A secreted member of the TNF receptor superfamily that negatively regulates osteoclastogenesis. It is a soluble decoy receptor of RANK LIGAND that inhibits both CELL DIFFERENTIATION and function of OSTEOCLASTS by inhibiting the interaction between RANK LIGAND and RECEPTOR ACTIVATOR OF NUCLEAR FACTOR-KAPPA B.
A transmembrane protein belonging to the tumor necrosis factor superfamily that specifically binds RECEPTOR ACTIVATOR OF NUCLEAR FACTOR-KAPPA B and OSTEOPROTEGERIN. It plays an important role in regulating OSTEOCLAST differentiation and activation.
A tumor necrosis factor receptor family member that is specific for RANK LIGAND and plays a role in bone homeostasis by regulating osteoclastogenesis. It is also expressed on DENDRITIC CELLS where it plays a role in regulating dendritic cell survival. Signaling by the activated receptor occurs through its association with TNF RECEPTOR-ASSOCIATED FACTORS.
A large multinuclear cell associated with the BONE RESORPTION. An odontoclast, also called cementoclast, is cytomorphologically the same as an osteoclast and is involved in CEMENTUM resorption.
Cell surface receptors that bind TUMOR NECROSIS FACTORS and trigger changes which influence the behavior of cells.
Intracellular receptors that can be found in the cytoplasm or in the nucleus. They bind to extracellular signaling molecules that migrate through or are transported across the CELL MEMBRANE. Many members of this class of receptors occur in the cytoplasm and are transported to the CELL NUCLEUS upon ligand-binding where they signal via DNA-binding and transcription regulation. Also included in this category are receptors found on INTRACELLULAR MEMBRANES that act via mechanisms similar to CELL SURFACE RECEPTORS.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
Bone loss due to osteoclastic activity.
Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone.
The continuous turnover of BONE MATRIX and mineral that involves first an increase in BONE RESORPTION (osteoclastic activity) and later, reactive BONE FORMATION (osteoblastic activity). The process of bone remodeling takes place in the adult skeleton at discrete foci. The process ensures the mechanical integrity of the skeleton throughout life and plays an important role in calcium HOMEOSTASIS. An imbalance in the regulation of bone remodeling's two contrasting events, bone resorption and bone formation, results in many of the metabolic bone diseases, such as OSTEOPOROSIS.
Dissolution of bone that particularly involves the removal or loss of calcium.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
Glycoproteins found on the membrane or surface of cells.
Transport proteins that carry specific substances in the blood or across cell membranes.
The amount of mineral per square centimeter of BONE. This is the definition used in clinical practice. Actual bone density would be expressed in grams per milliliter. It is most frequently measured by X-RAY ABSORPTIOMETRY or TOMOGRAPHY, X RAY COMPUTED. Bone density is an important predictor for OSTEOPOROSIS.
Pathologic deposition of calcium salts in tissues.
Deposition of calcium into the blood vessel structures. Excessive calcification of the vessels are associated with ATHEROSCLEROTIC PLAQUES formation particularly after MYOCARDIAL INFARCTION (see MONCKEBERG MEDIAL CALCIFIC SCLEROSIS) and chronic kidney diseases which in turn increase VASCULAR STIFFNESS.
An abnormal hardening or increased density of bone tissue.
Reduction of bone mass without alteration in the composition of bone, leading to fractures. Primary osteoporosis can be of two major types: postmenopausal osteoporosis (OSTEOPOROSIS, POSTMENOPAUSAL) and age-related or senile osteoporosis.
Tumors or cancer located in bone tissue or specific BONES.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Vitamin K-dependent calcium-binding protein synthesized by OSTEOBLASTS and found primarily in BONES. Serum osteocalcin measurements provide a noninvasive specific marker of bone metabolism. The protein contains three residues of the amino acid gamma-carboxyglutamic acid (Gla), which, in the presence of CALCIUM, promotes binding to HYDROXYAPATITE and subsequent accumulation in BONE MATRIX.
Metabolic bone diseases are a group of disorders that affect the bones' structure and strength, caused by disturbances in the normal metabolic processes involved in bone formation, resorption, or mineralization, including conditions like osteoporosis, osteomalacia, Paget's disease, and renal osteodystrophy.
The process of bone formation. Histogenesis of bone including ossification.
A disease marked by repeated episodes of increased bone resorption followed by excessive attempts at repair, resulting in weakened, deformed bones of increased mass. The resultant architecture of the bone assumes a mosaic pattern in which the fibers take on a haphazard pattern instead of the normal parallel symmetry.
A mononuclear phagocyte colony-stimulating factor (M-CSF) synthesized by mesenchymal cells. The compound stimulates the survival, proliferation, and differentiation of hematopoietic cells of the monocyte-macrophage series. M-CSF is a disulfide-bonded glycoprotein dimer with a MW of 70 kDa. It binds to a specific high affinity receptor (RECEPTOR, MACROPHAGE COLONY-STIMULATING FACTOR).
A transmembrane-protein belonging to the TNF family of intercellular signaling proteins. It is a widely expressed ligand that activates APOPTOSIS by binding to TNF-RELATED APOPTOSIS-INDUCING LIGAND RECEPTORS. The membrane-bound form of the protein can be cleaved by specific CYSTEINE ENDOPEPTIDASES to form a soluble ligand form.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Diseases of BONES.
Resorption or wasting of the tooth-supporting bone (ALVEOLAR PROCESS) in the MAXILLA or MANDIBLE.
Pathological processes involving any of the BLOOD VESSELS in the cardiac or peripheral circulation. They include diseases of ARTERIES; VEINS; and rest of the vasculature system in the body.
A cysteine protease that is highly expressed in OSTEOCLASTS and plays an essential role in BONE RESORPTION as a potent EXTRACELLULAR MATRIX-degrading enzyme.
Excessive formation of dense trabecular bone leading to pathological fractures; OSTEITIS; SPLENOMEGALY with infarct; ANEMIA; and extramedullary hemopoiesis (HEMATOPOIESIS, EXTRAMEDULLARY).
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A fetuin subtype that is synthesized by HEPATOCYTES and secreted into the circulation. It plays a major role in preventing CALCIUM precipitation in the BLOOD.

Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. (1/844)

A receptor that mediates osteoprotegerin ligand (OPGL)-induced osteoclast differentiation and activation has been identified via genomic analysis of a primary osteoclast precursor cell cDNA library and is identical to the tumor necrosis factor receptor (TNFR) family member RANK. The RANK mRNA was highly expressed by isolated bone marrow-derived osteoclast progenitors and by mature osteoclasts in vivo. Recombinant OPGL binds specifically to RANK expressed by transfected cell lines and purified osteoclast progenitors. Transgenic mice expressing a soluble RANK-Fc fusion protein have severe osteopetrosis because of a reduction in osteoclasts, similar to OPG transgenic mice. Recombinant RANK-Fc binds with high affinity to OPGL in vitro and blocks osteoclast differentiation and activation in vitro and in vivo. Furthermore, polyclonal Ab against the RANK extracellular domain promotes osteoclastogenesis in bone marrow cultures suggesting that RANK activation mediates the effects of OPGL on the osteoclast pathway. These data indicate that OPGL-induced osteoclastogenesis is directly mediated through RANK on osteoclast precursor cells.  (+info)

The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. (2/844)

Osteoprotegerin (OPG) and OPG-ligand (OPGL) potently inhibit and stimulate, respectively, osteoclast differentiation (Simonet, W.S., D.L. Lacey, C.R. Dunstan, M. Kelley, M.-S. Chang, R. Luethy, H.Q. Nguyen, S. Wooden, L. Bennett, T. Boone, et al. 1997. Cell. 89:309-319; Lacey, D.L., E. Timms, H.-L. Tan, M.J. Kelley, C.R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, et al. 1998. Cell. 93: 165-176), but their effects on mature osteoclasts are not well understood. Using primary cultures of rat osteoclasts on bone slices, we find that OPGL causes approximately sevenfold increase in total bone surface erosion. By scanning electron microscopy, OPGL-treated osteoclasts generate more clusters of lacunae on bone suggesting that multiple, spatially associated cycles of resorption have occurred. However, the size of individual resorption events are unchanged by OPGL treatment. Mechanistically, OPGL binds specifically to mature OCs and rapidly (within 30 min) induces actin ring formation; a marked cytoskeletal rearrangement that necessarily precedes bone resorption. Furthermore, we show that antibodies raised against the OPGL receptor, RANK, also induce actin ring formation. OPGL-treated mice exhibit increases in blood ionized Ca++ within 1 h after injections, consistent with immediate OC activation in vivo. Finally, we find that OPG blocks OPGL's effects on both actin ring formation and bone resorption. Together, these findings indicate that, in addition to their effects on OC precursors, OPGL and OPG have profound and direct effects on mature OCs and indicate that the OC receptor, RANK, mediates OPGL's effects.  (+info)

Osteoprotegerin ligand: a common link between osteoclastogenesis, lymph node formation and lymphocyte development. (3/844)

The TNF-family molecule osteoprotegerin ligand (OPGL; also known as TRANCE, RANKL or ODF) has been identified as the osteoclast differentiation factor and a regulator of T cell-dendritic cell interactions in the immune system. Surprisingly, the same molecule was identified as a crucial factor in early lymphocyte development and lymph node organogenesis. We will discuss the role of OPGL in bone remodelling and the immune system.  (+info)

Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. (4/844)

Past studies have shown that apoptosis mediated by TNF-related apoptosis-inducing ligand (TRAIL) is regulated by the expression of two death receptors [TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2] and two decoy receptors (TRAIL-R3 and TRAIL-R4) that inhibit apoptosis. In previous studies, we have shown that TRAIL but not other members of the tumor necrosis factor family induce apoptosis in approximately two-thirds of melanoma cell lines. Here, we examined whether the expression of TRAIL-R at the mRNA and protein level in a panel of 28 melanoma cell lines and melanocytes correlated with their sensitivity to TRAIL-induced apoptosis. We report that at least three factors appear to underlie the variability in TRAIL-induced apoptosis. (a) Four of nine cell lines that were insensitive to TRAIL-induced apoptosis failed to express death receptors, and in two instances, lines were devoid of all TRAIL-Rs. Southern analysis suggested this was due to loss of the genes for the death receptors. (b) Despite the presence of mRNA for the TRAIL-R, some of the lines failed to express TRAIL-R protein on their surface. This was evident for TRAIL-R1 and more so for the TRAIL decoy receptors TRAIL-R3 and -R4. Studies on permeabilized cells revealed that the receptors were located within the cytoplasm and redistribution from the cytoplasm may represent a posttranslational control mechanism. (c) Surface expression of TRAIL-R1 and -R2 (but not TRAIL-R3 and -R4) showed an overall correlation with TRAIL-induced apoptosis. However, certain melanoma cell lines and clones were relatively resistant to TRAIL-induced apoptosis despite the absence of decoy receptors and moderate levels of TRAIL-R1 and -R2 expression. This may indicate the presence of inhibitors within the cells, but resistance to apoptosis could not be correlated with expression of the caspase inhibitor FLICE-inhibitory protein. mRNA for another TRAIL receptor, osteoprotegerin, was expressed in 22 of the melanoma lines but not on melanocytes. Its role in induction of apoptosis remains to be studied. These results appear to have important implications for future clinical studies on TRAIL.  (+info)

Osteopetrosis and osteoporosis: two sides of the same coin. (5/844)

Together, osteoporosis and osteopetrosis comprise a substantial proportion of the bone diseases that severely affect humans. In order to understand and effectively treat these disorders, an understanding of the mechanisms controlling bone remodelling is essential. While numerous animal models of bone disease have been generated, the lack of correlation between these animal models and human disease has limited their utility in terms of defining therapeutic strategies. The generation and analysis of cathepsin K knockout mice has resulted in a model for pycnodysostosis, a rare human osteopetrotic disease, and is now providing considerable insights into both osteoclast function and potential therapeutic strategies for the treatment of bone disease. This review highlights the importance of genes such as cathepsin K in understanding bone remodelling and illustrates a new trend towards understanding bone disease as a complete entity rather than as a series of unrelated disorders.  (+info)

Effect of osteoprotegerin and osteoprotegerin ligand on osteoclast formation by arthroplasty membrane derived macrophages. (6/844)

OBJECTIVE: Osteoprotegerin ligand (OPGL) is a newly discovered molecule, which is expressed by osteoblasts/bone stromal cells. This ligand and M-CSF are now known to be essential for osteoclast differentiation from marrow and circulating precursors. This study examined whether OPGL and its soluble receptor osteoprotegerin (OPG), influenced osteoclast formation from human arthroplasty derived macrophages, to determine if the effects of OPGL and OPG on these cells could contribute to the osteolysis of aseptic loosening. METHODS: OPGL (+/- dexamethasone/M-CSF) was added to cultures of macrophages isolated from the pseudomembrane of loosened hip arthroplasties incubated on glass coverslips and dentine slices. OPG was added to cocultures of arthroplasty derived macrophages and UMR106 osteoblast-like cells. Osteoclast differentiation in long term cultures was assessed by expression of macrophage (CD14) and osteoclast markers (tartrate resistant acid phosphatase (TRAP), vitronectin receptor (VNR) and lacunar resorption). RESULTS: In the absence of osteoblastic cells, the addition of OPGL alone was sufficient to induce differentiation of macrophages (CD14(+), TRAP(-), VNR(-)) into TRAP(+) and VNR(+) multinucleated cells, capable of extensive lacunar resorption. OPG was found to inhibit osteoclast formation by arthroplasty macrophages in a dose dependent manner. OPG (100 ng/ml) more than halved the formation of TRAP(+) and VNR(+) cells and the extent of lacunar resorption in co-cultures of UMR106 cells and arthroplasty macrophages. CONCLUSIONS: This study has shown that macrophages, isolated from the pseudomembrane surrounding loose arthroplasty components, are capable of differentiating into osteoclastic bone resorbing cells and that OPGL is required for this to occur. OPG inhibits this process, most probably by interrupting the cell-cell interaction between osteoblasts and mononuclear phagocyte osteoclast precursors present in the pseudomembrane.  (+info)

Involvement of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. (7/844)

OBJECTIVE: To clarify the mechanism by which osteoclasts are formed in culture of rheumatoid synoviocytes by exploring the involvement of receptor activator of nuclear factor kappaB ligand (RANKL)/osteoclast differentiation factor (ODF). METHODS: Osteoclast formation was evaluated in cocultures of rheumatoid synovial fibroblasts and peripheral blood mononuclear cells (PBMC) in the presence of macrophage colony stimulating factor and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) utilizing separating membrane filters. RANKL/ODF expression was examined by Northern blotting in synovial tissues from 5 rheumatoid arthritis (RA) patients and tissues from patients with giant cell tumor (GCT), osteosarcoma (OS), and osteoarthritis (OA). RANKL/ODF expression and the ability of synovial fibroblasts to support osteoclastogenesis were investigated in coculture with PBMC in the presence or absence of 1,25(OH)2D3, and soluble RANKL/ODF and osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor (OCIF) were measured by enzyme-linked immunosorbent assay. The effects of OPG/OCIF on the osteoclastogenesis in the primary culture of rheumatoid synoviocytes and the coculture system were determined. RESULTS: Synovial fibroblasts did not induce osteoclastogenesis when separately cocultured with PBMC. Northern blotting revealed that RANKL/ODF was highly expressed in all tissues from RA and GCT patients, but not from OA or OS patients. Cultured rheumatoid synovial fibroblasts efficiently induced osteoclastogenesis in the presence of 1,25(OH)2D3, which was accompanied by up-regulated expression of RANKL/ODF and decreased production of OPG/OCIF. Osteoclastogenesis from synoviocytes was dose-dependently inhibited by OPG/OCIF. CONCLUSION: RANKL/ODF expressed on synovial fibroblasts is involved in rheumatoid bone destruction by inducing osteoclastogenesis and would therefore be a good therapeutic target.  (+info)

Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation. (8/844)

Giant cell tumor of bone (GCT) is a rare primary osteolytic tumor of bone that is characterized by massive tissue destruction at the epiphysis of long bones. There is no evidence that tumor cells themselves are capable of bone destruction; instead, it appears that the tumor cells of GCT act by promoting osteoclastogenesis and, as a consequence, osteoclastic bone resorption. However, the mechanism by which this is achieved is not understood. Here we attempted to determine whether osteoprotegerin ligand (OPGL), the factor that is necessary and essential for osteoclastogenesis, is involved in tumor cell-recruited osteoclast-like giant cell formation in GCT. Using fluorescence in situ hybridization, we sought to determine mRNA expression of OPGL, its receptor RANK, and its decoy receptor OPG in three major cell types of GCT. We demonstrated that OPG mRNA was expressed in all three cell types of GCT, OPGL transcripts were mainly detected in spindle-shaped stromal-like tumor cells, whereas RANK was expressed only in macrophage-like mononuclear cells and multinuclear osteoclast-like giant cells. By semiquantitative RT-PCR, we also showed that the level of OPGL mRNA in GCT is much higher than that in normal bone and osteogenic osteosarcoma. In contrast, a similar level of OPG transcripts was detected in these three kinds of tissues, and RANK mRNA was detectable only in GCT tissues. We have further examined the regulation of gene expression of OPGL and OPG in tumor cells in response to osteotropic hormones. Administration of 1,25(OH)(2)D(3) and dexamethasone resulted in maximum up-regulation of OPGL level and down-regulation of OPG level in cultured GCT stromal-like tumor cells and the mouse bone marrow-derived ST-2 stromal cell line. Furthermore, we have shown that tumor cells of GCT induce differentiation of RANK-expressing myeloid RAW(264.7) cells into osteoclast-like cells in the presence of 1,25(OH)(2)D(3) and dexamethasone. Our findings suggest that OPGL is involved in the tumor cell-induced osteoclast-like cell formation in GCT. The ratio of OPGL/OPG by tumor cells may contribute to the degree of osteoclastogenesis and bone resorption.  (+info)

Osteoprotegerin (OPG) is a soluble decoy receptor for the receptor activator of nuclear factor kappa-B ligand (RANKL). It is a member of the tumor necrosis factor (TNF) receptor superfamily and plays a crucial role in regulating bone metabolism. By binding to RANKL, OPG prevents it from interacting with its signaling receptor RANK on the surface of osteoclast precursor cells, thereby inhibiting osteoclast differentiation, activation, and survival. This results in reduced bone resorption and increased bone mass.

In addition to its role in bone homeostasis, OPG has also been implicated in various physiological and pathological processes, including immune regulation, cancer progression, and cardiovascular disease.

REceptor Activator of NF-kB (RANK) Ligand is a type of protein that plays a crucial role in the immune system and bone metabolism. It belongs to the tumor necrosis factor (TNF) superfamily and is primarily produced by osteoblasts, which are cells responsible for bone formation.

RANK Ligand binds to its receptor RANK, which is found on the surface of osteoclasts, a type of cell involved in bone resorption or breakdown. The binding of RANK Ligand to RANK activates signaling pathways that promote the differentiation, activation, and survival of osteoclasts, thereby increasing bone resorption.

Abnormalities in the RANKL-RANK signaling pathway have been implicated in various bone diseases, such as osteoporosis, rheumatoid arthritis, and certain types of cancer that metastasize to bones. Therefore, targeting this pathway with therapeutic agents has emerged as a promising approach for the treatment of these conditions.

Receptor Activator of Nuclear Factor-kappa B (RANK) is a type I transmembrane protein and a member of the tumor necrosis factor receptor superfamily. It plays a crucial role in the regulation of bone metabolism through the activation of osteoclasts, which are cells responsible for bone resorption.

When RANK binds to its ligand, RANKL (Receptor Activator of Nuclear Factor-kappa B Ligand), it triggers a series of intracellular signaling events that lead to the activation and differentiation of osteoclast precursors into mature osteoclasts. This process is essential for maintaining bone homeostasis, as excessive osteoclast activity can result in bone loss and diseases such as osteoporosis.

In addition to its role in bone metabolism, RANK has also been implicated in the regulation of immune responses, as it is involved in the activation and differentiation of dendritic cells and T cells. Dysregulation of RANK signaling has been associated with various pathological conditions, including autoimmune diseases and cancer.

Osteoclasts are large, multinucleated cells that are primarily responsible for bone resorption, a process in which they break down and dissolve the mineralized matrix of bones. They are derived from monocyte-macrophage precursor cells of hematopoietic origin and play a crucial role in maintaining bone homeostasis by balancing bone formation and bone resorption.

Osteoclasts adhere to the bone surface and create an isolated microenvironment, called the "resorption lacuna," between their cell membrane and the bone surface. Here, they release hydrogen ions into the lacuna through a process called proton pumping, which lowers the pH and dissolves the mineral component of the bone matrix. Additionally, osteoclasts secrete proteolytic enzymes, such as cathepsin K, that degrade the organic components, like collagen, in the bone matrix.

An imbalance in osteoclast activity can lead to various bone diseases, including osteoporosis and Paget's disease, where excessive bone resorption results in weakened and fragile bones.

Tumor Necrosis Factor (TNF) Receptors are cell surface receptors that bind to tumor necrosis factor cytokines. They play crucial roles in the regulation of a variety of immune cell functions, including inflammation, immunity, and cell survival or death (apoptosis).

There are two major types of TNF receptors: TNFR1 (also known as p55 or CD120a) and TNFR2 (also known as p75 or CD120b). TNFR1 is widely expressed in most tissues, while TNFR2 has a more restricted expression pattern and is mainly found on immune cells.

TNF receptors have an intracellular domain called the death domain, which can trigger signaling pathways leading to apoptosis when activated by TNF ligands. However, they can also activate other signaling pathways that promote cell survival, differentiation, and inflammation. Dysregulation of TNF receptor signaling has been implicated in various diseases, including cancer, autoimmune disorders, and neurodegenerative conditions.

Cytoplasmic receptors and nuclear receptors are two types of intracellular receptors that play crucial roles in signal transduction pathways and regulation of gene expression. They are classified based on their location within the cell. Here are the medical definitions for each:

1. Cytoplasmic Receptors: These are a group of intracellular receptors primarily found in the cytoplasm of cells, which bind to specific hormones, growth factors, or other signaling molecules. Upon binding, these receptors undergo conformational changes that allow them to interact with various partners, such as adapter proteins and enzymes, leading to activation of downstream signaling cascades. These pathways ultimately result in modulation of cellular processes like proliferation, differentiation, and apoptosis. Examples of cytoplasmic receptors include receptor tyrosine kinases (RTKs), serine/threonine kinase receptors, and cytokine receptors.
2. Nuclear Receptors: These are a distinct class of intracellular receptors that reside primarily in the nucleus of cells. They bind to specific ligands, such as steroid hormones, thyroid hormones, vitamin D, retinoic acid, and various other lipophilic molecules. Upon binding, nuclear receptors undergo conformational changes that facilitate their interaction with co-regulatory proteins and the DNA. This interaction results in the modulation of gene transcription, ultimately leading to alterations in protein expression and cellular responses. Examples of nuclear receptors include estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), thyroid hormone receptor (TR), vitamin D receptor (VDR), and peroxisome proliferator-activated receptors (PPARs).

Both cytoplasmic and nuclear receptors are essential components of cellular communication networks, allowing cells to respond appropriately to extracellular signals and maintain homeostasis. Dysregulation of these receptors has been implicated in various diseases, including cancer, diabetes, and autoimmune disorders.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

Bone resorption is the process by which bone tissue is broken down and absorbed into the body. It is a normal part of bone remodeling, in which old or damaged bone tissue is removed and new tissue is formed. However, excessive bone resorption can lead to conditions such as osteoporosis, in which bones become weak and fragile due to a loss of density. This process is carried out by cells called osteoclasts, which break down the bone tissue and release minerals such as calcium into the bloodstream.

Osteoblasts are specialized bone-forming cells that are derived from mesenchymal stem cells. They play a crucial role in the process of bone formation and remodeling. Osteoblasts synthesize, secrete, and mineralize the organic matrix of bones, which is mainly composed of type I collagen.

These cells have receptors for various hormones and growth factors that regulate their activity, such as parathyroid hormone, vitamin D, and transforming growth factor-beta. When osteoblasts are not actively producing bone matrix, they can become trapped within the matrix they produce, where they differentiate into osteocytes, which are mature bone cells that play a role in maintaining bone structure and responding to mechanical stress.

Abnormalities in osteoblast function can lead to various bone diseases, such as osteoporosis, osteogenesis imperfecta, and Paget's disease of bone.

Bone remodeling is the normal and continuous process by which bone tissue is removed from the skeleton (a process called resorption) and new bone tissue is formed (a process called formation). This ongoing cycle allows bones to repair microdamage, adjust their size and shape in response to mechanical stress, and maintain mineral homeostasis. The cells responsible for bone resorption are osteoclasts, while the cells responsible for bone formation are osteoblasts. These two cell types work together to maintain the structural integrity and health of bones throughout an individual's life.

During bone remodeling, the process can be divided into several stages:

1. Activation: The initiation of bone remodeling is triggered by various factors such as microdamage, hormonal changes, or mechanical stress. This leads to the recruitment and activation of osteoclast precursor cells.
2. Resorption: Osteoclasts attach to the bone surface and create a sealed compartment called a resorption lacuna. They then secrete acid and enzymes that dissolve and digest the mineralized matrix, creating pits or cavities on the bone surface. This process helps remove old or damaged bone tissue and releases calcium and phosphate ions into the bloodstream.
3. Reversal: After resorption is complete, the osteoclasts undergo apoptosis (programmed cell death), and mononuclear cells called reversal cells appear on the resorbed surface. These cells prepare the bone surface for the next stage by cleaning up debris and releasing signals that attract osteoblast precursors.
4. Formation: Osteoblasts, derived from mesenchymal stem cells, migrate to the resorbed surface and begin producing a new organic matrix called osteoid. As the osteoid mineralizes, it forms a hard, calcified structure that gradually replaces the resorbed bone tissue. The osteoblasts may become embedded within this newly formed bone as they differentiate into osteocytes, which are mature bone cells responsible for maintaining bone homeostasis and responding to mechanical stress.
5. Mineralization: Over time, the newly formed bone continues to mineralize, becoming stronger and more dense. This process helps maintain the structural integrity of the skeleton and ensures adequate calcium storage.

Throughout this continuous cycle of bone remodeling, hormones, growth factors, and mechanical stress play crucial roles in regulating the balance between resorption and formation. Disruptions to this delicate equilibrium can lead to various bone diseases, such as osteoporosis, where excessive resorption results in weakened bones and increased fracture risk.

Osteolysis is a medical term that refers to the loss or resorption of bone tissue. It's a process where the body's normal bone remodeling cycle is disrupted, leading to an imbalance between bone formation and bone breakdown. This results in the progressive deterioration and destruction of bone.

Osteolysis can occur due to various reasons such as chronic inflammation, mechanical stress, or certain medical conditions like rheumatoid arthritis, Paget's disease, or bone tumors. It can also be a side effect of some medications, such as those used in cancer treatment or for managing osteoporosis.

In severe cases, osteolysis can lead to weakened bones, increased risk of fractures, and deformities. Treatment typically aims to address the underlying cause and may include medication, surgery, or lifestyle changes.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Bone density refers to the amount of bone mineral content (usually measured in grams) in a given volume of bone (usually measured in cubic centimeters). It is often used as an indicator of bone strength and fracture risk. Bone density is typically measured using dual-energy X-ray absorptiometry (DXA) scans, which provide a T-score that compares the patient's bone density to that of a young adult reference population. A T-score of -1 or above is considered normal, while a T-score between -1 and -2.5 indicates osteopenia (low bone mass), and a T-score below -2.5 indicates osteoporosis (porous bones). Regular exercise, adequate calcium and vitamin D intake, and medication (if necessary) can help maintain or improve bone density and prevent fractures.

Calcinosis is a medical condition characterized by the abnormal deposit of calcium salts in various tissues of the body, commonly under the skin or in the muscles and tendons. These calcium deposits can form hard lumps or nodules that can cause pain, inflammation, and restricted mobility. Calcinosis can occur as a complication of other medical conditions, such as autoimmune disorders, kidney disease, and hypercalcemia (high levels of calcium in the blood). In some cases, the cause of calcinosis may be unknown. Treatment for calcinosis depends on the underlying cause and may include medications to manage calcium levels, physical therapy, and surgical removal of large deposits.

Vascular calcification is a pathological process characterized by the deposition of calcium phosphate crystals in the blood vessels, particularly in the tunica intima (the innermost layer) of the arterial wall. This condition can lead to the stiffening and hardening of the arteries, which can impair their ability to expand and contract with each beat of the heart. Vascular calcification is often associated with various cardiovascular diseases such as atherosclerosis, diabetes, chronic kidney disease, and aging. It can contribute to an increased risk of cardiovascular events such as myocardial infarction, stroke, and peripheral artery disease.

Osteosclerosis is a medical term that refers to an abnormal thickening and increased density of bone tissue. This condition can occur as a result of various diseases or conditions, such as certain types of bone cancer, Paget's disease of bone, fluoride poisoning, or chronic infection of the bone. Osteosclerosis can also be seen in some benign conditions, such as osteopetrosis, which is a rare genetic disorder characterized by an excessively hard and dense skeleton.

In some cases, osteosclerosis may not cause any symptoms and may only be discovered on X-rays or other imaging studies. However, in other cases, it can lead to complications such as bone pain, fractures, or deformities. Treatment for osteosclerosis depends on the underlying cause of the condition and may include medications, surgery, or other therapies.

Osteoporosis is a systemic skeletal disease characterized by low bone mass, deterioration of bone tissue, and disruption of bone architecture, leading to increased risk of fractures, particularly in the spine, wrist, and hip. It mainly affects older people, especially postmenopausal women, due to hormonal changes that reduce bone density. Osteoporosis can also be caused by certain medications, medical conditions, or lifestyle factors such as smoking, alcohol abuse, and a lack of calcium and vitamin D in the diet. The diagnosis is often made using bone mineral density testing, and treatment may include medication to slow bone loss, promote bone formation, and prevent fractures.

Bone neoplasms are abnormal growths or tumors that develop in the bone. They can be benign (non-cancerous) or malignant (cancerous). Benign bone neoplasms do not spread to other parts of the body and are rarely a threat to life, although they may cause problems if they grow large enough to press on surrounding tissues or cause fractures. Malignant bone neoplasms, on the other hand, can invade and destroy nearby tissue and may spread (metastasize) to other parts of the body.

There are many different types of bone neoplasms, including:

1. Osteochondroma - a benign tumor that develops from cartilage and bone
2. Enchondroma - a benign tumor that forms in the cartilage that lines the inside of the bones
3. Chondrosarcoma - a malignant tumor that develops from cartilage
4. Osteosarcoma - a malignant tumor that develops from bone cells
5. Ewing sarcoma - a malignant tumor that develops in the bones or soft tissues around the bones
6. Giant cell tumor of bone - a benign or occasionally malignant tumor that develops from bone tissue
7. Fibrosarcoma - a malignant tumor that develops from fibrous tissue in the bone

The symptoms of bone neoplasms vary depending on the type, size, and location of the tumor. They may include pain, swelling, stiffness, fractures, or limited mobility. Treatment options depend on the type and stage of the tumor but may include surgery, radiation therapy, chemotherapy, or a combination of these treatments.

Acid phosphatase is a type of enzyme that is found in various tissues and organs throughout the body, including the prostate gland, red blood cells, bone, liver, spleen, and kidneys. This enzyme plays a role in several biological processes, such as bone metabolism and the breakdown of molecules like nucleotides and proteins.

Acid phosphatase is classified based on its optimum pH level for activity. Acid phosphatases have an optimal activity at acidic pH levels (below 7.0), while alkaline phosphatases have an optimal activity at basic or alkaline pH levels (above 7.0).

In clinical settings, measuring the level of acid phosphatase in the blood can be useful as a tumor marker for prostate cancer. Elevated acid phosphatase levels may indicate the presence of metastatic prostate cancer or disease progression. However, it is important to note that acid phosphatase is not specific to prostate cancer and can also be elevated in other conditions, such as bone diseases, liver disorders, and some benign conditions. Therefore, acid phosphatase should be interpreted in conjunction with other diagnostic tests and clinical findings for a more accurate diagnosis.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Osteocalcin is a protein that is produced by osteoblasts, which are the cells responsible for bone formation. It is one of the most abundant non-collagenous proteins found in bones and plays a crucial role in the regulation of bone metabolism. Osteocalcin contains a high affinity for calcium ions, making it essential for the mineralization of the bone matrix.

Once synthesized, osteocalcin is secreted into the extracellular matrix, where it binds to hydroxyapatite crystals, helping to regulate their growth and contributing to the overall strength and integrity of the bones. Osteocalcin also has been found to play a role in other physiological processes outside of bone metabolism, such as modulating insulin sensitivity, energy metabolism, and male fertility.

In summary, osteocalcin is a protein produced by osteoblasts that plays a critical role in bone formation, mineralization, and turnover, and has been implicated in various other physiological processes.

Metabolic bone diseases are a group of conditions that affect the bones and are caused by disorders in the body's metabolism. These disorders can result in changes to the bone structure, density, and strength, leading to an increased risk of fractures and other complications. Some common examples of metabolic bone diseases include:

1. Osteoporosis: a condition characterized by weak and brittle bones that are more likely to break, often as a result of age-related bone loss or hormonal changes.
2. Paget's disease of bone: a chronic disorder that causes abnormal bone growth and deformities, leading to fragile and enlarged bones.
3. Osteomalacia: a condition caused by a lack of vitamin D or problems with the body's ability to absorb it, resulting in weak and soft bones.
4. Hyperparathyroidism: a hormonal disorder that causes too much parathyroid hormone to be produced, leading to bone loss and other complications.
5. Hypoparathyroidism: a hormonal disorder that results in low levels of parathyroid hormone, causing weak and brittle bones.
6. Renal osteodystrophy: a group of bone disorders that occur as a result of chronic kidney disease, including osteomalacia, osteoporosis, and high turnover bone disease.

Treatment for metabolic bone diseases may include medications to improve bone density and strength, dietary changes, exercise, and lifestyle modifications. In some cases, surgery may be necessary to correct bone deformities or fractures.

Osteogenesis is the process of bone formation or development. It involves the differentiation and maturation of osteoblasts, which are bone-forming cells that synthesize and deposit the organic matrix of bone tissue, composed mainly of type I collagen. This organic matrix later mineralizes to form the inorganic crystalline component of bone, primarily hydroxyapatite.

There are two primary types of osteogenesis: intramembranous and endochondral. Intramembranous osteogenesis occurs directly within connective tissue, where mesenchymal stem cells differentiate into osteoblasts and form bone tissue without an intervening cartilage template. This process is responsible for the formation of flat bones like the skull and clavicles.

Endochondral osteogenesis, on the other hand, involves the initial development of a cartilaginous model or template, which is later replaced by bone tissue. This process forms long bones, such as those in the limbs, and occurs through several stages involving chondrocyte proliferation, hypertrophy, and calcification, followed by invasion of blood vessels and osteoblasts to replace the cartilage with bone tissue.

Abnormalities in osteogenesis can lead to various skeletal disorders and diseases, such as osteogenesis imperfecta (brittle bone disease), achondroplasia (a form of dwarfism), and cleidocranial dysplasia (a disorder affecting skull and collarbone development).

Osteitis deformans, also known as Paget's disease of bone, is a chronic disorder of the bone characterized by abnormal turnover and remodeling of the bone. In this condition, the bone becomes enlarged, thickened, and deformed due to excessive and disorganized bone formation and resorption.

The process begins when the bone-remodeling cycle is disrupted, leading to an imbalance between the activity of osteoclasts (cells that break down bone) and osteoblasts (cells that form new bone). In Paget's disease, osteoclasts become overactive and increase bone resorption, followed by an overzealous response from osteoblasts, which attempt to repair the damage but do so in a disorganized manner.

The affected bones can become weakened, prone to fractures, and may cause pain, deformities, or other complications such as arthritis, hearing loss, or neurological symptoms if the skull or spine is involved. The exact cause of Paget's disease remains unknown, but it is believed that genetic and environmental factors play a role in its development.

Early diagnosis and treatment can help manage the symptoms and prevent complications associated with osteitis deformans. Treatment options include medications to slow down bone turnover, pain management, and orthopedic interventions when necessary.

Macrophage Colony-Stimulating Factor (M-CSF) is a growth factor that belongs to the family of colony-stimulating factors (CSFs). It is a glycoprotein hormone that plays a crucial role in the survival, proliferation, and differentiation of mononuclear phagocytes, including macrophages. M-CSF binds to its receptor, CSF1R, which is expressed on the surface of monocytes, macrophages, and their precursors.

M-CSF stimulates the production of mature macrophages from monocyte precursors in the bone marrow and enhances the survival and function of mature macrophages in peripheral tissues. It also promotes the activation of macrophages, increasing their ability to phagocytize and destroy foreign particles, microorganisms, and tumor cells.

In addition to its role in the immune system, M-CSF has been implicated in various physiological processes, including hematopoiesis, bone remodeling, angiogenesis, and female reproduction. Dysregulation of M-CSF signaling has been associated with several pathological conditions, such as inflammatory diseases, autoimmune disorders, and cancer.

TNF-Related Apoptosis-Inducing Ligand (TRAIL) is a type II transmembrane protein and a member of the tumor necrosis factor (TNF) ligand family. It binds to death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5), leading to the activation of extrinsic apoptosis pathway in sensitive cells. This protein is involved in immune surveillance against tumor cells, as it can selectively induce apoptosis in malignant or virus-infected cells while sparing normal cells. TRAIL also plays a role in inflammation and innate immunity.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Parathyroid hormone (PTH) is a polypeptide hormone that plays a crucial role in the regulation of calcium and phosphate levels in the body. It is produced and secreted by the parathyroid glands, which are four small endocrine glands located on the back surface of the thyroid gland.

The primary function of PTH is to maintain normal calcium levels in the blood by increasing calcium absorption from the gut, mobilizing calcium from bones, and decreasing calcium excretion by the kidneys. PTH also increases phosphate excretion by the kidneys, which helps to lower serum phosphate levels.

In addition to its role in calcium and phosphate homeostasis, PTH has been shown to have anabolic effects on bone tissue, stimulating bone formation and preventing bone loss. However, chronic elevations in PTH levels can lead to excessive bone resorption and osteoporosis.

Overall, Parathyroid Hormone is a critical hormone that helps maintain mineral homeostasis and supports healthy bone metabolism.

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Bone diseases is a broad term that refers to various medical conditions that affect the bones. These conditions can be categorized into several groups, including:

1. Developmental and congenital bone diseases: These are conditions that affect bone growth and development before or at birth. Examples include osteogenesis imperfecta (brittle bone disease), achondroplasia (dwarfism), and cleidocranial dysostosis.
2. Metabolic bone diseases: These are conditions that affect the body's ability to maintain healthy bones. They are often caused by hormonal imbalances, vitamin deficiencies, or problems with mineral metabolism. Examples include osteoporosis, osteomalacia, and Paget's disease of bone.
3. Inflammatory bone diseases: These are conditions that cause inflammation in the bones. They can be caused by infections, autoimmune disorders, or other medical conditions. Examples include osteomyelitis, rheumatoid arthritis, and ankylosing spondylitis.
4. Degenerative bone diseases: These are conditions that cause the bones to break down over time. They can be caused by aging, injury, or disease. Examples include osteoarthritis, avascular necrosis, and diffuse idiopathic skeletal hyperostosis (DISH).
5. Tumors and cancers of the bone: These are conditions that involve abnormal growths in the bones. They can be benign or malignant. Examples include osteosarcoma, chondrosarcoma, and Ewing sarcoma.
6. Fractures and injuries: While not strictly a "disease," fractures and injuries are common conditions that affect the bones. They can result from trauma, overuse, or weakened bones. Examples include stress fractures, compound fractures, and dislocations.

Overall, bone diseases can cause a wide range of symptoms, including pain, stiffness, deformity, and decreased mobility. Treatment for these conditions varies depending on the specific diagnosis but may include medication, surgery, physical therapy, or lifestyle changes.

Alveolar bone loss refers to the breakdown and resorption of the alveolar process of the jawbone, which is the part of the jaw that contains the sockets of the teeth. This type of bone loss is often caused by periodontal disease, a chronic inflammation of the gums and surrounding tissues that can lead to the destruction of the structures that support the teeth.

In advanced stages of periodontal disease, the alveolar bone can become severely damaged or destroyed, leading to tooth loss. Alveolar bone loss can also occur as a result of other conditions, such as osteoporosis, trauma, or tumors. Dental X-rays and other imaging techniques are often used to diagnose and monitor alveolar bone loss. Treatment may include deep cleaning of the teeth and gums, medications, surgery, or tooth extraction in severe cases.

Vascular diseases are medical conditions that affect the circulatory system, specifically the blood vessels (arteries, veins, and capillaries). These diseases can include conditions such as:

1. Atherosclerosis: The buildup of fats, cholesterol, and other substances in and on the walls of the arteries, which can restrict blood flow.
2. Peripheral Artery Disease (PAD): A condition caused by atherosclerosis where there is narrowing or blockage of the peripheral arteries, most commonly in the legs. This can lead to pain, numbness, and cramping.
3. Coronary Artery Disease (CAD): Atherosclerosis of the coronary arteries that supply blood to the heart muscle. This can lead to chest pain, shortness of breath, or a heart attack.
4. Carotid Artery Disease: Atherosclerosis of the carotid arteries in the neck that supply blood to the brain. This can increase the risk of stroke.
5. Cerebrovascular Disease: Conditions that affect blood flow to the brain, including stroke and transient ischemic attack (TIA or "mini-stroke").
6. Aneurysm: A weakened area in the wall of a blood vessel that causes it to bulge outward and potentially rupture.
7. Deep Vein Thrombosis (DVT): A blood clot that forms in the deep veins, usually in the legs, which can cause pain, swelling, and increased risk of pulmonary embolism if the clot travels to the lungs.
8. Varicose Veins: Swollen, twisted, and often painful veins that have filled with an abnormal collection of blood, usually appearing in the legs.
9. Vasculitis: Inflammation of the blood vessels, which can cause damage and narrowing, leading to reduced blood flow.
10. Raynaud's Phenomenon: A condition where the small arteries that supply blood to the skin become narrowed, causing decreased blood flow, typically in response to cold temperatures or stress.

These are just a few examples of vascular conditions that fall under the umbrella term "cerebrovascular disease." Early diagnosis and treatment can significantly improve outcomes for many of these conditions.

Cathepsin K is a proteolytic enzyme, which belongs to the family of papain-like cysteine proteases. It is primarily produced by osteoclasts, which are specialized cells responsible for bone resorption. Cathepsin K plays a crucial role in the degradation and remodeling of the extracellular matrix, particularly in bone tissue.

This enzyme is capable of breaking down various proteins, including collagen, elastin, and proteoglycans, which are major components of the bone matrix. By doing so, cathepsin K helps osteoclasts to dissolve and remove mineralized and non-mineralized bone matrix during the process of bone resorption.

Apart from its function in bone metabolism, cathepsin K has also been implicated in several pathological conditions, such as osteoporosis, rheumatoid arthritis, and tumor metastasis to bones. Inhibitors of cathepsin K are being investigated as potential therapeutic agents for the treatment of these disorders.

Osteopetrosis, also known as Albers-Schönberg disease or marble bone disease, is a group of rare genetic disorders characterized by increased bone density due to impaired bone resorption by osteoclasts. This results in brittle bones that are more susceptible to fractures and can also lead to various complications such as anemia, hearing loss, and vision problems. There are several types of osteopetrosis, which vary in severity and age of onset.

The medical definition of osteopetrosis is:

A genetic disorder characterized by defective bone resorption due to impaired osteoclast function, resulting in increased bone density, susceptibility to fractures, and potential complications such as anemia, hearing loss, and vision problems.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Alpha-2-HS-Glycoprotein (AHSG), also known as fetuin-A, is a plasma protein synthesized primarily in the liver. It belongs to the group of proteins called acute phase reactants, which means its levels can increase or decrease in response to inflammation or injury. AHSG plays a role in several physiological processes, including inhibition of tissue calcification, regulation of insulin sensitivity, and modulation of immune responses. Structurally, it is a glycoprotein with two homologous domains, each containing three disulfide bridges. The function and regulation of AHSG are subjects of ongoing research due to its potential implications in various diseases, such as diabetes, cardiovascular disease, and chronic kidney disease.

Shen P, Gong Y, Wang T, Chen Y, Jia J, Ni S, Zhou B, Song Y, Zhang L, Zhou R (2012). "Expression of osteoprotegerin in placenta ... Osteoprotegerin at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Overview of all the structural ... Standal T, Seidel C, Hjertner Ø, Plesner T, Sanderson RD, Waage A, Borset M, Sundan A (October 2002). "Osteoprotegerin is bound ... Osteoprotegerin (OPG), also known as osteoclastogenesis inhibitory factor (OCIF) or tumour necrosis factor receptor superfamily ...
... Am Heart J. 2010 Aug;160(2):286-93. doi: ... Osteoprotegerin was analyzed by enzyme-linked immunosorbent assay. The association between OPG and outcome was assessed by Cox ... Background: Circulating levels of osteoprotegerin (OPG), a member of the tumor necrosis factor receptor superfamily, is ...
Osteoprotegerin and outcomes in acute coronary syndromes-when the culprit is not the plaque ... Osteoprotegerin and outcomes in acute coronary syndromes-when the culprit is not the plaque ...
Serum interleukin-6 (IL-6), IL-10, and osteoprotegerin were measured before, immediately post and 24 h after workout of the day ... IL-10 and osteoprotegerin concentration over time. IL-6 displayed an increase immediately after training session 1 [197 ± 109 ... Serum interleukin-6 (IL-6), IL-10 and osteoprotegerin were measured before, immediately post and 24 h after training 1, ... Osteoprotegerin displayed a decrease 48 h following WOD 2 (~25%; p = 0.018) as compared with pre intervention. In conclusion, ...
Osteoprotegerin - Immunoassays. Product filter Osteoprotegerin molecule 1,25OH2 Vitamin D 17α-Hydroxyprogesterone 25-OH-Vitamin ... Osteoprotegerin p53 PAI-1 Parathyroid Hormone PCSK9 PECAM-1 Pentraxin 3 Pepsinogen Phosphorylated Neurofilament H ...
Circulating osteoprotegerin (OPG), a member of the receptor activator of nuclear factor kappa-B (RANK) axis, may influence ... Table 4 Circulating concentrations of osteoprotegerin and breast cancer risk by age at diagnosis: EPIC cohort breast cancer ... Table 2 Circulating concentrations of osteoprotegerin and breast cancer risk by hormone-receptor subtype: EPIC cohort breast ... Table 3 Circulating concentrations of osteoprotegerin and breast cancer risk by menopausal status at blood collection: EPIC ...
These findings are associated with a reduced gene expression of osteoprotegerin, sclerostin, calcitonin receptor (CTR), insulin ... and reducing bone resorption by mechanisms related to osteoprotegerin, RANKL and PTH receptor. ... Osteoprotegerin and sclerostin expressions. A. Bone gene and protein expression of osteoprotegerin (OPG) and B. Bone gene and ... Osteoprotegerin (OPG) is secreted by osteoblasts and inhibits bone resorption reducing both osteoclastic differentiation and ...
Osteoprotegerin is a key molecule in this biosignalling pathway as it inhibits osteoclastogenesis. and osteoclast activation to ... known osteoprotegerin peptide analogue, YCEIEFCYLIR (OP3-4), and its tagging with a gadolinium. chelate, a standard contrast ... T1 - Gadolinium Tagged Osteoprotegerin-Mimicking Peptide. T2 - A Novel Magnetic Resonance Imaging Biospecific Contrast Agent ... Gadolinium Tagged Osteoprotegerin-Mimicking Peptide: A Novel Magnetic Resonance Imaging Biospecific Contrast Agent for the ...
l For the quantitative determination of Rat OPG concentrations. l Detection of species: Rat l Detection medium: serum, plasma, tissue homogenates, cell culture supe
Hayer, S., Redlich, K., Zwerina, J. et al. Osteoprotegerin protects from generalized bone loss in TNF-transgenic mice. ... Osteoprotegerin protects from generalized bone loss in TNF-transgenic mice. *S Hayer1, ... Osteoprotegerin (OPG) completely blocked TNF-mediated bone loss by increasing BMD (+89%) and bone volume (+647%). Most ...
Return to Article Details Relation of osteoprotegerin level and numerous of circulating progenitor mononuclears in patients ...
Human Osteoprotegerin ELISA , Packing: 96 tests , Biomedica products available at Bio-Connect Diagnostics ... Zeng Set al., "Osteoprotegerin is an independent risk factor predicting death in stable renal transplant recipients." Clin ... Target information: Osteoprotegerin (OPG) or osteoclast inhibitory factor (OCIF) is a glycoprotein of the TNF receptor ... Gómez-Vaquero C et al., "Relation of the Serum Levels of DKK-1 and Osteoprotegerin with Bone Mass in Tightly Controlled ...
... DSpace/ ... BACKGROUND: Circulating osteoprotegerin (OPG), a member of the receptor activator of nuclear factor kappa-B (RANK) axis, may ... Keywords: Breast cancer, Osteoprotegerin, RANK axis, Hormone receptor, Estrogen receptor, Progesterone receptor, Journal ...
Order Pigeon Osteoprotegerin Ligand OPGL ELISA Kit 01016710627 at Gentaur Osteoprotegerin Ligand (OPGL) ... Pigeon Osteoprotegerin Ligand (OPGL) ELISA Kit. All know and important information about this specific supply.. Do not hesitate ...
... CORALLINI, Federica. ... Although several studies have shown that the serum levels of osteoprotegerin (OPG) are significantly elevated in patients ... Although several studies have shown that the serum levels of osteoprotegerin (OPG) are significantly elevated in patients ...
The amount of osteoprotegerin produced from rat bone marrow cells and from MC3T3-E1 cells was enhanced in platelet-rich plasma- ... The amount of osteoprotegerin produced from rat bone marrow cells and from MC3T3-E1 cells was enhanced in platelet-rich plasma- ... The amount of osteoprotegerin produced from rat bone marrow cells and from MC3T3-E1 cells was enhanced in platelet-rich plasma- ... The amount of osteoprotegerin produced from rat bone marrow cells and from MC3T3-E1 cells was enhanced in platelet-rich plasma- ...
A pharmacodynamic investigation into the efficacy of osteoprotegerin during aseptic inflammation. Author: Curl, L.. Barker, C. ... Background: Osteoprotegerin (OPG), as an osteoclast antagonist, limits mineralised tissue resorption under physiological ...
Osteoprotegerin Expression in Liver is Induced by IL13 through TGFβ Adhyatmika, A., Putri, K. S. S., Gore, E., Mangnus, K. A., ... Osteoprotegerin Is more than a Possible Serum Marker in Liver Fibrosis: A Study into Its Function in Human and Murine Liver ...
Calcium; FGF-23; Kidney transplantation; Osteoprotegerin; Vascular calcification; Adult; Aorta, Abdominal; Aortic Diseases; ... osteoprotegerin (OPG), fetuin A, and clinical and biochemical parameters. Patients were followed up for 2 years after KTx. ... osteoprotegerin (OPG), fetuin A, and clinical and biochemical parameters. Patients were followed up for 2 years after KTx. ... Osteoprotegerin; Postoperative Complications; Predictive Value of Tests; Prevalence; Risk Factors; Vascular Calcification ...
Osteoprotegerin and coronary artery disease in type 2 diabetic patients with microalbuminuria. / Reinhard, Henrik; Nybo, Mads; ... Plasma osteoprotegerin (P-OPG) is an independent predictor of cardiovascular disease in diabetic and other populations. OPG is ... Osteoprotegerin and coronary artery disease in type 2 diabetic patients with microalbuminuria. I: Cardiovascular Diabetology. ... Osteoprotegerin and coronary artery disease in type 2 diabetic patients with microalbuminuria. Cardiovascular Diabetology. 2011 ...
Corrigendum: Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. ... Corrigendum: Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. ...
osteoprotegerin ligand. receptor activator of nuclear factor kappa B ligand. tumor necrosis factor (ligand) superfamily, member ... This gene encodes a member of the tumor necrosis factor (TNF) cytokine family which is a ligand for osteoprotegerin and ... Title: RANKL/RANK is required for cytokine-induced beta cell death; osteoprotegerin, a RANKL inhibitor, reverses rodent type 1 ... RANKL/RANK is required for cytokine-induced beta cell death; osteoprotegerin, a RANKL inhibitor, reverses rodent type 1 ...
In this study, it was aimed to assess effects of subclinical hyperthyroidism (SH) on bone metabolism using osteoprotegerin (OPG ... Evaluation of Bone Turnover Markers Such as Osteoprotegerin, Sclerostin and Dickkopf-1 in Subclinical Hyperthyroidism ... Keywords: Subclinical hyperthyroidism, Bone metabolism, Osteoprotegerin, Sclerostin, DKK-1, FRACTURE RISK, WOMEN, MASS ...
... and osteoprotegerin (OPG) is a decoy ligand that competitively inhibits RANKL. A higher RANKL/OPG ratio is associated with ... Hart, Katherine Ann D.D.S. , "RANKL and Osteoprotegerin Levels in Response to Orthodontic Forces" (2012). Theses and ... and osteoprotegerin (OPG) is a decoy ligand that competitively inhibits RANKL. A higher RANKL/OPG ratio is associated with ...
Evaluating the clinical significance of Osteoprotegerin Serum Levels as a Predictive Marker in Rheumatoid Arthritis ...
Osteoprotegerin Of those, urinary NGAL appears most promising. However, multiple biomarker panels may have better predictive ...
"Serum Osteoprotegerin in Patients with Calcified Aortic Valve Stenosis in Relation to Heart Failure." Acta clinica Croatica, ... "Serum Osteoprotegerin in Patients with Calcified Aortic Valve Stenosis in Relation to Heart Failure." Acta clinica Croatica 56 ... 2017) Serum Osteoprotegerin in Patients with Calcified Aortic Valve Stenosis in Relation to Heart Failure, Acta clinica ... The aim of the study was to assess the role of serum osteoprotegerin (OPG) as a biomarker in patients with aortic valve ...
Rat OPG (Osteoprotegerin) ELISA Kit , G-EC-05996 MSRP: Was: Now: $158.40 - $2,180.16 ...
Elevated osteoprotegerin is associated with inflammation, malnutrition and new onset cardiovascular events in peritoneal ... Dive into the research topics of Elevated osteoprotegerin is associated with inflammation, malnutrition and new onset ...

No FAQ available that match "osteoprotegerin"

No images available that match "osteoprotegerin"