Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical.
A potent oxidant synthesized by the cell during its normal metabolism. Peroxynitrite is formed from the reaction of two free radicals, NITRIC OXIDE and the superoxide anion (SUPEROXIDES).

The nitration of platelet cytosolic proteins during agonist-induced activation of platelets. (1/832)

The nitration of protein tyrosine residues by peroxynitrous acid has been associated with pathological conditions. Here it is shown, using a sensitive competitive enzyme-linked immunosorbent assay and immunoblotting for nitrotyrosine, that spontaneous nitration of specific proteins occurs during a physiological process, the activation of platelets by collagen. One of the main proteins nitrated is vasodilator-stimulated phosphoprotein. Endogenous synthesis of nitric oxide and activity of cyclo-oxygenase were required for the nitration of tyrosine. The nitration was mimicked by addition of peroxynitrite to unstimulated platelets, although the level of nitrotyrosine formation was greater and its distribution among the proteins was less specific.  (+info)

In vitro production of peroxynitrite by haemocytes from marine bivalves: C-ELISA determination of 3-nitrotyrosine level in plasma proteins from Mytilus galloprovincialis and Crassostrea gigas. (2/832)

BACKGROUND: Peroxynitrite is increasingly proposed as a contributor to defence system in marine bivalve. It can be formed by combination of superoxide and nitric oxide, and can react with tyrosine residues of proteins giving rise to 3-nitrotyrosine. RESULTS: The present article describes a competitive ELISA for the measurement of 3-nitrotyrosine contents of plasma proteins from marine bivalves by means of a monoclonal anti 3-nitrotyrosine antibody mouse IgG. CONCLUSIONS: This assay is sensitive enough to determine the amounts of 3-nitrotyrosine in plasma proteins from one animal only. Using the C-ELISA, we have shown that the phagocytosis of zymosan particles increased the 3-nitrotyrosine levels of plasma proteins from mussel M. galloprovincialis and oyster C. gigas 5.8 and 7.5 times respectively.  (+info)

Modulation of reactive oxygen species in endothelial cells by peroxynitrite-treated lipoproteins. (3/832)

Peroxynitrite has been implicated in the oxidative modification of low-density lipoprotein (LDL) particles, and nitrotyrosine residues in the LDL have been detected in atherosclerotic plaques. Studies have suggested that lipoproteins modified by peroxynitrite lead to the onset of atherosclerotic vascular disease. We therefore prepared in vitro lipoproteins oxidatively modified by peroxynitrite (NO(2)-lipoprotein) and investigated the effect of NO(2)-lipoprotein on the viability of cultured endothelial cells. After exposure of a high-density lipoprotein (HDL) to peroxynitrite, some intermolecular complexes of apolipoproteins in HDL were detected on immunoblotting with monoclonal antibodies against apolipoprotein AI and AII, suggesting that nitration of HDL by peroxynitrite causes intermolecular cross-linking of the apolipoproteins in the particles. Treatment with 1 mM peroxynitrite increased the 3-nitrotyrosine level to 28.5 mmol/mol of tyrosine residues in the prepared NO(2)-HDL, as quantitated by HPLC, and the amount in NO(2)-lipoprotein depended on the peroxynitrite concentration. HDL exhibited a shorter lag phase and the reaction plateaued more rapidly than that with LDL. To clarify whether or not NO(2)-lipoproteins affect the function of endothelial cells, we first examined the viability of cultured human aortic endothelial cells (HAECs) exposed to NO(2)-lipoproteins. Incubation with either NO(2)-HDL or NO(2)-LDL significantly reduced the HAEC viability at 72 h. The results of RT-PCR and Western blotting showed that NO(2)-HDL markedly suppressed at 48 h not only the expressed levels of mRNA and protein but also the activity of catalase in HAECs. In contrast, NO(2)-LDL significantly reduced the expression and activity of Cu(2+),Zn(2+)-superoxide dismutase (CuZn-SOD) in the cells. Neither NO(2)-HDL nor NO(2)-LDL interfered with nitric oxide production or expression of cyclooxygenases and NADPH oxidase in HAECs. Increased radical production in NO(2)-lipoprotein-treated HAECs implied that reactive oxygen species such as superoxide anions and hydroxyl radicals may contribute to the mechanism of the toxic effect induced in endothelial cells by NO(2)-lipoprotein. Overall, NO(2)-lipoprotein may lead to deterioration of the vascular function through these endothelial cell responses.  (+info)

EPR detection of glutathionyl and protein-tyrosyl radicals during the interaction of peroxynitrite with macrophages (J774). (4/832)

Peroxynitrite is one of the biological oxidants whose addition to cells has been shown to either activate signaling pathways or lead to cell injury, depending on cell type and oxidant concentration. The intermediacy of free radicals in these processes has been directly demonstrated only during the interaction of peroxynitrite with erythrocytes, a particular cell type, due to its high hemoglobin content. Here, we demonstrate that the addition of peroxynitrite to a macrophage cell line (J774) led to the production of glutathionyl and protein-tyrosyl radicals. The glutathionyl radical was characterized by EPR spin-trapping experiments with 5,5-dimethyl-1-pyrroline-N-oxide. Protein-tyrosyl radical formation was suggested by direct EPR spectroscopy and confirmed by EPR spin-trapping experiments with 3,5-dibromo-4-nitrosobenzenesulfonic acid and Western blot analysis of nitrated proteins in treated macrophages. Time dependence studies of free radical formation indicate that intracellular glutathione and unidentified proteins are the initial peroxynitrite targets in macrophages and that their derived radicals trigger radical chain reactions. The results are likely to be relevant to the understanding of the bioregulatory and biodamaging effects of peroxynitrite.  (+info)

The central nervous system inflammatory response to neurotropic virus infection is peroxynitrite dependent. (5/832)

We have recently demonstrated that increased blood-CNS barrier permeability and CNS inflammation in a conventional mouse model of experimental allergic encephalomyelitis are dependent upon the production of peroxynitrite (ONOO(-)), a product of the free radicals NO* and superoxide (O2*(-)). To determine whether this is a reflection of the physiological contribution of ONOO(-) to an immune response against a neurotropic pathogen, we have assessed the effects on adult rats acutely infected with Borna disease virus (BDV) of administration of uric acid (UA), an inhibitor of select chemical reactions associated with ONOO(-). The pathogenesis of acute Borna disease in immunocompetent adult rats results from the immune response to the neurotropic BDV, rather than the direct effects of BDV infection of neurons. An important stage in the BDV-specific neuroimmune response is the invasion of inflammatory cells into the CNS. UA treatment inhibited the onset of clinical disease, and prevented the elevated blood-brain barrier permeability as well as CNS inflammation seen in control-treated BDV-infected rats. The replication and spread of BDV in the CNS were unchanged by the administration of UA, and only minimal effects on the immune response to BDV Ags were observed. These results indicate that the CNS inflammatory response to neurotropic virus infection is likely to be dependent upon the activity of ONOO(-) or its products on the blood-brain barrier.  (+info)

Opposite roles of selenium-dependent glutathione peroxidase-1 in superoxide generator diquat- and peroxynitrite-induced apoptosis and signaling. (6/832)

Oxidative injuries including apoptosis can be induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) in aerobic metabolism. We determined impacts of a selenium-dependent glutathione peroxidase-1 (GPX1) on apoptosis induced by diquat (DQ), a ROS (superoxide) generator, and peroxynitrite (PN), a potent RNS. Hepatocytes were isolated from GPX1 knockout (GPX1-/-) or wild-type (WT) mice, and treated with 0.5 mm DQ or 0.1-0.8 mm PN for up to 12 h. Loss of cell viability, high levels of apoptotic cells, and severe DNA fragmentation were produced by DQ in only GPX1-/- cells and by PN in only WT cells. These two groups of cells shared similar cytochrome c release, caspase-3 activation, and p21(WAF1/CIP1) cleavage. Higher levels of protein nitration were induced by PN in WT than GPX1-/- cells. Much less and/or slower cellular GSH depletion was caused by DQ or PN in GPX1-/- than in WT cells, and corresponding GSSG accumulation occurred only in the latter. In conclusion, it is most striking that, although GPX1 protects against apoptosis induced by superoxide-generator DQ, the enzyme actually promotes apoptosis induced by PN in murine hepatocytes. Indeed, GSH is a physiological substrate for GPX1 in coping with ROS in these cells.  (+info)

Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation. (7/832)

This study was aimed at assessing the effects of long-term exposure to NO of respiratory activities in mitochondria from different tissues (with different ubiquinol contents), under conditions that either promote or prevent the formation of peroxynitrite. Mitochondria and submitochondrial particles isolated from rat heart, liver and brain were exposed either to a steady-state concentration or to a bolus addition of NO. NO induced the mitochondrial production of superoxide anions, hydrogen peroxide and peroxynitrite, the latter shown by nitration of mitochondrial proteins. Long-term incubation of mitochondrial membranes with NO resulted in a persistent inhibition of NADH:cytochrome c reductase activity, interpreted as inhibition of NADH:ubiquinone reductase (Complex I) activity, whereas succinate:cytochrome c reductase activity, including Complex II and Complex III electron transfer, remained unaffected. This selective effect of NO and derived species was partially prevented by superoxide dismutase and uric acid. In addition, peroxynitrite mimicked the effect of NO, including tyrosine nitration of some Complex I proteins. These results seem to indicate that the inhibition of NADH:ubiquinone reductase (Complex I) activity depends on the NO-induced generation of superoxide radical and peroxynitrite and that Complex I is selectively sensitive to peroxynitrite. Inhibition of Complex I activity by peroxynitrite may have critical implications for energy supply in tissues such as the brain, whose mitochondrial function depends largely on the channelling of reducing equivalents through Complex I.  (+info)

Tyrosine nitration in human spermatozoa: a physiological function of peroxynitrite, the reaction product of nitric oxide and superoxide. (8/832)

Tyrosine nitration is a widely used marker of peroxynitrite (ONOO-) produced from the reaction of nitric oxide (NO.) with superoxide (O2(.-)). Since human spermatozoa are able to produce both NO. and O2(.-) during capacitation in vitro, we investigated whether spontaneous tyrosine nitration of proteins occurs in human spermatozoa and evaluated the physiological effects of peroxynitrite on sperm function. We report here that human spermatozoa, incubated for 8 h under conditions conducive to capacitation, display a reproducible pattern of protein tyrosine nitration. Several proteins with mol. wt of 105-14 kDa become increasingly tyrosine-nitrated after 15 min incubation and then minimal changes are observed. Treatment of capacitated spermatozoa with human follicular fluid or calcium ionophore causes an increase of the nitrotyrosine content of proteins at the mol. wt of 85 kDa. Moreover, exposure of spermatozoa to ONOO- (2.5-50 micromol/l) increases motility and primes spermatozoa to respond earlier to human follicular fluid. ONOO- also increases protein tyrosine nitration and phosphorylation in a concentration-dependent manner. Taken together, these results demonstrate that tyrosine nitration of sperm proteins occurs in capacitated human spermatozoa, and that low concentrations of ONOO- modulate sperm functions, emphasizing the concept that capacitation is part of an oxidative process.  (+info)

Nitrates are chemical compounds that consist of a nitrogen atom bonded to three oxygen atoms (NO3-). In the context of medical science, nitrates are often discussed in relation to their use as medications or their presence in food and water.

As medications, nitrates are commonly used to treat angina (chest pain) caused by coronary artery disease. Nitrates work by relaxing and widening blood vessels, which improves blood flow and reduces the workload on the heart. Some examples of nitrate medications include nitroglycerin, isosorbide dinitrate, and isosorbide mononitrate.

In food and water, nitrates are naturally occurring compounds that can be found in a variety of vegetables, such as spinach, beets, and lettuce. They can also be present in fertilizers and industrial waste, which can contaminate groundwater and surface water sources. While nitrates themselves are not harmful, they can be converted into potentially harmful compounds called nitrites under certain conditions, particularly in the digestive system of young children or in the presence of bacteria such as those found in unpasteurized foods. Excessive levels of nitrites can react with hemoglobin in the blood to form methemoglobin, which cannot transport oxygen effectively and can lead to a condition called methemoglobinemia.

Peroxynitrous acid (ONOOH) is a highly reactive nitrogen species formed from the reaction between nitric oxide (NO) and superoxide radical (O2-). It is an unstable compound that quickly decomposes to form other reactive species, such as nitrogen dioxide (NO2) and hydroxyl radical (HO•), which can cause significant damage to biological molecules, including proteins, lipids, and DNA. Peroxynitrous acid has been implicated in the pathogenesis of various diseases, including neurodegenerative disorders, cardiovascular disease, and cancer.

No FAQ available that match "peroxynitrous acid"

No images available that match "peroxynitrous acid"