Either one of the two small elongated rectangular bones that together form the bridge of the nose.
A specialized CONNECTIVE TISSUE that is the main constituent of the SKELETON. The principle cellular component of bone is comprised of OSTEOBLASTS; OSTEOCYTES; and OSTEOCLASTS, while FIBRILLAR COLLAGENS and hydroxyapatite crystals form the BONE MATRIX.
A chromosome disorder associated either with an extra chromosome 21 or an effective trisomy for chromosome 21. Clinical manifestations include hypotonia, short stature, brachycephaly, upslanting palpebral fissures, epicanthus, Brushfield spots on the iris, protruding tongue, small ears, short, broad hands, fifth finger clinodactyly, Simian crease, and moderate to severe INTELLECTUAL DISABILITY. Cardiac and gastrointestinal malformations, a marked increase in the incidence of LEUKEMIA, and the early onset of ALZHEIMER DISEASE are also associated with this condition. Pathologic features include the development of NEUROFIBRILLARY TANGLES in neurons and the deposition of AMYLOID BETA-PROTEIN, similar to the pathology of ALZHEIMER DISEASE. (Menkes, Textbook of Child Neurology, 5th ed, p213)
The mucous lining of the NASAL CAVITY, including lining of the nostril (vestibule) and the OLFACTORY MUCOSA. Nasal mucosa consists of ciliated cells, GOBLET CELLS, brush cells, small granule cells, basal cells (STEM CELLS) and glands containing both mucous and serous cells.
In utero measurement corresponding to the sitting height (crown to rump) of the fetus. Length is considered a more accurate criterion of the age of the fetus than is the weight. The average crown-rump length of the fetus at term is 36 cm. (From Williams Obstetrics, 18th ed, p91)
The visualization of tissues during pregnancy through recording of the echoes of ultrasonic waves directed into the body. The procedure may be applied with reference to the mother or the fetus and with reference to organs or the detection of maternal or fetal disease.
A prenatal ultrasonography measurement of the soft tissue behind the fetal neck. Either the translucent area below the skin in the back of the fetal neck (nuchal translucency) or the distance between occipital bone to the outer skin line (nuchal fold) is measured.
The beginning third of a human PREGNANCY, from the first day of the last normal menstrual period (MENSTRUATION) through the completion of 14 weeks (98 days) of gestation.
The continuous turnover of BONE MATRIX and mineral that involves first an increase in BONE RESORPTION (osteoclastic activity) and later, reactive BONE FORMATION (osteoblastic activity). The process of bone remodeling takes place in the adult skeleton at discrete foci. The process ensures the mechanical integrity of the skeleton throughout life and plays an important role in calcium HOMEOSTASIS. An imbalance in the regulation of bone remodeling's two contrasting events, bone resorption and bone formation, results in many of the metabolic bone diseases, such as OSTEOPOROSIS.
The middle third of a human PREGNANCY, from the beginning of the 15th through the 28th completed week (99 to 196 days) of gestation.
The amount of mineral per square centimeter of BONE. This is the definition used in clinical practice. Actual bone density would be expressed in grams per milliliter. It is most frequently measured by X-RAY ABSORPTIOMETRY or TOMOGRAPHY, X RAY COMPUTED. Bone density is an important predictor for OSTEOPOROSIS.
Fractures of the skull which may result from penetrating or nonpenetrating head injuries or rarely BONE DISEASES (see also FRACTURES, SPONTANEOUS). Skull fractures may be classified by location (e.g., SKULL FRACTURE, BASILAR), radiographic appearance (e.g., linear), or based upon cranial integrity (e.g., SKULL FRACTURE, DEPRESSED).
Focal accumulations of EDEMA fluid in the NASAL MUCOSA accompanied by HYPERPLASIA of the associated submucosal connective tissue. Polyps may be NEOPLASMS, foci of INFLAMMATION, degenerative lesions, or malformations.
The partition separating the two NASAL CAVITIES in the midplane. It is formed by the SEPTAL NASAL CARTILAGE, parts of skull bones (ETHMOID BONE; VOMER), and membranous parts.
The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated as the time from the last day of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
Bone loss due to osteoclastic activity.
The age of the mother in PREGNANCY.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
A method for diagnosis of fetal diseases by sampling the cells of the placental chorionic villi for DNA analysis, presence of bacteria, concentration of metabolites, etc. The advantage over amniocentesis is that the procedure can be carried out in the first trimester.
Fluid obtained by THERAPEUTIC IRRIGATION or washout of the nasal cavity and NASAL MUCOSA. The resulting fluid is used in cytologic and immunologic assays of the nasal mucosa such as with the NASAL PROVOCATION TEST in the diagnosis of nasal hypersensitivity.
The short, submetacentric human chromosomes, called group E in the human chromosome classification. This group consists of chromosome pairs 16, 17, and 18.
The beta subunit of human CHORIONIC GONADOTROPIN. Its structure is similar to the beta subunit of LUTEINIZING HORMONE, except for the additional 30 amino acids at the carboxy end with the associated carbohydrate residues. HCG-beta is used as a diagnostic marker for early detection of pregnancy, spontaneous abortion (ABORTION, SPONTANEOUS); ECTOPIC PREGNANCY; HYDATIDIFORM MOLE; CHORIOCARCINOMA; or DOWN SYNDROME.
A product of the PLACENTA, and DECIDUA, secreted into the maternal circulation during PREGNANCY. It has been identified as an IGF binding protein (IGFBP)-4 protease that proteolyzes IGFBP-4 and thus increases IGF bioavailability. It is found also in human FIBROBLASTS, ovarian FOLLICULAR FLUID, and GRANULOSA CELLS. The enzyme is a heterotetramer of about 500-kDa.
Abnormalities of the nose acquired after birth from injury or disease.
Tumors or cancer located in bone tissue or specific BONES.
The growth and development of bones from fetus to adult. It includes two principal mechanisms of bone growth: growth in length of long bones at the epiphyseal cartilages and growth in thickness by depositing new bone (OSTEOGENESIS) with the actions of OSTEOBLASTS and OSTEOCLASTS.
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells.
Diseases of BONES.
The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object.
A part of the upper respiratory tract. It contains the organ of SMELL. The term includes the external nose, the nasal cavity, and the PARANASAL SINUSES.
The medium-sized, acrocentric human chromosomes, called group D in the human chromosome classification. This group consists of chromosome pairs 13, 14, and 15.
Drugs designed to treat inflammation of the nasal passages, generally the result of an infection (more often than not the common cold) or an allergy related condition, e.g., hay fever. The inflammation involves swelling of the mucous membrane that lines the nasal passages and results in inordinate mucus production. The primary class of nasal decongestants are vasoconstrictor agents. (From PharmAssist, The Family Guide to Health and Medicine, 1993)
The facial skeleton, consisting of bones situated between the cranial base and the mandibular region. While some consider the facial bones to comprise the hyoid (HYOID BONE), palatine (HARD PALATE), and zygomatic (ZYGOMA) bones, MANDIBLE, and MAXILLA, others include also the lacrimal and nasal bones, inferior nasal concha, and vomer but exclude the hyoid bone. (Jablonski, Dictionary of Dentistry, 1992, p113)
Renewal or repair of lost bone tissue. It excludes BONY CALLUS formed after BONE FRACTURES but not yet replaced by hard bone.
Extracellular substance of bone tissue consisting of COLLAGEN fibers, ground substance, and inorganic crystalline minerals and salts.
The failure by the observer to measure or identify a phenomenon accurately, which results in an error. Sources for this may be due to the observer's missing an abnormality, or to faulty technique resulting in incorrect test measurement, or to misinterpretation of the data. Two varieties are inter-observer variation (the amount observers vary from one another when reporting on the same material) and intra-observer variation (the amount one observer varies between observations when reporting more than once on the same material).
The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION.
Pregnancy in which the mother and/or FETUS are at greater than normal risk of MORBIDITY or MORTALITY. Causes include inadequate PRENATAL CARE, previous obstetrical history (ABORTION, SPONTANEOUS), pre-existing maternal disease, pregnancy-induced disease (GESTATIONAL HYPERTENSION), and MULTIPLE PREGNANCY, as well as advanced maternal age above 35.
The grafting of bone from a donor site to a recipient site.
Pathophysiological conditions of the FETUS in the UTERUS. Some fetal diseases may be treated with FETAL THERAPIES.
The proximal portion of the respiratory passages on either side of the NASAL SEPTUM. Nasal cavities, extending from the nares to the NASOPHARYNX, are lined with ciliated NASAL MUCOSA.
Works containing information articles on subjects in every field of knowledge, usually arranged in alphabetical order, or a similar work limited to a special field or subject. (From The ALA Glossary of Library and Information Science, 1983)
Tumors or cancer of the NOSE.
Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed)
Disorders of the nose, general or unspecified.
**I must clarify that there is no recognized or established medical term or definition for 'Texas.' However, if you're asking for a possible humorous play on words using the term 'Texas' in a medical context, here it is:**
Special hospitals which provide care for ill children.
Abnormal fluid accumulation in TISSUES or body cavities. Most cases of edema are present under the SKIN in SUBCUTANEOUS TISSUE.

Goosecoid acts cell autonomously in mesenchyme-derived tissues during craniofacial development. (1/204)

Mice homozygous for a targeted deletion of the homeobox gene Goosecoid (Gsc) have multiple craniofacial defects. To understand the mechanisms responsible for these defects, the behavior of Gsc-null cells was examined in morula aggregation chimeras. In these chimeras, Gsc-null cells were marked with beta-galactosidase (beta-gal) activity using the ROSA26 lacZ allele. In addition, mice with a lacZ gene that had been introduced into the Gsc locus were used as a guide to visualize the location of Gsc-expressing cells. In Gsc-null<->wild-type chimeras, tissues that would normally not express Gsc were composed of both Gsc-null and wild-type cells that were well mixed, reflecting the overall genotypic composition of the chimeras. However, craniofacial tissues that would normally express Gsc were essentially devoid of Gsc-null cells. Furthermore, the nasal capsules and mandibles of the chimeras had defects similar to Gsc-null mice that varied in severity depending upon the proportion of Gsc-null cells. These results combined with the analysis of Gsc-null mice suggest that Gsc functions cell autonomously in mesenchyme-derived tissues of the head. A developmental analysis of the tympanic ring bone, a bone that is always absent in Gsc-null mice because of defects at the cell condensation stage, showed that Gsc-null cells had the capacity to form the tympanic ring condensation in the presence of wild-type cells. However, analysis of the tympanic ring bones of 18.5 d.p.c. chimeras suggests that Gsc-null cells were not maintained. The participation of Gsc-null cells in the tympanic ring condensation of chimeras may be an epigenetic phenomenon that results in a local environment in which more precursor cells are present. Thus, the skeletal defects observed in Gsc-null mice may reflect a regional reduction of precursor cells during embryonic development.  (+info)

Rhinostomies: an open and shut case? (2/204)

AIMS: To analyse bone fragments from rhinostomies of patients undergoing revisional dacryocystorhinostomy, looking for evidence of new bone formation. METHODS: 14 consecutive patients undergoing secondary lacrimal surgery were included in this study. In each case the existing rhinostomy was enlarged with bone punches, care being taken to use the punches with the jaws cutting perpendicularly to the edge of the rhinostomy, to allow accurate orientation of the specimens. The fragments were examined histologically for evidence of new bone formation. RESULTS: Histological sections showed fragments of bone with variable fibrosis at the edge of the rhinostomy. There was evidence of only very little new bone formation. CONCLUSION: This study has clearly shown that, at the edge of a rhinostomy, healing is predominantly by fibrosis and there is only very limited new bone formation.  (+info)

Location of the glenoid fossa after a period of unilateral masticatory function in young rabbits. (3/204)

Changes in glenoid fossa position and skull morphology after a period of unilateral masticatory function were studied. The right-side maxillary and mandibular molars in twenty-seven 10-day-old rabbits were ground down under general anaesthesia. The procedure was repeated twice a week, until the rabbits were 50 days old. Fourteen rabbits were then killed and 13 left to grow to age 100 days. Nine 50-day-old and sixteen 100-day-old rabbits with unmodified occlusions served as controls. Three-dimensional measurements were made using a machine-vision technique and a video-imaging camera. The glenoid fossa position become more anterior in both groups of animals subjected to molar grinding as compared with controls (P < 0.01 in the 50-day-old group and P < 0.05 in 100-day-old group). In the 100-day-old group the right-side fossa was also in a more inferior position (P < 0.01). The glenoid fossa was more anteriorly located on the right than on the left side of individual animals in the group in which the right-side molars had been ground down (P < 0.001).  (+info)

The prenatal cranial base complex and hand in Turner syndrome. (4/204)

From early childhood, Turner syndrome patients have a flattened cranial base, maxillary retrognathism, and short hands. There are, however, no studies that show when these genotype-determined abnormalities occur prenatally. The purpose of the present study was to measure craniofacial profile and hand radiographs of second trimester foetuses with Turner syndrome and compare the results with similar measurements from normal foetuses. The subjects consisted of 12 Turner syndrome foetuses, gestational age (GA) varying between 15 and 24 weeks, and crown-rump length (CRL) between 108 and 220 mm. The mid-sagittal block of each cranium was analysed as part of the requested brain analysis (pituitary gland analysis). This block and the right hand from seven foetuses were radiographed, and the skeletal maturity of the cranial base complex, i.e. the cranial base and the maxilla, was evaluated from the profile radiographs. Shape and size measurements in the cranial base were performed, and compared with normal values according to cranial maturity and to CRL. The cranial base angle in Turner syndrome was greater and the maxillary prognathism was reduced compared with the normal group. The dimensions in the cranial complex and in the hand showed that the bone lengths and distances in relation to CRL were generally smaller compared with normal foetuses. This investigation showed that the abnormal shape of the cranial base complex and the short hands in Turner syndrome are present prenatally.  (+info)

Bone CT evaluation of nasal cavity of acromegalics--its morphological and surgical implication in comparison to non-acromegalics. (5/204)

PURPOSE: In order to numerically compare the morphological differences of the nasal cavity and nasal sinus between acromegalics and non-acromegalics, bone window CT scans sliced parallel to the transsphenoidal surgical route were performed. MATERIAL AND CASES: Acromegalic patients had small or large macroadenomas and were 13 (7 men and 6 women) in number, aged 53.2 +/- 16.1 years. Non-acromegalic patients had pituitary tumors and were 44 (21 men and 23 women) in number, aged 52.1 +/- 12.5 years. RESULTS: The results of acromegalics are described in comparison to non-acromegalics in parentheses. a) The width of the surgical corridor: piriform aperture, 27.6 +/- 2.7 (25.9 +/- 2.6) mm; origin of inferior nasal concha, 29.4 +/- 9.4 (26.6 +/- 4.0) mm; and origin of middle nasal concha, 29.8 +/- 3.2 (26.2 +/- 4.2) mm. b) The depth of the surgical corridor: the upper lip thickness, 18.1 +/- 2.7 (13.3 +/- 1.4) mm; the distances between piriform aperture and sphenoid wall, 52.9 +/- 4.6 (49 +/- 4.2) mm; sphenoid wall and sellar floor, 17.3 +/- 4.1 (18.7 +/- 4.1) mm; and sellar floor to dorsum sellae, 17.6 +/- 3.4 (15.6 +/- 4.0) mm. c) Marked carotid prominence: 7/13=53.4% (8/44=18.25%). d) Sinusitis: 8/13=61.5% (12/44=27.3%). DISCUSSION & CONCLUSION: The data presented above show that morphological differences in bony nasal cavity and soft tissue may be responsible for a deeper and narrower surgical field for acromegalics. Acromegalics had a marked carotid prominence more frequently, which needs special attention to avoid carotid injury, when enlarging the surgical field. Knowing these morphological differences will provide useful information for peri- and intra-operative care.  (+info)

The prenatal diagnosis of Binder syndrome before 24 weeks of gestation: case report. (6/204)

A case of Binder syndrome was diagnosed at 21 weeks of gestation using two-dimensional and three-dimensional ultrasound. The first indication of any abnormality was a flattened fetal nose demonstrated in the mid-sagittal plane. Further ultrasound imaging showed the virtual absence of the naso-frontal angle, giving the impression of a flat forehead and small fetal nose. Suspected mild hypertelorism was also seen using transverse and coronal planes. Differential diagnosis of this condition is discussed.  (+info)

A critical evaluation of the pitchfork analysis. (7/204)

The pitchfork analysis has gained increasing acceptance among researchers and clinicians to evaluate the effects of orthodontic treatment that can be measured on lateral cephalometric radiographs. It is primarily used in Class II cases to distinguish between the skeletal and dental effects of such treatments. The aim of this study was to conduct an objective evaluation of the pitchfork analysis by comparing cephalometric data obtained by that method with those using the more conventional and established method of Bjork. The pitchfork analysis consistently provided an overestimation of the skeletal effects and an under-estimation of the dental changes. These results indicate that the pitchfork analysis is not sufficiently sensitive to distinguish between the skeletal and dental effects of orthodontic treatment.  (+info)

Rapid palatal expansion in mixed dentition using a modified expander: a cephalometric investigation. (8/204)

The aims of this investigation were to cephalometrically study the short-term skeletal and dental modifications induced by rapid palatal expansion in a sample of 20 patients (10 male, 10 female), aged 6-10 years (mean age 8 years) in mixed dentition with a uni- or bilateral posterior crossbite, a mild skeletal Class II malocclusion, and an increased vertical dimension (FMA, SN/\GoGn), and to compare them with an untreated matched control group of 20 subjects (10 male and 10 female), mean age 8 years. Cephalometric analysis showed that the maxilla displayed a tendency to rotate downwards and backward, resulting in a statistically significant increase of the SN/\PP angle (T0 = 9*95 degrees, T1 = 11*60 degrees, P < 0*01) and the SN-ANS linear value (T0 = 49*50 mm, T1 = 51*10 mm, P < 0*05). In addition, there was a statistically significant alteration of the anterior total facial height N-Me (T0 = 113*15mm, T1 = 114*15 mm, P < 0*05) and for the dental upper molar measurement U6-PP (T0 = 19*70 mm, T1 = 20*30 mm, P < 0*05). The small alterations found in the anterior total facial height and in the sagittal angles agree with previous studies, and suggest that RPE can be also used in subjects with a tendency to vertical growth and a skeletal Class II malocclusion.  (+info)

The nasal bones are a pair of small, thin bones located in the upper part of the face, specifically in the middle of the nose. They articulate with each other at the nasal bridge and with the frontal bone above, the maxillae (upper jaw bones) on either side, and the septal cartilage inside the nose. The main function of the nasal bones is to form the bridge of the nose and protect the nasal cavity. Any damage to these bones can result in a fracture or broken nose.

"Bone" is the hard, dense connective tissue that makes up the skeleton of vertebrate animals. It provides support and protection for the body's internal organs, and serves as a attachment site for muscles, tendons, and ligaments. Bone is composed of cells called osteoblasts and osteoclasts, which are responsible for bone formation and resorption, respectively, and an extracellular matrix made up of collagen fibers and mineral crystals.

Bones can be classified into two main types: compact bone and spongy bone. Compact bone is dense and hard, and makes up the outer layer of all bones and the shafts of long bones. Spongy bone is less dense and contains large spaces, and makes up the ends of long bones and the interior of flat and irregular bones.

The human body has 206 bones in total. They can be further classified into five categories based on their shape: long bones, short bones, flat bones, irregular bones, and sesamoid bones.

Down syndrome is a genetic disorder caused by the presence of all or part of a third copy of chromosome 21. It is characterized by intellectual and developmental disabilities, distinctive facial features, and sometimes physical growth delays and health problems. The condition affects approximately one in every 700 babies born in the United States.

Individuals with Down syndrome have varying degrees of cognitive impairment, ranging from mild to moderate or severe. They may also have delayed development, including late walking and talking, and may require additional support and education services throughout their lives.

People with Down syndrome are at increased risk for certain health conditions, such as congenital heart defects, respiratory infections, hearing loss, vision problems, gastrointestinal issues, and thyroid disorders. However, many individuals with Down syndrome live healthy and fulfilling lives with appropriate medical care and support.

The condition is named after John Langdon Down, an English physician who first described the syndrome in 1866.

Nasal mucosa refers to the mucous membrane that lines the nasal cavity. It is a delicate, moist, and specialized tissue that contains various types of cells including epithelial cells, goblet cells, and glands. The primary function of the nasal mucosa is to warm, humidify, and filter incoming air before it reaches the lungs.

The nasal mucosa produces mucus, which traps dust, allergens, and microorganisms, preventing them from entering the respiratory system. The cilia, tiny hair-like structures on the surface of the epithelial cells, help move the mucus towards the back of the throat, where it can be swallowed or expelled.

The nasal mucosa also contains a rich supply of blood vessels and immune cells that help protect against infections and inflammation. It plays an essential role in the body's defense system by producing antibodies, secreting antimicrobial substances, and initiating local immune responses.

Crown-rump length (CRL) is a medical measurement used in obstetrics to estimate the age of a developing fetus. It refers to the length from the top of the head (crown) to the bottom of the buttocks (rump). This measurement is typically taken during an ultrasound examination in the first trimester of pregnancy, between 8 and 13 weeks of gestation.

The CRL is used to calculate the estimated due date and to monitor fetal growth and development. It can also help identify potential issues or abnormalities in fetal development. As the pregnancy progresses, other measurements such as head circumference, abdominal circumference, and femur length are used to assess fetal growth and development.

Prenatal ultrasonography, also known as obstetric ultrasound, is a medical diagnostic procedure that uses high-frequency sound waves to create images of the developing fetus, placenta, and amniotic fluid inside the uterus. It is a non-invasive and painless test that is widely used during pregnancy to monitor the growth and development of the fetus, detect any potential abnormalities or complications, and determine the due date.

During the procedure, a transducer (a small handheld device) is placed on the mother's abdomen and moved around to capture images from different angles. The sound waves travel through the mother's body and bounce back off the fetus, producing echoes that are then converted into electrical signals and displayed as images on a screen.

Prenatal ultrasonography can be performed at various stages of pregnancy, including early pregnancy to confirm the pregnancy and detect the number of fetuses, mid-pregnancy to assess the growth and development of the fetus, and late pregnancy to evaluate the position of the fetus and determine if it is head down or breech. It can also be used to guide invasive procedures such as amniocentesis or chorionic villus sampling.

Overall, prenatal ultrasonography is a valuable tool in modern obstetrics that helps ensure the health and well-being of both the mother and the developing fetus.

Nuchal translucency measurement (NT) is a prenatal ultrasound assessment used to screen for chromosomal abnormalities, particularly Down syndrome (Trisomy 21), and other fetal abnormalities. The nuchal translucency refers to the sonolucent space or fluid-filled area at the back of the neck of a developing fetus. During the first trimester of pregnancy, an increased nuchal translucency measurement may indicate an increased risk for certain genetic disorders and structural defects.

The procedure involves measuring the thickness of this fluid-filled space using ultrasound imaging, typically between 11 and 14 weeks of gestation. A larger nuchal translucency measurement (usually greater than 3 mm) may suggest an increased risk for chromosomal abnormalities or structural issues in the fetus. The NT measurement is often combined with maternal age, biochemical markers (such as PAPP-A and free beta-hCG), and sometimes first-trimester fetal heart rate assessment to calculate the overall risk of chromosomal abnormalities in the fetus.

It's important to note that while an increased nuchal translucency measurement can indicate a higher risk for genetic disorders, it does not confirm their presence. Further diagnostic testing, such as chorionic villus sampling (CVS) or amniocentesis, may be recommended to obtain a definitive diagnosis.

The first trimester of pregnancy is defined as the period of gestational development that extends from conception (fertilization of the egg by sperm) to the end of the 13th week. This critical phase marks significant transformations in both the mother's body and the growing embryo/fetus.

During the first trimester, the fertilized egg implants into the uterine lining (implantation), initiating a series of complex interactions leading to the formation of the placenta - an organ essential for providing nutrients and oxygen to the developing fetus while removing waste products. Simultaneously, the embryo undergoes rapid cell division and differentiation, giving rise to various organs and systems. By the end of the first trimester, most major structures are present, although they continue to mature and grow throughout pregnancy.

The mother may experience several physiological changes during this time, including:
- Morning sickness (nausea and vomiting)
- Fatigue
- Breast tenderness
- Frequent urination
- Food aversions or cravings
- Mood swings

Additionally, hormonal shifts can cause various symptoms and prepare the body for potential changes in lactation, posture, and pelvic alignment as pregnancy progresses. Regular prenatal care is crucial during this period to monitor both maternal and fetal wellbeing, identify any potential complications early on, and provide appropriate guidance and support throughout the pregnancy.

Bone remodeling is the normal and continuous process by which bone tissue is removed from the skeleton (a process called resorption) and new bone tissue is formed (a process called formation). This ongoing cycle allows bones to repair microdamage, adjust their size and shape in response to mechanical stress, and maintain mineral homeostasis. The cells responsible for bone resorption are osteoclasts, while the cells responsible for bone formation are osteoblasts. These two cell types work together to maintain the structural integrity and health of bones throughout an individual's life.

During bone remodeling, the process can be divided into several stages:

1. Activation: The initiation of bone remodeling is triggered by various factors such as microdamage, hormonal changes, or mechanical stress. This leads to the recruitment and activation of osteoclast precursor cells.
2. Resorption: Osteoclasts attach to the bone surface and create a sealed compartment called a resorption lacuna. They then secrete acid and enzymes that dissolve and digest the mineralized matrix, creating pits or cavities on the bone surface. This process helps remove old or damaged bone tissue and releases calcium and phosphate ions into the bloodstream.
3. Reversal: After resorption is complete, the osteoclasts undergo apoptosis (programmed cell death), and mononuclear cells called reversal cells appear on the resorbed surface. These cells prepare the bone surface for the next stage by cleaning up debris and releasing signals that attract osteoblast precursors.
4. Formation: Osteoblasts, derived from mesenchymal stem cells, migrate to the resorbed surface and begin producing a new organic matrix called osteoid. As the osteoid mineralizes, it forms a hard, calcified structure that gradually replaces the resorbed bone tissue. The osteoblasts may become embedded within this newly formed bone as they differentiate into osteocytes, which are mature bone cells responsible for maintaining bone homeostasis and responding to mechanical stress.
5. Mineralization: Over time, the newly formed bone continues to mineralize, becoming stronger and more dense. This process helps maintain the structural integrity of the skeleton and ensures adequate calcium storage.

Throughout this continuous cycle of bone remodeling, hormones, growth factors, and mechanical stress play crucial roles in regulating the balance between resorption and formation. Disruptions to this delicate equilibrium can lead to various bone diseases, such as osteoporosis, where excessive resorption results in weakened bones and increased fracture risk.

The second trimester of pregnancy is the period between the completion of 12 weeks (the end of the first trimester) and 26 weeks (the beginning of the third trimester) of gestational age. It is often considered the most comfortable period for many pregnant women as the risk of miscarriage decreases significantly, and the symptoms experienced during the first trimester, such as nausea and fatigue, typically improve.

During this time, the uterus expands above the pubic bone, allowing more space for the growing fetus. The fetal development in the second trimester includes significant growth in size and weight, formation of all major organs, and the beginning of movement sensations that the mother can feel. Additionally, the fetus starts to hear, swallow and kick, and the skin is covered with a protective coating called vernix.

Prenatal care during this period typically includes regular prenatal appointments to monitor the mother's health and the baby's growth and development. These appointments may include measurements of the uterus, fetal heart rate monitoring, and screening tests for genetic disorders or other potential issues.

Bone density refers to the amount of bone mineral content (usually measured in grams) in a given volume of bone (usually measured in cubic centimeters). It is often used as an indicator of bone strength and fracture risk. Bone density is typically measured using dual-energy X-ray absorptiometry (DXA) scans, which provide a T-score that compares the patient's bone density to that of a young adult reference population. A T-score of -1 or above is considered normal, while a T-score between -1 and -2.5 indicates osteopenia (low bone mass), and a T-score below -2.5 indicates osteoporosis (porous bones). Regular exercise, adequate calcium and vitamin D intake, and medication (if necessary) can help maintain or improve bone density and prevent fractures.

A skull fracture is a break in one or more of the bones that form the skull. It can occur from a direct blow to the head, penetrating injuries like gunshot wounds, or from strong rotational forces during an accident. There are several types of skull fractures, including:

1. Linear Skull Fracture: This is the most common type, where there's a simple break in the bone without any splintering, depression, or displacement. It often doesn't require treatment unless it's near a sensitive area like an eye or ear.

2. Depressed Skull Fracture: In this type, a piece of the skull is pushed inward toward the brain. Surgery may be needed to relieve pressure on the brain and repair the fracture.

3. Diastatic Skull Fracture: This occurs along the suture lines (the fibrous joints between the skull bones) that haven't fused yet, often seen in infants and young children.

4. Basilar Skull Fracture: This involves fractures at the base of the skull. It can be serious due to potential injury to the cranial nerves and blood vessels located in this area.

5. Comminuted Skull Fracture: In this severe type, the bone is shattered into many pieces. These fractures usually require extensive surgical repair.

Symptoms of a skull fracture can include pain, swelling, bruising, bleeding (if there's an open wound), and in some cases, clear fluid draining from the ears or nose (cerebrospinal fluid leak). Severe fractures may cause brain injury, leading to symptoms like confusion, loss of consciousness, seizures, or neurological deficits. Immediate medical attention is necessary for any suspected skull fracture.

Nasal polyps are benign (noncancerous) growths that originate from the lining of your nasal passages or sinuses. They most often occur in the area where the sinuses open into the nasal cavity. Small nasal polyps may not cause any problems. But if they grow large enough, they can block your nasal passages and lead to breathing issues, frequent infections and loss of smell.

Nasal polyps are associated with chronic inflammation due to conditions such as asthma, allergic rhinitis or chronic sinusitis. Treatment typically includes medication to reduce the size of the polyps or surgery to remove them. Even after successful treatment, nasal polyps often return.

The nasal septum is the thin, flat wall of bone and cartilage that separates the two sides (nostrils) of the nose. Its primary function is to support the structures of the nose, divide the nostrils, and regulate airflow into the nasal passages. The nasal septum should be relatively centered, but it's not uncommon for a deviated septum to occur, where the septum is displaced to one side, which can sometimes cause blockage or breathing difficulties in the more affected nostril.

Gestational age is the length of time that has passed since the first day of the last menstrual period (LMP) in pregnant women. It is the standard unit used to estimate the age of a pregnancy and is typically expressed in weeks. This measure is used because the exact date of conception is often not known, but the start of the last menstrual period is usually easier to recall.

It's important to note that since ovulation typically occurs around two weeks after the start of the LMP, gestational age is approximately two weeks longer than fetal age, which is the actual time elapsed since conception. Medical professionals use both gestational and fetal age to track the development and growth of the fetus during pregnancy.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Bone resorption is the process by which bone tissue is broken down and absorbed into the body. It is a normal part of bone remodeling, in which old or damaged bone tissue is removed and new tissue is formed. However, excessive bone resorption can lead to conditions such as osteoporosis, in which bones become weak and fragile due to a loss of density. This process is carried out by cells called osteoclasts, which break down the bone tissue and release minerals such as calcium into the bloodstream.

Maternal age is a term used to describe the age of a woman at the time she becomes pregnant or gives birth. It is often used in medical and epidemiological contexts to discuss the potential risks, complications, and outcomes associated with pregnancy and childbirth at different stages of a woman's reproductive years.

Advanced maternal age typically refers to women who become pregnant or give birth at 35 years of age or older. This group faces an increased risk for certain chromosomal abnormalities, such as Down syndrome, and other pregnancy-related complications, including gestational diabetes, preeclampsia, and cesarean delivery.

On the other end of the spectrum, adolescent pregnancies (those that occur in women under 20 years old) also come with their own set of potential risks and complications, such as preterm birth, low birth weight, and anemia.

It's important to note that while maternal age can influence pregnancy outcomes, many other factors – including genetics, lifestyle choices, and access to quality healthcare – can also play a significant role in determining the health of both mother and baby during pregnancy and childbirth.

Bone marrow is the spongy tissue found inside certain bones in the body, such as the hips, thighs, and vertebrae. It is responsible for producing blood-forming cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow: red marrow, which is involved in blood cell production, and yellow marrow, which contains fatty tissue.

Red bone marrow contains hematopoietic stem cells, which can differentiate into various types of blood cells. These stem cells continuously divide and mature to produce new blood cells that are released into the circulation. Red blood cells carry oxygen throughout the body, white blood cells help fight infections, and platelets play a crucial role in blood clotting.

Bone marrow also serves as a site for immune cell development and maturation. It contains various types of immune cells, such as lymphocytes, macrophages, and dendritic cells, which help protect the body against infections and diseases.

Abnormalities in bone marrow function can lead to several medical conditions, including anemia, leukopenia, thrombocytopenia, and various types of cancer, such as leukemia and multiple myeloma. Bone marrow aspiration and biopsy are common diagnostic procedures used to evaluate bone marrow health and function.

Chorionic villi sampling (CVS) is a prenatal testing procedure that involves taking a small sample of the chorionic villi, which are finger-like projections of the placenta that contain fetal cells. The sample is then tested for genetic disorders and chromosomal abnormalities, such as Down syndrome.

CVS is typically performed between the 10th and 12th weeks of pregnancy and carries a small risk of miscarriage (about 1 in 100 to 1 in 200 procedures). The results of CVS can provide important information about the health of the fetus, allowing parents to make informed decisions about their pregnancy. However, it is important to note that CVS does not detect all genetic disorders and may produce false positive or false negative results in some cases. Therefore, follow-up testing may be necessary.

Nasal lavage fluid refers to the fluid that is obtained through a process called nasal lavage or nasal washing. This procedure involves instilling a saline solution into the nose and then allowing it to drain out, taking with it any mucus, debris, or other particles present in the nasal passages. The resulting fluid can be collected and analyzed for various purposes, such as diagnosing sinus infections, allergies, or other conditions affecting the nasal cavity and surrounding areas.

It is important to note that the term "nasal lavage fluid" may also be used interchangeably with "nasal wash fluid," "nasal irrigation fluid," or "sinus rinse fluid." These terms all refer to the same basic concept of using a saline solution to clean out the nasal passages and collect the resulting fluid for analysis.

Chromosomes are thread-like structures located in the nucleus of cells that contain most of the DNA present in cells. They come in pairs, with one set inherited from each parent. In humans, there are typically 23 pairs of chromosomes, for a total of 46 chromosomes.

Chromosomes 16-18 refer to the specific chromosomes that make up the 16th and 17th pairs in human cells. Chromosome 16 is an acrocentric chromosome, meaning it has a short arm (p arm) and a long arm (q arm), with the centromere located near the middle of the chromosome. It contains around 115 million base pairs of DNA and encodes approximately 1,100 genes.

Chromosome 17 is a metacentric chromosome, meaning it has a centromere located in the middle, dividing the chromosome into two arms of equal length. It contains around 81 million base pairs of DNA and encodes approximately 1,300 genes.

Chromosome 18 is a small acrocentric chromosome with a short arm (p arm) and a long arm (q arm), with the centromere located near the end of the short arm. It contains around 76 million base pairs of DNA and encodes approximately 1,200 genes.

Abnormalities in these chromosomes can lead to various genetic disorders, such as Edwards syndrome (trisomy 18), Patau syndrome (trisomy 13), and some forms of Down syndrome (translocation between chromosomes 14 and 21).

Chorionic Gonadotropin, beta Subunit, Human (β-hCG) is a protein that is produced by the placenta during pregnancy. It is a component of human chorionic gonadotropin (hCG), which is a hormone that is composed of two subunits: alpha and beta. The β-hCG subunit is specific to hCG and is not found in other hormones, making it a useful marker for pregnancy and certain medical conditions.

During early pregnancy, the levels of β-hCG increase rapidly and can be detected in the blood and urine. This has led to the development of pregnancy tests that detect the presence of β-hCG to confirm pregnancy. In addition to its role in pregnancy, β-hCG is also used as a tumor marker for certain types of cancer, such as germ cell tumors and choriocarcinoma.

Elevated levels of β-hCG may indicate the presence of a molar pregnancy, a condition in which a fertilized egg implants in the uterus but does not develop properly. In some cases, a molar pregnancy can become cancerous and require treatment. Therefore, monitoring β-hCG levels during pregnancy is important for detecting any potential complications.

Pregnancy-associated plasma protein-A (PAPP-A) is a protease that is often used as a biomarker in early pregnancy. It is a protein that is produced by the placenta and can be detected in the mother's bloodstream during pregnancy.

In early pregnancy, low levels of PAPP-A may indicate an increased risk for certain complications, such as preeclampsia or fetal growth restriction. High levels of PAPP-A, on the other hand, may be associated with an increased risk of chromosomal abnormalities, such as Down syndrome.

It is important to note that while PAPP-A levels can provide valuable information about the health of a pregnancy, they are just one piece of the puzzle and should be considered in conjunction with other factors, such as maternal age, medical history, and ultrasound results. Your healthcare provider will use this information along with other tests to assess your risk for certain complications and develop an appropriate plan of care.

Acquired nose deformities refer to structural changes or abnormalities in the shape of the nose that occur after birth, as opposed to congenital deformities which are present at birth. These deformities can result from various factors such as trauma, injury, infection, tumors, or surgical procedures. Depending on the severity and cause of the deformity, it may affect both the aesthetic appearance and functionality of the nose, potentially causing difficulty in breathing, sinus problems, or sleep apnea. Treatment options for acquired nose deformities may include minimally invasive procedures, such as fillers or laser surgery, or more extensive surgical interventions, such as rhinoplasty or septoplasty, to restore both form and function to the nose.

Bone neoplasms are abnormal growths or tumors that develop in the bone. They can be benign (non-cancerous) or malignant (cancerous). Benign bone neoplasms do not spread to other parts of the body and are rarely a threat to life, although they may cause problems if they grow large enough to press on surrounding tissues or cause fractures. Malignant bone neoplasms, on the other hand, can invade and destroy nearby tissue and may spread (metastasize) to other parts of the body.

There are many different types of bone neoplasms, including:

1. Osteochondroma - a benign tumor that develops from cartilage and bone
2. Enchondroma - a benign tumor that forms in the cartilage that lines the inside of the bones
3. Chondrosarcoma - a malignant tumor that develops from cartilage
4. Osteosarcoma - a malignant tumor that develops from bone cells
5. Ewing sarcoma - a malignant tumor that develops in the bones or soft tissues around the bones
6. Giant cell tumor of bone - a benign or occasionally malignant tumor that develops from bone tissue
7. Fibrosarcoma - a malignant tumor that develops from fibrous tissue in the bone

The symptoms of bone neoplasms vary depending on the type, size, and location of the tumor. They may include pain, swelling, stiffness, fractures, or limited mobility. Treatment options depend on the type and stage of the tumor but may include surgery, radiation therapy, chemotherapy, or a combination of these treatments.

Bone development, also known as ossification, is the process by which bone tissue is formed and grows. This complex process involves several different types of cells, including osteoblasts, which produce new bone matrix, and osteoclasts, which break down and resorb existing bone tissue.

There are two main types of bone development: intramembranous and endochondral ossification. Intramembranous ossification occurs when bone tissue forms directly from connective tissue, while endochondral ossification involves the formation of a cartilage model that is later replaced by bone.

During fetal development, most bones develop through endochondral ossification, starting as a cartilage template that is gradually replaced by bone tissue. However, some bones, such as those in the skull and clavicles, develop through intramembranous ossification.

Bone development continues after birth, with new bone tissue being laid down and existing tissue being remodeled throughout life. This ongoing process helps to maintain the strength and integrity of the skeleton, allowing it to adapt to changing mechanical forces and repair any damage that may occur.

Bone marrow cells are the types of cells found within the bone marrow, which is the spongy tissue inside certain bones in the body. The main function of bone marrow is to produce blood cells. There are two types of bone marrow: red and yellow. Red bone marrow is where most blood cell production takes place, while yellow bone marrow serves as a fat storage site.

The three main types of bone marrow cells are:

1. Hematopoietic stem cells (HSCs): These are immature cells that can differentiate into any type of blood cell, including red blood cells, white blood cells, and platelets. They have the ability to self-renew, meaning they can divide and create more hematopoietic stem cells.
2. Red blood cell progenitors: These are immature cells that will develop into mature red blood cells, also known as erythrocytes. Red blood cells carry oxygen from the lungs to the body's tissues and carbon dioxide back to the lungs.
3. Myeloid and lymphoid white blood cell progenitors: These are immature cells that will develop into various types of white blood cells, which play a crucial role in the body's immune system by fighting infections and diseases. Myeloid progenitors give rise to granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes (which eventually become platelets). Lymphoid progenitors differentiate into B cells, T cells, and natural killer (NK) cells.

Bone marrow cells are essential for maintaining a healthy blood cell count and immune system function. Abnormalities in bone marrow cells can lead to various medical conditions, such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis, depending on the specific type of blood cell affected. Additionally, bone marrow cells are often used in transplantation procedures to treat patients with certain types of cancer, such as leukemia and lymphoma, or other hematologic disorders.

Bone diseases is a broad term that refers to various medical conditions that affect the bones. These conditions can be categorized into several groups, including:

1. Developmental and congenital bone diseases: These are conditions that affect bone growth and development before or at birth. Examples include osteogenesis imperfecta (brittle bone disease), achondroplasia (dwarfism), and cleidocranial dysostosis.
2. Metabolic bone diseases: These are conditions that affect the body's ability to maintain healthy bones. They are often caused by hormonal imbalances, vitamin deficiencies, or problems with mineral metabolism. Examples include osteoporosis, osteomalacia, and Paget's disease of bone.
3. Inflammatory bone diseases: These are conditions that cause inflammation in the bones. They can be caused by infections, autoimmune disorders, or other medical conditions. Examples include osteomyelitis, rheumatoid arthritis, and ankylosing spondylitis.
4. Degenerative bone diseases: These are conditions that cause the bones to break down over time. They can be caused by aging, injury, or disease. Examples include osteoarthritis, avascular necrosis, and diffuse idiopathic skeletal hyperostosis (DISH).
5. Tumors and cancers of the bone: These are conditions that involve abnormal growths in the bones. They can be benign or malignant. Examples include osteosarcoma, chondrosarcoma, and Ewing sarcoma.
6. Fractures and injuries: While not strictly a "disease," fractures and injuries are common conditions that affect the bones. They can result from trauma, overuse, or weakened bones. Examples include stress fractures, compound fractures, and dislocations.

Overall, bone diseases can cause a wide range of symptoms, including pain, stiffness, deformity, and decreased mobility. Treatment for these conditions varies depending on the specific diagnosis but may include medication, surgery, physical therapy, or lifestyle changes.

Three-dimensional (3D) imaging in medicine refers to the use of technologies and techniques that generate a 3D representation of internal body structures, organs, or tissues. This is achieved by acquiring and processing data from various imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, or confocal microscopy. The resulting 3D images offer a more detailed visualization of the anatomy and pathology compared to traditional 2D imaging techniques, allowing for improved diagnostic accuracy, surgical planning, and minimally invasive interventions.

In 3D imaging, specialized software is used to reconstruct the acquired data into a volumetric model, which can be manipulated and viewed from different angles and perspectives. This enables healthcare professionals to better understand complex anatomical relationships, detect abnormalities, assess disease progression, and monitor treatment response. Common applications of 3D imaging include neuroimaging, orthopedic surgery planning, cancer staging, dental and maxillofacial reconstruction, and interventional radiology procedures.

A nose, in a medical context, refers to the external part of the human body that is located on the face and serves as the primary organ for the sense of smell. It is composed of bone and cartilage, with a thin layer of skin covering it. The nose also contains nasal passages that are lined with mucous membranes and tiny hairs known as cilia. These structures help to filter, warm, and moisturize the air we breathe in before it reaches our lungs. Additionally, the nose plays an essential role in the process of verbal communication by shaping the sounds we make when we speak.

Human chromosomes 13-15 are part of a set of 23 pairs of chromosomes found in the cells of the human body. Chromosomes are thread-like structures that contain genetic material, or DNA, that is inherited from each parent. They are responsible for the development and function of all the body's organs and systems.

Chromosome 13 is a medium-sized chromosome and contains an estimated 114 million base pairs of DNA. It is associated with several genetic disorders, including cri du chat syndrome, which is caused by a deletion on the short arm of the chromosome. Chromosome 13 also contains several important genes, such as those involved in the production of enzymes and proteins that help regulate growth and development.

Chromosome 14 is a medium-sized chromosome and contains an estimated 107 million base pairs of DNA. It is known to contain many genes that are important for the normal functioning of the brain and nervous system, as well as genes involved in the production of immune system proteins. Chromosome 14 is also associated with a number of genetic disorders, including Wolf-Hirschhorn syndrome, which is caused by a deletion on the short arm of the chromosome.

Chromosome 15 is a medium-sized chromosome and contains an estimated 102 million base pairs of DNA. It is associated with several genetic disorders, including Prader-Willi syndrome and Angelman syndrome, which are caused by abnormalities in the expression of genes on the chromosome. Chromosome 15 also contains important genes involved in the regulation of growth and development, as well as genes that play a role in the production of neurotransmitters, the chemical messengers of the brain.

It is worth noting that while chromosomes 13-15 are important for normal human development and function, abnormalities in these chromosomes can lead to a variety of genetic disorders and developmental issues.

Nasal decongestants are medications that are used to relieve nasal congestion, or a "stuffy nose," by narrowing the blood vessels in the lining of the nose, which helps to reduce swelling and inflammation. This can help to make breathing easier and can also help to alleviate other symptoms associated with nasal congestion, such as sinus pressure and headache.

There are several different types of nasal decongestants available, including over-the-counter (OTC) and prescription options. Some common OTC nasal decongestants include pseudoephedrine (Sudafed) and phenylephrine (Neo-Synephrine), which are available in the form of tablets, capsules, liquids, and nasal sprays. Prescription nasal decongestants may be stronger than OTC options and may be prescribed for longer periods of time.

It is important to follow the instructions on the label when using nasal decongestants, as they can have side effects if not used properly. Some potential side effects of nasal decongestants include increased heart rate, blood pressure, and anxiety. It is also important to note that nasal decongestants should not be used for longer than a few days at a time, as prolonged use can actually make nasal congestion worse (this is known as "rebound congestion"). If you have any questions about using nasal decongestants or if your symptoms persist, it is best to speak with a healthcare provider.

The facial bones, also known as the facial skeleton, are a series of bones that make up the framework of the face. They include:

1. Frontal bone: This bone forms the forehead and the upper part of the eye sockets.
2. Nasal bones: These two thin bones form the bridge of the nose.
3. Maxilla bones: These are the largest bones in the facial skeleton, forming the upper jaw, the bottom of the eye sockets, and the sides of the nose. They also contain the upper teeth.
4. Zygomatic bones (cheekbones): These bones form the cheekbones and the outer part of the eye sockets.
5. Palatine bones: These bones form the back part of the roof of the mouth, the side walls of the nasal cavity, and contribute to the formation of the eye socket.
6. Inferior nasal conchae: These are thin, curved bones that form the lateral walls of the nasal cavity and help to filter and humidify air as it passes through the nose.
7. Lacrimal bones: These are the smallest bones in the skull, located at the inner corner of the eye socket, and help to form the tear duct.
8. Mandible (lower jaw): This is the only bone in the facial skeleton that can move. It holds the lower teeth and forms the chin.

These bones work together to protect vital structures such as the eyes, brain, and nasal passages, while also providing attachment points for muscles that control chewing, expression, and other facial movements.

Bone regeneration is the biological process of new bone formation that occurs after an injury or removal of a portion of bone. This complex process involves several stages, including inflammation, migration and proliferation of cells, matrix deposition, and mineralization, leading to the restoration of the bone's structure and function.

The main cells involved in bone regeneration are osteoblasts, which produce new bone matrix, and osteoclasts, which resorb damaged or old bone tissue. The process is tightly regulated by various growth factors, hormones, and signaling molecules that promote the recruitment, differentiation, and activity of these cells.

Bone regeneration can occur naturally in response to injury or surgical intervention, such as fracture repair or dental implant placement. However, in some cases, bone regeneration may be impaired due to factors such as age, disease, or trauma, leading to delayed healing or non-union of the bone. In these situations, various strategies and techniques, including the use of bone grafts, scaffolds, and growth factors, can be employed to enhance and support the bone regeneration process.

Bone matrix refers to the non-cellular component of bone that provides structural support and functions as a reservoir for minerals, such as calcium and phosphate. It is made up of organic and inorganic components. The organic component consists mainly of type I collagen fibers, which provide flexibility and tensile strength to the bone. The inorganic component is primarily composed of hydroxyapatite crystals, which give bone its hardness and compressive strength. Bone matrix also contains other proteins, growth factors, and signaling molecules that regulate bone formation, remodeling, and repair.

Observer variation, also known as inter-observer variability or measurement agreement, refers to the difference in observations or measurements made by different observers or raters when evaluating the same subject or phenomenon. It is a common issue in various fields such as medicine, research, and quality control, where subjective assessments are involved.

In medical terms, observer variation can occur in various contexts, including:

1. Diagnostic tests: Different radiologists may interpret the same X-ray or MRI scan differently, leading to variations in diagnosis.
2. Clinical trials: Different researchers may have different interpretations of clinical outcomes or adverse events, affecting the consistency and reliability of trial results.
3. Medical records: Different healthcare providers may document medical histories, physical examinations, or treatment plans differently, leading to inconsistencies in patient care.
4. Pathology: Different pathologists may have varying interpretations of tissue samples or laboratory tests, affecting diagnostic accuracy.

Observer variation can be minimized through various methods, such as standardized assessment tools, training and calibration of observers, and statistical analysis of inter-rater reliability.

Bone marrow transplantation (BMT) is a medical procedure in which damaged or destroyed bone marrow is replaced with healthy bone marrow from a donor. Bone marrow is the spongy tissue inside bones that produces blood cells. The main types of BMT are autologous, allogeneic, and umbilical cord blood transplantation.

In autologous BMT, the patient's own bone marrow is used for the transplant. This type of BMT is often used in patients with lymphoma or multiple myeloma who have undergone high-dose chemotherapy or radiation therapy to destroy their cancerous bone marrow.

In allogeneic BMT, bone marrow from a genetically matched donor is used for the transplant. This type of BMT is often used in patients with leukemia, lymphoma, or other blood disorders who have failed other treatments.

Umbilical cord blood transplantation involves using stem cells from umbilical cord blood as a source of healthy bone marrow. This type of BMT is often used in children and adults who do not have a matched donor for allogeneic BMT.

The process of BMT typically involves several steps, including harvesting the bone marrow or stem cells from the donor, conditioning the patient's body to receive the new bone marrow or stem cells, transplanting the new bone marrow or stem cells into the patient's body, and monitoring the patient for signs of engraftment and complications.

BMT is a complex and potentially risky procedure that requires careful planning, preparation, and follow-up care. However, it can be a life-saving treatment for many patients with blood disorders or cancer.

High-risk pregnancy is a term used to describe a situation where the mother or the fetus has an increased risk of developing complications during pregnancy, labor, delivery, or in the postpartum period. These risks may be due to pre-existing medical conditions in the mother, such as diabetes, hypertension, heart disease, kidney disease, autoimmune disorders, or infectious diseases like HIV/AIDS. Other factors that can contribute to a high-risk pregnancy include advanced maternal age (35 years and older), obesity, multiple gestations (twins, triplets, etc.), fetal growth restriction, placental issues, and a history of previous pregnancy complications or preterm labor.

High-risk pregnancies require specialized care and monitoring by healthcare professionals, often involving maternal-fetal medicine specialists, obstetricians, perinatologists, and neonatologists. Regular prenatal care, frequent checkups, ultrasound monitoring, and sometimes additional testing and interventions may be necessary to ensure the best possible outcomes for both the mother and the baby.

Bone transplantation, also known as bone grafting, is a surgical procedure in which bone or bone-like material is transferred from one part of the body to another or from one person to another. The graft may be composed of cortical (hard outer portion) bone, cancellous (spongy inner portion) bone, or a combination of both. It can be taken from different sites in the same individual (autograft), from another individual of the same species (allograft), or from an animal source (xenograft). The purpose of bone transplantation is to replace missing bone, provide structural support, and stimulate new bone growth. This procedure is commonly used in orthopedic, dental, and maxillofacial surgeries to repair bone defects caused by trauma, tumors, or congenital conditions.

Fetal diseases are medical conditions or abnormalities that affect a fetus during pregnancy. These diseases can be caused by genetic factors, environmental influences, or a combination of both. They can range from mild to severe and may impact various organ systems in the developing fetus. Examples of fetal diseases include congenital heart defects, neural tube defects, chromosomal abnormalities such as Down syndrome, and infectious diseases such as toxoplasmosis or rubella. Fetal diseases can be diagnosed through prenatal testing, including ultrasound, amniocentesis, and chorionic villus sampling. Treatment options may include medication, surgery, or delivery of the fetus, depending on the nature and severity of the disease.

The nasal cavity is the air-filled space located behind the nose, which is divided into two halves by the nasal septum. It is lined with mucous membrane and is responsible for several functions including respiration, filtration, humidification, and olfaction (smell). The nasal cavity serves as an important part of the upper respiratory tract, extending from the nares (nostrils) to the choanae (posterior openings of the nasal cavity that lead into the pharynx). It contains specialized structures such as turbinate bones, which help to warm, humidify and filter incoming air.

An encyclopedia is a comprehensive reference work containing articles on various topics, usually arranged in alphabetical order. In the context of medicine, a medical encyclopedia is a collection of articles that provide information about a wide range of medical topics, including diseases and conditions, treatments, tests, procedures, and anatomy and physiology. Medical encyclopedias may be published in print or electronic formats and are often used as a starting point for researching medical topics. They can provide reliable and accurate information on medical subjects, making them useful resources for healthcare professionals, students, and patients alike. Some well-known examples of medical encyclopedias include the Merck Manual and the Stedman's Medical Dictionary.

Nose neoplasms refer to abnormal growths or tumors in the nasal cavity or paranasal sinuses. These growths can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slow-growing and do not spread to other parts of the body, while malignant neoplasms can invade surrounding tissues and have the potential to metastasize.

Nose neoplasms can cause various symptoms such as nasal congestion, nosebleeds, difficulty breathing through the nose, loss of smell, facial pain or numbness, and visual changes if they affect the eye. The diagnosis of nose neoplasms usually involves a combination of physical examination, imaging studies (such as CT or MRI scans), and biopsy to determine the type and extent of the growth. Treatment options depend on the type, size, location, and stage of the neoplasm and may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Cilia are tiny, hair-like structures that protrude from the surface of many types of cells in the body. They are composed of a core bundle of microtubules surrounded by a protein matrix and are covered with a membrane. Cilia are involved in various cellular functions, including movement of fluid or mucus across the cell surface, detection of external stimuli, and regulation of signaling pathways.

There are two types of cilia: motile and non-motile. Motile cilia are able to move in a coordinated manner to propel fluids or particles across a surface, such as those found in the respiratory tract and reproductive organs. Non-motile cilia, also known as primary cilia, are present on most cells in the body and serve as sensory organelles that detect chemical and mechanical signals from the environment.

Defects in cilia structure or function can lead to a variety of diseases, collectively known as ciliopathies. These conditions can affect multiple organs and systems in the body, including the brain, kidneys, liver, and eyes. Examples of ciliopathies include polycystic kidney disease, Bardet-Biedl syndrome, and Meckel-Gruber syndrome.

Nose diseases, also known as rhinologic disorders, refer to a wide range of conditions that affect the nose and its surrounding structures. These may include:

1. Nasal Allergies (Allergic Rhinitis): An inflammation of the inner lining of the nose caused by an allergic reaction to substances such as pollen, dust mites, or mold.

2. Sinusitis: Inflammation or infection of the sinuses, which are air-filled cavities in the skull that surround the nasal cavity.

3. Nasal Polyps: Soft, fleshy growths that develop on the lining of the nasal passages or sinuses.

4. Deviated Septum: A condition where the thin wall (septum) between the two nostrils is displaced to one side, causing difficulty breathing through the nose.

5. Rhinitis Medicamentosa: Nasal congestion caused by overuse of decongestant nasal sprays.

6. Nosebleeds (Epistaxis): Bleeding from the nostrils, which can be caused by a variety of factors including dryness, trauma, or underlying medical conditions.

7. Nasal Fractures: Breaks in the bone structure of the nose, often caused by trauma.

8. Tumors: Abnormal growths that can occur in the nasal passages or sinuses. These can be benign or malignant.

9. Choanal Atresia: A congenital condition where the back of the nasal passage is blocked, often by a thin membrane or bony partition.

10. Nasal Valve Collapse: A condition where the side walls of the nose collapse inward during breathing, causing difficulty breathing through the nose.

These are just a few examples of the many diseases that can affect the nose.

I'm not aware of any medical definition for the term "Texas." It is primarily used as the name of a state in the United States, located in the southern region. If you're referring to a specific medical term or concept that I might not be aware of, please provide more context or clarify your question.

If you meant to ask for an explanation of a medical condition named 'Texas', it is likely a typo or a misunderstanding, as there is no widely recognized medical condition associated with the name 'Texas'.

A pediatric hospital is a specialized medical facility that provides comprehensive healthcare services for infants, children, adolescents, and young adults up to the age of 21. These hospitals employ medical professionals with expertise in treating various childhood illnesses, injuries, and developmental disorders. The facilities are designed to cater to the unique needs of children, including child-friendly environments, specialized equipment, and age-appropriate care.

Pediatric hospitals offer a wide range of services such as inpatient and outpatient care, emergency services, surgical procedures, diagnostic testing, rehabilitation, and mental health services. They also focus on preventive healthcare, family-centered care, and education to support the overall well-being of their young patients. Some pediatric hospitals may specialize further, focusing on specific areas such as cancer treatment, cardiology, neurology, or orthopedics.

Edema is the medical term for swelling caused by excess fluid accumulation in the body tissues. It can affect any part of the body, but it's most commonly noticed in the hands, feet, ankles, and legs. Edema can be a symptom of various underlying medical conditions, such as heart failure, kidney disease, liver disease, or venous insufficiency.

The swelling occurs when the capillaries leak fluid into the surrounding tissues, causing them to become swollen and puffy. The excess fluid can also collect in the cavities of the body, leading to conditions such as pleural effusion (fluid around the lungs) or ascites (fluid in the abdominal cavity).

The severity of edema can vary from mild to severe, and it may be accompanied by other symptoms such as skin discoloration, stiffness, and pain. Treatment for edema depends on the underlying cause and may include medications, lifestyle changes, or medical procedures.

No FAQ available that match "nasal bone"

No images available that match "nasal bone"