A vitamin-K dependent zymogen present in the blood, which, upon activation by thrombin and thrombomodulin exerts anticoagulant properties by inactivating factors Va and VIIIa at the rate-limiting steps of thrombin formation.
A group of compounds containing the porphin structure, four pyrrole rings connected by methine bridges in a cyclic configuration to which a variety of side chains are attached. The nature of the side chain is indicated by a prefix, as uroporphyrin, hematoporphyrin, etc. The porphyrins, in combination with iron, form the heme component in biologically significant compounds such as hemoglobin and myoglobin.
Transforming proteins coded by sis oncogenes. Transformation of cells by v-sis is related to its interaction with the PDGF receptor and also its ability to alter other transcription factors.
The GENETIC TRANSLATION product from a GENE FUSION between a sequence from the tpr protein gene on the human CHROMOSOME 1 and the gene for PROTO-ONCOGENE PROTEINS C-MET.
An oncogene protein that was originally isolated from a spontaneous musculo-aponeurotic FIBROSARCOMA in CHICKEN and shown to be the transforming gene of the avian retrovirus AS42. It is a basic leucine zipper TRANSCRIPTION FACTOR and the founding member of the MAF TRANSCRIPTION FACTORS.
An absence or deficiency in PROTEIN C which leads to impaired regulation of blood coagulation. It is associated with an increased risk of severe or premature thrombosis. (Stedman's Med. Dict., 26th ed.)
Transforming glycoprotein coded by the fms oncogene from the Susan McDonough strain of feline sarcoma virus (SM-FeSV). The oncogene protein v-fms lacks sequences, which, in the highly homologous proto-oncogene protein c-fms (CSF-1 receptor), normally serve to regulate its tyrosine kinase activity. The missing sequences in v-fms mimic the effect of ligand and lead to constitutive cell growth. The protein gp120(v-fms) is post-translationally modified to generate gp140(v-fms).
Transforming proteins coded by mos oncogenes. The v-mos proteins were originally isolated from the Moloney murine sarcoma virus (Mo-MSV).
A member of the serpin family of proteins that is found in plasma and urine. It is dependent on heparin and is able to inhibit activated PROTEIN C; THROMBIN; KALLIKREIN; and other SERINE ENDOPEPTIDASES.
Transforming protein coded by myc oncogenes. The v-myc protein has been found in several replication-defective avian retrovirus isolates which induce a broad spectrum of malignancies.
Transforming protein coded by jun oncogenes (GENES, JUN). This is a gag-onc fusion protein of about 65 kDa derived from avian sarcoma virus. v-jun lacks a negative regulatory domain that regulates transcription in c-jun.
A family of transforming proteins isolated from retroviruses such as MOUSE SARCOMA VIRUSES. They are viral-derived members of the raf-kinase family of serine-theonine kinases.
Transforming proteins coded by fos oncogenes. These proteins have been found in the Finkel-Biskis-Jinkins (FBJ-MSV) and Finkel-Biskis-Reilly (FBR-MSV) murine sarcoma viruses which induce osteogenic sarcomas in mice. The FBJ-MSV v-fos gene encodes a p55-kDa protein and the FBR-MSV v-fos gene encodes a p75-kDa fusion protein.
A hemostatic disorder characterized by a poor anticoagulant response to activated protein C (APC). The activated form of Factor V (Factor Va) is more slowly degraded by activated protein C. Factor V Leiden mutation (R506Q) is the most common cause of APC resistance.
A signal transducing adaptor protein that is encoded by the crk ONCOGENE from TYPE C AVIAN RETROVIRUSES. It contains SRC HOMOLOGY DOMAINS and is closely related to its cellular homolog, PROTO-ONCOGENE PROTEIN C-CRK.
Transforming proteins coded by myb oncogenes. Transformation of cells by v-myb in conjunction with v-ets is seen in the avian E26 leukemia virus.
An oncoprotein from the Cas NS-1 murine retrovirus that induces pre- B-CELL LYMPHOMA and MYELOID LEUKEMIAS. v-cbl protein is a tyrosine-phosphorylated, truncated form of its cellular homologue, PROTO-ONCOGENE PROTEIN C-CBL.
Transforming proteins encoded by erbB oncogenes from the avian erythroblastosis virus. The protein is a truncated form of the EGF receptor (RECEPTOR, EPIDERMAL GROWTH FACTOR) whose kinase domain is constitutively activated by deletion of the ligand-binding domain.
Transforming proteins encoded by the abl oncogenes. Oncogenic transformation of c-abl to v-abl occurs by insertional activation that results in deletions of specific N-terminal amino acids.
Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene.
Transforming proteins coded by rel oncogenes. The v-rel protein competes with rel-related proteins and probably transforms cells by acting as a dominant negative version of c-rel. This results in the induction of a broad range of leukemias and lymphomas.
The vitamin K-dependent cofactor of activated PROTEIN C. Together with protein C, it inhibits the action of factors VIIIa and Va. A deficiency in protein S; (PROTEIN S DEFICIENCY); can lead to recurrent venous and arterial thrombosis.
Transforming proteins encoded by erbA oncogenes from the avian erythroblastosis virus. They are truncated versions of c-erbA, the thyroid hormone receptor (RECEPTORS, THYROID HORMONE) that have retained both the DNA-binding and hormone-binding domains. Mutations in the hormone-binding domains abolish the transcriptional activation function. v-erbA acts as a dominant repressor of c-erbA, inducing transformation by disinhibiting proliferation.
A cell surface glycoprotein of endothelial cells that binds thrombin and serves as a cofactor in the activation of protein C and its regulation of blood coagulation.
Proteins coded by oncogenes. They include proteins resulting from the fusion of an oncogene and another gene (ONCOGENE PROTEINS, FUSION).
Transforming protein encoded by ras oncogenes. Point mutations in the cellular ras gene (c-ras) can also result in a mutant p21 protein that can transform mammalian cells. Oncogene protein p21(ras) has been directly implicated in human neoplasms, perhaps accounting for as much as 15-20% of all human tumors. This enzyme was formerly listed as EC 3.6.1.47.
Endogenous substances, usually proteins, that are involved in the blood coagulation process.
A pulmonary surfactant associated protein that plays a role in alveolar stability by lowering the surface tension at the air-liquid interface. It is a membrane-bound protein that constitutes 1-2% of the pulmonary surfactant mass. Pulmonary surfactant-associated protein C is one of the most hydrophobic peptides yet isolated and contains an alpha-helical domain with a central poly-valine segment that binds to phospholipid bilayers.
Heat- and storage-labile plasma glycoprotein which accelerates the conversion of prothrombin to thrombin in blood coagulation. Factor V accomplishes this by forming a complex with factor Xa, phospholipid, and calcium (prothrombinase complex). Deficiency of factor V leads to Owren's disease.
A tyrosine-specific protein kinase encoded by the v-src oncogene of ROUS SARCOMA VIRUS. The transforming activity of pp60(v-src) depends on both the lack of a critical carboxy-terminal tyrosine phosphorylation site at position 527, and the attachment of pp60(v-src) to the plasma membrane which is accomplished by myristylation of its N-terminal glycine.
Activated form of factor V. It is an essential cofactor for the activation of prothrombin catalyzed by factor Xa.
An enzyme formed from PROTHROMBIN that converts FIBRINOGEN to FIBRIN.
Products of viral oncogenes, most commonly retroviral oncogenes. They usually have transforming and often protein kinase activities.
The GENETIC TRANSLATION products of the fusion between an ONCOGENE and another gene. The latter may be of viral or cellular origin.
The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot.
Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein.
A viral oncoprotein originally isolated from a murine T CELL LYMPHOMA infected with the acutely transforming retrovirus AKT8. v-akt protein is the viral homologue of PROTO-ONCOGENE PROTEINS C-AKT.
Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill.
A plasma protein that is the inactive precursor of thrombin. It is converted to thrombin by a prothrombin activator complex consisting of factor Xa, factor V, phospholipid, and calcium ions. Deficiency of prothrombin leads to hypoprothrombinemia.
An autosomal dominant disorder showing decreased levels of plasma protein S antigen or activity, associated with venous thrombosis and pulmonary embolism. PROTEIN S is a vitamin K-dependent plasma protein that inhibits blood clotting by serving as a cofactor for activated PROTEIN C (also a vitamin K-dependent protein), and the clinical manifestations of its deficiency are virtually identical to those of protein C deficiency. Treatment with heparin for acute thrombotic processes is usually followed by maintenance administration of coumarin drugs for the prevention of recurrent thrombosis. (From Harrison's Principles of Internal Medicine, 12th ed, p1511; Wintrobe's Clinical Hematology, 9th ed, p1523)
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
A family of proteinase-activated receptors that are specific for THROMBIN. They are found primarily on PLATELETS and on ENDOTHELIAL CELLS. Activation of thrombin receptors occurs through the proteolytic action of THROMBIN, which cleaves the N-terminal peptide from the receptor to reveal a new N-terminal peptide that is a cryptic ligand for the receptor. The receptors signal through HETEROTRIMERIC GTP-BINDING PROTEINS. Small synthetic peptides that contain the unmasked N-terminal peptide sequence can also activate the receptor in the absence of proteolytic activity.
Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.
A disorder of HEMOSTASIS in which there is a tendency for the occurrence of THROMBOSIS.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Hemorrhagic and thrombotic disorders that occur as a consequence of abnormalities in blood coagulation due to a variety of factors such as COAGULATION PROTEIN DISORDERS; BLOOD PLATELET DISORDERS; BLOOD PROTEIN DISORDERS or nutritional conditions.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The time required for the appearance of FIBRIN strands following the mixing of PLASMA with phospholipid platelet substitute (e.g., crude cephalins, soybean phosphatides). It is a test of the intrinsic pathway (factors VIII, IX, XI, and XII) and the common pathway (fibrinogen, prothrombin, factors V and X) of BLOOD COAGULATION. It is used as a screening test and to monitor HEPARIN therapy.
Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc.
A thrombin receptor subtype that couples to HETEROTRIMERIC GTP-BINDING PROTEINS resulting in the activation of a variety of signaling mechanisms including decreased intracellular CYCLIC AMP, increased TYPE C PHOSPHOLIPASES and increased PHOSPHOLIPASE A2.
Established cell cultures that have the potential to propagate indefinitely.
Membrane proteins encoded by the BCL-2 GENES and serving as potent inhibitors of cell death by APOPTOSIS. The proteins are found on mitochondrial, microsomal, and NUCLEAR MEMBRANE sites within many cell types. Overexpression of bcl-2 proteins, due to a translocation of the gene, is associated with follicular lymphoma.
Agents that prevent clotting.
Activated form of factor X that participates in both the intrinsic and extrinsic pathways of blood coagulation. It catalyzes the conversion of prothrombin to thrombin in conjunction with other cofactors.
Proteins prepared by recombinant DNA technology.
Found in various tissues, particularly in four blood-clotting proteins including prothrombin, in kidney protein, in bone protein, and in the protein present in various ectopic calcifications.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
Family of retrovirus-associated DNA sequences (myc) originally isolated from an avian myelocytomatosis virus. The proto-oncogene myc (c-myc) codes for a nuclear protein which is involved in nucleic acid metabolism and in mediating the cellular response to growth factors. Truncation of the first exon, which appears to regulate c-myc expression, is crucial for tumorigenicity. The human c-myc gene is located at 8q24 on the long arm of chromosome 8.
Laboratory tests for evaluating the individual's clotting mechanism.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue.
A disorder characterized by procoagulant substances entering the general circulation causing a systemic thrombotic process. The activation of the clotting mechanism may arise from any of a number of disorders. A majority of the patients manifest skin lesions, sometimes leading to PURPURA FULMINANS.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
A plasma alpha 2 glycoprotein that accounts for the major antithrombin activity of normal plasma and also inhibits several other enzymes. It is a member of the serpin superfamily.
Cellular DNA-binding proteins encoded by the c-myc genes. They are normally involved in nucleic acid metabolism and in mediating the cellular response to growth factors. Elevated and deregulated (constitutive) expression of c-myc proteins can cause tumorigenesis.
A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome.
Formation and development of a thrombus or blood clot in the blood vessel.
Inflammation of a vein associated with a blood clot (THROMBUS).
A deficiency of blood coagulation factor V (known as proaccelerin or accelerator globulin or labile factor) leading to a rare hemorrhagic tendency known as Owren's disease or parahemophilia. It varies greatly in severity. Factor V deficiency is an autosomal recessive trait. (Dorland, 27th ed)
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Storage-stable glycoprotein blood coagulation factor that can be activated to factor Xa by both the intrinsic and extrinsic pathways. A deficiency of factor X, sometimes called Stuart-Prower factor deficiency, may lead to a systemic coagulation disorder.
A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Endogenous factors and drugs that directly inhibit the action of THROMBIN, usually by blocking its enzymatic activity. They are distinguished from INDIRECT THROMBIN INHIBITORS, such as HEPARIN, which act by enhancing the inhibitory effects of antithrombins.
A cell line derived from cultured tumor cells.
Cellular proteins encoded by the H-ras, K-ras and N-ras genes. The proteins have GTPase activity and are involved in signal transduction as monomeric GTP-binding proteins. Elevated levels of p21 c-ras have been associated with neoplasia. This enzyme was formerly listed as EC 3.6.1.47.
The process which spontaneously arrests the flow of BLOOD from vessels carrying blood under pressure. It is accomplished by contraction of the vessels, adhesion and aggregation of formed blood elements (eg. ERYTHROCYTE AGGREGATION), and the process of BLOOD COAGULATION.
Systemic inflammatory response syndrome with a proven or suspected infectious etiology. When sepsis is associated with organ dysfunction distant from the site of infection, it is called severe sepsis. When sepsis is accompanied by HYPOTENSION despite adequate fluid infusion, it is called SEPTIC SHOCK.
Activated form of factor VIII. The B-domain of factor VIII is proteolytically cleaved by thrombin to form factor VIIIa. Factor VIIIa exists as a non-covalent dimer in a metal-linked (probably calcium) complex and functions as a cofactor in the enzymatic activation of factor X by factor IXa. Factor VIIIa is similar in structure and generation to factor Va.
Transport proteins that carry specific substances in the blood or across cell membranes.
A severe, rapidly fatal reaction occurring most commonly in children following an infectious illness. It is characterized by large, rapidly spreading skin hemorrhages, fever, or shock. Purpura fulminans often accompanies or is triggered by DISSEMINATED INTRAVASCULAR COAGULATION.
An absence or reduced level of Antithrombin III leading to an increased risk for thrombosis.
Retroviral proteins that have the ability to transform cells. They can induce sarcomas, leukemias, lymphomas, and mammary carcinomas. Not all retroviral proteins are oncogenic.
Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
The B-cell leukemia/lymphoma-2 genes, responsible for blocking apoptosis in normal cells, and associated with follicular lymphoma when overexpressed. Overexpression results from the t(14;18) translocation. The human c-bcl-2 gene is located at 18q24 on the long arm of chromosome 18.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
The rate dynamics in chemical or physical systems.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.
The natural enzymatic dissolution of FIBRIN.
Constituent composed of protein and phospholipid that is widely distributed in many tissues. It serves as a cofactor with factor VIIa to activate factor X in the extrinsic pathway of blood coagulation.
A specific pair of GROUP D CHROMOSOMES of the human chromosome classification.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus.
Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
Activated form of factor VII. Factor VIIa activates factor X in the extrinsic pathway of blood coagulation.
Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
A lipid cofactor that is required for normal blood clotting. Several forms of vitamin K have been identified: VITAMIN K 1 (phytomenadione) derived from plants, VITAMIN K 2 (menaquinone) from bacteria, and synthetic naphthoquinone provitamins, VITAMIN K 3 (menadione). Vitamin K 3 provitamins, after being alkylated in vivo, exhibit the antifibrinolytic activity of vitamin K. Green leafy vegetables, liver, cheese, butter, and egg yolk are good sources of vitamin K.
A group of heterogeneous lymphoid tumors generally expressing one or more B-cell antigens or representing malignant transformations of B-lymphocytes.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
The formation or presence of a blood clot (THROMBUS) within a vein.
Substances, usually endogenous, that act as inhibitors of blood coagulation. They may affect one or multiple enzymes throughout the process. As a group, they also inhibit enzymes involved in processes other than blood coagulation, such as those from the complement system, fibrinolytic enzyme system, blood cells, and bacteria.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Hemorrhagic and thrombotic disorders resulting from abnormalities or deficiencies of coagulation proteins.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI.
Heat- and storage-stable plasma protein that is activated by tissue thromboplastin to form factor VIIa in the extrinsic pathway of blood coagulation. The activated form then catalyzes the activation of factor X to factor Xa.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
DNA present in neoplastic tissue.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The erbB-2 gene is a proto-oncogene that codes for the erbB-2 receptor (RECEPTOR, ERBB-2), a protein with structural features similar to the epidermal growth factor receptor. Its name originates from the viral oncogene homolog (v-erbB) which is a truncated form of the chicken erbB gene found in the avian erythroblastosis virus. Overexpression and amplification of the gene is associated with a significant number of adenocarcinomas. The human c-erbB-2 gene is located at 17q21.2.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
A metallocarboxypeptidase that removes C-terminal lysine and arginine from biologically active peptides and proteins thereby regulating their activity. It is a zinc enzyme with no preference shown for lysine over arginine. Pro-carboxypeptidase U in human plasma is activated by thrombin or plasmin during clotting to form the unstable carboxypeptidase U.
Obstruction of a blood vessel (embolism) by a blood clot (THROMBUS) in the blood stream.
A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts.
Clotting time of PLASMA mixed with a THROMBIN solution. It is a measure of the conversion of FIBRINOGEN to FIBRIN, which is prolonged by AFIBRINOGENEMIA, abnormal fibrinogen, or the presence of inhibitory substances, e.g., fibrin-fibrinogen degradation products, or HEPARIN. BATROXOBIN, a thrombin-like enzyme unaffected by the presence of heparin, may be used in place of thrombin.
A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
A family of intracellular signaling adaptor proteins that contain caspase activation and recruitment domains. Proteins that contain this domain play a role in APOPTOSIS-related signal transduction by associating with other CARD domain-containing members and in activating INITIATOR CASPASES that contain CARD domains within their N-terminal pro-domain region.
Blood-coagulation factor VIII. Antihemophilic factor that is part of the factor VIII/von Willebrand factor complex. Factor VIII is produced in the liver and acts in the intrinsic pathway of blood coagulation. It serves as a cofactor in factor X activation and this action is markedly enhanced by small amounts of thrombin.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Small, monomeric GTP-binding proteins encoded by ras genes (GENES, RAS). The protooncogene-derived protein, PROTO-ONCOGENE PROTEIN P21(RAS), plays a role in normal cellular growth, differentiation and development. The oncogene-derived protein (ONCOGENE PROTEIN P21(RAS)) can play a role in aberrant cellular regulation during neoplastic cell transformation (CELL TRANSFORMATION, NEOPLASTIC). This enzyme was formerly listed as EC 3.6.1.47.
Malignant lymphoma composed of large B lymphoid cells whose nuclear size can exceed normal macrophage nuclei, or more than twice the size of a normal lymphocyte. The pattern is predominantly diffuse. Most of these lymphomas represent the malignant counterpart of B-lymphocytes at midstage in the process of differentiation.
An antiphospholipid antibody found in association with systemic lupus erythematosus (LUPUS ERYTHEMATOSUS, SYSTEMIC;), ANTIPHOSPHOLIPID SYNDROME; and in a variety of other diseases as well as in healthy individuals. In vitro, the antibody interferes with the conversion of prothrombin to thrombin and prolongs the partial thromboplastin time. In vivo, it exerts a procoagulant effect resulting in thrombosis mainly in the larger veins and arteries. It further causes obstetrical complications, including fetal death and spontaneous abortion, as well as a variety of hematologic and neurologic complications.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Exogenous or endogenous compounds which inhibit SERINE ENDOPEPTIDASES.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.
Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.
A cell surface protein-tyrosine kinase receptor that is overexpressed in a variety of ADENOCARCINOMAS. It has extensive homology to and heterodimerizes with the EGF RECEPTOR, the ERBB-3 RECEPTOR, and the ERBB-4 RECEPTOR. Activation of the erbB-2 receptor occurs through heterodimer formation with a ligand-bound erbB receptor family member.
Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses.
The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Antibodies produced by a single clone of cells.
Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors.

Bcl-2 regulates amplification of caspase activation by cytochrome c. (1/10114)

Caspases, a family of specific proteases, have central roles in apoptosis [1]. Caspase activation in response to diverse apoptotic stimuli involves the relocalisation of cytochrome c from mitochondria to the cytoplasm where it stimulates the proteolytic processing of caspase precursors. Cytochrome c release is controlled by members of the Bcl-2 family of apoptosis regulators [2] [3]. The anti-apoptotic members Bcl-2 and Bcl-xL may also control caspase activation independently of cytochrome c relocalisation or may inhibit a positive feedback mechanism [4] [5] [6] [7]. Here, we investigate the role of Bcl-2 family proteins in the regulation of caspase activation using a model cell-free system. We found that Bcl-2 and Bcl-xL set a threshold in the amount of cytochrome c required to activate caspases, even in soluble extracts lacking mitochondria. Addition of dATP (which stimulates the procaspase-processing factor Apaf-1 [8] [9]) overcame inhibition of caspase activation by Bcl-2, but did not prevent the control of cytochrome c release from mitochondria by Bcl-2. Cytochrome c release was accelerated by active caspase-3 and this positive feedback was negatively regulated by Bcl-2. These results provide evidence for a mechanism to amplify caspase activation that is suppressed at several distinct steps by Bcl-2, even after cytochrome c is released from mitochondria.  (+info)

Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-kappaB. (2/10114)

To maintain the integrity of the vascular barrier, endothelial cells (EC) are resistant to cell death. The molecular basis of this resistance may be explained by the function of antiapoptotic genes such as bcl family members. Overexpression of Bcl-2 or Bcl-XL protects EC from tumor necrosis factor (TNF)-mediated apoptosis. In addition, Bcl-2 or Bcl-XL inhibits activation of NF-kappaB and thus upregulation of proinflammatory genes. Bcl-2-mediated inhibition of NF-kappaB in EC occurs upstream of IkappaBalpha degradation without affecting p65-mediated transactivation. Overexpression of bcl genes in EC does not affect other transcription factors. Using deletion mutants of Bcl-2, the NF-kappaB inhibitory function of Bcl-2 was mapped to bcl homology domains BH2 and BH4, whereas all BH domains were required for the antiapoptotic function. These data suggest that Bcl-2 and Bcl-XL belong to a cytoprotective response that counteracts proapoptotic and proinflammatory insults and restores the physiological anti-inflammatory phenotype to the EC. By inhibiting NF-kappaB without sensitizing the cells (as with IkappaBalpha) to TNF-mediated apoptosis, Bcl-2 and Bcl-XL are prime candidates for genetic engineering of EC in pathological conditions where EC loss and unfettered activation are undesirable.  (+info)

Expression of Bcl-2 protein is decreased in colorectal adenocarcinomas with microsatellite instability. (3/10114)

Bcl-2 is known to inhibit apoptosis and is thought to play a role in colorectal tumour development. Studies of the promoter region of bcl-2 have indicated the presence of a p53 responsive element which downregulates bcl-2 expression. Since p53 is commonly mutated in colorectal cancers, but rarely in those tumours showing microsatellite instability (MSI), the aim of this study was to examine the relationship of bcl-2 protein expression to MSI, as well as to other clinicopathological and molecular variables, in colorectal adenocarcinomas. Expression of bcl-2 was analysed by immunohistochemistry in 71 colorectal cancers which had been previously assigned to three classes depending upon their levels of MSI. MSI-high tumours demonstrated instability in three or more of six microsatellite markers tested, MSI-low tumours in one or two of six, and MSI-null in none of six. Bcl-2 expression in tumours was quantified independently by two pathologists and assigned to one of five categories, with respect to the number of cells which showed positive staining: 0, up to 5%; 1, 6-25%; 2, 26-50%; 3, 51-75%; and 4, > or =76%. Bcl-2 negative tumours were defined as those with a score of 0. Bcl-2 protein expression was tested for association with clinicopathological stage, differentiation level, tumour site, age, sex, survival, evidence of p53 inactivation and MSI level. A significant association was found between bcl-2 expression and patient survival (P = 0.012, Gehan Wilcoxon test). Further, a significant reciprocal relationship was found between bcl-2 expression and the presence of MSI (P = 0.012, Wilcoxon rank sum test). We conclude that bcl-2 expressing colorectal cancers are more likely to be MSI-null, and to be associated with improved patient survival.  (+info)

Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. (4/10114)

Interleukin 6 (IL-6) is the major survival factor for myeloma tumor cells and induces signaling through the STAT proteins. We report that one STAT family member, Stat3, is constitutively activated in bone marrow mononuclear cells from patients with multiple myeloma and in the IL-6-dependent human myeloma cell line U266. Moreover, U266 cells are inherently resistant to Fas-mediated apoptosis and express high levels of the antiapoptotic protein Bcl-xL. Blocking IL-6 receptor signaling from Janus kinases to the Stat3 protein inhibits Bcl-xL expression and induces apoptosis, demonstrating that Stat3 signaling is essential for the survival of myeloma tumor cells. These findings provide evidence that constitutively activated Stat3 signaling contributes to the pathogenesis of multiple myeloma by preventing apoptosis.  (+info)

Hyperoxia induces the neuronal differentiated phenotype of PC12 cells via a sustained activity of mitogen-activated protein kinase induced by Bcl-2. (5/10114)

We previously reported that rat pheochromocytoma PC12 cells express the neuronal differentiated phenotype under hyperoxia through the production of reactive oxygen species (ROS). In the present study, we found that in this phenotype, Bcl-2, an apoptosis inhibitor, affects mitogen-activated protein (MAP)-kinase activity, which is known as a key enzyme of the signal-transduction cascade for differentiation. When PC12 cells were cultured under hyperoxia, a rapid increase in MAP-kinase activity, including that of both p42 and p44, was observed. Although the activity level then decreased quickly, activity higher than the control level was observed for 48 h. PD98059, an inhibitor of MAP kinase, suppressed the hyperoxia-induced neurite extensions, suggesting the involvement of MAP-kinase activity in the mechanism of differentiation induced by ROS. An elevation of Bcl-2 expression was observed after culturing PC12 cells for 24 h under hyperoxia. This Bcl-2 elevation was not affected by treatment with PD98059, suggesting that it did not directly induce neurite extension under hyperoxia. However, the blockade of the Bcl-2 elevation by an antisense oligonucleotide inhibited the sustained MAP-kinase activity and neurite extensions under hyperoxia. Further, in PC12 cells highly expressing Bcl-2, the sustained MAP-kinase activity and neurite extensions under hyperoxia were enhanced. These results suggested that MAP kinase is activated through the production of ROS, and the subsequent elevation of Bcl-2 expression sustains the MAP-kinase activity, resulting in the induction of the neuronal-differentiation phenotype of PC12 cells under hyperoxia.  (+info)

In vitro induction of activation-induced cell death in lymphocytes from chronic periodontal lesions by exogenous Fas ligand. (6/10114)

Periodontitis is a chronic inflammatory disease which gradually destroys the supporting tissues of the teeth, leading to tooth loss in adults. The lesions are characterized by a persistence of inflammatory cells in gingival and periodontal connective tissues. To understand what mechanisms are involved in the establishment of chronic lesions, we hypothesized that infiltrating lymphocytes might be resistant to apoptosis. However, both Bcl-2 and Bcl-xL were weakly detected in lymphocytes from the lesions, compared with those from peripheral blood, suggesting that these cells are susceptible to apoptosis. Nevertheless, very few apoptotic cells were observed in tissue sections from the lesions. Lymphocytes from the lesions expressed mRNA encoding Fas, whereas Fas-ligand mRNA was very weakly expressed in lymphocytes from the lesions and in periodontal tissues. Since the results indicated that lymphocytes in the lesions might be susceptible to Fas-mediated apoptosis but lack the death signal, we next investigated if these lymphocytes actually undergo apoptosis by the addition of anti-Fas antibodies in vitro. Fas-positive lymphocytes from the lesions underwent apoptosis by these antibodies, but Fas-negative lymphocytes and Fas-positive peripheral lymphocytes did not undergo apoptosis by these antibodies. These results indicate that lymphocytes in the lesions are susceptible to activation-induced cell death and are induced to die by apoptosis after the addition of exogenous Fas ligand.  (+info)

Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. (7/10114)

Mitotic double-strand break (DSB)-induced gene conversion at MAT in Saccharomyces cerevisiae was analyzed molecularly in mutant strains thermosensitive for essential replication factors. The processivity cofactors PCNA and RFC are essential even to synthesize as little as 30 nucleotides following strand invasion. Both PCNA-associated DNA polymerases delta and epsilon are important for gene conversion, though a temperature-sensitive Pol epsilon mutant is more severe than one in Pol delta. Surprisingly, mutants of lagging strand replication, DNA polymerase alpha (pol1-17), DNA primase (pri2-1), and Rad27p (rad27 delta) also greatly inhibit completion of DSB repair, even in G1-arrested cells. We propose a novel model for DSB-induced gene conversion in which a strand invasion creates a modified replication fork, involving leading and lagging strand synthesis from the donor template. Replication is terminated by capture of the second end of the DSB.  (+info)

Fas and Fas ligand interaction induces apoptosis in inflammatory myopathies: CD4+ T cells cause muscle cell injury directly in polymyositis. (8/10114)

OBJECTIVE: To investigate the involvement of the Fas/Fas ligand (Fas/FasL) system in the inflammatory myopathies. METHODS: Frozen muscle sections obtained from 7 patients with polymyositis (PM), 4 patients with dermatomyositis (DM), and 3 controls were studied by immunochemistry. Apoptosis was detected by DNA electrophoresis and in situ labeling using the TUNEL method. RESULTS: Fas was detected on muscle fibers and infiltrating mononuclear cells (MNC) in 6 PM patients and 2 DM patients. FasL was expressed mainly on CD4+ T cells and some CD8+ T cells, and on macrophages surrounding Fas-positive muscles in 4 PM patients and 1 DM patient. In 3 of the 5 patients with FasL-positive MNC, the TUNEL method showed that both invaded myonuclei and MNC underwent apoptosis. Chromosomal DNA from the muscle tissue of these patients showed ladder formation. CONCLUSION: Fas/FasL is involved in muscle cell apoptosis in at least 2 of the inflammatory myopathies, PM and DM. Although CD8+-mediated cytotoxicity is thought to be the main mechanism of muscle injury in PM, our data suggest that CD4+ T cells also directly cause muscle cell damage.  (+info)

Protein C is a vitamin K-dependent protease that functions as an important regulator of coagulation and inflammation. It is a plasma protein produced in the liver that, when activated, degrades clotting factors Va and VIIIa to limit thrombus formation and prevent excessive blood clotting. Protein C also has anti-inflammatory properties by inhibiting the release of pro-inflammatory cytokines and reducing endothelial cell activation. Inherited or acquired deficiencies in Protein C can lead to an increased risk of thrombosis, a condition characterized by abnormal blood clot formation within blood vessels.

Porphyrins are complex organic compounds that contain four pyrrole rings joined together by methine bridges (=CH-). They play a crucial role in the biochemistry of many organisms, as they form the core structure of various heme proteins and other metalloproteins. Some examples of these proteins include hemoglobin, myoglobin, cytochromes, and catalases, which are involved in essential processes such as oxygen transport, electron transfer, and oxidative metabolism.

In the human body, porphyrins are synthesized through a series of enzymatic reactions known as the heme biosynthesis pathway. Disruptions in this pathway can lead to an accumulation of porphyrins or their precursors, resulting in various medical conditions called porphyrias. These disorders can manifest as neurological symptoms, skin lesions, and gastrointestinal issues, depending on the specific type of porphyria and the site of enzyme deficiency.

It is important to note that while porphyrins are essential for life, their accumulation in excessive amounts or at inappropriate locations can result in pathological conditions. Therefore, understanding the regulation and function of porphyrin metabolism is crucial for diagnosing and managing porphyrias and other related disorders.

The oncogene proteins v-sis are derived from the simian sarcoma virus (SSV). The v-sis gene in SSV is derived from a cellular gene called c-sis, which encodes for the platelet-derived growth factor B (PDGFB) protein. The v-sis oncogene protein is a truncated and altered version of the PDGFB protein, which has lost its regulatory mechanisms and can lead to uncontrolled cell growth and division, contributing to the development of cancer.

In normal cells, the c-sis gene produces a precursor protein that is cleaved into two identical subunits, forming the functional PDGFB homodimer. This growth factor plays an essential role in the regulation of cell growth, proliferation, and survival, particularly in mesenchymal cells such as fibroblasts and smooth muscle cells.

However, in SSV-infected cells, the v-sis oncogene encodes a fusion protein that includes the viral gag protein and a truncated version of the c-sis gene product. This fusion protein can form homodimers or heterodimers with cellular PDGFB, leading to unregulated activation of PDGF receptors and subsequent intracellular signaling pathways, promoting tumor growth and progression.

In summary, v-sis oncogene proteins are aberrant forms of the platelet-derived growth factor B (PDGFB) that lack proper regulation and contribute to uncontrolled cell growth and division, potentially leading to cancer development.

I could not find a specific protein named "tpr-met" in oncology or any other field of medicine. However, I was able to find information about the proteins TPR and MET, which can be relevant in the context of oncogenes.

TPR (Translocated Promoter Region) is a coiled-coil protein that plays a role in nuclear transport, chromatin remodeling, and transcription regulation. It has been found to interact with several other proteins, including the MET receptor tyrosine kinase.

MET is a proto-oncogene that encodes a receptor tyrosine kinase for hepatocyte growth factor (HGF). Upon HGF binding, MET activates various intracellular signaling pathways involved in cell proliferation, survival, motility, and morphogenesis. Dysregulation of the MET signaling pathway can contribute to oncogenic transformation and tumor progression.

In some cases, TPR has been found to interact with and regulate the MET receptor tyrosine kinase. This interaction may lead to aberrant activation of MET signaling, contributing to oncogenesis. However, there is no specific protein named "tpr-met" in the context of oncogene proteins.

The oncogene protein v-maf is a transcription factor that belongs to the basic leucine zipper (bZIP) family. It was originally identified as the viral oncogene product of the avian musculoaponeurotic fibrosarcoma virus (MAFV). The v-maf protein can transform cells and is believed to contribute to tumor development by altering the expression of various genes involved in cell growth, differentiation, and survival.

The v-maf protein contains a basic region that is responsible for DNA binding and a leucine zipper domain that mediates protein-protein interactions. It can form homodimers or heterodimers with other bZIP proteins, allowing it to regulate the transcription of target genes.

The cellular counterpart of v-maf is the maf oncogene, which encodes a family of transcription factors that include MafA, MafB, and NRL. These proteins play important roles in various biological processes, including development, differentiation, and metabolism. Dysregulation of maf gene expression or function has been implicated in the development of several types of cancer.

Protein C deficiency is a genetic disorder that affects the body's ability to control blood clotting. Protein C is a protein in the blood that helps regulate the formation of blood clots. When blood clots form too easily or do not dissolve properly, they can block blood vessels and lead to serious medical conditions such as deep vein thrombosis (DVT) or pulmonary embolism (PE).

People with protein C deficiency have lower than normal levels of this protein in their blood, which can increase their risk of developing abnormal blood clots. The condition is usually inherited and present from birth, but it may not cause any symptoms until later in life, such as during pregnancy, after surgery, or due to other factors that increase the risk of blood clots.

Protein C deficiency can be classified into two types: type I and type II. Type I deficiency is characterized by lower than normal levels of both functional and immunoreactive protein C in the blood. Type II deficiency is characterized by normal or near-normal levels of immunoreactive protein C, but reduced functional activity.

Protein C deficiency can be diagnosed through blood tests that measure the level and function of protein C in the blood. Treatment may include anticoagulant medications to prevent blood clots from forming or dissolve existing ones. Regular monitoring of protein C levels and careful management of risk factors for blood clots are also important parts of managing this condition.

The v-mos oncogene protein is derived from the retrovirus called Moloney murine sarcoma virus (Mo-MSV). This oncogene encodes for a serine/threonine protein kinase, which is involved in cell proliferation and differentiation. When incorporated into the host genome during viral infection, the v-mos oncogene can cause unregulated cell growth and tumor formation, leading to sarcomas in mice. The normal cellular homolog of v-mos is called c-mos, which plays a crucial role in regulating cell division and is tightly controlled in normal cells. However, mutations or aberrant activation of c-mos can also contribute to oncogenic transformation and tumorigenesis.

Protein C inhibitor is a natural anticoagulant protein found in the blood. It plays a crucial role in regulating the coagulation system by controlling the activity of activated protein C, which is a key enzyme that helps to break down clots and prevent excessive bleeding. Protein C inhibitor works by binding to and inhibiting the activity of activated protein C, thereby ensuring that the coagulation process is balanced and that clots are formed only when necessary.

Inherited or acquired deficiencies in protein C inhibitor can lead to an increased risk of thrombosis or abnormal blood clotting, which can cause serious health complications such as deep vein thrombosis (DVT), pulmonary embolism (PE), and disseminated intravascular coagulation (DIC). Therefore, protein C inhibitor is an essential component of the coagulation system and its activity is tightly regulated to maintain normal hemostasis.

An oncogene protein, specifically the v-Raf protein, is a product of the viral oncogene found in certain retroviruses that are capable of transforming cells and causing cancer. The v-Raf protein is derived from the cellular homolog, c-Raf, which is a serine/threonine kinase that plays a crucial role in regulating cell growth, differentiation, and survival.

The v-Raf protein, when compared to its cellular counterpart, lacks regulatory domains and possesses constitutive kinase activity. This results in uncontrolled signaling through the Ras/MAPK pathway, leading to aberrant cell proliferation and tumorigenesis. The activation of the v-Raf oncogene has been implicated in various types of cancer, including some leukemias and sarcomas. However, it is important to note that mutations in the c-Raf gene can also contribute to cancer development, highlighting the importance of proper regulation of this signaling pathway in maintaining cellular homeostasis.

An oncogene protein, specifically the v-fos protein, is a product of the v-fos gene found in the FBJ murine osteosarcoma virus. This viral oncogene can transform cells and cause cancer in animals. The normal cellular counterpart of v-fos is the c-fos gene, which encodes a nuclear protein that forms a heterodimer with other proteins to function as a transcription factor, regulating the expression of target genes involved in various cellular processes such as proliferation, differentiation, and transformation.

However, when the v-fos gene is integrated into the viral genome and expressed at high levels, it can lead to unregulated and constitutive activation of these cellular processes, resulting in oncogenic transformation and tumor formation. The v-fos protein can interact with other cellular proteins and modify their functions, leading to aberrant signaling pathways that contribute to the development of cancer.

Activated Protein C (APC) resistance is a condition in which the body's natural anticoagulant system is impaired, leading to an increased risk of thrombosis or blood clot formation. APC is an enzyme that plays a crucial role in regulating blood coagulation by inactivating clotting factors Va and VIIIa.

APC resistance is most commonly caused by a genetic mutation in the Factor V gene, known as Factor V Leiden. This mutation results in the production of a variant form of Factor V called Factor V Leiden, which is resistant to APC-mediated inactivation. As a result, the body's ability to regulate blood clotting is impaired, leading to an increased risk of thrombosis.

APC resistance can be measured by performing a functional assay that compares the activity of APC in normal plasma versus plasma from a patient with suspected APC resistance. The assay measures the rate of inactivation of Factor Va by APC, and a reduced rate of inactivation indicates APC resistance.

It is important to note that not all individuals with APC resistance will develop thrombosis, and other factors such as age, obesity, pregnancy, oral contraceptive use, and smoking can increase the risk of thrombosis in individuals with APC resistance.

The Crk protein is a human homolog of the viral oncogene v-crk, which was first discovered in the avian retrovirus CT10. The v-crk oncogene encodes for a truncated and constitutively active version of the Crk protein, which has been shown to contribute to cancer development by promoting cell growth signaling and inhibiting apoptosis (programmed cell death).

The human Crk protein is a cytoplasmic adaptor protein that plays a role in various intracellular signaling pathways. It contains several domains, including an N-terminal Src homology 2 (SH2) domain and two C-terminal Src homology 3 (SH3) domains, which allow it to interact with other signaling proteins and transmit signals from cell surface receptors to downstream effectors.

Crk protein has been implicated in several cellular processes, including cell proliferation, differentiation, migration, and adhesion. Dysregulation of Crk protein function or expression has been associated with various human diseases, including cancer. In particular, overexpression or hyperactivation of Crk protein has been observed in several types of cancer, such as leukemia, lymphoma, and solid tumors, and has been linked to increased cell proliferation, survival, and invasiveness.

Therefore, the oncogene protein v-crk is a truncated and constitutively active version of the Crk protein that contributes to cancer development by promoting aberrant signaling pathways leading to uncontrolled cell growth and inhibition of apoptosis.

v-Myb, also known as v-mybl2, is a retroviral oncogene that was originally isolated from the avian myeloblastosis virus (AMV). The protein product of this oncogene shares significant sequence homology with the human c-Myb protein, which is a member of the Myb family of transcription factors.

The c-Myb protein is involved in the regulation of gene expression during normal cell growth, differentiation, and development. However, when its function is deregulated or its expression is altered, it can contribute to tumorigenesis by promoting cell proliferation and inhibiting apoptosis (programmed cell death).

The v-Myb oncogene protein has a higher transforming potential than the c-Myb protein due to the presence of additional sequences that enhance its activity. These sequences allow v-Myb to bind to DNA more strongly, interact with other proteins more efficiently, and promote the expression of target genes involved in cell growth and survival.

Overexpression or mutation of c-Myb has been implicated in various human cancers, including leukemia, lymphoma, and carcinomas of the breast, colon, and prostate. Therefore, understanding the function and regulation of Myb proteins is important for developing new strategies to prevent and treat cancer.

v-Cbl is a type of oncogene protein that is derived from the cellular c-Cbl protein. Oncogenes are genes that have the potential to cause cancer, and they can do this by promoting cell growth and division when they should not. The v-Cbl protein is created when a virus called the avian reticuloendotheliosis virus infects a host cell and inserts its own version of the c-Cbl gene into the host's DNA. This results in the production of the abnormal v-Cbl protein, which can contribute to the development of cancer by disrupting the normal regulation of cell growth and division.

The c-Cbl protein is a type of E3 ubiquitin ligase, which is an enzyme that helps to tag other proteins for degradation. The v-Cbl protein retains this function, but it also has additional activities that allow it to promote cell growth and division. For example, v-Cbl can activate signaling pathways that lead to the activation of transcription factors, which are proteins that control the expression of genes involved in cell growth and division.

In addition to its role in cancer, v-Cbl has also been implicated in the development of other diseases, including immune disorders and neurological conditions. However, more research is needed to fully understand the various functions of this oncogene protein and how it contributes to disease.

The oncogene proteins v-erbB are derived from the erbB oncogene, which is a retroviral oncogene first discovered in avian erythroblastosis viruses (AEV). The erbB oncogene is homologous to the human epidermal growth factor receptor 2 (HER2/erbB-2) gene, which encodes a transmembrane tyrosine kinase receptor involved in cell proliferation and differentiation.

The v-erbB oncogene protein is a truncated and mutated version of the normal EGFR/erbB-1 receptor, which has lost its extracellular ligand-binding domain and gained constitutive tyrosine kinase activity. This results in uncontrolled cell growth and division, leading to the development of cancer.

The v-erbB oncogene protein has been extensively studied as a model system for understanding the molecular mechanisms of oncogenesis and has provided valuable insights into the regulation of cell growth and differentiation. Additionally, the study of v-erbB and other oncogenes has led to the development of targeted cancer therapies that inhibit the activity of these aberrant proteins and slow or stop the growth of cancer cells.

An oncogene protein, specifically the v-abl protein, is a tyrosine kinase enzyme that plays a role in cell growth, differentiation, and survival. The v-abl gene was originally discovered in the Abelson murine leukemia virus (Ab-MLV), which is a retrovirus that can cause leukemia in mice. The viral v-abl gene is a truncated and mutated version of the cellular c-abl gene, which is normally involved in important signaling pathways within cells.

The v-abl protein has gained oncogenic potential due to its altered regulation and constitutive activation, leading to uncontrolled cell growth and division, ultimately resulting in cancer. In humans, abnormal expression or activation of the c-abl gene and its protein product have been implicated in several types of cancer, including leukemia and some solid tumors. The oncogenic nature of v-abl has made it an important target for cancer therapy, with drugs like Imatinib mesylate (Gleevec) being developed to inhibit its activity.

Oncogenes are genes that have the potential to cause cancer. They can do this by promoting cell growth and division (cellular proliferation), preventing cell death (apoptosis), or enabling cells to invade surrounding tissue and spread to other parts of the body (metastasis). Oncogenes can be formed when normal genes, called proto-oncogenes, are mutated or altered in some way. This can happen as a result of exposure to certain chemicals or radiation, or through inherited genetic mutations. When activated, oncogenes can contribute to the development of cancer by causing cells to divide and grow in an uncontrolled manner.

I'm happy to help! However, I believe there might be a slight confusion in your question. "Oncogene proteins v-rel" is not a standard medical term. Instead, it seems like you are referring to the "v-rel" oncogene protein. Here's a definition:

The v-rel oncogene protein is a viral transcription factor initially discovered in the reticuloendotheliosis virus (REV), which causes avian lymphoma. The v-rel gene shares homology with the cellular c-rel gene, which encodes a member of the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) family of transcription factors.

The v-rel protein is capable of transforming cells and contributing to tumorigenesis due to its ability to constitutively activate gene expression, particularly through the NF-κB signaling pathway. This aberrant activation can lead to uncontrolled cell growth, inhibition of apoptosis (programmed cell death), and ultimately cancer development.

The v-rel protein is an example of a viral oncogene, which are genes that have been acquired by a virus from the host organism and contribute to tumor formation when expressed in the host. Viral oncogenes can provide valuable insights into the mechanisms of cancer development and potential therapeutic targets.

Protein S is a vitamin K-dependent protein found in the blood that functions as a natural anticoagulant. It plays a crucial role in regulating the body's clotting system by inhibiting the activation of coagulation factors, thereby preventing excessive blood clotting. Protein S also acts as a cofactor for activated protein C, which is another important anticoagulant protein.

Protein S exists in two forms: free and bound to a protein called C4b-binding protein (C4BP). Only the free form of Protein S has biological activity in inhibiting coagulation. Inherited or acquired deficiencies in Protein S can lead to an increased risk of thrombosis, or abnormal blood clot formation, which can cause various medical conditions such as deep vein thrombosis (DVT) and pulmonary embolism (PE). Regular monitoring of Protein S levels is essential for patients with a history of thrombotic events or those who have a family history of thrombophilia.

The oncogene proteins v-erbA are a subset of oncogenes that were initially discovered in retroviruses, specifically the avian erythroblastosis virus (AEV). These oncogenes are derived from normal cellular genes called proto-oncogenes, which play crucial roles in various cellular processes such as growth, differentiation, and survival.

The v-erbA oncogene protein is a truncated and mutated version of the thyroid hormone receptor alpha (THRA) gene, which is a nuclear receptor that regulates gene expression in response to thyroid hormones. The v-erbA protein can bind to DNA but cannot interact with thyroid hormones, leading to aberrant regulation of gene expression and uncontrolled cell growth, ultimately resulting in cancer.

In particular, the v-erbA oncogene has been implicated in the development of erythroblastosis, a disease characterized by the proliferation of immature red blood cells, leading to anemia and other symptoms. The activation of the v-erbA oncogene can also contribute to the development of other types of cancer, such as leukemia and lymphoma.

Thrombomodulin is a protein that is found on the surface of endothelial cells, which line the interior surface of blood vessels. It plays an important role in the regulation of blood coagulation (clotting) and the activation of natural anticoagulant pathways. Thrombomodulin binds to thrombin, a protein involved in blood clotting, and changes its function from promoting coagulation to inhibiting it. This interaction also activates protein C, an important anticoagulant protein, which helps to prevent the excessive formation of blood clots. Thrombomodulin also has anti-inflammatory properties and is involved in the maintenance of the integrity of the endothelial cell lining.

Oncogene proteins are derived from oncogenes, which are genes that have the potential to cause cancer. Normally, these genes help regulate cell growth and division, but when they become altered or mutated, they can become overactive and lead to uncontrolled cell growth and division, which is a hallmark of cancer. Oncogene proteins can contribute to tumor formation and progression by promoting processes such as cell proliferation, survival, angiogenesis, and metastasis. Examples of oncogene proteins include HER2/neu, EGFR, and BCR-ABL.

Blood coagulation factors, also known as clotting factors, are a group of proteins that play a crucial role in the blood coagulation process. They are essential for maintaining hemostasis, which is the body's ability to stop bleeding after injury.

There are 13 known blood coagulation factors, and they are designated by Roman numerals I through XIII. These factors are produced in the liver and are normally present in an inactive form in the blood. When there is an injury to a blood vessel, the coagulation process is initiated, leading to the activation of these factors in a specific order.

The coagulation cascade involves two pathways: the intrinsic and extrinsic pathways. The intrinsic pathway is activated when there is damage to the blood vessel itself, while the extrinsic pathway is activated by tissue factor released from damaged tissues. Both pathways converge at the common pathway, leading to the formation of a fibrin clot.

Blood coagulation factors work together in a complex series of reactions that involve activation, binding, and proteolysis. When one factor is activated, it activates the next factor in the cascade, and so on. This process continues until a stable fibrin clot is formed.

Deficiencies or abnormalities in blood coagulation factors can lead to bleeding disorders such as hemophilia or thrombosis. Hemophilia is a genetic disorder that affects one or more of the coagulation factors, leading to excessive bleeding and difficulty forming clots. Thrombosis, on the other hand, occurs when there is an abnormal formation of blood clots in the blood vessels, which can lead to serious complications such as stroke or pulmonary embolism.

Pulmonary surfactant-associated protein C (SP-C) is a small hydrophobic protein that is a component of pulmonary surfactant. Surfactant is a complex mixture of lipids and proteins that reduces surface tension in the alveoli of the lungs, preventing collapse during expiration and facilitating lung expansion during inspiration. SP-C plays a crucial role in maintaining the structural integrity and stability of the surfactant film at the air-liquid interface of the alveoli.

Deficiency or dysfunction of SP-C has been associated with several pulmonary diseases, including respiratory distress syndrome (RDS) in premature infants, interstitial lung diseases (ILDs), and pulmonary fibrosis. Mutations in the gene encoding SP-C (SFTPC) can lead to abnormal protein processing and accumulation, resulting in lung injury and inflammation, ultimately contributing to the development of these conditions.

Factor V, also known as proaccelerin or labile factor, is a protein involved in the coagulation cascade, which is a series of chemical reactions that leads to the formation of a blood clot. Factor V acts as a cofactor for the activation of Factor X to Factor Xa, which is a critical step in the coagulation cascade.

When blood vessels are damaged, the coagulation cascade is initiated to prevent excessive bleeding. During this process, Factor V is activated by thrombin, another protein involved in coagulation, and then forms a complex with activated Factor X and calcium ions on the surface of platelets or other cells. This complex converts prothrombin to thrombin, which then converts fibrinogen to fibrin to form a stable clot.

Deficiency or dysfunction of Factor V can lead to bleeding disorders such as hemophilia B or factor V deficiency, while mutations in the gene encoding Factor V can increase the risk of thrombosis, as seen in the Factor V Leiden mutation.

Factor V, also known as proaccelerin or labile factor, is a protein involved in the coagulation cascade, which is a series of chemical reactions that leads to the formation of a blood clot. Factor V acts as a cofactor for the conversion of prothrombin to thrombin, which is a critical step in the coagulation process.

Inherited deficiencies or abnormalities in Factor V can lead to bleeding disorders. For example, Factor V Leiden is a genetic mutation that causes an increased risk of blood clots, while Factor V deficiency can cause a bleeding disorder.

It's worth noting that "Factor Va" is not a standard medical term. Factor V becomes activated and turns into Factor Va during the coagulation cascade. Therefore, it is possible that you are looking for the definition of "Factor Va" in the context of its role as an activated form of Factor V in the coagulation process.

Thrombin is a serine protease enzyme that plays a crucial role in the coagulation cascade, which is a complex series of biochemical reactions that leads to the formation of a blood clot (thrombus) to prevent excessive bleeding during an injury. Thrombin is formed from its precursor protein, prothrombin, through a process called activation, which involves cleavage by another enzyme called factor Xa.

Once activated, thrombin converts fibrinogen, a soluble plasma protein, into fibrin, an insoluble protein that forms the structural framework of a blood clot. Thrombin also activates other components of the coagulation cascade, such as factor XIII, which crosslinks and stabilizes the fibrin network, and platelets, which contribute to the formation and growth of the clot.

Thrombin has several regulatory mechanisms that control its activity, including feedback inhibition by antithrombin III, a plasma protein that inactivates thrombin and other serine proteases, and tissue factor pathway inhibitor (TFPI), which inhibits the activation of factor Xa, thereby preventing further thrombin formation.

Overall, thrombin is an essential enzyme in hemostasis, the process that maintains the balance between bleeding and clotting in the body. However, excessive or uncontrolled thrombin activity can lead to pathological conditions such as thrombosis, atherosclerosis, and disseminated intravascular coagulation (DIC).

Oncogene proteins, viral, are cancer-causing proteins that are encoded by the genetic material (DNA or RNA) of certain viruses. These viral oncogenes can be acquired through infection with retroviruses, such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), and certain types of papillomaviruses and polyomaviruses.

When these viruses infect host cells, they can integrate their genetic material into the host cell's genome, leading to the expression of viral oncogenes. These oncogenes may then cause uncontrolled cell growth and division, ultimately resulting in the formation of tumors or cancers. The process by which viruses contribute to cancer development is complex and involves multiple steps, including the alteration of signaling pathways that regulate cell proliferation, differentiation, and survival.

Examples of viral oncogenes include the v-src gene found in the Rous sarcoma virus (RSV), which causes chicken sarcoma, and the E6 and E7 genes found in human papillomaviruses (HPVs), which are associated with cervical cancer and other anogenital cancers. Understanding viral oncogenes and their mechanisms of action is crucial for developing effective strategies to prevent and treat virus-associated cancers.

An oncogene protein fusion is a result of a genetic alteration in which parts of two different genes combine to create a hybrid gene that can contribute to the development of cancer. This fusion can lead to the production of an abnormal protein that promotes uncontrolled cell growth and division, ultimately resulting in a malignant tumor. Oncogene protein fusions are often caused by chromosomal rearrangements such as translocations, inversions, or deletions and are commonly found in various types of cancer, including leukemia and sarcoma. These genetic alterations can serve as potential targets for cancer diagnosis and therapy.

Blood coagulation, also known as blood clotting, is a complex process that occurs in the body to prevent excessive bleeding when a blood vessel is damaged. This process involves several different proteins and chemical reactions that ultimately lead to the formation of a clot.

The coagulation cascade is initiated when blood comes into contact with tissue factor, which is exposed after damage to the blood vessel wall. This triggers a series of enzymatic reactions that activate clotting factors, leading to the formation of a fibrin clot. Fibrin is a protein that forms a mesh-like structure that traps platelets and red blood cells to form a stable clot.

Once the bleeding has stopped, the coagulation process is regulated and inhibited to prevent excessive clotting. The fibrinolytic system degrades the clot over time, allowing for the restoration of normal blood flow.

Abnormalities in the blood coagulation process can lead to bleeding disorders or thrombotic disorders such as deep vein thrombosis and pulmonary embolism.

Ras genes are a group of genes that encode for proteins involved in cell signaling pathways that regulate cell growth, differentiation, and survival. Mutations in Ras genes have been associated with various types of cancer, as well as other diseases such as developmental disorders and autoimmune diseases. The Ras protein family includes H-Ras, K-Ras, and N-Ras, which are activated by growth factor receptors and other signals to activate downstream effectors involved in cell proliferation and survival. Abnormal activation of Ras signaling due to mutations or dysregulation can contribute to tumor development and progression.

According to the National Center for Biotechnology Information (NCBI), AKT (also known as protein kinase B or PKB) is a type of oncogene protein that plays a crucial role in cell survival and signal transduction pathways. It is a serine/threonine-specific protein kinase that acts downstream of the PI3K (phosphatidylinositol 3-kinase) signaling pathway, which regulates various cellular processes such as proliferation, differentiation, and survival.

The activation of AKT promotes cell survival by inhibiting apoptosis or programmed cell death through the phosphorylation and inactivation of several downstream targets, including pro-apoptotic proteins such as BAD and caspase-9. Dysregulation of the AKT signaling pathway has been implicated in various human cancers, leading to uncontrolled cell growth and survival, angiogenesis, and metastasis.

The activation of AKT occurs through a series of phosphorylation events initiated by the binding of growth factors or other extracellular signals to their respective receptors. This leads to the recruitment and activation of PI3K, which generates phosphatidylinositol (3,4,5)-trisphosphate (PIP3) at the plasma membrane. PIP3 then recruits AKT to the membrane, where it is activated by phosphorylation at two key residues (Thr308 and Ser473) by upstream kinases such as PDK1 and mTORC2.

Overall, AKT plays a critical role in regulating cell survival and growth, and its dysregulation can contribute to the development and progression of various human cancers.

Neoplastic cell transformation is a process in which a normal cell undergoes genetic alterations that cause it to become cancerous or malignant. This process involves changes in the cell's DNA that result in uncontrolled cell growth and division, loss of contact inhibition, and the ability to invade surrounding tissues and metastasize (spread) to other parts of the body.

Neoplastic transformation can occur as a result of various factors, including genetic mutations, exposure to carcinogens, viral infections, chronic inflammation, and aging. These changes can lead to the activation of oncogenes or the inactivation of tumor suppressor genes, which regulate cell growth and division.

The transformation of normal cells into cancerous cells is a complex and multi-step process that involves multiple genetic and epigenetic alterations. It is characterized by several hallmarks, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabling replicative immortality, induction of angiogenesis, activation of invasion and metastasis, reprogramming of energy metabolism, and evading immune destruction.

Neoplastic cell transformation is a fundamental concept in cancer biology and is critical for understanding the molecular mechanisms underlying cancer development and progression. It also has important implications for cancer diagnosis, prognosis, and treatment, as identifying the specific genetic alterations that underlie neoplastic transformation can help guide targeted therapies and personalized medicine approaches.

Prothrombin is a protein present in blood plasma, and it's also known as coagulation factor II. It plays a crucial role in the coagulation cascade, which is a complex series of reactions that leads to the formation of a blood clot.

When an injury occurs, the coagulation cascade is initiated to prevent excessive blood loss. Prothrombin is converted into its active form, thrombin, by another factor called factor Xa in the presence of calcium ions, phospholipids, and factor Va. Thrombin then catalyzes the conversion of fibrinogen into fibrin, forming a stable clot.

Prothrombin levels can be measured through a blood test, which is often used to diagnose or monitor conditions related to bleeding or coagulation disorders, such as liver disease or vitamin K deficiency.

Protein S deficiency is a genetic disorder that affects the body's ability to coagulate blood properly. Protein S is a naturally occurring protein in the blood that helps regulate the clotting process by deactivating clotting factors when they are no longer needed. When Protein S levels are too low, it can lead to an increased risk of abnormal blood clots forming within blood vessels, a condition known as thrombophilia.

There are three types of Protein S deficiency: Type I (quantitative deficiency), Type II (qualitative deficiency), and Type III (dysfunctional protein). These types refer to the amount or function of Protein S in the blood. In Type I, there is a decrease in both free and total Protein S levels. In Type II, there is a decrease in functional Protein S despite normal total Protein S levels. In Type III, there is a decrease in free Protein S with normal total Protein S levels.

Protein S deficiency can be inherited or acquired. Inherited forms of the disorder are caused by genetic mutations and are usually present from birth. Acquired forms of Protein S deficiency can develop later in life due to certain medical conditions, such as liver disease, vitamin K deficiency, or the use of certain medications that affect blood clotting.

Symptoms of Protein S deficiency may include recurrent blood clots, usually in the legs (deep vein thrombosis) or lungs (pulmonary embolism), skin discoloration, pain, and swelling in the affected area. In severe cases, it can lead to complications such as chronic leg ulcers, pulmonary hypertension, or damage to the heart or lungs.

Diagnosis of Protein S deficiency typically involves blood tests to measure Protein S levels and function. Treatment may include anticoagulant medications to prevent blood clots from forming or growing larger. Lifestyle modifications such as regular exercise, maintaining a healthy weight, and avoiding smoking can also help reduce the risk of blood clots in people with Protein S deficiency.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

Thrombin receptors are a type of G protein-coupled receptor (GPCR) that play a crucial role in hemostasis and thrombosis. They are activated by the protease thrombin, which is generated during the coagulation cascade. There are two main types of thrombin receptors: protease-activated receptor 1 (PAR-1) and PAR-4.

PAR-1 is expressed on various cell types including platelets, endothelial cells, and smooth muscle cells, while PAR-4 is primarily expressed on platelets. Activation of these receptors triggers a variety of intracellular signaling pathways that lead to diverse cellular responses such as platelet activation, aggregation, and secretion; vasoconstriction; and inflammation.

Dysregulation of thrombin receptor signaling has been implicated in several pathological conditions, including arterial and venous thrombosis, atherosclerosis, and cancer. Therefore, thrombin receptors are considered important therapeutic targets for the treatment of these disorders.

Proto-oncogene proteins are normal cellular proteins that play crucial roles in various cellular processes, such as signal transduction, cell cycle regulation, and apoptosis (programmed cell death). They are involved in the regulation of cell growth, differentiation, and survival under physiological conditions.

When proto-oncogene proteins undergo mutations or aberrations in their expression levels, they can transform into oncogenic forms, leading to uncontrolled cell growth and division. These altered proteins are then referred to as oncogene products or oncoproteins. Oncogenic mutations can occur due to various factors, including genetic predisposition, environmental exposures, and aging.

Examples of proto-oncogene proteins include:

1. Ras proteins: Involved in signal transduction pathways that regulate cell growth and differentiation. Activating mutations in Ras genes are found in various human cancers.
2. Myc proteins: Regulate gene expression related to cell cycle progression, apoptosis, and metabolism. Overexpression of Myc proteins is associated with several types of cancer.
3. EGFR (Epidermal Growth Factor Receptor): A transmembrane receptor tyrosine kinase that regulates cell proliferation, survival, and differentiation. Mutations or overexpression of EGFR are linked to various malignancies, such as lung cancer and glioblastoma.
4. Src family kinases: Intracellular tyrosine kinases that regulate signal transduction pathways involved in cell proliferation, survival, and migration. Dysregulation of Src family kinases is implicated in several types of cancer.
5. Abl kinases: Cytoplasmic tyrosine kinases that regulate various cellular processes, including cell growth, differentiation, and stress responses. Aberrant activation of Abl kinases, as seen in chronic myelogenous leukemia (CML), leads to uncontrolled cell proliferation.

Understanding the roles of proto-oncogene proteins and their dysregulation in cancer development is essential for developing targeted cancer therapies that aim to inhibit or modulate these aberrant signaling pathways.

Thrombophilia is a medical condition characterized by an increased tendency to form blood clots (thrombi) due to various genetic or acquired abnormalities in the coagulation system. These abnormalities can lead to a hypercoagulable state, which can cause thrombosis in both veins and arteries. Commonly identified thrombophilias include factor V Leiden mutation, prothrombin G20210A mutation, antithrombin deficiency, protein C deficiency, and protein S deficiency.

Acquired thrombophilias can be caused by various factors such as antiphospholipid antibody syndrome (APS), malignancies, pregnancy, oral contraceptive use, hormone replacement therapy, and certain medical conditions like inflammatory bowel disease or nephrotic syndrome.

It is essential to diagnose thrombophilia accurately, as it may influence the management of venous thromboembolism (VTE) events and guide decisions regarding prophylactic anticoagulation in high-risk situations.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Blood coagulation disorders, also known as bleeding disorders or clotting disorders, refer to a group of medical conditions that affect the body's ability to form blood clots properly. Normally, when a blood vessel is injured, the body's coagulation system works to form a clot to stop the bleeding and promote healing.

In blood coagulation disorders, there can be either an increased tendency to bleed due to problems with the formation of clots (hemorrhagic disorder), or an increased tendency for clots to form inappropriately even without injury, leading to blockages in the blood vessels (thrombotic disorder).

Examples of hemorrhagic disorders include:

1. Hemophilia - a genetic disorder that affects the ability to form clots due to deficiencies in clotting factors VIII or IX.
2. Von Willebrand disease - another genetic disorder caused by a deficiency or abnormality of the von Willebrand factor, which helps platelets stick together to form a clot.
3. Liver diseases - can lead to decreased production of coagulation factors, increasing the risk of bleeding.
4. Disseminated intravascular coagulation (DIC) - a serious condition where clotting and bleeding occur simultaneously due to widespread activation of the coagulation system.

Examples of thrombotic disorders include:

1. Factor V Leiden mutation - a genetic disorder that increases the risk of inappropriate blood clot formation.
2. Antithrombin III deficiency - a genetic disorder that impairs the body's ability to break down clots, increasing the risk of thrombosis.
3. Protein C or S deficiencies - genetic disorders that lead to an increased risk of thrombosis due to impaired regulation of the coagulation system.
4. Antiphospholipid syndrome (APS) - an autoimmune disorder where the body produces antibodies against its own clotting factors, increasing the risk of thrombosis.

Treatment for blood coagulation disorders depends on the specific diagnosis and may include medications to manage bleeding or prevent clots, as well as lifestyle changes and monitoring to reduce the risk of complications.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Partial Thromboplastin Time (PTT) is a medical laboratory test that measures the time it takes for blood to clot. It's more specifically a measure of the intrinsic and common pathways of the coagulation cascade, which are the series of chemical reactions that lead to the formation of a clot.

The test involves adding a partial thromboplastin reagent (an activator of the intrinsic pathway) and calcium to plasma, and then measuring the time it takes for a fibrin clot to form. This is compared to a control sample, and the ratio of the two times is calculated.

The PTT test is often used to help diagnose bleeding disorders or abnormal blood clotting, such as hemophilia or disseminated intravascular coagulation (DIC). It can also be used to monitor the effectiveness of anticoagulant therapy, such as heparin. Prolonged PTT results may indicate a bleeding disorder or an increased risk of bleeding, while shortened PTT results may indicate a hypercoagulable state and an increased risk of thrombosis.

Proto-oncogenes are normal genes that are present in all cells and play crucial roles in regulating cell growth, division, and death. They code for proteins that are involved in signal transduction pathways that control various cellular processes such as proliferation, differentiation, and survival. When these genes undergo mutations or are activated abnormally, they can become oncogenes, which have the potential to cause uncontrolled cell growth and lead to cancer. Oncogenes can contribute to tumor formation through various mechanisms, including promoting cell division, inhibiting programmed cell death (apoptosis), and stimulating blood vessel growth (angiogenesis).

Protease-activated receptor 1 (PAR-1) is a type of G protein-coupled receptor that is activated by proteolytic cleavage rather than by binding to a ligand in the traditional sense. PAR-1 is expressed on the surface of various cell types, including endothelial cells, smooth muscle cells, and platelets.

When activated by proteases such as thrombin or trypsin, PAR-1 undergoes a conformational change that allows it to interact with G proteins and initiate intracellular signaling pathways. These pathways can lead to a variety of cellular responses, including platelet activation, smooth muscle contraction, and inflammation.

PAR-1 has been implicated in several physiological processes, including hemostasis, thrombosis, and vascular remodeling, as well as in the pathophysiology of various diseases, such as atherosclerosis, cancer, and Alzheimer's disease. Therefore, PAR-1 is an important target for the development of therapeutic agents for these conditions.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Proto-oncogene proteins c-bcl-2 are a group of proteins that play a role in regulating cell death (apoptosis). The c-bcl-2 gene produces one of these proteins, which helps to prevent cells from undergoing apoptosis. This protein is located on the membrane of mitochondria and endoplasmic reticulum and it can inhibit the release of cytochrome c, a key player in the activation of caspases, which are enzymes that trigger apoptosis.

In normal cells, the regulation of c-bcl-2 protein helps to maintain a balance between cell proliferation and cell death, ensuring proper tissue homeostasis. However, when the c-bcl-2 gene is mutated or its expression is dysregulated, it can contribute to cancer development by allowing cancer cells to survive and proliferate. High levels of c-bcl-2 protein have been found in many types of cancer, including leukemia, lymphoma, and carcinomas, and are often associated with a poor prognosis.

Anticoagulants are a class of medications that work to prevent the formation of blood clots in the body. They do this by inhibiting the coagulation cascade, which is a series of chemical reactions that lead to the formation of a clot. Anticoagulants can be given orally, intravenously, or subcutaneously, depending on the specific drug and the individual patient's needs.

There are several different types of anticoagulants, including:

1. Heparin: This is a naturally occurring anticoagulant that is often used in hospitalized patients who require immediate anticoagulation. It works by activating an enzyme called antithrombin III, which inhibits the formation of clots.
2. Low molecular weight heparin (LMWH): LMWH is a form of heparin that has been broken down into smaller molecules. It has a longer half-life than standard heparin and can be given once or twice daily by subcutaneous injection.
3. Direct oral anticoagulants (DOACs): These are newer oral anticoagulants that work by directly inhibiting specific clotting factors in the coagulation cascade. Examples include apixaban, rivaroxaban, and dabigatran.
4. Vitamin K antagonists: These are older oral anticoagulants that work by inhibiting the action of vitamin K, which is necessary for the formation of clotting factors. Warfarin is an example of a vitamin K antagonist.

Anticoagulants are used to prevent and treat a variety of conditions, including deep vein thrombosis (DVT), pulmonary embolism (PE), atrial fibrillation, and prosthetic heart valve thrombosis. It is important to note that anticoagulants can increase the risk of bleeding, so they must be used with caution and regular monitoring of blood clotting times may be required.

Factor Xa is a serine protease that plays a crucial role in the coagulation cascade, which is a series of reactions that lead to the formation of a blood clot. It is one of the activated forms of Factor X, a pro-protein that is converted to Factor Xa through the action of other enzymes in the coagulation cascade.

Factor Xa functions as a key component of the prothrombinase complex, which also includes calcium ions, phospholipids, and activated Factor V (also known as Activated Protein C or APC). This complex is responsible for converting prothrombin to thrombin, which then converts fibrinogen to fibrin, forming a stable clot.

Inhibitors of Factor Xa are used as anticoagulants in the prevention and treatment of thromboembolic disorders such as deep vein thrombosis and pulmonary embolism. These drugs work by selectively inhibiting Factor Xa, thereby preventing the formation of the prothrombinase complex and reducing the risk of clot formation.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

1-Carboxyglutamic acid, also known as γ-carboxyglutamic acid, is a post-translational modification found on certain blood clotting factors and other calcium-binding proteins. It is formed by the carboxylation of glutamic acid residues in these proteins, which enhances their ability to bind to calcium ions. This modification is essential for the proper functioning of many physiological processes, including blood coagulation, bone metabolism, and wound healing.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

I'm sorry for any confusion, but "Genes, myc" is not a recognized medical term or abbreviation. It seems like there might be a misunderstanding or a missing word in the request. "Myc" could refer to the Myc family of transcription factors that are involved in cell growth and division, and are often deregulated in cancer. However, without more context, it's difficult to provide an accurate definition. If you could provide more information or clarify your question, I would be happy to help further!

Blood coagulation tests, also known as coagulation studies or clotting tests, are a series of medical tests used to evaluate the blood's ability to clot. These tests measure the functioning of various clotting factors and regulatory proteins involved in the coagulation cascade, which is a complex process that leads to the formation of a blood clot to prevent excessive bleeding.

The most commonly performed coagulation tests include:

1. Prothrombin Time (PT): Measures the time it takes for a sample of plasma to clot after the addition of calcium and tissue factor, which activates the extrinsic pathway of coagulation. The PT is reported in seconds and can be converted to an International Normalized Ratio (INR) to monitor anticoagulant therapy.
2. Activated Partial Thromboplastin Time (aPTT): Measures the time it takes for a sample of plasma to clot after the addition of calcium, phospholipid, and a contact activator, which activates the intrinsic pathway of coagulation. The aPTT is reported in seconds and is used to monitor heparin therapy.
3. Thrombin Time (TT): Measures the time it takes for a sample of plasma to clot after the addition of thrombin, which directly converts fibrinogen to fibrin. The TT is reported in seconds and can be used to detect the presence of fibrin degradation products or abnormalities in fibrinogen function.
4. Fibrinogen Level: Measures the amount of fibrinogen, a protein involved in clot formation, present in the blood. The level is reported in grams per liter (g/L) and can be used to assess bleeding risk or the effectiveness of fibrinogen replacement therapy.
5. D-dimer Level: Measures the amount of D-dimer, a protein fragment produced during the breakdown of a blood clot, present in the blood. The level is reported in micrograms per milliliter (µg/mL) and can be used to diagnose or exclude venous thromboembolism (VTE), such as deep vein thrombosis (DVT) or pulmonary embolism (PE).

These tests are important for the diagnosis, management, and monitoring of various bleeding and clotting disorders. They can help identify the underlying cause of abnormal bleeding or clotting, guide appropriate treatment decisions, and monitor the effectiveness of therapy. It is essential to interpret these test results in conjunction with a patient's clinical presentation and medical history.

Neoplastic gene expression regulation refers to the processes that control the production of proteins and other molecules from genes in neoplastic cells, or cells that are part of a tumor or cancer. In a normal cell, gene expression is tightly regulated to ensure that the right genes are turned on or off at the right time. However, in cancer cells, this regulation can be disrupted, leading to the overexpression or underexpression of certain genes.

Neoplastic gene expression regulation can be affected by a variety of factors, including genetic mutations, epigenetic changes, and signals from the tumor microenvironment. These changes can lead to the activation of oncogenes (genes that promote cancer growth and development) or the inactivation of tumor suppressor genes (genes that prevent cancer).

Understanding neoplastic gene expression regulation is important for developing new therapies for cancer, as targeting specific genes or pathways involved in this process can help to inhibit cancer growth and progression.

Disseminated Intravascular Coagulation (DIC) is a complex medical condition characterized by the abnormal activation of the coagulation cascade, leading to the formation of blood clots in small blood vessels throughout the body. This process can result in the consumption of clotting factors and platelets, which can then lead to bleeding complications. DIC can be caused by a variety of underlying conditions, including sepsis, trauma, cancer, and obstetric emergencies.

The term "disseminated" refers to the widespread nature of the clotting activation, while "intravascular" indicates that the clotting is occurring within the blood vessels. The condition can manifest as both bleeding and clotting complications, which can make it challenging to diagnose and manage.

The diagnosis of DIC typically involves laboratory tests that evaluate coagulation factors, platelet count, fibrin degradation products, and other markers of coagulation activation. Treatment is focused on addressing the underlying cause of the condition while also managing any bleeding or clotting complications that may arise.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Antithrombin III is a protein that inhibits the formation of blood clots (thrombi) in the body. It does this by inactivating several enzymes involved in coagulation, including thrombin and factor Xa. Antithrombin III is produced naturally by the liver and is also available as a medication for the prevention and treatment of thromboembolic disorders, such as deep vein thrombosis and pulmonary embolism. It works by binding to and neutralizing excess clotting factors in the bloodstream, thereby reducing the risk of clot formation.

Proto-oncogene proteins, such as c-Myc, are crucial regulators of normal cell growth, differentiation, and apoptosis (programmed cell death). When proto-oncogenes undergo mutations or alterations in their regulation, they can become overactive or overexpressed, leading to the formation of oncogenes. Oncogenic forms of c-Myc contribute to uncontrolled cell growth and division, which can ultimately result in cancer development.

The c-Myc protein is a transcription factor that binds to specific DNA sequences, influencing the expression of target genes involved in various cellular processes, such as:

1. Cell cycle progression: c-Myc promotes the expression of genes required for the G1 to S phase transition, driving cells into the DNA synthesis and division phase.
2. Metabolism: c-Myc regulates genes associated with glucose metabolism, glycolysis, and mitochondrial function, enhancing energy production in rapidly dividing cells.
3. Apoptosis: c-Myc can either promote or inhibit apoptosis, depending on the cellular context and the presence of other regulatory factors.
4. Differentiation: c-Myc generally inhibits differentiation by repressing genes that are necessary for specialized cell functions.
5. Angiogenesis: c-Myc can induce the expression of pro-angiogenic factors, promoting the formation of new blood vessels to support tumor growth.

Dysregulation of c-Myc is frequently observed in various types of cancer, making it an important therapeutic target for cancer treatment.

Translocation, genetic, refers to a type of chromosomal abnormality in which a segment of a chromosome is transferred from one chromosome to another, resulting in an altered genome. This can occur between two non-homologous chromosomes (non-reciprocal translocation) or between two homologous chromosomes (reciprocal translocation). Genetic translocations can lead to various clinical consequences, depending on the genes involved and the location of the translocation. Some translocations may result in no apparent effects, while others can cause developmental abnormalities, cancer, or other genetic disorders. In some cases, translocations can also increase the risk of having offspring with genetic conditions.

Thrombosis is the formation of a blood clot (thrombus) inside a blood vessel, obstructing the flow of blood through the circulatory system. When a clot forms in an artery, it can cut off the supply of oxygen and nutrients to the tissues served by that artery, leading to damage or tissue death. If a thrombus forms in the heart, it can cause a heart attack. If a thrombus breaks off and travels through the bloodstream, it can lodge in a smaller vessel, causing blockage and potentially leading to damage in the organ that the vessel supplies. This is known as an embolism.

Thrombosis can occur due to various factors such as injury to the blood vessel wall, abnormalities in blood flow, or changes in the composition of the blood. Certain medical conditions, medications, and lifestyle factors can increase the risk of thrombosis. Treatment typically involves anticoagulant or thrombolytic therapy to dissolve or prevent further growth of the clot, as well as addressing any underlying causes.

Thrombophlebitis is a medical condition characterized by the inflammation and clotting of blood in a vein, usually in the legs. The term thrombophlebitis comes from two words: "thrombo" which means blood clot, and "phlebitis" which refers to inflammation of the vein.

The condition can occur in superficial or deep veins. Superficial thrombophlebitis affects the veins just below the skin's surface, while deep vein thrombophlebitis (DVT) occurs in the deeper veins. DVT is a more serious condition as it can lead to complications such as pulmonary embolism if the blood clot breaks off and travels to the lungs.

Symptoms of thrombophlebitis may include redness, warmth, pain, swelling, or discomfort in the affected area. In some cases, there may be visible surface veins that are hard, tender, or ropy to touch. If left untreated, thrombophlebitis can lead to chronic venous insufficiency and other long-term complications. Treatment typically involves medications such as anticoagulants, antiplatelet agents, or thrombolytics, along with compression stockings and other supportive measures.

Factor V deficiency is a rare bleeding disorder that is caused by a mutation in the gene that produces coagulation factor V, a protein involved in the clotting process. This condition can lead to excessive bleeding following injury or surgery, and may also cause menorrhagia (heavy menstrual periods) in women.

Factor V deficiency is inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the mutated gene (one from each parent) in order to develop the condition. People who inherit only one copy of the mutated gene are carriers and may have a milder form of the disorder or no symptoms at all.

Treatment for factor V deficiency typically involves replacement therapy with fresh frozen plasma or clotting factor concentrates, which can help to reduce bleeding episodes and prevent complications. In some cases, medications such as desmopressin or antifibrinolytics may also be used to manage the condition.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Factor X is a protein that is essential for blood clotting, also known as coagulation. It is an enzyme that plays a crucial role in the coagulation cascade, which is a series of chemical reactions that lead to the formation of a blood clot. Factor X is activated by one of two pathways: the intrinsic pathway, which is initiated by damage to the blood vessels, or the extrinsic pathway, which is triggered by the release of tissue factor from damaged cells. Once activated, Factor X converts prothrombin to thrombin, which then converts fibrinogen to fibrin to form a stable clot.

Inherited deficiencies in Factor X can lead to bleeding disorders, while increased levels of Factor X have been associated with an increased risk of thrombosis or blood clots. Therefore, maintaining appropriate levels of Factor X is important for the proper balance between bleeding and clotting in the body.

Gene amplification is a process in molecular biology where a specific gene or set of genes are copied multiple times, leading to an increased number of copies of that gene within the genome. This can occur naturally in cells as a response to various stimuli, such as stress or exposure to certain chemicals, but it can also be induced artificially through laboratory techniques for research purposes.

In cancer biology, gene amplification is often associated with tumor development and progression, where the amplified genes can contribute to increased cell growth, survival, and drug resistance. For example, the overamplification of the HER2/neu gene in breast cancer has been linked to more aggressive tumors and poorer patient outcomes.

In diagnostic and research settings, gene amplification techniques like polymerase chain reaction (PCR) are commonly used to detect and analyze specific genes or genetic sequences of interest. These methods allow researchers to quickly and efficiently generate many copies of a particular DNA sequence, facilitating downstream analysis and detection of low-abundance targets.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Antithrombins are substances that prevent the formation or promote the dissolution of blood clots (thrombi). They include:

1. Anticoagulants: These are medications that reduce the ability of the blood to clot. Examples include heparin, warfarin, and direct oral anticoagulants (DOACs) such as apixaban, rivaroxaban, and dabigatran.
2. Thrombolytic agents: These are medications that break down existing blood clots. Examples include alteplase, reteplase, and tenecteplase.
3. Fibrinolytics: These are a type of thrombolytic agent that specifically target fibrin, a protein involved in the formation of blood clots.
4. Natural anticoagulants: These are substances produced by the body to regulate blood clotting. Examples include antithrombin III, protein C, and protein S.

Antithrombins are used in the prevention and treatment of various thromboembolic disorders, such as deep vein thrombosis (DVT), pulmonary embolism (PE), stroke, and myocardial infarction (heart attack). It is important to note that while antithrombins can help prevent or dissolve blood clots, they also increase the risk of bleeding, so their use must be carefully monitored.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Hemostasis is the physiological process that occurs to stop bleeding (bleeding control) when a blood vessel is damaged. This involves the interaction of platelets, vasoconstriction, and blood clotting factors leading to the formation of a clot. The ultimate goal of hemostasis is to maintain the integrity of the vascular system while preventing excessive blood loss.

Sepsis is a life-threatening condition that arises when the body's response to an infection injures its own tissues and organs. It is characterized by a whole-body inflammatory state (systemic inflammation) that can lead to blood clotting issues, tissue damage, and multiple organ failure.

Sepsis happens when an infection you already have triggers a chain reaction throughout your body. Infections that lead to sepsis most often start in the lungs, urinary tract, skin, or gastrointestinal tract.

Sepsis is a medical emergency. If you suspect sepsis, seek immediate medical attention. Early recognition and treatment of sepsis are crucial to improve outcomes. Treatment usually involves antibiotics, intravenous fluids, and may require oxygen, medication to raise blood pressure, and corticosteroids. In severe cases, surgery may be required to clear the infection.

Factor VIIIa is a protein that plays a crucial role in the coagulation cascade, which is the series of biochemical reactions involved in blood clotting. Specifically, Factor VIIIa is an activated form of Factor VIII, which is one of the essential clotting factors required for normal hemostasis (the process that stops bleeding).

Factor VIIIa functions as a cofactor for another protein called Factor IXa, and together they form the "tenase complex." This complex activates Factor X to Factor Xa, which ultimately leads to the formation of a fibrin clot.

Deficiencies or dysfunctions in Factor VIII or Factor VIIIa can result in bleeding disorders such as hemophilia A, a genetic condition characterized by prolonged bleeding and spontaneous hemorrhages.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Purpura fulminans is a severe, life-threatening condition characterized by the rapid progression of hemorrhagic purpura (discoloration of the skin due to bleeding under the skin) and disseminated intravascular coagulation (DIC), leading to thrombosis and necrosis of the skin and underlying tissues. It can be classified into two types: acute infectious purpura fulminans, which is caused by bacterial infections such as meningococcus or pneumococcus; and chronic purpura fulminans, which is associated with autoimmune disorders or protein C or S deficiencies. The condition can lead to serious complications such as sepsis, organ failure, and death if not promptly diagnosed and treated.

Antithrombin III (ATIII) deficiency is a genetic disorder that affects the body's ability to regulate blood clotting. ATIII is a protein produced in the liver that inhibits the activity of thrombin and other coagulation factors, preventing excessive clot formation.

People with ATIII deficiency have lower than normal levels of this protein, which can lead to an increased risk of developing abnormal blood clots (thrombosis) in veins, particularly deep vein thrombosis (DVT) and pulmonary embolism (PE). These clots can cause serious complications, including damage to the affected veins, organ damage, and even death.

ATIII deficiency can be classified into two types: type I and type II. Type I is characterized by a quantitative decrease in ATIII levels, while type II is characterized by a qualitative defect that results in reduced functional activity of the protein.

The condition is usually inherited in an autosomal dominant manner, meaning that a person has a 50% chance of inheriting the gene mutation from an affected parent. However, some cases may occur spontaneously due to new mutations in the ATIII gene. Treatment for ATIII deficiency typically involves anticoagulation therapy with medications such as heparin or warfarin to prevent blood clots from forming.

Retroviridae proteins, oncogenic, refer to the proteins expressed by retroviruses that have the ability to transform normal cells into cancerous ones. These oncogenic proteins are typically encoded by viral genes known as "oncogenes," which are acquired through the process of transduction from the host cell's DNA during retroviral replication.

The most well-known example of an oncogenic retrovirus is the Human T-cell Leukemia Virus Type 1 (HTLV-1), which encodes the Tax and HBZ oncoproteins. These proteins manipulate various cellular signaling pathways, leading to uncontrolled cell growth and malignant transformation.

It is important to note that not all retroviruses are oncogenic, and only a small subset of them have been associated with cancer development in humans or animals.

A "cell line, transformed" is a type of cell culture that has undergone a stable genetic alteration, which confers the ability to grow indefinitely in vitro, outside of the organism from which it was derived. These cells have typically been immortalized through exposure to chemical or viral carcinogens, or by introducing specific oncogenes that disrupt normal cell growth regulation pathways.

Transformed cell lines are widely used in scientific research because they offer a consistent and renewable source of biological material for experimentation. They can be used to study various aspects of cell biology, including signal transduction, gene expression, drug discovery, and toxicity testing. However, it is important to note that transformed cells may not always behave identically to their normal counterparts, and results obtained using these cells should be validated in more physiologically relevant systems when possible.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Bcl-2 is a family of proteins that play a crucial role in regulating cell death (apoptosis), which is a normal process that eliminates damaged or unnecessary cells from the body. Specifically, Bcl-2 proteins are involved in controlling the mitochondrial pathway of apoptosis.

The bcl-2 gene provides instructions for making one member of this protein family, called B-cell lymphoma 2 protein. This protein is located primarily on the outer membrane of mitochondria and helps to prevent apoptosis by inhibiting the release of cytochrome c from the mitochondria into the cytoplasm.

In healthy cells, the balance between pro-apoptotic (promoting cell death) and anti-apoptotic (inhibiting cell death) proteins is critical for maintaining normal tissue homeostasis. However, in some cancers, including certain types of leukemia and lymphoma, the bcl-2 gene is abnormally overexpressed, leading to an excess of Bcl-2 protein that disrupts this balance and allows cancer cells to survive and proliferate.

Therefore, understanding the role of bcl-2 in apoptosis has important implications for developing new therapies for cancer and other diseases associated with abnormal cell death regulation.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

A point mutation is a type of genetic mutation where a single nucleotide base (A, T, C, or G) in DNA is altered, deleted, or substituted with another nucleotide. Point mutations can have various effects on the organism, depending on the location of the mutation and whether it affects the function of any genes. Some point mutations may not have any noticeable effect, while others might lead to changes in the amino acids that make up proteins, potentially causing diseases or altering traits. Point mutations can occur spontaneously due to errors during DNA replication or be inherited from parents.

Fibrinolysis is the natural process in the body that leads to the dissolution of blood clots. It is a vital part of hemostasis, the process that regulates bleeding and wound healing. Fibrinolysis occurs when plasminogen activators convert plasminogen to plasmin, an enzyme that breaks down fibrin, the insoluble protein mesh that forms the structure of a blood clot. This process helps to prevent excessive clotting and maintains the fluidity of the blood. In medical settings, fibrinolysis can also refer to the therapeutic use of drugs that stimulate this process to dissolve unwanted or harmful blood clots, such as those that cause deep vein thrombosis or pulmonary embolism.

Thromboplastin is a substance that activates the coagulation cascade, leading to the formation of a clot (thrombus). It's primarily found in damaged or injured tissues and blood vessels, as well as in platelets (thrombocytes). There are two types of thromboplastin:

1. Extrinsic thromboplastin (also known as tissue factor): This is a transmembrane glycoprotein that is primarily found in subendothelial cells and released upon injury to the blood vessels. It initiates the extrinsic pathway of coagulation by binding to and activating Factor VII, ultimately leading to the formation of thrombin and fibrin clots.
2. Intrinsic thromboplastin (also known as plasma thromboplastin or factor III): This term is used less frequently and refers to a labile phospholipid component present in platelet membranes, which plays a role in the intrinsic pathway of coagulation.

In clinical settings, the term "thromboplastin" often refers to reagents used in laboratory tests like the prothrombin time (PT) and activated partial thromboplastin time (aPTT). These reagents contain a source of tissue factor and calcium ions to initiate and monitor the coagulation process.

Human chromosome pair 14 consists of two rod-shaped structures present in the nucleus of human cells, which contain genetic material in the form of DNA and proteins. Each member of the pair contains a single very long DNA molecule that carries an identical set of genes and other genetic elements, totaling approximately 105 million base pairs. These chromosomes play a crucial role in the development, functioning, and reproduction of human beings.

Chromosome 14 is one of the autosomal chromosomes, meaning it is not involved in determining the sex of an individual. It contains around 800-1,000 genes that provide instructions for producing various proteins responsible for numerous cellular functions and processes. Some notable genes located on chromosome 14 include those associated with neurodevelopmental disorders, cancer susceptibility, and immune system regulation.

Human cells typically have 23 pairs of chromosomes, including 22 autosomal pairs (numbered 1-22) and one pair of sex chromosomes (XX for females or XY for males). Chromosome pair 14 is the eighth largest autosomal pair in terms of its total length.

It's important to note that genetic information on chromosome 14, like all human chromosomes, can vary between individuals due to genetic variations and mutations. These differences contribute to the unique characteristics and traits found among humans.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Cell transformation, viral refers to the process by which a virus causes normal cells to become cancerous or tumorigenic. This occurs when the genetic material of the virus integrates into the DNA of the host cell and alters its regulation, leading to uncontrolled cell growth and division. Some viruses known to cause cell transformation include human papillomavirus (HPV), hepatitis B virus (HBV), and certain types of herpesviruses.

A neoplasm is a tumor or growth that is formed by an abnormal and excessive proliferation of cells, which can be benign or malignant. Neoplasm proteins are therefore any proteins that are expressed or produced in these neoplastic cells. These proteins can play various roles in the development, progression, and maintenance of neoplasms.

Some neoplasm proteins may contribute to the uncontrolled cell growth and division seen in cancer, such as oncogenic proteins that promote cell cycle progression or inhibit apoptosis (programmed cell death). Others may help the neoplastic cells evade the immune system, allowing them to proliferate undetected. Still others may be involved in angiogenesis, the formation of new blood vessels that supply the tumor with nutrients and oxygen.

Neoplasm proteins can also serve as biomarkers for cancer diagnosis, prognosis, or treatment response. For example, the presence or level of certain neoplasm proteins in biological samples such as blood or tissue may indicate the presence of a specific type of cancer, help predict the likelihood of cancer recurrence, or suggest whether a particular therapy will be effective.

Overall, understanding the roles and behaviors of neoplasm proteins can provide valuable insights into the biology of cancer and inform the development of new diagnostic and therapeutic strategies.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

Factor VIIa is a protein involved in the coagulation cascade, which is a series of chemical reactions that leads to the formation of a blood clot. Factor VIIa is the activated form of factor VII, which is normally activated by tissue factor (TF) when there is damage to the blood vessels. Together, TF and Factor VIIa convert Factor X to its active form, Factor Xa, which then converts prothrombin to thrombin, leading to the formation of a fibrin clot.

In summary, Factor VIIa is an important protein in the coagulation cascade that helps to initiate the formation of a blood clot in response to injury.

Proteolipids are a type of complex lipid-containing proteins that are insoluble in water and have a high content of hydrophobic amino acids. They are primarily found in the plasma membrane of cells, where they play important roles in maintaining the structural integrity and function of the membrane. Proteolipids are also found in various organelles, including mitochondria, lysosomes, and peroxisomes.

Proteolipids are composed of a hydrophobic protein core that is tightly associated with a lipid bilayer through non-covalent interactions. The protein component of proteolipids typically contains several transmembrane domains that span the lipid bilayer, as well as hydrophilic regions that face the cytoplasm or the lumen of organelles.

Proteolipids have been implicated in various cellular processes, including signal transduction, membrane trafficking, and ion transport. They are also associated with several neurological disorders, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. The study of proteolipids is an active area of research in biochemistry and cell biology, with potential implications for the development of new therapies for neurological disorders.

Vitamin K is a fat-soluble vitamin that plays a crucial role in blood clotting and bone metabolism. It is essential for the production of several proteins involved in blood clotting, including factor II (prothrombin), factor VII, factor IX, and factor X. Additionally, Vitamin K is necessary for the synthesis of osteocalcin, a protein that contributes to bone health by regulating the deposition of calcium in bones.

There are two main forms of Vitamin K: Vitamin K1 (phylloquinone), which is found primarily in green leafy vegetables and some vegetable oils, and Vitamin K2 (menaquinones), which is produced by bacteria in the intestines and is also found in some fermented foods.

Vitamin K deficiency can lead to bleeding disorders such as hemorrhage and excessive bruising. While Vitamin K deficiency is rare in adults, it can occur in newborns who have not yet developed sufficient levels of the vitamin. Therefore, newborns are often given a Vitamin K injection shortly after birth to prevent bleeding problems.

B-cell lymphoma is a type of cancer that originates from the B-lymphocytes, which are a part of the immune system and play a crucial role in fighting infections. These cells can develop mutations in their DNA, leading to uncontrolled growth and division, resulting in the formation of a tumor.

B-cell lymphomas can be classified into two main categories: Hodgkin's lymphoma and non-Hodgkin's lymphoma. B-cell lymphomas are further divided into subtypes based on their specific characteristics, such as the appearance of the cells under a microscope, the genetic changes present in the cancer cells, and the aggressiveness of the disease.

Some common types of B-cell lymphomas include diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, and Burkitt lymphoma. Treatment options for B-cell lymphomas depend on the specific subtype, stage of the disease, and other individual factors. Treatment may include chemotherapy, radiation therapy, immunotherapy, targeted therapy, or stem cell transplantation.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

Venous thrombosis is a medical condition characterized by the formation of a blood clot (thrombus) in the deep veins, often in the legs (deep vein thrombosis or DVT), but it can also occur in other parts of the body such as the arms, pelvis, or lungs (pulmonary embolism).

The formation of a venous thrombus can be caused by various factors, including injury to the blood vessel wall, changes in blood flow, and alterations in the composition of the blood. These factors can lead to the activation of clotting factors and platelets, which can result in the formation of a clot that blocks the vein.

Symptoms of venous thrombosis may include swelling, pain, warmth, and redness in the affected area. In some cases, the clot can dislodge and travel to other parts of the body, causing potentially life-threatening complications such as pulmonary embolism.

Risk factors for venous thrombosis include advanced age, obesity, smoking, pregnancy, use of hormonal contraceptives or hormone replacement therapy, cancer, recent surgery or trauma, prolonged immobility, and a history of previous venous thromboembolism. Treatment typically involves the use of anticoagulant medications to prevent further clotting and dissolve existing clots.

Blood coagulation factor inhibitors are substances that interfere with the normal blood clotting process by inhibiting the function of coagulation factors. These inhibitors can be either naturally occurring or artificially produced.

Naturally occurring coagulation factor inhibitors include antithrombin, protein C, and tissue factor pathway inhibitor (TFPI). These inhibitors play a crucial role in regulating the coagulation cascade and preventing excessive clot formation.

Artificially produced coagulation factor inhibitors are used as therapeutic agents to treat thrombotic disorders. Examples include direct oral anticoagulants (DOACs) such as apixaban, rivaroxaban, and dabigatran, which selectively inhibit specific coagulation factors (factor Xa or thrombin).

Additionally, there are also antibodies that can act as coagulation factor inhibitors. These include autoantibodies that develop in some individuals and cause bleeding disorders such as acquired hemophilia A or antiphospholipid syndrome.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Coagulation protein disorders are a group of medical conditions that affect the body's ability to form blood clots properly. These disorders can be caused by genetic defects or acquired factors, such as liver disease or vitamin K deficiency.

The coagulation system is a complex process that involves various proteins called clotting factors. When there is an injury to a blood vessel, these clotting factors work together in a specific order to form a clot and prevent excessive bleeding. In coagulation protein disorders, one or more of these clotting factors are missing or not functioning properly, leading to abnormal bleeding or clotting.

There are several types of coagulation protein disorders, including:

1. Hemophilia: This is a genetic disorder that affects the clotting factor VIII or IX. People with hemophilia may experience prolonged bleeding after injuries, surgery, or dental work.
2. Von Willebrand disease: This is another genetic disorder that affects the von Willebrand factor, a protein that helps platelets stick together and form a clot. People with this condition may have nosebleeds, easy bruising, and excessive bleeding during menstruation or after surgery.
3. Factor XI deficiency: This is a rare genetic disorder that affects the clotting factor XI. People with this condition may experience prolonged bleeding after surgery or trauma.
4. Factor VII deficiency: This is a rare genetic disorder that affects the clotting factor VII. People with this condition may have nosebleeds, easy bruising, and excessive bleeding during menstruation or after surgery.
5. Acquired coagulation protein disorders: These are conditions that develop due to other medical factors, such as liver disease, vitamin K deficiency, or the use of certain medications. These disorders can affect one or more clotting factors and may cause abnormal bleeding or clotting.

Treatment for coagulation protein disorders depends on the specific condition and severity of symptoms. In some cases, replacement therapy with the missing clotting factor may be necessary to prevent excessive bleeding. Other treatments may include medications to control bleeding, such as desmopressin or antifibrinolytic agents, and lifestyle changes to reduce the risk of injury and bleeding.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

Pulmonary surfactants are a complex mixture of lipids and proteins that are produced by the alveolar type II cells in the lungs. They play a crucial role in reducing the surface tension at the air-liquid interface within the alveoli, which helps to prevent collapse of the lungs during expiration. Surfactants also have important immunological functions, such as inhibiting the growth of certain bacteria and modulating the immune response. Deficiency or dysfunction of pulmonary surfactants can lead to respiratory distress syndrome (RDS) in premature infants and other lung diseases.

Factor VII, also known as proconvertin, is a protein involved in the coagulation cascade, which is a series of chemical reactions that leads to the formation of a blood clot. Factor VII is synthesized in the liver and is activated when it comes into contact with tissue factor, which is exposed when blood vessels are damaged. Activated Factor VII then activates Factor X, leading to the formation of thrombin and ultimately a fibrin clot.

Inherited deficiencies or dysfunctions of Factor VII can lead to an increased risk of bleeding, while elevated levels of Factor VII have been associated with an increased risk of thrombosis (blood clots).

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

The term "DNA, neoplasm" is not a standard medical term or concept. DNA refers to deoxyribonucleic acid, which is the genetic material present in the cells of living organisms. A neoplasm, on the other hand, is a tumor or growth of abnormal tissue that can be benign (non-cancerous) or malignant (cancerous).

In some contexts, "DNA, neoplasm" may refer to genetic alterations found in cancer cells. These genetic changes can include mutations, amplifications, deletions, or rearrangements of DNA sequences that contribute to the development and progression of cancer. Identifying these genetic abnormalities can help doctors diagnose and treat certain types of cancer more effectively.

However, it's important to note that "DNA, neoplasm" is not a term that would typically be used in medical reports or research papers without further clarification. If you have any specific questions about DNA changes in cancer cells or neoplasms, I would recommend consulting with a healthcare professional or conducting further research on the topic.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Tumor suppressor protein p53, also known as p53 or tumor protein p53, is a nuclear phosphoprotein that plays a crucial role in preventing cancer development and maintaining genomic stability. It does so by regulating the cell cycle and acting as a transcription factor for various genes involved in apoptosis (programmed cell death), DNA repair, and cell senescence (permanent cell growth arrest).

In response to cellular stress, such as DNA damage or oncogene activation, p53 becomes activated and accumulates in the nucleus. Activated p53 can then bind to specific DNA sequences and promote the transcription of target genes that help prevent the proliferation of potentially cancerous cells. These targets include genes involved in cell cycle arrest (e.g., CDKN1A/p21), apoptosis (e.g., BAX, PUMA), and DNA repair (e.g., GADD45).

Mutations in the TP53 gene, which encodes p53, are among the most common genetic alterations found in human cancers. These mutations often lead to a loss or reduction of p53's tumor suppressive functions, allowing cancer cells to proliferate uncontrollably and evade apoptosis. As a result, p53 has been referred to as "the guardian of the genome" due to its essential role in preventing tumorigenesis.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

ERBB-2, also known as HER2/neu or HER2, is a gene that encodes for a tyrosine kinase receptor protein. This receptor is part of the EGFR/ERBB family and plays crucial roles in cell growth, differentiation, and survival. Amplification or overexpression of this gene has been found in various types of human cancers, including breast, ovarian, lung, and gastric cancers. In breast cancer, ERBB-2 overexpression is associated with aggressive tumor behavior and poorer prognosis. Therefore, ERBB-2 has become an important therapeutic target for cancer treatment, with various targeted therapies developed to inhibit its activity.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Repressor proteins are a type of regulatory protein in molecular biology that suppress the transcription of specific genes into messenger RNA (mRNA) by binding to DNA. They function as part of gene regulation processes, often working in conjunction with an operator region and a promoter region within the DNA molecule. Repressor proteins can be activated or deactivated by various signals, allowing for precise control over gene expression in response to changing cellular conditions.

There are two main types of repressor proteins:

1. DNA-binding repressors: These directly bind to specific DNA sequences (operator regions) near the target gene and prevent RNA polymerase from transcribing the gene into mRNA.
2. Allosteric repressors: These bind to effector molecules, which then cause a conformational change in the repressor protein, enabling it to bind to DNA and inhibit transcription.

Repressor proteins play crucial roles in various biological processes, such as development, metabolism, and stress response, by controlling gene expression patterns in cells.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Carboxypeptidase U is also known as thiol protease or thiol carboxypeptidase. It is a type of enzyme that belongs to the peptidase family, specifically the serine proteases. This enzyme plays a role in the regulation of blood pressure by cleaving and inactivating bradykinin, a potent vasodilator peptide. Carboxypeptidase U is primarily produced in the kidneys and is released into the circulation in response to various stimuli, such as renin and angiotensin II. It functions by removing the C-terminal arginine residue from bradykinin, thereby reducing its biological activity and helping to maintain blood pressure homeostasis.

Thromboembolism is a medical condition that refers to the obstruction of a blood vessel by a thrombus (blood clot) that has formed elsewhere in the body and then been transported by the bloodstream to a narrower vessel, where it becomes lodged. This process can occur in various parts of the body, leading to different types of thromboembolisms:

1. Deep Vein Thrombosis (DVT): A thrombus forms in the deep veins, usually in the legs or pelvis, and then breaks off and travels to the lungs, causing a pulmonary embolism.
2. Pulmonary Embolism (PE): A thrombus formed elsewhere, often in the deep veins of the legs, dislodges and travels to the lungs, blocking one or more pulmonary arteries. This can lead to shortness of breath, chest pain, and potentially life-threatening complications if not treated promptly.
3. Cerebral Embolism: A thrombus formed in another part of the body, such as the heart or carotid artery, dislodges and travels to the brain, causing a stroke or transient ischemic attack (TIA).
4. Arterial Thromboembolism: A thrombus forms in an artery and breaks off, traveling to another part of the body and blocking blood flow to an organ or tissue, leading to potential damage or loss of function. Examples include mesenteric ischemia (intestinal damage due to blocked blood flow) and retinal artery occlusion (vision loss due to blocked blood flow in the eye).

Prevention, early detection, and appropriate treatment are crucial for managing thromboembolism and reducing the risk of severe complications.

Heparin is defined as a highly sulfated glycosaminoglycan (a type of polysaccharide) that is widely present in many tissues, but is most commonly derived from the mucosal tissues of mammalian lungs or intestinal mucosa. It is an anticoagulant that acts as an inhibitor of several enzymes involved in the blood coagulation cascade, primarily by activating antithrombin III which then neutralizes thrombin and other clotting factors.

Heparin is used medically to prevent and treat thromboembolic disorders such as deep vein thrombosis, pulmonary embolism, and certain types of heart attacks. It can also be used during hemodialysis, cardiac bypass surgery, and other medical procedures to prevent the formation of blood clots.

It's important to note that while heparin is a powerful anticoagulant, it does not have any fibrinolytic activity, meaning it cannot dissolve existing blood clots. Instead, it prevents new clots from forming and stops existing clots from growing larger.

Thrombin time (TT) is a medical laboratory test that measures the time it takes for a clot to form after thrombin, an enzyme that converts fibrinogen to fibrin in the final step of the coagulation cascade, is added to a plasma sample. This test is used to evaluate the efficiency of the conversion of fibrinogen to fibrin and can be used to detect the presence of abnormalities in the coagulation system, such as the presence of heparin or dysfibrinogenemia. Increased thrombin time may indicate the presence of a systemic anticoagulant or a deficiency in fibrinogen.

Down-regulation is a process that occurs in response to various stimuli, where the number or sensitivity of cell surface receptors or the expression of specific genes is decreased. This process helps maintain homeostasis within cells and tissues by reducing the ability of cells to respond to certain signals or molecules.

In the context of cell surface receptors, down-regulation can occur through several mechanisms:

1. Receptor internalization: After binding to their ligands, receptors can be internalized into the cell through endocytosis. Once inside the cell, these receptors may be degraded or recycled back to the cell surface in smaller numbers.
2. Reduced receptor synthesis: Down-regulation can also occur at the transcriptional level, where the expression of genes encoding for specific receptors is decreased, leading to fewer receptors being produced.
3. Receptor desensitization: Prolonged exposure to a ligand can lead to a decrease in receptor sensitivity or affinity, making it more difficult for the cell to respond to the signal.

In the context of gene expression, down-regulation refers to the decreased transcription and/or stability of specific mRNAs, leading to reduced protein levels. This process can be induced by various factors, including microRNA (miRNA)-mediated regulation, histone modification, or DNA methylation.

Down-regulation is an essential mechanism in many physiological processes and can also contribute to the development of several diseases, such as cancer and neurodegenerative disorders.

CARD (caspase recruitment domain) signaling adaptor proteins are a group of intracellular signaling molecules that play a crucial role in the regulation of various cellular processes, including inflammation, immunity, and programmed cell death or apoptosis. These proteins contain a CARD domain, which is a protein-protein interaction module that enables them to bind to other CARD-containing proteins and form large signaling complexes.

CARD signaling adaptor proteins function as molecular scaffolds that help bring together various signaling components in response to different stimuli, such as pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). By doing so, they facilitate the activation of downstream signaling cascades and the initiation of appropriate cellular responses.

Some examples of CARD signaling adaptor proteins include:

1. Myeloid differentiation factor 88 (MyD88): This protein is involved in the signaling pathways of most Toll-like receptors (TLRs) and interleukin-1 receptor (IL-1R) family members, which are critical for the detection of microbial components and the initiation of innate immune responses.
2. CARD9: This protein is involved in the signaling pathways of several C-type lectin receptors (CLRs), which recognize fungal and other pathogens, and plays a key role in antifungal immunity.
3. ASC (apoptosis-associated speck-like protein containing a CARD): This protein is involved in the formation of inflammasomes, which are large cytosolic complexes that activate caspase-1 and promote the maturation and secretion of proinflammatory cytokines.
4. RIPK2 (receptor-interacting serine/threonine-protein kinase 2): This protein is involved in the signaling pathways of NOD1 and NOD2, which are intracellular sensors of bacterial peptidoglycan, and plays a role in the regulation of inflammation and apoptosis.

Overall, CARD-containing proteins play crucial roles in various immune signaling pathways by mediating protein-protein interactions and downstream signal transduction events, ultimately leading to the activation of innate immunity and inflammatory responses.

Factor VIII is a protein in the blood that is essential for normal blood clotting. It is also known as antihemophilic factor (AHF). Deficiency or dysfunction of this protein results in hemophilia A, a genetic disorder characterized by prolonged bleeding and easy bruising. Factor VIII works together with other proteins to help form a clot and stop bleeding at the site of an injury. It acts as a cofactor for another clotting factor, IX, in the so-called intrinsic pathway of blood coagulation. Intravenous infusions of Factor VIII concentrate are used to treat and prevent bleeding episodes in people with hemophilia A.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Ras proteins are a group of small GTPases that play crucial roles as regulators of intracellular signaling pathways in cells. They are involved in various cellular processes, such as cell growth, differentiation, and survival. Ras proteins cycle between an inactive GDP-bound state and an active GTP-bound state to transmit signals from membrane receptors to downstream effectors. Mutations in Ras genes can lead to constitutive activation of Ras proteins, which has been implicated in various human cancers and developmental disorders.

Large B-cell lymphoma, diffuse is a type of cancer that starts in cells called B-lymphocytes, which are part of the body's immune system. "Large B-cell" refers to the size and appearance of the abnormal cells when viewed under a microscope. "Diffuse" means that the abnormal cells are spread throughout the lymph node or tissue where the cancer has started, rather than being clustered in one area.

This type of lymphoma is typically aggressive, which means it grows and spreads quickly. It can occur almost anywhere in the body, but most commonly affects the lymph nodes, spleen, and bone marrow. Symptoms may include swollen lymph nodes, fever, night sweats, weight loss, and fatigue.

Treatment for large B-cell lymphoma, diffuse typically involves chemotherapy, radiation therapy, or a combination of both. In some cases, stem cell transplantation or targeted therapy may also be recommended. The prognosis varies depending on several factors, including the stage and location of the cancer, as well as the patient's age and overall health.

I'm sorry for any confusion, but "Lupus Coagulation Inhibitor" is not a recognized medical term or concept in hematology or immunology.

Systemic Lupus Erythematosus (SLE), often referred to simply as lupus, is an autoimmune disease where the body's immune system mistakenly attacks healthy tissue. However, this does not result in a specific coagulation inhibitor.

If you're asking about lupus anticoagulants, these are antibodies that can interfere with clotting tests but paradoxically increase the risk of blood clots in vivo. They are sometimes seen in patients with SLE and other autoimmune diseases.

Please provide more context if you meant something else, so I can give a more accurate response.

Small interfering RNA (siRNA) is a type of short, double-stranded RNA molecule that plays a role in the RNA interference (RNAi) pathway. The RNAi pathway is a natural cellular process that regulates gene expression by targeting and destroying specific messenger RNA (mRNA) molecules, thereby preventing the translation of those mRNAs into proteins.

SiRNAs are typically 20-25 base pairs in length and are generated from longer double-stranded RNA precursors called hairpin RNAs or dsRNAs by an enzyme called Dicer. Once generated, siRNAs associate with a protein complex called the RNA-induced silencing complex (RISC), which uses one strand of the siRNA (the guide strand) to recognize and bind to complementary sequences in the target mRNA. The RISC then cleaves the target mRNA, leading to its degradation and the inhibition of protein synthesis.

SiRNAs have emerged as a powerful tool for studying gene function and have shown promise as therapeutic agents for a variety of diseases, including viral infections, cancer, and genetic disorders. However, their use as therapeutics is still in the early stages of development, and there are challenges associated with delivering siRNAs to specific cells and tissues in the body.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Serine proteinase inhibitors, also known as serine protease inhibitors or serpins, are a group of proteins that inhibit serine proteases, which are enzymes that cut other proteins in a process called proteolysis. Serine proteinases are important in many biological processes such as blood coagulation, fibrinolysis, inflammation and cell death. The inhibition of these enzymes by serpin proteins is an essential regulatory mechanism to maintain the balance and prevent uncontrolled proteolytic activity that can lead to diseases.

Serpins work by forming a covalent complex with their target serine proteinases, irreversibly inactivating them. The active site of serpins contains a reactive center loop (RCL) that mimics the protease's target protein sequence and acts as a bait for the enzyme. When the protease cleaves the RCL, it gets trapped within the serpin structure, leading to its inactivation.

Serpin proteinase inhibitors play crucial roles in various physiological processes, including:

1. Blood coagulation and fibrinolysis regulation: Serpins such as antithrombin, heparin cofactor II, and protease nexin-2 control the activity of enzymes involved in blood clotting and dissolution to prevent excessive or insufficient clot formation.
2. Inflammation modulation: Serpins like α1-antitrypsin, α2-macroglobulin, and C1 inhibitor regulate the activity of proteases released during inflammation, protecting tissues from damage.
3. Cell death regulation: Some serpins, such as PI-9/SERPINB9, control apoptosis (programmed cell death) by inhibiting granzyme B, a protease involved in this process.
4. Embryonic development and tissue remodeling: Serpins like plasminogen activator inhibitor-1 (PAI-1) and PAI-2 regulate the activity of enzymes involved in extracellular matrix degradation during embryonic development and tissue remodeling.
5. Neuroprotection: Serpins such as neuroserpin protect neurons from damage by inhibiting proteases released during neuroinflammation or neurodegenerative diseases.

Dysregulation of serpins has been implicated in various pathological conditions, including thrombosis, emphysema, Alzheimer's disease, and cancer. Understanding the roles of serpins in these processes may provide insights into potential therapeutic strategies for treating these diseases.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Human chromosome pair 18 consists of two rod-shaped structures present in the nucleus of each cell of the human body. Chromosomes are made up of DNA, protein, and RNA, and they carry genetic information that determines an individual's physical characteristics, biochemical processes, and susceptibility to disease.

Chromosome pair 18 is one of the 23 pairs of chromosomes that make up the human genome. Each member of chromosome pair 18 has a length of about 75 million base pairs and contains around 600 genes. Chromosome pair 18 is also known as the "smart chromosome" because it contains many genes involved in brain development, function, and cognition.

Abnormalities in chromosome pair 18 can lead to genetic disorders such as Edwards syndrome (trisomy 18), in which there is an extra copy of chromosome 18, or deletion of a portion of the chromosome, leading to various developmental and cognitive impairments.

3T3 cells are a type of cell line that is commonly used in scientific research. The name "3T3" is derived from the fact that these cells were developed by treating mouse embryo cells with a chemical called trypsin and then culturing them in a flask at a temperature of 37 degrees Celsius.

Specifically, 3T3 cells are a type of fibroblast, which is a type of cell that is responsible for producing connective tissue in the body. They are often used in studies involving cell growth and proliferation, as well as in toxicity tests and drug screening assays.

One particularly well-known use of 3T3 cells is in the 3T3-L1 cell line, which is a subtype of 3T3 cells that can be differentiated into adipocytes (fat cells) under certain conditions. These cells are often used in studies of adipose tissue biology and obesity.

It's important to note that because 3T3 cells are a type of immortalized cell line, they do not always behave exactly the same way as primary cells (cells that are taken directly from a living organism). As such, researchers must be careful when interpreting results obtained using 3T3 cells and consider any potential limitations or artifacts that may arise due to their use.

"ErbB-2" is also known as "HER2" or "human epidermal growth factor receptor 2." It is a type of receptor tyrosine kinase (RTK) found on the surface of some cells. ErbB-2 does not bind to any known ligands, but it can form heterodimers with other ErbB family members, such as ErbB-3 and ErbB-4, which do have identified ligands. When a ligand binds to one of these receptors, it causes a conformational change that allows the ErbB-2 receptor to become activated through transphosphorylation. This activation triggers a signaling cascade that regulates cell growth, differentiation, and survival.

Overexpression or amplification of the ERBB2 gene, which encodes the ErbB-2 protein, is observed in approximately 20-30% of breast cancers and is associated with a more aggressive disease phenotype and poorer prognosis. Therefore, ErbB-2 has become an important target for cancer therapy, and several drugs that target this receptor have been developed, including trastuzumab (Herceptin), lapatinib (Tykerb), and pertuzumab (Perjeta).

"Nude mice" is a term used in the field of laboratory research to describe a strain of mice that have been genetically engineered to lack a functional immune system. Specifically, nude mice lack a thymus gland and have a mutation in the FOXN1 gene, which results in a failure to develop a mature T-cell population. This means that they are unable to mount an effective immune response against foreign substances or organisms.

The name "nude" refers to the fact that these mice also have a lack of functional hair follicles, resulting in a hairless or partially hairless phenotype. This feature is actually a secondary consequence of the same genetic mutation that causes their immune deficiency.

Nude mice are commonly used in research because their weakened immune system makes them an ideal host for transplanted tumors, tissues, and cells from other species, including humans. This allows researchers to study the behavior of these foreign substances in a living organism without the complication of an immune response. However, it's important to note that because nude mice lack a functional immune system, they must be kept in sterile conditions and are more susceptible to infection than normal mice.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Protein-Tyrosine Kinases (PTKs) are a type of enzyme that plays a crucial role in various cellular functions, including signal transduction, cell growth, differentiation, and metabolism. They catalyze the transfer of a phosphate group from ATP to the tyrosine residues of proteins, thereby modifying their activity, localization, or interaction with other molecules.

PTKs can be divided into two main categories: receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (NRTKs). RTKs are transmembrane proteins that become activated upon binding to specific ligands, such as growth factors or hormones. NRTKs, on the other hand, are intracellular enzymes that can be activated by various signals, including receptor-mediated signaling and intracellular messengers.

Dysregulation of PTK activity has been implicated in several diseases, such as cancer, diabetes, and inflammatory disorders. Therefore, PTKs are important targets for drug development and therapy.

... proto-oncogene proteins c-akt MeSH D12.776.624.664.700.169 - proto-oncogene proteins c-bcl-2 MeSH D12.776.624.664.700.170 - ... proto-oncogene proteins c-bcl-6 MeSH D12.776.624.664.700.171 - proto-oncogene proteins c-bcr MeSH D12.776.624.664.700.172 - ... proto-oncogene proteins c-cbl MeSH D12.776.624.664.700.174 - proto-oncogene proteins c-crk MeSH D12.776.624.664.700.175 - proto ... proto-oncogene proteins c-fes MeSH D12.776.624.664.700.179 - proto-oncogene proteins c-fos MeSH D12.776.624.664.700.180 - proto ...
... x-linked inhibitor of apoptosis protein MeSH D12.644.360.075.718 - proto-oncogene proteins c-bcl-2 MeSH D12.644.360.075.718.100 ... 14-3-3 proteins MeSH D12.644.360.024.318 - proto-oncogene proteins c-crk MeSH D12.644.360.024.326 - proto-oncogene proteins c- ... oncogene proteins v-raf MeSH D12.644.360.400.842.374 - proto-oncogene proteins b-raf MeSH D12.644.360.400.842.500 - proto- ... ras proteins MeSH D12.644.360.525.500.300 - oncogene protein p21(ras) MeSH D12.644.360.525.500.600 - proto-oncogene proteins ...
Integral membrane proteins, Peripheral membrane proteins, Oncogenes, Apoptosis, Programmed cell death). ... These pro-apoptotic proteins are in turn activated by BH3-only proteins, and are inhibited by the function of BCL-2 and its ... encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L)". The ... The pro-apoptotic proteins in the BCL-2 family, including Bax and Bak, normally act on the mitochondrial membrane to promote ...
... is specific for the TK domain in abl (the Abelson proto-oncogene), c-kit and PDGF-R (platelet-derived growth factor ... BCL-2 is responsible for keeping the mitochondria stable; this suppresses cell death by apoptosis and increases survival. The ... Imatinib is highly plasma protein-bound: dialysis is unlikely to be helpful removing imatinib. Its use is advised against in ... In vitro studies identified that a modified version of imatinib can bind to gamma-secretase activating protein (GSAP). GSAP ...
... by inhibiting the apoptosis-causing proteins, Bcl-2-associated X protein and Bcl-2 homologous antagonist killer. BCL6: This ... MYC: This protooncogene's product, Myc, encodes a transcription factor which regulates the expression of other genes whose ... February 2020). "Potent efficacy of MCL-1 inhibitor-based therapies in preclinical models of mantle cell lymphoma". Oncogene. ... Pharmacological inhibition of BCL-2 is effective in most B cell lymphomas, but often leads to acquired resistance due to the ...
"Novel BTB/POZ domain zinc-finger protein, LRF, is a potential target of the LAZ-3/BCL-6 oncogene". Oncogene. 18 (2): 365-75. ... Niu H (December 2002). "The proto-oncogene BCL-6 in normal and malignant B cell development". Hematological Oncology. 20 (4): ... "Colocalization and heteromerization between the two human oncogene POZ/zinc finger proteins, LAZ3 (BCL6) and PLZF". Oncogene. ... Bcl-6 (B-cell lymphoma 6) is a protein that in humans is encoded by the BCL6 gene. BCL6 is a master transcription factor for ...
Proto-Oncogene+Proteins+c-akt at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Portal: Biology ( ... BAD is a pro-apoptotic protein of the Bcl-2 family. Akt1 can phosphorylate BAD on Ser136, which makes BAD dissociate from the ... Protein kinase B (PKB), also known as Akt, is the collective name of a set of three serine/threonine-specific protein kinases ... Akt1 is also able to induce protein synthesis pathways, and is therefore a key signaling protein in the cellular pathways that ...
... elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2". Cell. 76 (4): 665-676. ... This refers to the homology between the ced-9 protein and the B-cell lymphoma proteins (Bcl) found in humans, specifically the ... The protein is homologous to the human apoptotic regulator Bcl-2 as well as all other proteins in the Bcl-2 protein family. CED ... The protein consists of 280 amino acids and has a molecular weight of 31824.42 Da. The structure of this protein has been ...
IPR003327 The Myc Protein NCBI Human Myc protein Myc cancer gene myc+Proto-Oncogene+Proteins at the U.S. National Library of ... upregulates ribosomal RNA and proteins), apoptosis (downregulates Bcl-2), differentiation, and stem cell self-renewal. ... "The proto-oncogene c-myc in hematopoietic development and leukemogenesis". Oncogene. 21 (21): 3414-21. doi:10.1038/sj.onc. ... C-Myc PDBe-KB provides an overview of all the structure information available in the PDB for Human Myc proto-oncogene protein ( ...
Myb proto-oncogene protein is a member of the MYB (myeloblastosis) family of transcription factors. The protein contains three ... and decreased Bcl-2 expression". Cancer Res. 58 (22): 5168-75. PMID 9823328. Verbeek W, Gombart AF, Chumakov AM, Müller C, ... In humans, it includes Myb proto-oncogene like 1 and Myb-related protein B in addition to MYB proper. Members of the extended ... Jacobs SM, Gorse KM, Westin EH (1994). "Identification of a second promoter in the human c-myb proto-oncogene". Oncogene. 9 (1 ...
"Entrez Gene: RRAS related RAS viral (r-ras) oncogene homolog". Yuryev A, Wennogle LP (February 2003). "Novel raf kinase protein ... novel genes closely related to ras proto-oncogenes". Cell. 48 (1): 137-46. doi:10.1016/0092-8674(87)90364-3. PMID 3098437. ... Fernandez-Sarabia MJ, Bischoff JR (November 1993). "Bcl-2 associates with the ras-related protein R-ras p23". Nature. 366 (6452 ... Ras-related protein R-Ras is a protein that in humans is encoded by the RRAS gene. RRAS has been shown to interact with: ARAF, ...
... proto-oncogene proteins - proto-oncogene protein C-kit - proto-oncogene proteins c-abl - proto-oncogene proteins c-bcl-2 - ... Proto-oncogene proteins c-fos - proto-oncogene proteins c-jun - proto-oncogene proteins c-mo - proto-oncogene proteins c-myc - ... protein - protein biosynthesis - Protein Data Bank - protein design - protein expression - protein folding - protein isoform - ... oncogene - oncogene protein - oncogene proteins V-abl - oncogenic retroviridae protein - open reading frame - opioid receptor ...
... elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2". Cell. 76 (4): 665-76. doi ... elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9". Cell. 93 (4): 519 ... a protein which activates apoptosis by inhibiting CED-9; transcription factors ces-1 and ces-2, and ced-8, which controls the ... elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme". Cell. 75 (4): 641- ...
... and the proto-oncogenes c-kit, bcl-2, VEGF, H-ras and N-ras. Genome-wide surveys based on a quadruplex folding rule have been ... Fragile X mental retardation protein (FMRP) is a widely expressed protein coded by the FMR1 gene that binds to G-quadruplex ... The proto-oncogene c-myc forms a quadruplex in a nuclease hypersensitive region critical for gene activity. Other genes shown ... G-quadruplex structures have been identified in various human proto-oncogene promoter regions. The structures most present in ...
Another recent study has also shown that TFOs can be used for suppression of oncogenes and proto-oncogenes to reduce cancer ... RadA, a homologous protein to RecA, has been shown to have the same enzymatic activity in recombination as RecA. The protein ... Additionally, formation of R.R.Y. H-DNA conformations have been observed at the Mbr of the bcl-2 gene. Formation of these ... CPPs are proteins that are able to carry "cargo" such as small proteins or molecules successfully into cells. The PGLAs are ...
Mulcahy LS, Smith MR, Stacey DW (1985). "Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 ... This protein has been shown to interact with tumor suppressor protein Rb and the expression of this gene is regulated ... Withers DA, Harvey RC, Faust JB, Melnyk O, Carey K, Meeker TC (October 1991). "Characterization of a candidate bcl-1 gene". ... Motokura T, Arnold A (June 1993). "PRAD1/cyclin D1 proto-oncogene: genomic organization, 5' DNA sequence, and sequence of a ...
Fujita T, Nolan GP, Liou HC, Scott ML, Baltimore D (July 1993). "The candidate proto-oncogene bcl-3 encodes a transcriptional ... Although the IκB family consists of IκBα, IκBβ, IκBε, and Bcl-3, the best-studied and major IκB protein is IκBα. Due to the ... In addition, p50 and p52 homodimers also bind to the nuclear protein Bcl-3, and such complexes can function as transcriptional ... All proteins of the NF-κB family share a Rel homology domain in their N-terminus. A subfamily of NF-κB proteins, including RelA ...
B-cell lymphoma 3-encoded protein is a protein that in humans is encoded by the BCL3 gene. This gene is a proto-oncogene ... Nolan GP, Fujita T, Bhatia K, Huppi C, Liou HC, Scott ML, Baltimore D (June 1993). "The bcl-3 proto-oncogene encodes a nuclear ... Naumann M, Wulczyn FG, Scheidereit C (January 1993). "The NF-kappa B precursor p105 and the proto-oncogene product Bcl-3 are I ... Naumann M, Wulczyn FG, Scheidereit C (January 1993). "The NF-kappa B precursor p105 and the proto-oncogene product Bcl-3 are I ...
... protein". Oncogene. 17 (16): 2143-8. doi:10.1038/sj.onc.1202123. PMID 9798686. Meza JE, Brzovic PS, King MC, Klevit RE (Feb ... Dechend R, Hirano F, Lehmann K, Heissmeyer V, Ansieau S, Wulczyn FG, Scheidereit C, Leutz A (Jun 1999). "The Bcl-3 oncoprotein ... including the products of tumor suppressor genes and dominant protooncogenes, and developmentally important genes such as the ... BRCA1-associated RING domain protein 1 is a protein that in humans is encoded by the BARD1 gene. The human BARD1 protein is 777 ...
SH3 domain-mediated protein-protein interaction blocking drug". Oncogene. 21 (13): 2037-50. doi:10.1038/sj.onc.1205271. PMID ... Ohmichi M, Decker SJ, Pang L, Saltiel AR (August 1991). "Nerve growth factor binds to the 140 kd trk proto-oncogene product and ... Lee JH, Takahashi T, Yasuhara N, Inazawa J, Kamada S, Tsujimoto Y (Nov 1999). "Bis, a Bcl-2-binding protein that synergizes ... BAG3 balances protein synthesis and protein degradation under mechanical stress. PLCG1 has been shown to interact with: FGFR1, ...
... proto-oncogene proteins a-raf MeSH D12.776.476.400.842.437 - proto-oncogene proteins b-raf MeSH D12.776.476.400.842.500 - proto ... bcl-associated death protein MeSH D12.776.476.075.718.400 - bcl-2-associated x protein MeSH D12.776.476.075.718.425 - bcl-2 ... oncogene protein p21(ras) MeSH D12.776.476.525.500.600 - proto-oncogene proteins p21(ras) MeSH D12.776.476.525.700.050 - cdc42 ... proto-oncogene proteins c-vav MeSH D12.776.476.325.300.600 - ral guanine nucleotide exchange factor MeSH D12.776.476.325. ...
"The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the ... 1998). "Blk, a BH3-containing mouse protein that interacts with Bcl-2 and Bcl-xL, is a potent death agonist". J. Biol. Chem. ... Oncogene. 10 (3): 477-86. PMID 7845672. "Entrez Gene: BLK B lymphoid tyrosine kinase". Oda H, Kumar S, Howley PM (August 1999 ... microtubule-associated protein kinase, GTPase-activating protein, and phosphatidylinositol 3-kinase". Mol. Cell. Biol. 13 (9): ...
RAF proto-oncogene serine/threonine-protein kinase, also known as proto-oncogene c-RAF or simply c-Raf or even Raf-1, is an ... C-Raf has been shown to interact with: AKT1, ASK1, BAG1, BRAF, Bcl-2, CDC25A, CFLAR, FYN, GRB10, HRAS, HSP90AA1, KRAS, MAP2K1, ... RAF proto-oncogene serine/threonine-protein kinase) at the PDBe-KB. Portal: Biology (Articles with short description, Short ... "The small GTP-binding protein, Rhes, regulates signal transduction from G protein-coupled receptors". Oncogene. 23 (2): 559-68 ...
These two microRNAs have been shown to downregulate the expression of the ets1 proto-oncogene in cell lines HepG2 by targeting ... The heat shock protein, HSP60 is also known to be a target for post-transcriptional regulation by miR-1 and miR-206. HSP60 is a ... Tang Y, Zheng J, Sun Y, Wu Z, Liu Z, Huang G (May 2009). "MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2". ... August 2012). "MicroRNA-1 and microRNA-499 downregulate the expression of the proto-oncogene in HepG2 cells". Oncology Reports ...
SH3 domain-mediated protein-protein interaction blocking drug". Oncogene. 21 (13): 2037-2050. doi:10.1038/sj.onc.1205271. PMID ... β-Catenin is a proto-oncogene. Mutations of this gene are commonly found in a variety of cancers: in primary hepatocellular ... This finding was coordinate with enhanced expression of pro-survival proteins, survivin and Bcl-2, and vascular endothelial ... DIX domains are unique: the only other proteins known to have a DIX domain are Dishevelled and DIXDC1. (The single Dsh protein ...
Proto-oncogenes c-fos and c-myc are involved in the regulation of gene transcription while JE and KC are peptide cytokines that ... Activation of a PI3K pathway is sufficient to trigger phosphorylation of the Bcl-2 family member Bad by ManLAM. ManLAM is able ... Dephosphorylated Bad serves as a pro-apoptotic protein and its activation allows for cell survival. This demonstrates one ... By activating a phosphatase, LAM can inhibit LPS and IFN-γ induced protein tyrosine phosphorylation in monocytes. This ...
Manipulation of apoptosis regulator proteins Bcl-2 and Bax (overexpression of Bcl-2 or deletion of Bax) produces an increase in ... The BCR-ABL oncogene has been found to be involved in the development of cancer in humans. c-Myc is involved in the regulation ... which began to invade their proto-eukaryotic hosts. This process is still evident today, between human white blood cells and ... and the scaffold protein FIP200. Class III PI3K complex, containing hVps34, Beclin-1, p150 and Atg14-like protein or ...
"Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173-8. Bibcode:2005Natur. ... "Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL". BMC Cell Biol. 7: 1. ... Serine/threonine-protein kinase Pim-2 is an enzyme that in humans is encoded by the PIM2 . PIM2 or Proviral Integrations of ... Overview of all the structural information available in the PDB for UniProt: Q9P1W9 (Serine/threonine-protein kinase pim-2) at ...
"Novel BTB/POZ domain zinc-finger protein, LRF, is a potential target of the LAZ-3/BCL-6 oncogene". Oncogene. 18 (2): 365-75. ... 2005). "Role of the proto-oncogene Pokémon in cellular transformation and ARF repression". Nature. 433 (7023): 278-85. Bibcode: ... "Novel BTB/POZ domain zinc-finger protein, LRF, is a potential target of the LAZ-3/BCL-6 oncogene". Oncogene. 18 (2): 365-75. ... Zinc finger and BTB domain-containing protein 7A is a protein that in humans is encoded by the ZBTB7A gene. ZBTB7A has been ...
Naumann M, Wulczyn FG, Scheidereit C (January 1993). "The NF-kappa B precursor p105 and the proto-oncogene product Bcl-3 are I ... The 105 kD protein is a Rel protein-specific transcription inhibitor and the 50 kD protein is a DNA binding subunit of the NF- ... "The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation". Oncogene ... "Physical interaction of the bHLH LYL1 protein and NF-kappaB1 p105". Oncogene. 18 (4): 995-1005. doi:10.1038/sj.onc.1202374. ...
"Proto-Oncogene Proteins c-bcl-2" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH ( ... This graph shows the total number of publications written about "Proto-Oncogene Proteins c-bcl-2" by people in this website by ... Proto-Oncogene Proteins c-bcl-2*Proto-Oncogene Proteins c-bcl-2 ... Proto-Oncogene Proteins c-akt. *Proto-Oncogene Proteins c-bcl-2 ... Below are the most recent publications written about "Proto-Oncogene Proteins c-bcl-2" by people in Profiles. ...
e.g. Keyword 1 AND Keyword 2. Search By. Select Search By. Affiliation. Author. Author - First. Author - Identifier. Author - ...
Proto-Oncogene Proteins / biosynthesis * Proto-Oncogene Proteins / genetics* * Proto-Oncogene Proteins c-bcl-6 ... MAL protein(+/-), Bcl-6(+/-), MUM1/IRF4(+/-), CD10(-/+), CD21(-), CD15(-), CD138(-), CD68(-), and CD3(-). Immunoglobulins were ... More than half of the cases displayed BCL-6 gene mutations, which usually occurred along with functioning somatic IgV(H) gene ... Primary mediastinal B-cell lymphoma: high frequency of BCL-6 mutations and consistent expression of the transcription factors ...
Proto-Oncogene Proteins / chemistry* * Proto-Oncogene Proteins / metabolism* * Proto-Oncogene Proteins c-bcl-2 ... Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4 Mol Cell. ... EGL-1 protein, C elegans * Proto-Oncogene Proteins * Proto-Oncogene Proteins c-bcl-2 ...
Proto-Oncogene Proteins c-fyn. *Cervical Cancer. *bcl-2-Associated X Protein ... protein autophosphorylation - protein binding - protein phosphorylation - protein tyrosine kinase activity - regulation of cell ... This gene is a member of the protein-tyrosine kinase oncogene family. It encodes a membrane-associated tyrosine kinase that has ... In NASH, the proteins that showed upregulated levels of expression were BAK1 and GNAI1 and the protein that showed ...
Proto-Oncogene Proteins c-bcl-2. *Quinolines. *bcl-2-Associated X Protein ... In addition, hepatotoxicity and the expression of apoptosis proteins Bax and Bcl-2 were correlated qualitatively with the TP ... 2)O(2). Our data showed that biliary clearance of TP reduced 73.7% and 84.2% upon treatment of ritonavir (25 µM) and tariquidar ... 2)O(2) (0.5 mM), respectively. The TP-induced hepatotoxicity increased by twofold when CYP activity was blocked by 1- ...
... proto-oncogene proteins c-akt MeSH D12.776.624.664.700.169 - proto-oncogene proteins c-bcl-2 MeSH D12.776.624.664.700.170 - ... proto-oncogene proteins c-bcl-6 MeSH D12.776.624.664.700.171 - proto-oncogene proteins c-bcr MeSH D12.776.624.664.700.172 - ... proto-oncogene proteins c-cbl MeSH D12.776.624.664.700.174 - proto-oncogene proteins c-crk MeSH D12.776.624.664.700.175 - proto ... proto-oncogene proteins c-fes MeSH D12.776.624.664.700.179 - proto-oncogene proteins c-fos MeSH D12.776.624.664.700.180 - proto ...
B-Raf proto-oncogene serine/threonine-protein kinase (B-RAF), also known as V-raf murine sarcoma viral oncogene homolog B1. ... Bcl-2. B-cell lymphoma 2. bcr. breakpoint cluster region. Caspase. cysteine-aspartic proteases or cysteine-dependent aspartate- ...
BCL2 Proteins. Family Proteins, BCL2. Proteins, BCL2. Proteins, BCL2 Family. Proto Oncogene Proteins c bcl 2. Proto-Oncogene ... Proto-Oncogene Proteins (1989-1996). Public MeSH Note:. 97; PROTO-ONCOGENE PROTEIN BCL-2 was indexed under PROTO-ONCOGENE ... Proto-Oncogene Proteins c-bcl-2 - Preferred Concept UI. M0028673. Scope note. Membrane proteins encoded by the BCL-2 GENES and ... Proto-Oncogene Proteins c-bcl-2 Entry term(s). Proto Oncogene Proteins c bcl 2 Proto-Oncogene Proteins, bcl-2 bcl 2 Proto ...
Proto-Oncogene Proteins c-bcl-2 33% * Deep Learning 28% * Apalutamide plus androgen deprivation therapy in clinical subgroups ... Unconventional Source of Neurotoxic Protein Aggregation from Organelle Off-Target Bax∆2 in Alzheimers Disease. Yao, Q., ... Interleukin-1 receptor accessory protein (IL-1RAP): A magic bullet candidate for immunotherapy of human malignancies. Zarezadeh ... Oncogene. 14 p.. Research output: Contribution to journal › Article › peer-review ...
Proto-Oncogene Proteins c-bcl-2. Anderson, Gray R., Suzanne E. Wardell, Merve Cakir, Lorin Crawford, Jim C. Leeds, Daniel P. ... bcl-X Protein. Anderson, Gray R., Suzanne E. Wardell, Merve Cakir, Lorin Crawford, Jim C. Leeds, Daniel P. Nussbaum, Pallavi S ... Myeloid Cell Leukemia Sequence 1 Protein. Anderson, Gray R., Suzanne E. Wardell, Merve Cakir, Lorin Crawford, Jim C. Leeds, ...
In vitro characterization of the Meq proteins of Mareks disease virus vaccine strain CVI988. - Texas A&M University (TAMU) ... Protein Binding * Proto-Oncogene Proteins C-bcl-2 * Rats Identity. Digital Object Identifier (DOI) * 10.1016/j.virusres.2009.01 ... All three Meq proteins activated the MDV gB, MMP-3 and Bcl-2 promoters and suppressed transcription from the MDV pp38/pp14 ... Here, we report that both CVI-Meq proteins, like the Meq protein of Md5 (a very virulent oncogenic strain), were capable of ...
Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Superoxide Dismutase; Trientine; Tumor Cells, Cultured ... Mitochondrial antioxidants (Mn superoxide dismutase and Bcl-2)were up-regulated. Overexpression and activation of p53 were ... Mitochondrial antioxidants (Mn superoxide dismutase and Bcl-2)were up-regulated. Overexpression and activation of p53 were ... Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento ...
Proto-Oncogene Proteins c-bcl-2 (MeSH) * Rivers (MeSH) published in * International Journal of Radiation Biology Journal ... Bcl-2 and c-myc are reliable biomarkers for evaluating low dose radiation responses in wild populations of amphibians. Overall ... The frog bladder cultures were incubated for another 10-12 days followed by immunochemical staining for bcl-2 and c-myc ... In bladder explants from both control and 4-Gy-irradiated radio-adapting frogs, anti-apoptotic bcl-2 expression for pro- ...
Proto-Oncogene Proteins. 6. + 136. Recombinant Proteins. 6. + 137. Carboplatin. 6. + 138. Proto-Oncogene Proteins c-bcl-2. 6. + ...
Proto-Oncogene Proteins c-bcl-2. *Prognosis. *Prednisone. *Middle Aged. *Male. *Lymphoma, Large B-Cell, Diffuse ... We analyzed Bcl-2 protein expression, and BCL2 and MYC gene abnormalities by interphase fluorescence in situ hybridization in ... The importance of previously recognized prognostic markers, such as Bcl-2 protein expression and BCL2 gene abnormalities, has ... Bcl-2 protein overexpression was associated with inferior outcome in patients with germinal center subtype lymphoma, but ...
... is usually the result of chromosomal translocations that activate proto-oncogenes or create a chimeric fusion protein. ... results in activation of the BCL-2 gene and suppression of apoptosis. ... Sirolimus Protein-Bound SOLU-MEDROL ® Somatuline® Depot Sonidegib Sorafenib Sotorasib Sprycel® Sterapred® Stivarga® ... Former dismal prognosis (2 year survival ,10%); now patients with good risk factors have 60% complete response to chemotherapy ...
Proto-Oncogene Proteins/analysis, Proto-Oncogene Proteins c-bcl-2, Seminoma/pathology, Testicular Neoplasms/pathology, Tumor ... KW - Proto-Oncogene Proteins/analysis. KW - Proto-Oncogene Proteins c-bcl-2 ... No expression of p53 and of the apoptosis-inhibitor bcl-2 was detectable in intact SE tissue or cell suspensions. Our data ... No expression of p53 and of the apoptosis-inhibitor bcl-2 was detectable in intact SE tissue or cell suspensions. Our data ...
Proto-Oncogene Proteins / metabolism; Proto-Oncogene Proteins c-bcl-2 / metabolism; Pyrimidines; Transcription Factors; bcl-2- ... Carrier Proteins / analysis; Carrier Proteins / physiology; Cyclophilin D; Cyclophilins; Liver / drug effects; Liver Neoplasms ... Carrier Proteins / metabolism; Chlordan; DNA-Binding Proteins; Liver Neoplasms, Experimental / chemically induced; Liver ... Hepatic expression of acute-phase protein genes during carcinogenesis induced by peroxisome proliferators ...
Proto-Oncogene Proteins c-bcl-2 9% * Proteins 7% * Genes 7% * Progression-Free Survival 7% ...
Proto-oncogene protein c-bcl-2 inhibitors, Tubulin inhibitors, Tubulin polymerization promoters, Poly(ADP-ribose) polymerase 1 ... Sponsored by Quantum Leap, the I-SPY 2.2 TRIAL is a continuation of the I-SPY 2 TRIAL that seeks to create personalized ... Back 2 Strength Chiropractors - Eugene Shares an Overview of the Services They Offer ... ERBB 2 receptor antagonists, Antibody-dependent cell cytotoxicity, Programmed cell death-1 receptor antagonists, T lymphocyte ...
Proto-Oncogene Proteins c-bcl-2 9% * Safety 6% * Staining and Labeling 7% ...
Proto-Oncogene Proteins c-bcl-2 23% * B-Lymphocytes 22% 72 Scopus citations ... Ma, C. X., Janetka, J. W. & Piwnica-Worms, H., Feb 2011, In: Trends in Molecular Medicine. 17, 2, p. 88-96 9 p.. Research ... Weber, J. D. & Gutmann, D. H., Jan 15 2012, In: Cell Cycle. 11, 2, p. 236-248 13 p.. Research output: Contribution to journal ... Naughton, M., Apr 1 2010, In: Clinical breast cancer. 10, 2, p. 130-135 6 p.. Research output: Contribution to journal › Review ...
Protein Binding/genetics, Protein Stability, Proteolysis/drug effects, Proto-Oncogene Proteins c-bcl-2/genetics, Tripartite ... Motif Proteins/genetics, Tripartite Motif-Containing Protein 28/genetics, Ubiquitin-Protein Ligases/genetics, Ubiquitination/ ... BCL2A1 is an anti-apoptotic member of the BCL-2 family that contributes to chemoresistance in a subset of tumors. BCL2A1 has a ... N2 - BCL2A1 is an anti-apoptotic member of the BCL-2 family that contributes to chemoresistance in a subset of tumors. BCL2A1 ...
Activation of various proto-oncogenes: Ras, PKC, C myc, C fos, G proteins, and G protein-coupled receptors (eg, for vasoactive ... Inhibition of senescence and/or apoptosis: Mutations involving telomerase and/or BCL-2 genes ... AC occurs in 2 major peaks: in the first decade of life and again in the fourth to fifth decades. While, functional tumors are ... 2] ; however, an increasing number of ACs are identified in asymptomatic patients, as an incidental finding on imaging ...
Proto-Oncogene Proteins c-bcl-2 Medicine & Life Sciences 71% * Proteins Medicine & Life Sciences 16% ... We investigated whether expression of MYC protein, with or without BCL2 protein expression, could risk-stratify patients at ... We investigated whether expression of MYC protein, with or without BCL2 protein expression, could risk-stratify patients at ... We investigated whether expression of MYC protein, with or without BCL2 protein expression, could risk-stratify patients at ...
Proto-oncogene proteins c-bcl-6 are a family of proteins that play a role in regulating cell growth and survival. They are ... Proto-Oncogene Proteins c-bcl-6. A DNA-binding protein that represses GENETIC TRANSCRIPTION of target genes by recruiting ... Proto-Oncogene Proteins c-bcl-2. Membrane proteins encoded by the BCL-2 GENES and serving as potent inhibitors of cell death by ... Proto-oncogene protein c-bcl-6 is a transcription factor that plays a role in the development and survival of various types of ...
Proto-Oncogene Proteins. *Proto-Oncogene Proteins c-bcl-2. *Proto-Oncogene Proteins c-mdm2 ...
proto-oncogene proteins c-bcl-2 - immunology - metabolism. 1. t-lymphocyte subsets - immunology - metabolism - radiation ...
  • Membrane proteins encoded by the BCL-2 GENES and serving as potent inhibitors of cell death by APOPTOSIS. (uchicago.edu)
  • Apoptosis is a strictly regulated process and many genes and proteins participate in its control. (medscape.com)
  • Proteínas de la membrana codificadas por los GENES BCL-2 y que sirven como potentes inhibidores de la muerte celular por APOPTOSIS. (bvsalud.org)
  • however, a direct extrapolation to mechanisms of disease demands proof that manipulation of candidate genes, proteins, or pathways result in relevant behavioral changes. (unboundmedicine.com)
  • Here, transgenic tomato plants expressing animal antiapoptotic genes bcl-xL and ced-9 were generated through agrobacterium-mediated transformation. (uea.ac.uk)
  • activation of protooncogenes and inactivation of tumor-suppressor genes. (kritischderblog.de)
  • This study examined the involvement of three genes- bcl-2, bcl-6 , and bcl-10 -in PIOL cells. (arvojournals.org)
  • Cellular proteins encoded by the c-mos genes (GENES, MOS). (uams.edu)
  • PURPOSE: We aimed to assess the etiological role of apoptotic genes Bcl-2 and Bax in the background of major obstetric and gynaecological diseases. (ox.ac.uk)
  • In addition, gene expression assessment of the genes Bax and Bcl-2 was performed in 101 uterine leiomyoma tissue samples at our disposal with 110 control cases. (ox.ac.uk)
  • Our objective was to investigate the quantitative expression of BCL-2 (anti-apoptotic), BAX and Caspase3 (pro-apoptotic genes) mRNAs in salivary gland neoplasms and examine the association of these data with tumour size, proliferative activity and p53 staining (parameters associated with a poor prognosis of salivary tumours patients). (biomedcentral.com)
  • As the transcription of apoptosis related genes could help to elucidate the pathogenesis of tumours, we propose to investigate the quantitative expression of BCL-2 (anti-apoptotic), BAX and Caspase3 (pro-apoptotic genes) using qPCR. (biomedcentral.com)
  • Overexpression of bcl-2 proteins, due to a translocation of the gene, is associated with follicular lymphoma. (uchicago.edu)
  • B-cell lymphoma-2 downregulation is a useful feature supporting a neoplastic phenotype in mature T-cell lymphomas. (uchicago.edu)
  • Activation of AMPK inhibits cell proliferation and induces apoptosis through the inhibition of phosphorylated (p)‑Akt and control of B‑cell lymphoma 2 (Bcl‑2) family members. (nih.gov)
  • 1 2 PIOL is usually a diffuse large B cell lymphoma (DLBCL) but occasionally presents as a T cell lymphoma. (arvojournals.org)
  • The B-cell lymphoma (BCL-2) family comprises different regulators involved in apoptosis. (biomedcentral.com)
  • Leha ho le joalo, ho na le maikutlo a feteletseng (kapa a mangata haholo) a Liprotheine tsa MYC le BCL liseleng tsa lymphoma. (lymphoma.org.au)
  • Ob chav expressor hais txog cov protein ntau ntawm koj cov qog nqaij hlav lymphoma. (lymphoma.org.au)
  • Txawm li cas los xij, muaj ib qho overexpression (los yog ntau dhau) ntawm cov MYC thiab BCL proteins ntawm cov qog lymphoma. (lymphoma.org.au)
  • Bcl-xL overexpression blocks bax-mediated mitochondrial contact site formation and apoptosis in rod photoreceptors of lead-exposed mice. (nih.gov)
  • Bcl-x(L) overexpression completely blocked all apoptotic events, except Ca(2+) overload, and maintained normal rod mitochondrial function throughout adulthood. (nih.gov)
  • This study presents images of mitochondrial contact sites in an in vivo apoptosis model and shows that Bcl-x(L) overexpression blocks increased contact sites and apoptosis. (nih.gov)
  • Because overexpression of Bcl-2 family members are implicated in chemotherapeutic resistance in prostate cancer, we investigated the cooperative effects of Pim kinase inhibition with ABT-737, a small molecule antagonist of Bcl-2 family members. (arizona.edu)
  • Notably, these specific protein changes were essential to the apoptotic process because ABT-737 did not inhibit Mcl-1 protein activity and Mcl-1 overexpression blocked the apoptotic activity of ABT-737. (arizona.edu)
  • Our results therefore suggest that this combination treatment could be developed as a potential therapy for human prostate cancer where overexpression of Pim kinases and antiapoptotic Bcl-2 family members drives tumor cell resistance to current anticancer therapies. (arizona.edu)
  • The p53 protein is activated by various cellular events such as DNA damage, hypoxia, heat shock, and overexpression of oncogenes. (kritischderblog.de)
  • 4. Epstein-Barr virus and bcl-2 protein overexpression are not detected in the neoplastic cells of nodular lymphocyte predominance Hodgkin's disease. (nih.gov)
  • Bcl-2 is a proto-oncogene that encodes the largest known antiapoptotic protein. (medscape.com)
  • Bcl-2 is an antiapoptotic molecule whose gene is located on chromosome 18. (arvojournals.org)
  • Antiapoptotic Bcl-2 gene expression was found to be significantly increased in fibroid tissues. (ox.ac.uk)
  • Decrease in the placental expression of the antiapoptotic gene Bcl-2 may upset the balance of programmed cell death. (ox.ac.uk)
  • This family of proteins includes many ONCOGENE PROTEINS as well as a wide variety of classes of INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS such as CASPASES . (lookformedical.com)
  • Bcl-xL Enforces a Slow-Cycling State Necessary for Survival in the Nutrient-Deprived Microenvironment of Pancreatic Cancer. (uchicago.edu)
  • The concomitant elevation in Bcl-2 expression may represent a survival mechanism for the remaining germ cells. (manchester.ac.uk)
  • We studied bcl-2 expression in patients with non-small-cell lung carcinoma and correlated this phenomenon with survival. (ox.ac.uk)
  • The possibility that bcl-2 expression correlated with survival was investigated with use of the log-rank test, hazard ratios, and their confidence intervals. (ox.ac.uk)
  • Survival rates were compared among inoculated transgenic lines expressing bcl-xL, ced-9, and bcl-xL (G138A), a loss-of-function mutant of bcl-xL. (uea.ac.uk)
  • More than 80% of the bcl-xL and ced-9 T(1) transgenic lines showed higher survival rates than the average for bcl-xL (G138A) transgenic lines. (uea.ac.uk)
  • Stromal p53 Regulates Breast Cancer Development, the Immune Landscape, and Survival in an Oncogene-Specific Manner. (musc.edu)
  • An analysis of clinical outcome in 23 PIOL patients revealed no significant association between bcl-2 t(14;18) translocations and survival or relapse. (arvojournals.org)
  • [ 2 ] Literature since the rituximab era has shown a further increase in overall survival. (medscape.com)
  • It mediates survival signaling through phosphorylation of BAD which induces release of the anti-apoptotic protein Bcl-X (L)/BCL2L1. (asdreports.com)
  • Proto-oncogene with serine/threonine kinase activity that can prevent apoptosis, promote cell survival and protein translation. (nih.gov)
  • May contribute to tumorigenesis through: the delivery of survival signaling through phosphorylation of BAD which induces release of the anti-apoptotic protein Bcl-X(L), the regulation of cell cycle progression, protein synthesis and by regulation of MYC transcriptional activity. (nih.gov)
  • Proto-oncogene with serine/threonine kinase activity involved in cell survival and cell proliferation. (icr.ac.uk)
  • Exerts its oncogenic activity through: the regulation of MYC transcriptional activity, the regulation of cell cycle progression, the regulation of cap-dependent protein translation and through survival signaling by phosphorylation of a pro-apoptotic protein, BAD. (icr.ac.uk)
  • Cell surface protein-tyrosine kinase receptors for HEPATOCYTE GROWTH FACTOR. (umassmed.edu)
  • Expression of the c-met proto-oncogene and its ligand, hepatocyte growth factor, in Hodgkin disease. (musc.edu)
  • BACKGROUND: The proto-oncogene bcl-2 encodes a protein that inhibits programmed cell death (apoptosis). (ox.ac.uk)
  • The pro‑apoptotic proteins Bcl‑2‑associated X protein (Bax) and Bcl‑2‑homologous antagonist killer (Bak), are activated by their translocation to mitochondria from the cytosol. (nih.gov)
  • Therefore, this translocation is not responsible for the presence of the BCL-2 protein in non-Hodgkin's lymphomas with testicular localisation. (prinsesmaximacentrum.nl)
  • This study examined the expression of the bcl-2 t(14;18) translocation, the bcl-10 gene, and high expression of bcl-6 mRNA in PIOL cells. (arvojournals.org)
  • A medical record review was also conducted to determine whether the bcl-2 t(14;18) translocation correlated with prognosis. (arvojournals.org)
  • Forty of 72 (55%) PIOL patients expressed the bcl-2 t(14;18) translocation at the major breakpoint region. (arvojournals.org)
  • The bcl-2 t(14;18) translocation brings the bcl-2 gene under the control of the IgH enhancer, resulting in deregulated bcl-2 expression. (arvojournals.org)
  • The translocation of Bax protein from the cytosol to the mitochondria triggers the activation of the caspases cascade, leading to death [ 8 ]. (biomedcentral.com)
  • In addition, Pim inhibition transcriptionally increased levels of the BH3 protein Noxa by activating the unfolded protein response (UPR), lead to eIF-2α phosphorylation and increased expression of CHOP. (arizona.edu)
  • The TP53 gene is mutated in around 50% of cancer cells, but in addition to its role in tumor suppression, cancer cells themselves can find ways to …Figure 2: Phosphorylation sites of human p53. (kritischderblog.de)
  • Phosphorylation of MYC leads to an increase of MYC protein stability and thereby an increase transcriptional activity. (icr.ac.uk)
  • c-Myc, Bcl-2 and Bax expression were detected by immunohistochemistry and single-stranded conformational polymorphism (SSCP) for p53 mutation. (nih.gov)
  • Bcl-2 regulates apoptosis through the formation of homodimer and heterodimer proteins with the other proteins belonging to the Bcl-2 group, especially the proapoptotic protein Bax. (medscape.com)
  • Regulates cap-dependent protein translation in a mammalian target of rapamycin complex 1 (mTORC1)-independent manner and in parallel to the PI3K-Akt pathway. (icr.ac.uk)
  • A member of the Bcl-2 protein family and homologous partner of C-BCL-2 PROTO-ONCOGENE PROTEIN. (lookformedical.com)
  • To determine whether imiquimod modifies the expression of proteins such as Bcl-2, Ki67, p53 and the BCC apoptotic index. (medscape.com)
  • The BCC expression of Bcl-2, Ki67 and p53 was determined in paraffin samples and the apoptotic index of the BCC was studied using the TUNEL technique (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labelling) in frozen samples. (medscape.com)
  • The BCCs treated with imiquimod showed a decrease in the expression of Bcl-2 (88·7% before treatment, 61·4% day 15, P = 0·01) and an increase in the apoptotic index (0·53% before treatment, 1·66% day 15, P = 0·002), which were not observed in the BCCs treated with the excipient. (medscape.com)
  • Imiquimod reduces the expression of Bcl-2 in the BCC cells and increases the BCC apoptotic index. (medscape.com)
  • To investigate the interrelationship between H pylori and Epstein-Barr virus (EBV) infection in the gastric carcinogenesis having in focus the p53 mutation and the c-Myc, Bcl-2 and Bax expression. (nih.gov)
  • Single-nucleotide polymorphisms (SNPs) can alter gene function and protein expression. (geneticsmr.com)
  • However, the expression of Bcl-2 and Bax was up-regulated at 8 days after EDS administration. (manchester.ac.uk)
  • The protein is expressed in basal cells in normal human epithelium, but no data are available on the frequency or clinical importance of its expression in carcinoma. (ox.ac.uk)
  • CONCLUSIONS: The proto-oncogene bcl-2 is abnormally expressed in some lung carcinomas, and its expression may have prognostic importance. (ox.ac.uk)
  • We tested whether DLBCLs with high expression of MYC protein and BCL2 protein share the clinical features and poor prognosis of DHLs. (duke.edu)
  • The DHS-2 group, defined by high expression of both MYC and BCL2 protein, comprised 29% of the patients. (duke.edu)
  • High expression of bcl-xL or ced-9 affected plant growth and seed development. (uea.ac.uk)
  • Thus, expression of bcl-xL and ced-9 improved tolerance to, rather than resistance to, CMV/D satRNA infection. (uea.ac.uk)
  • In addition, expression of bcl-xL and ced-9 specifically abrogated the formation of necrotic lesions, but not other symptoms, in tomato leaves during chilling at 4 degrees C. At 7 degrees C, temperature-induced leaf senescence was dramatically delayed in bcl-xL and ced-9 transgenic plants, and high levels of anthocyanins accumulated, possibly limiting oxidative stress. (uea.ac.uk)
  • Viral oncogene expression in the stem/progenitor cell compartment of the mouse intestine induces adenomatous polyps. (musc.edu)
  • Epstein-Barr virus infection and bcl-2 proto-oncogene expression separate events in the pathogenesis of Hodgkin's disease? (uaeu.ac.ae)
  • The present study was undertaken to investigate whether Epstein-Barrvirus-(EBV) encoded latent membrane protein (LMP) induces the expression of BCL-2 in Hodgkin and Reed-Sternberg (HRS) cells of Hodgkin's disease (HD) and thereby provide a possible mechanism for the role of EBV in the pathogenesis of this disease. (uaeu.ac.ae)
  • BCL-2 expression in HRS cells was detected in 16 cases (30%), but only two of these were also EBV-positive. (uaeu.ac.ae)
  • These results demonstrate that BCL-2 expression can be detected in HRS cells in routinely processed HD tissue and that whereas EBV does not induce the expression of BCL-2 in HD, BCL-2 may have a role in the patho-genesis of EBV-negative cases of HD. (uaeu.ac.ae)
  • Microdissection and PCR analysis were used to examine vitreous specimens in patients with PIOL for the presence of bcl-2 t(14;18) translocations, the bcl-10 gene, and expression of bcl-6 mRNA. (arvojournals.org)
  • Although cancer prognosis has historically been based on clinical and laboratory findings, analysis of the expression of various gene translocations and proteins has burgeoned as a method for determining prognosis. (arvojournals.org)
  • The co-expression of Buffy, the sole anti-apoptotic Bcl-2 gene family member in Drosophila, and CG3814/LFG by stable inducible RNA interference, suppresses the shortened lifespan and the premature age-dependent loss in climbing ability. (geneticsmr.com)
  • RESULTS: The expression of the Bcl-2 gene was decreased in placental samples with intrauterine growth restriction. (ox.ac.uk)
  • BCL-2 is thought to be involved in resistance to conventional cancer treatment and its increased expression has been implicated in a number of cancers [ 4 ]. (biomedcentral.com)
  • Age-related expression patterns of Bag-1 and Bcl-2 in growth plate and articular chondrocytes. (omeka.net)
  • 1. Epstein-Barr virus infection and bcl-2 proto-oncogene expression. (nih.gov)
  • 2. Expression of bcl-2 protein and Epstein-Barr virus latent membrane protein in Hodgkin's disease. (nih.gov)
  • 3. Correlation of the expression of Epstein-Barr virus latent membrane protein and in situ hybridization with biotinylated BamHI-W probes in Hodgkin's disease. (nih.gov)
  • 5. Expression of the Epstein-Barr virus encoded latent membrane protein in tumor cells of Hodgkin's disease occurring in childhood. (nih.gov)
  • 8. Frequent expression of Epstein-Barr virus latent membrane protein-1 in tumour cells of Hodgkin's disease in HIV-positive patients. (nih.gov)
  • 9. Expression of EBV encoded latent membrane protein 1 (LMP-1) and bcl-2 protein in childhood and adult Hodgkin's disease: application of microwave irradiation for antigen retrieval. (nih.gov)
  • 10. Expression of c-myc and bcl-2 oncogene products in Reed-Sternberg cells independent of presence of Epstein-Barr virus. (nih.gov)
  • 19. Epstein-Barr virus latent membrane protein expression by Hodgkin and Reed-Sternberg-like cells in acute infectious mononucleosis. (nih.gov)
  • A decrease in the anti-apoptotic protein, Mcl-1, was detected in QUE-treated HL-60 cells, whereas other Bcl-2 family proteins including Bax, Bcl-2, Bcl-XL, and Bag remained unchanged. (duke.edu)
  • They function in the cell cycle to maintain MATURATION PROMOTING FACTOR in the active state and have protein-serine/threonine kinase activity. (uams.edu)
  • Serine/Threonine Protein Kinase Pim 1 (Oncogene PIM1 or PIM1 or EC 2.7.11.1) - Proto-oncogene serine/threonine-protein kinase Pim-1 is an enzyme encoded by the PIM1 gene. (asdreports.com)
  • Serine/Threonine Protein Kinase Pim 1 (Oncogene PIM1 or PIM1 or EC 2.7.11.1) pipeline Target constitutes close to 14 molecules. (asdreports.com)
  • The latest report SerineThreonine Protein Kinase Pim 1 - Pipeline Review, H1 2020, outlays comprehensive information on the Serine/Threonine Protein Kinase Pim 1 (Oncogene PIM1 or PIM1 or EC 2.7.11.1) targeted therapeutics, complete with analysis by indications, stage of development, mechanism of action (MoA), route of administration (RoA) and molecule type. (asdreports.com)
  • It also reviews key players involved in Serine/Threonine Protein Kinase Pim 1 (Oncogene PIM1 or PIM1 or EC 2.7.11.1) targeted therapeutics development with respective active and dormant or discontinued projects. (asdreports.com)
  • Isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA. (lookformedical.com)
  • The proteins are found on mitochondrial, microsomal, and NUCLEAR MEMBRANE sites within many cell types. (uchicago.edu)
  • It cleaves the membrane-bound precursor of TUMOR NECROSIS FACTOR-ALPHA between ALANINE 76 and VALINE 77 to its functional form, as well as several other CELL SURFACE PROTEINS to their soluble forms, including AMYLOID BETA-PROTEIN PRECURSOR and PRION PROTEIN. (nih.gov)
  • HN - 2017 (1997) MH - ADAM17 Protein UI - D000072198 MN - D8.811.277.656.675.374.102.375 MN - D9.400.430.500.375 MN - D12.776.395.33.375 MN - D23.50.301.264.35.57 MN - D23.101.100.110.57 MS - A disintegrin and metalloproteinase domain-containing protein that cleaves the membrane-bound precursor of TUMOR NECROSIS FACTOR-ALPHA to its mature form. (nih.gov)
  • The levels of Bcl-2 and Bax, the changes of mitochondria membrane potential (MMP), cytochrome c release and activation of caspase-3 were also investigated in both cell lines. (unboundmedicine.com)
  • Berberine-induced apoptosis was accompanied by increased levels of Ca+2 and a decrease in the mitochondrial membrane potential, leading to the release of cytochrome c and the cleavage of pro-caspase-3. (unboundmedicine.com)
  • BCL-2 staining was predominantly cytoplasmic with some membrane pattern. (uaeu.ac.ae)
  • The release of these proteins is the result of the outer mitochondrial membrane becoming permeable. (unige.ch)
  • The NEXT3 synthesis of NOTCH3 is further well-insulated at the S3 matrix by the provirus protein membrane, leading the different integrin migration into the Werge( Groot et al. (evakoch.com)
  • 6. Immunohistochemical detection of Epstein-Barr virus-encoded latent membrane protein in Reed-Sternberg cells and variants of Hodgkin's disease. (nih.gov)
  • 14. Detection of Epstein-Barr virus in Hodgkin-Reed-Sternberg cells : no evidence for the persistence of integrated viral fragments inLatent membrane protein-1 (LMP-1)-negative classical Hodgkin's disease. (nih.gov)
  • QUE, but not RUT or QUI, caused rapid and transient induction of caspase 3/CPP32 activity, but not caspase 1 activity, according to cleavage of caspase 3 substrates poly(ADP-ribose) polymerase (PARP) and D4-GDI proteins, and the appearance of cleaved caspase 3 fragments being detected in QUE- but not RUT- or QUI-treated HL-60 cells. (duke.edu)
  • Flow cytometry assay also showed that berberine induced ROS and Ca+2 production, decreased the levels of MMP and increased the activity of caspase-3 in both cell lines examined. (unboundmedicine.com)
  • To investigate the apoptotic signaling pathways relevant to the restoration of DA-induced apoptosis by resveratrol , we carried out quantitative analysis of Bcl-2, caspase-3 , and cleaved poly ADP-ribose polymerase (PARP) by immunoblot analysis . (bvsalud.org)
  • Resveratrol pretreatment led to a decrease in cleavage of PARP, an increase in the Bcl-2 protein , and activation of caspase-3 . (bvsalud.org)
  • Lifeguard is an integral transmembrane protein that modulates FasL-mediated apoptosis by interfering with the activation of caspase 8. (geneticsmr.com)
  • They integrate death signals through Bcl-2 family members and co-ordinate caspase activation through the release of apoptogenic factors that are normally sequestered in the mitochondrial intermembrane space. (unige.ch)
  • An APOPTOSIS-regulating protein that is structurally related to CASPASE 8 and competes with CASPASE 8 for binding to FAS ASSOCIATED DEATH DOMAIN PROTEIN. (lookformedical.com)
  • Two forms of CASP8 and FADD-like apoptosis regulating protein exist, a long form containing a caspase-like enzymatically inactive domain and a short form which lacks the caspase-like domain. (lookformedical.com)
  • The bcl-10 gene was detected in 6 of 26 (23%) patients, whereas 4 of 4 (100%) PIOL patients expressed higher levels of bcl-6 mRNA compared with inflammatory lymphocytes. (arvojournals.org)
  • We demonstrated that BCL-2 mRNA is overexpressed in salivary neoplasms, leading to an overall anti-apoptotic profile. (biomedcentral.com)
  • Several isoforms of BCL2-associated X protein occur due to ALTERNATIVE SPLICING of the mRNA for this protein. (lookformedical.com)
  • And Bcl-2, amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors, and inositol homeostasis represent important pharmacological targets for mood stabilizers, but additional behavioral research is needed to more fully delineate their behavioral effects. (unboundmedicine.com)
  • Several DEATH DOMAIN RECEPTOR SIGNALING ADAPTOR PROTEINS can bind to the death domains of the activated receptors and through a complex series of interactions activate apoptotic mediators such as CASPASES . (lookformedical.com)
  • Loss of BIM in T cells results in BCL-2 family BH3-member compensation but incomplete cell death sensitivity normalization. (uchicago.edu)
  • In the present study, the apoptotic effects and influence on mitochondria‑mediated apoptotic proteins of CME in HCT116 cells were assessed. (nih.gov)
  • Results of DCHF-DA assay indicate that no significant increase in intracellular peroxide level was found in QUE-treated cells, and QUE inhibited the H(2)O(2)-induced intracellular peroxide level. (duke.edu)
  • Song, JH & Kraft, AS 2012, ' Pim kinase inhibitors sensitize prostate cancer cells to apoptosis triggered by Bcl-2 family inhibitor ABT-737 ', Cancer Research , vol. 72, no. 1, pp. 294-303. (arizona.edu)
  • In adjacent normal respiratory epithelium, bcl-2 was expressed only in basal cells. (ox.ac.uk)
  • The aim of this study was to clarify the mechanisms of apoptosis, cytotoxicity, DNA damage and fragmentation, as well as the production of reactive oxygen species (ROS) and Ca+2, induced by berberine in human promyelocytic leukemia HL-60 and murine myelomonocytic leukemia WEHI-3 cells. (unboundmedicine.com)
  • Adrenomedullin inhibits hypoxic cell death by upregulation of Bcl-2 in endometrial cancer cells: a possible promotion mechanism for tumour growth. (ox.ac.uk)
  • These cells also show an upregulation of the oncoprotein Bcl-2, which is protective against hypoxic cell death when transiently transfected into Ishikawa cells. (ox.ac.uk)
  • Since Ishikawa cells express the putative ADM-receptor CRLR-RAMP2 the production and secretion of ADM with the consecutive upregulation of Bcl-2 could establish an autocrine/paracrine mechanism rescuing malignant cells from hypoxic cell death. (ox.ac.uk)
  • This tutorial describes the structure and function of the p53 protein, how its activity is regulated in cells, and how mutant versions of p53 can lead to cancer. (kritischderblog.de)
  • Cyclin E and Bcl-xL cooperatively induce cell cycle progression in c-Rel-/- B cells. (musc.edu)
  • In both of these cases, only occasional HRS cells expressed BCL-2, in contrast to LMP, which was detected in nearly all such cells. (uaeu.ac.ae)
  • In mammalian cells AIF is released in response to pro-apoptotic protein members of the bcl-2 protein family. (lookformedical.com)
  • Third, WWTR1( TAZ) and YAP1 enzyme ZO-1 and 2 cells( Remue et al. (evakoch.com)
  • This contains subunits of IRSs with sufficient proteinases mitochondrial as PI-3K via its Src tyrosine 2( SH2) rRNAs depending to lead function opportunities essential as Glut4( Slc2a4) Impact. (evakoch.com)
  • MeSH D12.776.503.280.249.500 - mannose-binding lectin MeSH D12.776.503.280.249.600 - pulmonary surfactant-associated protein a MeSH D12.776.503.280.249.625 - pulmonary surfactant-associated protein d MeSH D12.776.503.499.968.900 - wheat germ agglutinin-horseradish peroxidase conjugate See List of MeSH codes (D12.776.543). (wikipedia.org)
  • HN - 2017 MH - ADAM10 Protein UI - D000072197 MN - D8.811.277.656.675.374.102.250 MN - D9.400.430.500.250 MN - D12.776.395.33.250 MN - D23.50.301.264.35.48 MN - D23.101.100.110.48 MS - A disintegrin and metalloproteinase domain-containing protein. (nih.gov)
  • HN - 2017 MH - ADAM12 Protein UI - D000072199 MN - D8.811.277.656.675.374.102.125 MN - D9.400.430.500.125 MN - D12.776.395.33.125 MS - A disintegrin and metalloproteinase domain-containing protein that is expressed as two alternatively-spliced forms: a long transmembrane form (ADAM12-L) and a short soluble form (ADAM12-S). It modulates the cleavage of INSULIN-LIKE GROWTH FACTOR BINDING PROTEINS and may also regulate CELL FUSION during MYOGENESIS. (nih.gov)
  • HN - 2017 (1996) MH - ADAMTS Proteins UI - D000071096 MN - D8.811.277.656.675.374.102.500 MN - D9.400.430.500.500 MN - D12.776.395.33.500 MN - D12.776.860.300.85 MS - A subfamily of ADAM proteases that are distinguished by the presence of one or more THROMBOSPONDIN type-1 repeats (TSRs). (nih.gov)
  • HN - 2017 MH - ADAMTS1 Protein UI - D000071097 MN - D8.811.277.656.675.374.102.500.500 MN - D9.400.430.500.500.500 MN - D12.776.395.33.500.500 MN - D12.776.860.300.85.500 MS - An ADAMTS protease that contains two disintegrin loops and three C-terminal thrombospondin (TS) motifs. (nih.gov)
  • HN - 2017 MH - ADAMTS13 Protein UI - D000071120 MN - D8.811.277.656.675.374.102.500.813 MN - D9.400.430.500.500.813 MN - D12.776.395.33.500.813 MN - D12.776.860.300.85.813 MS - An ADAMTS protease that contains eight thrombospondin (TS) motifs. (nih.gov)
  • Pim inhibitors decreased levels of the Bcl-2 family member Mcl-1, both by blocking 5′-cap dependent translation and decreasing protein half life. (arizona.edu)
  • High cyclin-dependent kinase inhibitors in Bcl-2 and Bcl-xL-expressing CD34+-proliferating haematopoietic progenitors. (musc.edu)
  • Lifeguard interacts with anti-apoptotic Bcl-2 proteins and possibly pro-apoptotic proteins to exert its neuroprotective function. (geneticsmr.com)
  • Immunostaining for BCL-2 on paraffin material was performed using microwave treatment of tissue sections before the application of the primary monoclonal antibody. (uaeu.ac.ae)
  • A member of the myeloid leukemia factor (MLF) protein family with multiple alternatively spliced transcript variants encoding different protein isoforms. (nih.gov)
  • As the download Windows 7 Annoyances of times is to public end, defects can bind involved an phosphorylated citron of the IL1R and IL18R leading structures, capping dermatan medicine influencing to endothelial end proteins known by reverse isoforms( TLRs). (evakoch.com)
  • ADM is thought to act through the G protein-coupled receptor calcitonin receptor-like receptor (CRLR), with specificity being conferred by the receptor associated modifying protein 2 (RAMP2). (ox.ac.uk)
  • Ligand 2-arachidonoylglycerol phosphorylates a abasic bind in NOTCH3, which stops the lysosomal thrombosis in the GM1 order of NOTCH3. (evakoch.com)
  • A clinically relevant mouse model of progressive rod photoreceptor-selective apoptosis was produced by low-level developmental lead exposure and studied in combination with transgenic mice overexpressing Bcl-x(L) only in the photoreceptors. (nih.gov)
  • Adrenocortical carcinomas (ACs) are rare malignancies, with an annual incidence rate of only 0.7-2 cases per million population in Western countries. (medscape.com)
  • RESULTS: We detected bcl-2 protein in 25 percent of squamous-cell carcinomas (20 of 80) and 12 percent of adenocarcinomas (5 of 42). (ox.ac.uk)
  • Haeba u na le DHL kapa THL, liphatsa tsa lefutso (liphatsa tsa lefutso tsa MYC le BCL) li-chromosome tsa hau li hlophisitsoe bocha. (lymphoma.org.au)
  • Additionally to this role on tumorigenesis, can also negatively regulate insulin secretion by inhibiting the activation of MAPK1/3 (ERK1/2), through SOCS6. (nih.gov)
  • The stabilization of MYC exerted by PIM2 might explain partly the strong synergism between these 2 oncogenes in tumorigenesis. (icr.ac.uk)
  • The present study demonstrated that CME induced the release of LDH and apoptosis through its inhibition of p‑Akt to control Bcl‑2 and activate Bax and Bak. (nih.gov)
  • We suggest that the presence of the BCL-2 protein in these lymphomas is related to the differentiation stage of the B-lymphocytes or may play a role in the pathogenesis of these lymphomas. (prinsesmaximacentrum.nl)
  • BAX (Bcl-2-associated protein X) is the most characteristic death-promoting member of the BCL-2 family. (biomedcentral.com)
  • The protein encoded by this gene belongs to the Ser/Thr protein kinase family, and PIM subfamily. (nih.gov)
  • Adenosine monophosphate‑activated protein kinase (AMPK), the major regulator of energy metabolism, is activated by metabolic stress, including hypoxia and glucose deprivation. (nih.gov)
  • Involved also in the control of energy metabolism and regulation of AMPK activity in modulating MYC and PPARGC1A protein levels and cell growth. (nih.gov)
  • The p53 tumour suppressor protein acts as a major barrier against cancer initiation and progression. (kritischderblog.de)
  • The evolutionarily conserved p53 protein and its cellular pathways mediate tumour suppression through an informed, regulated and integrated set of responses to environmental perturbations resulting in either cellular death or the maintenance of cellular homeostasis. (kritischderblog.de)

No images available that match "proto oncogene proteins c bcl 2"