A group of nitrogen mustard compounds which are substituted with a phosphoramide group or its derivatives. They are usually cytotoxic and used as antineoplastic agents.
Acrolein is an unsaturated aldehyde (C3H4O), highly reactive, toxic and naturally occurring compound that can be found in certain foods, tobacco smoke and is produced as a result of environmental pollution or industrial processes.
A group of alkylating agents derived from mustard gas, with the sulfur replaced by nitrogen. They were formerly used as toxicants and vesicants, but now function as antineoplastic agents. These compounds are also powerful mutagens, teratogens, immunosuppressants, and carcinogens.
The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group.
Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer.
A sulfhydryl compound used to prevent urothelial toxicity by inactivating metabolites from ANTINEOPLASTIC AGENTS, such as IFOSFAMIDE or CYCLOPHOSPHAMIDE.
Severe irritant and vesicant of skin, eyes, and lungs. It may cause blindness and lethal lung edema and was formerly used as a war gas. The substance has been proposed as a cytostatic and for treatment of psoriasis. It has been listed as a known carcinogen in the Fourth Annual Report on Carcinogens (NTP-85-002, 1985) (Merck, 11th ed).
The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
Any of several BRASSICA species that are commonly called mustard. Brassica alba is white mustard, B. juncea is brown or Chinese mustard, and B. nigra is black, brown, or red mustard. The plant is grown both for mustard seed from which oil is extracted or used as SPICES, and for its greens used as VEGETABLES or ANIMAL FEED. There is no relationship to MUSTARD COMPOUNDS.
A class of drugs that differs from other alkylating agents used clinically in that they are monofunctional and thus unable to cross-link cellular macromolecules. Among their common properties are a requirement for metabolic activation to intermediates with antitumor efficacy and the presence in their chemical structures of N-methyl groups, that after metabolism, can covalently modify cellular DNA. The precise mechanisms by which each of these drugs acts to kill tumor cells are not completely understood. (From AMA, Drug Evaluations Annual, 1994, p2026)

Covalent sequestration of phosphoramide mustard by metallothionein--an in vitro study. (1/78)

Acquired drug resistance is one of the most important problems in cancer chemotherapy. One of the proposed mechanisms for these phenomena is the sequestration of alkylating agents by metallothionein in vivo. This research shows that metallothionein can covalently sequester phosphoramide mustard, the active form of cyclophosphamide in vitro. On-line electrospray mass spectrometry reveals that it is phosphoramide, not nornitrogen mustard that alkylates metallothionein, although the metallothionein/nornitrogen mustard adduct was isolated as the major adduct. Tandem mass spectrometric experiments were performed on an isolated drug-modified tryptic peptide. The alkylation occurred predominantly at Cys48 of metallothionein. These results provide further evidence that overexpression of metallothionein can detoxify the active form of the drugs.  (+info)

Role of O6-alkylguanine-DNA alkyltransferase in protecting against cyclophosphamide-induced toxicity and mutagenicity. (2/78)

Cyclophosphamide is used to treat a wide range of human malignancies. However, it is also a known carcinogen associated with induction of therapy-related leukemia and bladder cancer. The DNA repair protein, O6-alkylguanine-DNA alkyltransferase (AGT), protects cells from the toxic and mutagenic effects of O6-alkylating agents. We report here the contribution of AGT in protecting against the toxic and mutagenic effects of cyclophosphamide. CHO cells transduced with wild-type human AGT (CHO(AGT)) and pcDNA3 (CHOpcDNA3) were treated with activated cyclophosphamide derivatives, 4-hydroperoxycyclophosphamide (4-HC), 4-hydroperoxydidechlorocyclophosphamide (4-HDC), a progenitor of acrolein, and phosphoramide mustard (PM). The results show that CHO(AGT) is 7- or 20-fold less sensitive to the toxic effects of 30 microM 4-HC or 300 microM 4-HDC, respectively, than CHOpcDNA3 cells as measured by cell survival using a colony-forming assay. CHO(AGT) cells treated with 20 microM 4-HC or 200 microM 4-HDC produced 4- or 7-fold lower mutation frequency as measured at the HPRT locus than CHOpcDNA3 cells treated with the same dose of drugs. At 30 microM acrolein, the cell survival for CHO(AGT) was 30% compared with 18.7% for CHOpcDNA3. The mutation frequency of acrolein at the same dose was 57 mutants/10(6) cells in CHOpcDNA3 compared with no mutants in CHO(AGT). In contrast, CHO(AGT) and CHOpcDNA3 cells treated with PM had similar survival curves and exhibited no difference in mutation frequency. The present study demonstrates that AGT plays an important role in protecting against the toxic and mutagenic effect of cyclophosphamide and suggests that acrolein, not PM, is responsible for generating the toxic and mutagenic lesion(s) protected by the AGT protein.  (+info)

Mechanistic aspects of the cytotoxic activity of glufosfamide, a new tumour therapeutic agent. (3/78)

Beta-D-glucosyl-ifosfamide mustard (D 19575, glc-IPM, INN = glufosfamide) is a new agent for cancer chemotherapy. Its mode of action, which is only partly understood, was investigated at the DNA level. In the breast carcinoma cell line MCF7 glufosfamide inhibited both the synthesis of DNA and protein in a dose-dependent manner, as shown by the decreased incorporation of [3H-methyl]-thymidine into DNA and [14C]-methionine into protein of these cells. Treatment of MCF7 cells with 50 microM glufosfamide was sufficient to trigger poly(ADP-ribose) polymerase (PARP) activation, as revealed by immunofluorescence analysis. Both CHO-9 cells, which are O6-methylguanine-DNA methyltransferase (MGMT)-deficient, and an isogenic derivative, which has a high level of MGMT, showed the same cytotoxic response to beta-D-glc-IPM, indicating that the O6 position of guanine is not the critical target for cytotoxicity. By contrast, a sharp decrease in survival of cross-link repair deficient CL-V5 B cells was observed already at concentrations of 0.1 mM beta-D-glc-IPM, whereas the wild-type V79 cells showed a 90% reduction in survival only after treatment with 0.5 mM of this compound. The therapeutically inactive beta-L-enantiomer of glufosfamide also showed genotoxic effects in the same assays but at much higher doses. This was probably due to small amounts of ifosfamide mustard formed under the conditions of incubation. The results indicate that the DNA crosslinks are the most critical cytotoxic lesions induced by beta-D-glc-IPM.  (+info)

Phase I trial of 6-hour infusion of glufosfamide, a new alkylating agent with potentially enhanced selectivity for tumors that overexpress transmembrane glucose transporters: a study of the European Organization for Research and Treatment of Cancer Early Clinical Studies Group. (4/78)

PURPOSE: To determine the maximum-tolerated dose (MTD), the principal toxicities, and the pharmacokinetics of 6-hour infusion of glufosfamide (beta-D-glucosylisophosphoramide mustard; D-19575), a novel alkylating agent with the potential to target the glucose transporter system. PATIENTS AND METHODS: Twenty-one patients (10 women and 11 men; median age, 56 years) with refractory solid tumors were treated with doses ranging from 800 to 6,000 mg/m(2). Glufosfamide was administered every 3 weeks as a two-step (fast/slow) intravenous infusion over a 6-hour period. All patients underwent pharmacokinetic sampling at the first course. RESULTS: The MTD was 6,000 mg/m(2). At this dose, two of six patients developed a reversible, dose-limiting renal tubular acidosis and a slight increase in serum creatinine the week after the second and third courses of treatment, respectively, whereas three of six patients experienced short-lived grade 4 neutropenia/leukopenia. Other side effects were generally mild. Pharmacokinetics indicated linearity of area under the time-versus-concentration curve against dose over the dose range studied and a short elimination half-life. There was clear evidence of antitumor activity, with a long-lasting complete response of an advanced pancreatic adenocarcinoma and minor tumor shrinkage of two refractory colon carcinomas and one heavily pretreated breast cancer. CONCLUSION: The principal toxicity of 6-hour infusion of glufosfamide is reversible renal tubular acidosis, the MTD is 6,000 mg/m(2), and the recommended phase II dose is 4, 500 mg/m(2). Close monitoring of serum potassium and creatinine levels is suggested for patients receiving glufosfamide for early detection of possible renal toxicity. Evidence of antitumor activity in resistant carcinomas warrants further clinical exploration of glufosfamide in phase II studies.  (+info)

Intraneoplastic polymer-based delivery of cyclophosphamide for intratumoral bioconversion by a replicating oncolytic viral vector. (5/78)

rRp450 is an oncolytic herpesvirus that expresses the CYP2B1 cDNA, responsible for bioconverting cyclophosphamide (CPA) into the active metabolites 4-hydroxyCPA/aldophosphamide (AP). However, formal proof of prodrug activation is lacking. We report that activation of CPA in cells infected with rRp450 generates a time-dependent increase of diffusible 4-hydroxyCPA/AP. For in vivo applications, a CPA-impregnated polymer was implanted into human tumor xenografts inoculated with rRp450. The area under the curve for 4-hydroxyCPA/AP was 806 microg/g of tumor tissue/h when CPA was administered via intraneoplastic polymer and 3 microg/g of tumor tissue/h when CPA was administered i.p. Therefore, (a) a lytic virus expressing a "suicide" gene can activate a prodrug; and (b) within rRp450-infected tumor, more prolonged and higher concentrations of activated metabolites are generated by intraneoplastic compared with systemic administration of prodrug.  (+info)

Randomized comparison of fludarabine, CAP, and ChOP in 938 previously untreated stage B and C chronic lymphocytic leukemia patients. (6/78)

To comparatively assess first-line treatment with fludarabine and 2 anthracycline-containing regimens, namely CAP (cyclophosphamide, doxorubicin plus prednisone) and ChOP (cyclophosphamide, vincristine, prednisone plus doxorubicin), in advanced stages of chronic lymphocytic leukemia (CLL), previously untreated patients with stage B or C CLL were randomly allocated to receive 6 monthly courses of either ChOP, CAP, or fludarabine (FAMP), stratified based on the Binet stages. End points were overall survival, treatment response, and tolerance. From June 1, 1990 to April 15, 1998, 938 patients (651 stage B and 287 stage C) were randomized in 73 centers. Compared to ChOP and FAMP, CAP induced lower overall remission rates (58.2%; ChOP, 71.5%; FAMP; 71.1%; P <.0001 for each), including lower clinical remission rates (CAP, 15.2%; ChOP, 29.6%; FAMP, 40.1%; P =.003). By contrast, median survival time did not differ significantly according to randomization (67, 70, and 69 months in the ChOP, CAP, and FAMP groups, respectively). Incidences of infections (< 5%) and autoimmune hemolytic anemia (< 2%) during the 6 courses were similar in the randomized groups, whereas fludarabine induced, compared to ChOP and CAP, more frequent protracted thrombocytopenia (P =.003) and less frequent nausea-vomiting (P =.003) and hair loss (P <.0001). For patients with stage B and C CLL first-line fludarabine and ChOP regimens both provided similar overall survival and close response rates, and better results than CAP. However, there was an increase in clinical remission rate and a trend toward a better tolerance of fludarabine over ChOP that may influence the choice between these regimens as front-line treatments in patients with CLL.  (+info)

Inhibition of carboxyethylphosphoramide mustard formation from 4-hydroxycyclophosphamide by carmustine. (7/78)

It has been reported that the toxicity of carmustine (BCNU)/cyclophosphamide (CY)/etoposide regimen (when BCNU is split into 4 doses) is less than that of BCNU/CY/cisplatin regimen (when the same amount of BCNU is administered as a single dose). We hypothesized that this might in part be due to the inhibition of aldehyde dehydrogenase 1 (ALDH1) by BCNU or its degradation product, 2-chloroethyl isocyanate, which is likely to be more pronounced at the higher BCNU dose. The effects of BCNU and 2-chloroethyl isocyanate on the formation of carboxyethylphosphoramide mustard (CEPM) from 4-hydroxycyclophosphamide (HCY) was evaluated in human liver cytosol incubations. We found that CEPM formation from HCY was inhibited strongly by BCNU and weakly by 2-chloroethyl isocyanate. The mechanism of inhibition of ALDH1 activity by BCNU was elucidated using indole-3-acetaldehyde (IAL) as the probe substrate in ALDH1 prepared from human erythrocytes. BCNU was a competitive inhibitor of ALDH1 activity with a K(i) of 1.95 microM. The inhibition was independent of preincubation time and reversible by dialysis. The calculated %inhibition of ALDH1 activity by acrolein and BCNU in patients receiving BCNU in 4 split doses with CY was 81%, and it increased to 92% in single dose BCNU regimen. Thus, the calculation indicates that residual operating ALDH1 activity is halved in the presence of single-dose BCNU compared to split-dose BCNU. The inhibition of ALDH1 may contribute to the observed lower incidence of toxicity when BCNU was split into 4 doses compared with single dose and coadministered with CY although dose-dependent effects of BCNU on glutathione and glutathione reductase are also likely to contribute.  (+info)

Induction of DNA breaks and apoptosis in crosslink-hypersensitive V79 cells by the cytostatic drug beta-D-glucosyl-ifosfamide mustard. (8/78)

To study molecular aspects of cytotoxicity of the anticancer drug beta-D-glucose-ifosfamide mustard we investigated the potential of the agent to induce apoptosis and DNA breakage. Since beta-D-glucose-ifosfamide mustard generates DNA interstrand crosslinks, we used as an in vitro model system a pair of isogenic Chinese hamster V79 cells differing in their sensitivity to crosslinking agents. CL-V5B cells are dramatically more sensitive (30-fold based on D(10) values) to the cytotoxic effects of beta-D-glucose-ifosfamide mustard as compared to parental V79B cells. After 48 h of pulse-treatment with the agent, sensitive cells but not the resistant parental line undergo apoptosis and necrosis, with apoptosis being the predominant form of cell death (70 and 20% of apoptosis and necrosis, respectively). Apoptosis increased as a function of dose and was accompanied by induction of DNA double-strand breaks in the hypersensitive cells. Furthermore, a strong decline in the level of Bcl-2 protein and activation of caspases-3, -8 and -9 were observed. The resistant parental cells were refractory to all these parameters. Bcl-2 decline in the sensitive cells preceded apoptosis, and transfection-mediated overexpression of Bcl-2 protected at least in part from apoptosis. From the data we hypothesize that non-repaired crosslinks induced by beta-D-glucose-ifosfamide mustard are transformed into double-strand breaks which trigger apoptosis via a Bcl-2 dependent pathway.  (+info)

Phosphoramide mustards are a class of alkylating agents used in chemotherapy. They work by forming covalent bonds with DNA, causing cross-linking of the DNA strands and preventing DNA replication and transcription. This results in cytotoxicity and ultimately cell death. The most common phosphoramide mustard is mechlorethamine, which is used in the treatment of Hodgkin's lymphoma, non-Hodgkin's lymphoma, and various types of leukemia. Other examples include cyclophosphamide and ifosfamide, which are used to treat a wide range of cancers including breast, ovarian, and lung cancer. These agents are known for their potent antineoplastic activity, but they also have a narrow therapeutic index and can cause significant side effects, such as myelosuppression, nausea, vomiting, and hair loss.

Acrolein is an unsaturated aldehyde with the chemical formula CH2CHCHO. It is a colorless liquid that has a distinct unpleasant odor and is highly reactive. Acrolein is produced by the partial oxidation of certain organic compounds, such as glycerol and fatty acids, and it is also found in small amounts in some foods, such as coffee and bread.

Acrolein is a potent irritant to the eyes, nose, and throat, and exposure to high levels can cause coughing, wheezing, and shortness of breath. It has been shown to have toxic effects on the lungs, heart, and nervous system, and prolonged exposure has been linked to an increased risk of cancer.

In the medical field, acrolein is sometimes used as a laboratory reagent or as a preservative for biological specimens. However, due to its potential health hazards, it must be handled with care and appropriate safety precautions should be taken when working with this compound.

Nitrogen mustard compounds are a group of chemical agents that have been used historically as chemotherapy drugs and also have potential as military chemical warfare agents. They are alkylating agents, which means they work by modifying DNA in such a way that it can no longer replicate properly, leading to cell death.

In the medical context, nitrogen mustard compounds are used to treat certain types of cancer, including Hodgkin's lymphoma and non-Hodgkin's lymphoma. They may also be used to treat chronic lymphocytic leukemia, multiple myeloma, and other cancers.

The most common nitrogen mustard compounds used in medicine are mechlorethamine, cyclophosphamide, ifosfamide, and melphalan. These drugs are typically administered intravenously or orally, and their use is carefully monitored to minimize side effects such as nausea, vomiting, hair loss, and suppression of the immune system.

It's worth noting that nitrogen mustard compounds can also be highly toxic and dangerous if used as chemical warfare agents. They can cause severe respiratory, skin, and eye damage, as well as potentially fatal systemic effects.

Alkylation, in the context of medical chemistry and toxicology, refers to the process of introducing an alkyl group (a chemical moiety made up of a carbon atom bonded to one or more hydrogen atoms) into a molecule, typically a biomolecule such as a protein or DNA. This process can occur through various mechanisms, including chemical reactions with alkylating agents.

In the context of cancer therapy, alkylation is used to describe a class of chemotherapeutic drugs known as alkylating agents, which work by introducing alkyl groups onto DNA molecules in rapidly dividing cells. This can lead to cross-linking of DNA strands and other forms of DNA damage, ultimately inhibiting cell division and leading to the death of cancer cells. However, these agents can also affect normal cells, leading to side effects such as nausea, hair loss, and increased risk of infection.

It's worth noting that alkylation can also occur through non-chemical means, such as in certain types of radiation therapy where high-energy particles can transfer energy to electrons in biological molecules, leading to the formation of reactive radicals that can react with and alkylate DNA.

Cyclophosphamide is an alkylating agent, which is a type of chemotherapy medication. It works by interfering with the DNA of cancer cells, preventing them from dividing and growing. This helps to stop the spread of cancer in the body. Cyclophosphamide is used to treat various types of cancer, including lymphoma, leukemia, multiple myeloma, and breast cancer. It can be given orally as a tablet or intravenously as an injection.

Cyclophosphamide can also have immunosuppressive effects, which means it can suppress the activity of the immune system. This makes it useful in treating certain autoimmune diseases, such as rheumatoid arthritis and lupus. However, this immunosuppression can also increase the risk of infections and other side effects.

Like all chemotherapy medications, cyclophosphamide can cause a range of side effects, including nausea, vomiting, hair loss, fatigue, and increased susceptibility to infections. It is important for patients receiving cyclophosphamide to be closely monitored by their healthcare team to manage these side effects and ensure the medication is working effectively.

Mesna is a medication used in the prevention and treatment of hemorrhagic cystitis (inflammation and bleeding of the bladder) caused by certain chemotherapy drugs, specifically ifosfamide and cyclophosphamide. Mesna works by neutralizing the toxic metabolites of these chemotherapy agents, which can cause bladder irritation and damage.

Mesna is administered intravenously (into a vein) along with ifosfamide or cyclophosphamide, and it may also be given as a separate infusion after the chemotherapy treatment. The dosage and timing of Mesna administration are determined by the healthcare provider based on the patient's weight, kidney function, and the dose of chemotherapy received.

It is important to note that Mesna does not have any direct anticancer effects and is used solely to manage the side effects of chemotherapy.

Mustard gas, also known as sulfur mustard or HS, is a chemical warfare agent that has been used in military conflicts. It is a viscous, oily liquid at room temperature with a garlic-like odor. Its chemical formula is (ClCH2CH2)2S.

Mustard gas can cause severe burns and blistering of the skin, eyes, and respiratory tract upon contact or inhalation. It can also damage the immune system and lead to serious, potentially fatal, systemic effects. The onset of symptoms may be delayed for several hours after exposure, making it difficult to recognize and treat the injury promptly.

Mustard gas is classified as a vesicant, which means it causes blistering or tissue damage upon contact with the skin or mucous membranes. It can also have long-term effects, including an increased risk of cancer and other health problems. The use of mustard gas in warfare is banned by international law under the Chemical Weapons Convention.

Biotransformation is the metabolic modification of a chemical compound, typically a xenobiotic (a foreign chemical substance found within an living organism), by a biological system. This process often involves enzymatic conversion of the parent compound to one or more metabolites, which may be more or less active, toxic, or mutagenic than the original substance.

In the context of pharmacology and toxicology, biotransformation is an important aspect of drug metabolism and elimination from the body. The liver is the primary site of biotransformation, but other organs such as the kidneys, lungs, and gastrointestinal tract can also play a role.

Biotransformation can occur in two phases: phase I reactions involve functionalization of the parent compound through oxidation, reduction, or hydrolysis, while phase II reactions involve conjugation of the metabolite with endogenous molecules such as glucuronic acid, sulfate, or acetate to increase its water solubility and facilitate excretion.

I'm sorry for any confusion, but "Mustard Plant" is not a term typically used in medical definitions. Mustard plants are actually a type of crop plant from the Brassicaceae family, which also includes vegetables like broccoli and cabbage. The seeds from these plants are often ground to make mustard condiments and spices. If you're looking for information related to potential medicinal uses or health effects of mustard plants or their derivatives, I would be happy to help with that.

Antineoplastic agents, alkylating, are a class of chemotherapeutic drugs that work by alkylating (adding alkyl groups) to DNA, which can lead to the death or dysfunction of cancer cells. These agents can form cross-links between strands of DNA, preventing DNA replication and transcription, ultimately leading to cell cycle arrest and apoptosis (programmed cell death). Examples of alkylating agents include cyclophosphamide, melphalan, and cisplatin. While these drugs are designed to target rapidly dividing cancer cells, they can also affect normal cells that divide quickly, such as those in the bone marrow and digestive tract, leading to side effects like anemia, neutropenia, thrombocytopenia, and nausea/vomiting.

Phosphoramide mustard forms DNA crosslinks both between and within DNA strands at guanine N-7 positions (known as interstrand ... ALDHs protect these actively proliferating tissues against toxic effects of phosphoramide mustard and acrolein by converting ... However, in studies carried out after the clinical efficacy of cyclophosphamide was demonstrated, phosphoramide mustard proved ... Friedman OM, Wodinsky I, Myles A (April 1976). "Cyclophosphamide (NSC-26271)-related phosphoramide mustards- recent advances ...
December 1995). "A structural basis for a phosphoramide mustard-induced DNA interstrand cross-link at 5'-d(GAC)". Proc. Natl. ... Nitrogen mustards are nonspecific DNA alkylating agents. Nitrogen mustards are not related to the mustard plant or its pungent ... "Mustards". The IUPAC Compendium of Chemical Terminology. 2014. doi:10.1351/goldbook.M04071. Nitrogen mustard gas was stockpiled ... The nitrogen mustard drug mustine (HN2), is no longer commonly in use in its original IV formulation because of excessive ...
... phosphoramide mustard and acrolein. Sládek NE (August 1999). "Aldehyde dehydrogenase-mediated cellular relative insensitivity ... Nitrogen mustards, Phosphorodiamidates, Organic peroxides, Chloroethyl compounds). ...
... in turn yields the cytotoxic metabolites phosphoramide mustard and acrolein. Several Phase I trials have been completed. ... Nitrogen mustards, Organochlorides, Thioethers, Sulfonic acids, Chloroethyl compounds, All stub articles, Antineoplastic and ...
... phosphoramide mustards MeSH D02.455.526.728.650.730.243 - cyclophosphamide MeSH D02.455.526.728.650.730.243.250 - ifosfamide ... mustard gas MeSH D02.455.526.728.650 - nitrogen mustard compounds MeSH D02.455.526.728.650.050 - aniline mustard MeSH D02.455. ... quinacrine mustard MeSH D02.455.526.728.650.913 - uracil mustard MeSH D02.455.526.913 - trihalomethanes MeSH D02.455.526.913. ... propylbenzilylcholine mustard MeSH D02.092.877.883.333.780 - succinylcholine MeSH D02.092.877.883.333.800 - thiocholine MeSH ...
... phosphoramide mustard and acrolein. Ludeman SM (August 1999). "The chemistry of the metabolites of cyclophosphamide". Current ...

No FAQ available that match "phosphoramide mustards"

No images available that match "phosphoramide mustards"