The phase of cell nucleus division following PROPHASE, when the breakdown of the NUCLEAR ENVELOPE occurs and the MITOTIC SPINDLE APPARATUS enters the nuclear region and attaches to the KINETOCHORES.
The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.
A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules.
Large multiprotein complexes that bind the centromeres of the chromosomes to the microtubules of the mitotic spindle during metaphase in the cell cycle.
The first phase of cell nucleus division, in which the CHROMOSOMES become visible, the CELL NUCLEUS starts to lose its identity, the SPINDLE APPARATUS appears, and the CENTRIOLES migrate toward opposite poles.
The phase of cell nucleus division following METAPHASE, in which the CHROMATIDS separate and migrate to opposite poles of the spindle.
In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS.
Mad2 is a component of the spindle-assembly checkpoint apparatus. It binds to and inhibits the Cdc20 activator subunit of the anaphase-promoting complex, preventing the onset of anaphase until all chromosomes are properly aligned at the metaphase plate. Mad2 is required for proper microtubule capture at KINETOCHORES.
The orderly segregation of CHROMOSOMES during MEIOSIS or MITOSIS.
Nocodazole is an antineoplastic agent which exerts its effect by depolymerizing microtubules.
Highly conserved proteins that specifically bind to and activate the anaphase-promoting complex-cyclosome, promoting ubiquitination and proteolysis of cell-cycle-regulatory proteins. Cdc20 is essential for anaphase-promoting complex activity, initiation of anaphase, and cyclin proteolysis during mitosis.
An aurora kinase that is a component of the chromosomal passenger protein complex and is involved in the regulation of MITOSIS. It mediates proper CHROMOSOME SEGREGATION and contractile ring function during CYTOKINESIS.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division.
The final phase of cell nucleus division following ANAPHASE, in which two daughter nuclei are formed, the CYTOPLASM completes division, and the CHROMOSOMES lose their distinctness and are transformed into CHROMATIN threads.
A family of highly conserved serine-threonine kinases that are involved in the regulation of MITOSIS. They are involved in many aspects of cell division, including centrosome duplication, SPINDLE APPARATUS formation, chromosome alignment, attachment to the spindle, checkpoint activation, and CYTOKINESIS.
A family of Urodela consisting of 15 living genera and about 42 species and occurring in North America, Europe, Asia, and North Africa.
The cellular signaling system that halts the progression of cells through MITOSIS or MEIOSIS if a defect that will affect CHROMOSOME SEGREGATION is detected.
Very long DNA molecules and associated proteins, HISTONES, and non-histone chromosomal proteins (CHROMOSOMAL PROTEINS, NON-HISTONE). Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary information of the individual.
A cyclin B subtype that colocalizes with MICROTUBULES during INTERPHASE and is transported into the CELL NUCLEUS at the end of the G2 PHASE.
Securin is involved in the control of the metaphase-anaphase transition during MITOSIS. It promotes the onset of anaphase by blocking SEPARASE function and preventing proteolysis of cohesin and separation of sister CHROMATIDS. Overexpression of securin is associated with NEOPLASTIC CELL TRANSFORMATION and tumor formation.
An E3 ubiquitin ligase primarily involved in regulation of the metaphase-to-anaphase transition during MITOSIS through ubiquitination of specific CELL CYCLE PROTEINS. Enzyme activity is tightly regulated through subunits and cofactors, which modulate activation, inhibition, and substrate specificity. The anaphase-promoting complex, or APC-C, is also involved in tissue differentiation in the PLACENTA, CRYSTALLINE LENS, and SKELETAL MUSCLE, and in regulation of postmitotic NEURONAL PLASTICITY and excitability.
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.
Complexes of enzymes that catalyze the covalent attachment of UBIQUITIN to other proteins by forming a peptide bond between the C-terminal GLYCINE of UBIQUITIN and the alpha-amino groups of LYSINE residues in the protein. The complexes play an important role in mediating the selective-degradation of short-lived and abnormal proteins. The complex of enzymes can be broken down into three components that involve activation of ubiquitin (UBIQUITIN-ACTIVATING ENZYMES), conjugation of ubiquitin to the ligase complex (UBIQUITIN-CONJUGATING ENZYMES), and ligation of ubiquitin to the substrate protein (UBIQUITIN-PROTEIN LIGASES).
A microtubule-associated mechanical adenosine triphosphatase, that uses the energy of ATP hydrolysis to move organelles along microtubules toward the plus end of the microtubule. The protein is found in squid axoplasm, optic lobes, and in bovine brain. Bovine kinesin is a heterotetramer composed of two heavy (120 kDa) and two light (62 kDa) chains. EC 3.6.1.-.
The quality of surface form or outline of the CELL NUCLEUS.
Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens.
High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
A microtubule subunit protein found in large quantities in mammalian brain. It has also been isolated from SPERM FLAGELLUM; CILIA; and other sources. Structurally, the protein is a dimer with a molecular weight of approximately 120,000 and a sedimentation coefficient of 5.8S. It binds to COLCHICINE; VINCRISTINE; and VINBLASTINE.
A family of herbivorous leaping MAMMALS of Australia, New Guinea, and adjacent islands. Members include kangaroos, wallabies, quokkas, and wallaroos.
The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).
A family of multisubunit cytoskeletal motor proteins that use the energy of ATP hydrolysis to power a variety of cellular functions. Dyneins fall into two major classes based upon structural and functional criteria.
CELL CYCLE regulatory signaling systems that are triggered by DNA DAMAGE or lack of nutrients during G2 PHASE. When triggered they restrain cells transitioning from G2 phase to M PHASE.
A cyclin subtype that is transported into the CELL NUCLEUS at the end of the G2 PHASE. It stimulates the G2/M phase transition by activating CDC2 PROTEIN KINASE.
Either of the two longitudinally adjacent threads formed when a eukaryotic chromosome replicates prior to mitosis. The chromatids are held together at the centromere. Sister chromatids are derived from the same chromosome. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
The cell center, consisting of a pair of CENTRIOLES surrounded by a cloud of amorphous material called the pericentriolar region. During interphase, the centrosome nucleates microtubule outgrowth. The centrosome duplicates and, during mitosis, separates to form the two poles of the mitotic spindle (MITOTIC SPINDLE APPARATUS).
A broad category of nuclear proteins that are components of or participate in the formation of the NUCLEAR MATRIX.
The mechanisms of eukaryotic CELLS that place or keep the CHROMOSOMES in a particular SUBNUCLEAR SPACE.
The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes.
A genus of the family Heteromyidae which contains 22 species. Their physiology is adapted for the conservation of water, and they seldom drink water. They are found in arid or desert habitats and travel by hopping on their hind limbs.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS.
The process by which the CELL NUCLEUS is divided.
Phosphoprotein with protein kinase activity that functions in the G2/M phase transition of the CELL CYCLE. It is the catalytic subunit of the MATURATION-PROMOTING FACTOR and complexes with both CYCLIN A and CYCLIN B in mammalian cells. The maximal activity of cyclin-dependent kinase 1 is achieved when it is fully dephosphorylated.
The period of the CELL CYCLE following DNA synthesis (S PHASE) and preceding M PHASE (cell division phase). The CHROMOSOMES are tetraploid in this point.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
The failure of homologous CHROMOSOMES or CHROMATIDS to segregate during MITOSIS or MEIOSIS with the result that one daughter cell has both of a pair of parental chromosomes or chromatids and the other has none.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
Physical forces and actions in living things.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
The process by which the CYTOPLASM of a cell is divided.
The membrane system of the CELL NUCLEUS that surrounds the nucleoplasm. It consists of two concentric membranes separated by the perinuclear space. The structures of the envelope where it opens to the cytoplasm are called the nuclear pores (NUCLEAR PORE).
An organization of cells into an organ-like structure. Organoids can be generated in culture. They are also found in certain neoplasms.
Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS.
Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping.
Agents that interact with TUBULIN to inhibit or promote polymerization of MICROTUBULES.
A cyclin subtype that has specificity for CDC2 PROTEIN KINASE and CYCLIN-DEPENDENT KINASE 2. It plays a role in progression of the CELL CYCLE through G1/S and G2/M phase transitions.
Self-replicating, short, fibrous, rod-shaped organelles. Each centriole is a short cylinder containing nine pairs of peripheral microtubules, arranged so as to form the wall of the cylinder.
Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.
Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of MAMMALS.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
Established cell cultures that have the potential to propagate indefinitely.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
A species of fruit fly much used in genetics because of the large size of its chromosomes.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.
Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.

The Caenorhabditis elegans kinetochore reorganizes at prometaphase and in response to checkpoint stimuli. (1/70)

Previous studies of the kinetochore in mammalian systems have demonstrated that this structure undergoes reorganizations after microtubule attachment or in response to activation of the spindle checkpoint. Here, we show that the Caenorhabditis elegans kinetochore displays analogous rearrangements at prometaphase, when microtubule/chromosome interactions are being established, and after exposure to checkpoint stimuli such as nocodazole or anoxia. These reorganizations are characterized by a dissociation of several kinetochore proteins, including HCP-1/CeCENP-F, HIM-10/CeNuf2, SAN-1/CeMad3, and CeBUB-1, from the centromere. We further demonstrate that at metaphase, despite having dissociated from the centromere, these reorganized kinetochore proteins maintain their associations with the metaphase plate. After checkpoint activation, these proteins are detectable as large "flares" that project out laterally from the metaphase plate. Disrupting these gene products via RNA interference results in sensitivity to checkpoint stimuli, as well as defects in the organization of chromosomes at metaphase. These phenotypes suggest that these proteins, and by extension their reorganization during mitosis, are important for mediating the checkpoint response as well as directing the assembly of the metaphase plate.  (+info)

Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in gamma-tubulin-depleted cells. (2/70)

The assembly of the mitotic spindle after depletion of the major gamma-tubulin isotype by RNA-mediated interference was assessed in the Drosophila S2 cell line. Depletion of gamma-tubulin had no significant effect on the cytoskeletal microtubules during interphase. However, it promoted an increase in the mitotic index, resulting mainly in monopolar and, to a lesser extent, asymmetrical bipolar prometaphases lacking astral microtubules. This mitotic accumulation coincided with the activation of the mitotic checkpoint. Immunostaining with an anti-Asp antibody revealed that the spindle poles, which were always devoid of gamma-tubulin, were unfocused and organized into sub-spindles. Despite the marked depletion of gamma-tubulin, the pericentriolar proteins CP190 and centrosomin were recruited to the spindle pole(s), where they formed three or four dots, suggesting the presence of several centrioles. Electron microscopic reconstructions demonstrated that most of the monopolar spindles exhibited three or four centrioles, indicating centriole duplication with a failure in the separation process. Most of the centrioles were shortened, suggesting a role for gamma-tubulin in centriole morphogenesis. Moreover, in contrast to metaphases observed in control cells, in which the spindle microtubules radiated from the pericentriolar material, in gamma-tubulin-depleted cells, microtubule assembly still occurred at the poles but involved the elongation of centriolar microtubule triplets. Our results demonstrate that, after depletion of gamma-tubulin, the pericentriolar material is unable to promote efficient microtubule nucleation. They point to an alternative mechanism of centrosomal microtubule assembly that contributes to the formation of abnormal, albeit partially functional, mitotic spindles.  (+info)

Distinct functions of condensin I and II in mitotic chromosome assembly. (3/70)

Condensin is a protein complex associated with mitotic chromosomes that has been implicated in chromosome condensation. In vertebrates, two types of condensin complexes have recently been identified, called condensin I and II. Here, we show that in mammalian cells condensin II associates with chromatin in prophase, in contrast to condensin I which is cytoplasmic and can thus interact with chromosomes only after nuclear envelope breakdown. RNA interference experiments in conjunction with imaging of live and fixed cells revealed that condensin II is required for chromosome condensation in early prophase, whereas condensin I appears to be dispensable at this stage. By contrast, condensin I is required for the complete dissociation of cohesin from chromosome arms, for chromosome shortening and for normal timing of progression through prometaphase and metaphase, whereas normal condensin II levels are dispensable for these processes. After depletion of both condensin complexes, the onset of chromosome condensation is delayed until the end of prophase, but is then initiated rapidly before nuclear envelope breakdown. These results reveal that condensin II and I associate with chromosomes sequentially and have distinct functions in mitotic chromosome assembly.  (+info)

Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis. (4/70)

Although Rho regulates cytokinesis, little was known about the functions in mitosis of Cdc42 and Rac. We recently suggested that Cdc42 works in metaphase by regulating bi-orient attachment of spindle microtubules to kinetochores. We now confirm the role of Cdc42 by RNA interference and identify the mechanisms for activation and down-regulation of Cdc42. Using a pull-down assay, we found that the level of GTP-Cdc42 elevates in metaphase, whereas the level of GTP-Rac does not change significantly in mitosis. Overexpression of dominant-negative mutants of Ect2 and MgcRacGAP, a Rho GTPase guanine nucleotide exchange factor and GTPase activating protein, respectively, or depletion of Ect2 by RNA interference suppresses this change of GTP-Cdc42 in mitosis. Depletion of Ect2 also impairs microtubule attachment to kinetochores and causes prometaphase delay and abnormal chromosomal segregation, as does depletion of Cdc42 or expression of the Ect2 and MgcRacGAP mutants. These results suggest that Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis.  (+info)

Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. (5/70)

Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs) in nuclei of quiescent (G0) and cycling (early S-phase) human diploid fibroblasts (46, XY). Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes-independently of their gene density-were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding.  (+info)

CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. (6/70)

CENP-A is an evolutionarily conserved, centromere-specific variant of histone H3 that is thought to play a central role in directing kinetochore assembly and in centromere function. Here, we have analyzed the consequences of disrupting the CENP-A gene in the chicken DT40 cell line. In CENP-A-depleted cells, kinetochore protein assembly is impaired, as indicated by mislocalization of the inner kinetochore proteins CENP-I, CENP-H, and CENP-C as well as the outer components Nuf2/Hec1, Mad2, and CENP-E. However, BubR1 and the inner centromere protein INCENP are efficiently recruited to kinetochores. Following CENP-A depletion, chromosomes are deficient in proper congression on the mitotic spindle and there is a transient delay in prometaphase. CENP-A-depleted cells further proceed through anaphase and cytokinesis with unequal chromosome segregation, suggesting that some kinetochore function remains following substantial depletion of CENP-A. We furthermore demonstrate that CENP-A-depleted cells exhibit a specific defect in maintaining kinetochore localization of the checkpoint protein BubR1 under conditions of checkpoint activation. Our data thus point to a specific role for CENP-A in assembly of kinetochores competent in the maintenance of mitotic checkpoint signaling.  (+info)

Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. (7/70)

The mitotic spindle assembles into a bipolar, microtubule-based protein machine during prometaphase. One proposed mechanism for this process is "search-and-capture," in which dynamically unstable microtubules (MTs) search space to capture chromosomes. Although existing theoretical estimates suggest that dynamic instability is efficient enough to allow capture within characteristic mitotic timescales, they are limited in scope and do not address the capture times for realistic numbers of chromosomes. Here we used mathematical modeling to explore this issue. We show that without any bias toward the chromosomes, search-and-capture is not efficient enough to explain the typical observed duration of prometaphase. We further analyze search-and-capture in the presence of a spatial gradient of a stabilizing factor that biases MT dynamics toward the chromosomes. We show theoretically that such biased search-and-capture is efficient enough to account for chromosome capture. We also show that additional factors must contribute to accelerate the spindle assembly for cells with large nuclear volumes. We discuss the possibility that a RanGTP gradient introduces a spatial bias into microtubule dynamics and thus improves the efficiency of search-and-capture as a mechanism for spindle assembly.  (+info)

Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae). (8/70)

BACKGROUND AND AIMS: The Quadrifaria group of Paspalum (Poaceae, Paniceae) comprises species native to the subtropical and temperate regions of South America. The purpose of this research was to characterize the I genomes in five species of this group and to establish phylogenetic relationships among them. METHODS: Prometaphase chromatin condensation patterns, the physical location of 5S and 45S rDNA sites by fluorescence in situ hybridization (FISH), and sequences of five chloroplast non-coding regions were analysed. KEY RESULTS: The condensation patterns observed were highly conserved among diploid and tetraploid accessions studied and not influenced by the dyes used or by the FISH procedure, allowing the identification of almost all the chromosome pairs that carried the rDNA signals. The FISH analysis of 5S rDNA sites showed the same localization and a correspondence between the number of sites and ploidy level. In contrast, the distribution of 45S rDNA sites was variable. Two general patterns were observed with respect to the location of the 45S rDNA. The species and cytotypes Paspalum haumanii 2x, P. intermedium 2x, P. quadrifarium 4x and P. exaltatum 4x showed proximal sites on chromosome 8 and two to four distal sites in other chromosomes, while P. quarinii 4x and P. quadrifarium 2x showed only distal sites located on a variable number of small chromosomes and on the long arm of chromosome 1. The single most-parsimonious tree found from the phylogenetic analysis showed the Quadrifaria species partitioned in two clades, one of them includes P. haumanii 2x and P. intermedium 2x together with P. quadrifarium 4x and P. exaltatum 4x, while the other contains P. quadrifarium 2x and P. quarinii 4x. CONCLUSIONS: The subdivision found with FISH is consistent with the clades recovered with cpDNA data and both analyses suggest that the Quadrifaria group, as presently defined, is not monophyletic and its species belong in at least two clades.  (+info)

Prometaphase is a stage in the cell division process called mitosis, where the nuclear membrane has broken down and the chromosomes are now moved into the center of the cell, also known as the metaphase plate. This movement is facilitated by the mitotic spindle, which attaches to specialized structures on the chromosomes called kinetochores. The prometaphase stage follows prophase and precedes metaphase in the mitosis process. It's characterized by the beginning of chromosome separation and the reorganization of the cell for the upcoming division into two daughter cells.

Metaphase is a phase in the cell division process (mitosis or meiosis) where the chromosomes align in the middle of the cell, also known as the metaphase plate or equatorial plane. During this stage, each chromosome consists of two sister chromatids attached to each other by a protein complex called the centromere. The spindle fibers from opposite poles of the cell attach to the centromeres of each chromosome, and through a process called congression, they align the chromosomes in the middle of the cell. This alignment allows for accurate segregation of genetic material during the subsequent anaphase stage.

Mitosis is a type of cell division in which the genetic material of a single cell, called the mother cell, is equally distributed into two identical daughter cells. It's a fundamental process that occurs in multicellular organisms for growth, maintenance, and repair, as well as in unicellular organisms for reproduction.

The process of mitosis can be broken down into several stages: prophase, prometaphase, metaphase, anaphase, and telophase. During prophase, the chromosomes condense and become visible, and the nuclear envelope breaks down. In prometaphase, the nuclear membrane is completely disassembled, and the mitotic spindle fibers attach to the chromosomes at their centromeres.

During metaphase, the chromosomes align at the metaphase plate, an imaginary line equidistant from the two spindle poles. In anaphase, sister chromatids are pulled apart by the spindle fibers and move toward opposite poles of the cell. Finally, in telophase, new nuclear envelopes form around each set of chromosomes, and the chromosomes decondense and become less visible.

Mitosis is followed by cytokinesis, a process that divides the cytoplasm of the mother cell into two separate daughter cells. The result of mitosis and cytokinesis is two genetically identical cells, each with the same number and kind of chromosomes as the original parent cell.

The spindle apparatus is a microtubule-based structure that plays a crucial role in the process of cell division, specifically during mitosis and meiosis. It consists of three main components:

1. The spindle poles: These are organized structures composed of microtubules and associated proteins that serve as the anchoring points for the spindle fibers. In animal cells, these poles are typically formed by centrosomes, while in plant cells, they form around nucleation sites called microtubule-organizing centers (MTOCs).
2. The spindle fibers: These are dynamic arrays of microtubules that extend between the two spindle poles. They can be categorized into three types: kinetochore fibers, which connect to the kinetochores on chromosomes; astral fibers, which radiate from the spindle poles and help position the spindle within the cell; and interpolar fibers, which lie between the two spindle poles and contribute to their separation during anaphase.
3. Regulatory proteins: Various motor proteins, such as dynein and kinesin, as well as non-motor proteins like tubulin and septins, are involved in the assembly, maintenance, and dynamics of the spindle apparatus. These proteins help to generate forces that move chromosomes, position the spindle, and ultimately segregate genetic material between two daughter cells during cell division.

The spindle apparatus is essential for ensuring accurate chromosome separation and maintaining genomic stability during cell division. Dysfunction of the spindle apparatus can lead to various abnormalities, including aneuploidy (abnormal number of chromosomes) and chromosomal instability, which have been implicated in several diseases, such as cancer and developmental disorders.

Kinetochores are specialized protein structures that form on the centromere region of a chromosome. They play a crucial role in the process of cell division, specifically during mitosis and meiosis. The primary function of kinetochores is to connect the chromosomes to the microtubules of the spindle apparatus, which is responsible for separating the sister chromatids during cell division. Through this connection, kinetochores facilitate the movement of chromosomes towards opposite poles of the cell during anaphase, ensuring equal distribution of genetic material to each resulting daughter cell.

Prophase is the first phase of mitosis, the process by which eukaryotic cells divide and reproduce. During prophase, the chromosomes condense and become visible. The nuclear envelope breaks down, allowing the spindle fibers to attach to the centromeres of each chromatid in the chromosome. This is a critical step in preparing for the separation of genetic material during cell division. Prophase is also marked by the movement of the centrosomes to opposite poles of the cell, forming the mitotic spindle.

Anaphase is a stage in the cell division process called mitosis, where sister chromatids (the two copies of each chromosome formed during DNA replication) separate at the centromeres and move toward opposite poles of the cell. This separation is facilitated by the attachment of microtubules from the spindle apparatus to the kinetochores, protein structures located on the centromeres of each sister chromatid. Anaphase is followed by telophase, during which the nuclear membrane reforms around each set of separated chromosomes, and cytokinesis, the division of the cytoplasm to form two separate daughter cells.

Chromosomes are thread-like structures that exist in the nucleus of cells, carrying genetic information in the form of genes. They are composed of DNA and proteins, and are typically present in pairs in the nucleus, with one set inherited from each parent. In humans, there are 23 pairs of chromosomes for a total of 46 chromosomes. Chromosomes come in different shapes and forms, including sex chromosomes (X and Y) that determine the biological sex of an individual. Changes or abnormalities in the number or structure of chromosomes can lead to genetic disorders and diseases.

Microtubules are hollow, cylindrical structures composed of tubulin proteins in the cytoskeleton of eukaryotic cells. They play crucial roles in various cellular processes such as maintaining cell shape, intracellular transport, and cell division (mitosis and meiosis). Microtubules are dynamic, undergoing continuous assembly and disassembly, which allows them to rapidly reorganize in response to cellular needs. They also form part of important cellular structures like centrioles, basal bodies, and cilia/flagella.

The Mad2 (Mitotic Arrest Deficient 2) proteins are a part of the spindle assembly checkpoint (SAC), which is a crucial surveillance mechanism that ensures accurate chromosome segregation during cell division. The primary function of Mad2 proteins is to prevent the onset of anaphase until all chromosomes have achieved proper attachment and tension on the mitotic spindle.

Mad2 proteins exist in two major conformational states: open (O-Mad2) and closed (C-Mad2). The transition between these two forms plays a critical role in the regulation of the SAC. In response to unattached kinetochores, Mad2 proteins bind to and inhibit the anaphase-promoting complex/cyclosome (APC/C), thereby preventing premature chromosome separation.

There are two main isoforms of Mad2 in humans: Mad2L1 (Mad2A) and Mad2L2 (Mad2B). While both isoforms share similar functions, they exhibit distinct biochemical properties and interact with other SAC components differently. Dysregulation of the Mad2 proteins has been implicated in various diseases, including cancer and neurological disorders.

Chromosome segregation is the process that occurs during cell division (mitosis or meiosis) where replicated chromosomes are separated and distributed equally into two daughter cells. Each chromosome consists of two sister chromatids, which are identical copies of genetic material. During chromosome segregation, these sister chromatids are pulled apart by a structure called the mitotic spindle and moved to opposite poles of the cell. This ensures that each new cell receives one copy of each chromosome, preserving the correct number and composition of chromosomes in the organism.

Nocodazole is not a medical condition or disease, but rather a pharmacological agent used in medical research and clinical settings. It's a synthetic chemical compound that belongs to the class of drugs known as microtubule inhibitors. Nocodazole works by binding to and disrupting the dynamic assembly and disassembly of microtubules, which are important components of the cell's cytoskeleton and play a critical role in cell division.

Nocodazole is primarily used in research settings as a tool for studying cell biology and mitosis, the process by which cells divide. It can be used to synchronize cells in the cell cycle or to induce mitotic arrest, making it useful for investigating various aspects of cell division and chromosome behavior.

In clinical settings, nocodazole has been used off-label as a component of some cancer treatment regimens, particularly in combination with other chemotherapeutic agents. Its ability to disrupt microtubules can interfere with the proliferation of cancer cells and enhance the effectiveness of certain anti-cancer drugs. However, its use is not widespread due to potential side effects and the availability of alternative treatments.

CDC20 proteins are a type of regulatory protein that play a crucial role in the cell cycle, which is the process by which cells grow and divide. Specifically, CDC20 proteins are involved in the transition from metaphase to anaphase during mitosis, the phase of the cell cycle where chromosomes are separated and distributed to two daughter cells.

CDC20 proteins function as part of a larger complex called the anaphase-promoting complex/cyclosome (APC/C), which targets specific proteins for degradation by the proteasome. During metaphase, CDC20 binds to the APC/C and helps to activate it, leading to the degradation of securin and cyclin B, two proteins that are essential for maintaining the proper attachment of chromosomes to the spindle apparatus.

Once these proteins are degraded, the sister chromatids can be separated and moved to opposite poles of the cell, allowing for the completion of mitosis and the formation of two genetically identical daughter cells. In addition to their role in mitosis, CDC20 proteins have also been implicated in other cellular processes, including meiosis, DNA damage repair, and apoptosis.

Aurora Kinase B is a type of enzyme that plays a crucial role in the regulation of cell division and mitosis. It is a member of the Aurora kinase family, which includes three different isoforms (Aurora A, B, and C). Among these, Aurora Kinase B is specifically involved in the proper alignment and separation of chromosomes during cell division.

During mitosis, Aurora Kinase B forms a complex with other proteins to form the chromosomal passenger complex (CPC), which plays a critical role in ensuring accurate chromosome segregation. The CPC is responsible for regulating various events during mitosis, including the attachment of microtubules to kinetochores (protein structures that connect chromosomes to spindle fibers), the correction of erroneous kinetochore-microtubule attachments, and the regulation of the anaphase promoting complex/cyclosome (APC/C), which targets specific proteins for degradation during mitosis.

Dysregulation of Aurora Kinase B has been implicated in various human diseases, including cancer. Overexpression or amplification of this kinase can lead to chromosomal instability and aneuploidy, contributing to tumorigenesis and cancer progression. As a result, Aurora Kinase B is considered a promising target for the development of anti-cancer therapies, with several inhibitors currently being investigated in preclinical and clinical studies.

Cell cycle proteins are a group of regulatory proteins that control the progression of the cell cycle, which is the series of events that take place in a eukaryotic cell leading to its division and duplication. These proteins can be classified into several categories based on their functions during different stages of the cell cycle.

The major groups of cell cycle proteins include:

1. Cyclin-dependent kinases (CDKs): CDKs are serine/threonine protein kinases that regulate key transitions in the cell cycle. They require binding to a regulatory subunit called cyclin to become active. Different CDK-cyclin complexes are activated at different stages of the cell cycle.
2. Cyclins: Cyclins are a family of regulatory proteins that bind and activate CDKs. Their levels fluctuate throughout the cell cycle, with specific cyclins expressed during particular phases. For example, cyclin D is important for the G1 to S phase transition, while cyclin B is required for the G2 to M phase transition.
3. CDK inhibitors (CKIs): CKIs are regulatory proteins that bind to and inhibit CDKs, thereby preventing their activation. CKIs can be divided into two main families: the INK4 family and the Cip/Kip family. INK4 family members specifically inhibit CDK4 and CDK6, while Cip/Kip family members inhibit a broader range of CDKs.
4. Anaphase-promoting complex/cyclosome (APC/C): APC/C is an E3 ubiquitin ligase that targets specific proteins for degradation by the 26S proteasome. During the cell cycle, APC/C regulates the metaphase to anaphase transition and the exit from mitosis by targeting securin and cyclin B for degradation.
5. Other regulatory proteins: Several other proteins play crucial roles in regulating the cell cycle, such as p53, a transcription factor that responds to DNA damage and arrests the cell cycle, and the polo-like kinases (PLKs), which are involved in various aspects of mitosis.

Overall, cell cycle proteins work together to ensure the proper progression of the cell cycle, maintain genomic stability, and prevent uncontrolled cell growth, which can lead to cancer.

A centromere is a specialized region found on chromosomes that plays a crucial role in the separation of replicated chromosomes during cell division. It is the point where the sister chromatids (the two copies of a chromosome formed during DNA replication) are joined together. The centromere contains highly repeated DNA sequences and proteins that form a complex structure known as the kinetochore, which serves as an attachment site for microtubules of the mitotic spindle during cell division.

During mitosis or meiosis, the kinetochore facilitates the movement of chromosomes by interacting with the microtubules, allowing for the accurate distribution of genetic material to the daughter cells. Centromeres can vary in their position and structure among different species, ranging from being located near the middle of the chromosome (metacentric) to being positioned closer to one end (acrocentric). The precise location and characteristics of centromeres are essential for proper chromosome segregation and maintenance of genomic stability.

Telophase is a phase in the cell division process (mitosis or meiosis) where the chromosomes reach their most condensed form and move to the poles of the cell. The nuclear membrane begins to reform around each set of chromosomes, and the spindle fibers that were used to separate the chromosomes break down. This phase is followed by cytokinesis, where the cytoplasm of the cell divides, resulting in two separate daughter cells. In telophase I of meiosis, crossing over between homologous chromosomes has already occurred during prophase I and sister chromatids remain together until anaphase II.

Aurora kinases are a family of serine/threonine protein kinases that play crucial roles in the regulation of cell division. There are three members of the Aurora kinase family, designated as Aurora A, Aurora B, and Aurora C. These kinases are involved in the proper separation of chromosomes during mitosis and meiosis, and their dysregulation has been implicated in various types of cancer.

Aurora A is primarily located at the centrosomes and spindle poles during cell division, where it regulates centrosome maturation, bipolar spindle formation, and chromosome segregation. Aurora B, on the other hand, is a component of the chromosomal passenger complex (CPC) that localizes to the centromeres during prophase and moves to the spindle midzone during anaphase. It plays essential roles in kinetochore-microtubule attachment, chromosome alignment, and cytokinesis. Aurora C is most similar to Aurora B and appears to have overlapping functions with it, although its specific roles are less well understood.

Dysregulation of Aurora kinases has been associated with various types of cancer, including breast, ovarian, colon, and lung cancers. Overexpression or amplification of Aurora A is observed in many cancers, leading to chromosomal instability and aneuploidy. Inhibition of Aurora kinases has emerged as a potential therapeutic strategy for cancer treatment, with several small molecule inhibitors currently under investigation in clinical trials.

Salamandridae is not a medical term, but a taxonomic designation in the field of biology. It refers to a family of amphibians commonly known as newts and salamanders. These creatures are characterized by their slender bodies, moist skin, and four legs. Some species have the ability to regenerate lost body parts, including limbs, spinal cord, heart, and more.

If you're looking for a medical term, please provide more context or check if you may have made a typo in your question.

M Phase cell cycle checkpoints are control mechanisms that ensure the proper completion of the M phase (mitosis or meiosis) of the cell cycle. These checkpoints verify that certain conditions are met before the cell proceeds to the next phase of the cell cycle, thus helping to maintain genomic stability and prevent errors such as chromosomal mutations or aneuploidy.

There are two main M Phase cell cycle checkpoints:

1. The G2/M Checkpoint: This checkpoint is activated at the end of the G2 phase and verifies that all DNA has been replicated accurately, and that there are no DNA damages or other issues that could interfere with mitosis. If any problems are detected, the cell cycle is halted until they can be resolved.
2. The Mitotic Spindle Checkpoint: This checkpoint ensures that all chromosomes have attached properly to the spindle apparatus and that they will be equally distributed to the two resulting daughter cells during mitosis. If any chromosomes are not properly attached or if there is an issue with the spindle apparatus, the cell cycle is paused until these problems are corrected.

These checkpoints play a crucial role in maintaining genomic stability and preventing the development of cancer and other diseases.

Chromosomes are thread-like structures that contain genetic material, i.e., DNA and proteins, present in the nucleus of human cells. In humans, there are 23 pairs of chromosomes, for a total of 46 chromosomes, in each diploid cell. Twenty-two of these pairs are called autosomal chromosomes, which come in identical pairs and contain genes that determine various traits unrelated to sex.

The last pair is referred to as the sex chromosomes (X and Y), which determines a person's biological sex. Females have two X chromosomes (46, XX), while males possess one X and one Y chromosome (46, XY). Chromosomes vary in size, with the largest being chromosome 1 and the smallest being the Y chromosome.

Human chromosomes are typically visualized during mitosis or meiosis using staining techniques that highlight their banding patterns, allowing for identification of specific regions and genes. Chromosomal abnormalities can lead to various genetic disorders, including Down syndrome (trisomy 21), Turner syndrome (monosomy X), and Klinefelter syndrome (XXY).

Cyclin B1 is a type of cyclin protein that regulates the cell cycle, specifically the transition from G2 phase to mitosis (M phase) in eukaryotic cells. It forms a complex with and acts as a regulatory subunit of cyclin-dependent kinase 1 (CDK1), also known as CDC2. During the G2 phase, Cyclin B1 levels accumulate and upon reaching a certain threshold, it binds to CDK1 to form the maturation promoting factor (MPF). The activation of MPF triggers the onset of mitosis by promoting nuclear envelope breakdown, chromosome condensation, and other events required for cell division. After the completion of mitosis, Cyclin B1 is degraded by the ubiquitin-proteasome system, allowing the cell cycle to progress back into G1 phase.

Securin is not a medical term, but rather a biological concept related to cell division. It's a protein that plays a crucial role in the regulation of chromosome separation during cell division (mitosis).

During mitosis, sister chromatids (identical copies of a chromosome) are held together by cohesin proteins until it's time for them to separate and move to opposite ends of the cell. Securin is one of the proteins that helps regulate this process. Specifically, securin inhibits an enzyme called separase, which is responsible for cleaving the cohesin rings that hold sister chromatids together.

Once the cell is ready to separate its chromosomes, a protease called separase is activated and degrades securin. This allows separase to cleave the cohesin rings, leading to the separation of sister chromatids and the continuation of mitosis. If securin function is disrupted, it can lead to errors in chromosome segregation, which can contribute to genomic instability and diseases like cancer.

The Anaphase-Promoting Complex/Cyclosome (APC/C) is a large E3 ubiquitin ligase complex that plays a crucial role in the regulation of the cell cycle. It is responsible for targeting specific proteins for degradation by the proteasome, which is a multi-subunit protein complex that mediates the controlled breakdown of ubiquitinated proteins.

During anaphase, the final stage of mitosis, the APC/C becomes active and triggers the degradation of several key regulatory proteins, including securin and cyclin B. The destruction of these proteins allows for the separation of chromosomes and the completion of cell division.

The APC/C is composed of multiple subunits, including a catalytic core that binds to ubiquitin-conjugating enzymes (E2s) and several coactivators that regulate its activity. The activation of the APC/C requires the binding of one of two coactivators, Cdc20 or CDH1, which recognize specific substrates for degradation.

Dysregulation of the APC/C has been implicated in various human diseases, including cancer and neurodegenerative disorders. Therefore, understanding the mechanisms that regulate its activity is an important area of research with potential therapeutic implications.

Meiosis is a type of cell division that results in the formation of four daughter cells, each with half the number of chromosomes as the parent cell. It is a key process in sexual reproduction, where it generates gametes or sex cells (sperm and eggs).

The process of meiosis involves one round of DNA replication followed by two successive nuclear divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes pair, form chiasma and exchange genetic material through crossing over, then separate from each other. In meiosis II, sister chromatids separate, leading to the formation of four haploid cells. This process ensures genetic diversity in offspring by shuffling and recombining genetic information during the formation of gametes.

Ubiquitin-Protein Ligase Complexes, also known as E3 ubiquitin ligases, are a group of enzymes that play a crucial role in the ubiquitination process. Ubiquitination is a post-translational modification where ubiquitin molecules are attached to specific target proteins, marking them for degradation by the proteasome or altering their function, localization, or interaction with other proteins.

The ubiquitination process involves three main steps:

1. Ubiquitin activation: Ubiquitin is activated by an E1 ubiquitin-activating enzyme in an ATP-dependent reaction.
2. Ubiquitin conjugation: The activated ubiquitin is then transferred to an E2 ubiquitin-conjugating enzyme.
3. Ubiquitin ligation: Finally, the E2 ubiquitin-conjugating enzyme interacts with a specific E3 ubiquitin ligase complex, which facilitates the transfer and ligation of ubiquitin to the target protein.

Ubiquitin-Protein Ligase Complexes are responsible for recognizing and binding to specific substrate proteins, ensuring that ubiquitination occurs on the correct targets. They can be divided into three main categories based on their structural features and mechanisms of action:

1. Really Interesting New Gene (RING) finger E3 ligases: These E3 ligases contain a RING finger domain, which directly interacts with both the E2 ubiquitin-conjugating enzyme and the substrate protein. They facilitate the transfer of ubiquitin from the E2 to the target protein by bringing them into close proximity.
2. Homologous to E6-AP C terminus (HECT) E3 ligases: These E3 ligases contain a HECT domain, which interacts with the E2 ubiquitin-conjugating enzyme and forms a thioester bond with ubiquitin before transferring it to the substrate protein.
3. RING-between-RING (RBR) E3 ligases: These E3 ligases contain both RING finger and HECT-like domains, which allow them to function similarly to both RING finger and HECT E3 ligases. They first form a thioester bond with ubiquitin using their RING1 domain before transferring it to the substrate protein via their RING2 domain.

Dysregulation of Ubiquitin-Protein Ligase Complexes has been implicated in various diseases, including cancer and neurodegenerative disorders. Understanding their mechanisms and functions can provide valuable insights into disease pathogenesis and potential therapeutic strategies.

Kinesin is not a medical term per se, but a term from the field of cellular biology. However, understanding how kinesins work is important in the context of medical and cellular research.

Kinesins are a family of motor proteins that play a crucial role in transporting various cargoes within cells, such as vesicles, organelles, and chromosomes. They move along microtubule filaments, using the energy derived from ATP hydrolysis to generate mechanical force and motion. This process is essential for several cellular functions, including intracellular transport, mitosis, and meiosis.

In a medical context, understanding kinesin function can provide insights into various diseases and conditions related to impaired intracellular transport, such as neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease) and certain genetic disorders affecting motor neurons. Research on kinesins can potentially lead to the development of novel therapeutic strategies targeting these conditions.

The cell nucleus is a membrane-bound organelle that contains most of the genetic material in eukaryotic cells. The shape of the cell nucleus can vary widely among different cell types and can be influenced by various factors, including the organization of the nuclear envelope, the distribution of chromatin (the complex of DNA, RNA, and proteins that makes up chromosomes), and the presence or absence of a nucleolus (a structure within the nucleus where ribosomal RNA is synthesized).

The shape of the cell nucleus can be described in several ways, including:

* Spherical: The nucleus has a round, ball-like shape.
* Ellipsoidal: The nucleus has an oval or ellipse-like shape.
* Irregular: The nucleus has a shape that is not easily described as spherical or ellipsoidal and may be lobed, indented, or have other irregularities.

The shape of the cell nucleus can provide important clues about the function and health of a cell. For example, certain diseases and conditions, such as cancer, can cause changes in the shape of the nucleus. In addition, some researchers have suggested that the shape of the nucleus may be related to the mechanical properties of the cell and its ability to migrate or change shape in response to its environment.

Chromosomal proteins, non-histone, are a diverse group of proteins that are associated with chromatin, the complex of DNA and histone proteins, but do not have the characteristic structure of histones. These proteins play important roles in various nuclear processes such as DNA replication, transcription, repair, recombination, and chromosome condensation and segregation during cell division. They can be broadly classified into several categories based on their functions, including architectural proteins, enzymes, transcription factors, and structural proteins. Examples of non-histone chromosomal proteins include high mobility group (HMG) proteins, poly(ADP-ribose) polymerases (PARPs), and condensins.

Medical Definition:
Microtubule-associated proteins (MAPs) are a diverse group of proteins that bind to microtubules, which are key components of the cytoskeleton in eukaryotic cells. MAPs play crucial roles in regulating microtubule dynamics and stability, as well as in mediating interactions between microtubules and other cellular structures. They can be classified into several categories based on their functions, including:

1. Microtubule stabilizers: These MAPs promote the assembly of microtubules and protect them from disassembly by enhancing their stability. Examples include tau proteins and MAP2.
2. Microtubule dynamics regulators: These MAPs modulate the rate of microtubule polymerization and depolymerization, allowing for dynamic reorganization of the cytoskeleton during cell division and other processes. Examples include stathmin and XMAP215.
3. Microtubule motor proteins: These MAPs use energy from ATP hydrolysis to move along microtubules, transporting various cargoes within the cell. Examples include kinesin and dynein.
4. Adapter proteins: These MAPs facilitate interactions between microtubules and other cellular structures, such as membranes, organelles, or signaling molecules. Examples include MAP4 and CLASPs.

Dysregulation of MAPs has been implicated in several diseases, including neurodegenerative disorders like Alzheimer's disease (where tau proteins form abnormal aggregates called neurofibrillary tangles) and cancer (where altered microtubule dynamics can contribute to uncontrolled cell division).

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

Tubulin is a type of protein that forms microtubules, which are hollow cylindrical structures involved in the cell's cytoskeleton. These structures play important roles in various cellular processes, including maintaining cell shape, cell division, and intracellular transport. There are two main types of tubulin proteins: alpha-tubulin and beta-tubulin. They polymerize to form heterodimers, which then assemble into microtubules. The assembly and disassembly of microtubules are dynamic processes that are regulated by various factors, including GTP hydrolysis, motor proteins, and microtubule-associated proteins (MAPs). Tubulin is an essential component of the eukaryotic cell and has been a target for anti-cancer drugs such as taxanes and vinca alkaloids.

Macropodidae is not a medical term, but a taxonomic family in the order Diprotodontia, which includes large marsupials commonly known as kangaroos, wallabies, and tree-kangaroos. These animals are native to Australia and New Guinea. They are characterized by their strong hind legs, large feet adapted for leaping, and a long muscular tail used for balance. Some members of this family, particularly the larger kangaroo species, can pose a risk to humans in certain situations, such as vehicle collisions or aggressive encounters during breeding season. However, they are not typically associated with medical conditions or human health.

Interphase is a phase in the cell cycle during which the cell primarily performs its functions of growth and DNA replication. It is the longest phase of the cell cycle, consisting of G1 phase (during which the cell grows and prepares for DNA replication), S phase (during which DNA replication occurs), and G2 phase (during which the cell grows further and prepares for mitosis). During interphase, the chromosomes are in their relaxed, extended form and are not visible under the microscope. Interphase is followed by mitosis, during which the chromosomes condense and separate to form two genetically identical daughter cells.

Dyneins are a type of motor protein that play an essential role in the movement of cellular components and structures within eukaryotic cells. They are responsible for generating force and motion along microtubules, which are critical components of the cell's cytoskeleton. Dyneins are involved in various cellular processes, including intracellular transport, organelle positioning, and cell division.

There are several types of dyneins, but the two main categories are cytoplasmic dyneins and axonemal dyneins. Cytoplasmic dyneins are responsible for moving various cargoes, such as vesicles, organelles, and mRNA complexes, toward the minus-end of microtubules, which is usually located near the cell center. Axonemal dyneins, on the other hand, are found in cilia and flagella and are responsible for their movement by sliding adjacent microtubules past each other.

Dyneins consist of multiple subunits, including heavy chains, intermediate chains, light-intermediate chains, and light chains. The heavy chains contain the motor domain that binds to microtubules and hydrolyzes ATP to generate force. Dysfunction in dynein proteins has been linked to various human diseases, such as neurodevelopmental disorders, ciliopathies, and cancer.

The G2 phase cell cycle checkpoint is a point in the cell cycle, specifically in the G2 phase, where the cell checks for any DNA damage or other issues that may have occurred during the DNA synthesis phase (S phase) before proceeding to mitosis. This checkpoint serves as a quality control mechanism to ensure that the genetic material is accurately and completely replicated and that the cell is ready to divide. If DNA damage or other problems are detected, the cell cycle is halted at the G2 checkpoint until the issues can be resolved. If the damage is too severe or cannot be repaired, the cell may undergo programmed cell death (apoptosis) to prevent the propagation of potentially harmful mutations.

Cyclin B is a type of cyclin protein that regulates the cell cycle, specifically the transition from G2 phase to mitosis (M phase) in eukaryotic cells. Cyclin B binds and activates cyclin-dependent kinase 1 (CDK1), forming the complex known as M-phase promoting factor (MPF). This complex triggers the events leading to cell division, such as chromosome condensation, nuclear envelope breakdown, and spindle formation. The levels of cyclin B increase during the G2 phase and are degraded by the anaphase-promoting complex/cyclosome (APC/C) at the onset of anaphase, allowing the cell cycle to progress into the next phase.

Chromatids are defined as the individual strands that make up a duplicated chromosome. They are formed during the S phase of the cell cycle, when replication occurs and each chromosome is copied, resulting in two identical sister chromatids. These chromatids are connected at a region called the centromere and are held together by cohesin protein complexes until they are separated during mitosis or meiosis.

During mitosis, the sister chromatids are pulled apart by the mitotic spindle apparatus and distributed equally to each daughter cell. In meiosis, which is a type of cell division that occurs in the production of gametes (sex cells), homologous chromosomes pair up and exchange genetic material through a process called crossing over. After crossing over, each homologous chromosome consists of two recombinant chromatids that are separated during meiosis I, and then sister chromatids are separated during meiosis II.

Chromatids play an essential role in the faithful transmission of genetic information from one generation to the next, ensuring that each daughter cell or gamete receives a complete set of chromosomes with intact and functional genes.

A centrosome is a microtubule-organizing center found in animal cells. It consists of two barrel-shaped structures called centrioles, which are surrounded by a protein matrix called the pericentriolar material. The centrosome plays a crucial role in organizing the microtubules that form the cell's cytoskeleton and help to shape the cell, as well as in separating the chromosomes during cell division.

During mitosis, the two centrioles of the centrosome separate and move to opposite poles of the cell, where they nucleate the formation of the spindle fibers that pull the chromosomes apart. The centrosome also helps to ensure that the genetic material is equally distributed between the two resulting daughter cells.

It's worth noting that while centrioles are present in many animal cells, they are not always present in all types of cells. For example, plant cells do not have centrioles or centrosomes, and instead rely on other mechanisms to organize their microtubules.

Nuclear matrix-associated proteins (NMAPs) are a group of structural and functional proteins that are associated with the nuclear matrix, a network of fibers within the nucleus of a eukaryotic cell. The nuclear matrix provides support to the nuclear envelope and plays a role in DNA replication, transcription, and repair. NMAPs can be categorized into several groups based on their functions, including:

1. Scaffold proteins: These proteins provide structural support to the nuclear matrix and help maintain its architecture.
2. Enzymes: These proteins are involved in various biochemical reactions, such as DNA replication and repair, RNA processing, and chromatin remodeling.
3. Transcription factors: These proteins regulate gene expression by binding to specific DNA sequences and interacting with the transcription machinery.
4. Chromatin-associated proteins: These proteins are involved in the organization and regulation of chromatin structure and function.
5. Signal transduction proteins: These proteins transmit signals from the extracellular environment to the nucleus, regulating gene expression and other nuclear functions.

NMAPs have been implicated in various cellular processes, including cell cycle regulation, differentiation, apoptosis, and oncogenesis. Therefore, understanding the structure and function of NMAPs is crucial for elucidating the mechanisms underlying these processes and developing novel therapeutic strategies for various diseases, including cancer.

Chromosome positioning, also known as chromosome organization or chromosome architecture, refers to the specific location and spatial arrangement of chromosomes within the nucleus of a eukaryotic cell. This complex process is critical for proper regulation of gene expression, DNA replication, and chromosomal stability during the cell cycle.

Chromosomes are not randomly positioned in the nucleus; instead, they occupy distinct territories that are non-randomly organized with respect to each other. Chromosome positioning is influenced by several factors, including the presence of nuclear bodies, such as the nucleolus and nuclear speckles, as well as by the interactions between chromatin regions and the nuclear lamina.

The spatial organization of chromosomes can have significant consequences for gene regulation, as genes that are located in close proximity to each other may be more likely to interact and influence each other's expression. Chromosome positioning has also been implicated in various diseases, including cancer, where abnormalities in chromosome organization have been associated with changes in gene expression and genomic instability.

Overall, the medical definition of 'chromosome positioning' refers to the complex and dynamic process by which chromosomes are organized within the nucleus of a cell, and how this organization influences various cellular processes and functions.

Microinjection is a medical technique that involves the use of a fine, precise needle to inject small amounts of liquid or chemicals into microscopic structures, cells, or tissues. This procedure is often used in research settings to introduce specific substances into individual cells for study purposes, such as introducing DNA or RNA into cell nuclei to manipulate gene expression.

In clinical settings, microinjections may be used in various medical and cosmetic procedures, including:

1. Intracytoplasmic Sperm Injection (ICSI): A type of assisted reproductive technology where a single sperm is injected directly into an egg to increase the chances of fertilization during in vitro fertilization (IVF) treatments.
2. Botulinum Toxin Injections: Microinjections of botulinum toxin (Botox, Dysport, or Xeomin) are used for cosmetic purposes to reduce wrinkles and fine lines by temporarily paralyzing the muscles responsible for their formation. They can also be used medically to treat various neuromuscular disorders, such as migraines, muscle spasticity, and excessive sweating (hyperhidrosis).
3. Drug Delivery: Microinjections may be used to deliver drugs directly into specific tissues or organs, bypassing the systemic circulation and potentially reducing side effects. This technique can be particularly useful in treating localized pain, delivering growth factors for tissue regeneration, or administering chemotherapy agents directly into tumors.
4. Gene Therapy: Microinjections of genetic material (DNA or RNA) can be used to introduce therapeutic genes into cells to treat various genetic disorders or diseases, such as cystic fibrosis, hemophilia, or cancer.

Overall, microinjection is a highly specialized and precise technique that allows for the targeted delivery of substances into small structures, cells, or tissues, with potential applications in research, medical diagnostics, and therapeutic interventions.

'Dipodomys' is the genus name for kangaroo rats, which are small rodents native to North America. They are called kangaroo rats due to their powerful hind legs and long tails, which they use to hop around like kangaroos. Kangaroo rats are known for their ability to survive in arid environments, as they are able to obtain moisture from the seeds they eat and can concentrate their urine to conserve water. They are also famous for their highly specialized kidneys, which allow them to produce extremely dry urine.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

Spermatocytes are a type of cell that is involved in the process of spermatogenesis, which is the formation of sperm in the testes. Specifically, spermatocytes are the cells that undergo meiosis, a special type of cell division that results in the production of four haploid daughter cells, each containing half the number of chromosomes as the parent cell.

There are two types of spermatocytes: primary and secondary. Primary spermatocytes are diploid cells that contain 46 chromosomes (23 pairs). During meiosis I, these cells undergo a process called crossing over, in which genetic material is exchanged between homologous chromosomes. After crossing over, the primary spermatocytes divide into two secondary spermatocytes, each containing 23 chromosomes (but still with 23 pairs).

Secondary spermatocytes then undergo meiosis II, which results in the formation of four haploid spermatids. Each spermatid contains 23 single chromosomes and will eventually develop into a mature sperm cell through a process called spermiogenesis.

It's worth noting that spermatocytes are only found in males, as they are specific to the male reproductive system.

Cell nucleus division, also known as nuclear division, is the process by which the genetic material within the cell nucleus, referred to as chromosomes, is separated into two equal sets in preparation for cell division. This process results in the formation of two daughter nuclei, each with a complete set of chromosomes.

There are two types of nuclear division: mitosis and meiosis.

Mitosis is the type of nuclear division that occurs in somatic cells (cells other than sex cells) during growth, repair, and maintenance of tissues. It results in the formation of two genetically identical daughter nuclei. The process of mitosis can be divided into several stages: prophase, prometaphase, metaphase, anaphase, and telophase.

Meiosis, on the other hand, is the type of nuclear division that occurs in sex cells (sperm and egg cells) during sexual reproduction. It results in the formation of four genetically unique daughter nuclei, each with half the number of chromosomes as the parent cell. Meiosis consists of two consecutive divisions: meiosis I and meiosis II.

Both types of nuclear division are essential for the growth, development, and reproduction of living organisms.

CDC2 protein kinase, also known as cell division cycle 2 or CDK1, is a type of enzyme that plays a crucial role in the regulation of the cell cycle. The cell cycle is the series of events that cells undergo as they grow, replicate their DNA, and divide into two daughter cells.

CDC2 protein kinase is a member of the cyclin-dependent kinase (CDK) family, which are serine/threonine protein kinases that are activated by binding to regulatory subunits called cyclins. CDC2 protein kinase is primarily associated with the regulation of the G2 phase and the entry into mitosis, the stage of the cell cycle where nuclear and cytoplasmic division occur.

CDC2 protein kinase functions by phosphorylating various target proteins, which alters their activity and contributes to the coordination of the different events that occur during the cell cycle. The activity of CDC2 protein kinase is tightly regulated through a variety of mechanisms, including phosphorylation and dephosphorylation, as well as the binding and destruction of cyclin subunits.

Dysregulation of CDC2 protein kinase has been implicated in various human diseases, including cancer, where uncontrolled cell division can lead to the formation of tumors. Therefore, understanding the regulation and function of CDC2 protein kinase is an important area of research in molecular biology and medicine.

The G2 phase, also known as the "gap 2 phase," is a stage in the cell cycle that occurs after DNA replication (S phase) and before cell division (mitosis). During this phase, the cell prepares for mitosis by completing the synthesis of proteins and organelles needed for chromosome separation. The cell also checks for any errors or damage to the DNA before entering mitosis. This phase is a critical point in the cell cycle where proper regulation ensures the faithful transmission of genetic information from one generation of cells to the next. If significant DNA damage is detected during G2, the cell may undergo programmed cell death (apoptosis) instead of dividing.

The cell cycle is a series of events that take place in a cell leading to its division and duplication. It consists of four main phases: G1 phase, S phase, G2 phase, and M phase.

During the G1 phase, the cell grows in size and synthesizes mRNA and proteins in preparation for DNA replication. In the S phase, the cell's DNA is copied, resulting in two complete sets of chromosomes. During the G2 phase, the cell continues to grow and produces more proteins and organelles necessary for cell division.

The M phase is the final stage of the cell cycle and consists of mitosis (nuclear division) and cytokinesis (cytoplasmic division). Mitosis results in two genetically identical daughter nuclei, while cytokinesis divides the cytoplasm and creates two separate daughter cells.

The cell cycle is regulated by various checkpoints that ensure the proper completion of each phase before progressing to the next. These checkpoints help prevent errors in DNA replication and division, which can lead to mutations and cancer.

Nondisjunction is a genetic term that refers to the failure of homologous chromosomes or sister chromatids to properly separate during cell division, resulting in an abnormal number of chromosomes in the daughter cells. This can occur during either mitosis (resulting in somatic mutations) or meiosis (leading to gametes with an incorrect number of chromosomes).

In humans, nondisjunction of chromosome 21 during meiosis is the most common cause of Down syndrome, resulting in three copies of chromosome 21 (trisomy 21) in the affected individual. Nondisjunction can also result in other aneuploidies, such as Turner syndrome (X monosomy), Klinefelter syndrome (XXY), and Edwards syndrome (trisomy 18).

Nondisjunction is typically a random event, although maternal age has been identified as a risk factor for nondisjunction during meiosis. In some cases, structural chromosomal abnormalities or genetic factors may predispose an individual to nondisjunction events.

RNA interference (RNAi) is a biological process in which RNA molecules inhibit the expression of specific genes. This process is mediated by small RNA molecules, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), that bind to complementary sequences on messenger RNA (mRNA) molecules, leading to their degradation or translation inhibition.

RNAi plays a crucial role in regulating gene expression and defending against foreign genetic elements, such as viruses and transposons. It has also emerged as an important tool for studying gene function and developing therapeutic strategies for various diseases, including cancer and viral infections.

Biophysical processes refer to the physical mechanisms and phenomena that occur within living organisms and their constituent parts, such as cells, tissues, and organs. These processes are governed by the principles of physics and chemistry and play a critical role in maintaining life and enabling biological functions. Examples of biophysical processes include:

1. Diffusion: The passive movement of molecules from an area of high concentration to an area of low concentration, which enables the exchange of gases, nutrients, and waste products between cells and their environment.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration. This process is critical for maintaining cell volume and hydration.
3. Electrochemical gradients: The distribution of ions and charged particles across a membrane, which generates an electrical potential that can drive the movement of molecules and ions across the membrane. This process plays a crucial role in nerve impulse transmission and muscle contraction.
4. Enzyme kinetics: The study of how enzymes catalyze chemical reactions within cells, including the rate of reaction, substrate affinity, and inhibition or activation by other molecules.
5. Cell signaling: The communication between cells through the release and detection of signaling molecules, which can trigger a variety of responses, such as cell division, differentiation, or apoptosis.
6. Mechanical forces: The physical forces exerted by cells and tissues, such as tension, compression, and shear stress, which play a critical role in development, maintenance, and repair of biological structures.
7. Thermodynamics: The study of energy flow and transformation within living systems, including the conversion of chemical energy into mechanical work, heat, or electrical signals.

Understanding biophysical processes is essential for gaining insights into the fundamental mechanisms that underlie life and disease, as well as for developing new diagnostic tools and therapies.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

An oocyte, also known as an egg cell or female gamete, is a large specialized cell found in the ovary of female organisms. It contains half the number of chromosomes as a normal diploid cell, as it is the product of meiotic division. Oocytes are surrounded by follicle cells and are responsible for the production of female offspring upon fertilization with sperm. The term "oocyte" specifically refers to the immature egg cell before it reaches full maturity and is ready for fertilization, at which point it is referred to as an ovum or egg.

Cytokinesis is the part of the cell division process (mitosis or meiosis) in which the cytoplasm of a single eukaryotic cell divides into two daughter cells. It usually begins after telophase, and it involves the constriction of a contractile ring composed of actin filaments and myosin motor proteins that forms at the equatorial plane of the cell. This results in the formation of a cleavage furrow, which deepens and eventually leads to the physical separation of the two daughter cells. Cytokinesis is essential for cell reproduction and growth in multicellular organisms, and its failure can lead to various developmental abnormalities or diseases.

The nuclear envelope is a complex and double-membrane structure that surrounds the eukaryotic cell's nucleus. It consists of two distinct membranes: the outer nuclear membrane, which is continuous with the endoplasmic reticulum (ER) membrane, and the inner nuclear membrane, which is closely associated with the chromatin and nuclear lamina.

The nuclear envelope serves as a selective barrier between the nucleus and the cytoplasm, controlling the exchange of materials and information between these two cellular compartments. Nuclear pore complexes (NPCs) are embedded in the nuclear envelope at sites where the inner and outer membranes fuse, forming aqueous channels that allow for the passive or active transport of molecules, such as ions, metabolites, and RNA-protein complexes.

The nuclear envelope plays essential roles in various cellular processes, including DNA replication, transcription, RNA processing, and chromosome organization. Additionally, it is dynamically regulated during the cell cycle, undergoing disassembly and reformation during mitosis to facilitate equal distribution of genetic material between daughter cells.

Organoids are 3D tissue cultures grown from stem cells that mimic the structure and function of specific organs. They are used in research to study development, disease, and potential treatments. The term "organoid" refers to the fact that these cultures can organize themselves into structures that resemble rudimentary organs, with differentiated cell types arranged in a pattern similar to their counterparts in the body. Organoids can be derived from various sources, including embryonic stem cells, induced pluripotent stem cells (iPSCs), or adult stem cells, and they provide a valuable tool for studying complex biological processes in a controlled laboratory setting.

Calcium-binding proteins (CaBPs) are a diverse group of proteins that have the ability to bind calcium ions (Ca^2+^) with high affinity and specificity. They play crucial roles in various cellular processes, including signal transduction, muscle contraction, neurotransmitter release, and protection against oxidative stress.

The binding of calcium ions to these proteins induces conformational changes that can either activate or inhibit their functions. Some well-known CaBPs include calmodulin, troponin C, S100 proteins, and parvalbumins. These proteins are essential for maintaining calcium homeostasis within cells and for mediating the effects of calcium as a second messenger in various cellular signaling pathways.

Chromosome banding is a technique used in cytogenetics to identify and describe the physical structure and organization of chromosomes. This method involves staining the chromosomes with specific dyes that bind differently to the DNA and proteins in various regions of the chromosome, resulting in a distinct pattern of light and dark bands when viewed under a microscope.

The most commonly used banding techniques are G-banding (Giemsa banding) and R-banding (reverse banding). In G-banding, the chromosomes are stained with Giemsa dye, which preferentially binds to the AT-rich regions, creating a characteristic banding pattern. The bands are numbered from the centromere (the constriction point where the chromatids join) outwards, with the darker bands (rich in A-T base pairs and histone proteins) labeled as "q" arms and the lighter bands (rich in G-C base pairs and arginine-rich proteins) labeled as "p" arms.

R-banding, on the other hand, uses a different staining procedure that results in a reversed banding pattern compared to G-banding. The darker R-bands correspond to the lighter G-bands, and vice versa. This technique is particularly useful for identifying and analyzing specific regions of chromosomes that may be difficult to visualize with G-banding alone.

Chromosome banding plays a crucial role in diagnosing genetic disorders, identifying chromosomal abnormalities, and studying the structure and function of chromosomes in both clinical and research settings.

Tubulin modulators are a class of drugs that target and alter the function or structure of tubulin, which is a key component of microtubules in cells. These drugs can either stabilize or destabilize microtubules by interacting with tubulin, leading to various effects on cell division and other processes that rely on microtubule dynamics.

There are two main types of tubulin modulators:

1. Microtubule stabilizers: These drugs promote the assembly and stability of microtubules by binding to tubulin, preventing its disassembly. Examples include taxanes (e.g., paclitaxel) and vinca alkaloids (e.g., vinblastine). They are primarily used as anticancer agents because they interfere with the division of cancer cells.
2. Microtubule destabilizers: These drugs inhibit the formation and stability of microtubules by binding to tubulin, promoting its disassembly. Examples include colchicine, vinca alkaloids (e.g., vinorelbine), and combretastatins. They can also be used as anticancer agents because they disrupt the mitotic spindle during cell division, leading to cancer cell death.

Tubulin modulators have various other effects on cells beyond their impact on microtubules, such as interfering with intracellular transport and signaling pathways. These diverse actions contribute to their therapeutic potential in treating diseases like cancer, but they can also lead to side effects that limit their clinical use.

Cyclin A is a type of cyclin protein that regulates the progression of the cell cycle, particularly through the G1 and S phases. It forms a complex with and acts as a regulatory subunit for cyclin-dependent kinases (CDKs), specifically CDK2 and CDK1. The activation of Cyclin A-CDK complexes leads to phosphorylation of various target proteins, which in turn regulates DNA replication and the transition to mitosis.

Cyclin A levels rise during the late G1 phase and peak during the S phase, after which they decline rapidly during the G2 phase. Any abnormalities in Cyclin A regulation or expression can contribute to uncontrolled cell growth and cancer development.

Centrioles are small, cylindrical structures found in the centrosome of animal cells. They play a crucial role in organizing the microtubules that make up the cell's cytoskeleton and are also involved in the formation of the spindle apparatus during cell division. A typical centriole is made up of nine sets of triplet microtubules arranged in a ring-like fashion around a central hub or core.

Centrioles have two main functions:

1. Microtubule Organization: Centrioles serve as the primary site for microtubule nucleation and organization within the cell. They help to form the mitotic spindle during cell division, which is responsible for separating replicated chromosomes into two identical sets that are distributed equally between the two daughter cells.

2. Formation of Cilia and Flagella: In specialized cells, centrioles can also function as basal bodies for the formation of cilia and flagella. These hair-like structures protrude from the cell surface and play a role in cell movement and the movement of extracellular fluids over the cell surface.

It is important to note that plants and fungi do not have centrioles, and their cells use alternative mechanisms for microtubule organization and cell division.

'Drosophila proteins' refer to the proteins that are expressed in the fruit fly, Drosophila melanogaster. This organism is a widely used model system in genetics, developmental biology, and molecular biology research. The study of Drosophila proteins has contributed significantly to our understanding of various biological processes, including gene regulation, cell signaling, development, and aging.

Some examples of well-studied Drosophila proteins include:

1. HSP70 (Heat Shock Protein 70): A chaperone protein involved in protein folding and protection from stress conditions.
2. TUBULIN: A structural protein that forms microtubules, important for cell division and intracellular transport.
3. ACTIN: A cytoskeletal protein involved in muscle contraction, cell motility, and maintenance of cell shape.
4. BETA-GALACTOSIDASE (LACZ): A reporter protein often used to monitor gene expression patterns in transgenic flies.
5. ENDOGLIN: A protein involved in the development of blood vessels during embryogenesis.
6. P53: A tumor suppressor protein that plays a crucial role in preventing cancer by regulating cell growth and division.
7. JUN-KINASE (JNK): A signaling protein involved in stress response, apoptosis, and developmental processes.
8. DECAPENTAPLEGIC (DPP): A member of the TGF-β (Transforming Growth Factor Beta) superfamily, playing essential roles in embryonic development and tissue homeostasis.

These proteins are often studied using various techniques such as biochemistry, genetics, molecular biology, and structural biology to understand their functions, interactions, and regulation within the cell.

Mammalian chromosomes are thread-like structures that exist in the nucleus of mammalian cells, consisting of DNA, hist proteins, and RNA. They carry genetic information that is essential for the development and function of all living organisms. In mammals, each cell contains 23 pairs of chromosomes, for a total of 46 chromosomes, with one set inherited from the mother and the other from the father.

The chromosomes are typically visualized during cell division, where they condense and become visible under a microscope. Each chromosome is composed of two identical arms, separated by a constriction called the centromere. The short arm of the chromosome is labeled as "p," while the long arm is labeled as "q."

Mammalian chromosomes play a critical role in the transmission of genetic information from one generation to the next and are essential for maintaining the stability and integrity of the genome. Abnormalities in the number or structure of mammalian chromosomes can lead to various genetic disorders, including Down syndrome, Turner syndrome, and Klinefelter syndrome.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

'Drosophila melanogaster' is the scientific name for a species of fruit fly that is commonly used as a model organism in various fields of biological research, including genetics, developmental biology, and evolutionary biology. Its small size, short generation time, large number of offspring, and ease of cultivation make it an ideal subject for laboratory studies. The fruit fly's genome has been fully sequenced, and many of its genes have counterparts in the human genome, which facilitates the understanding of genetic mechanisms and their role in human health and disease.

Here is a brief medical definition:

Drosophila melanogaster (droh-suh-fih-luh meh-lon-guh-ster): A species of fruit fly used extensively as a model organism in genetic, developmental, and evolutionary research. Its genome has been sequenced, revealing many genes with human counterparts, making it valuable for understanding genetic mechanisms and their role in human health and disease.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Protein kinases are a group of enzymes that play a crucial role in many cellular processes by adding phosphate groups to other proteins, a process known as phosphorylation. This modification can activate or deactivate the target protein's function, thereby regulating various signaling pathways within the cell. Protein kinases are essential for numerous biological functions, including metabolism, signal transduction, cell cycle progression, and apoptosis (programmed cell death). Abnormal regulation of protein kinases has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

Green Fluorescent Protein (GFP) is not a medical term per se, but a scientific term used in the field of molecular biology. GFP is a protein that exhibits bright green fluorescence when exposed to light, particularly blue or ultraviolet light. It was originally discovered in the jellyfish Aequorea victoria.

In medical and biological research, scientists often use recombinant DNA technology to introduce the gene for GFP into other organisms, including bacteria, plants, and animals, including humans. This allows them to track the expression and localization of specific genes or proteins of interest in living cells, tissues, or even whole organisms.

The ability to visualize specific cellular structures or processes in real-time has proven invaluable for a wide range of research areas, from studying the development and function of organs and organ systems to understanding the mechanisms of diseases and the effects of therapeutic interventions.

No FAQ available that match "prometaphase"

No images available that match "prometaphase"