling proteins, initiating a cascade of intracellular signaling events that ultimately result in the appropriate cellular response.

Dysregulation of RTK signaling has been implicated in various human diseases, including cancer, diabetes, and developmental disorders. As such, RTKs are important targets for therapeutic intervention in these conditions.

Vascular Endothelial Growth Factors (VEGFs) are a family of signaling proteins that stimulate the growth and development of new blood vessels, a process known as angiogenesis. They play crucial roles in both physiological and pathological conditions, such as embryonic development, wound healing, and tumor growth. Specifically, VEGFs bind to specific receptors on the surface of endothelial cells, which line the interior surface of blood vessels, triggering a cascade of intracellular signaling events that promote cell proliferation, migration, and survival. Dysregulation of VEGF signaling has been implicated in various diseases, including cancer, age-related macular degeneration, and diabetic retinopathy.

Transforming growth factors (TGFs) are a family of cytokines, or signaling proteins, that play crucial roles in regulating various cellular processes, including cell growth, differentiation, apoptosis (programmed cell death), and extracellular matrix production. They were initially identified due to their ability to induce the transformation of normal cells into cancerous cells in vitro. However, they also have tumor-suppressive functions under normal conditions.

TGFs are divided into two main classes: TGF-α (Transforming Growth Factor-alpha) and TGF-β (Transforming Growth Factor-beta). TGF-α is a single polypeptide chain, while TGF-β exists as a dimer. Both TGF-α and TGF-β bind to specific transmembrane receptors on the cell surface, leading to the activation of intracellular signaling pathways that ultimately regulate gene expression.

TGF-β is a potent regulator of immune responses, fibrosis, and cancer progression. In the context of cancer, TGF-β can act as both a tumor suppressor and a promoter. Initially, TGF-β inhibits cell proliferation and induces apoptosis in normal cells and early-stage tumor cells. However, in advanced stages of cancer, TGF-β signaling can contribute to tumor progression by promoting angiogenesis (the formation of new blood vessels), invasion, metastasis, and immune evasion.

Dysregulation of TGF-β signaling has been implicated in various diseases, including fibrosis, autoimmune disorders, and cancer. Therefore, understanding the complex roles of TGFs in cellular processes is essential for developing targeted therapies to treat these conditions.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Fibroblast Growth Factor 3 (FGF3) is a protein that belongs to the fibroblast growth factor family, which plays crucial roles in various biological processes such as cell survival, proliferation, migration, and differentiation. Specifically, FGF3 is involved in embryonic development, tissue repair, and maintenance of homeostasis. It exerts its functions by binding to FGF receptors (FGFRs) and activating downstream signaling pathways. Mutations in the FGF3 gene have been associated with certain diseases, including craniosynostosis, a condition characterized by premature fusion of skull bones.

Insulin-like growth factor I (IGF-I) is a hormone that plays a crucial role in growth and development. It is a small protein with structural and functional similarity to insulin, hence the name "insulin-like." IGF-I is primarily produced in the liver under the regulation of growth hormone (GH).

IGF-I binds to its specific receptor, the IGF-1 receptor, which is widely expressed throughout the body. This binding activates a signaling cascade that promotes cell proliferation, differentiation, and survival. In addition, IGF-I has anabolic effects on various tissues, including muscle, bone, and cartilage, contributing to their growth and maintenance.

IGF-I is essential for normal growth during childhood and adolescence, and it continues to play a role in maintaining tissue homeostasis throughout adulthood. Abnormal levels of IGF-I have been associated with various medical conditions, such as growth disorders, diabetes, and certain types of cancer.

Hepatocyte Growth Factor (HGF) is a paracrine growth factor that plays a crucial role in various biological processes, including embryonic development, tissue repair, and organ regeneration. It is primarily produced by mesenchymal cells and exerts its effects on epithelial cells, endothelial cells, and hepatocytes (liver parenchymal cells).

HGF has mitogenic, motogenic, and morphogenic properties, promoting cell proliferation, migration, and differentiation. It is particularly important in liver biology, where it stimulates the growth and regeneration of hepatocytes following injury or disease. HGF also exhibits anti-apoptotic effects, protecting cells from programmed cell death.

The receptor for HGF is a transmembrane tyrosine kinase called c-Met, which is expressed on the surface of various cell types, including hepatocytes and epithelial cells. Upon binding to its receptor, HGF activates several intracellular signaling pathways, such as the Ras/MAPK, PI3K/Akt, and JAK/STAT pathways, which ultimately regulate gene expression, cell survival, and cell cycle progression.

Dysregulation of HGF and c-Met signaling has been implicated in various pathological conditions, including cancer, fibrosis, and inflammatory diseases. Therefore, targeting this signaling axis represents a potential therapeutic strategy for these disorders.

Nerve Growth Factors (NGFs) are a family of proteins that play an essential role in the growth, maintenance, and survival of certain neurons (nerve cells). They were first discovered by Rita Levi-Montalcini and Stanley Cohen in 1956. NGF is particularly crucial for the development and function of the peripheral nervous system, which connects the central nervous system to various organs and tissues throughout the body.

NGF supports the differentiation and survival of sympathetic and sensory neurons during embryonic development. In adults, NGF continues to regulate the maintenance and repair of these neurons, contributing to neuroplasticity – the brain's ability to adapt and change over time. Additionally, NGF has been implicated in pain transmission and modulation, as well as inflammatory responses.

Abnormal levels or dysfunctional NGF signaling have been associated with various medical conditions, including neurodegenerative diseases (e.g., Alzheimer's and Parkinson's), chronic pain disorders, and certain cancers (e.g., small cell lung cancer). Therefore, understanding the role of NGF in physiological and pathological processes may provide valuable insights into developing novel therapeutic strategies for these conditions.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Fibroblast Growth Factor 6 (FGF6), also known as Myostatin-induced gene-A (MIG-A), is a member of the fibroblast growth factor family, which plays crucial roles in various biological processes including cell survival, proliferation, migration, and differentiation. Specifically, FGF6 has been identified to be involved in skeletal muscle development and regeneration. It binds to heparin and specific fibroblast growth factor receptors (FGFRs) and activates intracellular signaling pathways that regulate the aforementioned processes. However, its precise functions and mechanisms are still under investigation in the scientific community.

Lymphokines are a type of cytokines that are produced and released by activated lymphocytes, a type of white blood cell, in response to an antigenic stimulation. They play a crucial role in the regulation of immune responses and inflammation. Lymphokines can mediate various biological activities such as chemotaxis, activation, proliferation, and differentiation of different immune cells including lymphocytes, monocytes, macrophages, and eosinophils. Examples of lymphokines include interleukins (ILs), interferons (IFNs), tumor necrosis factor (TNF), and colony-stimulating factors (CSFs).

Transforming Growth Factor-alpha (TGF-α) is a type of growth factor, specifically a peptide growth factor, that plays a role in cell growth, proliferation, and differentiation. It belongs to the epidermal growth factor (EGF) family of growth factors. TGF-α binds to the EGF receptor (EGFR) on the surface of cells and activates intracellular signaling pathways that promote cellular growth and division.

TGF-α is involved in various biological processes, including embryonic development, wound healing, and tissue repair. However, abnormal regulation of TGF-α has been implicated in several diseases, such as cancer. Overexpression or hyperactivation of TGF-α can contribute to uncontrolled cell growth and tumor progression by stimulating the proliferation of cancer cells and inhibiting their differentiation and apoptosis (programmed cell death).

TGF-α is produced by various cell types, including epithelial cells, fibroblasts, and immune cells. It can be secreted in a membrane-bound form (pro-TGF-α) or as a soluble protein after proteolytic cleavage.

Physiologic neovascularization is the natural and controlled formation of new blood vessels in the body, which occurs as a part of normal growth and development, as well as in response to tissue repair and wound healing. This process involves the activation of endothelial cells, which line the interior surface of blood vessels, and their migration, proliferation, and tube formation to create new capillaries. Physiologic neovascularization is tightly regulated by a balance of pro-angiogenic and anti-angiogenic factors, ensuring that it occurs only when and where it is needed. It plays crucial roles in various physiological processes, such as embryonic development, tissue regeneration, and wound healing.

Heparin is defined as a highly sulfated glycosaminoglycan (a type of polysaccharide) that is widely present in many tissues, but is most commonly derived from the mucosal tissues of mammalian lungs or intestinal mucosa. It is an anticoagulant that acts as an inhibitor of several enzymes involved in the blood coagulation cascade, primarily by activating antithrombin III which then neutralizes thrombin and other clotting factors.

Heparin is used medically to prevent and treat thromboembolic disorders such as deep vein thrombosis, pulmonary embolism, and certain types of heart attacks. It can also be used during hemodialysis, cardiac bypass surgery, and other medical procedures to prevent the formation of blood clots.

It's important to note that while heparin is a powerful anticoagulant, it does not have any fibrinolytic activity, meaning it cannot dissolve existing blood clots. Instead, it prevents new clots from forming and stops existing clots from growing larger.

Growth factor receptors are a type of cell surface receptor that bind to specific growth factors, which are signaling molecules that play crucial roles in regulating various cellular processes such as growth, differentiation, and survival. These receptors have an extracellular domain that can recognize and bind to the growth factor and an intracellular domain that can transduce the signal into the cell through a series of biochemical reactions.

There are several types of growth factors, including fibroblast growth factors (FGFs), epidermal growth factors (EGFs), vascular endothelial growth factors (VEGFs), and transforming growth factors (TGFs). Each type of growth factor has its own specific receptor or family of receptors.

Once a growth factor binds to its receptor, it triggers a cascade of intracellular signaling events that ultimately lead to changes in gene expression, protein synthesis, and other cellular responses. These responses can include the activation of enzymes, the regulation of ion channels, and the modulation of cytoskeletal dynamics.

Abnormalities in growth factor receptor signaling have been implicated in various diseases, including cancer, developmental disorders, and autoimmune diseases. For example, mutations in growth factor receptors can lead to uncontrolled cell growth and division, which is a hallmark of cancer. Therefore, understanding the structure and function of growth factor receptors has important implications for the development of new therapies for these diseases.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Fibroblast Growth Factor Receptor 5 (FGFR5) is a type of receptor that is involved in the regulation of cell growth, division, and differentiation. It is a member of the fibroblast growth factor (FGF) receptor family, which includes four closely related tyrosine kinase receptors (FGFR1-4) and one distinct receptor, FGFR5 (also known as FGFR4like).

FGFR5 is a single-transmembrane protein that consists of an extracellular domain responsible for ligand binding, a transmembrane domain, and an intracellular domain with no tyrosine kinase activity. Instead, FGFR5 acts as a decoy receptor, binding to FGFs but not transmitting signals through the cell membrane.

FGFR5 has been implicated in several biological processes, including bone development, wound healing, and angiogenesis. Mutations in the FGFR5 gene have been associated with various diseases, such as skeletal dysplasias, cancers, and neurological disorders. However, the role of FGFR5 in these conditions is not fully understood and requires further investigation.

3T3 cells are a type of cell line that is commonly used in scientific research. The name "3T3" is derived from the fact that these cells were developed by treating mouse embryo cells with a chemical called trypsin and then culturing them in a flask at a temperature of 37 degrees Celsius.

Specifically, 3T3 cells are a type of fibroblast, which is a type of cell that is responsible for producing connective tissue in the body. They are often used in studies involving cell growth and proliferation, as well as in toxicity tests and drug screening assays.

One particularly well-known use of 3T3 cells is in the 3T3-L1 cell line, which is a subtype of 3T3 cells that can be differentiated into adipocytes (fat cells) under certain conditions. These cells are often used in studies of adipose tissue biology and obesity.

It's important to note that because 3T3 cells are a type of immortalized cell line, they do not always behave exactly the same way as primary cells (cells that are taken directly from a living organism). As such, researchers must be careful when interpreting results obtained using 3T3 cells and consider any potential limitations or artifacts that may arise due to their use.

Intercellular signaling peptides and proteins are molecules that mediate communication and interaction between different cells in living organisms. They play crucial roles in various biological processes, including cell growth, differentiation, migration, and apoptosis (programmed cell death). These signals can be released into the extracellular space, where they bind to specific receptors on the target cell's surface, triggering intracellular signaling cascades that ultimately lead to a response.

Peptides are short chains of amino acids, while proteins are larger molecules made up of one or more polypeptide chains. Both can function as intercellular signaling molecules by acting as ligands for cell surface receptors or by being cleaved from larger precursor proteins and released into the extracellular space. Examples of intercellular signaling peptides and proteins include growth factors, cytokines, chemokines, hormones, neurotransmitters, and their respective receptors.

These molecules contribute to maintaining homeostasis within an organism by coordinating cellular activities across tissues and organs. Dysregulation of intercellular signaling pathways has been implicated in various diseases, such as cancer, autoimmune disorders, and neurodegenerative conditions. Therefore, understanding the mechanisms underlying intercellular signaling is essential for developing targeted therapies to treat these disorders.

Transforming Growth Factor-beta 1 (TGF-β1) is a cytokine that belongs to the TGF-β superfamily. It is a multifunctional protein involved in various cellular processes, including cell growth, differentiation, apoptosis, and extracellular matrix production. TGF-β1 plays crucial roles in embryonic development, tissue homeostasis, and repair, as well as in pathological conditions such as fibrosis and cancer. It signals through a heteromeric complex of type I and type II serine/threonine kinase receptors, leading to the activation of intracellular signaling pathways, primarily the Smad-dependent pathway. TGF-β1 has context-dependent functions, acting as a tumor suppressor in normal and early-stage cancer cells but promoting tumor progression and metastasis in advanced cancers.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Pathologic neovascularization is the abnormal growth of new blood vessels in previously avascular tissue or excessive growth within existing vasculature, which occurs as a result of hypoxia, inflammation, or angiogenic stimuli. These newly formed vessels are often disorganized, fragile, and lack proper vessel hierarchy, leading to impaired blood flow and increased vascular permeability. Pathologic neovascularization can be observed in various diseases such as cancer, diabetic retinopathy, age-related macular degeneration, and chronic inflammation. This process contributes to disease progression by promoting tumor growth, metastasis, and edema formation, ultimately leading to tissue damage and organ dysfunction.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Nerve Growth Factor (NGF) is a small secreted protein that is involved in the growth, maintenance, and survival of certain neurons (nerve cells). It was the first neurotrophin to be discovered and is essential for the development and function of the nervous system. NGF binds to specific receptors on the surface of nerve cells and helps to promote their differentiation, axonal growth, and synaptic plasticity. Additionally, NGF has been implicated in various physiological processes such as inflammation, immune response, and wound healing. Deficiencies or excesses of NGF have been linked to several neurological disorders, including Alzheimer's disease, Parkinson's disease, and pain conditions.

... see also Fibroblast growth factor receptor 4) (= CD334) FGFRL1 (see also Fibroblast growth factor receptor-like 1) FGFR6 The ... see also Fibroblast growth factor receptor 1) (= CD331) FGFR2 (see also Fibroblast growth factor receptor 2) (= CD332) FGFR3 ( ... The fibroblast growth factor receptors (FGFR) are, as their name implies, receptors that bind to members of the fibroblast ... These receptors bind fibroblast growth factors, members of the largest family of growth factor ligands, comprising 22 members. ...
Fibroblast growth factors and fibroblast growth factor receptors (FGFRs) play important roles in human axial and craniofacial ... Fibroblast growth factors and fibroblast growth factor receptors (FGFRs) play important roles in human axial and craniofacial ... Imaging of Skeletal Disorders Caused by Fibroblast Growth Factor Receptor Gene Mutations Radiographics. 2017 Oct;37(6):1813- ...
Fibroblast Growth Factors (FGFs) comprise a family of at least eighteen structurally realted proteins that are involved in a ... Four distinct genes encoding closely related FGF receptors, FGFR-1to -4 are known. Multiple forms of FGFR-1 to -3 are generated ... A frequent splicing event involving FGFR-1 and -2 results in receptors containing all three Ig domains, referred to as the ... generate FGF receptors with alternative IgIII domains (IIIb and IIIc). A IIIa isoform which is a secreted FGF binding protein ...
Tag Archives: fibroblast growth factor receptor 2 Apert syndrome Part 2 Causes. Acrocephalosyndactyly may be an autosomal ... fibroblast growth factor receptor 2, interdigital mesenchyme, interphalengeal joints, pseudoepiphysis, syndactyly, Thumb ... published a paper showing evidence that acrocephalosyndactyly is caused by a defect on the fibroblast growth factor receptor 2 ...
Mutations in Fibroblast Growth Factor Receptor 2 and Fibroblast Growth Factor Receptor 3 Genes Associated with Human Gastric ... Mutations in Fibroblast Growth Factor Receptor 2 and Fibroblast Growth Factor Receptor 3 Genes Associated with Human Gastric ... Reardon W., Winter R. M., Rutland P., Pulleyn L. J., Jones B. M., Malcolm S. Mutations in the fibroblast growth factor receptor ... Perez-Castro A. V., Wilson J., Altherr M. R. Genomic organization of the human fibroblast growth factor receptor 3 (FGFR3) gene ...
... dimeric complex formation of type i and type Ii receptors a ... factor-beta receptor expression on human skin fibroblasts: ... Epidermal growth factor up-regulates expression of transforming growth factor beta receptor type II in human dermal fibroblasts ... of transforming growth factor-beta receptors type I and II by platelet-derived growth factor in human dermal fibroblasts ... growth factor-beta type II receptor in human cell lines resistant to growth inhibition by transforming growth factor-beta ...
The receptors for insulin and the insulin-like growth factor (IGF) I are two structurally homologous disulfide-linked ... Parallel Decreases in the Expression of Receptors for Insulin and Insulin-like Growth Factor I in a Mutant Human Fibroblast ... Parallel Decreases in the Expression of Receptors for Insulin and Insulin-like Growth Factor I in a Mutant Human Fibroblast ... The receptors for insulin and the insulin-like growth factor (IGF) I are two structurally homologous disulfide-linked ...
... and dexamethasone on the levels of epidermal growth factor ... ... expression of epidermal growth factor receptor and fibroblast ... and dexamethasone on the levels of epidermal growth factor (EGF) receptor and fibroblast derived proteoglycan core protein ( ... Simultaneous treatment of the fibroblasts with 13-cis-RA and dexamethasone resulted in similar decreases in EGF receptor and ... This indicates that glucocorticoids also affect the cellular growth by mechanisms which do not involve EGF receptors. ...
The beginning of the era of precision medicine for gastric cancer with fibroblast growth factor receptor 2 aberration. , Cole ... Inhibitors of fibroblast development issue receptor (FGFR) signify an impressive therapy method for chosen sufferers with ... The primary focused remedy concentrating on the fibroblast development issue receptor (FGFR) was lately authorised for bladder ... For sufferers with actionable fibroblast development issue receptor 2 (FGFR2) or FGFR3 genomic alterations, erdafitinib might ...
Keywords: fibroblast growth factor receptor, FGFR1, FGFR2, FGFR3, squamous bladder cancer. Received: July 16, 2016 Accepted: ... Although drugable fibroblast growth factor receptor (FGFR) alterations in squamous cell carcinomas (SCC) of various entities ... Fibroblast growth factor receptor (FGFR) alterations in squamous differentiated bladder cancer: a putative therapeutic target ...
Assessing the Impact of Fibroblast Growth Factor Receptor (FGFR1) Blockade in Craniofacial Development of Zebrafish Relative to ...
FutureWise Research has released a research report that analyses Fibroblast Growth Factor Receptor... ... Global Fibroblast Growth Factor Receptor inhibitor Market is anticipated to reach a value of over USD xx billion by 2028 and ... FutureWise offers data on the Fibroblast Growth Factor Receptor inhibitor markets growth prospects in addition to SWOT ... Global Fibroblast Growth Factor Receptor inhibitor Market is anticipated to reach a value of over USD xx billion by 2028 and ...
Receptors, Fibroblast Growth Factor [D12.776.543.750.750.400.370]. *Receptor, Fibroblast Growth Factor, Type 1 [D12.776.543.750 ... Receptor, Fibroblast Growth Factor, Type 1*Receptor, Fibroblast Growth Factor, Type 1 ... Fibroblast Growth Factor Soluble Receptor 1*Fibroblast Growth Factor Soluble Receptor 1 ... A fibroblast growth factor receptor with specificity for FIBROBLAST GROWTH FACTORS; HEPARAN SULFATE PROTEOGLYCAN; and NEURONAL ...
... insights have begun to emerge only recently on the normal function of these growth factors in mice and humans, as a result of ... studies of natural and experimental mutations in the factors and their receptors. ... Fibroblast growth factors were first characterized twenty years ago as mitogens of cultured fibroblasts. Despite a wealth of ... Fibroblast Growth Factors, Humans, Ligands, Molecular Sequence Data, Mutation, Protein Conformation, Receptors, Fibroblast ...
Find high quality Fibroblast Growth Factor Receptor tools for research. Antibodies, ELISA kits, proteins, reagents. Order ... fibroblast growth factor receptor 1 (FGFR1), fibroblast growth factor receptor 1 (fgfr1), fibroblast growth factor receptor 3 ( ... fibroblast growth factor receptor 1 L homeolog (fgfr1.L), fibroblast growth factor receptor (FGFR), fibroblast growth factor ... Featured Fibroblast Growth Factor Receptor Categories. Fibroblast Growth Factor Receptor 抗体. High quality antibodies with ...
134934 - FIBROBLAST GROWTH FACTOR RECEPTOR 3; FGFR3. FGFR3/TACC3 FUSION GENE, INCLUDED ...
Mouse FGFR1(Fibroblast Growth Factor Receptor 1) ELISA Kit. Mouse FGFR1(Fibroblast Growth Factor Receptor 1) ELISA Kit ... Mouse Fibroblast Growth Factor Receptor 1 (FGFR1) ELISA Kit. SEB791Mu-10x96wellstestplate Cloud-Clone 10x96-wells test plate. ... Mouse Fibroblast Growth Factor Receptor 1 (FGFR1) ELISA Kit. SEB791Mu-1x48wellstestplate Cloud-Clone 1x48-wells test plate. ... Mouse Fibroblast Growth Factor Receptor 1 (FGFR1) ELISA Kit. SEB791Mu-1x96wellstestplate Cloud-Clone 1x96-wells test plate. ...
Information Flow in the Fibroblast Growth Factor Receptor Communication Channel. PubMed, SCI, Scopus, ESCI, PMC indexed ... Information Flow in the Fibroblast Growth Factor Receptor Communication Channel. Author(s): José Díaz, Gustavo Martínez-Mekler ... In this work we analyze the flow of information through the Fibroblast Growth Factor Receptor (FGFR) communication channel when ... which control fibroblast proliferation. We used the canonical mathematical model of the MAPK cascade coupled to a stochastic ...
Homo sapiens fibroblast growth factor receptor 3 (FGFR3), RefSeqGene (LRG_1021) ... Homo sapiens fibroblast growth factor ... Homo sapiens fibroblast growth factor receptor 3 (FGFR3), RefSeqGene (LRG_1021) on chromosome 4. NCBI Reference Sequence: NG_ ... This gene encodes a member of the fibroblast growth factor receptor (FGFR) family, with its amino acid sequence being highly ... receptor 3 (FGFR3), RefSeqGene (LRG_1021) on chromosome 4. gi,255522834,ref,NG_012632.1,,gnl,L G_1021 ...
Tag: Fibroblast Growth Factor Receptor 3 (FGFR3) ELISA Kit Market Size. Digital Journal ... Market Overview The global fibroblast growth factor receptor 3 (FGFR3) ELISA kit market is estimated to be valued at USD […] ... Global Fibroblast Growth Factor Receptor 3 (FGFR3) ELISA Kit Market Opportunities and Forecast 2022-2029. ... Shiva on Ultra High Gloss Acrylic Sheets Industry Market Share, Growth Rate (CAGR), Historical Data and Forecast 2028. ...
FGF Fibroblast Growth Factor FGFR Fibroblast Growth Factor Receptor VEGFR Vascular Endothelial Growth Factor HPSGs heparan ... The Fibroblast Growth Factor Receptors/Fibroblast Growth Factors (FGFRs/FGFs) axis offers interesting molecular targets to be ... Ronca, R.; Giacomini, A.; Rusnati, M.; Presta, M. The potential of fibroblast growth factor/fibroblast growth factor receptor ... Keywords: fibroblast growth factor; fibroblast growth factor receptor; targeted treatments; breast cancer ...
... Rating * Select Rating. 1 star (worst). 2 stars. 3 stars (average) ...
... ... acidic fibroblast growth factor; fibroblast growth factor receptor 4; fibroadenoma; human breast ... which acts through four specific cell surface receptors, among which, fibroblast growth factor receptor 4 (FGFR4) is highly ... which acts through four specific cell surface receptors, among which, fibroblast growth factor receptor 4 (FGFR4) is highly ...
Fibroblast Growth Factor Receptor (FGFR) Family Gene Aberrations in Cholangiocarcinoma. Fusions of fibroblast growth factor ... Drug resistance to fibroblast growth factor receptor inhibitors (FGFR) has emerged as a major challenge to their clinical use. ... The Hepatobiliary Cancer Lab is identifying and characterizing fibroblast growth factor receptor family gene aberrations and ... receptor genes with other partner genes were recently discovered in cholangiocarcinoma.. ...
Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. ... Fibroblast Growth Factors, Acrocephalosyndactylia, Craniosynostoses, Germ-Line Mutation Abstract. Fibroblast growth factor ... Fibroblast Growth Factor (FGF) Receptor Mutations: A Pathway to Understanding Multigenic Risk in Disease? Authors. * Stuart J. ... Mires, S. J. (2013). Fibroblast Growth Factor (FGF) Receptor Mutations: A Pathway to Understanding Multigenic Risk in Disease ...
P253R fibroblast growth factor receptor-2 mutation induces RUNX2 transcript variants and calvarial osteoblast differentiation. ... P253R fibroblast growth factor receptor-2 mutation induces RUNX2 transcript variants and calvarial osteoblast differentiation. ... HomePubblicazioni scientificheP253R fibroblast growth factor receptor-2 mutation induces RUNX2 transcript variants and ... cleft lip cleft palate collagen cytoskeleton dental implants dental pulp ectodermal dysplasia FGFR2 fibroblast fibroblasts ...
Transforming potential of alternatively spliced variants of fibroblast growth factor receptor 2 in human mammary epithelial ... Transforming potential of alternatively spliced variants of fibroblast growth factor receptor 2 in human mammary epithelial ... Transforming potential of alternatively spliced variants of fibroblast growth factor receptor 2 in human mammary epithelial ... Receptor Protein-Tyrosine Kinases. * Receptor, Fibroblast Growth Factor, Type 2. * Receptors, Fibroblast Growth Factor ...
Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. ... Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the ... Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci USA. 2001;98:7182-7. ... The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development. EMBO J. 2007;26:1268-127835. ...
Fibroblast growth factor (FGF) secreted by keratinocyte derived interleukin-1α stimulated fibroblast and binds on FGF receptor ... 4) Insulin in higher concentration and insulin like growth factors-1 activate IGF-I receptor which is expressed on SZ95 ... 9) Retinoic acid (RA) and 9-cis retinoic acid are the ligands of retinoic acid receptors (RARα and γ) and retinoid X receptors ... B. C. Melnik and G. Schmitz, "Role of insulin, insulin-like growth factor-1, hyperglycaemic food and milk consumption in the ...
In this study, we used PDGFR-specific neutralising antibodies to dissect out receptor-specific signalling events in fibroblasts ... it is not know which ligand and receptor combinations mediate specific cellular functions. Fibroblasts are key mediators in ... As there is redundancy in signalling between the five PDGF ligand isoforms and three PDGF receptor isoforms, and deletion of ... Neutralising antibodies against PDGFRs were shown to block signalling through PDGFRα and PDGFRβ receptors, reduce human PDGF-AA ...

No FAQ available that match "receptors fibroblast growth factor"

No images available that match "receptors fibroblast growth factor"