A pyrazine that is used therapeutically as an antitubercular agent.
Drugs used in the treatment of tuberculosis. They are divided into two main classes: "first-line" agents, those with the greatest efficacy and acceptable degrees of toxicity used successfully in the great majority of cases; and "second-line" drugs used in drug-resistant cases or those in which some other patient-related condition has compromised the effectiveness of primary therapy.
Antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis.
A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160)
A species of gram-positive, aerobic bacteria that produces TUBERCULOSIS in humans, other primates, CATTLE; DOGS; and some other animals which have contact with humans. Growth tends to be in serpentine, cordlike masses in which the bacilli show a parallel orientation.
Amidohydrolases are enzymes that catalyze the hydrolysis of amides and related compounds, playing a crucial role in various biological processes including the breakdown and synthesis of bioactive molecules.
An antitubercular agent that inhibits the transfer of mycolic acids into the cell wall of the tubercle bacillus. It may also inhibit the synthesis of spermidine in mycobacteria. The action is usually bactericidal, and the drug can penetrate human cell membranes to exert its lethal effect. (From Smith and Reynard, Textbook of Pharmacology, 1992, p863)
Substances obtained from various species of microorganisms that are, alone or in combination with other agents, of use in treating various forms of tuberculosis; most of these agents are merely bacteriostatic, induce resistance in the organisms, and may be toxic.
A class of quinoline compounds defined by the presence of two aromatic ring structures which are attached via a side chain to carbon 3 of the qunolinyl structure. The two aromatic moieties are typically NAPTHALENE and BENZENE. Several compounds in this class are used as ANTITUBERCULAR AGENTS.
Any of the infectious diseases of man and other animals caused by species of MYCOBACTERIUM.
MYCOBACTERIUM infections of the lung.
Tuberculosis resistant to chemotherapy with two or more ANTITUBERCULAR AGENTS, including at least ISONIAZID and RIFAMPICIN. The problem of resistance is particularly troublesome in tuberculous OPPORTUNISTIC INFECTIONS associated with HIV INFECTIONS. It requires the use of second line drugs which are more toxic than the first line regimens. TB with isolates that have developed further resistance to at least three of the six classes of second line drugs is defined as EXTENSIVELY DRUG-RESISTANT TUBERCULOSIS.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
Uricosuric that acts by increasing uric acid clearance. It is used in the treatment of gout.
An enzyme that catalyzes the hydrolysis of nicotinamide to nicotinate and ammonia. EC 3.5.1.19.
The ability of bacteria to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
A second-line antitubercular agent that inhibits mycolic acid synthesis.
Urobilin is a pigment formed from the breakdown of bilirubin, found in small amounts in urine and typically becoming more concentrated in dehydrated individuals or those with certain liver conditions.
'Azā compounds' are a class of organic molecules containing at least one nitrogen atom in a five-membered ring, often found in naturally occurring substances and pharmaceuticals, with the name derived from the Arabic word "azZa" meaning 'strong' referring to the ring's aromatic stability.
Nitroimidazoles are a class of antibacterial and antiprotozoal drugs, which, upon reduction, interact with bacterial or protozoal DNA leading to inhibition of nucleic acid synthesis and ultimately cell death, used primarily in the treatment of anaerobic infections and certain parasitic diseases.
Therapy with two or more separate preparations given for a combined effect.
Infection of the spleen with species of MYCOBACTERIUM.
Quinolines are heterocyclic aromatic organic compounds consisting of a two-nitrogened benzene ring fused to a pyridine ring, which have been synthesized and used as building blocks for various medicinal drugs, particularly antibiotics and antimalarials.
A water-soluble vitamin of the B complex occurring in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. It has PELLAGRA-curative, vasodilating, and antilipemic properties.
Energy that is generated by the transfer of protons or electrons across an energy-transducing membrane and that can be used for chemical, osmotic, or mechanical work. Proton-motive force can be generated by a variety of phenomena including the operation of an electron transport chain, illumination of a PURPLE MEMBRANE, and the hydrolysis of ATP by a proton ATPase. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed, p171)
A spectrum of clinical liver diseases ranging from mild biochemical abnormalities to ACUTE LIVER FAILURE, caused by drugs, drug metabolites, and chemicals from the environment.

Reduced pyrazinamidase activity and the natural resistance of Mycobacterium kansasii to the antituberculosis drug pyrazinamide. (1/400)

Pyrazinamide (PZA), an analog of nicotinamide, is a prodrug that requires conversion to the bactericidal compound pyrazinoic acid (POA) by the bacterial pyrazinamidase (PZase) activity of nicotinamidase to show activity against Mycobacterium tuberculosis. Mutations leading to a loss of PZase activity cause PZA resistance in M. tuberculosis. M. kansasii is naturally resistant to PZA and has reduced PZase activity along with an apparently detectable nicotinamidase activity. The role of the reduction in PZase activity in the natural PZA resistance of M. kansasii is unknown. The MICs of PZA and POA for M. kansasii were determined to be 500 and 125 micrograms/ml, respectively. Using [14C]PZA and [14C]nicotinamide, we found that M. kansasii had about 5-fold-less PZase activity and about 25-fold-less nicotinamidase activity than M. tuberculosis. The M. kansasii pncA gene was cloned on a 1.8-kb BamHI DNA fragment, using M. avium pncA probe. Sequence analysis showed that the M. kansasii pncA gene encoded a protein with homology to its counterparts from M. tuberculosis (69.9%), M. avium (65.6%), and Escherichia coli (28.5%). Transformation of naturally PZA-resistant M. bovis BCG with M. kansasii pncA conferred partial PZA susceptibility. Transformation of M. kansasii with M. avium pncA caused functional expression of PZase and high-level susceptibility to PZA, indicating that the natural PZA resistance in M. kansasii results from a reduced PZase activity. Like M. tuberculosis, M. kansasii accumulated POA in the cells at an acidic pH; however, due to its highly active POA efflux pump, the naturally PZA-resistant species M. smegmatis did not. These findings suggest the existence of a weak POA efflux mechanism in M. kansasii.  (+info)

Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. (2/400)

Pyrazinamide (PZA) is an important antituberculosis drug. Unlike most antibacterial agents, PZA, despite its remarkable in vivo activity, has no activity against Mycobacterium tuberculosis in vitro except at an acidic pH. M. tuberculosis is uniquely susceptible to PZA, but other mycobacteria as well as nonmycobacteria are intrinsically resistant. The role of acidic pH in PZA action and the basis for the unique PZA susceptibility of M. tuberculosis are unknown. We found that in M. tuberculosis, acidic pH enhanced the intracellular accumulation of pyrazinoic acid (POA), the active derivative of PZA, after conversion of PZA by pyrazinamidase. In contrast, at neutral or alkaline pH, POA was mainly found outside M. tuberculosis cells. PZA-resistant M. tuberculosis complex organisms did not convert PZA into POA. Unlike M. tuberculosis, intrinsically PZA-resistant M. smegmatis converted PZA into POA, but it did not accumulate POA even at an acidic pH, due to a very active POA efflux mechanism. We propose that a deficient POA efflux mechanism underlies the unique susceptibility of M. tuberculosis to PZA and that the natural PZA resistance of M. smegmatis is due to a highly active efflux pump. These findings may have implications with regard to the design of new antimycobacterial drugs.  (+info)

Mycobacterium bovis BCG causing vertebral osteomyelitis (Pott's disease) following intravesical BCG therapy. (3/400)

We report a case of Mycobacterium bovis BCG vertebral osteomyelitis in a 79-year-old man 2.5 years after intravesical BCG therapy for bladder cancer. The recovered isolate resembled M. tuberculosis biochemically, but resistance to pyrazinamide (PZA) rendered that diagnosis suspect. High-pressure liquid chromatographic studies confirmed the diagnosis of M. bovis BCG infection. The patient was originally started on a four-drug antituberculous regimen of isoniazid, rifampin, ethambutol, and PZA. When susceptibility studies were reported, the regimen was changed to isoniazid and rifampin for 12 months. Subsequently, the patient was transferred to a skilled nursing facility for 3 months, where he underwent intensive physical therapy. Although extravesical adverse reactions are rare, clinicians and clinical microbiologists need to be aware of the possibility of disseminated infection by M. bovis BCG in the appropriate setting of clinical history, physical examination, and laboratory investigation.  (+info)

Intrapulmonary concentrations of pyrazinamide. (4/400)

The objective of this study was to compare the steady-state plasma and intrapulmonary concentrations of orally administered pyrazinamide in normal volunteers and subjects with AIDS. Pyrazinamide was administered at 1 g once daily for 5 days to 40 adult volunteers (10 men with AIDS, 10 normal men, 10 women with AIDS, and 10 normal women). Subjects with AIDS and with more than four stools per day were excluded. Blood was obtained prior to administration of the first dose, 2 h after the last dose, and at the completion of bronchoscopy and bronchoalveolar lavage, which were performed 4 h after the last dose. Standardized bronchoscopy was performed without systemic sedation. The volume of epithelial lining fluid (ELF) recovered was calculated by the urea dilution method. The total number of alveolar cells (AC) was counted in a hemocytometer, and differential cell counting was performed after cytocentrifugation. Pyrazinamide was measured by high-performance liquid chromatography. The presence of AIDS or gender had no significant effect on the concentrations of pyrazinamide in plasma. The concentrations of pyrazinamide in ELF and AC were lower in the subjects with AIDS than in the subjects without AIDS, but the difference was not significant. The concentrations in plasma (mean +/- standard deviation) were 25.1 +/- 7.6 and 21.1 +/- 6.8 microg/ml at 2 and 4 h after the last dose, respectively, and were not significantly different from the concentration (17.4 +/- 16.9 microg/ml) in AC. The concentration of pyrazinamide in ELF was high (431 +/- 220 microg/ml) and was approximately 4 to 40 times the reported MIC for pyrazinamide-susceptible strains of Mycobacterium tuberculosis. The high concentration of pyrazinamide in ELF may contribute in part to the effectiveness of the drug in treating pulmonary tuberculosis.  (+info)

Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. (5/400)

A new set of mutations, including transposition of the insertion sequence IS6110, was identified in the pncA gene from 19 pyrazinamide-resistant Mycobacterium tuberculosis strains. Alignment of the PncA protein from M. tuberculosis with homologous proteins from different bacterial species revealed three highly conserved regions in PncA which may play an important role in the processing of pyrazinamide.  (+info)

pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates from northwestern Russia. (6/400)

Thirty-six pyrazinamide-resistant and eight pyrazinamide-susceptible Mycobacterium tuberculosis isolates from Russia were analyzed for their pncA mutations. Thirty-one (86.1%) of the resistant isolates had a mutation either in pncA or upstream of the gene. Twenty of the 23 different mutations found in this study had not been described earlier. pncA genotype correlated well with pyrazinamidase activity and BACTEC 460 susceptibility test results.  (+info)

Mechanisms of pyrazinamide resistance in mycobacteria: importance of lack of uptake in addition to lack of pyrazinamidase activity. (7/400)

Mycobacteria are known to acquire resistance to the antituberculous drug pyrazinamide (PZA) through mutations in the gene encoding pyrazinamidase (PZase), an enzyme that converts PZA into pyrazinoic acid, the presumed active form of PZA against bacteria. Additional mechanisms of resistance to the drug are known to exist but have not been fully investigated. Among these is the non-uptake of the pro-drug, a possibility investigated in the present study. The uptake mechanism of PZA, a requisite step for the activation of the pro-drug, was studied in Mycobacterium tuberculosis. The incorporation of [14C]PZA by the bacilli was followed in both neutral and acidic environments since PZA activity is known to be optimal at acidic pH. By using a protonophore (carbonyl cyanide m-chlorophenylhydrazone; CCCP), valinomycin, arsenate and low temperature, it was shown that an ATP-dependent transport system is involved in the uptake of PZA. Whilst the structurally analogous compound nicotinamide inhibited the transport system of PZA, other structurally related compounds such as pyrazinoic acid, isoniazid and cytosine did not. Acidic conditions were also without effect. Based on diffusion experiments in liposomes, it was found that PZA diffuses rapidly through membrane bilayers, faster than glycerol, whilst the presence of OmpATb, the porin-like protein of M. tuberculosis, in proteoliposomes slightly increased the diffusion of the drug. This finding may explain why the cell wall mycolate hydrophobic layer does not represent the limiting step in the diffusion of PZA, as judged from comparative experiments using a M. tuberculosis strain and its isogenic mutant elaborating 40% less covalently linked mycolates. PZase activity, and PZA uptake and susceptibility in different mycobacterial species were compared. M. tuberculosis, a naturally PZA-susceptible species, was the only species that exhibited both PZase activity and PZA uptake; no such correlation was observed with the four naturally resistant species examined. Mycobacterium smegmatis possessed a functional PZase but did not take up PZA; the reverse was true for the PZase-negative strain of Mycobacterium avium used, with PZA uptake comparable to that of M. tuberculosis. Mycobacterium bovis BCG and Mycobacterium kansasii exhibited neither a PZase activity nor PZA uptake. These data clearly demonstrate that one of the mechanisms of resistance to PZA resides in the failure of strains to take up the drug, indicating that susceptibility to PZA in mycobacteria requires both the presence of a functional PZase and a PZA transport system. No correlation was observed between the occurrence and cellular location of PZase and of nicotinamidase in the strains examined, suggesting that one or both amides can be hydrolysed by other mycobacterial amidases.  (+info)

Reactivation of latent tuberculosis: variations on the Cornell murine model. (8/400)

Mycobacterium tuberculosis causes active tuberculosis in only a small percentage of infected persons. In most cases, the infection is clinically latent, although immunosuppression can cause reactivation of a latent M. tuberculosis infection. Surprisingly little is known about the biology of the bacterium or the host during latency, and experimental studies on latent tuberculosis suffer from a lack of appropriate animal models. The Cornell model is a historical murine model of latent tuberculosis, in which mice infected with M. tuberculosis are treated with antibiotics (isoniazid and pyrazinamide), resulting in no detectable bacilli by organ culture. Reactivation of infection during this culture-negative state occurred spontaneously and following immunosuppression. In the present study, three variants of the Cornell model were evaluated for their utility in studies of latent and reactivated tuberculosis. The antibiotic regimen, inoculating dose, and antibiotic-free rest period prior to immunosuppression were varied. A variety of immunosuppressive agents, based on immunologic factors known to be important to control of acute infection, were used in attempts to reactivate the infection. Although reactivation of latent infection was observed in all three variants, these models were associated with characteristics that limit their experimental utility, including spontaneous reactivation, difficulties in inducing reactivation, and the generation of altered bacilli. The results from these studies demonstrate that the outcome of Cornell model-based studies depends critically upon the parameters used to establish the model.  (+info)

Pyrazinamide is an antituberculosis agent, a type of medication used to treat tuberculosis (TB) caused by Mycobacterium tuberculosis. It is an antimicrobial drug that works by inhibiting the growth of the bacterium. Pyrazinamide is often used in combination with other TB drugs such as isoniazid, rifampin, and ethambutol.

The medical definition of Pyrazinamide is: a synthetic antituberculosis agent, C6H5N3O (a pyridine derivative), used in the treatment of tuberculosis, especially in combination with isoniazid and rifampin. It is converted in the body to its active form, pyrazinoic acid, which inhibits the growth of Mycobacterium tuberculosis by interfering with bacterial cell wall synthesis.

It's important to note that Pyrazinamide should be used under the supervision of a healthcare professional and is usually prescribed for several months to ensure complete eradication of the TB bacteria. As with any medication, it can cause side effects, and individuals should report any unusual symptoms to their healthcare provider.

Antitubercular agents, also known as anti-tuberculosis drugs or simply TB drugs, are a category of medications specifically used for the treatment and prevention of tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis. These drugs target various stages of the bacteria's growth and replication process to eradicate it from the body or prevent its spread.

There are several first-line antitubercular agents, including:

1. Isoniazid (INH): This is a bactericidal drug that inhibits the synthesis of mycolic acids, essential components of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
2. Rifampin (RIF) or Rifampicin: A bactericidal drug that inhibits DNA-dependent RNA polymerase, preventing the transcription of genetic information into mRNA. This results in the interruption of protein synthesis and ultimately leads to the death of the bacteria.
3. Ethambutol (EMB): A bacteriostatic drug that inhibits the arabinosyl transferase enzyme, which is responsible for the synthesis of arabinan, a crucial component of the mycobacterial cell wall. It is primarily active against actively growing bacilli.
4. Pyrazinamide (PZA): A bactericidal drug that inhibits the synthesis of fatty acids and mycolic acids in the mycobacterial cell wall, particularly under acidic conditions. PZA is most effective during the initial phase of treatment when the bacteria are in a dormant or slow-growing state.

These first-line antitubercular agents are often used together in a combination therapy to ensure complete eradication of the bacteria and prevent the development of drug-resistant strains. Treatment duration typically lasts for at least six months, with the initial phase consisting of daily doses of INH, RIF, EMB, and PZA for two months, followed by a continuation phase of INH and RIF for four months.

Second-line antitubercular agents are used when patients have drug-resistant TB or cannot tolerate first-line drugs. These include drugs like aminoglycosides (e.g., streptomycin, amikacin), fluoroquinolones (e.g., ofloxacin, moxifloxacin), and injectable bacteriostatic agents (e.g., capreomycin, ethionamide).

It is essential to closely monitor patients undergoing antitubercular therapy for potential side effects and ensure adherence to the treatment regimen to achieve optimal outcomes and prevent the development of drug-resistant strains.

Isoniazid is an antimicrobial medication used for the prevention and treatment of tuberculosis (TB). It is a first-line medication, often used in combination with other TB drugs, to kill the Mycobacterium tuberculosis bacteria that cause TB. Isoniazid works by inhibiting the synthesis of mycolic acids, which are essential components of the bacterial cell wall. This leads to bacterial death and helps to control the spread of TB.

Isoniazid is available in various forms, including tablets, capsules, and liquid solutions. It can be taken orally or given by injection. The medication is generally well-tolerated, but it can cause side effects such as peripheral neuropathy, hepatitis, and skin rashes. Regular monitoring of liver function tests and supplementation with pyridoxine (vitamin B6) may be necessary to prevent or manage these side effects.

It is important to note that Isoniazid is not effective against drug-resistant strains of TB, and its use should be guided by the results of drug susceptibility testing. Additionally, it is essential to complete the full course of treatment as prescribed to ensure the successful eradication of the bacteria and prevent the development of drug-resistant strains.

Rifampin is an antibiotic medication that belongs to the class of drugs known as rifamycins. It works by inhibiting bacterial DNA-dependent RNA polymerase, thereby preventing bacterial growth and multiplication. Rifampin is used to treat a variety of infections caused by bacteria, including tuberculosis, Haemophilus influenzae, Neisseria meningitidis, and Legionella pneumophila. It is also used to prevent meningococcal disease in people who have been exposed to the bacteria.

Rifampin is available in various forms, including tablets, capsules, and injectable solutions. The medication is usually taken two to four times a day, depending on the type and severity of the infection being treated. Rifampin may be given alone or in combination with other antibiotics.

It is important to note that rifampin can interact with several other medications, including oral contraceptives, anticoagulants, and anti-seizure drugs, among others. Therefore, it is essential to inform your healthcare provider about all the medications you are taking before starting treatment with rifampin.

Rifampin may cause side effects such as nausea, vomiting, diarrhea, dizziness, headache, and changes in the color of urine, tears, sweat, and saliva to a reddish-orange color. These side effects are usually mild and go away on their own. However, if they persist or become bothersome, it is important to consult your healthcare provider.

In summary, rifampin is an antibiotic medication used to treat various bacterial infections and prevent meningococcal disease. It works by inhibiting bacterial DNA-dependent RNA polymerase, preventing bacterial growth and multiplication. Rifampin may interact with several other medications, and it can cause side effects such as nausea, vomiting, diarrhea, dizziness, headache, and changes in the color of body fluids.

'Mycobacterium tuberculosis' is a species of slow-growing, aerobic, gram-positive bacteria that demonstrates acid-fastness. It is the primary causative agent of tuberculosis (TB) in humans. This bacterium has a complex cell wall rich in lipids, including mycolic acids, which provides a hydrophobic barrier and makes it resistant to many conventional antibiotics. The ability of M. tuberculosis to survive within host macrophages and resist the immune response contributes to its pathogenicity and the difficulty in treating TB infections.

M. tuberculosis is typically transmitted through inhalation of infectious droplets containing the bacteria, which primarily targets the lungs but can spread to other parts of the body (extrapulmonary TB). The infection may result in a spectrum of clinical manifestations, ranging from latent TB infection (LTBI) to active disease. LTBI represents a dormant state where individuals are infected with M. tuberculosis but do not show symptoms and cannot transmit the bacteria. However, they remain at risk of developing active TB throughout their lifetime, especially if their immune system becomes compromised.

Effective prevention and control strategies for TB rely on early detection, treatment, and public health interventions to limit transmission. The current first-line treatments for drug-susceptible TB include a combination of isoniazid, rifampin, ethambutol, and pyrazinamide for at least six months. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis present significant challenges in TB control and require more complex treatment regimens.

Amidohydrolases are a class of enzymes that catalyze the hydrolysis of amides and related compounds, resulting in the formation of an acid and an alcohol. This reaction is also known as amide hydrolysis or amide bond cleavage. Amidohydrolases play important roles in various biological processes, including the metabolism of xenobiotics (foreign substances) and endogenous compounds (those naturally produced within an organism).

The term "amidohydrolase" is a broad one that encompasses several specific types of enzymes, such as proteases, esterases, lipases, and nitrilases. These enzymes have different substrate specificities and catalytic mechanisms but share the common ability to hydrolyze amide bonds.

Proteases, for example, are a major group of amidohydrolases that specifically cleave peptide bonds in proteins. They are involved in various physiological processes, such as protein degradation, digestion, and regulation of biological pathways. Esterases and lipases hydrolyze ester bonds in various substrates, including lipids and other organic compounds. Nitrilases convert nitriles into carboxylic acids and ammonia by cleaving the nitrile bond (C≡N) through hydrolysis.

Amidohydrolases are found in various organisms, from bacteria to humans, and have diverse applications in industry, agriculture, and medicine. For instance, they can be used for the production of pharmaceuticals, biofuels, detergents, and other chemicals. Additionally, inhibitors of amidohydrolases can serve as therapeutic agents for treating various diseases, such as cancer, viral infections, and neurodegenerative disorders.

Ethambutol is an antimycobacterial medication used for the treatment of tuberculosis (TB). It works by inhibiting the synthesis of mycobacterial cell walls, which leads to the death of the bacteria. Ethambutol is often used in combination with other TB drugs, such as isoniazid and rifampin, to prevent the development of drug-resistant strains of the bacteria.

The most common side effect of ethambutol is optic neuritis, which can cause visual disturbances such as decreased vision, color blindness, or blurred vision. This side effect is usually reversible if the medication is stopped promptly. Other potential side effects include skin rashes, joint pain, and gastrointestinal symptoms such as nausea and vomiting.

Ethambutol is available in oral tablet and solution forms, and is typically taken once or twice daily. The dosage of ethambutol is based on the patient's weight, and it is important to follow the healthcare provider's instructions carefully to avoid toxicity. Regular monitoring of visual acuity and liver function is recommended during treatment with ethambutol.

Antitubercular antibiotics are a class of medications specifically used to treat tuberculosis (TB) and other mycobacterial infections. Tuberculosis is caused by the bacterium Mycobacterium tuberculosis, which can affect various organs, primarily the lungs.

There are several antitubercular antibiotics available, with different mechanisms of action that target the unique cell wall structure and metabolism of mycobacteria. Some commonly prescribed antitubercular antibiotics include:

1. Isoniazid (INH): This is a first-line medication for treating TB. It inhibits the synthesis of mycolic acids, a crucial component of the mycobacterial cell wall. Isoniazid can be bactericidal or bacteriostatic depending on the concentration and duration of treatment.
2. Rifampin (RIF): Also known as rifampicin, this antibiotic inhibits bacterial DNA-dependent RNA polymerase, preventing the transcription of genetic information into mRNA. It is a potent bactericidal agent against mycobacteria and is often used in combination with other antitubercular drugs.
3. Ethambutol (EMB): This antibiotic inhibits the synthesis of arabinogalactan and mycolic acids, both essential components of the mycobacterial cell wall. Ethambutol is primarily bacteriostatic but can be bactericidal at higher concentrations.
4. Pyrazinamide (PZA): This medication is active against dormant or slow-growing mycobacteria, making it an essential component of TB treatment regimens. Its mechanism of action involves the inhibition of fatty acid synthesis and the disruption of bacterial membrane potential.
5. Streptomycin: An aminoglycoside antibiotic that binds to the 30S ribosomal subunit, inhibiting protein synthesis in mycobacteria. It is primarily used as a second-line treatment for drug-resistant TB.
6. Fluoroquinolones: These are a class of antibiotics that inhibit DNA gyrase and topoisomerase IV, essential enzymes involved in bacterial DNA replication. Examples include ciprofloxacin, moxifloxacin, and levofloxacin, which can be used as second-line treatments for drug-resistant TB.

These antitubercular drugs are often used in combination to prevent the development of drug resistance and improve treatment outcomes. The World Health Organization (WHO) recommends a standardized regimen consisting of isoniazid, rifampicin, ethambutol, and pyrazinamide for the initial two months, followed by isoniazid and rifampicin for an additional four to seven months. However, treatment regimens may vary depending on the patient's clinical presentation, drug susceptibility patterns, and local guidelines.

Diarylquinolines are a class of antimicrobial compounds, which include drugs such as bedaquiline and TBA-354. These agents inhibit mycobacterial ATP synthase and have been used in the treatment of drug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB).

Bedaquiline, for example, is a first-in-class diarylquinoline medication that was approved by the US Food and Drug Administration (FDA) in 2012 for use in combination with other antituberculosis drugs to treat adults with pulmonary MDR-TB.

It's important to note that the use of diarylquinolines should be under the guidance of a healthcare professional, as they can have potential side effects and drug interactions.

Tuberculosis (TB) is a chronic infectious disease caused by the bacterium Mycobacterium tuberculosis. It primarily affects the lungs but can also involve other organs and tissues in the body. The infection is usually spread through the air when an infected person coughs, sneezes, or talks.

The symptoms of pulmonary TB include persistent cough, chest pain, coughing up blood, fatigue, fever, night sweats, and weight loss. Diagnosis typically involves a combination of medical history, physical examination, chest X-ray, and microbiological tests such as sputum smear microscopy and culture. In some cases, molecular tests like polymerase chain reaction (PCR) may be used for rapid diagnosis.

Treatment usually consists of a standard six-month course of multiple antibiotics, including isoniazid, rifampin, ethambutol, and pyrazinamide. In some cases, longer treatment durations or different drug regimens might be necessary due to drug resistance or other factors. Preventive measures include vaccination with the Bacillus Calmette-Guérin (BCG) vaccine and early detection and treatment of infected individuals to prevent transmission.

Pulmonary tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. It primarily affects the lungs and can spread to other parts of the body through the bloodstream or lymphatic system. The infection typically enters the body when a person inhales droplets containing the bacteria, which are released into the air when an infected person coughs, sneezes, or talks.

The symptoms of pulmonary TB can vary but often include:

* Persistent cough that lasts for more than three weeks and may produce phlegm or blood-tinged sputum
* Chest pain or discomfort, particularly when breathing deeply or coughing
* Fatigue and weakness
* Unexplained weight loss
* Fever and night sweats
* Loss of appetite

Pulmonary TB can cause serious complications if left untreated, including damage to the lungs, respiratory failure, and spread of the infection to other parts of the body. Treatment typically involves a course of antibiotics that can last several months, and it is essential for patients to complete the full treatment regimen to ensure that the infection is fully eradicated.

Preventive measures include vaccination with the Bacillus Calmette-Guérin (BCG) vaccine, which can provide some protection against severe forms of TB in children, and measures to prevent the spread of the disease, such as covering the mouth and nose when coughing or sneezing, wearing a mask in public places, and avoiding close contact with people who have active TB.

Multidrug-resistant tuberculosis (MDR-TB) is a form of tuberculosis (TB) infection caused by bacteria that are resistant to at least two of the first-line anti-TB drugs, isoniazid and rifampin. This makes MDR-TB more difficult and expensive to treat, requiring longer treatment durations and the use of second-line medications, which can have more severe side effects.

MDR-TB can occur when there are errors in prescribing or taking anti-TB drugs, or when people with TB do not complete their full course of treatment. It is a significant global health concern, particularly in low- and middle-income countries where TB is more prevalent and resources for diagnosis and treatment may be limited.

MDR-TB can spread from person to person through the air when someone with the infection coughs, speaks, or sneezes. People at higher risk of contracting MDR-TB include those who have been in close contact with someone with MDR-TB, people with weakened immune systems, and healthcare workers who treat TB patients.

Preventing the spread of MDR-TB involves early detection and prompt treatment, as well as infection control measures such as wearing masks, improving ventilation, and separating infected individuals from others. It is also important to ensure that anti-TB drugs are used correctly and that patients complete their full course of treatment to prevent the development of drug-resistant strains.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Benzbromarone is a medication that was previously used to treat gout and hyperuricemia (elevated levels of uric acid in the blood). It works by increasing the excretion of uric acid through the kidneys. However, due to concerns about its potential hepatotoxicity (liver toxicity), it is no longer widely used and has been discontinued or restricted in many countries.

The chemical structure of benzbromarone is characterized by a benzene ring substituted with bromine and a propylamino group, which is further substituted with a carbamoyl group. This gives the compound its unique properties as a uricosuric agent.

It's important to note that benzbromarone should only be used under the supervision of a healthcare professional, and patients should be closely monitored for signs of liver toxicity. Additionally, there are many alternative medications available to treat gout and hyperuricemia, so benzbromarone is typically reserved for use in specific cases where other treatments have failed or are contraindicated.

I'm sorry for any confusion, but "Nicotinamidase" does not have a widely accepted or specific medical definition in the context of human health and disease. The term "Nicotinamidase" is used in biochemistry to refer to an enzyme that catalyzes the deamination of nicotinamide (a form of vitamin B3) to produce nicotinic acid. However, this enzyme is not typically discussed in the context of medical diagnosis, treatment, or research.

If you have any questions about nicotinamide, nicotinamidase, or any other medical topics, I would be happy to try to help clarify or provide additional information.

Bacterial drug resistance is a type of antimicrobial resistance that occurs when bacteria evolve the ability to survive and reproduce in the presence of drugs (such as antibiotics) that would normally kill them or inhibit their growth. This can happen due to various mechanisms, including genetic mutations or the acquisition of resistance genes from other bacteria.

As a result, bacterial infections may become more difficult to treat, requiring higher doses of medication, alternative drugs, or longer treatment courses. In some cases, drug-resistant infections can lead to serious health complications, increased healthcare costs, and higher mortality rates.

Examples of bacterial drug resistance include methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE), and multidrug-resistant tuberculosis (MDR-TB). Preventing the spread of bacterial drug resistance is crucial for maintaining effective treatments for infectious diseases.

Ethionamide is an antimicrobial medication used to treat tuberculosis (TB) caused by drug-resistant strains of the bacterium Mycobacterium tuberculosis. It belongs to a class of drugs called thioamides, which work by inhibiting the bacteria's ability to synthesize its cell wall.

Ethionamide is often used in combination with other TB medications to prevent the development of drug-resistant strains and improve treatment outcomes. Common side effects of ethionamide include gastrointestinal symptoms such as nausea, vomiting, and loss of appetite, as well as neurological symptoms such as dizziness, headache, and peripheral neuropathy.

It is important to note that the use of ethionamide should be under the close supervision of a healthcare professional, as it can cause serious side effects and its effectiveness may be affected by drug interactions or individual patient factors.

Urobilin is a pigment produced in the liver as a byproduct of the breakdown of bilirubin, which is a waste product resulting from the breakdown of hemoglobin in red blood cells. Some urobilin is excreted through the bile into the intestines, where it can be converted by bacteria into stercobilin, another pigment responsible for the brown color of feces. A portion of the urobilin produced in the liver is reabsorbed into the bloodstream and eventually excreted through the urine, giving it a yellow color. Therefore, urobilin can be detected in both urine and feces.

'Aza compounds' is a general term used in chemistry to describe organic compounds containing a nitrogen atom (denoted by the symbol 'N' or 'aza') that has replaced a carbon atom in a hydrocarbon structure. The term 'aza' comes from the Greek word for nitrogen, 'azote.'

In medicinal chemistry and pharmacology, aza compounds are of particular interest because the presence of the nitrogen atom can significantly affect the chemical and biological properties of the compound. For example, aza compounds may exhibit enhanced bioavailability, metabolic stability, or receptor binding affinity compared to their non-aza counterparts.

Some common examples of aza compounds in medicine include:

1. Aza-aromatic compounds: These are aromatic compounds that contain one or more nitrogen atoms in the ring structure. Examples include pyridine, quinoline, and isoquinoline derivatives, which have been used as anti-malarial, anti-inflammatory, and anti-cancer agents.
2. Aza-heterocyclic compounds: These are non-aromatic compounds that contain one or more nitrogen atoms in a cyclic structure. Examples include azepine, diazepine, and triazole derivatives, which have been used as anxiolytic, anti-viral, and anti-fungal agents.
3. Aza-peptides: These are peptide compounds that contain one or more nitrogen atoms in the backbone structure. Examples include azapeptides and azabicyclopeptides, which have been used as enzyme inhibitors and neuroprotective agents.
4. Aza-sugars: These are sugar derivatives that contain one or more nitrogen atoms in the ring structure. Examples include azasugars and iminosugars, which have been used as glycosidase inhibitors and anti-viral agents.

Overall, aza compounds represent an important class of medicinal agents with diverse chemical structures and biological activities.

Nitroimidazoles are a class of antibiotic drugs that contain a nitro group (-NO2) attached to an imidazole ring. These medications have both antiprotozoal and antibacterial properties, making them effective against a range of anaerobic organisms, including bacteria and parasites. They work by being reduced within the organism, which leads to the formation of toxic radicals that interfere with DNA function and ultimately kill the microorganism.

Some common examples of nitroimidazoles include:

* Metronidazole: used for treating infections caused by anaerobic bacteria and protozoa, such as bacterial vaginosis, amebiasis, giardiasis, and pseudomembranous colitis.
* Tinidazole: similar to metronidazole, it is used to treat various infections caused by anaerobic bacteria and protozoa, including trichomoniasis, giardiasis, and amebiasis.
* Secnidazole: another medication in this class, used for the treatment of bacterial vaginosis, trichomoniasis, and amebiasis.

Nitroimidazoles are generally well-tolerated, but side effects can include gastrointestinal symptoms like nausea, vomiting, or diarrhea. Rare but serious side effects may include peripheral neuropathy (nerve damage) and central nervous system toxicity, particularly with high doses or long-term use. It is essential to follow the prescribed dosage and duration closely to minimize potential risks while ensuring effective treatment.

Combination drug therapy is a treatment approach that involves the use of multiple medications with different mechanisms of action to achieve better therapeutic outcomes. This approach is often used in the management of complex medical conditions such as cancer, HIV/AIDS, and cardiovascular diseases. The goal of combination drug therapy is to improve efficacy, reduce the risk of drug resistance, decrease the likelihood of adverse effects, and enhance the overall quality of life for patients.

In combining drugs, healthcare providers aim to target various pathways involved in the disease process, which may help to:

1. Increase the effectiveness of treatment by attacking the disease from multiple angles.
2. Decrease the dosage of individual medications, reducing the risk and severity of side effects.
3. Slow down or prevent the development of drug resistance, a common problem in chronic diseases like HIV/AIDS and cancer.
4. Improve patient compliance by simplifying dosing schedules and reducing pill burden.

Examples of combination drug therapy include:

1. Antiretroviral therapy (ART) for HIV treatment, which typically involves three or more drugs from different classes to suppress viral replication and prevent the development of drug resistance.
2. Chemotherapy regimens for cancer treatment, where multiple cytotoxic agents are used to target various stages of the cell cycle and reduce the likelihood of tumor cells developing resistance.
3. Cardiovascular disease management, which may involve combining medications such as angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, diuretics, and statins to control blood pressure, heart rate, fluid balance, and cholesterol levels.
4. Treatment of tuberculosis, which often involves a combination of several antibiotics to target different aspects of the bacterial life cycle and prevent the development of drug-resistant strains.

When prescribing combination drug therapy, healthcare providers must carefully consider factors such as potential drug interactions, dosing schedules, adverse effects, and contraindications to ensure safe and effective treatment. Regular monitoring of patients is essential to assess treatment response, manage side effects, and adjust the treatment plan as needed.

Splenic tuberculosis is a form of extrapulmonary tuberculosis (ETB), which refers to a manifestation of the disease outside of the lungs. It is caused by the bacterium Mycobacterium tuberculosis.

In splenic tuberculosis, the infection involves the spleen (an organ located in the upper left part of the abdomen that filters blood and helps fight infection). The infection can occur through the hematogenous spread (dissemination via the bloodstream) from a primary focus elsewhere in the body, such as the lungs.

The disease presents with various symptoms, including fever, fatigue, weight loss, abdominal pain, and splenomegaly (enlargement of the spleen). Diagnosis often requires a combination of clinical evaluation, imaging studies, and microbiological or histopathological confirmation. Treatment typically involves a prolonged course of multidrug antibiotics to eliminate the infection and prevent complications.

Quinolines are a class of organic compounds that consist of a bicyclic structure made up of a benzene ring fused to a piperidine ring. They have a wide range of applications, but they are perhaps best known for their use in the synthesis of various medications, including antibiotics and antimalarial drugs.

Quinolone antibiotics, such as ciprofloxacin and levofloxacin, work by inhibiting the bacterial enzymes involved in DNA replication and repair. They are commonly used to treat a variety of bacterial infections, including urinary tract infections, pneumonia, and skin infections.

Quinoline-based antimalarial drugs, such as chloroquine and hydroxychloroquine, work by inhibiting the parasite's ability to digest hemoglobin in the red blood cells. They are commonly used to prevent and treat malaria.

It is important to note that quinolines have been associated with serious side effects, including tendinitis and tendon rupture, nerve damage, and abnormal heart rhythms. As with any medication, it is important to use quinolines only under the supervision of a healthcare provider, and to follow their instructions carefully.

Niacin, also known as vitamin B3 or nicotinic acid, is a water-soluble vitamin that is essential for human health. It is a crucial component of the coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate), which play key roles in energy production, DNA repair, and cellular signaling.

Niacin can be obtained from various dietary sources, including meat, poultry, fish, legumes, whole grains, and fortified foods. It is also available as a dietary supplement and prescription medication. Niacin deficiency can lead to a condition called pellagra, which is characterized by symptoms such as diarrhea, dermatitis, dementia, and, if left untreated, death.

In addition to its role in energy metabolism and DNA repair, niacin has been shown to have potential benefits for cardiovascular health, including lowering LDL (low-density lipoprotein) cholesterol and triglyceride levels while raising HDL (high-density lipoprotein) cholesterol levels. However, high-dose niacin therapy can also have adverse effects, such as flushing, itching, and liver toxicity, so it should be used under the guidance of a healthcare professional.

The Proton-Motive Force (PMF) is not a medical term per se, but it is a fundamental concept in the field of biochemistry and cellular physiology. It is primarily used to describe a key mechanism in bacterial cells and mitochondria that drives the synthesis of ATP (adenosine triphosphate), an essential energy currency for many cellular processes.

PMF is the electrochemical gradient of protons (H+ ions) across a biological membrane, such as the inner mitochondrial membrane or the bacterial cytoplasmic membrane. This gradient consists of two components:

1. A chemical component, which arises from the difference in proton concentration [H+] between the two sides of the membrane. Protons tend to move from an area of higher concentration (more acidic) to an area of lower concentration (less acidic).
2. An electrical component, which is due to the separation of charges across the membrane. The movement of protons generates a charge difference, creating an electric field that drives the flow of charged particles, such as ions.

The PMF stores energy in the form of this electrochemical gradient, and it can be harnessed by special enzymes called ATP synthases to produce ATP through a process called chemiosmosis. When protons flow back across the membrane through these enzymes, they release their stored energy, which is then used to convert ADP (adenosine diphosphate) and inorganic phosphate into ATP.

While PMF is not a medical term per se, understanding its role in cellular energy production is crucial for grasping various aspects of cell biology, bioenergetics, and related medical fields such as molecular biology, microbiology, and mitochondrial disorders.

Drug-Induced Liver Injury (DILI) is a medical term that refers to liver damage or injury caused by the use of medications or drugs. This condition can vary in severity, from mild abnormalities in liver function tests to severe liver failure, which may require a liver transplant.

The exact mechanism of DILI can differ depending on the drug involved, but it generally occurs when the liver metabolizes the drug into toxic compounds that damage liver cells. This can happen through various pathways, including direct toxicity to liver cells, immune-mediated reactions, or metabolic idiosyncrasies.

Symptoms of DILI may include jaundice (yellowing of the skin and eyes), fatigue, abdominal pain, nausea, vomiting, loss of appetite, and dark urine. In severe cases, it can lead to complications such as ascites, encephalopathy, and bleeding disorders.

The diagnosis of DILI is often challenging because it requires the exclusion of other potential causes of liver injury. Liver function tests, imaging studies, and sometimes liver biopsies may be necessary to confirm the diagnosis. Treatment typically involves discontinuing the offending drug and providing supportive care until the liver recovers. In some cases, medications that protect the liver or promote its healing may be used.

No FAQ available that match "pyrazinamide"

No images available that match "pyrazinamide"