A group of alkylating agents derived from mustard gas, with the sulfur replaced by nitrogen. They were formerly used as toxicants and vesicants, but now function as antineoplastic agents. These compounds are also powerful mutagens, teratogens, immunosuppressants, and carcinogens.
Strong alkylating and immunosuppressive agents whose biological activity is based on the presence of bis(2-chloroethyl)- groups. Although otherwise structurally diverse, the compounds have in common the capacity to contribute alkyl groups to DNA. They are generally highly toxic but include among their number many widely used and effective antineoplastic agents.
A biologic alkylating agent that exerts its cytotoxic effects by forming DNA ADDUCTS and DNA interstrand crosslinks, thereby inhibiting rapidly proliferating cells. The hydrochloride is an antineoplastic agent used to treat HODGKIN DISEASE and LYMPHOMA.
Severe irritant and vesicant of skin, eyes, and lungs. It may cause blindness and lethal lung edema and was formerly used as a war gas. The substance has been proposed as a cytostatic and for treatment of psoriasis. It has been listed as a known carcinogen in the Fourth Annual Report on Carcinogens (NTP-85-002, 1985) (Merck, 11th ed).
Any of several BRASSICA species that are commonly called mustard. Brassica alba is white mustard, B. juncea is brown or Chinese mustard, and B. nigra is black, brown, or red mustard. The plant is grown both for mustard seed from which oil is extracted or used as SPICES, and for its greens used as VEGETABLES or ANIMAL FEED. There is no relationship to MUSTARD COMPOUNDS.
Nitrogen mustard analog of quinacrine used primarily as a stain in the studies of chromosomes and chromatin. Fluoresces by reaction with nucleic acids in chromosomes.
Nitrogen mustard derivative of URACIL. It is a alkylating antineoplastic agent that is used in lymphatic malignancies, and causes mainly gastrointestinal and bone marrow damage.
Chemicals that are used to cause the disturbance, disease, or death of humans during WARFARE.
A nitrogen mustard alkylating agent used as antineoplastic for chronic lymphocytic leukemia, Hodgkin's disease, and others. Although it is less toxic than most other nitrogen mustards, it has been listed as a known carcinogen in the Fourth Annual Report on Carcinogens (NTP 85-002, 1985). (Merck Index, 11th ed)
Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases.
A group of nitrogen mustard compounds which are substituted with a phosphoramide group or its derivatives. They are usually cytotoxic and used as antineoplastic agents.
The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group.
Collections of differentiated CELLS, such as EPITHELIUM; CONNECTIVE TISSUE; MUSCLES; and NERVE TISSUE. Tissues are cooperatively arranged to form organs with specialized functions such as RESPIRATION; DIGESTION; REPRODUCTION; MOVEMENT; and others.
An alkylating nitrogen mustard that is used as an antineoplastic in the form of the levo isomer - MELPHALAN, the racemic mixture - MERPHALAN, and the dextro isomer - MEDPHALAN; toxic to bone marrow, but little vesicant action; potential carcinogen.
A class of drugs that differs from other alkylating agents used clinically in that they are monofunctional and thus unable to cross-link cellular macromolecules. Among their common properties are a requirement for metabolic activation to intermediates with antitumor efficacy and the presence in their chemical structures of N-methyl groups, that after metabolism, can covalently modify cellular DNA. The precise mechanisms by which each of these drugs acts to kill tumor cells are not completely understood. (From AMA, Drug Evaluations Annual, 1994, p2026)
'Ethylamines' are organic compounds containing an ethyl group (two carbon atoms) bonded to an amino group (-NH2), which can vary in their complexity and properties, playing a role in various biological processes or utilized in the synthesis of numerous pharmaceuticals and chemicals.
Drugs that act locally on cutaneous or mucosal surfaces to produce inflammation; those that cause redness due to hyperemia are rubefacients; those that raise blisters are vesicants and those that penetrate sebaceous glands and cause abscesses are pustulants; tear gases and mustard gases are also irritants.
Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other.
The process in certain BACTERIA; FUNGI; and CYANOBACTERIA converting free atmospheric NITROGEN to biologically usable forms of nitrogen, such as AMMONIA; NITRATES; and amino compounds.
4-Methyl derivative of LOMUSTINE; (CCNU). An antineoplastic agent which functions as an alkylating agent.
Alkylating anti-neoplastic agent.
A cell-cycle phase nonspecific alkylating antineoplastic agent. It is used in the treatment of brain tumors and various other malignant neoplasms. (From Martindale, The Extra Pharmacopoeia, 30th ed, p462) This substance may reasonably be anticipated to be a carcinogen according to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985). (From Merck Index, 11th ed)
Nitrosourea compounds are a class of alkylating agents used in cancer chemotherapy, which contain a nitro group (NO2) and a urea functional group (R-NH-CO-NH2), known for their ability to cross the blood-brain barrier and damage DNA, thereby inhibiting tumor growth.
Methionine Sulfoximine is a toxic compound that functions as an inhibitor of methionine metabolism, being formed through the oxidation of methionine by the enzyme methionine sulfoxide reductase.
A highly fluorescent anti-infective dye used clinically as a topical antiseptic and experimentally as a mutagen, due to its interaction with DNA. It is also used as an intracellular pH indicator.
Organic esters of sulfuric acid.
An analog of benzilylcholine mustard. It is an alkylating nitrogen mustard analog that binds specifically and irreversibly to cholinergic muscarinic receptors and is used as an affinity label to isolate and study the receptors.
Antineoplastic agent especially effective against malignant brain tumors. The resistance which brain tumor cells acquire to the initial effectiveness of this drug can be partially overcome by the simultaneous use of membrane-modifying agents such as reserpine, calcium antagonists such as nicardipine or verapamil, or the calmodulin inhibitor, trifluoperazine. The drug has also been used in combination with other antineoplastic agents or with radiotherapy for the treatment of various neoplasms.
A genus of poisonous American herbs, family BERBERIDACEAE. The roots yield PODOPHYLLOTOXIN and other pharmacologically important agents. The plant was formerly used as a cholagogue and cathartic. It is different from the European mandrake, MANDRAGORA.
Inorganic compounds that contain nitrogen as an integral part of the molecule.
'Chemical burns' is a medical term that refers to injuries resulting from skin or eye contact with harmful substances, such as acids, alkalis, or irritants, which can cause damage ranging from mild irritation to severe necrosis and scarring.
An anti-infective agent most commonly used in the treatment of urinary tract infections. Its anti-infective action derives from the slow release of formaldehyde by hydrolysis at acidic pH. (From Martindale, The Extra Pharmacopoeia, 30th ed, p173)
Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration.
A muscarinic antagonist used to study binding characteristics of muscarinic cholinergic receptors.
Stable nitrogen atoms that have the same atomic number as the element nitrogen, but differ in atomic weight. N-15 is a stable nitrogen isotope.
Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.
The production of adhesions between the parietal and visceral pleura. The procedure is used in the treatment of bronchopleural fistulas, malignant pleural effusions, and pneumothorax and often involves instillation of chemicals or other agents into the pleural space causing, in effect, a pleuritis that seals the air leak. (From Fishman, Pulmonary Diseases, 2d ed, p2233 & Dorland, 27th ed)
An alkylating agent of value against both hematologic malignancies and solid tumors.
A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
The circulation of nitrogen in nature, consisting of a cycle of biochemical reactions in which atmospheric nitrogen is compounded, dissolved in rain, and deposited in the soil, where it is assimilated and metabolized by bacteria and plants, eventually returning to the atmosphere by bacterial decomposition of organic matter.
The urea concentration of the blood stated in terms of nitrogen content. Serum (plasma) urea nitrogen is approximately 12% higher than blood urea nitrogen concentration because of the greater protein content of red blood cells. Increases in blood or serum urea nitrogen are referred to as azotemia and may have prerenal, renal, or postrenal causes. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
Nitrogen oxide (NO2). A highly poisonous gas. Exposure produces inflammation of lungs that may only cause slight pain or pass unnoticed, but resulting edema several days later may cause death. (From Merck, 11th ed) It is a major atmospheric pollutant that is able to absorb UV light that does not reach the earth's surface.
An antineoplastic agent used primarily in combination with mechlorethamine, vincristine, and prednisone (the MOPP protocol) in the treatment of Hodgkin's disease.
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
Guanine is a purine nucleobase, one of the four nucleobases in the nucleic acid of DNA and RNA, involved in forming hydrogen bonds between complementary base pairs in double-stranded DNA molecules.
The reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule which contained damaged regions. The major repair mechanisms are excision repair, in which defective regions in one strand are excised and resynthesized using the complementary base pairing information in the intact strand; photoreactivation repair, in which the lethal and mutagenic effects of ultraviolet light are eliminated; and post-replication repair, in which the primary lesions are not repaired, but the gaps in one daughter duplex are filled in by incorporation of portions of the other (undamaged) daughter duplex. Excision repair and post-replication repair are sometimes referred to as "dark repair" because they do not require light.
A skin irritant that may cause dermatitis of both primary and allergic types. Contact sensitization with DNCB has been used as a measure of cellular immunity. DNCB is also used as a reagent for the detection and determination of pyridine compounds.
A synthetic amino acid that depletes glutathione by irreversibly inhibiting gamma-glutamylcysteine synthetase. Inhibition of this enzyme is a critical step in glutathione biosynthesis. It has been shown to inhibit the proliferative response in human T-lymphocytes and inhibit macrophage activation. (J Biol Chem 1995;270(33):1945-7)
An experimental lymphocytic leukemia originally induced in DBA/2 mice by painting with methylcholanthrene.
Substances that inhibit or prevent the proliferation of NEOPLASMS.

Alpha-bromoacryloyl derivative of distamycin A (PNU 151807): a new non-covalent minor groove DNA binder with antineoplastic activity. (1/273)

PNU 151807 is a new synthetic alpha-bromoacryloyl derivative of distamycin A. In the present study we investigated the DNA interaction and the mechanism of action of this compound in parallel with the distamycin alkylating derivative, tallimustine. PNU 151807 possesses a good cytotoxic activity in in vitro growing cancer cells, even superior to that found for tallimustine. By footprinting experiments we found that PNU 151807 and tallimustine interact non-covalently with the same AT-rich DNA regions. However, differently from tallimustine, PNU 151807 failed to produce any DNA alkylation as assessed by Taq stop assay and N3 or N7-adenine alkylation assay in different DNA sequences. PNU 151807, like tallimustine, is able to induce an activation of p53, and consequently of p21 and BAX in a human ovarian cancer cell line (A2780) expressing wild-type p53. However, disruption of p53 function by HPV16-E6 does not significantly modify the cytotoxic activity of the compound. Flow cytometric analysis of cells treated with equitoxic concentrations of PNU 151807 and tallimustine showed a similar induction of accumulation of cells in the G2 phase of the cell cycle but with a different time course. When tested against recombinant proteins, only the compound PNU 151807 (and not tallimustine or distamycin A) is able to abolish the in vitro kinase activity of CDK2-cyclin A, CDK2-cyclin E and cdc2-cyclin B complexes. The results obtained showed that PNU 151807 seems to have a mechanism of action completely different from that of its parent compound tallimustine, possibly involving the inhibition of cyclin-dependent kinases activity, and clearly indicate PNU 151807 as a new non-covalent minor groove binder with cytotoxic activity against cancer cells.  (+info)

Enhancement of antibody-directed enzyme prodrug therapy in colorectal xenografts by an antivascular agent. (2/273)

The irregular nature of solid tumor vasculature produces a heterogeneous distribution of antibody-targeted therapies within the tumor mass, which frequently results in reduced therapeutic efficacy. We have, therefore, combined two complementary therapies: Antibody-directed Enzyme Prodrug Therapy (ADEPT), which targets tumor cells, and an agent that selectively destroys tumor vasculature. A single i.p. dose (27.5 mg/kg) of the drug 5,6-dimethylxanthenone-4-acetic acid (DMXAA), given to nude mice bearing the LS174T colorectal xenograft, destroyed all but a peripheral rim of tumor cells, without enhancing survival. The ADEPT system, in which a pretargeted enzyme activates a prodrug, consisted of the F(ab')2 fragment of anti-carcinoembryonic antigen antibody A5B7 conjugated to the bacterial enzyme carboxypeptidase G2 and the prodrug 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-L-glutamic acid, which was given i.p. in three doses of 500 mg/kg at 72, 84, and 96 h post-conjugate administration (25 units of carboxypeptidase G2). The antibody-enzyme conjugate could be selectively retained at approximately twice the control levels by administration of the antivascular agent at the time of optimal conjugate localization within the tumor (20 h post-conjugate administration), as demonstrated by gamma counting, phosphor plate image analysis, and active enzyme measurement. This resulted in significantly enhanced tumor growth inhibition in groups of six mice, compared to conventional ADEPT therapy, with no concomitant increase in systemic toxicity. In a separate experiment, aimed at trapping the prodrug within the tumor, a 16-fold increase over control values was produced (means, 44.8 versus 2.8 microg/g tumor) when DMXAA was given 4 h prior to 4-[(2-chloroethyl)(2-mesyloxyethyl)amino]benzoyl-L-glutamic acid. The therapeutic window was small, with no significant enhancement of prodrug retention when DMXAA was given at either earlier or later time points. This correlated with the time of vascular shut-down induced by the antivascular agent. We are currently investigating whether it is more advantageous to trap increased levels of conjugate or prodrug within the tumor for maximal enhancement of conventional ADEPT. These studies demonstrate that combined use of antibody-directed and antivascular therapies can significantly benefit the therapeutic outcome of either strategy alone.  (+info)

Molecular dynamics simulation of metallothionein-drug complexes. (3/273)

The intermolecular interactions of metallothionein with nitrogen mustard drugs were studied by molecular dynamics simulations. Previous laboratory experiments have defined selective alkylation of two cysteine residues, and selective binding was proposed to precede alkylation. The present study provides information about accessibility to cysteines based on evaluating the intermolecular energies and distances in the first few ps of dynamics simulations. A series of dynamics simulations was performed with three drug molecules positioned at the eight most solvent accessible cysteine residues of the dimeric form of the protein. Sites proximal to the sulfhydryl groups of Cys-33 and Cys-48 were found to be the most favorable for complexing the aziridinium forms of chlorambucil, melphalan, and mechlorethamine. The sites for preferential binding are in qualitative agreement with the sites of selective alkylation defined experimentally.  (+info)

Cytotoxicity and mutagenicity of frameshift-inducing agent ICR191 in mismatch repair-deficient colon cancer cells. (4/273)

BACKGROUND: Deficiency of DNA mismatch repair is a common feature of cancers exhibiting instability of microsatellite DNA sequences. Cancers with microsatellite instability are recognizable by their high rate of spontaneous frameshift mutations within microsatellite sequences, their resistance to killing by cytotoxic agents, and their localization to specific tissues, e.g., the proximal colon and stomach. We hypothesized that the mismatch repair deficiency of these cancers would make them vulnerable to environmental or chemical frameshift-inducing agents. This study was undertaken to test whether exogenous frameshift-inducing agents selectively induce mutations in mismatch repair-deficient cells of mutagen-exposed tissues like the colon and whether cytotoxic doses of these agents would preferentially kill those cells. METHODS: Cytotoxicity of the acridine mutagen 6-chloro-9-[3-(2-chloroethylamino)propylamino]-2-methoxy-acridine (ICR191), a DNA frameshift inducer, was determined in the mismatch repair-deficient human colon carcinoma cell line HCT116 versus the repair-reconstituted derivative HCT116+C3. Vulnerability to the mutagenic effects of ICR191 was determined by transfection of HCT116 or HCT116+C3 cells with a frameshift reporter vector, followed by treatment of the cells with ICR191. Alternatively, the reporter vector was reacted ex vivo with ICR191, and the derivatized vector was then transfected into HCT116 or HCT116+C3 cells. RESULTS: ICR191 proved to be fivefold to 10-fold more potent in inducing mutations in mismatch repair-deficient HCT116 cells than in mismatch repair-proficient HCT116+C3 cells. Moreover, at cytotoxic doses of ICR191, repair-deficient HCT116 cells proved to be fivefold more vulnerable to killing than did HCT116+C3 cells. CONCLUSIONS: Frameshift-inducing mutagens can selectively induce mutations in mismatch repair-deficient cells versus mismatch repair-proficient cells. Environmental exposures may, therefore, favor development of cancers with microsatellite instability in tissues like the gut. Frameshift-inducing agents can, however, also preferentially kill mismatch repair-deficient cancer cells and, thus, may be promising as model therapeutic compounds.  (+info)

Antibody-directed enzyme prodrug therapy: efficacy and mechanism of action in colorectal carcinoma. (5/273)

In antibody-directed enzyme prodrug therapy, an enzyme conjugated to an antitumor antibody is given i.v. and localizes in the tumor. A prodrug is then given, which is converted to a cytotoxic drug selectively in the tumor. Ten patients with colorectal carcinoma expressing carcinoembryonic antigen received antibody-directed enzyme prodrug therapy with A5B7 F(ab')2 antibody to carcinoembryonic antigen conjugated to carboxypeptidase G2 (CPG2). A galactosylated antibody directed against the active site of CPG2 (SB43-gal) was given to clear and inactivate circulating enzyme. A benzoic acid mustard-glutamate prodrug was given when plasma enzyme levels had fallen to a predetermined safe level, and this was converted by CPG2 in the tumor into a cytotoxic form. Enzyme levels derived from quantitative gamma camera imaging and from direct measurements in plasma and tumor biopsies showed that the median tumor:plasma ratio of enzyme exceeded 10000:1 at the time of prodrug administration. Enzyme concentrations in the tumor (median, 0.47 units g(-1)) were sufficient to generate cytotoxic levels of active drug. The concentration of prodrug needed for optimal conversion (Km) of 3 microM was achieved. Prodrug conversion to drug was shown by finding detectable levels of drug in plasma. There was evidence of tumor response; one patient had a partial response, and six patients had stable disease for a median of 4 months after previous tumor progression (one of these six had a tumor marker response). Manageable neutropenia and thrombocytopenia occurred. Conditions for effective antitumor therapy were met, and there was evidence of tumor response in colorectal cancer.  (+info)

Enhancing hemopoietic drug resistance: a rationale for reconsidering the clinical use of mitozolomide. (6/273)

Retroviral gene transfer was used to achieve expression in mouse bone marrow of a mutant form of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (hATPA/GA), which exhibits resistance to inactivation by O6-benzylguanine (O6-beG). After reconstitution of mice with transduced bone marrow, approximately 50% of the bipotent granulocyte-macrophage colony-forming cell (GM-CFC) and multipotent spleen colony-forming unit (CFU-S) hemopoietic populations showed expression of the transgene; this expression was associated with resistance to either mitozolomide or to a combination of O6-beG and mitozolomide, relative to mock-transduced controls. Thus, at a dose of mitozolomide in vivo that allowed only 70% and 62% survival of mock-transduced GM-CFC and CFU-S, respectively, the hATPA/GA CFC were totally resistant to the same dose of mitozolomide (P < .05 and .001, respectively). In the presence of O6-beG, the toxicity of mitozolomide was greatly potentiated. Only 24% and 18%, respectively, of mock-transduced GM-CFC and CFU-S survived combination treatment, whereas 45% (P < .05) and 37% (P < .01) of GM-CFC and CFU-S, respectively, from hATPA/GA mice survived the same combination of doses. Furthermore, as a result of transgene expression, the number of micronucleated polychromatic erythrocytes induced by mitozolomide was significantly reduced (P < .05) by 40% relative to mock-transduced controls, indicating the potential of this approach to reduce the frequency of mutation associated with chemotherapy exposure. The protection against the toxic and clastogenic effects of mitozolomide in both primitive and more mature hemopoietic cells suggests that the severe myelosuppression that halted further clinical investigation of this drug could be substantially ameliorated by the exogenous expression of O6-alkylguanine-DNA alkyltransferase. Therefore, these data raise the prospect for the reinvestigation of mitozolomide and other proscribed drugs in the context of genetically protected hemopoiesis.  (+info)

Structural analysis of the complex of a distamycin analogue with the Dickerson dodecamer 13C labeled at 5'-carbons using NMR spectroscopy. (7/273)

Structural analysis of the complex of a distamycin analogue (Tallimustine) with the Dickerson dodecamer d(C*G*C*G*A*A*T*T*C*G*C*G) [N*:[5'-(13)C]nucleotide] was performed by NMR spectroscopy and the results will be described in detail.  (+info)

Evaluation and characterization of micronuclei induced by the antitumour agent ASE [3beta-hydroxy-13alpha-amino-13, 17-seco-5alpha-androstan-17-oic-13, 17-lactam-p-bis(2-chloroethyl)amino phenylacetate] in human lymphocyte cultures. (8/273)

3beta - Hydroxy - 13alpha - amino - 13, 17 - seco - 5alpha - androstan - 17 -oic-13,17-lactam-p-bis(2-chloroethyl)amino phenylacetate (ASE) is a homo-aza-steroidal ester of p-bis(2-chloroethyl) amino phenyl acetic acid and has been shown to display antineoplastic, mutagenic and genotoxic activity. In the present study an effort has been made to evaluate the ability of ASE to induce micronuclei (MN) in human lymphocytes treated in vitro using the cytokinesis-block assay. Lympocytes were treated with different concentrations of ASE (0.1, 0.25, 0.5, 1, 2.5, 5, 10 and 20 microg/ml) at two different cell culture times, 21 and 41 h after culture initiation. ASE treatment lasted until cell harvest, for 51 and 31 h, respectively. Two types of cultures were used, whole blood and isolated lymphocyte cultures. The content of induced MN was identified by FISH analysis, using an alpha-satellite DNA probe, in binucleate cells. Our results suggest that ASE is capable of increasing MN frequencies in human lymphocytes under both culture conditions. This increase is related to the concentration in a linear dose-dependent manner and is also dependent on the duration of treatment. FISH analysis has shown that the induced MN resulted mainly from breakage events. Additionally, a weak aneugenic effect was found at the higher concentrations in whole blood cultures as well as in isolated lymphocyte cultures. Cytotoxic effects of ASE were observed under both cell culture conditions with a linear dose-dependent relationship according to CBPI evaluation and were more pronounced in isolated lymphocyte cultures.  (+info)

Nitrogen mustard compounds are a group of chemical agents that have been used historically as chemotherapy drugs and also have potential as military chemical warfare agents. They are alkylating agents, which means they work by modifying DNA in such a way that it can no longer replicate properly, leading to cell death.

In the medical context, nitrogen mustard compounds are used to treat certain types of cancer, including Hodgkin's lymphoma and non-Hodgkin's lymphoma. They may also be used to treat chronic lymphocytic leukemia, multiple myeloma, and other cancers.

The most common nitrogen mustard compounds used in medicine are mechlorethamine, cyclophosphamide, ifosfamide, and melphalan. These drugs are typically administered intravenously or orally, and their use is carefully monitored to minimize side effects such as nausea, vomiting, hair loss, and suppression of the immune system.

It's worth noting that nitrogen mustard compounds can also be highly toxic and dangerous if used as chemical warfare agents. They can cause severe respiratory, skin, and eye damage, as well as potentially fatal systemic effects.

Mustard compounds refer to a group of chemical agents that are derivatives of mustard gas (sulfur mustard), a powerful blistering agent used in World War I and II. The term "mustard compounds" often includes sulfur mustard and nitrogen mustards. These compounds have alkylating properties, meaning they can interact with DNA and proteins to prevent cell division and cause damage to tissues. Nitrogen mustards are particularly potent alkylating agents and are used in chemotherapy for the treatment of various types of cancer. Sulfur mustard is not used medically but remains a significant concern as a chemical warfare agent.

Mechlorethamine is an antineoplastic agent, which means it is used to treat cancer. It is a type of alkylating agent, which is a class of drugs that work by interfering with the DNA of cancer cells, preventing them from dividing and growing. Mechlorethamine is used in the treatment of Hodgkin's lymphoma and non-Hodgkin's lymphoma, as well as some other types of cancer. It can be administered intravenously or topically (as a cream) to treat skin lesions caused by certain types of cancer.

Mechlorethamine is a potent drug that can have significant side effects, including nausea, vomiting, hair loss, and an increased risk of infection due to suppression of the immune system. It can also cause damage to the heart, lungs, and reproductive system with long-term use. As with all chemotherapy drugs, mechlorethamine should be administered under the close supervision of a healthcare professional.

Mustard gas, also known as sulfur mustard or HS, is a chemical warfare agent that has been used in military conflicts. It is a viscous, oily liquid at room temperature with a garlic-like odor. Its chemical formula is (ClCH2CH2)2S.

Mustard gas can cause severe burns and blistering of the skin, eyes, and respiratory tract upon contact or inhalation. It can also damage the immune system and lead to serious, potentially fatal, systemic effects. The onset of symptoms may be delayed for several hours after exposure, making it difficult to recognize and treat the injury promptly.

Mustard gas is classified as a vesicant, which means it causes blistering or tissue damage upon contact with the skin or mucous membranes. It can also have long-term effects, including an increased risk of cancer and other health problems. The use of mustard gas in warfare is banned by international law under the Chemical Weapons Convention.

I'm sorry for any confusion, but "Mustard Plant" is not a term typically used in medical definitions. Mustard plants are actually a type of crop plant from the Brassicaceae family, which also includes vegetables like broccoli and cabbage. The seeds from these plants are often ground to make mustard condiments and spices. If you're looking for information related to potential medicinal uses or health effects of mustard plants or their derivatives, I would be happy to help with that.

Quinacrine Mustard is not a recognized or established medical term. However, I can provide you with information about its individual components:

1. Quinacrine: Quinacrine is an antimalarial and anti-inflammatory drug that was used in the past to treat various conditions such as amoebic dysentery, giardiasis, and rheumatoid arthritis. It belongs to a class of compounds called acridines. Quinacrine has been largely replaced by other medications due to its side effects, which can include nausea, vomiting, and potential neuropsychiatric symptoms.

2. Mustard: In the context of medical terminology, "mustard" usually refers to a class of chemical warfare agents known as nitrogen mustards. These are highly reactive alkylating agents that can interact with DNA and other cellular components, leading to damage and cell death. They have been used in chemotherapy for various types of cancer due to their ability to inhibit the growth of rapidly dividing cells.

Quinacrine Mustard is not a standard or recognized medical term; therefore, it's difficult to provide an accurate definition without more context. It may refer to a chemical compound derived from quinacrine and mustard gas, but there is no established medical use or definition for this term.

I'm sorry for any confusion, but "Uracil Mustard" is not a recognized medical term or concept. It seems that there might be some confusion with the terms "Uracil," which is a nucleobase found in the nucleic acid RNA, and "Mustard gas," a chemical warfare agent that can cause severe burns and blistering of the skin and mucous membranes.

If you meant to ask about a specific medical concept or treatment and have made a mistake in the name, please provide more context or clarify your question so I can give you an accurate and helpful response.

Chemical warfare agents are defined as chemical substances that are intended or have the capability to cause death, injury, temporary incapacitation, or sensory irritation through their toxic properties when deployed in a military theater. These agents can be in gaseous, liquid, or solid form and are typically categorized based on their physiological effects. Common categories include nerve agents (e.g., sarin, VX), blister agents (e.g., mustard gas), choking agents (e.g., phosgene), blood agents (e.g., cyanide), and incapacitating agents (e.g., BZ). The use of chemical warfare agents is prohibited by international law under the Chemical Weapons Convention.

Chlorambucil is a medication that belongs to a class of drugs called alkylating agents. It is an antineoplastic drug, which means it is used to treat cancer. Chlorambucil works by interfering with the DNA in cells, which prevents them from dividing and growing. This makes it useful for treating certain types of cancer, such as chronic lymphocytic leukemia (CLL) and Hodgkin's lymphoma.

Chlorambucil is available in tablet form and is typically taken once a day. It is important to take chlorambucil exactly as directed by your healthcare provider, as the dosage and schedule will depend on your individual medical condition and response to treatment.

Like all medications, chlorambucil can cause side effects. Common side effects of chlorambucil include nausea, vomiting, diarrhea, and loss of appetite. It can also cause more serious side effects, such as a decrease in the number of white blood cells (which can increase the risk of infection), anemia (low red blood cell count), and thrombocytopenia (low platelet count). Chlorambucil may also increase the risk of certain types of cancer, such as acute myeloid leukemia (AML) and solid tumors.

It is important to discuss the potential risks and benefits of chlorambucil with your healthcare provider before starting treatment. They can help you understand the potential side effects and how to manage them, as well as any other precautions you should take while taking this medication.

Alkylating agents are a class of chemotherapy drugs that work by alkylating, or adding an alkyl group to, DNA molecules. This process can damage the DNA and prevent cancer cells from dividing and growing. Alkylating agents are often used to treat various types of cancer, including Hodgkin's lymphoma, non-Hodgkin's lymphoma, multiple myeloma, and solid tumors. Examples of alkylating agents include cyclophosphamide, melphalan, and chlorambucil. These drugs can have significant side effects, including nausea, vomiting, hair loss, and an increased risk of infection. They can also cause long-term damage to the heart, lungs, and reproductive system.

Phosphoramide mustards are a class of alkylating agents used in chemotherapy. They work by forming covalent bonds with DNA, causing cross-linking of the DNA strands and preventing DNA replication and transcription. This results in cytotoxicity and ultimately cell death. The most common phosphoramide mustard is mechlorethamine, which is used in the treatment of Hodgkin's lymphoma, non-Hodgkin's lymphoma, and various types of leukemia. Other examples include cyclophosphamide and ifosfamide, which are used to treat a wide range of cancers including breast, ovarian, and lung cancer. These agents are known for their potent antineoplastic activity, but they also have a narrow therapeutic index and can cause significant side effects, such as myelosuppression, nausea, vomiting, and hair loss.

Alkylation, in the context of medical chemistry and toxicology, refers to the process of introducing an alkyl group (a chemical moiety made up of a carbon atom bonded to one or more hydrogen atoms) into a molecule, typically a biomolecule such as a protein or DNA. This process can occur through various mechanisms, including chemical reactions with alkylating agents.

In the context of cancer therapy, alkylation is used to describe a class of chemotherapeutic drugs known as alkylating agents, which work by introducing alkyl groups onto DNA molecules in rapidly dividing cells. This can lead to cross-linking of DNA strands and other forms of DNA damage, ultimately inhibiting cell division and leading to the death of cancer cells. However, these agents can also affect normal cells, leading to side effects such as nausea, hair loss, and increased risk of infection.

It's worth noting that alkylation can also occur through non-chemical means, such as in certain types of radiation therapy where high-energy particles can transfer energy to electrons in biological molecules, leading to the formation of reactive radicals that can react with and alkylate DNA.

In the context of medicine and biology, tissues are groups of cells that work together to perform specific functions in the body. Tissues can be organized into four basic types: epithelial, connective, muscle, and nervous tissue.

1. Epithelial tissue: This type of tissue forms a protective covering on various surfaces of the body, such as the skin, linings of organs, and glands. It is made up of tightly packed cells that form sheets or layers.
2. Connective tissue: Connective tissues connect, support, and protect various parts of the body. They have extracellular matrix components like collagen, elastin, and proteoglycans, which provide strength, flexibility, and cushioning. Examples include tendons, ligaments, bones, and blood vessels.
3. Muscle tissue: This type of tissue is responsible for producing force and movement in the body. There are three types of muscle tissues: skeletal (voluntary), cardiac (involuntary), and smooth (involuntary).
4. Nervous tissue: Nervous tissue forms the nervous system, which includes the brain, spinal cord, and nerves. It is responsible for transmitting electrical signals throughout the body to facilitate communication between different parts of the body.

These four basic types of tissues can further differentiate into various specialized subtypes that perform specific functions in the body.

Melphalan is an antineoplastic agent, specifically an alkylating agent. It is used in the treatment of multiple myeloma and other types of cancer. The medical definition of Melphalan is:

A nitrogen mustard derivative that is used as an alkylating agent in the treatment of cancer, particularly multiple myeloma and ovarian cancer. Melphalan works by forming covalent bonds with DNA, resulting in cross-linking of the double helix and inhibition of DNA replication and transcription. This ultimately leads to cell cycle arrest and apoptosis (programmed cell death) in rapidly dividing cells, such as cancer cells.

Melphalan is administered orally or intravenously, and its use is often accompanied by other anticancer therapies, such as radiation therapy or chemotherapy. Common side effects of Melphalan include nausea, vomiting, diarrhea, and bone marrow suppression, which can lead to anemia, neutropenia, and thrombocytopenia. Other potential side effects include hair loss, mucositis, and secondary malignancies.

It is important to note that Melphalan should be used under the close supervision of a healthcare professional, as it can cause serious adverse reactions if not administered correctly.

Antineoplastic agents, alkylating, are a class of chemotherapeutic drugs that work by alkylating (adding alkyl groups) to DNA, which can lead to the death or dysfunction of cancer cells. These agents can form cross-links between strands of DNA, preventing DNA replication and transcription, ultimately leading to cell cycle arrest and apoptosis (programmed cell death). Examples of alkylating agents include cyclophosphamide, melphalan, and cisplatin. While these drugs are designed to target rapidly dividing cancer cells, they can also affect normal cells that divide quickly, such as those in the bone marrow and digestive tract, leading to side effects like anemia, neutropenia, thrombocytopenia, and nausea/vomiting.

Ethylamines are organic compounds that contain a primary amino group (-NH2) attached to an ethyl group (-C2H5). In other words, they have the formula R-CH2-CH2-NH2, where R is a carbon-containing group. Ethylamines are derivatives of ammonia (NH3), in which one or more hydrogen atoms have been replaced by an ethyl group.

Ethylamines can be found in various natural and synthetic substances. They are used as building blocks in the synthesis of various pharmaceuticals, agrochemicals, and other industrial chemicals. Some ethylamines also have psychoactive properties and are used as recreational drugs or abused for their mind-altering effects.

It is important to note that some ethylamines can be toxic or harmful to human health, especially at high concentrations or with prolonged exposure. Therefore, they should be handled with care and used only under controlled conditions.

Irritants, in a medical context, refer to substances or factors that cause irritation or inflammation when they come into contact with bodily tissues. These substances can cause a range of reactions depending on the type and duration of exposure, as well as individual sensitivity. Common examples include chemicals found in household products, pollutants, allergens, and environmental factors like extreme temperatures or friction.

When irritants come into contact with the skin, eyes, respiratory system, or mucous membranes, they can cause symptoms such as redness, swelling, itching, pain, coughing, sneezing, or difficulty breathing. In some cases, prolonged exposure to irritants can lead to more serious health problems, including chronic inflammation, tissue damage, and disease.

It's important to note that irritants are different from allergens, which trigger an immune response in sensitive individuals. While both can cause similar symptoms, the underlying mechanisms are different: allergens cause a specific immune reaction, while irritants directly affect the affected tissues without involving the immune system.

Cross-linking reagents are chemical agents that are used to create covalent bonds between two or more molecules, creating a network of interconnected molecules known as a cross-linked structure. In the context of medical and biological research, cross-linking reagents are often used to stabilize protein structures, study protein-protein interactions, and develop therapeutic agents.

Cross-linking reagents work by reacting with functional groups on adjacent molecules, such as amino groups (-NH2) or sulfhydryl groups (-SH), to form a covalent bond between them. This can help to stabilize protein structures and prevent them from unfolding or aggregating.

There are many different types of cross-linking reagents, each with its own specificity and reactivity. Some common examples include glutaraldehyde, formaldehyde, disuccinimidyl suberate (DSS), and bis(sulfosuccinimidyl) suberate (BS3). The choice of cross-linking reagent depends on the specific application and the properties of the molecules being cross-linked.

It is important to note that cross-linking reagents can also have unintended effects, such as modifying or disrupting the function of the proteins they are intended to stabilize. Therefore, it is essential to use them carefully and with appropriate controls to ensure accurate and reliable results.

Nitrogen fixation is a process by which nitrogen gas (N2) in the air is converted into ammonia (NH3) or other chemically reactive forms, making it available to plants and other organisms for use as a nutrient. This process is essential for the nitrogen cycle and for the growth of many types of plants, as most plants cannot utilize nitrogen gas directly from the air.

In the medical field, nitrogen fixation is not a commonly used term. However, in the context of microbiology and infectious diseases, some bacteria are capable of fixing nitrogen and this ability can contribute to their pathogenicity. For example, certain species of bacteria that colonize the human body, such as those found in the gut or on the skin, may be able to fix nitrogen and use it for their own growth and survival. In some cases, these bacteria may also release fixed nitrogen into the environment, which can have implications for the ecology and health of the host and surrounding ecosystems.

Semustine is not a medical term itself, but it's a brand name for the chemical compound called lomustine. Here is the medical definition of Lomustine:

Lomustine: A nitrosourea alkylating agent used in cancer chemotherapy. It is classified as an antineoplastic agent and works by preventing the growth of cancer cells through inhibiting DNA replication. Lomustine is used to treat various types of cancers, including Hodgkin's lymphoma, brain tumors, and non-Hodgkin's lymphoma. Common side effects include nausea, vomiting, and bone marrow suppression leading to anemia, leukopenia, and thrombocytopenia.

I'm not a medical expert, but I can try to provide you with some information about "aniline mustard" that might be helpful. However, it's essential to consult appropriate medical resources or professionals for accurate and reliable information.

The term "aniline mustard" is not typically used in the medical field. Instead, it seems like a combination of two different concepts: aniline (an organic compound) and mustard gas (a chemical warfare agent). I'll briefly explain both terms to help you understand any possible connection.

1. Aniline: It is an organic compound with the formula C6H5NH2, also known as phenylamine or aminobenzene. Aniline is used in manufacturing various chemical products, such as dyes, pharmaceuticals, and rubber processing chemicals. Exposure to aniline can cause harmful health effects, including skin irritation, respiratory issues, and damage to the liver and kidneys.

2. Mustard gas: It is a chemical warfare agent with the formula (ClCH2CH2)2S, also known as sulfur mustard or HS(CH2CH2Cl)2. Mustard gas can cause severe burns and blistering of the skin, eyes, and respiratory tract upon exposure. It is a potent chemical weapon that has been banned by international treaties.

There might be some confusion regarding "aniline mustard" because aniline was used in the production of mustard gas during World War I. However, there isn't any specific medical definition or application associated with the term "aniline mustard." If you have more context or information about where this term is being used, I could try to provide a more accurate answer.

Carmustine is a chemotherapy drug used to treat various types of cancer, including brain tumors, multiple myeloma, and Hodgkin's lymphoma. It belongs to a class of drugs called alkylating agents, which work by damaging the DNA in cancer cells, preventing them from dividing and growing.

Carmustine is available as an injectable solution that is administered intravenously (into a vein) or as implantable wafers that are placed directly into the brain during surgery. The drug can cause side effects such as nausea, vomiting, hair loss, and low blood cell counts, among others. It may also increase the risk of certain infections and bleeding complications.

As with all chemotherapy drugs, carmustine can have serious and potentially life-threatening side effects, and it should only be administered under the close supervision of a qualified healthcare professional. Patients receiving carmustine treatment should be closely monitored for signs of toxicity and other adverse reactions.

Nitrosoureas are a class of chemical compounds that contain a nitroso (--NO) and urea (-NH-CO-NH-) functional group. In the field of medicine, nitrosoureas are primarily used as antineoplastic agents, or drugs designed to inhibit the growth of cancer cells.

These compounds work by alkylating and crosslinking DNA, which ultimately leads to the disruption of DNA replication and transcription processes in cancer cells, causing cell cycle arrest and apoptosis (programmed cell death). Nitrosoureas can also inhibit the activity of certain enzymes involved in DNA repair, further enhancing their cytotoxic effects.

Some common nitrosourea compounds used in clinical settings include:

1. Carmustine (BCNU)
2. Lomustine (CCNU)
3. Semustine (MeCCNU)
4. Fotemustine
5. Streptozocin

These drugs have been used to treat various types of cancer, such as brain tumors, Hodgkin's lymphoma, and multiple myeloma. However, their use is often limited by significant side effects, including myelosuppression (decreased production of blood cells), nausea, vomiting, and liver toxicity.

Methionine Sulfoximine (MSO) is not a medical term itself, but it is a compound that has been used in research and scientific studies. It's a stable analogue of the essential amino acid methionine, which can be found in some foods like sesame seeds, Brazil nuts, and fish.

Methionine Sulfoximine has been used in research to study the metabolism and transport of methionine in cells and organisms. It is also known for its ability to inhibit the enzyme cystathionine β-synthase (CBS), which plays a role in the metabolism of homocysteine, an amino acid associated with cardiovascular disease when present at high levels.

However, Methionine Sulfoximine is not used as a therapeutic agent or medication in humans due to its potential toxicity and lack of established clinical benefits.

Aminacrine is a type of medication known as an antineoplastic agent or chemotherapeutic drug. It is primarily used in the treatment of certain types of cancer. Aminacrine works by interfering with the DNA replication process within cancer cells, which helps to inhibit the growth and proliferation of these cells.

The chemical name for aminacrine is 9-aminoacridine hydrochloride monohydrate. It has a yellowish crystalline appearance and is typically administered intravenously in a hospital setting. Common side effects of aminacrine include nausea, vomiting, diarrhea, mouth sores, and hair loss. More serious side effects can include heart rhythm abnormalities, seizures, and lung or kidney damage.

It's important to note that the use of aminacrine is typically reserved for cases where other cancer treatments have not been effective, due to its potential for serious side effects. As with all medications, it should be used under the close supervision of a healthcare professional.

Sulfuric acid esters, also known as sulfate esters, are chemical compounds formed when sulfuric acid reacts with alcohols or phenols. These esters consist of a organic group linked to a sulfate group (SO4). They are widely used in industry, for example, as detergents, emulsifiers, and solvents. In the body, they can be found as part of various biomolecules, such as glycosaminoglycans and steroid sulfates. However, excessive exposure to sulfuric acid esters can cause irritation and damage to tissues.

Propylbenzilylcholine mustard is not a medical term, but it is a chemical compound that has been used in research and development. It's a type of muscarinic receptor agonist, which means it binds to and activates muscarinic acetylcholine receptors, a type of receptor found in the nervous system.

In a medical context, this compound may be used in research to study the functions of the muscarinic receptors or to develop new medications that target these receptors. However, it is not currently used as a medication in clinical practice.

It's important to note that Propylbenzilylcholine mustard is also known as a "receptor agonist" and has been used in research as a tool to stimulate muscarinic receptors. It's not a drug, but a compound used in laboratory settings for scientific studies.

Nimustine is a medical term for a specific anti-cancer drug, also known as a cytotoxic chemotherapeutic agent. Its chemical name is nimustine hydrochloride and it belongs to the class of alkylating agents. It works by interfering with the DNA of cancer cells, preventing them from dividing and growing. Nimustine is used in the treatment of various types of cancers, including brain tumors and Hodgkin's lymphoma.

The drug is administered intravenously under the supervision of a healthcare professional, as it can have serious side effects, such as bone marrow suppression, nausea, vomiting, and hair loss. It is important for patients to be closely monitored during treatment with nimustine and to receive appropriate supportive care to manage these side effects.

It's worth noting that the use of nimustine should be based on a thorough evaluation of the patient's medical condition, the type and stage of cancer, and other factors. The decision to use this drug should be made by a qualified healthcare professional in consultation with the patient.

Podophyllum is a botanical name that refers to a genus of plants in the family Berberidaceae. It's commonly known as Mayapple or American mandrake. The dried rhizome (underground stem) of Podophyllum peltatum, also known as Podophyllin, contains podophyllotoxin and other aryltetralin lignans, which have been used in medical preparations for their antineoplastic (anti-cancer) properties.

In modern medicine, podophyllotoxin is obtained through semi-synthesis and is used as a topical treatment for genital warts. It works by inhibiting the formation of microtubules, which are necessary for cell division, leading to the death of the infected cells.

Please note that Podophyllum products should only be used under the supervision of a healthcare professional due to their potential toxicity.

Nitrogen compounds are chemical substances that contain nitrogen, which is a non-metal in group 15 of the periodic table. Nitrogen forms compounds with many other elements due to its ability to form multiple bonds, including covalent bonds with hydrogen, oxygen, carbon, sulfur, and halogens.

Nitrogen can exist in several oxidation states, ranging from -3 to +5, which leads to a wide variety of nitrogen compounds with different properties and uses. Some common examples of nitrogen compounds include:

* Ammonia (NH3), a colorless gas with a pungent odor, used in fertilizers, cleaning products, and refrigeration systems.
* Nitric acid (HNO3), a strong mineral acid used in the production of explosives, dyes, and fertilizers.
* Ammonium nitrate (NH4NO3), a white crystalline solid used as a fertilizer and explosive ingredient.
* Hydrazine (N2H4), a colorless liquid with a strong odor, used as a rocket fuel and reducing agent.
* Nitrous oxide (N2O), a colorless gas used as an anesthetic and laughing gas in dental procedures.

Nitrogen compounds have many important applications in various industries, such as agriculture, pharmaceuticals, chemicals, and energy production. However, some nitrogen compounds can also be harmful or toxic to humans and the environment if not handled properly.

Chemical burns are a type of tissue injury that results from exposure to strong acids, bases, or other corrosive chemicals. These substances can cause damage by reacting chemically with the skin or other tissues, leading to destruction of cells and potentially serious harm. The severity of a chemical burn depends on several factors, including the type and concentration of the chemical, the duration of exposure, and the amount of body surface area affected.

Chemical burns can occur through direct contact with the skin or eyes, inhalation of toxic fumes, or ingestion of harmful substances. Symptoms may include redness, pain, blistering, swelling, and irritation at the site of contact. In severe cases, chemical burns can lead to scarring, disability, or even death.

Immediate medical attention is required for chemical burns, as they can continue to cause damage until the source of the injury is removed, and appropriate first aid measures are taken. Treatment typically involves thorough cleaning and irrigation of the affected area, followed by administration of pain medication and other supportive care as needed. In some cases, skin grafting or other surgical interventions may be required to promote healing and minimize scarring.

Methenamine is a medication that is used as a urinary antiseptic. It's a chemical compound that, when ingested and enters the urine, releases formaldehyde, which helps to kill bacteria in the urinary tract. Methenamine is often combined with other medications, such as sodium phosphate or hydroxyzine, to make it more effective.

It's important to note that methenamine is not typically used as a first-line treatment for urinary tract infections (UTIs) and is usually reserved for preventing recurrent UTIs in people who are prone to them. Additionally, methenamine should be taken in adequate amounts and under the guidance of a healthcare professional, as excessive formaldehyde release can cause adverse effects.

Drug resistance, also known as antimicrobial resistance, is the ability of a microorganism (such as bacteria, viruses, fungi, or parasites) to withstand the effects of a drug that was originally designed to inhibit or kill it. This occurs when the microorganism undergoes genetic changes that allow it to survive in the presence of the drug. As a result, the drug becomes less effective or even completely ineffective at treating infections caused by these resistant organisms.

Drug resistance can develop through various mechanisms, including mutations in the genes responsible for producing the target protein of the drug, alteration of the drug's target site, modification or destruction of the drug by enzymes produced by the microorganism, and active efflux of the drug from the cell.

The emergence and spread of drug-resistant microorganisms pose significant challenges in medical treatment, as they can lead to increased morbidity, mortality, and healthcare costs. The overuse and misuse of antimicrobial agents, as well as poor infection control practices, contribute to the development and dissemination of drug-resistant strains. To address this issue, it is crucial to promote prudent use of antimicrobials, enhance surveillance and monitoring of resistance patterns, invest in research and development of new antimicrobial agents, and strengthen infection prevention and control measures.

N-Methylscopolamine is a anticholinergic drug, which means it blocks the action of acetylcholine, a neurotransmitter in the body. It is a derivative of scopolamine and is used to treat various conditions such as gastrointestinal disorders (such as gastritis, peptic ulcer), Parkinson's disease, motion sickness, and to reduce saliva production during surgical or diagnostic procedures.

It works by blocking the muscarinic receptors in the nervous system, which leads to a decrease in the secretion of fluids (such as saliva, sweat, stomach acid) and decreased muscle contractions in the gastrointestinal tract. N-Methylscopolamine can also cause side effects such as dizziness, dry mouth, blurred vision, and difficulty urinating.

Nitrogen isotopes are different forms of the nitrogen element (N), which have varying numbers of neutrons in their atomic nuclei. The most common nitrogen isotope is N-14, which contains 7 protons and 7 neutrons in its nucleus. However, there are also heavier stable isotopes such as N-15, which contains one extra neutron.

In medical terms, nitrogen isotopes can be used in research and diagnostic procedures to study various biological processes. For example, N-15 can be used in a technique called "nitrogen-15 nuclear magnetic resonance (NMR) spectroscopy" to investigate the metabolism of nitrogen-containing compounds in the body. Additionally, stable isotope labeling with nitrogen-15 has been used in clinical trials and research studies to track the fate of drugs and nutrients in the body.

In some cases, radioactive nitrogen isotopes such as N-13 or N-16 may also be used in medical imaging techniques like positron emission tomography (PET) scans to visualize and diagnose various diseases and conditions. However, these applications are less common than the use of stable nitrogen isotopes.

DNA damage refers to any alteration in the structure or composition of deoxyribonucleic acid (DNA), which is the genetic material present in cells. DNA damage can result from various internal and external factors, including environmental exposures such as ultraviolet radiation, tobacco smoke, and certain chemicals, as well as normal cellular processes such as replication and oxidative metabolism.

Examples of DNA damage include base modifications, base deletions or insertions, single-strand breaks, double-strand breaks, and crosslinks between the two strands of the DNA helix. These types of damage can lead to mutations, genomic instability, and chromosomal aberrations, which can contribute to the development of diseases such as cancer, neurodegenerative disorders, and aging-related conditions.

The body has several mechanisms for repairing DNA damage, including base excision repair, nucleotide excision repair, mismatch repair, and double-strand break repair. However, if the damage is too extensive or the repair mechanisms are impaired, the cell may undergo apoptosis (programmed cell death) to prevent the propagation of potentially harmful mutations.

Pleurodesis is a medical procedure that involves the intentional inflammation and subsequent fusion of the pleural surfaces, which are the thin layers of tissue that separate the lungs from the chest wall. This procedure is typically performed to prevent the recurrence of pneumothorax (a collapsed lung) or pleural effusions (abnormal fluid accumulation in the pleural space).

During the pleurodesis procedure, an irritant such as talc, doxycycline, or silver nitrate is introduced into the pleural space. This causes an inflammatory response, leading to the formation of adhesions between the visceral and parietal pleura. These adhesions obliterate the potential space between the pleural layers, preventing the accumulation of air or fluid within that space.

There are two primary approaches to performing pleurodesis: thoracoscopic (using a video-assisted thoracoscopic surgery or VATS) and chemical (instilling a sclerosing agent through a chest tube). Both methods aim to achieve the same goal of creating adhesions between the pleural layers.

It is essential to note that, while pleurodesis can be an effective treatment for preventing recurrent pneumothorax or pleural effusions, it is not without risks and potential complications. These may include pain, fever, infection, empyema (pus in the pleural space), or acute respiratory distress syndrome (ARDS). Patients should discuss these risks with their healthcare provider before undergoing the procedure.

Lomustine is a medical term for a specific antineoplastic agent, which is a type of medication used to treat cancer. It's a nitrosourea compound that is classified as an alkylating agent, meaning it works by preventing the reproduction of cancer cells. Lomustine is used in the treatment of various types of cancer, including brain tumors, Hodgkin's lymphoma, and non-Hodgkin's lymphoma. It's usually administered orally in the form of a capsule. As with any medication, it can have side effects, which can include nausea, vomiting, and lowered blood cell counts.

A prodrug is a pharmacologically inactive substance that, once administered, is metabolized into a drug that is active. Prodrugs are designed to improve the bioavailability or delivery of a drug, to minimize adverse effects, or to target the drug to specific sites in the body. The conversion of a prodrug to its active form typically occurs through enzymatic reactions in the liver or other tissues.

Prodrugs can offer several advantages over traditional drugs, including:

* Improved absorption: Some drugs have poor bioavailability due to their chemical properties, which make them difficult to absorb from the gastrointestinal tract. Prodrugs can be designed with improved absorption characteristics, allowing for more efficient delivery of the active drug to the body.
* Reduced toxicity: By masking the active drug's chemical structure, prodrugs can reduce its interactions with sensitive tissues and organs, thereby minimizing adverse effects.
* Targeted delivery: Prodrugs can be designed to selectively release the active drug in specific areas of the body, such as tumors or sites of infection, allowing for more precise and effective therapy.

Examples of prodrugs include:

* Aspirin (acetylsalicylic acid), which is metabolized to salicylic acid in the liver.
* Enalapril, an angiotensin-converting enzyme (ACE) inhibitor used to treat hypertension and heart failure, which is metabolized to enalaprilat in the liver.
* Codeine, an opioid analgesic, which is metabolized to morphine in the liver by the enzyme CYP2D6.

It's important to note that not all prodrugs are successful, and some may even have unintended consequences. For example, if a patient has a genetic variation that affects the activity of the enzyme responsible for converting the prodrug to its active form, the drug may not be effective or may produce adverse effects. Therefore, it's essential to consider individual genetic factors when prescribing prodrugs.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

I'm sorry for any confusion, but "nitrogen cycle" is not a medical term. It is a biological concept that refers to the process through which nitrogen, an essential element for life, is converted between various chemical forms as it circulates through the atmosphere, terrestrial ecosystems, and aquatic environments.

The nitrogen cycle includes several key processes:

1. Nitrogen fixation: Certain bacteria are capable of converting atmospheric nitrogen (N2) into ammonia (NH3), a form that can be used by plants and other organisms. This process is called nitrogen fixation.
2. Nitrification: Some types of bacteria convert ammonia into nitrites (NO2-) and then into nitrates (NO3-). This two-step process is known as nitrification.
3. Denitrification: Certain bacteria can convert nitrates back into nitrogen gas, releasing it into the atmosphere. This process is called denitrification.
4. Assimilation: Plants and other organisms take up nitrogen in the form of ammonia or nitrates from the soil or water and incorporate it into their tissues through a process called assimilation.
5. Ammonification: When organisms die and decompose, or when they excrete waste products, nitrogen is released back into the environment in the form of ammonia. This process is known as ammonification.

While not a medical term, understanding the nitrogen cycle is important for many areas of science, including environmental science, agriculture, and ecology.

Blood Urea Nitrogen (BUN) is a laboratory value that measures the amount of urea nitrogen in the blood. Urea nitrogen is a waste product that is formed when proteins are broken down in the liver. The kidneys filter urea nitrogen from the blood and excrete it as urine.

A high BUN level may indicate impaired kidney function, as the kidneys are not effectively removing urea nitrogen from the blood. However, BUN levels can also be affected by other factors such as dehydration, heart failure, or gastrointestinal bleeding. Therefore, BUN should be interpreted in conjunction with other laboratory values and clinical findings.

The normal range for BUN is typically between 7-20 mg/dL (milligrams per deciliter) or 2.5-7.1 mmol/L (millimoles per liter), but the reference range may vary depending on the laboratory.

Nitrogen dioxide (NO2) is a gaseous air pollutant and respiratory irritant. It is a reddish-brown toxic gas with a pungent, choking odor. NO2 is a major component of smog and is produced from the combustion of fossil fuels in vehicles, power plants, and industrial processes.

Exposure to nitrogen dioxide can cause respiratory symptoms such as coughing, wheezing, and difficulty breathing, especially in people with asthma or other respiratory conditions. Long-term exposure has been linked to the development of chronic lung diseases, including bronchitis and emphysema. NO2 also contributes to the formation of fine particulate matter (PM2.5), which can penetrate deep into the lungs and cause additional health problems.

Procarbazine is an antineoplastic agent, specifically an alkylating agent, used in the treatment of certain types of cancer such as Hodgkin's lymphoma and brain tumors. It works by interfering with the DNA of cancer cells, preventing them from dividing and growing. Procarbazine is often used in combination with other chemotherapy drugs to increase its effectiveness.

It is important to note that procarbazine can have significant side effects, including nausea, vomiting, loss of appetite, and weakness. It can also suppress the immune system, increasing the risk of infection. Additionally, it can cause damage to cells outside of the cancerous tissue, which can result in side effects such as hair loss and mouth sores.

Procarbazine is a prescription medication that should only be used under the supervision of a healthcare professional. It is important for patients to follow their doctor's instructions carefully when taking this medication and to report any side effects or concerns promptly.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

Guanine is not a medical term per se, but it is a biological molecule that plays a crucial role in the body. Guanine is one of the four nucleobases found in the nucleic acids DNA and RNA, along with adenine, cytosine, and thymine (in DNA) or uracil (in RNA). Specifically, guanine pairs with cytosine via hydrogen bonds to form a base pair.

Guanine is a purine derivative, which means it has a double-ring structure. It is formed through the synthesis of simpler molecules in the body and is an essential component of genetic material. Guanine's chemical formula is C5H5N5O.

While guanine itself is not a medical term, abnormalities or mutations in genes that contain guanine nucleotides can lead to various medical conditions, including genetic disorders and cancer.

DNA repair is the process by which cells identify and correct damage to the DNA molecules that encode their genome. DNA can be damaged by a variety of internal and external factors, such as radiation, chemicals, and metabolic byproducts. If left unrepaired, this damage can lead to mutations, which may in turn lead to cancer and other diseases.

There are several different mechanisms for repairing DNA damage, including:

1. Base excision repair (BER): This process repairs damage to a single base in the DNA molecule. An enzyme called a glycosylase removes the damaged base, leaving a gap that is then filled in by other enzymes.
2. Nucleotide excision repair (NER): This process repairs more severe damage, such as bulky adducts or crosslinks between the two strands of the DNA molecule. An enzyme cuts out a section of the damaged DNA, and the gap is then filled in by other enzymes.
3. Mismatch repair (MMR): This process repairs errors that occur during DNA replication, such as mismatched bases or small insertions or deletions. Specialized enzymes recognize the error and remove a section of the newly synthesized strand, which is then replaced by new nucleotides.
4. Double-strand break repair (DSBR): This process repairs breaks in both strands of the DNA molecule. There are two main pathways for DSBR: non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ directly rejoins the broken ends, while HR uses a template from a sister chromatid to repair the break.

Overall, DNA repair is a crucial process that helps maintain genome stability and prevent the development of diseases caused by genetic mutations.

Dinitrochlorobenzene (DNCB) is a chemical compound that is classified as an aromatic organic compound. Its medical definition relates to its use as a topical immunotherapy for the treatment of certain skin conditions. DNCB is a potent sensitizer and hapten, which means that it can cause an immune response when it comes into contact with the skin.

When applied to the skin, DNCB can stimulate the production of antibodies and activate immune cells, leading to an inflammatory reaction. This property has been exploited in the treatment of conditions such as alopecia areata, a type of hair loss that is thought to be caused by an autoimmune response. By sensitizing the patient's immune system to DNCB, it may be possible to modulate the immune response and promote hair growth.

However, the use of DNCB as a therapeutic agent is not without risks. It can cause significant local reactions, including redness, swelling, and blistering, and there is a risk of systemic toxicity if it is absorbed into the bloodstream. As such, its use is generally restricted to specialized medical settings where it can be administered under close supervision.

Buthionine Sulfoximine (BSO) is a chemical compound that is known to inhibit the enzyme gamma-glutamylcysteine synthetase, which plays a crucial role in the production of glutathione, a powerful antioxidant in the body. By inhibiting this enzyme, BSO can deplete glutathione levels in cells, making it a useful tool in research to study the effects of glutathione depletion on various biological processes. It is often used in laboratory experiments and clinical trials for its potential therapeutic benefits in cancer treatment and other diseases associated with oxidative stress. However, its use as a therapeutic agent is still being investigated and has not yet been approved by regulatory agencies for widespread clinical use.

I'm sorry for any confusion, but "Leukemia P388" is not a widely recognized medical term or a specific type of leukemia. The term "P388" is often used to refer to a particular type of mouse leukemia that is commonly used in laboratory research for testing potential anti-cancer drugs.

Leukemia, in general, is a type of cancer that originates in the bone marrow and results in an overproduction of abnormal white blood cells (leukocytes). These abnormal cells crowd out the healthy cells in the bone marrow, leading to a weakened immune system and various complications.

There are many different types of leukemia, classified based on the type of white blood cell affected (myeloid or lymphocytic) and the speed of progression (acute or chronic). If you're looking for information about a specific type of leukemia, I would be happy to help if you could provide more details.

Antineoplastic agents are a class of drugs used to treat malignant neoplasms or cancer. These agents work by inhibiting the growth and proliferation of cancer cells, either by killing them or preventing their division and replication. Antineoplastic agents can be classified based on their mechanism of action, such as alkylating agents, antimetabolites, topoisomerase inhibitors, mitotic inhibitors, and targeted therapy agents.

Alkylating agents work by adding alkyl groups to DNA, which can cause cross-linking of DNA strands and ultimately lead to cell death. Antimetabolites interfere with the metabolic processes necessary for DNA synthesis and replication, while topoisomerase inhibitors prevent the relaxation of supercoiled DNA during replication. Mitotic inhibitors disrupt the normal functioning of the mitotic spindle, which is essential for cell division. Targeted therapy agents are designed to target specific molecular abnormalities in cancer cells, such as mutated oncogenes or dysregulated signaling pathways.

It's important to note that antineoplastic agents can also affect normal cells and tissues, leading to various side effects such as nausea, vomiting, hair loss, and myelosuppression (suppression of bone marrow function). Therefore, the use of these drugs requires careful monitoring and management of their potential adverse effects.

It is a nitrogen mustard β-chloro-nitrosourea compound used as an alkylating agent. Carmustine is an orange-yellow solid ... It is a nitrogen mustard β-chloro-nitrosourea compound. As an alkylating agent, carmustine can form interstrand crosslinks in ...
This article describes the acute and long-term effects of mustard gas and proposes screening protocols to prevent complications ... MG is a collective name for several compounds, including sulfur and nitrogen mustard. It is mainly used in biological warfare ... Although the use of mustard gas (MG) was prohibited by the Geneva Convention in 1925, its use continues today.[1,2,3,4,5,6,7,8, ... Objective: To describe the acute and long-term effects of mustard gas (MG) and propose a screening protocol to prevent ...
The discovery of nitrogen mustard as an alkylating agent in 1942, opened a new era in the cancer chemotherapy. This valuable ... Nitrogen Mustard Compounds / administration & dosage Actions. * Search in PubMed * Search in MeSH ... nitrogen mustard activated by glutathione transferase, peptide based nitrogen mustards and CNS targeted nitrogen mustards. ... At the molecular level, nitrogen lone pairs of nitrogen mustard generate a strained intermediate "aziridinium ion" which is ...
Nitrogen Mustard Compounds/toxicity; Proteins/chemistry; Proteomics/methods ... Epoxy Compounds/toxicity; Formaldehyde/toxicity; Mass Spectrometry/methods*; Mutagenicity Tests/methods; Mutagens/toxicity; ...
... took their compounds and hitched them on to nitrogen mustard. So we had mustards and mustards going and coming out our ears ... A mustard is a mustard, is a mustard. And, so, we did have a lot of compounds that way. And Larry Onhoff worked, as I say, ... We tested a lot of different nitrogen mustard compounds. None were better than HN-2. None of them worked in acute leukemia in ... And we were using, of course, the compounds from the chemical warfare service at first, and the nitrogen mustard derivatives. ...
Nitrogen Mustard Compounds / adverse effects Actions. * Search in PubMed * Search in MeSH ...
Nitrogen Mustard Compounds / administration & dosage Actions. * Search in PubMed * Search in MeSH ...
Nitrogen Mustard Compounds / administration & dosage Actions. * Search in PubMed * Search in MeSH ...
In the course of that work, a compound called nitrogen mustard was studied and found to work against a cancer of the lymph ... Not long after the discovery of nitrogen mustard, Sidney Farber of Boston demonstrated that aminopterin, a compound related to ... During World War II, naval personnel who were exposed to mustard gas during military action were found to have toxic changes in ... During that same period, the US Army was studying a number of chemicals related to mustard gas to develop more effective agents ...
8. Synthesis and evaluation of substituted naphthalimide nitrogen mustards as rationally designed anticancer compounds.. Pain A ... 4. Evaluation of naphthalmustine, a nitrogen mustard derivative of naphthalimide as a rationally-designed anticancer agent. ... 5. Synthesis and evaluation of ethylnitrosoureas of substituted naphthalimides as anticancer compounds.. Pain A; Samanta S; ... 7. Synthesis and evaluation of 2-chloroethylnitrosoureas of substituted naphthalimides as mixed-function anticancer compounds. ...
The scientists were on to something, and nitrogen mustard became the first of many toxic compounds found to be effective ... Nitrogen mustard, the first modern chemo drug, is a derivative of the mustard gas used during the First World War. ... By 1942, two researchers at Yale, Louis Goodman and Alfred Gilman, were ready to try nitrogen mustard in a human patient. A 48- ...
Goodman and Gilman carried out experiments in mice bearing a transplanted lymphoid tumor with one compound, nitrogen mustard. ... The use of nitrogen mustard for lymphomas spread rapidly throughout the United States after the publication of the Lindskog ... Nitrogen mustard therapy: use of methyl-bis (β-chloroethyl) amine hydrochloride and tris (β-chloroethyl)amine hydrochloride for ... The 1950s were a period of undue pessimism due to the disappointment over the failed promise of nitrogen mustard to produce ...
Some relationships of structure to biological activity in the nitrogen mustards and related compounds. ... Testicular lesions in mice following parenteral administration of nitrogen mustards.. Subject(s):. [Military Section] Nitrogen ... Retention of amino nitrogen in the plasma following surgery; further studies.. Subject(s):. [Military Section] Nitrogen ... Report of nitrogen balance in men consuming raw and heated dried egg white as supplemental sources of dietary protein. ...
Examples of such chemotherapeutic agents include alkylating agents like nitrogen mustards, ethyleneimine compounds, alkyl ... Suitable compounds in this class include m 1 muscarinic cholinergic receptor antagonists such as those compounds described in ... Another class of anti-anxiety agent of use in the invention are compounds acting on ion channels. Suitable compounds in this ... Commonly used chemotherapeutic agents include cisplatin, dacarbazine (DTIC), dactinomycin, mechlorethamine (nitrogen mustard), ...
Mustard Compounds [D02.455.526.728] * Mustard Gas [D02.455.526.728.468] * Nitrogen Mustard Compounds [D02.455.526.728.650] * ... These compounds are also powerful mutagens, teratogens, immunosuppressants, and carcinogens.. Terms. Nitrogen Mustard Compounds ... Nitrogen Mustard Compounds Preferred Concept UI. M0014901. Registry Number. 0. Scope Note. A group of alkylating agents derived ... These compounds are also powerful mutagens, teratogens, immunosuppressants, and carcinogens.. Entry Version. NITROGEN MUSTARD ...
Mustard Compounds [D02.455.526.728] * Mustard Gas [D02.455.526.728.468] * Nitrogen Mustard Compounds [D02.455.526.728.650] * ... These compounds are also powerful mutagens, teratogens, immunosuppressants, and carcinogens.. Terms. Nitrogen Mustard Compounds ... Nitrogen Mustard Compounds Preferred Concept UI. M0014901. Registry Number. 0. Scope Note. A group of alkylating agents derived ... These compounds are also powerful mutagens, teratogens, immunosuppressants, and carcinogens.. Entry Version. NITROGEN MUSTARD ...
It is the most stable of the nitrogen mustards but decomposes at temperatures greater than 256�C. It has a much lower vapor ... Nitrogen mustards are vesicants and alkylating agents. They are colorless to pale yellow, oily liquids that evaporate slowly. ... What are nitrogen mustards? Nitrogen mustards are compounds that were initially developed as chemical warfare agents or ... Nitrogen Mustard (HN-3)(C6H12Cl3N). CAS# Nitrogen Mustard (HN-1) 538-07-8, Nitrogen Mustard (HN-2) 51-75-2, Nitrogen Mustard ( ...
Nitrogen Mustard Compounds 68. Pharmacy - galenical for pharmacy technicians Author(s): Letterman General Hospital (San ... Nitrogen mustards Author(s): Lipton, M. A. (Morris Abraham), 1915-1989, author Publication: [Chicago?] : [publisher not ... Drug Compounding. Dosage Forms. Military Medicine. San Francisco. United States 100. Mobile units of the Medical Department ...
Nitrogen Mustard Compounds - Preferred Concept UI. M0014901. Scope note. A group of alkylating agents derived from mustard gas ... Nitrogen Mustard Compounds Entry term(s). Compounds, Nitrogen Mustard Mustard Compounds, Nitrogen ... do not confuse with NITROGEN MUSTARD, a specific chemical. Allowable Qualifiers:. AD administration & dosage. AE adverse ... A group of alkylating agents derived from mustard gas, with the sulfur replaced by nitrogen. They were formerly used as ...
Intradermal Chemical Compounds 100% * Tumor Promoter Chemical Compounds 92% * Nitrogen Mustard Chemical Compounds 87% ... Depigmentation was observed with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), nitrogen mustard (HN2), many tumour promoters and ... Depigmentation was observed with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), nitrogen mustard (HN2), many tumour promoters and ... Depigmentation was observed with 12-O-tetradecanoyl-phorbol-13-acetate (TPA), nitrogen mustard (HN2), many tumour promoters and ...
... nitrogen mus- tard and chromate compounds, are known to induce alveologenic tumors in mice, on one hand, and, on the other, to ... nitrogen mustard N-oxide and nitrosourethane. Brit. J. Cancer 23: 167-171 (1969). 36. Schaffner, F. Effect of long term vinyl ... nitrogen mustard, methyl- cholanthrene, and nitrofur derivatives and is known 44 FIGURE 21. Irregular shaped mitochondria with ... Heston, W. E. Carcinogenic action of the mustards. Cancer Res. 10: 224 (1950). 27. Larson, C. D. Pulmonary tumor induction with ...
Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to ... Mustard Compounds: 2*Nitrogen Mustard Compounds: 1*Phosphoramide Mustards: 4*Cyclophosphamide: 18416*Ifosfamide: 2752 ... Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to ...
He speaks about his studies of biochemistry, including anti-purines, nitrogen-mustard compounds, and antibiotic derivatives.. ( ... He speaks in more detail about his research in anti-purine compounds and its application in treating gout.. (16:13) Macon and ...
Adult, Aged, Antineoplastic Agents, Female, Humans, Leukocyte Count, Male, Middle Aged, Nitrogen Mustard Compounds, Platelet ...

No FAQ available that match "nitrogen mustard compounds"

No images available that match "nitrogen mustard compounds"