An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS.
An angiotensin receptor subtype that is expressed at high levels in a variety of adult tissues including the CARDIOVASCULAR SYSTEM, the KIDNEY, the ENDOCRINE SYSTEM and the NERVOUS SYSTEM. Activation of the type 1 angiotensin receptor causes VASOCONSTRICTION and sodium retention.
An angiotensin receptor subtype that is expressed at high levels in fetal tissues. Many effects of the angiotensin type 2 receptor such as VASODILATION and sodium loss are the opposite of that of the ANGIOTENSIN TYPE 1 RECEPTOR.
Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells.
Agents that antagonize ANGIOTENSIN II TYPE 1 RECEPTOR. Included are ANGIOTENSIN II analogs such as SARALASIN and biphenylimidazoles such as LOSARTAN. Some are used as ANTIHYPERTENSIVE AGENTS.
A decapeptide that is cleaved from precursor angiotensinogen by RENIN. Angiotensin I has limited biological activity. It is converted to angiotensin II, a potent vasoconstrictor, after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME.
Agents that antagonize ANGIOTENSIN RECEPTORS. Many drugs in this class specifically target the ANGIOTENSIN TYPE 1 RECEPTOR.
Agents that antagonize the ANGIOTENSIN II TYPE 2 RECEPTOR.
A heptapeptide formed from ANGIOTENSIN II after the removal of an amino acid at the N-terminal by AMINOPEPTIDASE A. Angiotensin III has the same efficacy as ANGIOTENSIN II in promoting ALDOSTERONE secretion and modifying renal blood flow, but less vasopressor activity (about 40%).
An antagonist of ANGIOTENSIN TYPE 1 RECEPTOR with antihypertensive activity due to the reduced pressor effect of ANGIOTENSIN II.
Tetrazoles are heterocyclic organic compounds containing a 1,3,5-triazole ring with an additional nitrogen atom, often used in pharmaceuticals as bioisosteres for carboxylic acid groups due to their isoelectronic nature and similar hydrogen bonding capabilities.
A BLOOD PRESSURE regulating system of interacting components that include RENIN; ANGIOTENSINOGEN; ANGIOTENSIN CONVERTING ENZYME; ANGIOTENSIN I; ANGIOTENSIN II; and angiotensinase. Renin, an enzyme produced in the kidney, acts on angiotensinogen, an alpha-2 globulin produced by the liver, forming ANGIOTENSIN I. Angiotensin-converting enzyme, contained in the lung, acts on angiotensin I in the plasma converting it to ANGIOTENSIN II, an extremely powerful vasoconstrictor. Angiotensin II causes contraction of the arteriolar and renal VASCULAR SMOOTH MUSCLE, leading to retention of salt and water in the KIDNEY and increased arterial blood pressure. In addition, angiotensin II stimulates the release of ALDOSTERONE from the ADRENAL CORTEX, which in turn also increases salt and water retention in the kidney. Angiotensin-converting enzyme also breaks down BRADYKININ, a powerful vasodilator and component of the KALLIKREIN-KININ SYSTEM.
Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
Compounds with a BENZENE fused to IMIDAZOLES.
A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, -Xaa-*-Xbb-Xcc, when neither Xaa nor Xbb is Pro. It is a Cl(-)-dependent, zinc glycoprotein that is generally membrane-bound and active at neutral pH. It may also have endopeptidase activity on some substrates. (From Enzyme Nomenclature, 1992) EC 3.4.15.1.
Oligopeptides which are important in the regulation of blood pressure (VASOCONSTRICTION) and fluid homeostasis via the RENIN-ANGIOTENSIN SYSTEM. These include angiotensins derived naturally from precursor ANGIOTENSINOGEN, and those synthesized.
Biphenyl compounds are organic substances consisting of two phenyl rings connected by a single covalent bond, and can exhibit various properties and uses, including as intermediates in chemical synthesis, components in plastics and dyes, and as additives in fuels.
A class of drugs whose main indications are the treatment of hypertension and heart failure. They exert their hemodynamic effect mainly by inhibiting the renin-angiotensin system. They also modulate sympathetic nervous system activity and increase prostaglandin synthesis. They cause mainly vasodilation and mild natriuresis without affecting heart rate and contractility.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
A highly specific (Leu-Leu) endopeptidase that generates ANGIOTENSIN I from its precursor ANGIOTENSINOGEN, leading to a cascade of reactions which elevate BLOOD PRESSURE and increase sodium retention by the kidney in the RENIN-ANGIOTENSIN SYSTEM. The enzyme was formerly listed as EC 3.4.99.19.
Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
Drugs used in the treatment of acute or chronic vascular HYPERTENSION regardless of pharmacological mechanism. Among the antihypertensive agents are DIURETICS; (especially DIURETICS, THIAZIDE); ADRENERGIC BETA-ANTAGONISTS; ADRENERGIC ALPHA-ANTAGONISTS; ANGIOTENSIN-CONVERTING ENZYME INHIBITORS; CALCIUM CHANNEL BLOCKERS; GANGLIONIC BLOCKERS; and VASODILATOR AGENTS.
Drugs used to cause constriction of the blood vessels.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
An alpha-globulin of about 453 amino acids, depending on the species. It is produced by the liver and secreted into blood circulation. Angiotensinogen is the inactive precursor of natural angiotensins. Upon successive enzyme cleavages, angiotensinogen yields angiotensin I, II, and III with amino acids numbered at 10, 8, and 7, respectively.
A structure, situated close to the intraventricular foramen, which induces DRINKING BEHAVIOR after stimulation with ANGIOTENSIN II.
Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway.
A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke.
A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR).
A hormone secreted by the ADRENAL CORTEX that regulates electrolyte and water balance by increasing the renal retention of sodium and the excretion of potassium.
An ANGIOTENSIN II analog which acts as a highly specific inhibitor of ANGIOTENSIN TYPE 1 RECEPTOR.
Excessive thirst manifested by excessive fluid intake. It is characteristic of many diseases such as DIABETES MELLITUS; DIABETES INSIPIDUS; and NEPHROGENIC DIABETES INSIPIDUS. The condition may be psychogenic in origin.
An octapeptide analog of angiotensin II (bovine) with amino acids 1 and 8 replaced with sarcosine and alanine, respectively. It is a highly specific competitive inhibitor of angiotensin II that is used in the diagnosis of HYPERTENSION.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Derivatives of BENZOIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxybenzene structure.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The nonstriated involuntary muscle tissue of blood vessels.
The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE.
A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter.
The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE.
The main trunk of the systemic arteries.
The consumption of liquids.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Sodium excretion by URINATION.
Any pathological condition where fibrous connective tissue invades any organ, usually as a consequence of inflammation or other injury.
The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow.
Sodium chloride used in foods.
Excision of kidney.
The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities.
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
A flavoprotein enzyme that catalyzes the univalent reduction of OXYGEN using NADPH as an electron donor to create SUPEROXIDE ANION. The enzyme is dependent on a variety of CYTOCHROMES. Defects in the production of superoxide ions by enzymes such as NADPH oxidase result in GRANULOMATOUS DISEASE, CHRONIC.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Drugs that bind to and block the activation of MINERALOCORTICOID RECEPTORS by MINERALOCORTICOIDS such as ALDOSTERONE.
An angiotensin-converting enzyme inhibitor that is used to treat HYPERTENSION and HEART FAILURE.
The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system.
The measurement of an organ in volume, mass, or heaviness.
The octapeptide amide of bovine angiotensin II used to increase blood pressure by vasoconstriction.
A potassium sparing diuretic that acts by antagonism of aldosterone in the distal renal tubules. It is used mainly in the treatment of refractory edema in patients with congestive heart failure, nephrotic syndrome, or hepatic cirrhosis. Its effects on the endocrine system are utilized in the treatments of hirsutism and acne but they can lead to adverse effects. (From Martindale, The Extra Pharmacopoeia, 30th ed, p827)
Nucleus in the anterior part of the HYPOTHALAMUS.
The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed)
The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Peptides composed of between two and twelve amino acids.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM.
The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE.
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.
The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT.
The number of times the HEART VENTRICLES contract per unit of time, usually per minute.
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
A synthetic nonapeptide (Pyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) which is identical to the peptide from the venom of the snake, Bothrops jararaca. It inhibits kininase II and ANGIOTENSIN I and has been proposed as an antihypertensive agent.
The active metabolite of ENALAPRIL and a potent intravenously administered angiotensin-converting enzyme inhibitor. It is an effective agent for the treatment of essential hypertension and has beneficial hemodynamic effects in heart failure. The drug produces renal vasodilation with an increase in sodium excretion.
The hollow, muscular organ that maintains the circulation of the blood.
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
Non-striated, elongated, spindle-shaped cells found lining the digestive tract, uterus, and blood vessels. They are derived from specialized myoblasts (MYOBLASTS, SMOOTH MUSCLE).
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
One of the ANGIOTENSIN-CONVERTING ENZYME INHIBITORS (ACE inhibitors), orally active, that has been used in the treatment of hypertension and congestive heart failure.
Elements of limited time intervals, contributing to particular results or situations.
Pathological processes of the KIDNEY or its component tissues.
Non-human animals, selected because of specific characteristics, for use in experimental research, teaching, or testing.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Persistent high BLOOD PRESSURE due to KIDNEY DISEASES, such as those involving the renal parenchyma, the renal vasculature, or tumors that secrete RENIN.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of signal transduction and gene expression, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
The circulation of the BLOOD through the vessels of the KIDNEY.
Drugs used to cause dilation of the blood vessels.
A family of neutral serine proteases with CHYMOTRYPSIN-like activity. Chymases are primarily found in the SECRETORY GRANULES of MAST CELLS and are released during mast cell degranulation.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION.
A 44-kDa extracellular signal-regulated MAP kinase that may play a role the initiation and regulation of MEIOSIS; MITOSIS; and postmitotic functions in differentiated cells. It phosphorylates a number of TRANSCRIPTION FACTORS; and MICROTUBULE-ASSOCIATED PROTEINS.
An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters.
Refers to animals in the period of time just after birth.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Enlargement of the HEART, usually indicated by a cardiothoracic ratio above 0.50. Heart enlargement may involve the right, the left, or both HEART VENTRICLES or HEART ATRIA. Cardiomegaly is a nonspecific symptom seen in patients with chronic systolic heart failure (HEART FAILURE) or several forms of CARDIOMYOPATHIES.
A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH).
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
A potent and specific inhibitor of PEPTIDYL-DIPEPTIDASE A. It blocks the conversion of ANGIOTENSIN I to ANGIOTENSIN II, a vasoconstrictor and important regulator of arterial blood pressure. Captopril acts to suppress the RENIN-ANGIOTENSIN SYSTEM and inhibits pressure responses to exogenous angiotensin.
A diet which contains very little sodium chloride. It is prescribed by some for hypertension and for edematous states. (Dorland, 27th ed)
A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
General increase in bulk of a part or organ due to CELL ENLARGEMENT and accumulation of FLUIDS AND SECRETIONS, not due to tumor formation, nor to an increase in the number of cells (HYPERPLASIA).
Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure.
A direct-acting vasodilator that is used as an antihypertensive agent.
A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS.
A long-acting angiotensin-converting enzyme inhibitor. It is a prodrug that is transformed in the liver to its active metabolite ramiprilat.
Hypertension due to RENAL ARTERY OBSTRUCTION or compression.
One of the ANGIOTENSIN-CONVERTING ENZYME INHIBITORS (ACE inhibitors) used for hypertension. It is a prodrug that is hydrolyzed after absorption to its main metabolite cilazaprilat.
A ZINC-dependent membrane-bound aminopeptidase that catalyzes the N-terminal peptide cleavage of GLUTAMATE (and to a lesser extent ASPARTATE). The enzyme appears to play a role in the catabolic pathway of the RENIN-ANGIOTENSIN SYSTEM.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
The original member of the family of endothelial cell growth factors referred to as VASCULAR ENDOTHELIAL GROWTH FACTORS. Vascular endothelial growth factor-A was originally isolated from tumor cells and referred to as "tumor angiogenesis factor" and "vascular permeability factor". Although expressed at high levels in certain tumor-derived cells it is produced by a wide variety of cell types. In addition to stimulating vascular growth and vascular permeability it may play a role in stimulating VASODILATION via NITRIC OXIDE-dependent pathways. Alternative splicing of the mRNA for vascular endothelial growth factor A results in several isoforms of the protein being produced.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE.
Thiazepines are heterocyclic chemical compounds containing a seven-membered ring with one nitrogen atom, one sulfur atom, and two carbon-carbon double bonds, which are not commonly found in nature but can be synthesized for potential use in pharmaceuticals or as building blocks in organic chemistry.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
The presence of proteins in the urine, an indicator of KIDNEY DISEASES.
Arteries which arise from the abdominal aorta and distribute to most of the intestines.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Implanted fluid propulsion systems with self-contained power source for providing long-term controlled-rate delivery of drugs such as chemotherapeutic agents or analgesics. Delivery rate may be externally controlled or osmotically or peristatically controlled with the aid of transcutaneous monitoring.
An alpha-1 adrenergic agonist used as a mydriatic, nasal decongestant, and cardiotonic agent.
The narrow subcapsular outer zone of the adrenal cortex. This zone produces a series of enzymes that convert PREGNENOLONE to ALDOSTERONE. The final steps involve three successive oxidations by CYTOCHROME P-450 CYP11B2.
An angiotensin-converting enzyme inhibitor. It is used in patients with hypertension and heart failure.
A mitochondrial cytochrome P450 enzyme that catalyzes the 18-hydroxylation of steroids in the presence of molecular oxygen and NADPH-specific flavoprotein. This enzyme, encoded by CYP11B2 gene, is important in the conversion of CORTICOSTERONE to 18-hydroxycorticosterone and the subsequent conversion to ALDOSTERONE.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
A generic term used to describe a group of polypeptides with related chemical structures and pharmacological properties that are widely distributed in nature. These peptides are AUTACOIDS that act locally to produce pain, vasodilatation, increased vascular permeability, and the synthesis of prostaglandins. Thus, they comprise a subset of the large number of mediators that contribute to the inflammatory response. (From Goodman and Gilman's The Pharmacologic Basis of Therapeutics, 8th ed, p588)
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL.
Cell surface receptors that bind BRADYKININ and related KININS with high affinity and trigger intracellular changes which influence the behavior of cells. The identified receptor types (B-1 and B-2, or BK-1 and BK-2) recognize endogenous KALLIDIN; t-kinins; and certain bradykinin fragments as well as bradykinin itself.
A ubiquitous sodium salt that is commonly used to season food.
A potent natriuretic and vasodilatory peptide or mixture of different-sized low molecular weight PEPTIDES derived from a common precursor and secreted mainly by the HEART ATRIUM. All these peptides share a sequence of about 20 AMINO ACIDS.
Sodium or sodium compounds used in foods or as a food. The most frequently used compounds are sodium chloride or sodium glutamate.
Agents that promote the excretion of urine through their effects on kidney function.
A 21-amino acid peptide produced in a variety of tissues including endothelial and vascular smooth-muscle cells, neurons and astrocytes in the central nervous system, and endometrial cells. It acts as a modulator of vasomotor tone, cell proliferation, and hormone production. (N Eng J Med 1995;333(6):356-63)
The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN.
A drive stemming from a physiological need for WATER.
A non-selective inhibitor of nitric oxide synthase. It has been used experimentally to induce hypertension.
The vessels carrying blood away from the heart.
The smallest divisions of the arteries located between the muscular arteries and the capillaries.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
A complex of cells consisting of juxtaglomerular cells, extraglomerular mesangium lacis cells, the macula densa of the distal convoluted tubule, and granular epithelial peripolar cells. Juxtaglomerular cells are modified SMOOTH MUSCLE CELLS found in the walls of afferent glomerular arterioles and sometimes the efferent arterioles. Extraglomerular mesangium lacis cells are located in the angle between the afferent and efferent glomerular arterioles. Granular epithelial peripolar cells are located at the angle of reflection of the parietal to visceral angle of the renal corpuscle.
An increase in the excretion of URINE. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces.
A constitutively expressed subtype of bradykinin receptor that may play a role in the acute phase of the inflammatory and pain response. It has high specificity for intact forms of BRADYKININ and KALLIDIN. The receptor is coupled to G-PROTEIN, GQ-G11 ALPHA FAMILY and G-PROTEIN, GI-GO ALPHA FAMILY signaling proteins.
A group of ISOQUINOLINES in which the nitrogen containing ring is protonated. They derive from the non-enzymatic Pictet-Spengler condensation of CATECHOLAMINES with ALDEHYDES.
Treatment process involving the injection of fluid into an organ or tissue.
Any of the tubular vessels conveying the blood (arteries, arterioles, capillaries, venules, and veins).
A benzoic-sulfonamide-furan. It is a diuretic with fast onset and short duration that is used for EDEMA and chronic RENAL INSUFFICIENCY.
KIDNEY injuries associated with diabetes mellitus and affecting KIDNEY GLOMERULUS; ARTERIOLES; KIDNEY TUBULES; and the interstitium. Clinical signs include persistent PROTEINURIA, from microalbuminuria progressing to ALBUMINURIA of greater than 300 mg/24 h, leading to reduced GLOMERULAR FILTRATION RATE and END-STAGE RENAL DISEASE.
21-Amino-acid peptides produced by vascular endothelial cells and functioning as potent vasoconstrictors. The endothelin family consists of three members, ENDOTHELIN-1; ENDOTHELIN-2; and ENDOTHELIN-3. All three peptides contain 21 amino acids, but vary in amino acid composition. The three peptides produce vasoconstrictor and pressor responses in various parts of the body. However, the quantitative profiles of the pharmacological activities are considerably different among the three isopeptides.
Injections into the cerebral ventricles.
The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance.
The geometric and structural changes that the HEART VENTRICLES undergo, usually following MYOCARDIAL INFARCTION. It comprises expansion of the infarct and dilatation of the healthy ventricle segments. While most prevalent in the left ventricle, it can also occur in the right ventricle.
Rapidly decreasing response to a drug or physiologically active agent after administration of a few doses. In immunology, it is the rapid immunization against the effect of toxic doses of an extract or serum by previous injection of small doses. (Dorland, 28th ed)
Behaviors associated with the ingesting of water and other liquids; includes rhythmic patterns of drinking (time intervals - onset and duration), frequency and satiety.
Fluid propulsion systems driven mechanically, electrically, or osmotically that are used to inject (or infuse) over time agents into a patient or experimental animal; used routinely in hospitals to maintain a patent intravenous line, to administer antineoplastic agents and other drugs in thromboembolism, heart disease, diabetes mellitus (INSULIN INFUSION SYSTEMS is also available), and other disorders.
A branch of the abdominal aorta which supplies the kidneys, adrenal glands and ureters.
Enzyme that is a major constituent of kidney brush-border membranes and is also present to a lesser degree in the brain and other tissues. It preferentially catalyzes cleavage at the amino group of hydrophobic residues of the B-chain of insulin as well as opioid peptides and other biologically active peptides. The enzyme is inhibited primarily by EDTA, phosphoramidon, and thiorphan and is reactivated by zinc. Neprilysin is identical to common acute lymphoblastic leukemia antigen (CALLA Antigen), an important marker in the diagnosis of human acute lymphocytic leukemia. There is no relationship with CALLA PLANT.
A long-acting dihydropyridine calcium channel blocker. It is effective in the treatment of ANGINA PECTORIS and HYPERTENSION.
Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen.
A steroid metabolite that is the 11-deoxy derivative of CORTICOSTERONE and the 21-hydroxy derivative of PROGESTERONE.
Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls.
An inhibitor of glutamate decarboxylase. It decreases the GAMMA-AMINOBUTYRIC ACID concentration in the brain, thereby causing convulsions.
The flow of BLOOD through or around an organ or region of the body.
Enlargement of the LEFT VENTRICLE of the heart. This increase in ventricular mass is attributed to sustained abnormal pressure or volume loads and is a contributor to cardiovascular morbidity and mortality.
Compounds based on fumaric acid.
The rate dynamics in chemical or physical systems.
An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE.
The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping.
The thin membranous structure supporting the adjoining glomerular capillaries. It is composed of GLOMERULAR MESANGIAL CELLS and their EXTRACELLULAR MATRIX.
A class of drugs that act by selective inhibition of calcium influx through cellular membranes.
Striated muscle cells found in the heart. They are derived from cardiac myoblasts (MYOBLASTS, CARDIAC).
A non-steroidal anti-inflammatory agent (NSAID) that inhibits the enzyme cyclooxygenase necessary for the formation of prostaglandins and other autacoids. It also inhibits the motility of polymorphonuclear leukocytes.
The presence of albumin in the urine, an indicator of KIDNEY DISEASES.
Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID.
Laboratory rats that have been produced from a genetically manipulated rat EGG or rat EMBRYO, MAMMALIAN. They contain genes from another species.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
Therapy with two or more separate preparations given for a combined effect.
Acrylates are a group of synthetic compounds based on acrylic acid, commonly used in various industrial and medical applications such as adhesives, coatings, and dental materials, known to cause allergic reactions and contact dermatitis in sensitive individuals.
The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation.
Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER.
A thiazide diuretic often considered the prototypical member of this class. It reduces the reabsorption of electrolytes from the renal tubules. This results in increased excretion of water and electrolytes, including sodium, potassium, chloride, and magnesium. It is used in the treatment of several disorders including edema, hypertension, diabetes insipidus, and hypoparathyroidism.
Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety.
Cell surface proteins that bind ENDOTHELINS with high affinity and trigger intracellular changes which influence the behavior of cells.
A CALCIUM-dependent, constitutively-expressed form of nitric oxide synthase found primarily in ENDOTHELIAL CELLS.
The balance of fluid in the BODY FLUID COMPARTMENTS; total BODY WATER; BLOOD VOLUME; EXTRACELLULAR SPACE; INTRACELLULAR SPACE, maintained by processes in the body that regulate the intake and excretion of WATER and ELECTROLYTES, particularly SODIUM and POTASSIUM.
2-, 3-, or 4-Pyridinecarboxylic acids. Pyridine derivatives substituted with a carboxy group at the 2-, 3-, or 4-position. The 3-carboxy derivative (NIACIN) is active as a vitamin.
The action of a drug in promoting or enhancing the effectiveness of another drug.
The action of a drug that may affect the activity, metabolism, or toxicity of another drug.
A phosphinic acid-containing angiotensin-converting enzyme inhibitor that is effective in the treatment of hypertension. It is a prodrug that is converted to its active metabolite fosinoprilat.

Angiotensin receptor subtype 1 mediates angiotensin II enhancement of isoproterenol-induced cyclic AMP production in preglomerular microvascular smooth muscle cells. (1/2374)

In a previous study, we found that angiotensin (Ang) II enhances beta-adrenoceptor-induced cAMP production in cultured preglomerular microvascular smooth muscle cells (PMVSMCs) obtained from spontaneously hypertensive rats. The purpose of the present investigation was to identify the Ang receptor subtypes that mediate this effect. In our first study, we compared the ability of Ang II, Ang III, Ang (3-8), and Ang (1-7) to increase cAMP production in isoproterenol (1 microM)-treated PMVSMCs. Each peptide was tested at 0.1, 1, 10, 100, and 1000 nM. Both Ang II and Ang III increased intracellular (EC50s, 1 and 11 nM, respectively) and extracellular (EC50s, 2 and 14 nM, respectively) cAMP levels in a concentration-dependent fashion. In contrast, Ang (3-8) and Ang (1-7) did not enhance either intracellular or extracellular cAMP levels at any concentration tested. In our second study, we examined the ability of L 158809 [a selective Ang receptor subtype 1 (AT1) receptor antagonist] to inhibit Ang II (100 nM) and Ang III (100 nM) enhancement of isoproterenol (1 microM)-induced cAMP production in PMVSMCs. L 158809 (10 nM) abolished or nearly abolished (p <.001) Ang II and Ang III enhancement of isoproterenol-induced intracellular and extracellular cAMP levels. In contrast, PD 123319 (300 nM; a selective AT2 receptor antagonist) did not significantly alter Ang II enhancement of isoproterenol-induced intracellular or extracellular cAMP levels. We conclude that AT1 receptors, but not AT2, Ang (3-8), nor Ang (1-7) receptors mediate Ang II and Ang III enhancement of beta-adrenoceptor-induced cAMP production in cultured PMVSMCs.  (+info)

Angiotensin converting enzyme inhibitors and angiotensin receptor (AT1) antagonists: either or both for primary renal disease? (2/2374)

At the present time we cannot assume that the proven benefits of ACEI on renal disease will be reproduced by using AT1-ra. With potentially differing modes of activity of these drugs, they cannot be seen as interchangeable and ACEI should remain the drug of choice in patients with progressive renal disease unless they are not tolerated. It is possible that AT1-ra may offer additional advantages in some patients or that synergy exists between the two agents, but this view will remain entirely speculative unless proper trials are conducted. Despite the results of the ELITE study [22], the uncertainty regarding the use AT1-ra in cardiovascular disease mirrors that of renal disease. This issue is obviously of relevance to the nephrologist in view of the spectrum of cardiac disease that accompanies chronic renal failure, such as left ventricular hypertrophy and cardiac failure, which provide multiple indications for manipulation of RAS. Despite their renoprotective effect, previous studies on ACEI [3,4] have not shown an overall reduction in mortality and this issue needs to be addressed in addition to renoprotection in studies comparing AT1-ra and ACEI.  (+info)

Proapoptotic effects of ANG II in human coronary artery endothelial cells: role of AT1 receptor and PKC activation. (3/2374)

Anoxia-reoxygenation, tumor necrosis factor-alpha (TNF-alpha), and angiotensin II (ANG II) have been shown to induce apoptosis in myocytes. However, the role of these mediators in causing apoptosis of human coronary artery endothelial cells (HCAEC) is not known. This study was designed to examine the interaction of these mediators in induction of apoptosis in HCAEC. Cultured HCAEC were exposed to anoxia-reoxygenation, TNF-alpha, and ANG II. TNF-alpha enhanced apoptosis of HCAEC (determined by DNA nick-end labeling in situ and DNA laddering) caused by anoxia-reoxygenation. ANG II increased apoptosis beyond that caused by anoxia-reoxygenation and TNF-alpha. Apoptosis caused by ANG II was reduced by losartan, a specific ANG II type 1 receptor (AT1R) blocker, whereas PD-123,177, a specific ANG II type 2 receptor blocker, under identical conditions had minimal effect. The proapoptotic effects of ANG II were associated with the activation of protein kinase C (PKC). The importance of PKC activation as a signal transduction mechanism became evident in experiments wherein treatment of HCAEC with a specific inhibitor of PKC activation decreased ANG II-mediated apoptosis. Thus AT1R activation appears to be responsible for apoptosis caused by ANG II in HCAEC, and AT1R activation-mediated apoptosis involves activation of PKC.  (+info)

Effects of AT1 receptor blockade after myocardial infarct on myocardial fibrosis, stiffness, and contractility. (4/2374)

Angiotensin II type 1 (AT1) receptor blockade attenuates myocardial fibrosis after myocardial infarction (MI). However, whether inhibition of fibrosis by AT1 receptor blockade influences myocardial stiffness and contractility is unknown. We measured left ventricular (LV) hemodynamics, papillary muscle function, and myocardial stiffness and fibrosis in rats randomized to losartan or placebo 1 day after MI and treated subsequently for 8 wk. Losartan decreased LV and right ventricular weights as well as mean aortic and LV systolic pressures in sham and MI rats. LV end-diastolic pressure increased after MI and was decreased with losartan. Maximal developed tension and peak rate of tension rise and decline were decreased in MI vs. sham rats. Interstitial fibrosis developed after MI and was prevented in losartan-treated MI rats. The development of abnormal myocardial stiffness after MI was prevented by losartan. After MI, AT1 receptor blockade prevents an abnormal increase in myocardial collagen content. This effect was associated with a normalization of passive myocardial stiffness.  (+info)

Resetting of exaggerated tubuloglomerular feedback activity in acutely volume-expanded young SHR. (5/2374)

One purpose of the present study was to evaluate the ability of 7-wk-old spontaneously hypertensive rats (SHR) to reset tubuloglomerular feedback (TGF) activity in response to acute volume expansion (VE). Second, we evaluated the contribution of ANG II, via its action on AT1 receptors, to TGF control of glomerular function during VE. TGF was assessed by micropuncture methods and proximal tubular stop-flow pressure (SFP) determinations in SHR, Wistar-Kyoto rats (WKY), and Sprague-Dawley rats (SD). During euvolemia SHR exhibited enhanced TGF activity. In the same animals acute VE was achieved by infusion of saline (5 ml. h-1. 100 g body wt-1). VE led to resetting of TGF in all three strains. Maximal SFP responses, elicited by a 30-40 nl/min loop of Henle perfusion rate, decreased from 19 to 12 mmHg in SHR and, on average, from 11 to 5 mmHg in WKY and SD (P < 0.001). Tubular flow rate producing a half-maximal response (turning point) shifted to higher flow rates during VE, from 12 to 14 nl/min in SHR and from 15 to 19 nl/min in WKY. Administration of the AT1 receptor blocker candesartan (0.05 mg/kg iv) during sustained VE decreased TGF-mediated reductions in SFP in SHR and slightly increased the turning point in WKY. Nevertheless, other parameters of TGF activity were unaffected by AT1 receptor blockade. In conclusion, young SHR possess the ability to reset TGF activity in response to VE to a degree similar to compensatory adjustments in WKY. However, TGF remains enhanced in SHR during VE. ANG II and its action on AT1 receptors are in part responsible for the exaggerated SFP responses in young SHR during VE.  (+info)

Chimeric dopamine D2/angiotensin AT1 receptors: role of the length of third intracellular loop of D2 receptors in conferring specificity of receptor binding and G-protein coupling. (6/2374)

AIM: To define roles of the third intracellular loop (IL3) length of G-protein coupled receptors in conferring the specificity for receptor binding and G-protein coupling. METHODS: By polymerase chain reaction (PCR), the IL3 of D2 receptor was replaced with the counter part of AT1 receptor which has the shortest loop among all G-protein coupled receptors. D2/AT1 receptor cDNA was then stably transfected into Chinese hamster ovary cells and a clone with high level expression was obtained for receptor binding and agonist-induced phosphatidylinositols (PI) turnover experiments. RESULTS: Comparing to the D2 receptor, D2/AT1 chimeric receptor had lower affinities for all D2 receptor antagonists tested (spiperone, haloperidol, (+)-butaclamol, chlopromazine, clozapine, trifluoperdazine) and different affinity profiles to agonists (apomorphine, dopamine, quinpirole, bromocriptine). But the chimeric receptor failed to couple to G-protein and subsequent stimulation of PI turnover. CONCLUSION: The length of IL3 of D2 receptor participates defining recpetor binding sites conformation, and structure beyond IL3 may affect receptor G-protein coupling.  (+info)

Angiotensin II receptor type 1 gene expression in human glomerulonephritis and diabetes mellitus. (7/2374)

The renin-angiotensin system plays an important role in the progression of chronic renal disease. Although the expression of renin and angiotensin-converting enzyme in experimental and human renal disease has been well characterized, no information is available regarding human angiotensin type 1 (AT1) receptor expression. The net effect of renin depends on AT1 receptor expression, among other factors. Receptor expression was determined in renal biopsy samples (including all tissue components) and isolated glomeruli from patients with glomerulonephritis (GN) or diabetic nephropathy (non-insulin-dependent diabetes mellitus). Biopsy samples and isolated glomeruli from tumor-free tissue from tumor nephrectomies served as controls. Human AT1 receptor gene expression was determined by quantitative reverse transcription-PCR, using an AT1 receptor deletion mutant as the internal standard. In whole biopsy samples from 37 patients with various types of GN, AT1 receptor mRNA levels were lower, compared with nine control biopsy samples (P < 0.001). AT1 receptor mRNA levels were also significantly lower (P < 0.001) in eight samples from patients with diabetic nephropathy. In microdissected glomeruli, AT1 receptor gene expression was significantly lower in samples from patients (n = 22) with various types of GN, compared with 12 microdissected tumor nephrectomy control samples (P < 0.0023). It is concluded that AT1 receptor mRNA expression is low in glomeruli of patients with chronic renal disease. This may reflect a regulatory response to (inappropriately) high intrarenal angiotensin II concentrations.  (+info)

Evidence for involvement of the type 1 angiotensin II receptor locus in essential hypertension. (8/2374)

Components of the renin-angiotensin system play an important role in the normal regulation of blood pressure. We carried out a comprehensive genetic linkage study of the genes involved in the renin-angiotensin cascade in Finnish hypertensive twins and their affected siblings. We found no evidence for linkage between essential hypertension and the genes coding for renin, angiotensinogen, angiotensin-converting enzyme, or kallikrein 1 in the 329 hypertensive individuals of 142 families studied. In contrast, two intragenic markers for the type 1 angiotensin II receptor (AT1) showed some evidence for linkage in the total sample. A closer examination of this gene locus was carried out using subgroups of nonobese sibpairs with early onset of hypertension and uniform geographical origin. These stratifications yielded suggestive evidence for linkage of hypertension to the genetic area containing the AT1 gene, with a maximal multipoint logarithm of the odds (LOD) score of 2.9. A genetic association study carried out in an independent series of 50 hypertensive cases and 122 normotensive controls showed an increase in the frequency of the A1166-->C allele of the AT1 gene in the hypertensive individuals. In a novel variant of model-free multipoint linkage analysis allowing linkage disequilibrium in the calculations, an LOD score of 5.13 was obtained. Sequence analyses of the entire coding region and 848 bp of promoter region in the DNA sample on 8 index samples did not reveal previously unpublished sequence variations. The data provide evidence that a common genetic variant of the AT1 gene locus influences the risk of essential hypertension in the Finnish population.  (+info)

Angiotensin II is a potent vasoactive peptide hormone that plays a critical role in the renin-angiotensin-aldosterone system (RAAS), which is a crucial regulator of blood pressure and fluid balance in the body. It is formed from angiotensin I through the action of an enzyme called angiotensin-converting enzyme (ACE).

Angiotensin II has several physiological effects on various organs, including:

1. Vasoconstriction: Angiotensin II causes contraction of vascular smooth muscle, leading to an increase in peripheral vascular resistance and blood pressure.
2. Aldosterone release: Angiotensin II stimulates the adrenal glands to release aldosterone, a hormone that promotes sodium reabsorption and potassium excretion in the kidneys, thereby increasing water retention and blood volume.
3. Sympathetic nervous system activation: Angiotensin II activates the sympathetic nervous system, leading to increased heart rate and contractility, further contributing to an increase in blood pressure.
4. Thirst regulation: Angiotensin II stimulates the hypothalamus to increase thirst, promoting water intake and helping to maintain intravascular volume.
5. Cell growth and fibrosis: Angiotensin II has been implicated in various pathological processes, such as cell growth, proliferation, and fibrosis, which can contribute to the development of cardiovascular and renal diseases.

Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are two classes of medications commonly used in clinical practice to target the RAAS by blocking the formation or action of angiotensin II, respectively. These drugs have been shown to be effective in managing hypertension, heart failure, and chronic kidney disease.

The Angiotensin II Receptor Type 1 (AT1 receptor) is a type of G protein-coupled receptor that binds and responds to the hormone angiotensin II, which plays a crucial role in the renin-angiotensin-aldosterone system (RAAS). The RAAS is a vital physiological mechanism that regulates blood pressure, fluid, and electrolyte balance.

The AT1 receptor is found in various tissues throughout the body, including the vascular smooth muscle cells, cardiac myocytes, adrenal glands, kidneys, and brain. When angiotensin II binds to the AT1 receptor, it activates a series of intracellular signaling pathways that lead to vasoconstriction, increased sodium and water reabsorption in the kidneys, and stimulation of aldosterone release from the adrenal glands. These effects ultimately result in an increase in blood pressure and fluid volume.

AT1 receptor antagonists, also known as angiotensin II receptor blockers (ARBs), are a class of drugs used to treat hypertension, heart failure, and other cardiovascular conditions. By blocking the AT1 receptor, these medications prevent angiotensin II from exerting its effects on the cardiovascular system, leading to vasodilation, decreased sodium and water reabsorption in the kidneys, and reduced aldosterone release. These actions ultimately result in a decrease in blood pressure and fluid volume.

The Angiotensin II Receptor Type 2 (AT2R) is a type of G protein-coupled receptor that binds to the hormone angiotensin II, which plays a crucial role in the renin-angiotensin system (RAS), a vital component in regulating blood pressure and fluid balance.

The AT2R is expressed in various tissues, including the heart, blood vessels, kidneys, brain, and reproductive organs. When angiotensin II binds to the AT2R, it initiates several signaling pathways that can lead to vasodilation, anti-proliferation, anti-inflammation, and neuroprotection.

In contrast to the Angiotensin II Receptor Type 1 (AT1R), which is primarily associated with vasoconstriction, sodium retention, and fibrosis, AT2R activation has been shown to have protective effects in several pathological conditions, including hypertension, heart failure, atherosclerosis, and kidney disease.

However, the precise functions of AT2R are still being investigated, and its role in various physiological and pathophysiological processes may vary depending on the tissue type and context.

Angiotensin receptors are a type of G protein-coupled receptor that binds the angiotensin peptides, which are important components of the renin-angiotensin-aldosterone system (RAAS). The RAAS is a hormonal system that regulates blood pressure and fluid balance.

There are two main types of angiotensin receptors: AT1 and AT2. Activation of AT1 receptors leads to vasoconstriction, increased sodium and water reabsorption in the kidneys, and cell growth and proliferation. On the other hand, activation of AT2 receptors has opposite effects, such as vasodilation, natriuresis (increased excretion of sodium in urine), and anti-proliferative actions.

Angiotensin II is a potent activator of AT1 receptors, while angiotensin IV has high affinity for AT2 receptors. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) are two classes of drugs that target the RAAS by blocking the formation or action of angiotensin II, leading to decreased activation of AT1 receptors and improved cardiovascular outcomes.

Angiotensin II Type 1 Receptor Blockers (ARBs) are a class of medications used to treat hypertension, heart failure, and protect against kidney damage in patients with diabetes. They work by blocking the action of angiotensin II, a hormone that causes blood vessels to constrict and blood pressure to increase, at its type 1 receptor. By blocking this effect, ARBs cause blood vessels to dilate, reducing blood pressure and decreasing the workload on the heart. Examples of ARBs include losartan, valsartan, irbesartan, and candesartan.

Angiotensin I is a decapeptide (a peptide consisting of ten amino acids) that is generated by the action of an enzyme called renin on a protein called angiotensinogen. Renin cleaves angiotensinogen to produce angiotensin I, which is then converted to angiotensin II by the action of an enzyme called angiotensin-converting enzyme (ACE).

Angiotensin II is a potent vasoconstrictor, meaning it causes blood vessels to narrow and blood pressure to increase. It also stimulates the release of aldosterone from the adrenal glands, which leads to increased sodium and water reabsorption in the kidneys, further increasing blood volume and blood pressure.

Angiotensin I itself has little biological activity, but it is an important precursor to angiotensin II, which plays a key role in regulating blood pressure and fluid balance in the body.

Angiotensin receptor antagonists (ARAs), also known as angiotensin II receptor blockers (ARBs), are a class of medications used to treat hypertension, heart failure, and protect against kidney damage in patients with diabetes. They work by blocking the action of angiotensin II, a potent vasoconstrictor and hormone that increases blood pressure and promotes tissue fibrosis. By blocking the binding of angiotensin II to its receptors, ARAs cause relaxation of blood vessels, decreased sodium and water retention, and reduced cardiac remodeling, ultimately leading to improved cardiovascular function and reduced risk of organ damage. Examples of ARAs include losartan, valsartan, irbesartan, and candesartan.

Angiotensin II Type 2 Receptor Blockers (AT2RBs) are a class of drugs that selectively block the activation of Angiotensin II Type 2 receptors (AT2R). These receptors are found in various tissues throughout the body and play a role in regulating blood pressure, inflammation, and cell growth.

Angiotensin II is a hormone that constricts blood vessels and increases blood pressure. It binds to both AT1R and AT2R, but its effects are mainly mediated through AT1R. AT2RBs work by blocking the action of Angiotensin II at the AT2R, which can help lower blood pressure and reduce inflammation.

AT2RBs have been shown to have potential benefits in various clinical settings, including heart failure, diabetes, and kidney disease. However, their use is not as widespread as angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs), which primarily target the AT1R.

Some examples of AT2RBs include EMA401, PD123319, and TRV120027.

Angiotensin III is a hormone that is involved in the regulation of blood pressure and fluid balance in the body. It is formed by the enzymatic breakdown of angiotensin II, another hormone in the renin-angiotensin system (RAS). Angiotensin III has similar physiological effects as angiotensin II, including vasoconstriction (narrowing of blood vessels), stimulation of aldosterone release from the adrenal glands (which leads to sodium and water retention), and stimulation of thirst.

Angiotensin III is a peptide consisting of three amino acids, namely arginine-valine-tyrosine (Arg-Val-Tyr). It binds to and activates the angiotensin II receptor type 1 (AT1) and type 2 (AT2), which are found in various tissues throughout the body. The activation of these receptors leads to a range of physiological responses, including increased blood pressure, heart rate, and fluid volume.

Angiotensin III is less potent than angiotensin II in its ability to cause vasoconstriction and aldosterone release, but it has been shown to have important roles in the regulation of cardiovascular function, particularly during conditions of reduced renal perfusion or low blood pressure. It may also contribute to the development of certain diseases, such as hypertension, heart failure, and kidney disease.

Losartan is an angiotensin II receptor blocker (ARB) medication that is primarily used to treat hypertension (high blood pressure), but can also be used to manage chronic heart failure and protect against kidney damage in patients with type 2 diabetes. It works by blocking the action of angiotensin II, a hormone that causes blood vessels to narrow and blood pressure to rise. By blocking this hormone's effects, losartan helps relax and widen blood vessels, making it easier for the heart to pump blood and reducing the workload on the cardiovascular system.

The medical definition of losartan is: "A synthetic angiotensin II receptor antagonist used in the treatment of hypertension, chronic heart failure, and diabetic nephropathy. It selectively blocks the binding of angiotensin II to the AT1 receptor, leading to vasodilation, decreased aldosterone secretion, and increased renin activity."

Tetrazoles are a class of heterocyclic aromatic organic compounds that contain a five-membered ring with four nitrogen atoms and one carbon atom. They have the chemical formula of C2H2N4. Tetrazoles are stable under normal conditions, but can decompose explosively when heated or subjected to strong shock.

In the context of medicinal chemistry, tetrazoles are sometimes used as bioisosteres for carboxylic acids, as they can mimic some of their chemical and biological properties. This has led to the development of several drugs that contain tetrazole rings, such as the antiviral drug tenofovir and the anti-inflammatory drug celecoxib.

However, it's important to note that 'tetrazoles' is not a medical term per se, but rather a chemical term that can be used in the context of medicinal chemistry or pharmacology.

The Renin-Angiotensin System (RAS) is a complex hormonal system that regulates blood pressure, fluid and electrolyte balance, and vascular resistance. It plays a crucial role in the pathophysiology of hypertension, heart failure, and kidney diseases.

Here's a brief overview of how it works:

1. Renin is an enzyme that is released by the juxtaglomerular cells in the kidneys in response to decreased blood pressure or reduced salt delivery to the distal tubules.
2. Renin acts on a protein called angiotensinogen, which is produced by the liver, converting it into angiotensin I.
3. Angiotensin-converting enzyme (ACE), found in the lungs and other tissues, then converts angiotensin I into angiotensin II, a potent vasoconstrictor that narrows blood vessels and increases blood pressure.
4. Angiotensin II also stimulates the release of aldosterone from the adrenal glands, which promotes sodium and water reabsorption in the kidneys, further increasing blood volume and blood pressure.
5. Additionally, angiotensin II has direct effects on the heart, promoting hypertrophy and remodeling, which can contribute to heart failure.
6. The RAS can be modulated by various medications, such as ACE inhibitors, angiotensin receptor blockers (ARBs), and aldosterone antagonists, which are commonly used to treat hypertension, heart failure, and kidney diseases.

Imidazoles are a class of heterocyclic organic compounds that contain a double-bonded nitrogen atom and two additional nitrogen atoms in the ring. They have the chemical formula C3H4N2. In a medical context, imidazoles are commonly used as antifungal agents. Some examples of imidazole-derived antifungals include clotrimazole, miconazole, and ketoconazole. These medications work by inhibiting the synthesis of ergosterol, a key component of fungal cell membranes, leading to increased permeability and death of the fungal cells. Imidazoles may also have anti-inflammatory, antibacterial, and anticancer properties.

Benzimidazoles are a class of heterocyclic compounds containing a benzene fused to a imidazole ring. They have a wide range of pharmacological activities and are used in the treatment of various diseases. Some of the benzimidazoles are used as antiparasitics, such as albendazole and mebendazole, which are effective against a variety of worm infestations. Other benzimidazoles have antifungal properties, such as thiabendazole and fuberidazole, and are used to treat fungal infections. Additionally, some benzimidazoles have been found to have anti-cancer properties and are being investigated for their potential use in cancer therapy.

Peptidyl-dipeptidase A is more commonly known as angiotensin-converting enzyme (ACE). It is a key enzyme in the renin-angiotensin-aldosterone system (RAAS), which regulates blood pressure and fluid balance.

ACE is a membrane-bound enzyme found primarily in the lungs, but also in other tissues such as the heart, kidneys, and blood vessels. It plays a crucial role in converting the inactive decapeptide angiotensin I into the potent vasoconstrictor octapeptide angiotensin II, which constricts blood vessels and increases blood pressure.

ACE also degrades the peptide bradykinin, which is involved in the regulation of blood flow and vascular permeability. By breaking down bradykinin, ACE helps to counteract its vasodilatory effects, thereby maintaining blood pressure homeostasis.

Inhibitors of ACE are widely used as medications for the treatment of hypertension, heart failure, and diabetic kidney disease, among other conditions. These drugs work by blocking the action of ACE, leading to decreased levels of angiotensin II and increased levels of bradykinin, which results in vasodilation, reduced blood pressure, and improved cardiovascular function.

Angiotensins are a group of hormones that play a crucial role in the body's cardiovascular system, particularly in regulating blood pressure and fluid balance. The most well-known angiotensins are Angiotensin I, Angiotensin II, and Angiotensin-(1-7).

Angiotensinogen is a protein produced mainly by the liver. When the body requires an increase in blood pressure, renin (an enzyme produced by the kidneys) cleaves angiotensinogen to form Angiotensin I. Then, another enzyme called angiotensin-converting enzyme (ACE), primarily found in the lungs, converts Angiotensin I into Angiotensin II.

Angiotensin II is a potent vasoconstrictor, causing blood vessels to narrow and increase blood pressure. It also stimulates the release of aldosterone from the adrenal glands, which leads to increased sodium reabsorption in the kidneys, further raising blood pressure and promoting fluid retention.

Angiotensin-(1-7) is a more recently discovered member of the angiotensin family. It has opposing effects to Angiotensin II, acting as a vasodilator and counterbalancing some of the negative consequences of Angiotensin II's actions.

Medications called ACE inhibitors and ARBs (angiotensin receptor blockers) are commonly used in clinical practice to target the renin-angiotensin system, lowering blood pressure and protecting against organ damage in various cardiovascular conditions.

Biphenyl compounds, also known as diphenyls, are a class of organic compounds consisting of two benzene rings linked by a single carbon-carbon bond. The chemical structure of biphenyl compounds can be represented as C6H5-C6H5. These compounds are widely used in the industrial sector, including as intermediates in the synthesis of other chemicals, as solvents, and in the production of plastics and dyes. Some biphenyl compounds also have biological activity and can be found in natural products. For example, some plant-derived compounds that belong to this class have been shown to have anti-inflammatory, antioxidant, and anticancer properties.

Angiotensin-Converting Enzyme (ACE) inhibitors are a class of medications that are commonly used to treat various cardiovascular conditions, such as hypertension (high blood pressure), heart failure, and diabetic nephropathy (kidney damage in people with diabetes).

ACE inhibitors work by blocking the action of angiotensin-converting enzyme, an enzyme that converts the hormone angiotensin I to angiotensin II. Angiotensin II is a potent vasoconstrictor, meaning it narrows blood vessels and increases blood pressure. By inhibiting the conversion of angiotensin I to angiotensin II, ACE inhibitors cause blood vessels to relax and widen, which lowers blood pressure and reduces the workload on the heart.

Some examples of ACE inhibitors include captopril, enalapril, lisinopril, ramipril, and fosinopril. These medications are generally well-tolerated, but they can cause side effects such as cough, dizziness, headache, and elevated potassium levels in the blood. It is important for patients to follow their healthcare provider's instructions carefully when taking ACE inhibitors and to report any unusual symptoms or side effects promptly.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Renin is a medically recognized term and it is defined as:

"A protein (enzyme) that is produced and released by specialized cells (juxtaglomerular cells) in the kidney. Renin is a key component of the renin-angiotensin-aldosterone system (RAAS), which helps regulate blood pressure and fluid balance in the body.

When the kidney detects a decrease in blood pressure or a reduction in sodium levels, it releases renin into the bloodstream. Renin then acts on a protein called angiotensinogen, converting it to angiotensin I. Angiotensin-converting enzyme (ACE) subsequently converts angiotensin I to angiotensin II, which is a potent vasoconstrictor that narrows blood vessels and increases blood pressure.

Additionally, angiotensin II stimulates the adrenal glands to release aldosterone, a hormone that promotes sodium reabsorption in the kidneys and increases water retention, further raising blood pressure.

Therefore, renin plays a critical role in maintaining proper blood pressure and electrolyte balance in the body."

I'm sorry for any confusion, but "Pyridines" is not a medical term. It is a chemical term that refers to a class of organic compounds with the chemical structure of a six-membered ring containing one nitrogen atom and five carbon atoms (heterocyclic aromatic compound).

In a biological or medical context, pyridine derivatives can be found in various natural and synthetic substances. For example, some medications contain pyridine rings as part of their chemical structure. However, "Pyridines" itself is not a medical term or condition.

Antihypertensive agents are a class of medications used to treat high blood pressure (hypertension). They work by reducing the force and rate of heart contractions, dilating blood vessels, or altering neurohormonal activation to lower blood pressure. Examples include diuretics, beta blockers, ACE inhibitors, ARBs, calcium channel blockers, and direct vasodilators. These medications may be used alone or in combination to achieve optimal blood pressure control.

Vasoconstrictor agents are substances that cause the narrowing of blood vessels by constricting the smooth muscle in their walls. This leads to an increase in blood pressure and a decrease in blood flow. They work by activating the sympathetic nervous system, which triggers the release of neurotransmitters such as norepinephrine and epinephrine that bind to alpha-adrenergic receptors on the smooth muscle cells of the blood vessel walls, causing them to contract.

Vasoconstrictor agents are used medically for a variety of purposes, including:

* Treating hypotension (low blood pressure)
* Controlling bleeding during surgery or childbirth
* Relieving symptoms of nasal congestion in conditions such as the common cold or allergies

Examples of vasoconstrictor agents include phenylephrine, oxymetazoline, and epinephrine. It's important to note that prolonged use or excessive doses of vasoconstrictor agents can lead to rebound congestion and other adverse effects, so they should be used with caution and under the guidance of a healthcare professional.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Angiotensinogen is a protein that is produced mainly by the liver. It is the precursor to angiotensin I, which is a molecule that begins the process of constriction (narrowing) of blood vessels, leading to an increase in blood pressure. When angiotensinogen comes into contact with an enzyme called renin, it is cleaved into angiotensin I. Angiotensin-converting enzyme (ACE) then converts angiotensin I into angiotensin II, which is a potent vasoconstrictor and a key player in the body's regulation of blood pressure and fluid balance.

Angiotensinogen is an important component of the renin-angiotensin-aldosterone system (RAAS), which helps to regulate blood pressure and fluid balance by controlling the volume and flow of fluids in the body. Disorders of the RAAS can lead to high blood pressure, kidney disease, and other health problems.

The subfornical organ is a circumventricular organ located in the rostral part of the anterior wall of the third ventricle, above the fornix and posterior to the anterior commissure. It is one of the key structures involved in the regulation of fluid balance and cardiovascular function.

The subfornical organ contains specialized neurons that are sensitive to angiotensin II, a hormone that regulates blood pressure and fluid balance by stimulating thirst and vasopressin release. These neurons are not protected by the blood-brain barrier, allowing them to directly detect changes in circulating levels of angiotensin II and other substances.

The subfornical organ also contains receptors for other hormones and neurotransmitters that regulate fluid balance and cardiovascular function, such as atrial natriuretic peptide (ANP) and nitric oxide. These receptors allow the subfornical organ to integrate information from multiple sources and modulate its responses accordingly.

Overall, the subfornical organ plays a critical role in maintaining fluid balance and cardiovascular homeostasis by detecting changes in circulating hormones and neurotransmitters and initiating appropriate physiological responses.

Hypertension is a medical term used to describe abnormally high blood pressure in the arteries, often defined as consistently having systolic blood pressure (the top number in a blood pressure reading) over 130 mmHg and/or diastolic blood pressure (the bottom number) over 80 mmHg. It is also commonly referred to as high blood pressure.

Hypertension can be classified into two types: primary or essential hypertension, which has no identifiable cause and accounts for about 95% of cases, and secondary hypertension, which is caused by underlying medical conditions such as kidney disease, hormonal disorders, or use of certain medications.

If left untreated, hypertension can lead to serious health complications such as heart attack, stroke, heart failure, and chronic kidney disease. Therefore, it is important for individuals with hypertension to manage their condition through lifestyle modifications (such as healthy diet, regular exercise, stress management) and medication if necessary, under the guidance of a healthcare professional.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Valine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through diet. It is a hydrophobic amino acid, with a branched side chain, and is necessary for the growth, repair, and maintenance of tissues in the body. Valine is also important for muscle metabolism, and is often used by athletes as a supplement to enhance physical performance. Like other essential amino acids, valine must be obtained through foods such as meat, fish, dairy products, and legumes.

SHR (Spontaneously Hypertensive Rats) are an inbred strain of rats that were originally developed through selective breeding for high blood pressure. They are widely used as a model to study hypertension and related cardiovascular diseases, as well as neurological disorders such as stroke and dementia.

Inbred strains of animals are created by mating genetically identical individuals (siblings or offspring) for many generations, resulting in a population that is highly homozygous at all genetic loci. This means that the animals within an inbred strain are essentially genetically identical to one another, which makes them useful for studying the effects of specific genes or environmental factors on disease processes.

SHR rats develop high blood pressure spontaneously, without any experimental manipulation, and show many features of human hypertension, such as increased vascular resistance, left ventricular hypertrophy, and renal dysfunction. They also exhibit a number of behavioral abnormalities, including hyperactivity, impulsivity, and cognitive deficits, which make them useful for studying the neurological consequences of hypertension and other cardiovascular diseases.

Overall, inbred SHR rats are an important tool in biomedical research, providing a valuable model for understanding the genetic and environmental factors that contribute to hypertension and related disorders.

WKY (Wistar Kyoto) is not a term that refers to "rats, inbred" in a medical definition. Instead, it is a strain of laboratory rat that is widely used in biomedical research. WKY rats are an inbred strain, which means they are the result of many generations of brother-sister matings, resulting in a genetically uniform population.

WKY rats originated from the Wistar Institute in Philadelphia and were established as a normotensive control strain to contrast with other rat strains that exhibit hypertension. They have since been used in various research areas, including cardiovascular, neurological, and behavioral studies. Compared to other commonly used rat strains like the spontaneously hypertensive rat (SHR), WKY rats are known for their lower blood pressure, reduced stress response, and greater emotionality.

In summary, "WKY" is a designation for an inbred strain of laboratory rat that is often used as a control group in biomedical research due to its normotensive characteristics.

Aldosterone is a hormone produced by the adrenal gland. It plays a key role in regulating sodium and potassium balance and maintaining blood pressure through its effects on the kidneys. Aldosterone promotes the reabsorption of sodium ions and the excretion of potassium ions in the distal tubules and collecting ducts of the nephrons in the kidneys. This increases the osmotic pressure in the blood, which in turn leads to water retention and an increase in blood volume and blood pressure.

Aldosterone is released from the adrenal gland in response to a variety of stimuli, including angiotensin II (a peptide hormone produced as part of the renin-angiotensin-aldosterone system), potassium ions, and adrenocorticotropic hormone (ACTH) from the pituitary gland. The production of aldosterone is regulated by a negative feedback mechanism involving sodium levels in the blood. High sodium levels inhibit the release of aldosterone, while low sodium levels stimulate its release.

In addition to its role in maintaining fluid and electrolyte balance and blood pressure, aldosterone has been implicated in various pathological conditions, including hypertension, heart failure, and primary hyperaldosteronism (a condition characterized by excessive production of aldosterone).

I am not aware of a specific medical definition for "1-Sarcosine-8-Isoleucine Angiotensin II." It is possible that this term is being used to describe an altered or modified form of the peptide hormone angiotensin II.

Angiotensin II is a powerful vasoconstrictor and plays a central role in the regulation of blood pressure and fluid balance. Its octapeptide structure consists of eight amino acids, with the sequence Asp-Arg-Val-Tyr-Ile-His-Pro-Phe.

Modifying this sequence by replacing one or more amino acids can result in altered biological activity. In this case, "1-Sarcosine-8-Isoleucine" suggests that the first amino acid (Aspartic Acid) has been replaced with Sarcosine (N-methylglycine), and the eighth amino acid (Phenylalanine) has been replaced with Isoleucine.

However, without further context or research, it is difficult to provide a precise medical definition for this term. If you are seeking information on a specific scientific study or application, please provide more details so that I can give a more informed response.

Polydipsia is a medical term that describes excessive thirst or an abnormally increased desire to drink fluids. It is often associated with conditions that cause increased fluid loss, such as diabetes insipidus and diabetes mellitus, as well as certain psychiatric disorders that can lead to excessive water intake. Polydipsia should not be confused with simple dehydration, where the body's overall water content is reduced due to inadequate fluid intake or excessive fluid loss. Instead, polydipsia refers to a persistent and strong drive to drink fluids, even when the body is adequately hydrated. Prolonged polydipsia can lead to complications such as hyponatremia (low sodium levels in the blood) and may indicate an underlying medical issue that requires further evaluation and treatment.

Saralasin is a synthetic analog of the natural hormone angiotensin II, which is used in research and medicine. It acts as an antagonist of the angiotensin II receptor, blocking its effects. Saralasin is primarily used in research to study the role of the renin-angiotensin system in various physiological processes. In clinical medicine, it has been used in the diagnosis and treatment of conditions such as hypertension and pheochromocytoma, although its use is not widespread due to the availability of more effective and selective drugs.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Benzoates are the salts and esters of benzoic acid. They are widely used as preservatives in foods, cosmetics, and pharmaceuticals to prevent the growth of microorganisms. The chemical formula for benzoic acid is C6H5COOH, and when it is combined with a base (like sodium or potassium), it forms a benzoate salt (e.g., sodium benzoate or potassium benzoate). When benzoic acid reacts with an alcohol, it forms a benzoate ester (e.g., methyl benzoate or ethyl benzoate).

Benzoates are generally considered safe for use in food and cosmetics in small quantities. However, some people may have allergies or sensitivities to benzoates, which can cause reactions such as hives, itching, or asthma symptoms. In addition, there is ongoing research into the potential health effects of consuming high levels of benzoates over time, particularly in relation to gut health and the development of certain diseases.

In a medical context, benzoates may also be used as a treatment for certain conditions. For example, sodium benzoate is sometimes given to people with elevated levels of ammonia in their blood (hyperammonemia) to help reduce those levels and prevent brain damage. This is because benzoates can bind with excess ammonia in the body and convert it into a form that can be excreted in urine.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

A smooth muscle within the vascular system refers to the involuntary, innervated muscle that is found in the walls of blood vessels. These muscles are responsible for controlling the diameter of the blood vessels, which in turn regulates blood flow and blood pressure. They are called "smooth" muscles because their individual muscle cells do not have the striations, or cross-striped patterns, that are observed in skeletal and cardiac muscle cells. Smooth muscle in the vascular system is controlled by the autonomic nervous system and by hormones, and can contract or relax slowly over a period of time.

The proximal kidney tubule is the initial portion of the renal tubule in the nephron of the kidney. It is located in the renal cortex and is called "proximal" because it is closer to the glomerulus, compared to the distal tubule. The proximal tubule plays a crucial role in the reabsorption of water, electrolytes, and nutrients from the filtrate that has been formed by the glomerulus. It also helps in the secretion of waste products and other substances into the urine.

The proximal tubule is divided into two segments: the pars convoluta and the pars recta. The pars convoluta is the curved portion that receives filtrate from the Bowman's capsule, while the pars recta is the straight portion that extends deeper into the renal cortex.

The proximal tubule is lined with a simple cuboidal epithelium, and its cells are characterized by numerous mitochondria, which provide energy for active transport processes. The apical surface of the proximal tubular cells has numerous microvilli, forming a brush border that increases the surface area for reabsorption.

In summary, the proximal kidney tubule is a critical site for the reabsorption of water, electrolytes, and nutrients from the glomerular filtrate, contributing to the maintenance of fluid and electrolyte balance in the body.

Bradykinin is a naturally occurring peptide in the human body, consisting of nine amino acids. It is a potent vasodilator and increases the permeability of blood vessels, causing a local inflammatory response. Bradykinin is formed from the breakdown of certain proteins, such as kininogen, by enzymes called kininases or proteases, including kallikrein. It plays a role in several physiological processes, including pain transmission, blood pressure regulation, and the immune response. In some pathological conditions, such as hereditary angioedema, bradykinin levels can increase excessively, leading to symptoms like swelling, redness, and pain.

Vasoconstriction is a medical term that refers to the narrowing of blood vessels due to the contraction of the smooth muscle in their walls. This process decreases the diameter of the lumen (the inner space of the blood vessel) and reduces blood flow through the affected vessels. Vasoconstriction can occur throughout the body, but it is most noticeable in the arterioles and precapillary sphincters, which control the amount of blood that flows into the capillary network.

The autonomic nervous system, specifically the sympathetic division, plays a significant role in regulating vasoconstriction through the release of neurotransmitters like norepinephrine (noradrenaline). Various hormones and chemical mediators, such as angiotensin II, endothelin-1, and serotonin, can also induce vasoconstriction.

Vasoconstriction is a vital physiological response that helps maintain blood pressure and regulate blood flow distribution in the body. However, excessive or prolonged vasoconstriction may contribute to several pathological conditions, including hypertension, stroke, and peripheral vascular diseases.

The aorta is the largest artery in the human body, which originates from the left ventricle of the heart and carries oxygenated blood to the rest of the body. It can be divided into several parts, including the ascending aorta, aortic arch, and descending aorta. The ascending aorta gives rise to the coronary arteries that supply blood to the heart muscle. The aortic arch gives rise to the brachiocephalic, left common carotid, and left subclavian arteries, which supply blood to the head, neck, and upper extremities. The descending aorta travels through the thorax and abdomen, giving rise to various intercostal, visceral, and renal arteries that supply blood to the chest wall, organs, and kidneys.

The term "drinking" is commonly used to refer to the consumption of beverages, but in a medical context, it usually refers to the consumption of alcoholic drinks. According to the Merriam-Webster Medical Dictionary, "drinking" is defined as:

1. The act or habit of swallowing liquid (such as water, juice, or alcohol)
2. The ingestion of alcoholic beverages

It's important to note that while moderate drinking may not pose significant health risks for some individuals, excessive or binge drinking can lead to a range of negative health consequences, including addiction, liver disease, heart disease, and increased risk of injury or violence.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Natriuresis is the process or condition of excreting an excessive amount of sodium (salt) through urine. It is a physiological response to high sodium levels in the body, which can be caused by various factors such as certain medical conditions (e.g., kidney disease, heart failure), medications, or dietary habits. The increased excretion of sodium helps regulate the body's water balance and maintain normal blood pressure. However, persistent natriuresis may indicate underlying health issues that require medical attention.

Fibrosis is a pathological process characterized by the excessive accumulation and/or altered deposition of extracellular matrix components, particularly collagen, in various tissues and organs. This results in the formation of fibrous scar tissue that can impair organ function and structure. Fibrosis can occur as a result of chronic inflammation, tissue injury, or abnormal repair mechanisms, and it is a common feature of many diseases, including liver cirrhosis, lung fibrosis, heart failure, and kidney disease.

In medical terms, fibrosis is defined as:

"The process of producing scar tissue (consisting of collagen) in response to injury or chronic inflammation in normal connective tissue. This can lead to the thickening and stiffening of affected tissues and organs, impairing their function."

The myocardium is the middle layer of the heart wall, composed of specialized cardiac muscle cells that are responsible for pumping blood throughout the body. It forms the thickest part of the heart wall and is divided into two sections: the left ventricle, which pumps oxygenated blood to the rest of the body, and the right ventricle, which pumps deoxygenated blood to the lungs.

The myocardium contains several types of cells, including cardiac muscle fibers, connective tissue, nerves, and blood vessels. The muscle fibers are arranged in a highly organized pattern that allows them to contract in a coordinated manner, generating the force necessary to pump blood through the heart and circulatory system.

Damage to the myocardium can occur due to various factors such as ischemia (reduced blood flow), infection, inflammation, or genetic disorders. This damage can lead to several cardiac conditions, including heart failure, arrhythmias, and cardiomyopathy.

Sodium chloride, commonly known as salt, is an essential electrolyte in dietary intake. It is a chemical compound made up of sodium (Na+) and chloride (Cl-) ions. In a medical context, particularly in nutrition and dietetics, "sodium chloride, dietary" refers to the consumption of this compound in food sources.

Sodium plays a crucial role in various bodily functions such as maintaining fluid balance, assisting nerve impulse transmission, and contributing to muscle contraction. The Dietary Guidelines for Americans recommend limiting sodium intake to less than 2,300 milligrams (mg) per day and further suggest an ideal limit of no more than 1,500 mg per day for most adults, especially those with high blood pressure. However, the average American consumes more than twice the recommended amount, primarily from processed and prepared foods. Excessive sodium intake can lead to high blood pressure and increase the risk of heart disease and stroke.

Nephrectomy is a surgical procedure in which all or part of a kidney is removed. It may be performed due to various reasons such as severe kidney damage, kidney cancer, or living donor transplantation. The type of nephrectomy depends on the reason for the surgery - a simple nephrectomy involves removing only the affected portion of the kidney, while a radical nephrectomy includes removal of the whole kidney along with its surrounding tissues like the adrenal gland and lymph nodes.

The medulla oblongata is a part of the brainstem that is located in the posterior portion of the brainstem and continues with the spinal cord. It plays a vital role in controlling several critical bodily functions, such as breathing, heart rate, and blood pressure. The medulla oblongata also contains nerve pathways that transmit sensory information from the body to the brain and motor commands from the brain to the muscles. Additionally, it is responsible for reflexes such as vomiting, swallowing, coughing, and sneezing.

Norepinephrine, also known as noradrenaline, is a neurotransmitter and a hormone that is primarily produced in the adrenal glands and is released into the bloodstream in response to stress or physical activity. It plays a crucial role in the "fight-or-flight" response by preparing the body for action through increasing heart rate, blood pressure, respiratory rate, and glucose availability.

As a neurotransmitter, norepinephrine is involved in regulating various functions of the nervous system, including attention, perception, motivation, and arousal. It also plays a role in modulating pain perception and responding to stressful or emotional situations.

In medical settings, norepinephrine is used as a vasopressor medication to treat hypotension (low blood pressure) that can occur during septic shock, anesthesia, or other critical illnesses. It works by constricting blood vessels and increasing heart rate, which helps to improve blood pressure and perfusion of vital organs.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

NADPH oxidase is an enzyme complex that plays a crucial role in the production of reactive oxygen species (ROS) in various cell types. The primary function of NADPH oxidase is to catalyze the transfer of electrons from NADPH to molecular oxygen, resulting in the formation of superoxide radicals. This enzyme complex consists of several subunits, including two membrane-bound components (gp91phox and p22phox) and several cytosolic components (p47phox, p67phox, p40phox, and rac1 or rac2). Upon activation, these subunits assemble to form a functional enzyme complex that generates ROS, which serve as important signaling molecules in various cellular processes. However, excessive or uncontrolled production of ROS by NADPH oxidase has been implicated in the pathogenesis of several diseases, such as cardiovascular disorders, neurodegenerative diseases, and cancer.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Mineralocorticoid receptor antagonists (MRAs) are a class of medications that block the action of aldosterone, a hormone produced by the adrenal glands. Aldosterone helps regulate sodium and potassium balance and blood pressure by binding to mineralocorticoid receptors in the kidneys, heart, blood vessels, and brain.

When aldosterone binds to these receptors, it promotes sodium retention and potassium excretion, which can lead to an increase in blood volume and blood pressure. MRAs work by blocking the binding of aldosterone to its receptors, thereby preventing these effects.

MRAs are primarily used to treat heart failure, hypertension, and kidney disease. By reducing sodium retention and increasing potassium excretion, MRAs can help lower blood pressure, reduce fluid buildup in the body, and improve heart function. Examples of MRAs include spironolactone and eplerenone.

Enalapril is a medication that belongs to a class of drugs called angiotensin-converting enzyme (ACE) inhibitors. It works by blocking the action of a hormone in the body called angiotensin II, which causes blood vessels to narrow and tighten. By blocking this hormone, Enalapril helps relax and widen blood vessels, making it easier for the heart to pump blood and reducing the workload on the heart.

Enalapril is commonly used to treat high blood pressure (hypertension), congestive heart failure, and to improve survival after a heart attack. It may also be used to treat other conditions as determined by your doctor.

The medication comes in the form of tablets or capsules that are taken orally, usually once or twice a day with or without food. The dosage will depend on various factors such as the patient's age, weight, and medical condition. It is important to follow the instructions of your healthcare provider when taking Enalapril.

Like all medications, Enalapril can cause side effects, including dry cough, dizziness, headache, fatigue, and nausea. More serious side effects may include allergic reactions, kidney problems, and low blood pressure. If you experience any concerning symptoms while taking Enalapril, it is important to contact your healthcare provider right away.

The sympathetic nervous system (SNS) is a part of the autonomic nervous system that operates largely below the level of consciousness, and it functions to produce appropriate physiological responses to perceived danger. It's often associated with the "fight or flight" response. The SNS uses nerve impulses to stimulate target organs, causing them to speed up (e.g., increased heart rate), prepare for action, or otherwise respond to stressful situations.

The sympathetic nervous system is activated due to stressful emotional or physical situations and it prepares the body for immediate actions. It dilates the pupils, increases heart rate and blood pressure, accelerates breathing, and slows down digestion. The primary neurotransmitter involved in this system is norepinephrine (also known as noradrenaline).

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Angiotensin amide is not a medical term itself, but it refers to a form of angiotensin II, which is a potent vasoconstrictor (a substance that narrows blood vessels) in the body. Angiotensin II is formed from angiotensin I through the action of an enzyme called angiotensin-converting enzyme (ACE).

Angiotensin II amide, also known as angiotensin II-amide or angiotensin II-(1-8), refers to the biologically active form of angiotensin II. It is an octapeptide with the amino acid sequence Asp-Arg-Val-Tyr-Ile-His-Pro-Phe, and its carboxy terminus is amidated (has an amide group instead of a free carboxyl group). This amide form of angiotensin II is more stable than the non-amidated form and has a longer half-life in circulation.

Angiotensin II amide plays a crucial role in regulating blood pressure and fluid balance by causing vasoconstriction, stimulating aldosterone release from the adrenal glands (which leads to sodium and water retention), and promoting thirst. Drugs that inhibit ACE or block angiotensin II receptors are commonly used in the treatment of hypertension and heart failure.

Spironolactone is a prescription medication that belongs to a class of drugs known as potassium-sparing diuretics. It works by blocking the action of aldosterone, a hormone that helps regulate sodium and potassium balance in your body. This results in increased urine production (diuresis) and decreased salt and fluid retention.

Spironolactone is primarily used to treat edema (fluid buildup) associated with heart failure, liver cirrhosis, or kidney disease. It's also prescribed for the treatment of high blood pressure and primary hyperaldosteronism, a condition where the adrenal glands produce too much aldosterone.

Furthermore, spironolactone is used off-label to treat conditions such as acne, hirsutism (excessive hair growth in women), and hormone-sensitive breast cancer in postmenopausal women.

It's important to note that spironolactone can cause increased potassium levels in the blood (hyperkalemia) and should be used with caution in patients with kidney impairment or those taking other medications that affect potassium balance. Regular monitoring of electrolyte levels, including potassium and sodium, is essential during spironolactone therapy.

The Paraventricular Hypothalamic Nucleus (PVN) is a nucleus in the hypothalamus, which is a part of the brain that regulates various autonomic functions and homeostatic processes. The PVN plays a crucial role in the regulation of neuroendocrine and autonomic responses to stress, as well as the control of fluid and electrolyte balance, cardiovascular function, and energy balance.

The PVN is composed of several subdivisions, including the magnocellular and parvocellular divisions. The magnocellular neurons produce and release two neuropeptides, oxytocin and vasopressin (also known as antidiuretic hormone), into the circulation via the posterior pituitary gland. These neuropeptides play important roles in social behavior, reproduction, and fluid balance.

The parvocellular neurons, on the other hand, project to various brain regions and the pituitary gland, where they release neurotransmitters and neuropeptides that regulate the hypothalamic-pituitary-adrenal (HPA) axis, which is responsible for the stress response. The PVN also contains neurons that produce corticotropin-releasing hormone (CRH), a key neurotransmitter involved in the regulation of the HPA axis and the stress response.

Overall, the Paraventricular Hypothalamic Nucleus is an essential component of the brain's regulatory systems that help maintain homeostasis and respond to stressors. Dysfunction of the PVN has been implicated in various pathological conditions, including hypertension, obesity, and mood disorders.

Autoradiography is a medical imaging technique used to visualize and localize the distribution of radioactively labeled compounds within tissues or organisms. In this process, the subject is first exposed to a radioactive tracer that binds to specific molecules or structures of interest. The tissue is then placed in close contact with a radiation-sensitive film or detector, such as X-ray film or an imaging plate.

As the radioactive atoms decay, they emit particles (such as beta particles) that interact with the film or detector, causing chemical changes and leaving behind a visible image of the distribution of the labeled compound. The resulting autoradiogram provides information about the location, quantity, and sometimes even the identity of the molecules or structures that have taken up the radioactive tracer.

Autoradiography has been widely used in various fields of biology and medical research, including pharmacology, neuroscience, genetics, and cell biology, to study processes such as protein-DNA interactions, gene expression, drug metabolism, and neuronal connectivity. However, due to the use of radioactive materials and potential hazards associated with them, this technique has been gradually replaced by non-radioactive alternatives like fluorescence in situ hybridization (FISH) or immunofluorescence techniques.

The thoracic aorta is the segment of the largest artery in the human body (the aorta) that runs through the chest region (thorax). The thoracic aorta begins at the aortic arch, where it branches off from the ascending aorta, and extends down to the diaphragm, where it becomes the abdominal aorta.

The thoracic aorta is divided into three parts: the ascending aorta, the aortic arch, and the descending aorta. The ascending aorta rises from the left ventricle of the heart and is about 2 inches (5 centimeters) long. The aortic arch curves backward and to the left, giving rise to the brachiocephalic trunk, the left common carotid artery, and the left subclavian artery. The descending thoracic aorta runs downward through the chest, passing through the diaphragm to become the abdominal aorta.

The thoracic aorta supplies oxygenated blood to the upper body, including the head, neck, arms, and chest. It plays a critical role in maintaining blood flow and pressure throughout the body.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

A kidney glomerulus is a functional unit in the nephron of the kidney. It is a tuft of capillaries enclosed within a structure called Bowman's capsule, which filters waste and excess fluids from the blood. The glomerulus receives blood from an afferent arteriole and drains into an efferent arteriole.

The process of filtration in the glomerulus is called ultrafiltration, where the pressure within the glomerular capillaries drives plasma fluid and small molecules (such as ions, glucose, amino acids, and waste products) through the filtration membrane into the Bowman's space. Larger molecules, like proteins and blood cells, are retained in the blood due to their larger size. The filtrate then continues down the nephron for further processing, eventually forming urine.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Oligopeptides are defined in medicine and biochemistry as short chains of amino acids, typically containing fewer than 20 amino acid residues. These small peptides are important components in various biological processes, such as serving as signaling molecules, enzyme inhibitors, or structural elements in some proteins. They can be found naturally in foods and may also be synthesized for use in medical research and therapeutic applications.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Nitric oxide (NO) is a molecule made up of one nitrogen atom and one oxygen atom. In the body, it is a crucial signaling molecule involved in various physiological processes such as vasodilation, immune response, neurotransmission, and inhibition of platelet aggregation. It is produced naturally by the enzyme nitric oxide synthase (NOS) from the amino acid L-arginine. Inhaled nitric oxide is used medically to treat pulmonary hypertension in newborns and adults, as it helps to relax and widen blood vessels, improving oxygenation and blood flow.

Hemodynamics is the study of how blood flows through the cardiovascular system, including the heart and the vascular network. It examines various factors that affect blood flow, such as blood volume, viscosity, vessel length and diameter, and pressure differences between different parts of the circulatory system. Hemodynamics also considers the impact of various physiological and pathological conditions on these variables, and how they in turn influence the function of vital organs and systems in the body. It is a critical area of study in fields such as cardiology, anesthesiology, and critical care medicine.

Vasodilation is the widening or increase in diameter of blood vessels, particularly the involuntary relaxation of the smooth muscle in the tunica media (middle layer) of the arteriole walls. This results in an increase in blood flow and a decrease in vascular resistance. Vasodilation can occur due to various physiological and pathophysiological stimuli, such as local metabolic demands, neural signals, or pharmacological agents. It plays a crucial role in regulating blood pressure, tissue perfusion, and thermoregulation.

Sodium is an essential mineral and electrolyte that is necessary for human health. In a medical context, sodium is often discussed in terms of its concentration in the blood, as measured by serum sodium levels. The normal range for serum sodium is typically between 135 and 145 milliequivalents per liter (mEq/L).

Sodium plays a number of important roles in the body, including:

* Regulating fluid balance: Sodium helps to regulate the amount of water in and around your cells, which is important for maintaining normal blood pressure and preventing dehydration.
* Facilitating nerve impulse transmission: Sodium is involved in the generation and transmission of electrical signals in the nervous system, which is necessary for proper muscle function and coordination.
* Assisting with muscle contraction: Sodium helps to regulate muscle contractions by interacting with other minerals such as calcium and potassium.

Low sodium levels (hyponatremia) can cause symptoms such as confusion, seizures, and coma, while high sodium levels (hypernatremia) can lead to symptoms such as weakness, muscle cramps, and seizures. Both conditions require medical treatment to correct.

Vascular resistance is a measure of the opposition to blood flow within a vessel or a group of vessels, typically expressed in units of mmHg/(mL/min) or sometimes as dynes*sec/cm^5. It is determined by the diameter and length of the vessels, as well as the viscosity of the blood flowing through them. In general, a decrease in vessel diameter, an increase in vessel length, or an increase in blood viscosity will result in an increase in vascular resistance, while an increase in vessel diameter, a decrease in vessel length, or a decrease in blood viscosity will result in a decrease in vascular resistance. Vascular resistance is an important concept in the study of circulation and cardiovascular physiology because it plays a key role in determining blood pressure and blood flow within the body.

Heart rate is the number of heartbeats per unit of time, often expressed as beats per minute (bpm). It can vary significantly depending on factors such as age, physical fitness, emotions, and overall health status. A resting heart rate between 60-100 bpm is generally considered normal for adults, but athletes and individuals with high levels of physical fitness may have a resting heart rate below 60 bpm due to their enhanced cardiovascular efficiency. Monitoring heart rate can provide valuable insights into an individual's health status, exercise intensity, and response to various treatments or interventions.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

Superoxides are partially reduced derivatives of oxygen that contain one extra electron, giving them an overall charge of -1. They are highly reactive and unstable, with the most common superoxide being the hydroxyl radical (•OH-) and the superoxide anion (O2-). Superoxides are produced naturally in the body during metabolic processes, particularly within the mitochondria during cellular respiration. They play a role in various physiological processes, but when produced in excess or not properly neutralized, they can contribute to oxidative stress and damage to cells and tissues, potentially leading to the development of various diseases such as cancer, atherosclerosis, and neurodegenerative disorders.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Teprotide is not a medical condition but rather a medication. It's a synthetic peptide that acts as an inhibitor of the enzyme angiotensin-converting enzyme (ACE). ACE plays a crucial role in regulating blood pressure and fluid balance by converting angiotensin I to angiotensin II, which is a potent vasoconstrictor. By blocking this conversion, teprotide can help lower blood pressure and reduce the workload on the heart.

Teprotide was initially used in clinical trials for the treatment of hypertension and heart failure but has since been largely replaced by other ACE inhibitors with more favorable pharmacokinetic properties. It is still occasionally used in research settings to study the renin-angiotensin system's role in various physiological processes.

Enalaprilat is a medication that belongs to a class of drugs called ACE (angiotensin-converting enzyme) inhibitors. It is the active metabolite of Enalapril. Enalaprilat works by blocking the action of angiotensin-converting enzyme, which helps to relax and widen blood vessels, thereby reducing blood pressure and increasing blood flow.

Enalaprilat is primarily used to treat hypertension (high blood pressure), heart failure, and to improve survival after a heart attack. It is administered intravenously in a hospital setting, and its effects are usually seen within 15 minutes of administration. Common side effects of Enalaprilat include hypotension (low blood pressure), dizziness, headache, and nausea.

In medical terms, the heart is a muscular organ located in the thoracic cavity that functions as a pump to circulate blood throughout the body. It's responsible for delivering oxygen and nutrients to the tissues and removing carbon dioxide and other wastes. The human heart is divided into four chambers: two atria on the top and two ventricles on the bottom. The right side of the heart receives deoxygenated blood from the body and pumps it to the lungs, while the left side receives oxygenated blood from the lungs and pumps it out to the rest of the body. The heart's rhythmic contractions and relaxations are regulated by a complex electrical conduction system.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

Smooth muscle myocytes are specialized cells that make up the contractile portion of non-striated, or smooth, muscles. These muscles are found in various organs and structures throughout the body, including the walls of blood vessels, the digestive system, the respiratory system, and the reproductive system.

Smooth muscle myocytes are smaller than their striated counterparts (skeletal and cardiac muscle cells) and have a single nucleus. They lack the distinctive banding pattern seen in striated muscles and instead have a uniform appearance of actin and myosin filaments. Smooth muscle myocytes are controlled by the autonomic nervous system, which allows them to contract and relax involuntarily.

These cells play an essential role in many physiological processes, such as regulating blood flow, moving food through the digestive tract, and facilitating childbirth. They can also contribute to various pathological conditions, including hypertension, atherosclerosis, and gastrointestinal disorders.

Up-regulation is a term used in molecular biology and medicine to describe an increase in the expression or activity of a gene, protein, or receptor in response to a stimulus. This can occur through various mechanisms such as increased transcription, translation, or reduced degradation of the molecule. Up-regulation can have important functional consequences, for example, enhancing the sensitivity or response of a cell to a hormone, neurotransmitter, or drug. It is a normal physiological process that can also be induced by disease or pharmacological interventions.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Lisinopril is an angiotensin-converting enzyme (ACE) inhibitor, which is a type of medication used to treat various cardiovascular conditions. It works by blocking the conversion of angiotensin I to angiotensin II, a potent vasoconstrictor, resulting in relaxation and widening of blood vessels, decreased blood pressure, and increased blood flow.

Lisinopril is primarily used to treat hypertension (high blood pressure), congestive heart failure, and to improve survival after a heart attack. It may also be used to protect the kidneys from damage due to diabetes or high blood pressure. Additionally, it has been shown to reduce proteinuria (excess protein in urine) in patients with diabetic nephropathy.

Common side effects of Lisinopril include dizziness, headache, fatigue, and cough. More serious side effects may include angioedema (rapid swelling of the face, lips, tongue, or throat), hyperkalemia (elevated potassium levels), and impaired kidney function.

It is important to follow the prescribing physician's instructions carefully when taking Lisinopril and to report any unusual symptoms promptly. Regular monitoring of blood pressure, kidney function, and electrolyte levels may be necessary during treatment with this medication.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Kidney disease, also known as nephropathy or renal disease, refers to any functional or structural damage to the kidneys that impairs their ability to filter blood, regulate electrolytes, produce hormones, and maintain fluid balance. This damage can result from a wide range of causes, including diabetes, hypertension, glomerulonephritis, polycystic kidney disease, lupus, infections, drugs, toxins, and congenital or inherited disorders.

Depending on the severity and progression of the kidney damage, kidney diseases can be classified into two main categories: acute kidney injury (AKI) and chronic kidney disease (CKD). AKI is a sudden and often reversible loss of kidney function that occurs over hours to days, while CKD is a progressive and irreversible decline in kidney function that develops over months or years.

Symptoms of kidney diseases may include edema, proteinuria, hematuria, hypertension, electrolyte imbalances, metabolic acidosis, anemia, and decreased urine output. Treatment options depend on the underlying cause and severity of the disease and may include medications, dietary modifications, dialysis, or kidney transplantation.

An animal model in medicine refers to the use of non-human animals in experiments to understand, predict, and test responses and effects of various biological and chemical interactions that may also occur in humans. These models are used when studying complex systems or processes that cannot be easily replicated or studied in human subjects, such as genetic manipulation or exposure to harmful substances. The choice of animal model depends on the specific research question being asked and the similarities between the animal's and human's biological and physiological responses. Examples of commonly used animal models include mice, rats, rabbits, guinea pigs, and non-human primates.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Renal hypertension, also known as renovascular hypertension, is a type of secondary hypertension (high blood pressure) that is caused by narrowing or obstruction of the renal arteries or veins, which supply blood to the kidneys. This can lead to decreased blood flow and oxygen delivery to the kidney tissue, activating the renin-angiotensin-aldosterone system (RAAS) and resulting in increased peripheral vascular resistance, sodium retention, and extracellular fluid volume, ultimately causing hypertension.

Renal hypertension can be classified into two types:

1. Renin-dependent renal hypertension: This is caused by a decrease in blood flow to the kidneys, leading to increased renin release from the juxtaglomerular cells of the kidney. Renin converts angiotensinogen to angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme (ACE). Angiotensin II is a potent vasoconstrictor that causes an increase in peripheral vascular resistance and blood pressure.
2. Renin-independent renal hypertension: This is caused by increased sodium retention and extracellular fluid volume, leading to an increase in blood pressure. This can be due to various factors such as obstructive sleep apnea, primary aldosteronism, or pheochromocytoma.

Renal hypertension is often asymptomatic but can lead to serious complications such as kidney damage, heart failure, and stroke if left untreated. Diagnosis of renal hypertension involves imaging studies such as renal artery duplex ultrasound, CT angiography, or magnetic resonance angiography (MRA) to identify any narrowing or obstruction in the renal arteries or veins. Treatment options include medications such as ACE inhibitors, angiotensin receptor blockers (ARBs), calcium channel blockers, and diuretics, as well as interventions such as angioplasty and stenting to improve blood flow to the kidneys.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Reactive Oxygen Species (ROS) are highly reactive molecules containing oxygen, including peroxides, superoxide, hydroxyl radical, and singlet oxygen. They are naturally produced as byproducts of normal cellular metabolism in the mitochondria, and can also be generated by external sources such as ionizing radiation, tobacco smoke, and air pollutants. At low or moderate concentrations, ROS play important roles in cell signaling and homeostasis, but at high concentrations, they can cause significant damage to cell structures, including lipids, proteins, and DNA, leading to oxidative stress and potential cell death.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Renal circulation refers to the blood flow specifically dedicated to the kidneys. The main function of the kidneys is to filter waste and excess fluids from the blood, which then get excreted as urine. To perform this function efficiently, the kidneys receive a substantial amount of the body's total blood supply - about 20-25% in a resting state.

The renal circulation process begins when deoxygenated blood from the rest of the body returns to the right side of the heart and is pumped into the lungs for oxygenation. Oxygen-rich blood then leaves the left side of the heart through the aorta, the largest artery in the body.

A portion of this oxygen-rich blood moves into the renal arteries, which branch directly from the aorta and supply each kidney with blood. Within the kidneys, these arteries divide further into smaller vessels called afferent arterioles, which feed into a network of tiny capillaries called the glomerulus within each nephron (the functional unit of the kidney).

The filtration process occurs in the glomeruli, where waste materials and excess fluids are separated from the blood. The resulting filtrate then moves through another set of capillaries, the peritubular capillaries, which surround the renal tubules (the part of the nephron that reabsorbs necessary substances back into the bloodstream).

The now-deoxygenated blood from the kidneys' capillary network coalesces into venules and then merges into the renal veins, which ultimately drain into the inferior vena cava and return the blood to the right side of the heart. This highly specialized circulation system allows the kidneys to efficiently filter waste while maintaining appropriate blood volume and composition.

Vasodilator agents are pharmacological substances that cause the relaxation or widening of blood vessels by relaxing the smooth muscle in the vessel walls. This results in an increase in the diameter of the blood vessels, which decreases vascular resistance and ultimately reduces blood pressure. Vasodilators can be further classified based on their site of action:

1. Systemic vasodilators: These agents cause a generalized relaxation of the smooth muscle in the walls of both arteries and veins, resulting in a decrease in peripheral vascular resistance and preload (the volume of blood returning to the heart). Examples include nitroglycerin, hydralazine, and calcium channel blockers.
2. Arterial vasodilators: These agents primarily affect the smooth muscle in arterial vessel walls, leading to a reduction in afterload (the pressure against which the heart pumps blood). Examples include angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and direct vasodilators like sodium nitroprusside.
3. Venous vasodilators: These agents primarily affect the smooth muscle in venous vessel walls, increasing venous capacitance and reducing preload. Examples include nitroglycerin and other organic nitrates.

Vasodilator agents are used to treat various cardiovascular conditions such as hypertension, heart failure, angina, and pulmonary arterial hypertension. It is essential to monitor their use carefully, as excessive vasodilation can lead to orthostatic hypotension, reflex tachycardia, or fluid retention.

Chymases are a type of enzyme that belong to the family of serine proteases. They are found in various tissues and organs, including the heart, lungs, and immune cells called mast cells. Chymases play a role in several physiological and pathological processes, such as inflammation, tissue remodeling, and blood pressure regulation.

One of the most well-known chymases is found in the mast cells and is often referred to as "mast cell chymase." This enzyme can cleave and activate various proteins, including angiotensin I to angiotensin II, a potent vasoconstrictor that increases blood pressure. Chymases have also been implicated in the development of cardiovascular diseases, such as hypertension and heart failure, as well as respiratory diseases like asthma and chronic obstructive pulmonary disease (COPD).

In summary, chymases are a group of serine protease enzymes that play important roles in various physiological and pathological processes, particularly in inflammation, tissue remodeling, and blood pressure regulation.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Heart failure is a pathophysiological state in which the heart is unable to pump sufficient blood to meet the metabolic demands of the body or do so only at the expense of elevated filling pressures. It can be caused by various cardiac disorders, including coronary artery disease, hypertension, valvular heart disease, cardiomyopathy, and arrhythmias. Symptoms may include shortness of breath, fatigue, and fluid retention. Heart failure is often classified based on the ejection fraction (EF), which is the percentage of blood that is pumped out of the left ventricle during each contraction. A reduced EF (less than 40%) is indicative of heart failure with reduced ejection fraction (HFrEF), while a preserved EF (greater than or equal to 50%) is indicative of heart failure with preserved ejection fraction (HFpEF). There is also a category of heart failure with mid-range ejection fraction (HFmrEF) for those with an EF between 40-49%.

Mitogen-Activated Protein Kinase 3 (MAPK3), also known as extracellular signal-regulated kinase 1 (ERK1), is a serine/threonine protein kinase that plays a crucial role in intracellular signal transduction pathways. It is involved in the regulation of various cellular processes, including proliferation, differentiation, and survival, in response to extracellular stimuli such as growth factors, hormones, and stress.

MAPK3 is activated through a phosphorylation cascade that involves the activation of upstream MAPK kinases (MKK or MEK). Once activated, MAPK3 can phosphorylate and activate various downstream targets, including transcription factors, to regulate gene expression. Dysregulation of MAPK3 signaling has been implicated in several diseases, including cancer and neurological disorders.

Protein Kinase C (PKC) is a family of serine-threonine kinases that play crucial roles in various cellular signaling pathways. These enzymes are activated by second messengers such as diacylglycerol (DAG) and calcium ions (Ca2+), which result from the activation of cell surface receptors like G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs).

Once activated, PKC proteins phosphorylate downstream target proteins, thereby modulating their activities. This regulation is involved in numerous cellular processes, including cell growth, differentiation, apoptosis, and membrane trafficking. There are at least 10 isoforms of PKC, classified into three subfamilies based on their second messenger requirements and structural features: conventional (cPKC; α, βI, βII, and γ), novel (nPKC; δ, ε, η, and θ), and atypical (aPKC; ζ and ι/λ). Dysregulation of PKC signaling has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Cardiomegaly is a medical term that refers to an enlarged heart. It can be caused by various conditions such as high blood pressure, heart valve problems, cardiomyopathy, or fluid accumulation around the heart (pericardial effusion). Cardiomegaly can be detected through imaging tests like chest X-rays or echocardiograms. Depending on the underlying cause, treatment options may include medications, lifestyle changes, or in some cases, surgery. It is important to consult with a healthcare professional for proper diagnosis and treatment.

Collagen is the most abundant protein in the human body, and it is a major component of connective tissues such as tendons, ligaments, skin, and bones. Collagen provides structure and strength to these tissues and helps them to withstand stretching and tension. It is made up of long chains of amino acids, primarily glycine, proline, and hydroxyproline, which are arranged in a triple helix structure. There are at least 16 different types of collagen found in the body, each with slightly different structures and functions. Collagen is important for maintaining the integrity and health of tissues throughout the body, and it has been studied for its potential therapeutic uses in various medical conditions.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Captopril is a medication that belongs to a class of drugs called ACE (angiotensin-converting enzyme) inhibitors. It works by blocking the action of a chemical in the body called angiotensin II, which causes blood vessels to narrow and release hormones that can increase blood pressure. By blocking the action of angiotensin II, captopril helps relax and widen blood vessels, which lowers blood pressure and improves blood flow.

Captopril is used to treat high blood pressure (hypertension), congestive heart failure, and to improve survival after a heart attack. It may also be used to protect the kidneys from damage due to diabetes or high blood pressure. The medication comes in the form of tablets that are taken by mouth, usually two to three times per day.

Common side effects of captopril include cough, dizziness, headache, and skin rash. More serious side effects may include allergic reactions, kidney problems, and changes in blood cell counts. It is important for patients taking captopril to follow their doctor's instructions carefully and report any unusual symptoms or side effects promptly.

A sodium-restricted diet is a meal plan designed to limit the amount of sodium (salt) intake. The recommended daily sodium intake for adults is less than 2,300 milligrams (mg), but for those with certain medical conditions such as high blood pressure, heart failure, or chronic kidney disease, a lower daily sodium limit of 1,500 to 2,000 mg may be recommended.

A sodium-restricted diet typically involves avoiding processed and packaged foods, which are often high in sodium, and limiting the use of salt when cooking or at the table. Fresh fruits, vegetables, lean proteins, and whole grains are encouraged as they are naturally low in sodium. It is important to read food labels carefully, as some foods may contain hidden sources of sodium.

Adhering to a sodium-restricted diet can help manage blood pressure, reduce fluid retention, and decrease the risk of heart disease and stroke. However, it is important to consult with a healthcare provider or a registered dietitian before starting any new diet plan to ensure that it meets individual nutritional needs and medical conditions.

Down-regulation is a process that occurs in response to various stimuli, where the number or sensitivity of cell surface receptors or the expression of specific genes is decreased. This process helps maintain homeostasis within cells and tissues by reducing the ability of cells to respond to certain signals or molecules.

In the context of cell surface receptors, down-regulation can occur through several mechanisms:

1. Receptor internalization: After binding to their ligands, receptors can be internalized into the cell through endocytosis. Once inside the cell, these receptors may be degraded or recycled back to the cell surface in smaller numbers.
2. Reduced receptor synthesis: Down-regulation can also occur at the transcriptional level, where the expression of genes encoding for specific receptors is decreased, leading to fewer receptors being produced.
3. Receptor desensitization: Prolonged exposure to a ligand can lead to a decrease in receptor sensitivity or affinity, making it more difficult for the cell to respond to the signal.

In the context of gene expression, down-regulation refers to the decreased transcription and/or stability of specific mRNAs, leading to reduced protein levels. This process can be induced by various factors, including microRNA (miRNA)-mediated regulation, histone modification, or DNA methylation.

Down-regulation is an essential mechanism in many physiological processes and can also contribute to the development of several diseases, such as cancer and neurodegenerative disorders.

Hypertrophy, in the context of physiology and pathology, refers to an increase in the size of an organ or tissue due to an enlargement of its constituent cells. It is often used to describe the growth of muscle cells (myocytes) in response to increased workload or hormonal stimulation, resulting in an increase in muscle mass. However, hypertrophy can also occur in other organs such as the heart (cardiac hypertrophy) in response to high blood pressure or valvular heart disease.

It is important to note that while hypertrophy involves an increase in cell size, hyperplasia refers to an increase in cell number. In some cases, both hypertrophy and hyperplasia can occur together, leading to a significant increase in the overall size and function of the organ or tissue.

Vasopressin, also known as antidiuretic hormone (ADH), is a hormone that helps regulate water balance in the body. It is produced by the hypothalamus and stored in the posterior pituitary gland. When the body is dehydrated or experiencing low blood pressure, vasopressin is released into the bloodstream, where it causes the kidneys to decrease the amount of urine they produce and helps to constrict blood vessels, thereby increasing blood pressure. This helps to maintain adequate fluid volume in the body and ensure that vital organs receive an adequate supply of oxygen-rich blood. In addition to its role in water balance and blood pressure regulation, vasopressin also plays a role in social behaviors such as pair bonding and trust.

Hydralazine is an antihypertensive medication, which means it is used to treat high blood pressure. It works by relaxing and widening the blood vessels, making it easier for the heart to pump blood through the body. This can help reduce the workload on the heart and lower blood pressure. Hydralazine is available in oral tablet form and is typically prescribed to be taken several times a day.

Hydralazine belongs to a class of medications called vasodilators, which work by relaxing the muscle in the walls of the blood vessels, causing them to widen. This increases the amount of blood that can flow through the blood vessels and reduces the pressure within them. Hydralazine is often used in combination with other medications to treat high blood pressure.

It's important to note that hydralazine should be used under the close supervision of a healthcare provider, as it can cause side effects such as headache, dizziness, and rapid heartbeat. It may also interact with certain other medications, so it is important to inform your doctor of all medications you are taking before starting hydralazine.

The adrenal glands are a pair of endocrine glands that are located on top of the kidneys. Each gland has two parts: the outer cortex and the inner medulla. The adrenal cortex produces hormones such as cortisol, aldosterone, and androgens, which regulate metabolism, blood pressure, and other vital functions. The adrenal medulla produces catecholamines, including epinephrine (adrenaline) and norepinephrine (noradrenaline), which help the body respond to stress by increasing heart rate, blood pressure, and alertness.

Ramipril is an angiotensin-converting enzyme (ACE) inhibitor, which is a type of medication used to treat various cardiovascular conditions. It works by blocking the conversion of angiotensin I to angiotensin II, a potent vasoconstrictor, thereby causing relaxation and widening of blood vessels, decreasing blood pressure, and increasing blood flow.

Ramipril is primarily used for the treatment of hypertension (high blood pressure), heart failure, and the prevention of major cardiovascular events such as myocardial infarction (heart attack) and stroke in high-risk patients. It may also be used to improve survival after a heart attack.

The medication is available in oral tablet form and is typically taken once or twice daily, depending on the prescribed dosage. Side effects of ramipril can include cough, dizziness, headache, fatigue, nausea, and taste changes. Serious side effects are rare but may include kidney problems, hyperkalemia (high potassium levels), and angioedema (swelling of the face, lips, tongue, or throat).

It is important to follow the prescribing physician's instructions carefully when taking ramipril and to report any unusual symptoms or side effects promptly. Regular monitoring of blood pressure, kidney function, and potassium levels may be necessary during treatment with this medication.

Renovascular hypertension is a type of secondary hypertension (high blood pressure) that is caused by renal artery stenosis or narrowing. This condition reduces blood flow to the kidneys, leading to the activation of the renin-angiotensin-aldosterone system (RAAS), which causes an increase in peripheral vascular resistance and blood volume, resulting in hypertension.

Renovascular hypertension is often seen in people with atherosclerosis or fibromuscular dysplasia, which are the most common causes of renal artery stenosis. Other conditions that can lead to renovascular hypertension include vasculitis, blood clots, and compression of the renal artery by nearby structures.

Diagnosis of renovascular hypertension typically involves imaging studies such as duplex ultrasound, CT angiography, or magnetic resonance angiography to visualize the renal arteries and assess for stenosis. Treatment may involve medications to control blood pressure, lifestyle modifications, and procedures such as angioplasty and stenting to open up the narrowed renal artery. In some cases, surgery may be necessary to restore blood flow to the kidney.

Cilazapril is an oral antihypertensive drug, which belongs to the class of medications known as ACE (angiotensin-converting enzyme) inhibitors. It works by blocking the action of a chemical in the body called angiotensin II that causes blood vessels to narrow, thereby helping to relax and widen blood vessels, and lower blood pressure.

Cilazapril is primarily used to treat hypertension (high blood pressure), and can also be used to improve survival after a heart attack and to manage chronic heart failure. It is available under the brand name Inhibace and in generic form as well. As with any medication, it should be taken under the supervision of a healthcare provider, who will consider the individual's medical history, current medications, and other factors before prescribing it.

Glutamyl Aminopeptidase (GAP, or sometimes also abbreviated as GP) is an enzyme that is found in many tissues throughout the body, including the kidneys and the intestines. Its primary function is to help break down proteins into smaller peptides and individual amino acids by removing certain types of amino acids from the ends of these protein chains.

GAP is a type of exopeptidase enzyme, which means that it works on the outside edges of proteins rather than in the middle. Specifically, GAP removes the amino acid glutamic acid (or its amide form, glutamine) from the N-terminus (the beginning end) of peptides and proteins.

In clinical settings, GAP is often measured in blood or urine samples as a biomarker for various medical conditions. For example, elevated levels of GAP in the blood may indicate liver disease or kidney damage, while decreased levels may be associated with certain types of cancer or gastrointestinal disorders. However, it's important to note that GAP is just one of many factors that doctors may consider when diagnosing and treating these conditions.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Vascular Endothelial Growth Factor A (VEGFA) is a specific isoform of the vascular endothelial growth factor (VEGF) family. It is a well-characterized signaling protein that plays a crucial role in angiogenesis, the process of new blood vessel formation from pre-existing vessels. VEGFA stimulates the proliferation and migration of endothelial cells, which line the interior surface of blood vessels, thereby contributing to the growth and development of new vasculature. This protein is essential for physiological processes such as embryonic development and wound healing, but it has also been implicated in various pathological conditions, including cancer, age-related macular degeneration, and diabetic retinopathy. The regulation of VEGFA expression and activity is critical to maintaining proper vascular function and homeostasis.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

Arginine vasopressin (AVP), also known as antidiuretic hormone (ADH), is a hormone produced in the hypothalamus and stored in the posterior pituitary gland. It plays a crucial role in regulating water balance and blood pressure in the body.

AVP acts on the kidneys to promote water reabsorption, which helps maintain adequate fluid volume and osmotic balance in the body. It also constricts blood vessels, increasing peripheral vascular resistance and thereby helping to maintain blood pressure. Additionally, AVP has been shown to have effects on cognitive function, mood regulation, and pain perception.

Deficiencies or excesses of AVP can lead to a range of medical conditions, including diabetes insipidus (characterized by excessive thirst and urination), hyponatremia (low sodium levels in the blood), and syndrome of inappropriate antidiuretic hormone secretion (SIADH).

Thiazepines are not a recognized term in medical terminology or pharmacology. It appears that you may have misspelled "thiazepines," which also does not have a specific medical meaning. However, "thiazepine" is a chemical compound with a specific structure, and it is the core structure of some drugs such as thiazepine derivatives. These derivatives are often used for their sedative, hypnotic, anticonvulsant, and muscle relaxant properties.

If you meant to ask about "thiazide" or "thiazide diuretics," I would be happy to provide a definition:

Thiazides are a class of diuretic medications that act on the distal convoluted tubule in the kidney, promoting sodium and chloride excretion. This also leads to increased water excretion (diuresis) and decreased extracellular fluid volume. Thiazide diuretics are primarily used to treat hypertension and edema associated with heart failure or liver cirrhosis. Common thiazide diuretics include hydrochlorothiazide, chlorthalidone, and indapamide.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Proteinuria is a medical term that refers to the presence of excess proteins, particularly albumin, in the urine. Under normal circumstances, only small amounts of proteins should be found in the urine because the majority of proteins are too large to pass through the glomeruli, which are the filtering units of the kidneys.

However, when the glomeruli become damaged or diseased, they may allow larger molecules such as proteins to leak into the urine. Persistent proteinuria is often a sign of kidney disease and can indicate damage to the glomeruli. It is usually detected through a routine urinalysis and may be confirmed with further testing.

The severity of proteinuria can vary, and it can be a symptom of various underlying conditions such as diabetes, hypertension, glomerulonephritis, and other kidney diseases. Treatment for proteinuria depends on the underlying cause and may include medications to control blood pressure, manage diabetes, or reduce protein loss in the urine.

The mesenteric arteries are the arteries that supply oxygenated blood to the intestines. There are three main mesenteric arteries: the superior mesenteric artery, which supplies blood to the small intestine (duodenum to two-thirds of the transverse colon) and large intestine (cecum, ascending colon, and the first part of the transverse colon); the inferior mesenteric artery, which supplies blood to the distal third of the transverse colon, descending colon, sigmoid colon, and rectum; and the middle colic artery, which is a branch of the superior mesenteric artery that supplies blood to the transverse colon. These arteries are important in maintaining adequate blood flow to the intestines to support digestion and absorption of nutrients.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

An implantable infusion pump is a small, programmable medical device that is surgically placed under the skin to deliver precise amounts of medication directly into the body over an extended period. These pumps are often used for long-term therapies, such as managing chronic pain, delivering chemotherapy drugs, or administering hormones for conditions like diabetes or growth hormone deficiency.

The implantable infusion pump consists of a reservoir to hold the medication and a mechanism to control the rate and timing of its delivery. The device can be refilled periodically through a small incision in the skin. Implantable infusion pumps are designed to provide consistent, controlled dosing with minimal side effects and improved quality of life compared to traditional methods like injections or oral medications.

It is important to note that implantable infusion pumps should only be used under the guidance and care of a healthcare professional, as they require careful programming and monitoring to ensure safe and effective use.

Phenylephrine is a medication that belongs to the class of drugs known as sympathomimetic amines. It primarily acts as an alpha-1 adrenergic receptor agonist, which means it stimulates these receptors, leading to vasoconstriction (constriction of blood vessels). This effect can be useful in various medical situations, such as:

1. Nasal decongestion: When applied topically in the nose, phenylephrine causes constriction of the blood vessels in the nasal passages, which helps to relieve congestion and swelling. It is often found in over-the-counter (OTC) cold and allergy products.
2. Ocular circulation: In ophthalmology, phenylephrine is used to dilate the pupils before eye examinations. The increased pressure from vasoconstriction helps to open up the pupil, allowing for a better view of the internal structures of the eye.
3. Hypotension management: In some cases, phenylephrine may be given intravenously to treat low blood pressure (hypotension) during medical procedures like spinal anesthesia or septic shock. The vasoconstriction helps to increase blood pressure and improve perfusion of vital organs.

It is essential to use phenylephrine as directed, as improper usage can lead to adverse effects such as increased heart rate, hypertension, arrhythmias, and rebound congestion (when used as a nasal decongestant). Always consult with a healthcare professional for appropriate guidance on using this medication.

Zona glomerulosa is a region of the adrenal gland, specifically the outer portion of the adrenal cortex. It is responsible for producing mineralocorticoids, with the principal one being aldosterone. Aldosterone helps regulate electrolyte and fluid balance in the body by increasing the reabsorption of sodium ions and water in the distal nephron of the kidney while promoting the excretion of potassium ions. This process assists in maintaining blood pressure and volume within normal ranges. The zona glomerulosa's function is primarily under the control of the renin-angiotensin-aldosterone system (RAAS).

Perindopril is an angiotensin-converting enzyme (ACE) inhibitor used in the treatment of hypertension, heart failure, and previous myocardial infarction (heart attack). It works by blocking the conversion of angiotensin I to angiotensin II, a potent vasoconstrictor, which leads to decreased peripheral vascular resistance and reduced blood pressure. Additionally, perindopril inhibits the breakdown of bradykinin, a vasodilator, further contributing to its hypotensive effects.

Aldosterone synthase is a steroidogenic enzyme that is primarily responsible for the production of the hormone aldosterone in the adrenal gland. It is encoded by the CYP11B2 gene and is located within the mitochondria of the zona glomerulosa cells in the adrenal cortex.

Aldosterone synthase catalyzes two key reactions in the biosynthesis of aldosterone: the conversion of corticosterone to 18-hydroxycorticosterone and the subsequent conversion of 18-hydroxycorticosterone to aldosterone. These reactions involve the sequential addition of hydroxyl groups at the C18 position of the steroid molecule, which is a critical step in the synthesis of aldosterone.

Aldosterone plays an important role in regulating blood pressure and electrolyte balance by increasing the reabsorption of sodium and water in the distal nephron of the kidney, while promoting the excretion of potassium. Disorders of aldosterone synthase can lead to conditions such as primary hyperaldosteronism, which is characterized by excessive production of aldosterone and can result in hypertension and hypokalemia.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Kinins are a group of endogenous inflammatory mediators that are involved in the body's response to injury or infection. They are derived from the decapeptide bradykinin and its related peptides, which are formed by the enzymatic cleavage of precursor proteins called kininogens.

Kinins exert their effects through the activation of specific G protein-coupled receptors, known as B1 and B2 receptors. These receptors are widely distributed throughout the body, including in the cardiovascular, respiratory, gastrointestinal, and nervous systems.

Activation of kinin receptors leads to a range of physiological responses, including vasodilation, increased vascular permeability, pain, and smooth muscle contraction. Kinins are also known to interact with other inflammatory mediators, such as prostaglandins and leukotrienes, to amplify the inflammatory response.

In addition to their role in inflammation, kinins have been implicated in a number of pathological conditions, including hypertension, asthma, arthritis, and pain. As such, kinin-targeted therapies are being explored as potential treatments for these and other diseases.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

The kidney cortex is the outer region of the kidney where most of the functional units called nephrons are located. It plays a crucial role in filtering blood and regulating water, electrolyte, and acid-base balance in the body. The kidney cortex contains the glomeruli, proximal tubules, loop of Henle, and distal tubules, which work together to reabsorb necessary substances and excrete waste products into the urine.

Bradykinin receptors are a type of G protein-coupled receptor (GPCR) that binds to and is activated by the peptide hormone bradykinin. There are two main types of bradykinin receptors, B1 and B2, which are distinguished by their pharmacological properties, distribution, and function.

Bradykinin Receptor B1 (B1R) is upregulated during tissue injury and inflammation, and it mediates pain, hyperalgesia, and vasodilation. The activation of B1R also promotes the production of pro-inflammatory cytokines and chemokines, contributing to the development of chronic inflammation.

Bradykinin Receptor B2 (B2R) is constitutively expressed in various tissues, including the vascular endothelium, smooth muscle, and nervous system. It mediates many of the physiological effects of bradykinin, such as vasodilation, increased vascular permeability, and pain sensation. B2R also plays a role in the regulation of blood pressure, fluid balance, and tissue repair.

Both B1R and B2R are involved in the pathogenesis of several diseases, including inflammatory disorders, cardiovascular diseases, and chronic pain conditions. Therefore, targeting these receptors with specific drugs has emerged as a promising therapeutic strategy for treating various medical conditions.

Sodium Chloride is defined as the inorganic compound with the chemical formula NaCl, representing a 1:1 ratio of sodium and chloride ions. It is commonly known as table salt or halite, and it is used extensively in food seasoning and preservation due to its ability to enhance flavor and inhibit bacterial growth. In medicine, sodium chloride is used as a balanced electrolyte solution for rehydration and as a topical wound irrigant and antiseptic. It is also an essential component of the human body's fluid balance and nerve impulse transmission.

Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is a hormone that is primarily produced and secreted by the atria of the heart in response to stretching of the cardiac muscle cells due to increased blood volume. ANF plays a crucial role in regulating body fluid homeostasis, blood pressure, and cardiovascular function.

The main physiological action of ANF is to promote sodium and water excretion by the kidneys, which helps lower blood volume and reduce blood pressure. ANF also relaxes vascular smooth muscle, dilates blood vessels, and inhibits the renin-angiotensin-aldosterone system (RAAS), further contributing to its blood pressure-lowering effects.

Defects in ANF production or action have been implicated in several cardiovascular disorders, including heart failure, hypertension, and kidney disease. Therefore, ANF and its analogs are being investigated as potential therapeutic agents for the treatment of these conditions.

Dietary sodium is a mineral that is primarily found in table salt (sodium chloride) and many processed foods. It is an essential nutrient for human health, playing a crucial role in maintaining fluid balance, transmitting nerve impulses, and regulating muscle contractions. However, consuming too much dietary sodium can increase blood pressure and contribute to the development of hypertension, heart disease, stroke, and kidney problems.

The recommended daily intake of dietary sodium is less than 2,300 milligrams (mg) per day for most adults, but the American Heart Association recommends no more than 1,500 mg per day for optimal heart health. It's important to note that many processed and restaurant foods contain high levels of sodium, so it's essential to read food labels and choose fresh, whole foods whenever possible to help limit dietary sodium intake.

Diuretics are a type of medication that increase the production of urine and help the body eliminate excess fluid and salt. They work by interfering with the reabsorption of sodium in the kidney tubules, which in turn causes more water to be excreted from the body. Diuretics are commonly used to treat conditions such as high blood pressure, heart failure, liver cirrhosis, and kidney disease. There are several types of diuretics, including loop diuretics, thiazide diuretics, potassium-sparing diuretics, and osmotic diuretics, each with its own mechanism of action and potential side effects. It is important to use diuretics under the guidance of a healthcare professional, as they can interact with other medications and have an impact on electrolyte balance in the body.

Endothelin-1 is a small peptide (21 amino acids) and a potent vasoconstrictor, which means it narrows blood vessels. It is primarily produced by the endothelial cells that line the interior surface of blood vessels. Endothelin-1 plays a crucial role in regulating vascular tone, cell growth, and inflammation. Its dysregulation has been implicated in various cardiovascular diseases, such as hypertension and heart failure. It exerts its effects by binding to specific G protein-coupled receptors (ETA and ETB) on the surface of target cells.

The adrenal cortex is the outer portion of the adrenal gland, which is located on top of the kidneys. It plays a crucial role in producing hormones that are essential for various bodily functions. The adrenal cortex is divided into three zones:

1. Zona glomerulosa: This outermost zone produces mineralocorticoids, primarily aldosterone. Aldosterone helps regulate sodium and potassium balance and thus influences blood pressure by controlling the amount of fluid in the body.
2. Zona fasciculata: The middle layer is responsible for producing glucocorticoids, with cortisol being the most important one. Cortisol regulates metabolism, helps manage stress responses, and has anti-inflammatory properties. It also plays a role in blood sugar regulation and maintaining the body's response to injury and illness.
3. Zona reticularis: The innermost zone produces androgens, primarily dehydroepiandrosterone (DHEA) and its sulfate form (DHEAS). These androgens are weak compared to those produced by the gonads (ovaries or testes), but they can be converted into more potent androgens or estrogens in peripheral tissues.

Disorders related to the adrenal cortex can lead to hormonal imbalances, affecting various bodily functions. Examples include Addison's disease (insufficient adrenal cortical hormone production) and Cushing's syndrome (excessive glucocorticoid levels).

Thirst, also known as dry mouth or polydipsia, is a physiological need or desire to drink fluids to maintain fluid balance and hydration in the body. It is primarily regulated by the hypothalamus in response to changes in osmolality and volume of bodily fluids, particularly blood. Thirst can be triggered by various factors such as dehydration, excessive sweating, diarrhea, vomiting, fever, burns, certain medications, and medical conditions affecting the kidneys, adrenal glands, or other organs. It is a vital homeostatic mechanism to ensure adequate hydration and proper functioning of various bodily systems.

NG-Nitroarginine Methyl Ester (L-NAME) is not a medication, but rather a research chemical used in scientific studies. It is an inhibitor of nitric oxide synthase, an enzyme that synthesizes nitric oxide, a molecule involved in the relaxation of blood vessels.

Therefore, L-NAME is often used in experiments to investigate the role of nitric oxide in various physiological and pathophysiological processes. It is important to note that the use of L-NAME in humans is not approved for therapeutic purposes due to its potential side effects, which can include hypertension, decreased renal function, and decreased cerebral blood flow.

Arteries are blood vessels that carry oxygenated blood away from the heart to the rest of the body. They have thick, muscular walls that can withstand the high pressure of blood being pumped out of the heart. Arteries branch off into smaller vessels called arterioles, which further divide into a vast network of tiny capillaries where the exchange of oxygen, nutrients, and waste occurs between the blood and the body's cells. After passing through the capillary network, deoxygenated blood collects in venules, then merges into veins, which return the blood back to the heart.

Arterioles are small branches of arteries that play a crucial role in regulating blood flow and blood pressure within the body's circulatory system. They are the smallest type of blood vessels that have muscular walls, which allow them to contract or dilate in response to various physiological signals.

Arterioles receive blood from upstream arteries and deliver it to downstream capillaries, where the exchange of oxygen, nutrients, and waste products occurs between the blood and surrounding tissues. The contraction of arteriolar muscles can reduce the diameter of these vessels, causing increased resistance to blood flow and leading to a rise in blood pressure upstream. Conversely, dilation of arterioles reduces resistance and allows for greater blood flow at a lower pressure.

The regulation of arteriolar tone is primarily controlled by the autonomic nervous system, local metabolic factors, and various hormones. This fine-tuning of arteriolar diameter enables the body to maintain adequate blood perfusion to vital organs while also controlling overall blood pressure and distribution.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

The Juxtaglomerular Apparatus (JGA) is a specialized region located at the junction between the afferent arteriole and the distal convoluted tubule in the nephron of the kidney. It plays a crucial role in regulating blood pressure and fluid balance within the body through the renin-angiotensin-aldosterone system (RAAS).

The JGA consists of three main components:

1. Juxtaglomerular Cells: These are specialized smooth muscle cells found in the media layer of the afferent arteriole. They have the ability to synthesize and release renin, an enzyme that initiates the RAAS cascade. When blood pressure decreases or when sodium levels in the distal convoluted tubule are low, these cells are stimulated to release renin.

2. Macula Densa: This is a group of specialized epithelial cells located within the wall of the distal convoluted tubule at its point of contact with the afferent arteriole. These cells monitor the concentration and flow rate of filtrate in the tubule and provide feedback to the juxtaglomerular cells regarding sodium levels and pressure changes in the nephron.

3. Lacis Cells: Also known as extraglomerular mesangial cells, lacis cells are located within the connective tissue surrounding the JGA. They help regulate blood flow to the glomerulus by contracting or relaxing in response to various stimuli.

In summary, the Juxtaglomerular Apparatus is a critical structure involved in maintaining homeostasis through its role in regulating blood pressure and fluid balance via the renin-angiotensin-aldosterone system.

Diuresis is a medical term that refers to an increased production of urine by the kidneys. It can occur as a result of various factors, including certain medications, medical conditions, or as a response to a physiological need, such as in the case of dehydration. Diuretics are a class of drugs that promote diuresis and are often used to treat conditions such as high blood pressure, heart failure, and edema.

Diuresis can be classified into several types based on its underlying cause or mechanism, including:

1. Osmotic diuresis: This occurs when the kidneys excrete large amounts of urine in response to a high concentration of solutes (such as glucose) in the tubular fluid. The high osmolarity of the tubular fluid causes water to be drawn out of the bloodstream and into the urine, leading to an increase in urine output.
2. Forced diuresis: This is a medical procedure in which large amounts of intravenous fluids are administered to promote diuresis. It is used in certain clinical situations, such as to enhance the excretion of toxic substances or to prevent kidney damage.
3. Natriuretic diuresis: This occurs when the kidneys excrete large amounts of sodium and water in response to the release of natriuretic peptides, which are hormones that regulate sodium balance and blood pressure.
4. Aquaresis: This is a type of diuresis that occurs in response to the ingestion of large amounts of water, leading to dilute urine production.
5. Pathological diuresis: This refers to increased urine production due to underlying medical conditions such as diabetes insipidus or pyelonephritis.

It is important to note that excessive diuresis can lead to dehydration and electrolyte imbalances, so it should be monitored carefully in clinical settings.

The kidney medulla is the inner portion of the renal pyramids in the kidney, consisting of multiple conical structures found within the kidney. It is composed of loops of Henle and collecting ducts responsible for concentrating urine by reabsorbing water and producing a hyperosmotic environment. The kidney medulla has a unique blood supply and is divided into an inner and outer zone, with the inner zone having a higher osmolarity than the outer zone. This region of the kidney helps regulate electrolyte and fluid balance in the body.

The Bradykinin B2 receptor (B2R) is a type of G protein-coupled receptor that binds to and is activated by the peptide hormone bradykinin. Upon activation, it triggers a variety of intracellular signaling pathways leading to diverse physiological responses such as vasodilation, increased vascular permeability, pain, and inflammation.

B2Rs are widely distributed in various tissues, including the cardiovascular, respiratory, gastrointestinal, and nervous systems. They play a crucial role in several pathophysiological conditions such as hypertension, heart failure, ischemia-reperfusion injury, pain, and inflammatory diseases.

B2Rs are also the target of clinically used drugs, including angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs), which increase bradykinin levels and enhance its effects on B2Rs, leading to vasodilation and reduced blood pressure.

Tetrahydroisoquinolines (TIQs) are not a medical condition, but rather a class of organic compounds that have been studied in the field of medicine and neuroscience. TIQs are naturally occurring substances found in various foods, beverages, and plants, as well as produced endogenously in the human body. They have been shown to have various pharmacological activities, including acting as weak psychoactive agents, antioxidants, and inhibitors of certain enzymes. Some TIQs have also been implicated in the pathophysiology of certain neurological disorders such as Parkinson's disease. However, more research is needed to fully understand their roles and potential therapeutic applications.

Perfusion, in medical terms, refers to the process of circulating blood through the body's organs and tissues to deliver oxygen and nutrients and remove waste products. It is a measure of the delivery of adequate blood flow to specific areas or tissues in the body. Perfusion can be assessed using various methods, including imaging techniques like computed tomography (CT) scans, magnetic resonance imaging (MRI), and perfusion scintigraphy.

Perfusion is critical for maintaining proper organ function and overall health. When perfusion is impaired or inadequate, it can lead to tissue hypoxia, acidosis, and cell death, which can result in organ dysfunction or failure. Conditions that can affect perfusion include cardiovascular disease, shock, trauma, and certain surgical procedures.

Blood vessels are the part of the circulatory system that transport blood throughout the body. They form a network of tubes that carry blood to and from the heart, lungs, and other organs. The main types of blood vessels are arteries, veins, and capillaries. Arteries carry oxygenated blood away from the heart to the rest of the body, while veins return deoxygenated blood back to the heart. Capillaries connect arteries and veins and facilitate the exchange of oxygen, nutrients, and waste materials between the blood and the body's tissues.

Furosemide is a loop diuretic medication that is primarily used to treat edema (fluid retention) associated with various medical conditions such as heart failure, liver cirrhosis, and kidney disease. It works by inhibiting the sodium-potassium-chloride cotransporter in the ascending loop of Henle in the kidneys, thereby promoting the excretion of water, sodium, and chloride ions. This increased urine output helps reduce fluid accumulation in the body and lower blood pressure.

Furosemide is also known by its brand names Lasix and Frusid. It can be administered orally or intravenously, depending on the patient's condition and the desired rate of diuresis. Common side effects include dehydration, electrolyte imbalances, hearing loss (in high doses), and increased blood sugar levels.

It is essential to monitor kidney function, electrolyte levels, and fluid balance while using furosemide to minimize potential adverse effects and ensure appropriate treatment.

Diabetic nephropathy is a kidney disease that occurs as a complication of diabetes. It is also known as diabetic kidney disease (DKD). This condition affects the ability of the kidneys to filter waste and excess fluids from the blood, leading to their accumulation in the body.

Diabetic nephropathy is caused by damage to the small blood vessels in the kidneys, which can occur over time due to high levels of glucose in the blood. This damage can lead to scarring and thickening of the kidney's filtering membranes, reducing their ability to function properly.

Symptoms of diabetic nephropathy may include proteinuria (the presence of protein in the urine), edema (swelling in the legs, ankles, or feet due to fluid retention), and hypertension (high blood pressure). Over time, if left untreated, diabetic nephropathy can progress to end-stage kidney disease, which requires dialysis or a kidney transplant.

Preventing or delaying the onset of diabetic nephropathy involves maintaining good control of blood sugar levels, keeping blood pressure under control, and making lifestyle changes such as quitting smoking, eating a healthy diet, and getting regular exercise. Regular monitoring of kidney function through urine tests and blood tests is also important for early detection and treatment of this condition.

Endothelin is a type of peptide (small protein) that is produced by the endothelial cells, which line the interior surface of blood vessels. Endothelins are known to be potent vasoconstrictors, meaning they cause the narrowing of blood vessels, and thus increase blood pressure. There are three major types of endothelin molecules, known as Endothelin-1, Endothelin-2, and Endothelin-3. These endothelins bind to specific receptors (ETA, ETB) on the surface of smooth muscle cells in the blood vessel walls, leading to contraction and subsequent vasoconstriction. Additionally, endothelins have been implicated in various physiological and pathophysiological processes such as regulation of cell growth, inflammation, and fibrosis.

Intraventricular injections are a type of medical procedure where medication is administered directly into the cerebral ventricles of the brain. The cerebral ventricles are fluid-filled spaces within the brain that contain cerebrospinal fluid (CSF). This procedure is typically used to deliver drugs that target conditions affecting the central nervous system, such as infections or tumors.

Intraventricular injections are usually performed using a thin, hollow needle that is inserted through a small hole drilled into the skull. The medication is then injected directly into the ventricles, allowing it to circulate throughout the CSF and reach the brain tissue more efficiently than other routes of administration.

This type of injection is typically reserved for situations where other methods of drug delivery are not effective or feasible. It carries a higher risk of complications, such as bleeding, infection, or damage to surrounding tissues, compared to other routes of administration. Therefore, it is usually performed by trained medical professionals in a controlled clinical setting.

Glomerular filtration rate (GFR) is a test used to check how well the kidneys are working. Specifically, it estimates how much blood passes through the glomeruli each minute. The glomeruli are the tiny fibers in the kidneys that filter waste from the blood. A lower GFR number means that the kidneys aren't working properly and may indicate kidney disease.

The GFR is typically calculated using a formula that takes into account the patient's serum creatinine level, age, sex, and race. The most commonly used formula is the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equation. A normal GFR is usually above 90 mL/min/1.73m2, but this can vary depending on the individual's age and other factors.

Ventricular remodeling is a structural adaptation process of the heart in response to stress or injury, such as myocardial infarction (heart attack) or pressure overload. This process involves changes in size, shape, and function of the ventricles (the lower chambers of the heart).

In ventricular remodeling, the heart muscle may thicken, enlarge, or become more stiff, leading to alterations in the pumping ability of the heart. These changes can ultimately result in cardiac dysfunction, heart failure, and an increased risk of arrhythmias (irregular heart rhythms).

Ventricular remodeling is often classified into two types:

1. Concentric remodeling: This occurs when the ventricular wall thickens (hypertrophy) without a significant increase in chamber size, leading to a decrease in the cavity volume and an increase in the thickness of the ventricular wall.
2. Eccentric remodeling: This involves an increase in both the ventricular chamber size and wall thickness due to the addition of new muscle cells (hyperplasia) or enlargement of existing muscle cells (hypertrophy). As a result, the overall shape of the ventricle becomes more spherical and less elliptical.

Both types of remodeling can negatively impact heart function and contribute to the development of heart failure. Close monitoring and appropriate treatment are essential for managing ventricular remodeling and preventing further complications.

Tachyphylaxis is a medical term that refers to the rapid and temporary loss of response to a drug after its repeated administration, especially when administered in quick succession. This occurs due to the decreased sensitivity or responsiveness of the body's receptors to the drug, resulting in a reduced therapeutic effect over time.

In simpler terms, tachyphylaxis is when the body becomes quickly desensitized to a medication after taking it multiple times in a short period, causing the drug to become less effective or ineffective at achieving the desired outcome. This phenomenon can occur with various medications, including those used for treating pain, allergies, and psychiatric conditions.

It's important to note that tachyphylaxis should not be confused with tolerance, which is a similar but distinct concept where the body gradually becomes less responsive to a drug after prolonged use over time.

Drinking behavior refers to the patterns and habits related to alcohol consumption. This can include the frequency, quantity, and context in which an individual chooses to drink alcohol. Drinking behaviors can vary widely among individuals and can be influenced by a variety of factors, including cultural norms, personal beliefs, mental health status, and genetic predisposition.

Problematic drinking behaviors can include heavy drinking, binge drinking, and alcohol use disorder (AUD), which is characterized by a pattern of alcohol use that involves problems controlling intake, being preoccupied with alcohol, continuing to use alcohol even when it causes problems, having to drink more to get the same effect, or having withdrawal symptoms when rapidly decreasing or stopping alcohol.

It's important to note that drinking behaviors can have significant impacts on an individual's health and well-being, as well as their relationships, work, and other aspects of their life. If you are concerned about your own drinking behavior or that of someone else, it is recommended to seek professional help from a healthcare provider or addiction specialist.

An infusion pump is a medical device used to deliver fluids, such as medications, nutrients, or supplements, into a patient's body in a controlled and precise manner. These pumps can be programmed to deliver specific amounts of fluid over set periods, allowing for accurate and consistent administration. They are often used in hospitals, clinics, and home care settings to administer various types of therapies, including pain management, chemotherapy, antibiotic treatment, and parenteral nutrition.

Infusion pumps come in different sizes and configurations, with some being portable and battery-operated for use outside of a medical facility. They typically consist of a reservoir for the fluid, a pumping mechanism to move the fluid through tubing and into the patient's body, and a control system that allows healthcare professionals to program the desired flow rate and volume. Some advanced infusion pumps also include safety features such as alarms to alert healthcare providers if there are any issues with the pump's operation or if the patient's condition changes unexpectedly.

The renal artery is a pair of blood vessels that originate from the abdominal aorta and supply oxygenated blood to each kidney. These arteries branch into several smaller vessels that provide blood to the various parts of the kidneys, including the renal cortex and medulla. The renal arteries also carry nutrients and other essential components needed for the normal functioning of the kidneys. Any damage or blockage to the renal artery can lead to serious consequences, such as reduced kidney function or even kidney failure.

Neprilysin (NEP), also known as membrane metallo-endopeptidase or CD10, is a type II transmembrane glycoprotein that functions as a zinc-dependent metalloprotease. It is widely expressed in various tissues, including the kidney, brain, heart, and vasculature. Neprilysin plays a crucial role in the breakdown and regulation of several endogenous bioactive peptides, such as natriuretic peptides, bradykinin, substance P, and angiotensin II. By degrading these peptides, neprilysin helps maintain cardiovascular homeostasis, modulate inflammation, and regulate neurotransmission. In the context of heart failure, neprilysin inhibitors have been developed to increase natriuretic peptide levels, promoting diuresis and vasodilation, ultimately improving cardiac function.

Amlodipine is a type of medication known as a calcium channel blocker, which is primarily used to treat high blood pressure and angina (chest pain caused by reduced blood flow to the heart). It works by relaxing the muscles around the blood vessels, which causes them to widen and improves blood flow. This helps to lower blood pressure and reduce the workload on the heart, making it easier for the heart to pump blood effectively.

Amlodipine is available in various strengths as a tablet or an extended-release tablet, and it is typically taken once daily. The medication may take several weeks to reach its full effect, so it is important to continue taking it even if you do not notice any immediate improvement in your symptoms.

As with any medication, amlodipine can cause side effects, including headache, dizziness, fatigue, and swelling of the ankles or feet. In rare cases, it may also cause more serious side effects such as allergic reactions, irregular heartbeat, or liver damage. If you experience any unusual symptoms while taking amlodipine, it is important to contact your healthcare provider right away.

It is important to follow your healthcare provider's instructions carefully when taking amlodipine, and to inform them of any other medications or supplements that you are taking, as well as any medical conditions that you have. This will help ensure that the medication is safe and effective for you to use.

Cyclic N-oxides are a class of organic compounds that contain a cyclic structure with a nitrogen atom bonded to an oxygen atom as an N-oxide. An N-oxide is a compound in which the nitrogen atom has a positive charge and the oxygen atom has a negative charge, forming a polar covalent bond. In cyclic N-oxides, this N-O group is part of a ring structure, which can be composed of various combinations of carbon, nitrogen, and other atoms. These compounds have been studied for their potential use in pharmaceuticals, agrochemicals, and materials science.

Desoxycorticosterone (also known as desoxycorticosterone or DCZ) is a natural steroid hormone produced by the adrenal gland. It is a weak glucocorticoid and mineralocorticoid, which means it has some effects on blood sugar metabolism and regulates electrolyte and fluid balance in the body.

Desoxycorticosterone is used as a medication in the form of its synthetic acetate ester, desoxycorticosterone acetate (DCA), to treat Addison's disease, a condition in which the adrenal glands do not produce enough steroid hormones. DCA helps to replace the missing mineralocorticoid activity and prevent the symptoms of low blood pressure, dehydration, and electrolyte imbalances associated with Addison's disease.

It is important to note that desoxycorticosterone should only be used under the supervision of a healthcare provider, as it can have significant side effects if not properly monitored.

Pressoreceptors are specialized sensory nerve endings found in the walls of blood vessels, particularly in the carotid sinus and aortic arch. They respond to changes in blood pressure by converting the mechanical stimulus into electrical signals that are transmitted to the brain. This information helps regulate cardiovascular function and maintain blood pressure homeostasis.

3-Mercaptopropionic acid is an organic compound with the formula CH3SHCO2H. It is a colorless liquid that is used as a building block in the synthesis of various pharmaceuticals and industrial chemicals. The compound is characterized by the presence of a thiol (also called a mercaptan) group, which consists of a sulfur atom bonded to a hydrogen atom (-SH). This functional group makes 3-mercaptopropionic acid a strong smelling, acidic compound that can react with various substances.

In the medical field, 3-mercaptopropionic acid is not used directly as a drug or therapeutic agent. However, it may be employed in the synthesis of certain medications or as a reagent in diagnostic tests. For instance, it has been used to prepare radiopharmaceuticals for imaging and detecting brain tumors.

It is important to note that 3-mercaptopropionic acid can have adverse health effects if not handled properly. It can cause skin and eye irritation, and prolonged exposure may lead to more severe health issues. Therefore, appropriate safety measures should be taken when working with this compound in a laboratory or industrial setting.

Regional blood flow (RBF) refers to the rate at which blood flows through a specific region or organ in the body, typically expressed in milliliters per minute per 100 grams of tissue (ml/min/100g). It is an essential physiological parameter that reflects the delivery of oxygen and nutrients to tissues while removing waste products. RBF can be affected by various factors such as metabolic demands, neural regulation, hormonal influences, and changes in blood pressure or vascular resistance. Measuring RBF is crucial for understanding organ function, diagnosing diseases, and evaluating the effectiveness of treatments.

Left ventricular hypertrophy (LVH) is a medical condition in which the left ventricle of the heart undergoes an enlargement or thickening of its muscle wall. The left ventricle is the main pumping chamber of the heart that supplies oxygenated blood to the rest of the body.

In response to increased workload, such as hypertension (high blood pressure), aortic valve stenosis, or athletic training, the left ventricular muscle may thicken and enlarge. This process is called "hypertrophy." While some degree of hypertrophy can be adaptive in athletes, significant or excessive hypertrophy can lead to impaired relaxation and filling of the left ventricle during diastole, reduced pumping capacity, and decreased compliance of the chamber.

Left ventricular hypertrophy is often asymptomatic initially but can increase the risk of various cardiovascular complications such as heart failure, arrhythmias, myocardial infarction (heart attack), and sudden cardiac death over time. It is typically diagnosed through imaging techniques like echocardiography or cardiac MRI and confirmed by measuring the thickness of the left ventricular wall.

Fumarates are the salts or esters of fumaric acid, a naturally occurring organic compound with the formula HO2C-CH=CH-CO2H. In the context of medical therapy, fumarates are used as medications for the treatment of psoriasis and multiple sclerosis.

One such medication is dimethyl fumarate (DMF), which is a stable salt of fumaric acid. DMF has anti-inflammatory and immunomodulatory properties, and it's used to treat relapsing forms of multiple sclerosis (MS) and moderate-to-severe plaque psoriasis.

The exact mechanism of action of fumarates in these conditions is not fully understood, but they are thought to modulate the immune system and have antioxidant effects. Common side effects of fumarate therapy include gastrointestinal symptoms such as diarrhea, nausea, and abdominal pain, as well as flushing and skin reactions.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Potassium is a essential mineral and an important electrolyte that is widely distributed in the human body. The majority of potassium in the body (approximately 98%) is found within cells, with the remaining 2% present in blood serum and other bodily fluids. Potassium plays a crucial role in various physiological processes, including:

1. Regulation of fluid balance and maintenance of normal blood pressure through its effects on vascular tone and sodium excretion.
2. Facilitation of nerve impulse transmission and muscle contraction by participating in the generation and propagation of action potentials.
3. Protein synthesis, enzyme activation, and glycogen metabolism.
4. Regulation of acid-base balance through its role in buffering systems.

The normal serum potassium concentration ranges from 3.5 to 5.0 mEq/L (milliequivalents per liter) or mmol/L (millimoles per liter). Potassium levels outside this range can have significant clinical consequences, with both hypokalemia (low potassium levels) and hyperkalemia (high potassium levels) potentially leading to serious complications such as cardiac arrhythmias, muscle weakness, and respiratory failure.

Potassium is primarily obtained through the diet, with rich sources including fruits (e.g., bananas, oranges, and apricots), vegetables (e.g., leafy greens, potatoes, and tomatoes), legumes, nuts, dairy products, and meat. In cases of deficiency or increased needs, potassium supplements may be recommended under the guidance of a healthcare professional.

Nitric Oxide Synthase (NOS) is a group of enzymes that catalyze the production of nitric oxide (NO) from L-arginine. There are three distinct isoforms of NOS, each with different expression patterns and functions:

1. Neuronal Nitric Oxide Synthase (nNOS or NOS1): This isoform is primarily expressed in the nervous system and plays a role in neurotransmission, synaptic plasticity, and learning and memory processes.
2. Inducible Nitric Oxide Synthase (iNOS or NOS2): This isoform is induced by various stimuli such as cytokines, lipopolysaccharides, and hypoxia in a variety of cells including immune cells, endothelial cells, and smooth muscle cells. iNOS produces large amounts of NO, which functions as a potent effector molecule in the immune response, particularly in the defense against microbial pathogens.
3. Endothelial Nitric Oxide Synthase (eNOS or NOS3): This isoform is constitutively expressed in endothelial cells and produces low levels of NO that play a crucial role in maintaining vascular homeostasis by regulating vasodilation, inhibiting platelet aggregation, and preventing smooth muscle cell proliferation.

Overall, NOS plays an essential role in various physiological processes, including neurotransmission, immune response, cardiovascular function, and respiratory regulation. Dysregulation of NOS activity has been implicated in several pathological conditions such as hypertension, atherosclerosis, neurodegenerative diseases, and inflammatory disorders.

Parenteral infusions refer to the administration of fluids or medications directly into a patient's vein or subcutaneous tissue using a needle or catheter. This route bypasses the gastrointestinal tract and allows for rapid absorption and onset of action. Parenteral infusions can be used to correct fluid and electrolyte imbalances, administer medications that cannot be given orally, provide nutritional support, and deliver blood products. Common types of parenteral infusions include intravenous (IV) drips, IV push, and subcutaneous infusions. It is important that parenteral infusions are administered using aseptic technique to reduce the risk of infection.

The glomerular mesangium is a part of the nephron in the kidney. It is the region located in the middle of the glomerular tuft, where the capillary loops of the glomerulus are surrounded by a network of extracellular matrix and mesangial cells. These cells and matrix play an important role in maintaining the structure and function of the filtration barrier in the glomerulus, which helps to filter waste products from the blood.

The mesangial cells have contractile properties and can regulate the flow of blood through the capillaries by constricting or dilating the diameter of the glomerular capillary loops. They also play a role in immune responses, as they can phagocytize immune complexes and release cytokines and growth factors that modulate inflammation and tissue repair.

Abnormalities in the mesangium can lead to various kidney diseases, such as glomerulonephritis, mesangial proliferative glomerulonephritis, and diabetic nephropathy.

Calcium channel blockers (CCBs) are a class of medications that work by inhibiting the influx of calcium ions into cardiac and smooth muscle cells. This action leads to relaxation of the muscles, particularly in the blood vessels, resulting in decreased peripheral resistance and reduced blood pressure. Calcium channel blockers also have anti-arrhythmic effects and are used in the management of various cardiovascular conditions such as hypertension, angina, and certain types of arrhythmias.

Calcium channel blockers can be further classified into two main categories based on their chemical structure: dihydropyridines (e.g., nifedipine, amlodipine) and non-dihydropyridines (e.g., verapamil, diltiazem). Dihydropyridines are more selective for vascular smooth muscle and have a greater effect on blood pressure than heart rate or conduction. Non-dihydropyridines have a more significant impact on cardiac conduction and contractility, in addition to their vasodilatory effects.

It is important to note that calcium channel blockers may interact with other medications and should be used under the guidance of a healthcare professional. Potential side effects include dizziness, headache, constipation, and peripheral edema.

Cardiac myocytes are the muscle cells that make up the heart muscle, also known as the myocardium. These specialized cells are responsible for contracting and relaxing in a coordinated manner to pump blood throughout the body. They differ from skeletal muscle cells in several ways, including their ability to generate their own electrical impulses, which allows the heart to function as an independent rhythmical pump. Cardiac myocytes contain sarcomeres, the contractile units of the muscle, and are connected to each other by intercalated discs that help coordinate contraction and ensure the synchronous beating of the heart.

Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) that is commonly used to reduce pain, inflammation, and fever. It works by inhibiting the activity of certain enzymes in the body, including cyclooxygenase (COX), which plays a role in producing prostaglandins, chemicals involved in the inflammatory response.

Indomethacin is available in various forms, such as capsules, suppositories, and injectable solutions, and is used to treat a wide range of conditions, including rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, gout, and bursitis. It may also be used to relieve pain and reduce fever in other conditions, such as dental procedures or after surgery.

Like all NSAIDs, indomethacin can have side effects, including stomach ulcers, bleeding, and kidney damage, especially when taken at high doses or for long periods of time. It may also increase the risk of heart attack and stroke. Therefore, it is important to use indomethacin only as directed by a healthcare provider and to report any unusual symptoms or side effects promptly.

Albuminuria is a medical condition that refers to the presence of albumin in the urine. Albumin is a type of protein normally found in the blood, but not in the urine. When the kidneys are functioning properly, they prevent large proteins like albumin from passing through into the urine. However, when the kidneys are damaged or not working correctly, such as in nephrotic syndrome or other kidney diseases, small amounts of albumin can leak into the urine.

The amount of albumin in the urine is often measured in milligrams per liter (mg/L) or in a spot urine sample, as the albumin-to-creatinine ratio (ACR). A small amount of albumin in the urine is called microalbuminuria, while a larger amount is called macroalbuminuria or proteinuria. The presence of albuminuria can indicate kidney damage and may be a sign of underlying medical conditions such as diabetes or high blood pressure. It is important to monitor and manage albuminuria to prevent further kidney damage and potential complications.

Inositol phosphates are a family of molecules that consist of an inositol ring, which is a six-carbon heterocyclic compound, linked to one or more phosphate groups. These molecules play important roles as intracellular signaling intermediates and are involved in various cellular processes such as cell growth, differentiation, and metabolism.

Inositol hexakisphosphate (IP6), also known as phytic acid, is a form of inositol phosphate that is found in plant-based foods. IP6 has the ability to bind to minerals such as calcium, magnesium, and iron, which can reduce their bioavailability in the body.

Inositol phosphates have been implicated in several diseases, including cancer, diabetes, and neurodegenerative disorders. For example, altered levels of certain inositol phosphates have been observed in cancer cells, suggesting that they may play a role in tumor growth and progression. Additionally, mutations in enzymes involved in the metabolism of inositol phosphates have been associated with several genetic diseases.

Transgenic rats are genetically modified rats that have incorporated foreign DNA (transgene) into their own genome. This is typically done through the use of recombinant DNA techniques in the laboratory. The transgene can come from any species, including other mammals, plants, or even bacteria. Once the transgene is introduced into the rat's embryonic cells, it becomes a permanent part of the rat's genetic makeup and is passed on to its offspring.

Transgenic rats are used in biomedical research as models for studying human diseases, developing new therapies, and testing the safety and efficacy of drugs. They offer several advantages over traditional laboratory rats, including the ability to manipulate specific genes, study gene function and regulation, and investigate the underlying mechanisms of disease.

Some common applications of transgenic rats in research include:

1. Modeling human diseases: Transgenic rats can be engineered to develop symptoms and characteristics of human diseases, such as cancer, diabetes, Alzheimer's, and Parkinson's. This allows researchers to study the disease progression, test new treatments, and evaluate their effectiveness.
2. Gene function and regulation: By introducing specific genes into rats, scientists can investigate their role in various biological processes, such as development, aging, and metabolism. They can also study how genes are regulated and how they interact with each other.
3. Drug development and testing: Transgenic rats can be used to test the safety and efficacy of new drugs before they are tested in humans. By studying the effects of drugs on transgenic rats, researchers can gain insights into their potential benefits and risks.
4. Toxicology studies: Transgenic rats can be used to study the toxicity of chemicals, pollutants, and other substances. This helps ensure that new products and treatments are safe for human use.

In summary, transgenic rats are genetically modified rats that have incorporated foreign DNA into their own genome. They are widely used in biomedical research to model human diseases, study gene function and regulation, develop new therapies, and test the safety and efficacy of drugs.

Radioimmunoassay (RIA) is a highly sensitive analytical technique used in clinical and research laboratories to measure concentrations of various substances, such as hormones, vitamins, drugs, or tumor markers, in biological samples like blood, urine, or tissues. The method relies on the specific interaction between an antibody and its corresponding antigen, combined with the use of radioisotopes to quantify the amount of bound antigen.

In a typical RIA procedure, a known quantity of a radiolabeled antigen (also called tracer) is added to a sample containing an unknown concentration of the same unlabeled antigen. The mixture is then incubated with a specific antibody that binds to the antigen. During the incubation period, the antibody forms complexes with both the radiolabeled and unlabeled antigens.

After the incubation, the unbound (free) radiolabeled antigen is separated from the antibody-antigen complexes, usually through a precipitation or separation step involving centrifugation, filtration, or chromatography. The amount of radioactivity in the pellet (containing the antibody-antigen complexes) is then measured using a gamma counter or other suitable radiation detection device.

The concentration of the unlabeled antigen in the sample can be determined by comparing the ratio of bound to free radiolabeled antigen in the sample to a standard curve generated from known concentrations of unlabeled antigen and their corresponding bound/free ratios. The higher the concentration of unlabeled antigen in the sample, the lower the amount of radiolabeled antigen that will bind to the antibody, resulting in a lower bound/free ratio.

Radioimmunoassays offer high sensitivity, specificity, and accuracy, making them valuable tools for detecting and quantifying low levels of various substances in biological samples. However, due to concerns about radiation safety and waste disposal, alternative non-isotopic immunoassay techniques like enzyme-linked immunosorbent assays (ELISAs) have become more popular in recent years.

Combination drug therapy is a treatment approach that involves the use of multiple medications with different mechanisms of action to achieve better therapeutic outcomes. This approach is often used in the management of complex medical conditions such as cancer, HIV/AIDS, and cardiovascular diseases. The goal of combination drug therapy is to improve efficacy, reduce the risk of drug resistance, decrease the likelihood of adverse effects, and enhance the overall quality of life for patients.

In combining drugs, healthcare providers aim to target various pathways involved in the disease process, which may help to:

1. Increase the effectiveness of treatment by attacking the disease from multiple angles.
2. Decrease the dosage of individual medications, reducing the risk and severity of side effects.
3. Slow down or prevent the development of drug resistance, a common problem in chronic diseases like HIV/AIDS and cancer.
4. Improve patient compliance by simplifying dosing schedules and reducing pill burden.

Examples of combination drug therapy include:

1. Antiretroviral therapy (ART) for HIV treatment, which typically involves three or more drugs from different classes to suppress viral replication and prevent the development of drug resistance.
2. Chemotherapy regimens for cancer treatment, where multiple cytotoxic agents are used to target various stages of the cell cycle and reduce the likelihood of tumor cells developing resistance.
3. Cardiovascular disease management, which may involve combining medications such as angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, diuretics, and statins to control blood pressure, heart rate, fluid balance, and cholesterol levels.
4. Treatment of tuberculosis, which often involves a combination of several antibiotics to target different aspects of the bacterial life cycle and prevent the development of drug-resistant strains.

When prescribing combination drug therapy, healthcare providers must carefully consider factors such as potential drug interactions, dosing schedules, adverse effects, and contraindications to ensure safe and effective treatment. Regular monitoring of patients is essential to assess treatment response, manage side effects, and adjust the treatment plan as needed.

Acrylates are a group of chemical compounds that are derived from acrylic acid. They are commonly used in various industrial and commercial applications, including the production of plastics, resins, paints, and adhesives. In the medical field, acrylates are sometimes used in the formation of dental restorations, such as fillings and dentures, due to their strong bonding properties and durability.

However, it is important to note that some people may have allergic reactions or sensitivities to acrylates, which can cause skin irritation, allergic contact dermatitis, or other adverse effects. Therefore, medical professionals must use caution when working with these materials and ensure that patients are informed of any potential risks associated with their use.

The heart ventricles are the two lower chambers of the heart that receive blood from the atria and pump it to the lungs or the rest of the body. The right ventricle pumps deoxygenated blood to the lungs, while the left ventricle pumps oxygenated blood to the rest of the body. Both ventricles have thick, muscular walls to generate the pressure necessary to pump blood through the circulatory system.

Kidney tubules are the structural and functional units of the kidney responsible for reabsorption, secretion, and excretion of various substances. They are part of the nephron, which is the basic unit of the kidney's filtration and reabsorption process.

There are three main types of kidney tubules:

1. Proximal tubule: This is the initial segment of the kidney tubule that receives the filtrate from the glomerulus. It is responsible for reabsorbing approximately 65% of the filtrate, including water, glucose, amino acids, and electrolytes.
2. Loop of Henle: This U-shaped segment of the tubule consists of a thin descending limb, a thin ascending limb, and a thick ascending limb. The loop of Henle helps to concentrate urine by creating an osmotic gradient that allows water to be reabsorbed in the collecting ducts.
3. Distal tubule: This is the final segment of the kidney tubule before it empties into the collecting duct. It is responsible for fine-tuning the concentration of electrolytes and pH balance in the urine by selectively reabsorbing or secreting substances such as sodium, potassium, chloride, and hydrogen ions.

Overall, kidney tubules play a critical role in maintaining fluid and electrolyte balance, regulating acid-base balance, and removing waste products from the body.

Hydrochlorothiazide is a diuretic drug, which means it helps the body get rid of extra salt and water by increasing the amount of urine that is produced. The medical definition of Hydrochlorothiazide is:

A thiazide diuretic drug used to treat hypertension and edema associated with heart failure, liver cirrhosis, and kidney disorders. It works by inhibiting the reabsorption of sodium and chloride ions in the distal convoluted tubule of the nephron, which increases water excretion and decreases blood volume and pressure. Hydrochlorothiazide may be used alone or in combination with other antihypertensive agents. It is also used to treat conditions such as diabetes insipidus, renal tubular acidosis, and hypercalcemia.

The usual starting dose of hydrochlorothiazide for adults is 25 mg to 50 mg once a day, which may be increased gradually depending on the patient's response. The maximum recommended daily dose is 100 mg. Common side effects of hydrochlorothiazide include increased urination, headache, dizziness, and muscle cramps.

Adrenergic beta-antagonists, also known as beta blockers, are a class of medications that block the effects of adrenaline and noradrenaline (also known as epinephrine and norepinephrine) on beta-adrenergic receptors. These receptors are found in various tissues throughout the body, including the heart, lungs, and blood vessels.

Beta blockers work by binding to these receptors and preventing the activation of certain signaling pathways that lead to increased heart rate, force of heart contractions, and relaxation of blood vessels. As a result, beta blockers can lower blood pressure, reduce heart rate, and decrease the workload on the heart.

Beta blockers are used to treat a variety of medical conditions, including hypertension (high blood pressure), angina (chest pain), heart failure, irregular heart rhythms, migraines, and certain anxiety disorders. Some common examples of beta blockers include metoprolol, atenolol, propranolol, and bisoprolol.

It is important to note that while beta blockers can have many benefits, they can also cause side effects such as fatigue, dizziness, and shortness of breath. Additionally, sudden discontinuation of beta blocker therapy can lead to rebound hypertension or worsening chest pain. Therefore, it is important to follow the dosing instructions provided by a healthcare provider carefully when taking these medications.

Endothelin receptors are a type of G protein-coupled receptor that bind to endothelin, a potent vasoconstrictor peptide. There are two main types of endothelin receptors: ETA and ETB. ETA receptors are found in vascular smooth muscle cells and activate phospholipase C, leading to an increase in intracellular calcium and subsequent contraction of the smooth muscle. ETB receptors are found in both endothelial cells and vascular smooth muscle cells. In endothelial cells, ETB receptor activation leads to the release of nitric oxide and prostacyclin, which cause vasodilation. In vascular smooth muscle cells, ETB receptor activation causes vasoconstriction through a mechanism that is not fully understood.

Endothelin receptors play important roles in regulating blood flow, vascular remodeling, and the development of cardiovascular diseases such as hypertension and heart failure. They are also involved in the regulation of cell growth, differentiation, and apoptosis in various tissues.

Nitric Oxide Synthase Type III (NOS-III), also known as endothelial Nitric Oxide Synthase (eNOS), is an enzyme responsible for the production of nitric oxide (NO) in the endothelium, the lining of blood vessels. This enzyme catalyzes the conversion of L-arginine to L-citrulline, producing NO as a byproduct. The release of NO from eNOS plays an important role in regulating vascular tone and homeostasis, including the relaxation of smooth muscle cells in the blood vessel walls, inhibition of platelet aggregation, and modulation of immune function. Mutations or dysfunction in NOS-III can contribute to various cardiovascular diseases such as hypertension, atherosclerosis, and erectile dysfunction.

Water-electrolyte balance refers to the regulation of water and electrolytes (sodium, potassium, chloride, bicarbonate) in the body to maintain homeostasis. This is crucial for various bodily functions such as nerve impulse transmission, muscle contraction, fluid balance, and pH regulation. The body maintains this balance through mechanisms that control water intake, excretion, and electrolyte concentration in various body fluids like blood and extracellular fluid. Disruptions in water-electrolyte balance can lead to dehydration or overhydration, and imbalances in electrolytes can cause conditions such as hyponatremia (low sodium levels) or hyperkalemia (high potassium levels).

Niacin, also known as nicotinic acid, is a form of vitamin B3 (B-complex vitamin) that is used by the body to turn food into energy. It is found in various foods including meat, fish, milk, eggs, green vegetables, and cereal grains. Niacin is also available as a dietary supplement and prescription medication.

As a medication, niacin is primarily used to treat high cholesterol levels. It works by reducing the production of LDL (bad) cholesterol in the body and increasing the levels of HDL (good) cholesterol. Niacin can also help lower triglycerides, another type of fat found in the blood.

Niacin is available in immediate-release, sustained-release, and extended-release forms. The immediate-release form can cause flushing of the skin, itching, tingling, and headaches, which can be uncomfortable but are not usually serious. The sustained-release and extended-release forms may have fewer side effects, but they can also increase the risk of liver damage and other serious side effects.

It is important to note that niacin should only be taken under the supervision of a healthcare provider, as it can interact with other medications and have potentially serious side effects.

Drug synergism is a pharmacological concept that refers to the interaction between two or more drugs, where the combined effect of the drugs is greater than the sum of their individual effects. This means that when these drugs are administered together, they produce an enhanced therapeutic response compared to when they are given separately.

Drug synergism can occur through various mechanisms, such as:

1. Pharmacodynamic synergism - When two or more drugs interact with the same target site in the body and enhance each other's effects.
2. Pharmacokinetic synergism - When one drug affects the metabolism, absorption, distribution, or excretion of another drug, leading to an increased concentration of the second drug in the body and enhanced therapeutic effect.
3. Physiochemical synergism - When two drugs interact physically, such as when one drug enhances the solubility or permeability of another drug, leading to improved absorption and bioavailability.

It is important to note that while drug synergism can result in enhanced therapeutic effects, it can also increase the risk of adverse reactions and toxicity. Therefore, healthcare providers must carefully consider the potential benefits and risks when prescribing combinations of drugs with known or potential synergistic effects.

A drug interaction is the effect of combining two or more drugs, or a drug and another substance (such as food or alcohol), which can alter the effectiveness or side effects of one or both of the substances. These interactions can be categorized as follows:

1. Pharmacodynamic interactions: These occur when two or more drugs act on the same target organ or receptor, leading to an additive, synergistic, or antagonistic effect. For example, taking a sedative and an antihistamine together can result in increased drowsiness due to their combined depressant effects on the central nervous system.
2. Pharmacokinetic interactions: These occur when one drug affects the absorption, distribution, metabolism, or excretion of another drug. For example, taking certain antibiotics with grapefruit juice can increase the concentration of the antibiotic in the bloodstream, leading to potential toxicity.
3. Food-drug interactions: Some drugs may interact with specific foods, affecting their absorption, metabolism, or excretion. An example is the interaction between warfarin (a blood thinner) and green leafy vegetables, which can increase the risk of bleeding due to enhanced vitamin K absorption from the vegetables.
4. Drug-herb interactions: Some herbal supplements may interact with medications, leading to altered drug levels or increased side effects. For instance, St. John's Wort can decrease the effectiveness of certain antidepressants and oral contraceptives by inducing their metabolism.
5. Drug-alcohol interactions: Alcohol can interact with various medications, causing additive sedative effects, impaired judgment, or increased risk of liver damage. For example, combining alcohol with benzodiazepines or opioids can lead to dangerous levels of sedation and respiratory depression.

It is essential for healthcare providers and patients to be aware of potential drug interactions to minimize adverse effects and optimize treatment outcomes.

Fosinopril is an angiotensin-converting enzyme (ACE) inhibitor used in the treatment of hypertension, heart failure, and to improve survival after a myocardial infarction. It works by blocking the conversion of angiotensin I to angiotensin II, a potent vasoconstrictor, which leads to decreased peripheral vascular resistance, decreased blood pressure, and increased plasma renin activity. Fosinopril is available in oral tablet form for medical use.

The cardiovascular system, also known as the circulatory system, is a biological system responsible for pumping and transporting blood throughout the body in animals and humans. It consists of the heart, blood vessels (comprising arteries, veins, and capillaries), and blood. The main function of this system is to transport oxygen, nutrients, hormones, and cellular waste products throughout the body to maintain homeostasis and support organ function.

The heart acts as a muscular pump that contracts and relaxes to circulate blood. It has four chambers: two atria on the top and two ventricles on the bottom. The right side of the heart receives deoxygenated blood from the body, pumps it through the lungs for oxygenation, and then sends it back to the left side of the heart. The left side of the heart then pumps the oxygenated blood through the aorta and into the systemic circulation, reaching all parts of the body via a network of arteries and capillaries. Deoxygenated blood is collected by veins and returned to the right atrium, completing the cycle.

The cardiovascular system plays a crucial role in regulating temperature, pH balance, and fluid balance throughout the body. It also contributes to the immune response and wound healing processes. Dysfunctions or diseases of the cardiovascular system can lead to severe health complications, such as hypertension, coronary artery disease, heart failure, stroke, and peripheral artery disease.

Mitogen-Activated Protein Kinases (MAPKs) are a family of serine/threonine protein kinases that play crucial roles in various cellular processes, including proliferation, differentiation, transformation, and apoptosis, in response to diverse stimuli such as mitogens, growth factors, hormones, cytokines, and environmental stresses. They are highly conserved across eukaryotes and consist of a three-tiered kinase module composed of MAPK kinase kinases (MAP3Ks), MAPK kinases (MKKs or MAP2Ks), and MAPKs.

Activation of MAPKs occurs through a sequential phosphorylation and activation cascade, where MAP3Ks phosphorylate and activate MKKs, which in turn phosphorylate and activate MAPKs at specific residues (Thr-X-Tyr or Ser-Pro motifs). Once activated, MAPKs can further phosphorylate and regulate various downstream targets, including transcription factors and other protein kinases.

There are four major groups of MAPKs in mammals: extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK1/2/3), p38 MAPKs (p38α/β/γ/δ), and ERK5/BMK1. Each group of MAPKs has distinct upstream activators, downstream targets, and cellular functions, allowing for a high degree of specificity in signal transduction and cellular responses. Dysregulation of MAPK signaling pathways has been implicated in various human diseases, including cancer, diabetes, neurodegenerative disorders, and inflammatory diseases.

A chemical stimulation in a medical context refers to the process of activating or enhancing physiological or psychological responses in the body using chemical substances. These chemicals can interact with receptors on cells to trigger specific reactions, such as neurotransmitters and hormones that transmit signals within the nervous system and endocrine system.

Examples of chemical stimulation include the use of medications, drugs, or supplements that affect mood, alertness, pain perception, or other bodily functions. For instance, caffeine can chemically stimulate the central nervous system to increase alertness and decrease feelings of fatigue. Similarly, certain painkillers can chemically stimulate opioid receptors in the brain to reduce the perception of pain.

It's important to note that while chemical stimulation can have therapeutic benefits, it can also have adverse effects if used improperly or in excessive amounts. Therefore, it's essential to follow proper dosing instructions and consult with a healthcare provider before using any chemical substances for stimulation purposes.

... shows considerably less binding affinities in case of all angiotensin receptor blockers (ARBs). Angiotensin II receptor type 1 ... The angiotensin receptor is activated by the vasoconstricting peptide angiotensin II. The activated receptor in turn couples to ... Angiotensin II receptor type 1 (AT1) is the best characterized angiotensin receptor. It is encoded in humans by the AGTR1 gene ... "Entrez Gene: AGTR1 angiotensin II receptor, type 1". Sharma B, Jaiswal V, Khan MA (October 2020). "In silico Approach for ...
... s (ARBs), formally angiotensin II receptor type 1 (AT1) antagonists, also known as angiotensin ... "Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis". American ... also known as angiotensin receptor blockers (ARBs), are a family of agents that bind to and inhibit the angiotensin II type 1 ... or AT1 receptor antagonists, are a group of pharmaceuticals that bind to and inhibit the angiotensin II receptor type 1 (AT1) ...
"The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 ... The angiotensin II receptors, (ATR1) and (ATR2), are a class of G protein-coupled receptors with angiotensin II as their ... The angiotensin receptor is activated by the vasoconstricting peptide angiotensin II. The activated receptor in turn couples to ... The AT4 receptor is activated by the angiotensin II metabolite angiotensin IV, and may play a role in regulation of the CNS ...
Harada K, Sugaya T, Murakami K, Yazaki Y, Komuro I (November 1999). "Angiotensin II type 1A receptor knockout mice display less ... Through oral administration, fimasartan blocks angiotensin II receptor type 1 (AT1 receptors), reducing pro-hypertensive ... an angiotensin receptor type 1 blocker, on the pharmacokinetics and pharmacodynamics of warfarin in healthy Korean male ... Angiotensin-converting enzyme (ACE) then catalyzes the reaction that forms angiotensin II, which acts on AT1 receptors on the ...
The gene product interacts with the angiotensin II type I receptor and negatively regulates angiotensin II signaling. ... "The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II ... "Entrez Gene: AGTRAP angiotensin II receptor-associated protein". Human AGTRAP genome location and AGTRAP gene details page in ... 2004). "A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle ...
April 2018). "Angiotensin II Type 1 Receptor Autoantibodies in Postural Tachycardia Syndrome". Journal of the American Heart ... Chen L, Du JB, Jin HF, Zhang QY, Li WZ, Wang L, Wang YL (September 2008). "[Effect of selective alpha1 receptor agonist in the ... The hyperadrenergic type of POTS typically requires continuous therapy. If POTS is caused by another condition, outcomes depend ... POTS can also co-occur in all types of Ehlers-Danlos syndrome (EDS), a hereditary connective tissue disorder marked by loose ...
"Pathophysiological Role of Angiotensin II Type 2 Receptor in Cardiovascular and Renal Diseases", Circulation Research, 83 (12 ... The angiotensin receptor blockers (ARBs), also called angiotensin (AT1) receptor antagonists or sartans, are a group of ... Two more angiotensin receptors have been described, AT3 and AT4, but their role is still unknown. AT1 receptors are mainly ... The actions of Ang II are mediated by angiotensin receptors, AT1 and AT2. These receptors are members of the G protein-coupled ...
Zheng L, Xu CC, Chen WD, Shen WL, Ruan CC, Zhu LM, Zhu DL, Gao PJ (Oct 2010). "MicroRNA-155 regulates angiotensin II type 1 ... Transfection of miR-155 into human primary lung fibroblasts reduces the endogenous expression of the angiotensin II receptor ... Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS (Jul 2006). "MicroRNA-155 regulates human angiotensin II type 1 ... Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS (Jul 2006). "MicroRNA-155 regulates human angiotensin II type 1 ...
Some evidence exists to suggest that the Angiotensin II receptor blocker drug telmisartan will prevent corneal ... "Inhibition of Corneal Neovascularization by Blocking the Angiotensin II Type 1 Receptor". Investigative Ophthalmology & Visual ... 8 (1): 182.{{cite journal}}: CS1 maint: multiple names: authors list (link) Usui, T.; Sugisaki, K.; Iriyama, A.; Yokoo, S.; ...
The Angiotensin II receptor type 1 mRNA also undergoes miR-132-mediated silencing. KIAA1211L is also a predicted miR-132 target ... Elton TS, Kuhn DE, Malana GE, Martin MM, Nuovo GJ, Pleister AP, Feldman DS (2007). "MiR-132 Regulates Angiotensin II Type 1 ... Mooney, C. (2012). "Prediction of Short Linear Protein Binding Receptors". Journal of Molecular Biology. 415 (1): 193-204. doi: ... "Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression ...
... can downregulate the angiotensin II Type 1 receptor (AT1-R) in vitro. The predominant source of circulating hemopexin ... Taketani S, Kohno H, Naitoh Y, Tokunaga R (June 1987). "Isolation of the hemopexin receptor from human placenta". The Journal ... The amino-terminal threonine residue is modified by a mucin-type O-linked galactosamine oligosaccharide, and the protein has ... Hvidberg V, Maniecki MB, Jacobsen C, Højrup P, Møller HJ, Moestrup SK (October 2005). "Identification of the receptor ...
Angiotensin II is a potent vasoconstrictor in a substrate concentration-dependent manner. Angiotensin II binds to the type 1 ... angiotensin II receptor (AT1), which sets off a number of actions that result in vasoconstriction and therefore increased blood ... Proteopedia Angiotensin-converting_enzyme - the Angiotensin-Converting Enzyme Structure in Interactive 3D Angiotensin+ ... Wang P, Fedoruk MN, Rupert JL (2008). "Keeping pace with ACE: are ACE inhibitors and angiotensin II type 1 receptor antagonists ...
March 1995). "Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3". ... "Regulation of vascular proteoglycan synthesis by angiotensin II type 1 and type 2 receptors". J. Am. Soc. Nephrol. 12 (12): ... The collagen type II promoter allowed perlecan expression in the extracellular matrix made by chondrocytes only but not in the ... In vitro studies of TGF-β1 signaling and its effects on perlecan expression can have varying results in different cell types. ...
Angiotensin Converting Enzyme 2 (ACE 2) surface receptors are present in AT II cells. AT II cells produces surfactant and plays ... VIP is highly localised in lungs and binds with alveolar type II (AT II) cells via VPAC1 receptor. AT II cells constitute only ... VIP acts on two receptors - VPAC1 and VPAC2, which are class B of G-protein-coupled receptors (GPCRs).VPAC1 is mainly present ... SARS-CoV-2 enters into AT II cells by binding to ACE 2 surface receptors with its spike protein. Keijzers GB (April 2001). " ...
... contributes to the beneficial effects of ACE inhibitors and angiotensin II receptor type 1 antagonists. Santos RA, Brosnihan KB ... Action of neprilysin on angiotensin I or angiotensin II. Action of prolyl endopeptidase on angiotensin I. Action of ACE on ... binds and activates the G-protein coupled receptor Mas receptor leading to opposite effects of those of Ang II. ... MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7)". Physiol Rev. 1 (98): 505-553. doi:10.1152/physrev. ...
... promotes migration and invasion via angiotensin II type 1 receptor and TGFβ signaling. SND1 expression is regulated by Mir ... promotes migration and invasion via angiotensin II type 1 receptor (AT1R) and TGFβ signaling". FEBS Open Bio. 4: 353-61. doi: ... 96 (1): 23-8. Bibcode:1999PNAS...96...23H. doi:10.1073/pnas.96.1.23. PMC 15086. PMID 9874765. Gao X, Ge L, Shao J, Su C, Zhao H ... 693 (1-2): 94-100. doi:10.1016/j.mrfmmm.2010.09.001. PMID 20883704. Kuruma H, Kamata Y, Takahashi H, Igarashi K, Kimura T, Miki ...
"MiR-802 regulates human angiotensin II type 1 receptor expression in intestinal epithelial C2BBe1 cells". AJP: Gastrointestinal ... Caveolin-1 conversely inhibits ROMK channel activity, and expression of the two shows a clear inverse relationship. Co- ... MicroRNA Lin DH, Yue P, Pan C, Sun P, Wang WH (2011). "MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1". J Am ... miR-802 expression in the kidney is stimulated by a high potassium intake, along with caveolin-1 expression, one of the many ...
May 2007). "Angiotensin II type 1 receptor blocker attenuates myocardial remodeling and preserves diastolic function in ... December 2005). "Increased gene expression of collagen Types I and III is inhibited by beta-receptor blockade in patients with ... an enzyme which catalyses the production of the potent vasopressor angiotensin. Angiotensin and its metabolites cause further ... The chronically high levels of circulating neuroendocrine hormones such as catecholamines, renin, angiotensin, and aldosterone ...
There are several types of drugs which includes ACE inhibitors, angiotensin II receptor blockers (ARBs), and renin inhibitors ... Angiotensin II receptor antagonists, also known as angiotensin receptor blockers, can be used to prevent angiotensin II from ... The decapeptide is known as angiotensin I. Angiotensin I is then converted to an octapeptide, angiotensin II by angiotensin- ... Angiotensin II is the major bioactive product of the renin-angiotensin system, binding to receptors on intraglomerular ...
... target angiotensin II type 2 receptors, which may have importance for painful sensitisation. Angiotensin II is an ... Alterman M. (2010). "Development of selective non-peptide angiotensin II type 2 receptor agonists". J Renin Angiotensin ... Receptor agonists and antagonist of angiotensin II receptors that target various parts of the complicated renin-angiotensin ... and angiotensin II type 2 receptors (AT2R). AT1R is the receptor subtype that was found to be mainly responsible for blood ...
... and with lower affinity as an agonist of angiotensin II receptor type 2, mimicking the action of angiotensin II. Its practical ... "Development of selective non-peptide angiotensin II type 2 receptor agonists". Journal of the Renin-Angiotensin-Aldosterone ... L-163,491 is an experimental drug which acts as a partial agonist of angiotensin II receptor type 1, ... applications to date have been limited to scientific research into the function of the angiotensin receptor system, but it has ...
... ß-arrestin-biased ligand at the angiotensin II type I receptor, in healthy and heart failure canines: A novel therapeutic ... The company has disclosed specific interests in the mu Opioid receptor and kappa Opioid receptor. The company raised an ... targets the angiotensin receptor utilizing beta-arrestin bias, an approach that has shown numerous beneficial cardiovascular ... "Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance ...
2008). "Angiotensin II upregulates acyl-CoA:cholesterol acyltransferase-1 via the angiotensin II Type 1 receptor in human ... cholesterol acyltransferase stimulates cholesterol efflux from macrophages and stimulates farnesoid X receptor in hepatocytes ... Kanome T, Watanabe T, Nishio K, Takahashi K, Hongo S, Miyazaki A (September 2008). "Angiotensin II upregulates acyl-CoA: ... ACAT1 enzyme activity is enhanced ACAT1's expression is promoted transcriptionally by leptin, angiotensin II, and insulin in ...
June 2004). "Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure ... December 1993). "A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11 ... The Apelin Receptor (APLNR, also known as APJ) is a G protein-coupled receptor. APLNR possesses two endogenous ligands which ... February 2004). "Agonist-independent nuclear localization of the Apelin, angiotensin AT1, and bradykinin B2 receptors". The ...
Angiotensin receptor blockers (ARBs) antagonize the action of Ang II by binding and inhibiting angiotensin II type 1 receptor. ... Angiotensin-converting enzyme (ACE) inhibitors essentially block the conversion of Ang I to Ang II. They cause relaxation of ... There are several Ang receptors in the body with the most common being AT1R, which is expressed in the heart, kidney, gut, ... The renin-angiotensin-aldosterone system (RAAS) regulates blood pressure, fluid and electrolyte homeostasis, and vascular ...
... and the human C-C chemokine receptor type 2 (CCR2) 2017:The human apelin receptor and the human angiotensin II receptor 2 (AT2R ... 2013: Serotonin receptors 5-HT1B and 5-HT2B, the second HIV co-receptor, C-C chemokine receptor type 5 (CCR5) and the first ... 2016: The marijuana receptor-human Cannabinoid receptor type 1 (CB1) ... In 2010, the structures of the human chemokine CXCR4 receptor (HIV co-receptor), the human dopamine D3 receptor and the human ...
Koganti S, Snyder R, Thekkumkara T (April 2012). "Pharmacologic effects of 2-methoxyestradiol on angiotensin type 1 receptor ... or G-Protein-Coupled Estrogen Receptor (GPER)". Estrogen Receptors. Methods in Molecular Biology. Vol. 1366. pp. 11-7. doi: ... Thekkumkara T, Snyder R, Karamyan VT (2016). "Competitive Binding Assay for the G-Protein-Coupled Receptor 30 (GPR30) ... 2-Methoxyestradiol is derived from estradiol, although it interacts poorly with the estrogen receptors (2,000-fold lower ...
... promoting activation of RhoA following angiotensin II type 1A receptor stimulation". Mol. Cell. Biol. 31 (5): 1066-75. doi: ... 78 (1): 78-88. doi:10.1086/498851. PMC 1380225. PMID 16385451. Ménétrey J, Perderiset M, Cicolari J, Dubois T, Elkhatib N, El ... Anthony DF, Sin YY, Vadrevu S, Advant N, Day JP, Byrne AM, Lynch MJ, Milligan G, Houslay MD, Baillie GS (2011). "β-Arrestin 1 ...
"Agonistic Autoantibodies to the Angiotensin II Type 1 Receptor Enhance Angiotensin II-Induced Renal Vascular Sensitivity and ... For quantities A and B, the fold change is given as (B − A)/A, or equivalently B/A − 1. This formulation has appealing ... 1. However, verbally referring to a doubling as a one-fold change and tripling as a two-fold change is counter-intuitive, and ... 1, a quartering is equal to a log2 fold change of −2 and so on. This leads to more aesthetically pleasing plots, as exponential ...
The C-terminus of RCBTB1 interacts with the angiotensin II receptor-1A. In humans, this gene maps to a region of chromosome 13q ... 2004). "A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle ... RCC1 and BTB domain-containing protein 1 is a protein that in humans is encoded by the RCBTB1 gene. This gene encodes a protein ... 1 (3): 287-92. doi:10.1093/embo-reports/kvd058. PMC 1083732. PMID 11256614. Strausberg RL, Feingold EA, Grouse LH, et al. (2003 ...
... shows considerably less binding affinities in case of all angiotensin receptor blockers (ARBs). Angiotensin II receptor type 1 ... The angiotensin receptor is activated by the vasoconstricting peptide angiotensin II. The activated receptor in turn couples to ... Angiotensin II receptor type 1 (AT1) is the best characterized angiotensin receptor. It is encoded in humans by the AGTR1 gene ... "Entrez Gene: AGTR1 angiotensin II receptor, type 1". Sharma B, Jaiswal V, Khan MA (October 2020). "In silico Approach for ...
Epistatic interaction between variations in the angiotensin I converting enzyme and angiotensin II type 1 receptor genes in ... Epistatic interaction between variations in the angiotensin I converting enzyme and angiotensin II type 1 receptor genes in ... There was a significant interaction (p = 0.033) between genotypes of ACE and angiotensin II type 1 receptor (AGTR1). The ... Objective: To test the hypothesis that gene-gene interaction of the renin-angiotensin system is associated with an effect on ...
angiotensin II type 1A receptor. AT1B. angiotensin II type 1B receptor. AT2. angiotensin II type 2 receptor. ECM. extracellular ... platelet-derived growth factor-receptor β. RAS. renin-angiotensin system. RT. reverse transcription. TGF-β1. transforming ... Angiotensin II Type 1 Receptor Blockade Prevents Up-Regulation of Angiotensin II Type 1A Receptors in Rat Injured Artery. ... Angiotensin II Type 1 Receptor Blockade Prevents Up-Regulation of Angiotensin II Type 1A Receptors in Rat Injured Artery. ...
The angiotensin II type 1 (AT1) receptor is the primary effector for angiotensin II (Ang II), a key peptide regulator of blood ... Loss-of-Function Polymorphic Variants of the Human Angiotensin II Type 1 Receptor. Jakob Lerche Hansen, Stig Haunsø, Mark R. ... Loss-of-Function Polymorphic Variants of the Human Angiotensin II Type 1 Receptor. Jakob Lerche Hansen, Stig Haunsø, Mark R. ... Loss-of-Function Polymorphic Variants of the Human Angiotensin II Type 1 Receptor. Jakob Lerche Hansen, Stig Haunsø, Mark R. ...
II receptor type 1 (AT(1)R) with angiotensin receptor blockers (ARBs) is widely used in the treatment of hypertension. However ... whereas a 10-fold molar excess of olmesartan and the ANG II receptor type 2 blocker PD-123319 is unable to block (125)I-ANG II ... Rs correlates with variations from the human receptor at positions 108, 163, 192, and 198 within the ARB-binding pocket. These ... In contrast, ANG II binding to OKP cells stably expressing rat AT(1A)Rs, which have a conserved AT(1)R-binding pocket with ...
The octapeptide angiotensin II (Ang II) plays a homeostatic role in the regulation of blood pressure and water and electrolyte ... receptor and type 2 (AT. 2. ) receptor, both of which belong to the seven-transmembrane, G protein-coupled receptor family. ... Angiotensin II, mechanical stress, receptor dimerization, renin-angiotensin system, signal transduction. Affiliation:. , , , , ... Angiotensin II Type 1 and Type 2 Receptor-induced Cell Signaling [ Vol. 19 , Issue. 17 ] ...
A commentary has been published: Soluble (pro)renin receptor: a novel ligand for angiotensin II type 1 receptor? ... Soluble (pro)renin receptor: a novel ligand for angiotensin II type 1 receptor? ... Angiotensin II type 1 receptor, endothelial dysfunction, hypertension, soluble (pro)renin receptor ... Until now, renin-angiotensin system (RAS) hyperactivity was largely thought to result from angiotensin II (Ang II)-dependent ...
The angiotensin II type 1 receptor mediates renal interstitial content of tumor necrosis factor-α in diabetic rats. In: ... The angiotensin II type 1 receptor mediates renal interstitial content of tumor necrosis factor-α in diabetic rats. / Siragy, ... title = "The angiotensin II type 1 receptor mediates renal interstitial content of tumor necrosis factor-α in diabetic rats", ... The angiotensin II type 1 receptor mediates renal interstitial content of tumor necrosis factor-α in diabetic rats. ...
Effects of angiotensin II type 1 receptor blocker on bones in mice with type 1 diabetes induced by streptozotocin. In: JRAAS - ... Zhang, Y, Diao, TY, Gu, SS, Wu, SY, Gebru, YA, Chen, X, Wang, JY, Ran, S & Wong, MS 2014, Effects of angiotensin II type 1 ... Effects of angiotensin II type 1 receptor blocker on bones in mice with type 1 diabetes induced by streptozotocin. / Zhang, Yan ... Effects of angiotensin II type 1 receptor blocker on bones in mice with type 1 diabetes induced by streptozotocin. JRAAS - ...
Downregulation of vascular angiotensin II type 1 receptor by thyroid hormone. In: Hypertension. 2003 ; Vol. 41, No. 3 I. pp. ... Downregulation of vascular angiotensin II type 1 receptor by thyroid hormone. Hypertension. 2003 Mar 1;41(3 I):598-603. doi: ... Downregulation of vascular angiotensin II type 1 receptor by thyroid hormone. Kae Fukuyama, Toshihiro Ichiki, Kotaro Takeda, ... We studied the effect of T3 on the angiotensin (Ang) II type 1 receptor (AT1R) expression in vascular smooth muscle cells. T3 ...
Angiotensin II offers two receptors that mediate its effects. The angiotensin II type 1 receptor (AT1R) is definitely a G- ... protein-coupled receptor that confers most of the deleterious effects of angiotensin II while the type 2 receptor confers its ... Legislation of angiotensin II type 1 receptor (In1R) includes a pathophysiological. Legislation of angiotensin II type 1 ... end from the rat AT1A receptor 3′-UTR and mediates angiotensin II-induced down-regulation of rat AT1R BMS 433796 mRNA (6) ...
... type 1 receptor (AT1R) in CaP. Specimens were obtained from 138 CaP patients and analyzed by immunostaining for both MCP-1 and ... type 1 receptor (AT1R) in CaP. Specimens were obtained from 138 CaP patients and analyzed by immunostaining for both MCP-1 and ... type 1 receptor (AT1R) in CaP. Specimens were obtained from 138 CaP patients and analyzed by immunostaining for both MCP-1 and ... type 1 receptor (AT1R) in CaP. Specimens were obtained from 138 CaP patients and analyzed by immunostaining for both MCP-1 and ...
AT1 receptor). Learn about this gene and related health conditions. ... The AGTR1 gene provides instructions for making a protein called the angiotensin II receptor type 1 ( ... The AGTR1 gene provides instructions for making a protein called the angiotensin II receptor type 1 (AT1 receptor). This ... the renin-angiotensin system produces a molecule called angiotensin II, which attaches (binds) to the AT1 receptor, stimulating ...
Angiotensin II type-1 receptor blocker valsartan enhances insulin sensitivity in skeletal muscles of diabetic mice. ... Angiotensin II type-1 receptor blocker valsartan enhances insulin sensitivity in skeletal muscles of diabetic mice. ... Angiotensin II type-1 receptor blocker valsartan enhances insulin sensitivity in skeletal muscles of diabetic mice. ...
Endocytosis modulates cell responses by removing and recycling receptors from the cell surface. Type I angiotensin II receptors ... The type 1 angiotensin II receptor tail affects receptor targeting, internalization, and membrane fusion properties.. ... "The type 1 angiotensin II receptor tail affects receptor targeting, internalization, and membrane fusion properties." Mol ... "The type 1 angiotensin II receptor tail affects receptor targeting, internalization, and membrane fusion properties." Mol ...
Elevation of angiotensin-II type-1-receptor autoantibodies titer in primary aldosteronism as a result of aldosterone-producing ... The mechanism and gene locus have not yet been identified, though CYP11B and the renin and angiotensin II receptor genes have ... which is then converted in the lungs into the octapeptide angiotensin II by angiotensin-converting enzyme (ACE). Angiotensin II ... Angiotensin II is metabolized to angiotensin III, a heptapeptide that is also a stimulator of aldosterone secretion. ...
Drug class: angiotensin receptor blockers. *En español. Patient resources. *Candesartan drug information ... 1.. Coberger ED, Jensen BP, Dalrymple JM. Transfer of candesartan into human breast milk. Obstet Gynecol. 2019;134:481-4. [ ... The authors estimated that the infant would receive a weight-adjusted maternal dosage between 0.8 and 1%.[1] ... Angiotensin II Type 1 Receptor Blockers. Angiotensin Receptor Blockers. ARBs. Disclaimer: Information presented in this ...
Pre-transplant angiotensin receptor II type 1 antibodies and risk of post-transplant focal segmental glomerulosclerosis ... Dive into the research topics of Pre-transplant angiotensin receptor II type 1 antibodies and risk of post-transplant focal ...
The Association of Gene Polymorphisms of the Angiotensin- Converting Enzyme and Angiotensin II Receptor Type 1 with Ischemic ... Keywords : ACE I/D gene polymorphism; AT1R (A1166C) gene polymorphism; ischemic stroke; renin-angiotensin system ... Tammam Sipahi 1, Metin Budak 1, Suat Cakina 1, Babürhan Güldiken 2, Sibel Güldiken 3, Sedat Üstündağ 4, Nilda Turgut 5, Hülya ... 1Departments of Biophysics, Medical Faculty of Trakya University, Edirne. 2Trakya Üniversitesi Tıp Fakültesi Nöroloji Anabilim ...
... or angiotensin receptor blocker (ARB) may experience a decreased incidence of new-onset type 2 diabetes. ... The Impact of ACE Inhibitors or Angiotensin II Type 1 Receptor Blockers on the Development of New-Onset Type 2 Diabetes. 7 ... The Impact of ACE Inhibitors or Angiotensin II Type 1 Receptor Blockers on the Development of New-Onset Type 2 Diabetes. ... An ACEI or ARB prevented new-onset type 2 diabetes (odds ratio 0.78 [95% CI 0.73-0.83]). The influence of either an ACEI (six ...
Angiotensin-converting enzyme-related carboxypeptidase (ACE2) is a recently identified zinc metalloprotease with ... Multiformin-Type Azaphilones Prevent SARS-CoV-2 Binding to ACE2 Receptor. Cells 2023, 12 (1) , 83. https://doi.org/10.3390/ ... The Renin-Angiotensin system and SARS-CoV-2 infection: A role for the ACE2 receptor?. Journal of the Renin-Angiotensin- ... Structural determinants for binding to angiotensin converting enzyme 2 (ACE2) and angiotensin receptors 1 and 2. Frontiers in ...
Angiotensin receptor blockers (ARBs), also known as sartans, act by blocking the activation of angiotensin II type 1 receptors. ... Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan ... ACE Inhibitors: ACE inhibitors work by inhibiting the production of angiotensin II from angiotensin I, which leads to a ... Beta-blockers also inhibit the release of renin by the kidneys, which leads to a decrease in angiotensin II and aldosterone.14 ...
Publication types * Research Support, Non-U.S. Govt MeSH terms * Angiotensin-Converting Enzyme 2 ... On the interactions of the receptor-binding domain of SARS-CoV-1 and SARS-CoV-2 spike proteins with monoclonal antibodies and ... we have mapped the electrostatic epitopes for four monoclonal antibodies and the angiotensin-converting enzyme 2 (ACE2) on both ... the receptor ACE2 Virus Res. 2020 Aug;285:198021. doi: 10.1016/j.virusres.2020.198021. Epub 2020 May 15. ...
68] Angiotensin-receptor blockers have been studied in rat models, with nonuniform results. [69, 70] ... Angiotensin II type 1 receptor blocker inhibits fibrosis in rat nonalcoholic steatohepatitis. Hepatology. 2007 Jun. 45(6):1375- ... Endocannabinoid receptor CB2 in nonalcoholic fatty liver disease. Liver Int. 2007 Mar. 27(2):215-9. [QxMD MEDLINE Link]. ... Clinicians should have a high index of suspicion for NASH and NAFLD in patients with type 2 diabetes; decision aids such as the ...
angiotensin II. VSMC. vascular smooth muscle cell. AT1. angiotensin type 1 receptor. ERK. extracellular signal-regulated kinase ... growth factor receptor bound protein 2. ROS. reactive oxygen species. EGF. epidermal growth factor. ... Angiotensin II (Ang II) induces vascular smooth muscle cell (VSMC) hypertrophy, which results in various cardiovascular ... Quercetin Inhibits Shc- and Phosphatidylinositol 3-Kinase-Mediated c-Jun N-Terminal Kinase Activation by Angiotensin II in ...
An oral medicine that lowers blood pressure; ARB stands for angiotensin (an-gee-oh-TEN-sin) receptor blocker. ... A type of fat produced by the liver and found in the blood. It is also found in some foods. Cholesterol is used by the body to ... A type of therapy that uses a strong beam of light to treat a damaged area. The beam of light is called a laser. A laser is ... Insulin receptors Areas on the outer part of a cell that allow the cell to bind with insulin in the blood. When the cell and ...
Excess of Aminopeptidase A in the Brain Elevates Blood Pressure via the Angiotensin II Type 1 and Bradykinin B2 Receptors ... Hypertension in Non-Type 2 Diabetes in Isfahan, Iran: Incidence and Risk Factors. Mohsen Janghorbani , Ashraf Aminorroaya , ...
Atrial fibrillation is the most common type of cardiac arrhythmia, and is responsible for substantial morbidity and mortality ... Angiotensin receptor-neprilysin inhibitor delays progression from paroxysmal to persistent atrial fibrillation *Youzheng Dong ... Acute atrial tachyarrhythmia induces angiotensin II type 1 receptor-mediated oxidative stress and microvascular flow ... Angiotensin receptor-neprilysin inhibitor delays progression from paroxysmal to persistent atrial fibrillation *Youzheng Dong ...
Angiotensin II Type 2 Receptor (1). * Atad5 (1). * AVPR1B+V2R+AVPR1A/V1aR (1). ... mGluR1a+Metabotropic glutamate receptor (5). * GABA A Receptor beta 2/GABRB2+GABA A Receptor beta 3/GABRB3+GABA A Receptor ... Delta Opioid Receptor+Kappa Opioid Receptor+Mu Opioid Receptor (3). * DNA Polymerase beta+c-Jun+Progesterone Receptor+Vitamin D ... Cannabinoid Receptor I+Adenosine Receptor A2a+Mu Opioid Receptor+Dopamine Receptor D1+Adenosine A3 R (1). ...
Angiotensin-II Type 1 Receptor - AT1R Last post by admin « Fri Apr 29, 2022 6:35 pm. ... Histamine - H1 & H2 Receptors Last post by admin « Sat May 22, 2021 2:20 am. ... 1 Replies. 1250 Views. Last post by admin Tue Jul 04, 2023 7:13 pm. ... 1 Replies. 3762 Views. Last post by admin Sun Aug 29, 2021 12:51 am. ...

No FAQ available that match "receptor angiotensin type 1"

No images available that match "receptor angiotensin type 1"