A group of disorders marked by progressive degeneration of motor neurons in the spinal cord resulting in weakness and muscular atrophy, usually without evidence of injury to the corticospinal tracts. Diseases in this category include Werdnig-Hoffmann disease and later onset SPINAL MUSCULAR ATROPHIES OF CHILDHOOD, most of which are hereditary. (Adams et al., Principles of Neurology, 6th ed, p1089)
A group of recessively inherited diseases that feature progressive muscular atrophy and hypotonia. They are classified as type I (Werdnig-Hoffman disease), type II (intermediate form), and type III (Kugelberg-Welander disease). Type I is fatal in infancy, type II has a late infantile onset and is associated with survival into the second or third decade. Type III has its onset in childhood, and is slowly progressive. (J Med Genet 1996 Apr:33(4):281-3)
A SMN complex protein that is essential for the function of the SMN protein complex. In humans the protein is encoded by a single gene found near the inversion telomere of a large inverted region of CHROMOSOME 5. Mutations in the gene coding for survival of motor neuron 1 protein may result in SPINAL MUSCULAR ATROPHIES OF CHILDHOOD.
Decrease in the size of a cell, tissue, organ, or multiple organs, associated with a variety of pathological conditions such as abnormal cellular changes, ischemia, malnutrition, or hormonal changes.
A complex of proteins that assemble the SNRNP CORE PROTEINS into a core structure that surrounds a highly conserved RNA sequence found in SMALL NUCLEAR RNA. They are found localized in the GEMINI OF COILED BODIES and in the CYTOPLASM. The SMN complex is named after the Survival of Motor Neuron Complex Protein 1, which is a critical component of the complex.
Derangement in size and number of muscle fibers occurring with aging, reduction in blood supply, or following immobilization, prolonged weightlessness, malnutrition, and particularly in denervation.
A SMN complex protein that is closely-related to SURVIVAL OF MOTOR NEURON 1 PROTEIN. In humans, the protein is encoded by an often duplicated gene found near the inversion centromere of a large inverted region of CHROMOSOME 5.
A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER.
Disorders characterized by an abnormal reduction in muscle volume due to a decrease in the size or number of muscle fibers. Atrophy may result from diseases intrinsic to muscle tissue (e.g., MUSCULAR DYSTROPHY) or secondary to PERIPHERAL NERVOUS SYSTEM DISEASES that impair innervation to muscle tissue (e.g., MUSCULAR ATROPHY, SPINAL).
An X-linked recessive form of spinal muscular atrophy. It is due to a mutation of the gene encoding the ANDROGEN RECEPTOR.
Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.).
An inhibitor of apoptosis protein that was initially identified during analysis of CHROMOSOME DELETIONS associated with SPINAL MUSCULAR ATROPHY. Naip contains a nucleotide binding oligomerization domain and a carboxy-terminal LEUCINE rich repeat.
A protein that has been shown to function as a calcium-regulated transcription factor as well as a substrate for depolarization-activated CALCIUM-CALMODULIN-DEPENDENT PROTEIN KINASES. This protein functions to integrate both calcium and cAMP signals.
Neurons which activate MUSCLE CELLS.
MOTOR NEURONS in the anterior (ventral) horn of the SPINAL CORD which project to SKELETAL MUSCLES.
Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
Pathologic conditions which feature SPINAL CORD damage or dysfunction, including disorders involving the meninges and perimeningeal spaces surrounding the spinal cord. Traumatic injuries, vascular diseases, infections, and inflammatory/autoimmune processes may affect the spinal cord.
Atrophy of the optic disk which may be congenital or acquired. This condition indicates a deficiency in the number of nerve fibers which arise in the RETINA and converge to form the OPTIC DISK; OPTIC NERVE; OPTIC CHIASM; and optic tracts. GLAUCOMA; ISCHEMIA; inflammation, a chronic elevation of intracranial pressure, toxins, optic nerve compression, and inherited conditions (see OPTIC ATROPHIES, HEREDITARY) are relatively common causes of this condition.
Diseases characterized by a selective degeneration of the motor neurons of the spinal cord, brainstem, or motor cortex. Clinical subtypes are distinguished by the major site of degeneration. In AMYOTROPHIC LATERAL SCLEROSIS there is involvement of upper, lower, and brainstem motor neurons. In progressive muscular atrophy and related syndromes (see MUSCULAR ATROPHY, SPINAL) the motor neurons in the spinal cord are primarily affected. With progressive bulbar palsy (BULBAR PALSY, PROGRESSIVE), the initial degeneration occurs in the brainstem. In primary lateral sclerosis, the cortical neurons are affected in isolation. (Adams et al., Principles of Neurology, 6th ed, p1089)
Highly conserved nuclear RNA-protein complexes that function in RNA processing in the nucleus, including pre-mRNA splicing and pre-mRNA 3'-end processing in the nucleoplasm, and pre-rRNA processing in the nucleolus (see RIBONUCLEOPROTEINS, SMALL NUCLEOLAR).
A multifunctional protein that is both a DEAD-box RNA helicase and a component of the SMN protein complex.
One of the two pairs of human chromosomes in the group B class (CHROMOSOMES, HUMAN, 4-5).
Paired bundles of NERVE FIBERS entering and leaving the SPINAL CORD at each segment. The dorsal and ventral nerve roots join to form the mixed segmental spinal nerves. The dorsal roots are generally afferent, formed by the central projections of the spinal (dorsal root) ganglia sensory cells, and the ventral roots are efferent, comprising the axons of spinal motor and PREGANGLIONIC AUTONOMIC FIBERS.
Introduction of therapeutic agents into the spinal region using a needle and syringe.
The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
The 31 paired peripheral nerves formed by the union of the dorsal and ventral spinal roots from each spinal cord segment. The spinal nerve plexuses and the spinal roots are also included.
A distinct subnuclear domain enriched in splicesomal snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR) and p80-coilin.
A syndrome complex composed of three conditions which represent clinical variants of the same disease process: STRIATONIGRAL DEGENERATION; SHY-DRAGER SYNDROME; and the sporadic form of OLIVOPONTOCEREBELLAR ATROPHIES. Clinical features include autonomic, cerebellar, and basal ganglia dysfunction. Pathologic examination reveals atrophy of the basal ganglia, cerebellum, pons, and medulla, with prominent loss of autonomic neurons in the brain stem and spinal cord. (From Adams et al., Principles of Neurology, 6th ed, p1076; Baillieres Clin Neurol 1997 Apr;6(1):187-204; Med Clin North Am 1999 Mar;83(2):381-92)
Procedure in which an anesthetic is injected directly into the spinal cord.
Proteins, generally found in the CYTOPLASM, that specifically bind ANDROGENS and mediate their cellular actions. The complex of the androgen and receptor migrates to the CELL NUCLEUS where it induces transcription of specific segments of DNA.
The protein components that constitute the common core of small nuclear ribonucleoprotein particles. These proteins are commonly referred as Sm nuclear antigens due to their antigenic nature.
Benign and malignant neoplasms which occur within the substance of the spinal cord (intramedullary neoplasms) or in the space between the dura and spinal cord (intradural extramedullary neoplasms). The majority of intramedullary spinal tumors are primary CNS neoplasms including ASTROCYTOMA; EPENDYMOMA; and LIPOMA. Intramedullary neoplasms are often associated with SYRINGOMYELIA. The most frequent histologic types of intradural-extramedullary tumors are MENINGIOMA and NEUROFIBROMA.
The cavity within the SPINAL COLUMN through which the SPINAL CORD passes.
'Spinal diseases' is a broad term referring to various medical conditions that affect the structural integrity, function, or health of the spinal column, including degenerative disorders, infections, inflammatory processes, traumatic injuries, neoplasms, and congenital abnormalities.
Acute and chronic conditions characterized by external mechanical compression of the SPINAL CORD due to extramedullary neoplasm; EPIDURAL ABSCESS; SPINAL FRACTURES; bony deformities of the vertebral bodies; and other conditions. Clinical manifestations vary with the anatomic site of the lesion and may include localized pain, weakness, sensory loss, incontinence, and impotence.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
Spinal neoplasms are abnormal growths or tumors that develop within the spinal column, which can be benign or malignant, and originate from cells within the spinal structure or spread to the spine from other parts of the body (metastatic).
The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
A motor neuron disease marked by progressive weakness of the muscles innervated by cranial nerves of the lower brain stem. Clinical manifestations include dysarthria, dysphagia, facial weakness, tongue weakness, and fasciculations of the tongue and facial muscles. The adult form of the disease is marked initially by bulbar weakness which progresses to involve motor neurons throughout the neuroaxis. Eventually this condition may become indistinguishable from AMYOTROPHIC LATERAL SCLEROSIS. Fazio-Londe syndrome is an inherited form of this illness which occurs in children and young adults. (Adams et al., Principles of Neurology, 6th ed, p1091; Brain 1992 Dec;115(Pt 6):1889-1900)
Narrowing of the spinal canal.
Operative immobilization or ankylosis of two or more vertebrae by fusion of the vertebral bodies with a short bone graft or often with diskectomy or laminectomy. (From Blauvelt & Nelson, A Manual of Orthopaedic Terminology, 5th ed, p236; Dorland, 28th ed)
Recording of the changes in electric potential of muscle by means of surface or needle electrodes.
Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways.
A hereditary motor and sensory neuropathy transmitted most often as an autosomal dominant trait and characterized by progressive distal wasting and loss of reflexes in the muscles of the legs (and occasionally involving the arms). Onset is usually in the second to fourth decade of life. This condition has been divided into two subtypes, hereditary motor and sensory neuropathy (HMSN) types I and II. HMSN I is associated with abnormal nerve conduction velocities and nerve hypertrophy, features not seen in HMSN II. (Adams et al., Principles of Neurology, 6th ed, p1343)
A vague complaint of debility, fatigue, or exhaustion attributable to weakness of various muscles. The weakness can be characterized as subacute or chronic, often progressive, and is a manifestation of many muscle and neuromuscular diseases. (From Wyngaarden et al., Cecil Textbook of Medicine, 19th ed, p2251)
Identification of genetic carriers for a given trait.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
Prolonged shortening of the muscle or other soft tissue around a joint, preventing movement of the joint.
A group of inherited and sporadic disorders which share progressive ataxia in combination with atrophy of the CEREBELLUM; PONS; and inferior olivary nuclei. Additional clinical features may include MUSCLE RIGIDITY; NYSTAGMUS, PATHOLOGIC; RETINAL DEGENERATION; MUSCLE SPASTICITY; DEMENTIA; URINARY INCONTINENCE; and OPHTHALMOPLEGIA. The familial form has an earlier onset (second decade) and may feature spinal cord atrophy. The sporadic form tends to present in the fifth or sixth decade, and is considered a clinical subtype of MULTIPLE SYSTEM ATROPHY. (From Adams et al., Principles of Neurology, 6th ed, p1085)
A general term encompassing lower MOTOR NEURON DISEASE; PERIPHERAL NERVOUS SYSTEM DISEASES; and certain MUSCULAR DISEASES. Manifestations include MUSCLE WEAKNESS; FASCICULATION; muscle ATROPHY; SPASM; MYOKYMIA; MUSCLE HYPERTONIA, myalgias, and MUSCLE HYPOTONIA.
Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body.
An enzyme that activates glycine with its specific transfer RNA. EC 6.1.1.14.
Persistent flexure or contracture of a joint.
The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus.
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
Congenital or acquired paralysis of one or both VOCAL CORDS. This condition is caused by defects in the CENTRAL NERVOUS SYSTEM, the VAGUS NERVE and branches of LARYNGEAL NERVES. Common symptoms are VOICE DISORDERS including HOARSENESS or APHONIA.
Injuries involving the vertebral column.
Progressive, autosomal recessive, diffuse atrophy of the choroid, pigment epithelium, and sensory retina that begins in childhood.
An individual in which both alleles at a given locus are identical.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The synapse between a neuron and a muscle.
An increased number of contiguous trinucleotide repeats in the DNA sequence from one generation to the next. The presence of these regions is associated with diseases such as FRAGILE X SYNDROME and MYOTONIC DYSTROPHY. Some CHROMOSOME FRAGILE SITES are composed of sequences where trinucleotide repeat expansion occurs.
Conditions characterized by impaired transmission of impulses at the NEUROMUSCULAR JUNCTION. This may result from disorders that affect receptor function, pre- or postsynaptic membrane function, or ACETYLCHOLINESTERASE activity. The majority of diseases in this category are associated with autoimmune, toxic, or inherited conditions.
The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm.
A degenerative disorder affecting upper MOTOR NEURONS in the brain and lower motor neurons in the brain stem and SPINAL CORD. Disease onset is usually after the age of 50 and the process is usually fatal within 3 to 6 years. Clinical manifestations include progressive weakness, atrophy, FASCICULATION, hyperreflexia, DYSARTHRIA, dysphagia, and eventual paralysis of respiratory function. Pathologic features include the replacement of motor neurons with fibrous ASTROCYTES and atrophy of anterior SPINAL NERVE ROOTS and corticospinal tracts. (From Adams et al., Principles of Neurology, 6th ed, pp1089-94)
Reduced blood flow to the spinal cord which is supplied by the anterior spinal artery and the paired posterior spinal arteries. This condition may be associated with ARTERIOSCLEROSIS, trauma, emboli, diseases of the aorta, and other disorders. Prolonged ischemia may lead to INFARCTION of spinal cord tissue.
Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain.
Genes that influence the PHENOTYPE only in the homozygous state.
A branch of the tibial nerve which supplies sensory innervation to parts of the lower leg and foot.
A form of MACULAR DEGENERATION also known as dry macular degeneration marked by occurrence of a well-defined progressive lesion or atrophy in the central part of the RETINA called the MACULA LUTEA. It is distinguishable from WET MACULAR DEGENERATION in that the latter involves neovascular exudates.
The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME.
The number of copies of a given gene present in the cell of an organism. An increase in gene dosage (by GENE DUPLICATION for example) can result in higher levels of gene product formation. GENE DOSAGE COMPENSATION mechanisms result in adjustments to the level GENE EXPRESSION when there are changes or differences in gene dosage.
Microsatellite repeats consisting of three nucleotides dispersed in the euchromatic arms of chromosomes.
Circumscribed masses of foreign or metabolically inactive materials, within the CELL NUCLEUS. Some are VIRAL INCLUSION BODIES.
Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state.
X-ray visualization of the spinal cord following injection of contrast medium into the spinal arachnoid space.
The physical activity of a human or an animal as a behavioral phenomenon.
A generic term for any circumscribed mass of foreign (e.g., lead or viruses) or metabolically inactive materials (e.g., ceroid or MALLORY BODIES), within the cytoplasm or nucleus of a cell. Inclusion bodies are in cells infected with certain filtrable viruses, observed especially in nerve, epithelial, or endothelial cells. (Stedman, 25th ed)
Severe or complete loss of motor function in the lower extremities and lower portions of the trunk. This condition is most often associated with SPINAL CORD DISEASES, although BRAIN DISEASES; PERIPHERAL NERVOUS SYSTEM DISEASES; NEUROMUSCULAR DISEASES; and MUSCULAR DISEASES may also cause bilateral leg weakness.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Involuntary contraction of the muscle fibers innervated by a motor unit. Fasciculations can often by visualized and take the form of a muscle twitch or dimpling under the skin, but usually do not generate sufficient force to move a limb. They may represent a benign condition or occur as a manifestation of MOTOR NEURON DISEASE or PERIPHERAL NERVOUS SYSTEM DISEASES. (Adams et al., Principles of Neurology, 6th ed, p1294)
A heterogeneous group of primarily familial disorders characterized by myoclonic seizures, tonic-clonic seizures, ataxia, progressive intellectual deterioration, and neuronal degeneration. These include LAFORA DISEASE; MERRF SYNDROME; NEURONAL CEROID-LIPOFUSCINOSIS; sialidosis (see MUCOLIPIDOSES), and UNVERRICHT-LUNDBORG SYNDROME.
The branch of chemistry dealing with detection (qualitative) and determination (quantitative) of substances. (Grant & Hackh's Chemical Dictionary, 5th ed)
The spinal or vertebral column.
A group of twelve VERTEBRAE connected to the ribs that support the upper trunk region.
A major nerve of the upper extremity. In humans, the fibers of the ulnar nerve originate in the lower cervical and upper thoracic spinal cord (usually C7 to T1), travel via the medial cord of the brachial plexus, and supply sensory and motor innervation to parts of the hand and forearm.
Complete or severe weakness of the muscles of respiration. This condition may be associated with MOTOR NEURON DISEASES; PERIPHERAL NERVE DISEASES; NEUROMUSCULAR JUNCTION DISEASES; SPINAL CORD DISEASES; injury to the PHRENIC NERVE; and other disorders.
Contractile tissue that produces movement in animals.
Osteitis or caries of the vertebrae, usually occurring as a complication of tuberculosis of the lungs.
Determination of the nature of a pathological condition or disease in the postimplantation EMBRYO; FETUS; or pregnant female before birth.
Organelles in which the splicing and excision reactions that remove introns from precursor messenger RNA molecules occur. One component of a spliceosome is five small nuclear RNA molecules (U1, U2, U4, U5, U6) that, working in conjunction with proteins, help to fold pieces of RNA into the right shapes and later splice them into the message.
An educational process that provides information and advice to individuals or families about a genetic condition that may affect them. The purpose is to help individuals make informed decisions about marriage, reproduction, and other health management issues based on information about the genetic disease, the available diagnostic tests, and management programs. Psychosocial support is usually offered.
A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different.
An appreciable lateral deviation in the normally straight vertical line of the spine. (Dorland, 27th ed)
A surgical procedure that entails removing all (laminectomy) or part (laminotomy) of selected vertebral lamina to relieve pressure on the SPINAL CORD and/or SPINAL NERVE ROOTS. Vertebral lamina is the thin flattened posterior wall of vertebral arch that forms the vertebral foramen through which pass the spinal cord and nerve roots.
Erythrocytes with protoplasmic projections giving the cell a thorny appearance.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Deformities of the SPINE characterized by abnormal bending or flexure in the vertebral column. They may be bending forward (KYPHOSIS), backward (LORDOSIS), or sideway (SCOLIOSIS).
Detection of a MUTATION; GENOTYPE; KARYOTYPE; or specific ALLELES associated with genetic traits, heritable diseases, or predisposition to a disease, or that may lead to the disease in descendants. It includes prenatal genetic testing.
A fatty acid with anticonvulsant properties used in the treatment of epilepsy. The mechanisms of its therapeutic actions are not well understood. It may act by increasing GAMMA-AMINOBUTYRIC ACID levels in the brain or by altering the properties of voltage dependent sodium channels.
A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)
A syndrome characterized by new neuromuscular symptoms that occur at least 15 years after clinical stability has been attained in patients with a prior history of symptomatic poliomyelitis. Clinical features include new muscular weakness and atrophy of the limbs, bulbar innervated musculature, and muscles of respiration, combined with excessive fatigue, joint pain, and reduced stamina. The process is marked by slow progression and periods of stabilization. (From Ann NY Acad Sci 1995 May 25;753:68-80)
The first seven VERTEBRAE of the SPINAL COLUMN, which correspond to the VERTEBRAE of the NECK.
Elements of limited time intervals, contributing to particular results or situations.
A heterogeneous group of inherited MYOPATHIES, characterized by wasting and weakness of the SKELETAL MUSCLE. They are categorized by the sites of MUSCLE WEAKNESS; AGE OF ONSET; and INHERITANCE PATTERNS.
A rare epidural hematoma in the spinal epidural space, usually due to a vascular malformation (CENTRAL NERVOUS SYSTEM VASCULAR MALFORMATIONS) or TRAUMA. Spontaneous spinal epidural hematoma is a neurologic emergency due to a rapidly evolving compressive MYELOPATHY.
Used formerly as antimicrobial food additive. It causes mutations in many cell cultures and may be carcinogenic.
A group of slowly progressive inherited disorders affecting motor and sensory peripheral nerves. Subtypes include HMSNs I-VII. HMSN I and II both refer to CHARCOT-MARIE-TOOTH DISEASE. HMSN III refers to hypertrophic neuropathy of infancy. HMSN IV refers to REFSUM DISEASE. HMSN V refers to a condition marked by a hereditary motor and sensory neuropathy associated with spastic paraplegia (see SPASTIC PARAPLEGIA, HEREDITARY). HMSN VI refers to HMSN associated with an inherited optic atrophy (OPTIC ATROPHIES, HEREDITARY), and HMSN VII refers to HMSN associated with retinitis pigmentosa. (From Adams et al., Principles of Neurology, 6th ed, p1343)
A performance test based on forced MOTOR ACTIVITY on a rotating rod, usually by a rodent. Parameters include the riding time (seconds) or endurance. Test is used to evaluate balance and coordination of the subjects, particular in experimental animal models for neurological disorders and drug effects.
Neurons in the SPINAL CORD DORSAL HORN whose cell bodies and processes are confined entirely to the CENTRAL NERVOUS SYSTEM. They receive collateral or direct terminations of dorsal root fibers. They send their axons either directly to ANTERIOR HORN CELLS or to the WHITE MATTER ascending and descending longitudinal fibers.
The resection or removal of the innervation of a muscle or muscle tissue.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Dominant optic atrophy is a hereditary optic neuropathy causing decreased visual acuity, color vision deficits, a centrocecal scotoma, and optic nerve pallor (Hum. Genet. 1998; 102: 79-86). Mutations leading to this condition have been mapped to the OPA1 gene at chromosome 3q28-q29. OPA1 codes for a dynamin-related GTPase that localizes to mitochondria.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium.
A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
Region of the back including the LUMBAR VERTEBRAE, SACRUM, and nearby structures.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
The worsening of a disease over time. This concept is most often used for chronic and incurable diseases where the stage of the disease is an important determinant of therapy and prognosis.
Paralysis of one or more of the ocular muscles due to disorders of the eye muscles, neuromuscular junction, supporting soft tissue, tendons, or innervation to the muscles.
Techniques and strategies which include the use of coding sequences and other conventional or radical means to transform or modify cells for the purpose of treating or reversing disease conditions.
The age, developmental stage, or period of life at which a disease or the initial symptoms or manifestations of a disease appear in an individual.
VERTEBRAE in the region of the lower BACK below the THORACIC VERTEBRAE and above the SACRAL VERTEBRAE.
An anthracycline produced by Streptomyces galilaeus. It has potent antineoplastic activity.
The amount of force generated by MUSCLE CONTRACTION. Muscle strength can be measured during isometric, isotonic, or isokinetic contraction, either manually or using a device such as a MUSCLE STRENGTH DYNAMOMETER.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Acquired, familial, and congenital disorders of SKELETAL MUSCLE and SMOOTH MUSCLE.
Type III intermediate filament proteins that assemble into neurofilaments, the major cytoskeletal element in nerve axons and dendrites. They consist of three distinct polypeptides, the neurofilament triplet. Types I, II, and IV intermediate filament proteins form other cytoskeletal elements such as keratins and lamins. It appears that the metabolism of neurofilaments is disturbed in Alzheimer's disease, as indicated by the presence of neurofilament epitopes in the neurofibrillary tangles, as well as by the severe reduction of the expression of the gene for the light neurofilament subunit of the neurofilament triplet in brains of Alzheimer's patients. (Can J Neurol Sci 1990 Aug;17(3):302)
A phenomenon that is observed when a small subgroup of a larger POPULATION establishes itself as a separate and isolated entity. The subgroup's GENE POOL carries only a fraction of the genetic diversity of the parental population resulting in an increased frequency of certain diseases in the subgroup, especially those diseases known to be autosomal recessive.
Hereditary and sporadic conditions which are characterized by progressive nervous system dysfunction. These disorders are often associated with atrophy of the affected central or peripheral nervous system structures.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Refers to animals in the period of time just after birth.
Any method used for determining the location of and relative distances between genes on a chromosome.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
An individual having different alleles at one or more loci regarding a specific character.
Bulbous enlargement of the growing tip of nerve axons and dendrites. They are crucial to neuronal development because of their pathfinding ability and their role in synaptogenesis.
A class of closely related heterogeneous-nuclear ribonucleoproteins of approximately 34-40 kDa in size. Although they are generally found in the nucleoplasm, they also shuttle between the nucleus and the cytoplasm. Members of this class have been found to have a role in mRNA transport, telomere biogenesis and RNA SPLICING.
Mice which carry mutant genes for neurologic defects or abnormalities.
A device that measures MUSCLE STRENGTH during muscle contraction, such as gripping, pushing, and pulling. It is used to evaluate the health status of muscle in sports medicine or physical therapy.
The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges.
Biochemical identification of mutational changes in a nucleotide sequence.
Broken bones in the vertebral column.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Repair of the damaged neuron function after SPINAL CORD INJURY or SPINAL CORD DISEASES.
Technique for limiting use, activity, or movement by immobilizing or restraining animal by suspending from hindlimbs or tails. This immobilization is used to simulate some effects of reduced gravity and study weightlessness physiology.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
A characteristic symptom complex.

Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. (1/602)

As part of TFIIH, XPB and XPD helicases have been shown to play a role in nucleotide excision repair (NER). Mutations in these subunits are associated with three genetic disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD). The strong heterogeneous clinical features observed in these patients cannot be explained by defects in NER alone. We decided to look at the transcriptional activity of TFIIH from cell lines of XP individuals. We set up an immunopurification procedure to isolate purified TFIIH from patient cell extracts. We demonstrated that mutations in two XP-B/CS patients decrease the transcriptional activity of the corresponding TFIIH by preventing promoter opening. The defect of XPB in transcription can be circumvented by artificial opening of the promoter. Western blot analysis and enzymatic assays indicate that XPD mutations affect the stoichiometric composition of TFIIH due to a weakness in the interaction between XPD-CAK complex and the core TFIIH, resulting in a partial reduction of transcription activity. This work, in addition to clarifying the role of the various TFIIH subunits, supports the current hypothesis that XP-B/D patients are more likely to suffer from transcription repair syndromes rather than DNA repair disorders alone.  (+info)

RNA splicing: more clues from spinal muscular atrophy. (2/602)

Spinal muscular atrophy is caused by mutations in the SMN1 gene, the product of which is part of a multi-component complex involved in the assembly of small nuclear ribonucleoproteins. A recent study indicates that SMN may also play a role in pre-mRNA splicing.  (+info)

Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. (3/602)

Problems with diagnosis and genetic counseling occur for patients with autosomal recessive proximal spinal muscular atrophy (SMA) who do not show the most common mutation: homozygous absence of at least exon 7 of the telomeric survival motor neuron gene (SMN1). Here we present molecular genetic data for 42 independent nondeleted SMA patients. A nonradioactive quantitative PCR test showed one SMN1 copy in 19 patients (45%). By sequencing cloned reverse-transcription (RT) PCR products or genomic fragments of SMN1, we identified nine different mutations in 18 of the 19 patients, six described for the first time: three missense mutations (Y272C, T274I, S262I), three frameshift mutations in exons 2a, 2b, and 4 (124insT, 241-242ins4, 591delA), one nonsense mutation in exon 1 (Q15X), one Alu-mediated deletion from intron 4 to intron 6, and one donor splice site mutation in intron 7 (c.922+6T-->G). The most frequent mutation, Y272C, was found in 6 (33%) of 18 patients. Each intragenic mutation found in at least two patients occurred on the same haplotype background, indicating founder mutations. Genotype-phenotype correlation allowed inference of the effect of each mutation on the function of the SMN1 protein and the role of the SMN2 copy number in modulating the SMA phenotype. In 14 of 23 SMA patients with two SMN1 copies, at least one intact SMN1 copy was sequenced, which excludes a 5q-SMA and suggests the existence of further gene(s) responsible for approximately 4%-5% of phenotypes indistinguishable from SMA. We determined the validity of the test, and we discuss its practical implications and limitations.  (+info)

SMN protein analysis in fibroblast, amniocyte and CVS cultures from spinal muscular atrophy patients and its relevance for diagnosis. (4/602)

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by the homozygous absence of the telomeric copy of the survival motor neuron (SMNt) gene, due to deletion, gene conversion or point mutation. SMNt and its homologous centromeric copy (SMNc) encode the SMN protein, which is diffusely present in the cytoplasm and in dot-like structures, called gems, in the nucleus. We have studied the SMN protein in different cell cultures, including fibroblasts, amniocytes and CVS cells from SMA individuals and controls. By immunofluorescence analysis we found a marked reduction in the number of gems in fibroblasts, amniocytes and chorionic villus cells of all SMA patients and foetuses, independent of the type of the genetic defect. We also show that immunolocalisation of the SMN protein may be a useful tool for the characterisation of particular patients of uncertain molecular diagnosis.  (+info)

A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. (5/602)

SMN1 and SMN2 (survival motor neuron) encode identical proteins. A critical question is why only the homozygous loss of SMN1, and not SMN2, results in spinal muscular atrophy (SMA). Analysis of transcripts from SMN1/SMN2 hybrid genes and a new SMN1 mutation showed a direct relationship between presence of disease and exon 7 skipping. We have reported previously that the exon-skipped product SMNDelta7 is partially defective for self-association and SMN self-oligomerization correlated with clinical severity. To evaluate systematically which of the five nucleotides that differ between SMN1 and SMN2 effect alternative splicing of exon 7, a series of SMN minigenes was engineered and transfected into cultured cells, and their transcripts were characterized. Of these nucleotide differences, the exon 7 C-to-T transition at codon 280, a translationally silent variance, was necessary and sufficient to dictate exon 7 alternative splicing. Thus, the failure of SMN2 to fully compensate for SMN1 and protect from SMA is due to a nucleotide exchange (C/T) that attenuates activity of an exonic enhancer. These findings demonstrate the molecular genetic basis for the nature and pathogenesis of SMA and illustrate a novel disease mechanism. Because individuals with SMA retain the SMN2 allele, therapy targeted at preventing exon 7 skipping could modify clinical outcome.  (+info)

A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. (6/602)

Spinal muscular atrophy (SMA) is a recessive disorder characterized by loss of motor neurons in the spinal cord. It is caused by mutations in the telomeric survival motor neuron 1 ( SMN1 ) gene. Alterations within an almost identical copy gene, the centromeric survival motor neuron 2 ( SMN2 ) gene produce no known phenotypic effect. The exons of the two genes differ by just two nucleotides, neither of which alters the encoded amino acids. At the genomic level, only five nucleotides that differentiate the two genes from one another have been reported. The entire genomic sequence of the two genes has not been determined. Thus, differences which might explain why SMN1 is the SMA gene are not readily apparent. In this study, we have completely sequenced and compared genomic clones containing the SMN genes. The two genes show striking similarity, with the homology being unprecedented between two different yet functional genes. The only critical difference in an approximately 32 kb region between the two SMN genes is the C->T base change 6 bp inside exon 7. This alteration but not other variations in the SMN genes affects the splicing pattern of the genes. The majority of the transcript from the SMN1 locus is full length, whereas the majority of the transcript produced by the SMN2 locus lacks exon 7. We suggest that the exon 7 nucleotide change affects the activity of an exon splice enhancer. In SMA patients, the loss of SMN1 but the presence of SMN2 results in low levels of full-length SMN transcript and therefore low SMN protein levels which causes SMA.  (+info)

Identification of survival motor neuron as a transcriptional activator-binding protein. (7/602)

Spinal muscular atrophy (SMA) is an inherited neuro-muscular disease characterized by specific degeneration of spinal cord anterior horn cells and subsequent muscle atrophy. Survival motor neuron ( SMN ), located on chromosome 5q13, is the SMA-determining gene. In the nucleus, SMN is present in large foci called gems, the function of which is not yet known, while cytoplasmic SMN has been implicated in snRNP biogenesis. In SMA patients, SMN protein levels and the number of gems generally correlate with disease severity, suggesting a critical nuclear function for SMN. In a screen for proteins associated with the nuclear transcription activator 'E2' of papillomavirus, two independent SMN cDNAs were isolated. The E2 and SMN proteins were found to associate specifically in vitro and in vivo. Expression of SMN enhanced E2-dependent transcriptional activation, and patient-derived SMN missense mutations reduced E2 gene expression. Our results demonstrate that SMN interacts with a nuclear transcription factor and imply that SMN may serve a role in regulating gene expression. These observations suggest that SMA may in part result from abnormal gene expression and that E2 may influence viral gene expression through SMN interaction.  (+info)

The linkage of Kennedy's neuron disease to ARA24, the first identified androgen receptor polyglutamine region-associated coactivator. (8/602)

Although the linkage of polyglutamine (poly-Q) repeat expansion in the androgen receptor (AR) to Kennedy's disease (X-linked spinal and bulbar muscular atrophy) was a major step forward, the detailed molecular mechanism of how the change in poly-Q length contributes to the disease remains unclear. Here we report the identification of a nuclear G-protein, Ras-related nuclear protein/ARA24, as the first AR coactivator that can bind differentially with different lengths of poly-Q within AR. In the yeast and mammalian reciprocal interacting assays, our data suggested the interaction of AR N-terminal domain with ARA24 diminishes as the poly-Q length increases. The coactivation of ARA24 also diminishes with the poly-Q expansion within AR. Deletion of the acidic hexapeptide (DEDDDL) at the C terminus of ARA24 further enhances its AR coactivation. Together, our data suggest that poor interaction and weaker coactivation of ARA24 to the longer poly-Q AR in the X-linked spinal and bulbar muscular atrophied AR could contribute to the weaker transactivation of AR. The consequence of poor interaction and weak coactivation may eventually lead to the partial androgen insensitivity during the development of Kennedy's disease.  (+info)

Spinal muscular atrophy (SMA) is a genetic disorder that affects the motor neurons in the spinal cord, leading to muscle weakness and atrophy. It is caused by a mutation in the survival motor neuron 1 (SMN1) gene, which results in a deficiency of SMN protein necessary for the survival of motor neurons.

There are several types of SMA, classified based on the age of onset and severity of symptoms. The most common type is type 1, also known as Werdnig-Hoffmann disease, which presents in infancy and is characterized by severe muscle weakness, hypotonia, and feeding difficulties. Other types include type 2 (intermediate SMA), type 3 (Kugelberg-Welander disease), and type 4 (adult-onset SMA).

The symptoms of SMA may include muscle wasting, fasciculations, weakness, hypotonia, respiratory difficulties, and mobility impairment. The diagnosis of SMA typically involves genetic testing to confirm the presence of a mutation in the SMN1 gene. Treatment options for SMA may include medications, physical therapy, assistive devices, and respiratory support.

Spinal muscular atrophies (SMAs) of childhood are a group of inherited neuromuscular disorders characterized by degeneration and loss of lower motor neurons in the spinal cord, leading to progressive muscle weakness and atrophy. The severity and age of onset can vary significantly, with some forms presenting in infancy and others in later childhood or even adulthood.

The most common form of SMA is 5q autosomal recessive SMA, also known as survival motor neuron (SMN) disease, which results from mutations in the SMN1 gene. The severity of this form can range from severe (type I or Werdnig-Hoffmann disease), intermediate (type II or chronic infantile neurodegenerative disorder), to mild (type III or Kugelberg-Welander disease).

Type I SMA is the most severe form, with onset before 6 months of age and rapid progression leading to death within the first two years of life if left untreated. Type II SMA has an onset between 6 and 18 months of age, with affected children never achieving the ability to walk independently. Type III SMA has a later onset, typically after 18 months of age, and is characterized by a slower progression, allowing for the ability to walk unaided, although mobility may be lost over time.

Other forms of childhood-onset SMA include autosomal dominant distal SMA, X-linked SMA, and spinal bulbar muscular atrophy (SBMA or Kennedy's disease). These forms have distinct genetic causes and clinical presentations.

In general, SMAs are characterized by muscle weakness, hypotonia, fasciculations, tongue atrophy, and depressed or absent deep tendon reflexes. Respiratory and nutritional support is often required in more severe cases. Recent advances in gene therapy have led to the development of disease-modifying treatments for some forms of SMA.

Survival of Motor Neuron 1 (SMN1) protein is a critical component for the survival of motor neurons, which are nerve cells that control muscle movements. The SMN1 protein is produced by the Survival of Motor Neuron 1 gene, located on human chromosome 5q13.

The primary function of the SMN1 protein is to assist in the biogenesis of small nuclear ribonucleoproteins (snRNPs), which are essential for spliceosomes - complex molecular machines responsible for RNA processing in the cell. The absence or significant reduction of SMN1 protein leads to defective snRNP assembly, impaired RNA splicing, and ultimately results in motor neuron degeneration.

Mutations in the SMN1 gene can cause Spinal Muscular Atrophy (SMA), a genetic disorder characterized by progressive muscle weakness, atrophy, and paralysis due to the loss of lower motor neurons in the spinal cord. The severity of SMA depends on the amount of functional SMN1 protein produced, with less protein leading to more severe symptoms.

Atrophy is a medical term that refers to the decrease in size and wasting of an organ or tissue due to the disappearance of cells, shrinkage of cells, or decreased number of cells. This process can be caused by various factors such as disuse, aging, degeneration, injury, or disease.

For example, if a muscle is immobilized for an extended period, it may undergo atrophy due to lack of use. Similarly, certain medical conditions like diabetes, cancer, and heart failure can lead to the wasting away of various tissues and organs in the body.

Atrophy can also occur as a result of natural aging processes, leading to decreased muscle mass and strength in older adults. In general, atrophy is characterized by a decrease in the volume or weight of an organ or tissue, which can have significant impacts on its function and overall health.

The Survival Motor Neuron (SMN) complex is a protein complex that plays a crucial role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), which are essential components of the spliceosome involved in pre-messenger RNA (pre-mRNA) splicing. The SMN complex consists of several proteins, including the SMN protein itself, Gemins2-8, and unrip.

The SMN protein is the central component of the complex and is encoded by the SMN1 gene located on chromosome 5q13.2. Mutations in this gene can lead to spinal muscular atrophy (SMA), a genetic disorder characterized by degeneration of motor neurons in the spinal cord, leading to muscle weakness and atrophy.

The SMN complex assembles in the cytoplasm and facilitates the assembly of spliceosomal snRNPs by helping to load Sm proteins onto small nuclear RNA (snRNA) molecules. Proper functioning of the SMN complex is essential for the correct splicing of pre-mRNA, and its dysfunction can lead to various developmental abnormalities and diseases, including SMA.

Muscular atrophy is a condition characterized by a decrease in the size and mass of muscles due to lack of use, disease, or injury. This occurs when there is a disruption in the balance between muscle protein synthesis and degradation, leading to a net loss of muscle proteins. There are two main types of muscular atrophy:

1. Disuse atrophy: This type of atrophy occurs when muscles are not used or are immobilized for an extended period, such as after an injury, surgery, or prolonged bed rest. In this case, the nerves that control the muscles may still be functioning properly, but the muscles themselves waste away due to lack of use.
2. Neurogenic atrophy: This type of atrophy is caused by damage to the nerves that supply the muscles, leading to muscle weakness and wasting. Conditions such as amyotrophic lateral sclerosis (ALS), spinal cord injuries, and peripheral neuropathies can cause neurogenic atrophy.

In both cases, the affected muscles may become weak, shrink in size, and lose their tone and mass. Treatment for muscular atrophy depends on the underlying cause and may include physical therapy, exercise, and medication to manage symptoms and improve muscle strength and function.

Survival of Motor Neuron 2 (SMN2) protein is a functional copy of the Survival of Motor Neuron (SMN) protein, which is produced from the SMN2 gene. The SMN protein is crucial for the survival of motor neurons, the nerve cells that control muscle movement. In people with spinal muscular atrophy (SMA), a genetic disorder that causes progressive muscle weakness and loss of movement, there is a mutation in the main SMN1 gene that leads to reduced levels of functional SMN protein.

The SMN2 gene can also produce some functional SMN protein, but it mainly produces an unstable, truncated form of the protein due to a critical difference in its exon 7 splicing pattern. However, a small percentage (about 10-15%) of SMN2 transcripts can be correctly spliced and produce full-length, functional SMN protein. The amount of functional SMN protein produced from the SMN2 gene is directly related to the severity of SMA; more SMN protein production from SMN2 leads to less severe symptoms. Therefore, therapies aimed at increasing SMN2-derived SMN protein levels are being developed and tested for the treatment of SMA.

The spinal cord is a major part of the nervous system, extending from the brainstem and continuing down to the lower back. It is a slender, tubular bundle of nerve fibers (axons) and support cells (glial cells) that carries signals between the brain and the rest of the body. The spinal cord primarily serves as a conduit for motor information, which travels from the brain to the muscles, and sensory information, which travels from the body to the brain. It also contains neurons that can independently process and respond to information within the spinal cord without direct input from the brain.

The spinal cord is protected by the bony vertebral column (spine) and is divided into 31 segments: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. Each segment corresponds to a specific region of the body and gives rise to pairs of spinal nerves that exit through the intervertebral foramina at each level.

The spinal cord is responsible for several vital functions, including:

1. Reflexes: Simple reflex actions, such as the withdrawal reflex when touching a hot surface, are mediated by the spinal cord without involving the brain.
2. Muscle control: The spinal cord carries motor signals from the brain to the muscles, enabling voluntary movement and muscle tone regulation.
3. Sensory perception: The spinal cord transmits sensory information, such as touch, temperature, pain, and vibration, from the body to the brain for processing and awareness.
4. Autonomic functions: The sympathetic and parasympathetic divisions of the autonomic nervous system originate in the thoracolumbar and sacral regions of the spinal cord, respectively, controlling involuntary physiological responses like heart rate, blood pressure, digestion, and respiration.

Damage to the spinal cord can result in various degrees of paralysis or loss of sensation below the level of injury, depending on the severity and location of the damage.

Atrophic muscular disorders are medical conditions that involve the progressive loss of muscle mass and weakness due to the degeneration of muscle tissue. This process occurs because of a decrease in the size or number of muscle fibers, which can be caused by various factors such as nerve damage, lack of use, or underlying diseases.

There are two main types of atrophic muscular disorders: neurogenic and myopathic. Neurogenic atrophy is caused by damage to the nerves that supply the muscles, leading to muscle weakness and wasting. Examples of conditions that can cause neurogenic atrophy include motor neuron disease, spinal cord injury, and peripheral neuropathy.

Myopathic atrophy, on the other hand, is caused by primary muscle diseases that affect the muscle fibers themselves. Conditions such as muscular dystrophy, metabolic myopathies, and inflammatory myopathies can all lead to myopathic atrophy.

Symptoms of atrophic muscular disorders may include muscle weakness, wasting, cramping, spasms, and difficulty with movement and coordination. Treatment for these conditions depends on the underlying cause and may involve physical therapy, medication, or surgery. In some cases, the damage to the muscles may be irreversible, and the goal of treatment is to manage symptoms and maintain function as much as possible.

X-linked bulbospinal neuronopathy, also known as Kennedy's disease, is a rare inherited motor neuron disorder that affects males. It is caused by a mutation in the androgen receptor (AR) gene on the X chromosome. The condition is characterized by progressive muscle weakness and atrophy, primarily affecting the bulbar muscles of the throat and tongue, as well as the limbs.

The mutation in the AR gene leads to an abnormal accumulation of the protein within nerve cells, which can ultimately result in their death. This can cause symptoms such as difficulty speaking, swallowing, and breathing, as well as muscle cramps and fasciculations (twitching). The condition typically progresses slowly over several decades.

There is no cure for X-linked bulbospinal neuronopathy, but treatments can help manage the symptoms. This may include physical therapy, speech therapy, and assistive devices to aid in breathing and swallowing.

Spinal cord injuries (SCI) refer to damage to the spinal cord that results in a loss of function, such as mobility or feeling. This injury can be caused by direct trauma to the spine or by indirect damage resulting from disease or degeneration of surrounding bones, tissues, or blood vessels. The location and severity of the injury on the spinal cord will determine which parts of the body are affected and to what extent.

The effects of SCI can range from mild sensory changes to severe paralysis, including loss of motor function, autonomic dysfunction, and possible changes in sensation, strength, and reflexes below the level of injury. These injuries are typically classified as complete or incomplete, depending on whether there is any remaining function below the level of injury.

Immediate medical attention is crucial for spinal cord injuries to prevent further damage and improve the chances of recovery. Treatment usually involves immobilization of the spine, medications to reduce swelling and pressure, surgery to stabilize the spine, and rehabilitation to help regain lost function. Despite advances in treatment, SCI can have a significant impact on a person's quality of life and ability to perform daily activities.

NAIP (Neuronal Apoptosis Inhibitory Protein) is a protein involved in inhibiting programmed cell death, also known as apoptosis. It is a member of the inhibitor of apoptosis (IAP) family and is primarily expressed in neurons. NAIP plays a crucial role in preventing excessive cell death during nervous system development and after nerve injury. It functions by binding to and inhibiting certain caspases, which are enzymes that play an essential role in initiating and executing apoptosis. Mutations in the gene encoding NAIP have been associated with neurodegenerative disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis (ALS).

CREB (Cyclic AMP Response Element-Binding Protein) is a transcription factor that plays a crucial role in regulating gene expression in response to various cellular signals. CREB binds to the cAMP response element (CRE) sequence in the promoter region of target genes and regulates their transcription.

When activated, CREB undergoes phosphorylation at a specific serine residue (Ser-133), which leads to its binding to the coactivator protein CBP/p300 and recruitment of additional transcriptional machinery to the promoter region. This results in the activation of target gene transcription.

CREB is involved in various cellular processes, including metabolism, differentiation, survival, and memory formation. Dysregulation of CREB has been implicated in several diseases, such as cancer, neurodegenerative disorders, and mood disorders.

Motor neurons are specialized nerve cells in the brain and spinal cord that play a crucial role in controlling voluntary muscle movements. They transmit electrical signals from the brain to the muscles, enabling us to perform actions such as walking, talking, and swallowing. There are two types of motor neurons: upper motor neurons, which originate in the brain's motor cortex and travel down to the brainstem and spinal cord; and lower motor neurons, which extend from the brainstem and spinal cord to the muscles. Damage or degeneration of these motor neurons can lead to various neurological disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA).

Anterior horn cells, also known as motor neurons, are a type of nerve cell located in the anterior (ventral) horn of the spinal cord's gray matter. These cells play a crucial role in initiating and regulating voluntary muscle movement by transmitting signals from the brain to the muscles via the peripheral nervous system.

Damage or degeneration of the anterior horn cells can result in various neuromuscular disorders, such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). These conditions can lead to muscle weakness, atrophy, and paralysis.

RNA-binding proteins (RBPs) are a class of proteins that selectively interact with RNA molecules to form ribonucleoprotein complexes. These proteins play crucial roles in the post-transcriptional regulation of gene expression, including pre-mRNA processing, mRNA stability, transport, localization, and translation. RBPs recognize specific RNA sequences or structures through their modular RNA-binding domains, which can be highly degenerate and allow for the recognition of a wide range of RNA targets. The interaction between RBPs and RNA is often dynamic and can be regulated by various post-translational modifications of the proteins or by environmental stimuli, allowing for fine-tuning of gene expression in response to changing cellular needs. Dysregulation of RBP function has been implicated in various human diseases, including neurological disorders and cancer.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

Spinal cord diseases refer to a group of conditions that affect the spinal cord, which is a part of the central nervous system responsible for transmitting messages between the brain and the rest of the body. These diseases can cause damage to the spinal cord, leading to various symptoms such as muscle weakness, numbness, pain, bladder and bowel dysfunction, and difficulty with movement and coordination.

Spinal cord diseases can be congenital or acquired, and they can result from a variety of causes, including infections, injuries, tumors, degenerative conditions, autoimmune disorders, and genetic factors. Some examples of spinal cord diseases include multiple sclerosis, spina bifida, spinal cord injury, herniated discs, spinal stenosis, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS).

The treatment for spinal cord diseases varies depending on the underlying cause and severity of the condition. Treatment options may include medication, physical therapy, surgery, and rehabilitation. In some cases, the damage to the spinal cord may be irreversible, leading to permanent disability or paralysis.

Optic atrophy is a medical term that refers to the degeneration and shrinkage (atrophy) of the optic nerve, which transmits visual information from the eye to the brain. This condition can result in various vision abnormalities, including loss of visual acuity, color vision deficiencies, and peripheral vision loss.

Optic atrophy can occur due to a variety of causes, such as:

* Traumatic injuries to the eye or optic nerve
* Glaucoma
* Optic neuritis (inflammation of the optic nerve)
* Ischemic optic neuropathy (reduced blood flow to the optic nerve)
* Compression or swelling of the optic nerve
* Hereditary or congenital conditions affecting the optic nerve
* Toxins and certain medications that can damage the optic nerve.

The diagnosis of optic atrophy typically involves a comprehensive eye examination, including visual acuity testing, refraction assessment, slit-lamp examination, and dilated funduscopic examination to evaluate the health of the optic nerve. In some cases, additional diagnostic tests such as visual field testing, optical coherence tomography (OCT), or magnetic resonance imaging (MRI) may be necessary to confirm the diagnosis and determine the underlying cause.

There is no specific treatment for optic atrophy, but addressing the underlying cause can help prevent further damage to the optic nerve. In some cases, vision rehabilitation may be recommended to help patients adapt to their visual impairment.

Motor Neuron Disease (MND) is a progressive neurodegenerative disorder that affects the motor neurons, which are nerve cells in the brain and spinal cord responsible for controlling voluntary muscles involved in movement, speaking, breathing, and swallowing. As the motor neurons degenerate and die, they stop sending signals to the muscles, causing them to weaken, waste away (atrophy), and eventually lead to paralysis.

There are several types of MND, including:

1. Amyotrophic Lateral Sclerosis (ALS): Also known as Lou Gehrig's disease, this is the most common form of MND. It affects both upper and lower motor neurons, causing muscle weakness, stiffness, twitching, and atrophy throughout the body.
2. Progressive Bulbar Palsy (PBP): This type primarily affects the bulbar muscles in the brainstem, which control speech, swallowing, and chewing. Patients with PBP experience difficulties with speaking, slurred speech, and problems swallowing and may also have weak facial muscles and limb weakness.
3. Primary Lateral Sclerosis (PLS): This form of MND affects only the upper motor neurons, causing muscle stiffness, spasticity, and weakness, primarily in the legs. PLS progresses more slowly than ALS, and patients usually maintain their ability to speak and swallow for a longer period.
4. Progressive Muscular Atrophy (PMA): This type of MND affects only the lower motor neurons, causing muscle wasting, weakness, and fasciculations (muscle twitches). PMA progresses more slowly than ALS but can still be severely disabling over time.
5. Spinal Muscular Atrophy (SMA): This is a genetic form of MND that typically presents in infancy or childhood, although adult-onset forms exist. SMA affects the lower motor neurons in the spinal cord, causing muscle weakness and atrophy, primarily in the legs and trunk.

The exact cause of Motor Neuron Disease is not fully understood, but it is believed to involve a combination of genetic, environmental, and lifestyle factors. There is currently no cure for MND, and treatment focuses on managing symptoms, maintaining quality of life, and slowing disease progression through various therapies and medications.

Small nuclear ribonucleoproteins (snRNPs) are a type of ribonucleoprotein (RNP) found within the nucleus of eukaryotic cells. They are composed of small nuclear RNA (snRNA) molecules and associated proteins, which are involved in various aspects of RNA processing, particularly in the modification and splicing of messenger RNA (mRNA).

The snRNPs play a crucial role in the formation of spliceosomes, large ribonucleoprotein complexes that remove introns (non-coding sequences) from pre-mRNA and join exons (coding sequences) together to form mature mRNA. Each snRNP contains a specific snRNA molecule, such as U1, U2, U4, U5, or U6, which recognizes and binds to specific sequences within the pre-mRNA during splicing. The associated proteins help stabilize the snRNP structure and facilitate its interactions with other components of the spliceosome.

In addition to their role in splicing, some snRNPs are also involved in other cellular processes, such as transcription regulation, RNA export, and DNA damage response. Dysregulation or mutations in snRNP components have been implicated in various human diseases, including cancer, neurological disorders, and autoimmune diseases.

DEAD-Box Protein 20 (DDX20) is a member of the DEAD-box protein family, which are named for the conserved amino acid sequence "Asp-Glu-Ala-Asp" within their helicase domains. These proteins are involved in various aspects of RNA metabolism, including splicing, transport, translation, and degradation.

DDX20, also known as p68 or DP103, is a DNA/RNA helicase that plays a role in transcriptional regulation, pre-mRNA processing, and RNA export. It has been implicated in several cellular processes, including cell cycle progression, differentiation, and apoptosis. DDX20 can interact with various proteins involved in transcription, such as RNA polymerase II and the basal transcription factor TFIID, as well as components of the spliceosome and other RNA-binding proteins.

Mutations or dysregulation of DDX20 have been associated with several human diseases, including cancer, neurodevelopmental disorders, and autoimmune diseases. For example, increased expression of DDX20 has been observed in various types of cancer, such as breast, lung, and ovarian cancers, and may contribute to tumor progression by promoting cell proliferation and inhibiting apoptosis. Additionally, mutations in the gene encoding DDX20 have been identified in patients with intellectual disability, epilepsy, and autism spectrum disorder.

Human chromosome pair 5 consists of two rod-shaped structures present in the nucleus of human cells, which contain genetic material in the form of DNA and proteins. Each member of chromosome pair 5 is a single chromosome, and humans typically have 23 pairs of chromosomes for a total of 46 chromosomes in every cell of their body (except gametes or sex cells, which contain 23 chromosomes).

Chromosome pair 5 is one of the autosomal pairs, meaning it is not a sex chromosome. Each member of chromosome pair 5 is approximately 197 million base pairs in length and contains around 800-900 genes that provide instructions for making proteins and regulating various cellular processes.

Chromosome pair 5 is associated with several genetic disorders, including cri du chat syndrome (resulting from a deletion on the short arm of chromosome 5), Prader-Willi syndrome and Angelman syndrome (both resulting from abnormalities in gene expression on the long arm of chromosome 5).

Spinal nerve roots are the initial parts of spinal nerves that emerge from the spinal cord through the intervertebral foramen, which are small openings between each vertebra in the spine. These nerve roots carry motor, sensory, and autonomic fibers to and from specific regions of the body. There are 31 pairs of spinal nerve roots in total, with 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal pair. Each root has a dorsal (posterior) and ventral (anterior) ramus that branch off to form the peripheral nervous system. Irritation or compression of these nerve roots can result in pain, numbness, weakness, or loss of reflexes in the affected area.

Spinal injections, also known as epidural injections or intrathecal injections, are medical procedures involving the injection of medications directly into the spinal canal. The medication is usually delivered into the space surrounding the spinal cord (the epidural space) or into the cerebrospinal fluid that surrounds and protects the spinal cord (the subarachnoid space).

The medications used in spinal injections can include local anesthetics, steroids, opioids, or a combination of these. The purpose of spinal injections is to provide diagnostic information, therapeutic relief, or both. They are commonly used to treat various conditions affecting the spine, such as radicular pain (pain that radiates down the arms or legs), disc herniation, spinal stenosis, and degenerative disc disease.

Spinal injections can be administered using different techniques, including fluoroscopy-guided injections, computed tomography (CT) scan-guided injections, or with the help of a nerve stimulator. These techniques ensure accurate placement of the medication and minimize the risk of complications.

It is essential to consult a healthcare professional for specific information regarding spinal injections and their potential benefits and risks.

Exons are the coding regions of DNA that remain in the mature, processed mRNA after the removal of non-coding intronic sequences during RNA splicing. These exons contain the information necessary to encode proteins, as they specify the sequence of amino acids within a polypeptide chain. The arrangement and order of exons can vary between different genes and even between different versions of the same gene (alternative splicing), allowing for the generation of multiple protein isoforms from a single gene. This complexity in exon structure and usage significantly contributes to the diversity and functionality of the proteome.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Spinal nerves are the bundles of nerve fibers that transmit signals between the spinal cord and the rest of the body. There are 31 pairs of spinal nerves in the human body, which can be divided into five regions: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. Each spinal nerve carries both sensory information (such as touch, temperature, and pain) from the periphery to the spinal cord, and motor information (such as muscle control) from the spinal cord to the muscles and other structures in the body. Spinal nerves also contain autonomic fibers that regulate involuntary functions such as heart rate, digestion, and blood pressure.

Coiled bodies are nuclear structures found in the cells of higher organisms. They are composed of masses of DNA and RNA, as well as proteins. Coiled bodies are also known as Cajal bodies, after the Spanish histologist and neuroscientist Santiago Ramón y Cajal who first described them.

Coiled bodies are involved in various aspects of nuclear function, including the modification and processing of ribonucleoprotein (RNP) complexes, which are important for the regulation of gene expression. They also play a role in the biogenesis of telomerase, an enzyme that is responsible for maintaining the length and integrity of telomeres, the protective caps on the ends of chromosomes.

Coiled bodies are often associated with active genes and are thought to be involved in the regulation of gene expression. They have been implicated in a number of cellular processes, including transcription, splicing, and the transport of RNA. Coiled bodies are dynamic structures that can change in size and number in response to various stimuli, such as changes in the cell cycle or exposure to certain drugs.

It is worth noting that while coiled bodies have been well-studied, there is still much that is not known about their precise functions and how they contribute to normal cellular processes and disease.

Multiple System Atrophy (MSA) is a rare, progressive neurodegenerative disorder that affects multiple systems in the body. It is characterized by a combination of symptoms including Parkinsonism (such as stiffness, slowness of movement, and tremors), cerebellar ataxia (lack of muscle coordination), autonomic dysfunction (problems with the autonomic nervous system which controls involuntary actions like heart rate, blood pressure, sweating, and digestion), and pyramidal signs (abnormalities in the corticospinal tracts that control voluntary movements).

The disorder is caused by the degeneration of nerve cells in various parts of the brain and spinal cord, leading to a loss of function in these areas. The exact cause of MSA is unknown, but it is thought to involve a combination of genetic and environmental factors. There is currently no cure for MSA, and treatment is focused on managing symptoms and improving quality of life.

Spinal anesthesia is a type of regional anesthesia that involves injecting local anesthetic medication into the cerebrospinal fluid in the subarachnoid space, which is the space surrounding the spinal cord. This procedure is typically performed by introducing a needle into the lower back, between the vertebrae, to reach the subarachnoid space.

Once the local anesthetic is introduced into this space, it spreads to block nerve impulses from the corresponding levels of the spine, resulting in numbness and loss of sensation in specific areas of the body below the injection site. The extent and level of anesthesia depend on the amount and type of medication used, as well as the patient's individual response.

Spinal anesthesia is often used for surgeries involving the lower abdomen, pelvis, or lower extremities, such as cesarean sections, hernia repairs, hip replacements, and knee arthroscopies. It can also be utilized for procedures like epidural steroid injections to manage chronic pain conditions affecting the spine and lower limbs.

While spinal anesthesia provides effective pain relief during and after surgery, it may cause side effects such as low blood pressure, headache, or difficulty urinating. These potential complications should be discussed with the healthcare provider before deciding on this type of anesthesia.

Androgen receptors (ARs) are a type of nuclear receptor protein that are expressed in various tissues throughout the body. They play a critical role in the development and maintenance of male sexual characteristics and reproductive function. ARs are activated by binding to androgens, which are steroid hormones such as testosterone and dihydrotestosterone (DHT). Once activated, ARs function as transcription factors that regulate gene expression, ultimately leading to various cellular responses.

In the context of medical definitions, androgen receptors can be defined as follows:

Androgen receptors are a type of nuclear receptor protein that bind to androgens, such as testosterone and dihydrotestosterone, and mediate their effects on gene expression in various tissues. They play critical roles in the development and maintenance of male sexual characteristics and reproductive function, and are involved in the pathogenesis of several medical conditions, including prostate cancer, benign prostatic hyperplasia, and androgen deficiency syndromes.

SnRNP (small nuclear ribonucleoprotein) core proteins are a group of proteins that are associated with small nuclear RNAs (snRNAs) to form small nuclear ribonucleoprotein particles. These particles play crucial roles in various aspects of RNA processing, such as splicing, 3' end formation, and degradation.

The snRNP core proteins include seven Sm proteins (B, D1, D2, D3, E, F, and G) that form a heptameric ring-like structure called the Sm core, which binds to a conserved sequence motif in the snRNAs called the Sm site. In addition to the Sm proteins, there are also other core proteins such as Sm like (L) proteins and various other protein factors that associate with specific snRNP particles.

Together, these snRNP core proteins help to stabilize the snRNA, facilitate its assembly into functional ribonucleoprotein complexes, and participate in the recognition and processing of target RNAs during post-transcriptional regulation.

Spinal cord neoplasms refer to abnormal growths or tumors within the spinal cord. These can be benign (non-cancerous) or malignant (cancerous). They originate from the cells within the spinal cord itself (primary tumors), or they may spread to the spinal cord from other parts of the body (metastatic tumors). Spinal cord neoplasms can cause various symptoms depending on their location and size, including back pain, neurological deficits, and even paralysis. Treatment options include surgery, radiation therapy, and chemotherapy.

The spinal canal is the bony, protective channel within the vertebral column that contains and houses the spinal cord. It extends from the foramen magnum at the base of the skull to the sacrum, where the spinal cord ends and forms the cauda equina. The spinal canal is formed by a series of vertebral bodies stacked on top of each other, intervertebral discs in between them, and the laminae and spinous processes that form the posterior elements of the vertebrae. The spinal canal provides protection to the spinal cord from external trauma and contains cerebrospinal fluid (CSF) that circulates around the cord, providing nutrients and cushioning. Any narrowing or compression of the spinal canal, known as spinal stenosis, can cause various neurological symptoms due to pressure on the spinal cord or nerve roots.

Spinal diseases refer to a range of medical conditions that affect the spinal column, which is made up of vertebrae (bones), intervertebral discs, facet joints, nerves, ligaments, and muscles. These diseases can cause pain, discomfort, stiffness, numbness, weakness, or even paralysis, depending on the severity and location of the condition. Here are some examples of spinal diseases:

1. Degenerative disc disease: This is a condition where the intervertebral discs lose their elasticity and height, leading to stiffness, pain, and decreased mobility.
2. Herniated disc: This occurs when the inner material of the intervertebral disc bulges or herniates out through a tear in the outer layer, causing pressure on the spinal nerves and resulting in pain, numbness, tingling, or weakness in the affected area.
3. Spinal stenosis: This is a narrowing of the spinal canal or the neural foramen (the openings where the spinal nerves exit the spinal column), which can cause pressure on the spinal cord or nerves and result in pain, numbness, tingling, or weakness.
4. Scoliosis: This is a curvature of the spine that can occur in children or adults, leading to an abnormal posture, back pain, and decreased lung function.
5. Osteoarthritis: This is a degenerative joint disease that affects the facet joints in the spine, causing pain, stiffness, and decreased mobility.
6. Ankylosing spondylitis: This is a chronic inflammatory disease that affects the spine and sacroiliac joints, leading to pain, stiffness, and fusion of the vertebrae.
7. Spinal tumors: These are abnormal growths that can occur in the spinal column, which can be benign or malignant, causing pain, neurological symptoms, or even paralysis.
8. Infections: Bacterial or viral infections can affect the spine, leading to pain, fever, and other systemic symptoms.
9. Trauma: Fractures, dislocations, or sprains of the spine can occur due to accidents, falls, or sports injuries, causing pain, neurological deficits, or even paralysis.

Spinal cord compression is a medical condition that refers to the narrowing of the spinal canal, which puts pressure on the spinal cord and the nerves that branch out from it. This can occur due to various reasons such as degenerative changes in the spine, herniated discs, bone spurs, tumors, or fractures. The compression can lead to a range of symptoms including pain, numbness, tingling, weakness, or loss of bladder and bowel control. In severe cases, it can cause paralysis. Treatment options depend on the underlying cause and may include physical therapy, medication, surgery, or radiation therapy.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Spinal neoplasms refer to abnormal growths or tumors found within the spinal column, which can be benign (non-cancerous) or malignant (cancerous). These tumors can originate in the spine itself, called primary spinal neoplasms, or they can spread to the spine from other parts of the body, known as secondary or metastatic spinal neoplasms. Spinal neoplasms can cause various symptoms, such as back pain, neurological deficits, and even paralysis, depending on their location and size. Early diagnosis and treatment are crucial to prevent or minimize long-term complications and improve the patient's prognosis.

I must clarify that the term "pedigree" is not typically used in medical definitions. Instead, it is often employed in genetics and breeding, where it refers to the recorded ancestry of an individual or a family, tracing the inheritance of specific traits or diseases. In human genetics, a pedigree can help illustrate the pattern of genetic inheritance in families over multiple generations. However, it is not a medical term with a specific clinical definition.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Progressive bulbar palsy (PBP) is a form of motor neuron disease (MND), also known as Amyotrophic Lateral Sclerosis (ALS). It is characterized by the progressive degeneration of the motor neurons in the brainstem, which control vital functions such as swallowing, speaking, chewing, and breathing.

In PBP, these symptoms gradually worsen over time, often resulting in severe disability and ultimately death due to respiratory failure. The progression of the disease can vary from person to person, but it typically advances more slowly than other forms of ALS. There is currently no cure for PBP or any other form of MND, and treatment is focused on managing symptoms and maintaining quality of life.

Spinal stenosis is a narrowing of the spinal canal or the neural foramina (the openings through which nerves exit the spinal column), typically in the lower back (lumbar) or neck (cervical) regions. This can put pressure on the spinal cord and/or nerve roots, causing pain, numbness, tingling, or weakness in the affected areas, often in the legs, arms, or hands. It's most commonly caused by age-related wear and tear, but can also be due to degenerative changes, herniated discs, tumors, or spinal injuries.

Spinal fusion is a surgical procedure where two or more vertebrae in the spine are fused together to create a solid bone. The purpose of this procedure is to restrict movement between the fused vertebrae, which can help reduce pain and stabilize the spine. This is typically done using bone grafts or bone graft substitutes, along with hardware such as rods, screws, or cages to hold the vertebrae in place while they heal together. The procedure may be recommended for various spinal conditions, including degenerative disc disease, spinal stenosis, spondylolisthesis, scoliosis, or fractures.

Electromyography (EMG) is a medical diagnostic procedure that measures the electrical activity of skeletal muscles during contraction and at rest. It involves inserting a thin needle electrode into the muscle to record the electrical signals generated by the muscle fibers. These signals are then displayed on an oscilloscope and may be heard through a speaker.

EMG can help diagnose various neuromuscular disorders, such as muscle weakness, numbness, or pain, and can distinguish between muscle and nerve disorders. It is often used in conjunction with other diagnostic tests, such as nerve conduction studies, to provide a comprehensive evaluation of the nervous system.

EMG is typically performed by a neurologist or a physiatrist, and the procedure may cause some discomfort or pain, although this is usually minimal. The results of an EMG can help guide treatment decisions and monitor the progression of neuromuscular conditions over time.

Nerve degeneration, also known as neurodegeneration, is the progressive loss of structure and function of neurons, which can lead to cognitive decline, motor impairment, and various other symptoms. This process occurs due to a variety of factors, including genetics, environmental influences, and aging. It is a key feature in several neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The degeneration can affect any part of the nervous system, leading to different symptoms depending on the location and extent of the damage.

Charcot-Marie-Tooth disease (CMT) is a group of inherited disorders that cause nerve damage, primarily affecting the peripheral nerves. These are the nerves that transmit signals between the brain and spinal cord to the rest of the body. CMT affects both motor and sensory nerves, leading to muscle weakness and atrophy, as well as numbness or tingling in the hands and feet.

The disease is named after the three physicians who first described it: Jean-Martin Charcot, Pierre Marie, and Howard Henry Tooth. CMT is characterized by its progressive nature, meaning symptoms typically worsen over time, although the rate of progression can vary significantly among individuals.

There are several types of CMT, classified based on their genetic causes and patterns of inheritance. The two most common forms are CMT1 and CMT2:

1. CMT1: This form is caused by mutations in the genes responsible for the myelin sheath, which insulates peripheral nerves and allows for efficient signal transmission. As a result, demyelination occurs, slowing down nerve impulses and causing muscle weakness, particularly in the lower limbs. Symptoms usually begin in childhood or adolescence and include foot drop, high arches, and hammertoes.
2. CMT2: This form is caused by mutations in the genes responsible for the axons, the nerve fibers that transmit signals within peripheral nerves. As a result, axonal degeneration occurs, leading to muscle weakness and atrophy. Symptoms usually begin in early adulthood and progress more slowly than CMT1. They primarily affect the lower limbs but can also involve the hands and arms.

Diagnosis of CMT typically involves a combination of clinical evaluation, family history, nerve conduction studies, and genetic testing. While there is no cure for CMT, treatment focuses on managing symptoms and maintaining mobility and function through physical therapy, bracing, orthopedic surgery, and pain management.

Muscle weakness is a condition in which muscles cannot develop the expected level of physical force or power. This results in reduced muscle function and can be caused by various factors, including nerve damage, muscle diseases, or hormonal imbalances. Muscle weakness may manifest as difficulty lifting objects, maintaining posture, or performing daily activities. It is essential to consult a healthcare professional for proper diagnosis and treatment of muscle weakness.

Heterozygote detection is a method used in genetics to identify individuals who carry one normal and one mutated copy of a gene. These individuals are known as heterozygotes and they do not typically show symptoms of the genetic disorder associated with the mutation, but they can pass the mutated gene on to their offspring, who may then be affected.

Heterozygote detection is often used in genetic counseling and screening programs for recessive disorders such as cystic fibrosis or sickle cell anemia. By identifying heterozygotes, individuals can be informed of their carrier status and the potential risks to their offspring. This information can help them make informed decisions about family planning and reproductive options.

Various methods can be used for heterozygote detection, including polymerase chain reaction (PCR) based tests, DNA sequencing, and genetic linkage analysis. The choice of method depends on the specific gene or mutation being tested, as well as the availability and cost of the testing technology.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

A contracture, in a medical context, refers to the abnormal shortening and hardening of muscles, tendons, or other tissue, which can result in limited mobility and deformity of joints. This condition can occur due to various reasons such as injury, prolonged immobilization, scarring, neurological disorders, or genetic conditions.

Contractures can cause significant impairment in daily activities and quality of life, making it difficult for individuals to perform routine tasks like dressing, bathing, or walking. Treatment options may include physical therapy, splinting, casting, medications, surgery, or a combination of these approaches, depending on the severity and underlying cause of the contracture.

Olivopontocerebellar atrophies (OPCA) are a group of rare, progressive neurodegenerative disorders that primarily affect the cerebellum, olive (inferior olivary nucleus), and pons in the brainstem. The condition is characterized by degeneration and atrophy of these specific areas, leading to various neurological symptoms.

The term "olivopontocerebellar atrophies" encompasses several subtypes, including:

1. Hereditary spastic paraplegia with cerebellar ataxia (SPG/ATA) - Autosomal dominant or recessive inheritance pattern.
2. Hereditary dentatorubral-pallidoluysian atrophy (DRPLA) - Autosomal dominant inheritance pattern.
3. Idiopathic OPCA - No known genetic cause, possibly related to environmental factors or spontaneous mutations.

Symptoms of olivopontocerebellar atrophies may include:

* Progressive cerebellar ataxia (gait and limb incoordination)
* Dysarthria (slurred speech)
* Oculomotor abnormalities (nystagmus, gaze palsy)
* Spasticity (stiffness and rigidity of muscles)
* Dysphagia (difficulty swallowing)
* Tremors or dystonia (involuntary muscle contractions)

Diagnosis typically involves a combination of clinical examination, neuroimaging studies (MRI), genetic testing, and exclusion of other possible causes. Currently, there is no cure for olivopontocerebellar atrophies, but supportive care can help manage symptoms and improve quality of life.

Neuromuscular diseases are a group of disorders that involve the peripheral nervous system, which includes the nerves and muscles outside of the brain and spinal cord. These conditions can affect both children and adults, and they can be inherited or acquired. Neuromuscular diseases can cause a wide range of symptoms, including muscle weakness, numbness, tingling, pain, cramping, and twitching. Some common examples of neuromuscular diseases include muscular dystrophy, amyotrophic lateral sclerosis (ALS), peripheral neuropathy, and myasthenia gravis. The specific symptoms and severity of these conditions can vary widely depending on the underlying cause and the specific muscles and nerves that are affected. Treatment for neuromuscular diseases may include medications, physical therapy, assistive devices, or surgery, depending on the individual case.

An axon is a long, slender extension of a neuron (a type of nerve cell) that conducts electrical impulses (nerve impulses) away from the cell body to target cells, such as other neurons or muscle cells. Axons can vary in length from a few micrometers to over a meter long and are typically surrounded by a myelin sheath, which helps to insulate and protect the axon and allows for faster transmission of nerve impulses.

Axons play a critical role in the functioning of the nervous system, as they provide the means by which neurons communicate with one another and with other cells in the body. Damage to axons can result in serious neurological problems, such as those seen in spinal cord injuries or neurodegenerative diseases like multiple sclerosis.

Glycine-tRNA ligase, also known as glycyl-tRNA synthetase, is an enzyme that plays a crucial role in protein synthesis. Its primary function is to catalyze the reaction between the amino acid glycine and its corresponding transfer RNA (tRNA) molecule. This reaction forms a covalent bond between glycine and tRNA, creating a charged tRNA molecule that can then participate in protein synthesis on the ribosome.

The systematic name for this enzyme is "glycyl-tRNA ligase (AMP-forming)" and it belongs to the class II aminoacyl-tRNA synthetases. It requires ATP as a cofactor to activate the glycine molecule before forming the ester bond with tRNA. Defects in this enzyme have been associated with certain neurological disorders, such as Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V.

Arthrogryposis is a medical term that describes a condition characterized by the presence of multiple joint contractures at birth. A contracture occurs when the range of motion in a joint is limited, making it difficult or impossible to move the joint through its full range of motion. In arthrogryposis, these contractures are present in two or more areas of the body.

The term "arthrogryposis" comes from two Greek words: "arthro," meaning joint, and "gyros," meaning curved or bent. Therefore, arthrogryposis literally means "curving of the joints."

There are many different types of arthrogryposis, each with its own specific set of symptoms and causes. However, in general, arthrogryposis is caused by decreased fetal movement during pregnancy, which can be due to a variety of factors such as genetic mutations, nervous system abnormalities, or environmental factors that restrict fetal movement.

Treatment for arthrogryposis typically involves a combination of physical therapy, bracing, and surgery to help improve joint mobility and function. The prognosis for individuals with arthrogryposis varies depending on the severity and type of contractures present, as well as the underlying cause of the condition.

Neural conduction is the process by which electrical signals, known as action potentials, are transmitted along the axon of a neuron (nerve cell) to transmit information between different parts of the nervous system. This electrical impulse is generated by the movement of ions across the neuronal membrane, and it propagates down the length of the axon until it reaches the synapse, where it can then stimulate the release of neurotransmitters to communicate with other neurons or target cells. The speed of neural conduction can vary depending on factors such as the diameter of the axon, the presence of myelin sheaths (which act as insulation and allow for faster conduction), and the temperature of the environment.

Gene deletion is a type of mutation where a segment of DNA, containing one or more genes, is permanently lost or removed from a chromosome. This can occur due to various genetic mechanisms such as homologous recombination, non-homologous end joining, or other types of genomic rearrangements.

The deletion of a gene can have varying effects on the organism, depending on the function of the deleted gene and its importance for normal physiological processes. If the deleted gene is essential for survival, the deletion may result in embryonic lethality or developmental abnormalities. However, if the gene is non-essential or has redundant functions, the deletion may not have any noticeable effects on the organism's phenotype.

Gene deletions can also be used as a tool in genetic research to study the function of specific genes and their role in various biological processes. For example, researchers may use gene deletion techniques to create genetically modified animal models to investigate the impact of gene deletion on disease progression or development.

Vocal cord paralysis is a medical condition characterized by the inability of one or both vocal cords to move or function properly due to nerve damage or disruption. The vocal cords are two bands of muscle located in the larynx (voice box) that vibrate to produce sound during speech, singing, and breathing. When the nerves that control the vocal cord movements are damaged or not functioning correctly, the vocal cords may become paralyzed or weakened, leading to voice changes, breathing difficulties, and other symptoms.

The causes of vocal cord paralysis can vary, including neurological disorders, trauma, tumors, surgery, or infections. The diagnosis typically involves a physical examination, including a laryngoscopy, to assess the movement and function of the vocal cords. Treatment options may include voice therapy, surgical procedures, or other interventions to improve voice quality and breathing functions.

Spinal injuries refer to damages or traumas that occur to the vertebral column, which houses and protects the spinal cord. These injuries can be caused by various factors such as trauma from accidents (motor vehicle, sports-related, falls, etc.), violence, or degenerative conditions like arthritis, disc herniation, or spinal stenosis.

Spinal injuries can result in bruising, fractures, dislocations, or compression of the vertebrae, which may then cause damage to the spinal cord and its surrounding tissues, nerves, and blood vessels. The severity of a spinal injury can range from mild, with temporary symptoms, to severe, resulting in permanent impairment or paralysis below the level of injury.

Symptoms of spinal injuries may include:
- Pain or stiffness in the neck or back
- Numbness, tingling, or weakness in the limbs
- Loss of bladder or bowel control
- Difficulty walking or maintaining balance
- Paralysis or loss of sensation below the level of injury
- In severe cases, respiratory problems and difficulty in breathing

Immediate medical attention is crucial for spinal injuries to prevent further damage and ensure proper treatment. Treatment options may include immobilization, surgery, medication, rehabilitation, and physical therapy.

Gyrate atrophy is a rare inherited eye disorder that is characterized by progressive degeneration of the retina, which is the light-sensitive tissue at the back of the eye. It is caused by a deficiency in an enzyme called ornithine aminotransferase (OAT), which is necessary for the normal metabolism of an amino acid called ornithine.

The accumulation of ornithine in the retinal cells leads to their degeneration and the formation of well-demarcated, circular areas of atrophy (gyrates) in the retina. This can result in decreased vision, night blindness, and a progressive loss of visual field, which can ultimately lead to legal or complete blindness.

Gyrate atrophy is typically inherited as an autosomal recessive trait, meaning that an individual must inherit two copies of the mutated gene (one from each parent) in order to develop the condition. The disorder usually becomes apparent in childhood or adolescence and can progress slowly over several decades. There is currently no cure for gyrate atrophy, but dietary restrictions and supplements may help slow its progression.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

The neuromuscular junction (NMJ) is the specialized synapse or chemical communication point, where the motor neuron's nerve terminal (presynaptic element) meets the muscle fiber's motor end plate (postsynaptic element). This junction plays a crucial role in controlling muscle contraction and relaxation.

At the NMJ, the neurotransmitter acetylcholine is released from the presynaptic nerve terminal into the synaptic cleft, following an action potential. Acetylcholine then binds to nicotinic acetylcholine receptors on the postsynaptic membrane of the muscle fiber, leading to the generation of an end-plate potential. If sufficient end-plate potentials are generated and summate, they will trigger an action potential in the muscle fiber, ultimately causing muscle contraction.

Dysfunction at the neuromuscular junction can result in various neuromuscular disorders, such as myasthenia gravis, where autoantibodies attack acetylcholine receptors, leading to muscle weakness and fatigue.

Trinucleotide Repeat Expansion is a genetic mutation where a sequence of three DNA nucleotides is repeated more frequently than what is typically found in the general population. In this type of mutation, the number of repeats can expand or increase from one generation to the next, leading to an increased risk of developing certain genetic disorders.

These disorders are often neurological and include conditions such as Huntington's disease, myotonic dystrophy, fragile X syndrome, and Friedreich's ataxia. The severity of these diseases can be related to the number of repeats present in the affected gene, with a higher number of repeats leading to more severe symptoms or an earlier age of onset.

It is important to note that not all trinucleotide repeat expansions will result in disease, and some people may carry these mutations without ever developing any symptoms. However, if the number of repeats crosses a certain threshold, it can lead to genetic instability and an increased risk of disease development.

Neuromuscular junction diseases are a group of disorders that affect the functioning of the neuromuscular junction, which is the site where nerve impulses are transmitted to muscles. These diseases are characterized by muscle weakness and fatigue, and can be caused by various factors such as autoimmune disorders, genetic mutations, or toxins.

Examples of neuromuscular junction diseases include myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS), congenital myasthenic syndromes (CMS), and botulism. Myasthenia gravis is an autoimmune disorder that causes the immune system to attack the receptors in the neuromuscular junction, leading to muscle weakness and fatigue. LEMS is a rare autoimmune disorder that affects the nerve endings at the neuromuscular junction, causing muscle weakness and decreased reflexes.

Congenital myasthenic syndromes are genetic disorders that affect the functioning of the neuromuscular junction from birth, leading to muscle weakness and fatigue. Botulism is a rare but serious condition caused by the ingestion of botulinum toxin, which can lead to paralysis of the muscles due to interference with nerve impulse transmission at the neuromuscular junction.

Treatment for neuromuscular junction diseases may include medications such as cholinesterase inhibitors, immunosuppressive drugs, or plasma exchange therapy, depending on the specific diagnosis and severity of the condition.

RNA splicing is a post-transcriptional modification process in which the non-coding sequences (introns) are removed and the coding sequences (exons) are joined together in a messenger RNA (mRNA) molecule. This results in a continuous mRNA sequence that can be translated into a single protein. Alternative splicing, where different combinations of exons are included or excluded, allows for the creation of multiple proteins from a single gene.

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disorder that affects nerve cells in the brain and spinal cord responsible for controlling voluntary muscle movements, such as speaking, walking, breathing, and swallowing. The condition is characterized by the degeneration of motor neurons in the brain (upper motor neurons) and spinal cord (lower motor neurons), leading to their death.

The term "amyotrophic" comes from the Greek words "a" meaning no or negative, "myo" referring to muscle, and "trophic" relating to nutrition. When a motor neuron degenerates and can no longer send impulses to the muscle, the muscle becomes weak and eventually atrophies due to lack of use.

The term "lateral sclerosis" refers to the hardening or scarring (sclerosis) of the lateral columns of the spinal cord, which are primarily composed of nerve fibers that carry information from the brain to the muscles.

ALS is often called Lou Gehrig's disease, named after the famous American baseball player who was diagnosed with the condition in 1939. The exact cause of ALS remains unknown, but it is believed to involve a combination of genetic and environmental factors. There is currently no cure for ALS, and treatment primarily focuses on managing symptoms and maintaining quality of life.

The progression of ALS varies from person to person, with some individuals experiencing rapid decline over just a few years, while others may have a more slow-progressing form of the disease that lasts several decades. The majority of people with ALS die from respiratory failure within 3 to 5 years after the onset of symptoms. However, approximately 10% of those affected live for 10 or more years following diagnosis.

Spinal cord ischemia refers to a reduction or interruption of blood flow to the spinal cord, leading to insufficient oxygen and nutrient supply. This condition can cause damage to the spinal cord tissue, potentially resulting in neurological deficits, such as muscle weakness, sensory loss, or autonomic dysfunction. Spinal cord ischemia may be caused by various factors, including atherosclerosis, embolism, spinal artery stenosis, or complications during surgery. The severity and extent of the neurological impairment depend on the duration and location of the ischemic event in the spinal cord.

Spinal ganglia, also known as dorsal root ganglia, are clusters of nerve cell bodies located in the peripheral nervous system. They are situated along the length of the spinal cord and are responsible for transmitting sensory information from the body to the brain. Each spinal ganglion contains numerous neurons, or nerve cells, with long processes called axons that extend into the periphery and innervate various tissues and organs. The cell bodies within the spinal ganglia receive sensory input from these axons and transmit this information to the central nervous system via the dorsal roots of the spinal nerves. This allows the brain to interpret and respond to a wide range of sensory stimuli, including touch, temperature, pain, and proprioception (the sense of the position and movement of one's body).

Recessive genes refer to the alleles (versions of a gene) that will only be expressed when an individual has two copies of that particular allele, one inherited from each parent. If an individual inherits one recessive allele and one dominant allele for a particular gene, the dominant allele will be expressed and the recessive allele will have no effect on the individual's phenotype (observable traits).

Recessive genes can still play a role in determining an individual's genetic makeup and can be passed down through generations even if they are not expressed. If two carriers of a recessive gene have children, there is a 25% chance that their offspring will inherit two copies of the recessive allele and exhibit the associated recessive trait.

Examples of genetic disorders caused by recessive genes include cystic fibrosis, sickle cell anemia, and albinism.

The sural nerve is a purely sensory peripheral nerve in the lower leg and foot. It provides sensation to the outer ( lateral) aspect of the little toe and the adjacent side of the fourth toe, as well as a small portion of the skin on the back of the leg between the ankle and knee joints.

The sural nerve is formed by the union of branches from the tibial and common fibular nerves (branches of the sciatic nerve) in the lower leg. It runs down the calf, behind the lateral malleolus (the bony prominence on the outside of the ankle), and into the foot.

The sural nerve is often used as a donor nerve during nerve grafting procedures due to its consistent anatomy and relatively low risk for morbidity at the donor site.

Geographic atrophy is a medical term used to describe a specific pattern of degeneration of the retinal pigment epithelium (RPE) and the underlying choroidal tissue in the eye. This condition is often associated with age-related macular degeneration (AMD), which is a leading cause of vision loss in older adults.

In geographic atrophy, there are well-defined areas of RPE and choroidal atrophy that appear as pale, irregularly shaped patches in the central part of the retina known as the macula. These patches can grow larger over time and may lead to progressive vision loss. The exact cause of geographic atrophy is not fully understood, but it is thought to be related to oxidative stress, inflammation, and other age-related changes in the eye.

Currently, there are no effective treatments for geographic atrophy, although research is ongoing to find new ways to slow or halt its progression. Regular eye exams and monitoring by an ophthalmologist are important for people with AMD or geographic atrophy to help detect any changes in their vision and manage their condition effectively.

Genetic linkage is the phenomenon where two or more genetic loci (locations on a chromosome) tend to be inherited together because they are close to each other on the same chromosome. This occurs during the process of sexual reproduction, where homologous chromosomes pair up and exchange genetic material through a process called crossing over.

The closer two loci are to each other on a chromosome, the lower the probability that they will be separated by a crossover event. As a result, they are more likely to be inherited together and are said to be linked. The degree of linkage between two loci can be measured by their recombination frequency, which is the percentage of meiotic events in which a crossover occurs between them.

Linkage analysis is an important tool in genetic research, as it allows researchers to identify and map genes that are associated with specific traits or diseases. By analyzing patterns of linkage between markers (identifiable DNA sequences) and phenotypes (observable traits), researchers can infer the location of genes that contribute to those traits or diseases on chromosomes.

Gene dosage, in genetic terms, refers to the number of copies of a particular gene present in an organism's genome. Each gene usually has two copies (alleles) in diploid organisms, one inherited from each parent. An increase or decrease in the number of copies of a specific gene can lead to changes in the amount of protein it encodes, which can subsequently affect various biological processes and phenotypic traits.

For example, gene dosage imbalances have been associated with several genetic disorders, such as Down syndrome (trisomy 21), where an individual has three copies of chromosome 21 instead of the typical two copies, leading to developmental delays and intellectual disabilities. Similarly, in certain cases of cancer, gene amplification (an increase in the number of copies of a particular gene) can result in overexpression of oncogenes, contributing to tumor growth and progression.

Trinucleotide repeats refer to a specific type of DNA sequence expansion where a particular trinucleotide (a sequence made up of three nucleotides) is repeated multiple times. In normal genomic DNA, these repeats are usually present in a relatively stable and consistent range. However, when the number of repeats exceeds a certain threshold, it can result in an unstable genetic variant known as a trinucleotide repeat expansion.

These expansions can occur in various genes and are associated with several neurogenetic disorders, such as Huntington's disease, myotonic dystrophy, fragile X syndrome, and Friedreich's ataxia. The length of the trinucleotide repeat tends to expand further in subsequent generations, which can lead to anticipation – an earlier age of onset and increased severity of symptoms in successive generations.

The most common trinucleotide repeats involve CAG (cytosine-adenine-guanine) or CTG (cytosine-thymine-guanine) repeats, although other combinations like CGG, GAA, and GCT can also be involved. These repeat expansions can result in altered gene function, protein misfolding, aggregation, and toxicity, ultimately leading to the development of neurodegenerative diseases and other clinical manifestations.

Intranuclear inclusion bodies are abnormal, rounded structures found within the nucleus of a cell. They are composed of aggregated proteins or other cellular components and can be associated with various viral infections and certain genetic disorders. These inclusion bodies can interfere with normal nuclear functions, leading to cell damage and contributing to the pathogenesis of diseases such as cytomegalovirus infection, rabies, and some forms of neurodegenerative disorders like polyglutamine diseases. The presence of intranuclear inclusion bodies is often used in diagnostic pathology to help identify specific underlying conditions.

Dominant genes refer to the alleles (versions of a gene) that are fully expressed in an individual's phenotype, even if only one copy of the gene is present. In dominant inheritance patterns, an individual needs only to receive one dominant allele from either parent to express the associated trait. This is in contrast to recessive genes, where both copies of the gene must be the recessive allele for the trait to be expressed. Dominant genes are represented by uppercase letters (e.g., 'A') and recessive genes by lowercase letters (e.g., 'a'). If an individual inherits one dominant allele (A) from either parent, they will express the dominant trait (A).

Myelography is a medical imaging technique used to examine the spinal cord and surrounding structures, such as the spinal nerves, intervertebral discs, and the spinal column. This procedure involves the injection of a contrast dye into the subarachnoid space, which is the area surrounding the spinal cord filled with cerebrospinal fluid (CSF). The dye outlines the spinal structures, making them visible on X-ray or CT scan images.

The primary purpose of myelography is to diagnose various spinal conditions, including herniated discs, spinal stenosis, tumors, infection, and traumatic injuries. It can help identify any compression or irritation of the spinal cord or nerves that may be causing pain, numbness, weakness, or other neurological symptoms.

The procedure typically requires the patient to lie flat on their stomach or side while the radiologist inserts a thin needle into the subarachnoid space, usually at the lower lumbar level. Once the contrast dye is injected, the patient will be repositioned for various X-ray views or undergo a CT scan to capture detailed images of the spine. After the procedure, patients may experience headaches, nausea, or discomfort at the injection site, but these symptoms usually resolve within a few days.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

Inclusion bodies are abnormal, intracellular accumulations or aggregations of various misfolded proteins, protein complexes, or other materials within the cells of an organism. They can be found in various tissues and cell types and are often associated with several pathological conditions, including infectious diseases, neurodegenerative disorders, and genetic diseases.

Inclusion bodies can vary in size, shape, and location depending on the specific disease or condition. Some inclusion bodies have a characteristic appearance under the microscope, such as eosinophilic (pink) staining with hematoxylin and eosin (H&E) histological stain, while others may require specialized stains or immunohistochemical techniques to identify the specific misfolded proteins involved.

Examples of diseases associated with inclusion bodies include:

1. Infectious diseases: Some viral infections, such as HIV, hepatitis B and C, and herpes simplex virus, can lead to the formation of inclusion bodies within infected cells.
2. Neurodegenerative disorders: Several neurodegenerative diseases are characterized by the presence of inclusion bodies, including Alzheimer's disease (amyloid-beta plaques and tau tangles), Parkinson's disease (Lewy bodies), Huntington's disease (Huntingtin aggregates), and amyotrophic lateral sclerosis (TDP-43 and SOD1 inclusions).
3. Genetic diseases: Certain genetic disorders, such as Danon disease, neuronal intranuclear inclusion disease, and some lysosomal storage disorders, can also present with inclusion bodies due to the accumulation of abnormal proteins or metabolic products within cells.

The exact role of inclusion bodies in disease pathogenesis remains unclear; however, they are often associated with cellular dysfunction, oxidative stress, and increased inflammation, which can contribute to disease progression and neurodegeneration.

Paraplegia is a medical condition characterized by partial or complete loss of motor function and sensation in the lower extremities, typically affecting both legs. This results from damage to the spinal cord, often due to trauma such as accidents, falls, or gunshot wounds, or from diseases like spina bifida, polio, or tumors. The specific area and extent of the injury on the spinal cord determine the severity and location of paralysis. Individuals with paraplegia may require assistive devices for mobility, such as wheelchairs, and may face various health challenges, including pressure sores, urinary tract infections, and chronic pain.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

A fasciculation is an involuntary muscle contraction and relaxation that occurs randomly and spontaneously, causing a visible twitching of the muscle. Fasciculations can occur in any skeletal muscle of the body and are often described as feeling like a "mini-charley horse." They are generally harmless and can occur in people without any underlying neurological conditions. However, they can also be a symptom of certain neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS) or motor neuron disease. In these cases, fasciculations are often accompanied by other symptoms, such as muscle weakness, atrophy, and cramping. If you are experiencing persistent or frequent fasciculations, it is important to consult with a healthcare professional for further evaluation and diagnosis.

Progressive Myoclonic Epilepsies (PME) is a group of rare, genetic disorders characterized by myoclonus (rapid, involuntary muscle jerks), tonic-clonic seizures (also known as grand mal seizures), and progressive neurological deterioration. The term "progressive" refers to the worsening of symptoms over time.

The myoclonic epilepsies are classified as progressive due to the underlying neurodegenerative process that affects the brain, leading to a decline in cognitive abilities, motor skills, and overall functioning. These disorders usually begin in childhood or adolescence and tend to worsen with age.

Examples of PMEs include:

1. Lafora disease: A genetic disorder caused by mutations in the EPM2A or NHLRC1 genes, leading to the accumulation of abnormal protein aggregates called Lafora bodies in neurons. Symptoms typically start between ages 6 and 16 and include myoclonus, seizures, and progressive neurological decline.
2. Unverricht-Lundborg disease: Also known as Baltic myoclonus, this is an autosomal recessive disorder caused by mutations in the CSTB gene. It is characterized by progressive myoclonic epilepsy, ataxia (loss of coordination), and cognitive decline. Symptoms usually begin between ages 6 and 18.
3. Neuronal Ceroid Lipofuscinoses (NCLs): A group of inherited neurodegenerative disorders characterized by the accumulation of lipopigments in neurons. Several types of NCLs can present with progressive myoclonic epilepsy, including CLN2 (late-infantile NCL), CLN3 (juvenile NCL), and CLN6 (early juvenile NCL).
4. Myoclonus Epilepsy Associated with Ragged Red Fibers (MERRF): A mitochondrial disorder caused by mutations in the MT-TK gene, leading to myoclonic epilepsy, ataxia, and ragged red fibers on muscle biopsy.
5. Dentatorubral-Pallidoluysian Atrophy (DRPLA): An autosomal dominant disorder caused by mutations in the ATN1 gene, characterized by myoclonic epilepsy, ataxia, chorea (involuntary movements), and dementia.

These are just a few examples of disorders that can present with progressive myoclonic epilepsy. It is essential to consult a neurologist or epileptologist for proper diagnosis and management.

Analytical chemistry is a branch of chemistry that focuses on the identification and quantification of chemical components within a sample. This field involves developing and using various analytical techniques and methods to determine the presence, concentration, structure, and purity of different chemicals or compounds in a mixture.

Some common analytical techniques include:

1. Spectroscopy: Using light or other electromagnetic radiation to study the interaction between matter and energy, providing information about the composition, structure, and properties of a sample. Examples include UV-Vis, IR, NMR, and mass spectrometry.
2. Chromatography: A separation technique that separates components in a mixture based on their interactions with a mobile phase (gas or liquid) and a stationary phase (solid or liquid). Common methods include gas chromatography (GC), liquid chromatography (LC), and thin-layer chromatography (TLC).
3. Electrochemical analysis: Measuring the electrical properties of a sample, such as potential, current, or resistance, to determine its composition or concentration. Examples include potentiometry, voltammetry, and conductometry.
4. Thermal analysis: Examining the physical and chemical changes that occur in a sample when it is heated or cooled, providing information about its composition, structure, and properties. Techniques include differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA).
5. Spectrometry: Measuring the intensity of light dispersed by a sample as a function of wavelength or frequency to determine its composition, structure, or properties. Examples include atomic absorption spectroscopy (AAS), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray fluorescence spectrometry (XRF).

Analytical chemists often work in various industries, such as pharmaceuticals, food, environmental testing, and forensics, to ensure product quality, safety, and compliance with regulations. They may also contribute to research and development efforts by developing new analytical methods or improving existing ones.

The spine, also known as the vertebral column, is a complex structure in the human body that is part of the axial skeleton. It is composed of 33 individual vertebrae (except in some people where there are fewer due to fusion of certain vertebrae), intervertebral discs, facet joints, ligaments, muscles, and nerves.

The spine has several important functions:

1. Protection: The spine protects the spinal cord, which is a major component of the nervous system, by enclosing it within a bony canal.
2. Support: The spine supports the head and upper body, allowing us to maintain an upright posture and facilitating movement of the trunk and head.
3. Movement: The spine enables various movements such as flexion (bending forward), extension (bending backward), lateral flexion (bending sideways), and rotation (twisting).
4. Weight-bearing: The spine helps distribute weight and pressure evenly across the body, reducing stress on individual vertebrae and other structures.
5. Blood vessel and nerve protection: The spine protects vital blood vessels and nerves that pass through it, including the aorta, vena cava, and spinal nerves.

The spine is divided into five regions: cervical (7 vertebrae), thoracic (12 vertebrae), lumbar (5 vertebrae), sacrum (5 fused vertebrae), and coccyx (4 fused vertebrae, also known as the tailbone). Each region has unique characteristics that allow for specific functions and adaptations to the body's needs.

The thoracic vertebrae are the 12 vertebrae in the thoracic region of the spine, which is the portion between the cervical and lumbar regions. These vertebrae are numbered T1 to T12, with T1 being closest to the skull and T12 connecting to the lumbar region.

The main function of the thoracic vertebrae is to provide stability and support for the chest region, including protection for the vital organs within, such as the heart and lungs. Each thoracic vertebra has costal facets on its sides, which articulate with the heads of the ribs, forming the costovertebral joints. This connection between the spine and the ribcage allows for a range of movements while maintaining stability.

The thoracic vertebrae have a unique structure compared to other regions of the spine. They are characterized by having long, narrow bodies, small bony processes, and prominent spinous processes that point downwards. This particular shape and orientation of the thoracic vertebrae contribute to their role in limiting excessive spinal movement and providing overall trunk stability.

The Ulnar nerve is one of the major nerves in the forearm and hand, which provides motor function to the majority of the intrinsic muscles of the hand (except for those innervated by the median nerve) and sensory innervation to the little finger and half of the ring finger. It originates from the brachial plexus, passes through the cubital tunnel at the elbow, and continues down the forearm, where it runs close to the ulna bone. The ulnar nerve then passes through the Guyon's canal in the wrist before branching out to innervate the hand muscles and provide sensation to the skin on the little finger and half of the ring finger.

Respiratory paralysis is a condition characterized by the inability to breathe effectively due to the failure or weakness of the muscles involved in respiration. This can include the diaphragm, intercostal muscles, and other accessory muscles.

In medical terms, it's often associated with conditions that affect the neuromuscular junction, such as botulism, myasthenia gravis, or spinal cord injuries. It can also occur as a complication of general anesthesia, sedative drugs, or certain types of poisoning.

Respiratory paralysis is a serious condition that requires immediate medical attention, as it can lead to lack of oxygen (hypoxia) and buildup of carbon dioxide (hypercapnia) in the body, which can be life-threatening if not treated promptly.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

Tuberculosis (TB) of the spine, also known as Pott's disease, is a specific form of extrapulmonary tuberculosis that involves the vertebral column. It is caused by the Mycobacterium tuberculosis bacterium, which primarily affects the lungs but can spread through the bloodstream to other parts of the body, including the spine.

In Pott's disease, the infection leads to the destruction of the spongy bone (vertebral body) and the intervertebral disc space, resulting in vertebral collapse, kyphosis (hunchback deformity), and potential neurological complications due to spinal cord compression. Common symptoms include back pain, stiffness, fever, night sweats, and weight loss. Early diagnosis and treatment with a multidrug antibiotic regimen are crucial to prevent long-term disability and further spread of the infection.

Prenatal diagnosis is the medical testing of fetuses, embryos, or pregnant women to detect the presence or absence of certain genetic disorders or birth defects. These tests can be performed through various methods such as chorionic villus sampling (CVS), amniocentesis, or ultrasound. The goal of prenatal diagnosis is to provide early information about the health of the fetus so that parents and healthcare providers can make informed decisions about pregnancy management and newborn care. It allows for early intervention, treatment, or planning for the child's needs after birth.

A spliceosome is a complex of ribonucleoprotein (RNP) particles found in the nucleus of eukaryotic cells that removes introns (non-coding sequences) from precursor messenger RNA (pre-mRNA) and joins exons (coding sequences) together to form mature mRNA. This process is called splicing, which is an essential step in gene expression and protein synthesis. Spliceosomes are composed of five small nuclear ribonucleoprotein particles (snRNPs), known as U1, U2, U4/U6, and U5 snRNPs, and numerous proteins. The assembly of spliceosomes and the splicing reaction are highly regulated and can be influenced by various factors, including cis-acting elements in pre-mRNA and trans-acting factors such as serine/arginine-rich (SR) proteins.

Genetic counseling is a process of communication and education between a healthcare professional and an individual or family, aimed at understanding, adapting to, and managing the medical, psychological, and familial implications of genetic contributions to disease. This includes providing information about the risk of inherited conditions, explaining the implications of test results, discussing reproductive options, and offering support and resources for coping with a genetic condition. Genetic counselors are trained healthcare professionals who specialize in helping people understand genetic information and its impact on their health and lives.

Alternative splicing is a process in molecular biology that occurs during the post-transcriptional modification of pre-messenger RNA (pre-mRNA) molecules. It involves the removal of non-coding sequences, known as introns, and the joining together of coding sequences, or exons, to form a mature messenger RNA (mRNA) molecule that can be translated into a protein.

In alternative splicing, different combinations of exons are selected and joined together to create multiple distinct mRNA transcripts from a single pre-mRNA template. This process increases the diversity of proteins that can be produced from a limited number of genes, allowing for greater functional complexity in organisms.

Alternative splicing is regulated by various cis-acting elements and trans-acting factors that bind to specific sequences in the pre-mRNA molecule and influence which exons are included or excluded during splicing. Abnormal alternative splicing has been implicated in several human diseases, including cancer, neurological disorders, and cardiovascular disease.

Scoliosis is a medical condition characterized by an abnormal lateral curvature of the spine, which most often occurs in the thoracic or lumbar regions. The curvature can be "C" or "S" shaped and may also include rotation of the vertebrae. Mild scoliosis doesn't typically cause problems, but severe cases can interfere with breathing and other bodily functions.

The exact cause of most scoliosis is unknown, but it may be related to genetic factors. It often develops in the pre-teen or teenage years, particularly in girls, and is more commonly found in individuals with certain neuromuscular disorders such as cerebral palsy and muscular dystrophy.

Treatment for scoliosis depends on the severity of the curve, its location, and the age and expected growth of the individual. Mild cases may only require regular monitoring to ensure the curve doesn't worsen. More severe cases may require bracing or surgery to correct the curvature and prevent it from getting worse.

A laminectomy is a surgical procedure that involves the removal of the lamina, which is the back part of the vertebra that covers the spinal canal. This procedure is often performed to relieve pressure on the spinal cord or nerves caused by conditions such as herniated discs, spinal stenosis, or tumors. By removing the lamina, the surgeon can access the affected area and alleviate the compression on the spinal cord or nerves, thereby reducing pain, numbness, or weakness in the back, legs, or arms.

Laminectomy may be performed as a standalone procedure or in combination with other surgical techniques such as discectomy, foraminotomy, or spinal fusion. The specific approach and extent of the surgery will depend on the patient's individual condition and symptoms.

Acanthocytes are irregularly shaped red blood cells that have thorny or spiculated projections on their surface. These abnormal red blood cells are often seen in various medical conditions, including abetalipoproteinemia, malabsorption syndromes, liver diseases, and neuroacanthocytosis. The presence of acanthocytes can indicate abnormalities in lipid metabolism or membrane structure, which can lead to hemolysis and anemia. A blood film or smear is typically used to identify acanthocytes under a microscope.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Spinal curvatures refer to the normal or abnormal curvature patterns of the spine as viewed from the side. The human spine has four distinct curves that form an "S" shape when viewed from the side: cervical, thoracic, lumbar, and sacral. These natural curves provide strength, flexibility, and balance to the spine, allowing us to stand upright, maintain proper posture, and absorb shock during movement.

Abnormal spinal curvatures are often referred to as spinal deformities and can be classified into two main categories: hyperkyphosis (increased kyphosis) and hyperlordosis (increased lordosis). Examples of such conditions include:

1. Kyphosis: An excessive curvature in the thoracic or sacral regions, leading to a hunchback or rounded appearance. Mild kyphosis is common and usually not problematic, but severe cases can cause pain, breathing difficulties, and neurological issues.
2. Lordosis: An abnormal increase in the curvature of the lumbar or cervical spine, resulting in an exaggerated swayback posture. This can lead to lower back pain, muscle strain, and difficulty maintaining proper balance.
3. Scoliosis: A lateral (side-to-side) spinal curvature that causes the spine to twist and rotate, forming a C or S shape when viewed from behind. Most scoliosis cases are idiopathic (of unknown cause), but they can also be congenital (present at birth) or secondary to other medical conditions.

These abnormal spinal curvatures may require medical intervention, such as physical therapy, bracing, or surgery, depending on the severity and progression of the condition.

Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Genetic tests are performed on a sample of blood, hair, skin, amniotic fluid (the fluid that surrounds a fetus during pregnancy), or other tissue. For example, a physician may recommend genetic testing to help diagnose a genetic condition, confirm the presence of a gene mutation known to increase the risk of developing certain cancers, or determine the chance for a couple to have a child with a genetic disorder.

There are several types of genetic tests, including:

* Diagnostic testing: This type of test is used to identify or confirm a suspected genetic condition in an individual. It may be performed before birth (prenatal testing) or at any time during a person's life.
* Predictive testing: This type of test is used to determine the likelihood that a person will develop a genetic disorder. It is typically offered to individuals who have a family history of a genetic condition but do not show any symptoms themselves.
* Carrier testing: This type of test is used to determine whether a person carries a gene mutation for a genetic disorder. It is often offered to couples who are planning to have children and have a family history of a genetic condition or belong to a population that has an increased risk of certain genetic disorders.
* Preimplantation genetic testing: This type of test is used in conjunction with in vitro fertilization (IVF) to identify genetic changes in embryos before they are implanted in the uterus. It can help couples who have a family history of a genetic disorder or who are at risk of having a child with a genetic condition to conceive a child who is free of the genetic change in question.
* Pharmacogenetic testing: This type of test is used to determine how an individual's genes may affect their response to certain medications. It can help healthcare providers choose the most effective medication and dosage for a patient, reducing the risk of adverse drug reactions.

It is important to note that genetic testing should be performed under the guidance of a qualified healthcare professional who can interpret the results and provide appropriate counseling and support.

Valproic acid is a medication that is primarily used as an anticonvulsant, which means it is used to treat seizure disorders. It works by increasing the amount of gamma-aminobutyric acid (GABA) in the brain, a neurotransmitter that helps to reduce abnormal electrical activity in the brain. In addition to its use as an anticonvulsant, valproic acid may also be used to treat migraines and bipolar disorder. It is available in various forms, including tablets, capsules, and liquid solutions, and is usually taken by mouth. As with any medication, valproic acid can have side effects, and it is important for patients to be aware of these and to discuss them with their healthcare provider.

A missense mutation is a type of point mutation in which a single nucleotide change results in the substitution of a different amino acid in the protein that is encoded by the affected gene. This occurs when the altered codon (a sequence of three nucleotides that corresponds to a specific amino acid) specifies a different amino acid than the original one. The function and/or stability of the resulting protein may be affected, depending on the type and location of the missense mutation. Missense mutations can have various effects, ranging from benign to severe, depending on the importance of the changed amino acid for the protein's structure or function.

Post-poliomyelitis syndrome (PPS) is a condition that affects polio survivors years after recovery from the initial acute poliomyelitis infection. The symptoms of PPS include new onset weakness, fatigue, and pain in the muscles that were previously affected by the poliovirus. These symptoms can occur gradually or suddenly, and they may be worsened by exercise or other physical stressors.

PPS is thought to be caused by ongoing degeneration of the enlarged motor neurons that survived the initial polio infection. It is estimated that up to 50% of polio survivors may experience symptoms of PPS. While there is no cure for PPS, treatment typically focuses on managing symptoms and maintaining function through physical therapy, assistive devices, and pain management strategies.

The cervical vertebrae are the seven vertebrae that make up the upper part of the spine, also known as the neck region. They are labeled C1 to C7, with C1 being closest to the skull and C7 connecting to the thoracic vertebrae in the chest region. The cervical vertebrae have unique structures to allow for a wide range of motion in the neck while also protecting the spinal cord and providing attachment points for muscles and ligaments.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Muscular dystrophies are a group of genetic disorders that primarily affect skeletal muscles, causing progressive weakness and degeneration. They are characterized by the lack or deficiency of a protein called dystrophin, which is essential for maintaining the integrity of muscle fibers. The most common form is Duchenne muscular dystrophy (DMD), but there are many other types with varying symptoms and severity. Over time, muscle wasting and weakness can lead to disability and shortened lifespan, depending on the type and progression of the disease. Treatment typically focuses on managing symptoms, maintaining mobility, and supporting quality of life.

An epidural spinal hematoma is a rare but potentially serious medical condition characterized by the accumulation of blood in the epidural space of the spinal canal. The epidural space is the outermost layer of the spinal canal and it contains fat, blood vessels, and nerve roots.

In an epidural spinal hematoma, blood collects in this space, often as a result of trauma or injury to the spine, or due to complications from medical procedures such as spinal taps or epidural anesthesia. The buildup of blood can put pressure on the spinal cord and nerves, leading to symptoms such as back pain, muscle weakness, numbness, or paralysis below the level of the hematoma.

Epidural spinal hematomas require immediate medical attention and may necessitate surgical intervention to relieve the pressure on the spinal cord and prevent further nerve damage. Risk factors for developing an epidural spinal hematoma include bleeding disorders, anticoagulant medication use, and spinal trauma or surgery.

Furylfuramide is not typically considered a medical term, but it is a chemical compound that has been used in research and industry. It's a type of antimicrobial agent known as an nitrofuran derivative. However, it is not commonly used in clinical medicine due to concerns about its potential toxicity and the development of resistance in bacteria.

In a medical context, Furylfuramide might be mentioned in relation to laboratory research or in discussions of historical uses of antimicrobial agents. It's important to note that the use of this compound in medicine is not widespread and has largely been replaced by other more effective and safer treatments.

Hereditary Sensory and Motor Neuropathy (HSMN) is a group of inherited disorders that affect the peripheral nerves, which are the nerves outside the brain and spinal cord. These nerves transmit information between the brain and muscles, as well as sensations such as touch, pain, heat, and cold.

HSMN is characterized by progressive degeneration of these peripheral nerves, leading to muscle weakness, numbness, and tingling sensations, particularly in the hands and feet. The condition can also affect the autonomic nervous system, which controls involuntary functions such as heart rate, blood pressure, and digestion.

HSMN is caused by genetic mutations that are inherited from one or both parents. There are several types of HSMN, each with its own specific symptoms, severity, and pattern of inheritance. The most common form is Charcot-Marie-Tooth disease (CMT), which affects both motor and sensory nerves.

Treatment for HSMN typically focuses on managing the symptoms and preventing complications. This may include physical therapy, bracing or orthopedic surgery to support weakened muscles, pain management, and lifestyle modifications such as avoiding activities that aggravate symptoms. There is currently no cure for HSMN, but ongoing research is aimed at developing new treatments and therapies to slow or halt the progression of the disease.

The Rotarod performance test is not a medical diagnosis or condition, but rather a laboratory test used in both preclinical research and clinical settings to evaluate various aspects of motor function and balance in animals, including mice and rats. The test is often used to assess the neurological status, sensorimotor function, and coordination abilities of animals following drug treatments, surgical interventions, or in models of neurodegenerative diseases.

In this test, a rodent is placed on a rotating rod with a diameter that allows the animal to comfortably grip it. The rotation speed gradually increases over time, and the researcher records how long the animal can maintain its balance and stay on the rod without falling off. This duration is referred to as the "latency to fall" or "rotarod performance."

The Rotarod performance test offers several advantages, such as its sensitivity to various neurological impairments, ease of use, and ability to provide quantitative data for statistical analysis. It can help researchers evaluate potential therapeutic interventions, monitor disease progression, and investigate the underlying mechanisms of motor function and balance in health and disease.

Posterior horn cells refer to the neurons located in the posterior (or dorsal) horn of the gray matter in the spinal cord. These cells are primarily responsible for receiving and processing sensory information from peripheral nerves, particularly related to touch, pressure, pain, and temperature. The axons of these cells form the ascending tracts that carry this information to the brain for further processing. It's worth noting that damage to posterior horn cells can result in various sensory deficits, such as those seen in certain neurological conditions.

Muscle denervation is a medical term that refers to the loss of nerve supply to a muscle or group of muscles. This can occur due to various reasons, such as injury to the nerves, nerve compression, or certain medical conditions like neuromuscular disorders. When the nerve supply to the muscle is interrupted, it can lead to muscle weakness, atrophy (wasting), and ultimately, paralysis.

In denervation, the communication between the nervous system and the muscle is disrupted, which means that the muscle no longer receives signals from the brain to contract and move. Over time, this can result in significant muscle wasting and disability, depending on the severity and extent of the denervation.

Denervation may be treated with various therapies, including physical therapy, medication, or surgical intervention, such as nerve grafting or muscle transfers, to restore function and prevent further muscle wasting. The specific treatment approach will depend on the underlying cause and severity of the denervation.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Autosomal dominant optic atrophy (ADOA) is a genetic disorder that affects the optic nerve, which transmits visual information from the eye to the brain. The term "optic atrophy" refers to degeneration or damage to the optic nerve. In ADOA, this condition is inherited in an autosomal dominant manner, meaning that only one copy of the mutated gene, located on one of the autosomal chromosomes (not a sex chromosome), needs to be present for the individual to develop the disorder.

The most common form of ADOA is caused by mutations in the OPA1 gene, which provides instructions for making a protein involved in the maintenance of mitochondria, the energy-producing structures in cells. The exact role of this protein in optic nerve function is not fully understood, but it is thought to play a critical role in maintaining the health and function of retinal ganglion cells, which are the neurons that make up the optic nerve.

In ADOA, mutations in the OPA1 gene lead to progressive degeneration of retinal ganglion cells and their axons (nerve fibers) within the optic nerve. This results in decreased visual acuity, color vision deficits, and a characteristic visual field defect called centrocecal scotoma, which is an area of blindness near the center of the visual field. The onset and severity of these symptoms can vary widely among individuals with ADOA.

It's important to note that medical definitions may contain complex terminology. In simpler terms, autosomal dominant optic atrophy (ADOA) is a genetic condition affecting the optic nerve, leading to decreased visual acuity and other vision problems due to degeneration of retinal ganglion cells. The disorder is inherited in an autosomal dominant manner, meaning only one copy of the mutated gene is needed for the individual to develop ADOA.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Peripheral nerves are nerve fibers that transmit signals between the central nervous system (CNS, consisting of the brain and spinal cord) and the rest of the body. These nerves convey motor, sensory, and autonomic information, enabling us to move, feel, and respond to changes in our environment. They form a complex network that extends from the CNS to muscles, glands, skin, and internal organs, allowing for coordinated responses and functions throughout the body. Damage or injury to peripheral nerves can result in various neurological symptoms, such as numbness, weakness, or pain, depending on the type and severity of the damage.

The sciatic nerve is the largest and longest nerve in the human body, running from the lower back through the buttocks and down the legs to the feet. It is formed by the union of the ventral rami (branches) of the L4 to S3 spinal nerves. The sciatic nerve provides motor and sensory innervation to various muscles and skin areas in the lower limbs, including the hamstrings, calf muscles, and the sole of the foot. Sciatic nerve disorders or injuries can result in symptoms such as pain, numbness, tingling, or weakness in the lower back, hips, legs, and feet, known as sciatica.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Skeletal muscle fibers, also known as striated muscle fibers, are the type of muscle cells that make up skeletal muscles, which are responsible for voluntary movements of the body. These muscle fibers are long, cylindrical, and multinucleated, meaning they contain multiple nuclei. They are surrounded by a connective tissue layer called the endomysium, and many fibers are bundled together into fascicles, which are then surrounded by another layer of connective tissue called the perimysium.

Skeletal muscle fibers are composed of myofibrils, which are long, thread-like structures that run the length of the fiber. Myofibrils contain repeating units called sarcomeres, which are responsible for the striated appearance of skeletal muscle fibers. Sarcomeres are composed of thick and thin filaments, which slide past each other during muscle contraction to shorten the sarcomere and generate force.

Skeletal muscle fibers can be further classified into two main types based on their contractile properties: slow-twitch (type I) and fast-twitch (type II). Slow-twitch fibers have a high endurance capacity and are used for sustained, low-intensity activities such as maintaining posture. Fast-twitch fibers, on the other hand, have a higher contractile speed and force generation capacity but fatigue more quickly and are used for powerful, explosive movements.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

The lumbosacral region is the lower part of the back where the lumbar spine (five vertebrae in the lower back) connects with the sacrum (a triangular bone at the base of the spine). This region is subject to various conditions such as sprains, strains, herniated discs, and degenerative disorders that can cause pain and discomfort. It's also a common site for surgical intervention when non-surgical treatments fail to provide relief.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

Ophthalmoplegia is a medical term that refers to the paralysis or weakness of the eye muscles, which can result in double vision (diplopia) or difficulty moving the eyes. It can be caused by various conditions, including nerve damage, muscle disorders, or neurological diseases such as myasthenia gravis or multiple sclerosis. Ophthalmoplegia can affect one or more eye muscles and can be partial or complete. Depending on the underlying cause, ophthalmoplegia may be treatable with medications, surgery, or other interventions.

Genetic therapy, also known as gene therapy, is a medical intervention that involves the use of genetic material, such as DNA or RNA, to treat or prevent diseases. It works by introducing functional genes into cells to replace missing or faulty ones caused by genetic disorders or mutations. The introduced gene is incorporated into the recipient's genome, allowing for the production of a therapeutic protein that can help manage the disease symptoms or even cure the condition.

There are several approaches to genetic therapy, including:

1. Replacing a faulty gene with a healthy one
2. Inactivating or "silencing" a dysfunctional gene causing a disease
3. Introducing a new gene into the body to help fight off a disease, such as cancer

Genetic therapy holds great promise for treating various genetic disorders, including cystic fibrosis, muscular dystrophy, hemophilia, and certain types of cancer. However, it is still an evolving field with many challenges, such as efficient gene delivery, potential immune responses, and ensuring the safety and long-term effectiveness of the therapy.

The "age of onset" is a medical term that refers to the age at which an individual first develops or displays symptoms of a particular disease, disorder, or condition. It can be used to describe various medical conditions, including both physical and mental health disorders. The age of onset can have implications for prognosis, treatment approaches, and potential causes of the condition. In some cases, early onset may indicate a more severe or progressive course of the disease, while late-onset symptoms might be associated with different underlying factors or etiologies. It is essential to provide accurate and precise information regarding the age of onset when discussing a patient's medical history and treatment plan.

The lumbar vertebrae are the five largest and strongest vertebrae in the human spine, located in the lower back region. They are responsible for bearing most of the body's weight and providing stability during movement. The lumbar vertebrae have a characteristic shape, with a large body in the front, which serves as the main weight-bearing structure, and a bony ring in the back, formed by the pedicles, laminae, and processes. This ring encloses and protects the spinal cord and nerves. The lumbar vertebrae are numbered L1 to L5, starting from the uppermost one. They allow for flexion, extension, lateral bending, and rotation movements of the trunk.

Aclarubicin is an anthracycline antibiotic used in cancer chemotherapy. It works by interfering with the DNA in cancer cells, preventing them from dividing and growing. Aclarubicin is often used to treat acute leukemias, lymphomas, and solid tumors.

Like other anthracyclines, aclarubicin can cause significant side effects, including damage to the heart muscle, suppression of bone marrow function, and hair loss. It may also cause nausea, vomiting, and mouth sores. Aclarubicin is usually given by injection into a vein.

It's important to note that the use of aclarubicin should be under the supervision of a healthcare professional, as its administration requires careful monitoring due to potential toxicities.

Muscle strength, in a medical context, refers to the amount of force a muscle or group of muscles can produce during contraction. It is the maximum amount of force that a muscle can generate through its full range of motion and is often measured in units of force such as pounds or newtons. Muscle strength is an important component of physical function and mobility, and it can be assessed through various tests, including manual muscle testing, dynamometry, and isokinetic testing. Factors that can affect muscle strength include age, sex, body composition, injury, disease, and physical activity level.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Muscular diseases, also known as myopathies, refer to a group of conditions that affect the functionality and health of muscle tissue. These diseases can be inherited or acquired and may result from inflammation, infection, injury, or degenerative processes. They can cause symptoms such as weakness, stiffness, cramping, spasms, wasting, and loss of muscle function.

Examples of muscular diseases include:

1. Duchenne Muscular Dystrophy (DMD): A genetic disorder that results in progressive muscle weakness and degeneration due to a lack of dystrophin protein.
2. Myasthenia Gravis: An autoimmune disease that causes muscle weakness and fatigue, typically affecting the eyes and face, throat, and limbs.
3. Inclusion Body Myositis (IBM): A progressive muscle disorder characterized by muscle inflammation and wasting, typically affecting older adults.
4. Polymyositis: An inflammatory myopathy that causes muscle weakness and inflammation throughout the body.
5. Metabolic Myopathies: A group of inherited disorders that affect muscle metabolism, leading to exercise intolerance, muscle weakness, and other symptoms.
6. Muscular Dystonias: Involuntary muscle contractions and spasms that can cause abnormal postures or movements.

It is important to note that muscular diseases can have a significant impact on an individual's quality of life, mobility, and overall health. Proper diagnosis and treatment are crucial for managing symptoms and improving outcomes.

Neurofilament proteins (NFs) are type IV intermediate filament proteins that are specific to neurons. They are the major structural components of the neuronal cytoskeleton and play crucial roles in maintaining the structural integrity, stability, and diameter of axons. Neurofilaments are composed of three subunits: light (NFL), medium (NFM), and heavy (NFH) neurofilament proteins, which differ in their molecular weights. These subunits assemble into heteropolymers to form the neurofilament core, while the C-terminal tails of NFH and NFM extend outward from the core, interacting with other cellular components and participating in various neuronal functions. Increased levels of neurofilament proteins, particularly NFL, in cerebrospinal fluid (CSF) and blood are considered biomarkers for axonal damage and neurodegeneration in several neurological disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).

The Founder Effect is a concept in population genetics that refers to the loss of genetic variation that occurs when a new colony is established by a small number of individuals from a larger population. This decrease in genetic diversity can lead to an increase in homozygosity, which can in turn result in a higher frequency of certain genetic disorders or traits within the founding population and its descendants. The Founder Effect is named after the "founding" members of the new colony who carry and pass on their particular set of genes to the next generations. It is one of the mechanisms that can lead to the formation of distinct populations or even new species over time.

Neurodegenerative diseases are a group of disorders characterized by progressive and persistent loss of neuronal structure and function, often leading to cognitive decline, functional impairment, and ultimately death. These conditions are associated with the accumulation of abnormal protein aggregates, mitochondrial dysfunction, oxidative stress, chronic inflammation, and genetic mutations in the brain. Examples of neurodegenerative diseases include Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis (ALS), and Spinal Muscular Atrophy (SMA). The underlying causes and mechanisms of these diseases are not fully understood, and there is currently no cure for most neurodegenerative disorders. Treatment typically focuses on managing symptoms and slowing disease progression.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

A heterozygote is an individual who has inherited two different alleles (versions) of a particular gene, one from each parent. This means that the individual's genotype for that gene contains both a dominant and a recessive allele. The dominant allele will be expressed phenotypically (outwardly visible), while the recessive allele may or may not have any effect on the individual's observable traits, depending on the specific gene and its function. Heterozygotes are often represented as 'Aa', where 'A' is the dominant allele and 'a' is the recessive allele.

Growth cones are specialized structures found at the tips of growing neurites (axons and dendrites) during the development and regeneration of the nervous system. They were first described by Santiago Ramón y Cajal in the late 19th century. Growth cones play a crucial role in the process of neurogenesis, guiding the extension and pathfinding of axons to their appropriate targets through a dynamic interplay with environmental cues. These cues include various guidance molecules, such as netrins, semaphorins, ephrins, and slits, which bind to receptors on the growth cone membrane and trigger intracellular signaling cascades that ultimately determine the direction of axonal outgrowth.

Morphologically, a growth cone consists of three main parts: the central domain (or "C-domain"), the peripheral domain (or "P-domain"), and the transition zone connecting them. The C-domain contains microtubules and neurofilaments, which provide structural support and transport materials to the growing neurite. The P-domain is rich in actin filaments and contains numerous membrane protrusions called filopodia and lamellipodia, which explore the environment for guidance cues and facilitate motility.

The dynamic behavior of growth cones allows them to navigate complex environments, make decisions at choice points, and ultimately form precise neural circuits during development. Understanding the mechanisms that regulate growth cone function is essential for developing strategies to promote neural repair and regeneration in various neurological disorders and injuries.

Heterogeneous Nuclear Ribonucleoproteins (hnRNPs) are a group of nuclear proteins that are involved in the processing and metabolism of messenger RNA (mRNA). They were named "heterogeneous" because they were initially found to be associated with a heterogeneous population of RNA molecules. The hnRNPs are divided into several subfamilies, A and B being two of them.

The hnRNP A-B group is composed of proteins that share structural similarities and have overlapping functions in the regulation of mRNA metabolism. These proteins play a role in various aspects of RNA processing, including splicing, 3' end processing, transport, stability, and translation.

The hnRNP A-B group includes several members, such as hnRNPA1, hnRNPA2/B1, and hnRNPC. These proteins contain RNA recognition motifs (RRMs) that allow them to bind to specific sequences in the RNA molecules. They can also interact with other proteins and form complexes that regulate mRNA function.

Mutations in genes encoding hnRNP A-B group members have been associated with several human diseases, including neurodegenerative disorders, myopathies, and cancer. Therefore, understanding the structure and function of these proteins is essential for elucidating their role in disease pathogenesis and developing potential therapeutic strategies.

Neurologic mutant mice are genetically engineered or spontaneously mutated rodents that are used as models to study various neurological disorders and conditions. These mice have specific genetic modifications or mutations that affect their nervous system, leading to phenotypes that resemble human neurological diseases.

Some examples of neurologic mutant mice include:

1. Alzheimer's disease models: Mice that overexpress genes associated with Alzheimer's disease, such as the amyloid precursor protein (APP) or presenilin 1 (PS1), to study the pathogenesis and potential treatments of this disorder.
2. Parkinson's disease models: Mice that have genetic mutations in genes associated with Parkinson's disease, such as alpha-synuclein or parkin, to investigate the mechanisms underlying this condition and develop new therapies.
3. Huntington's disease models: Mice that carry an expanded CAG repeat in the huntingtin gene to replicate the genetic defect seen in humans with Huntington's disease and study disease progression and treatment strategies.
4. Epilepsy models: Mice with genetic mutations that cause spontaneous seizures or increased susceptibility to seizures, used to investigate the underlying mechanisms of epilepsy and develop new treatments.
5. Stroke models: Mice that have surgical induction of stroke or genetic modifications that increase the risk of stroke, used to study the pathophysiology of stroke and identify potential therapeutic targets.

Neurologic mutant mice are essential tools in biomedical research, allowing scientists to investigate the complex interactions between genes and the environment that contribute to neurological disorders. These models help researchers better understand disease mechanisms, develop new therapies, and test their safety and efficacy before moving on to clinical trials in humans.

A muscle strength dynamometer is a medical device used to measure the force or strength of a muscle or group of muscles. It typically consists of a handheld handle connected to a spring scale or digital force gauge, which measures the amount of force applied by the individual being tested. The person being tested pushes or pulls against the handle with as much force as possible, and the dynamometer provides an objective measurement of their muscle strength in units such as pounds or kilograms.

Muscle strength dynamometers are commonly used in clinical settings to assess muscle weakness or dysfunction, monitor changes in muscle strength over time, and evaluate the effectiveness of rehabilitation interventions. They can be used to test various muscle groups, including the handgrip, quadriceps, hamstrings, biceps, triceps, and shoulder muscles.

When using a muscle strength dynamometer, it is important to follow standardized testing protocols to ensure accurate and reliable measurements. This may include positioning the individual in a specific way, providing standardized instructions, and averaging multiple trials to obtain an accurate measure of their muscle strength.

The Central Nervous System (CNS) is the part of the nervous system that consists of the brain and spinal cord. It is called the "central" system because it receives information from, and sends information to, the rest of the body through peripheral nerves, which make up the Peripheral Nervous System (PNS).

The CNS is responsible for processing sensory information, controlling motor functions, and regulating various autonomic processes like heart rate, respiration, and digestion. The brain, as the command center of the CNS, interprets sensory stimuli, formulates thoughts, and initiates actions. The spinal cord serves as a conduit for nerve impulses traveling to and from the brain and the rest of the body.

The CNS is protected by several structures, including the skull (which houses the brain) and the vertebral column (which surrounds and protects the spinal cord). Despite these protective measures, the CNS remains vulnerable to injury and disease, which can have severe consequences due to its crucial role in controlling essential bodily functions.

DNA Mutational Analysis is a laboratory test used to identify genetic variations or changes (mutations) in the DNA sequence of a gene. This type of analysis can be used to diagnose genetic disorders, predict the risk of developing certain diseases, determine the most effective treatment for cancer, or assess the likelihood of passing on an inherited condition to offspring.

The test involves extracting DNA from a patient's sample (such as blood, saliva, or tissue), amplifying specific regions of interest using polymerase chain reaction (PCR), and then sequencing those regions to determine the precise order of nucleotide bases in the DNA molecule. The resulting sequence is then compared to reference sequences to identify any variations or mutations that may be present.

DNA Mutational Analysis can detect a wide range of genetic changes, including single-nucleotide polymorphisms (SNPs), insertions, deletions, duplications, and rearrangements. The test is often used in conjunction with other diagnostic tests and clinical evaluations to provide a comprehensive assessment of a patient's genetic profile.

It is important to note that not all mutations are pathogenic or associated with disease, and the interpretation of DNA Mutational Analysis results requires careful consideration of the patient's medical history, family history, and other relevant factors.

A spinal fracture, also known as a vertebral compression fracture, is a break in one or more bones (vertebrae) of the spine. This type of fracture often occurs due to weakened bones caused by osteoporosis, but it can also result from trauma such as a car accident or a fall.

In a spinal fracture, the front part of the vertebra collapses, causing the height of the vertebra to decrease, while the back part of the vertebra remains intact. This results in a wedge-shaped deformity of the vertebra. Multiple fractures can lead to a hunched forward posture known as kyphosis or dowager's hump.

Spinal fractures can cause pain, numbness, tingling, or weakness in the back, legs, or arms, depending on the location and severity of the fracture. In some cases, spinal cord compression may occur, leading to more severe symptoms such as paralysis or loss of bladder and bowel control.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Spinal cord regeneration is the process of regrowth or repair of damaged or severed nerves and neural connections within the spinal cord. This complex process involves various biological mechanisms, including the activation of stem cells, the promotion of axonal growth, and the remodeling of neural circuits. The ultimate goal of spinal cord regeneration research is to develop effective therapies for individuals with spinal cord injuries, enabling them to regain sensory and motor functions and improve their quality of life.

Hindlimb suspension is a commonly used animal model in biomedical research, particularly in the study of muscle atrophy and disuse osteoporosis. In this model, the hindlimbs of rodents (such as rats or mice) are suspended using a tape or a harness system, which elevates their limbs off the ground and prevents them from bearing weight. This state of disuse leads to significant changes in the musculoskeletal system, including muscle atrophy, bone loss, and alterations in muscle fiber type composition and architecture.

The hindlimb suspension model is often used to investigate the mechanisms underlying muscle wasting and bone loss in conditions such as spinal cord injury, bed rest, and spaceflight-induced disuse. By understanding these mechanisms, researchers can develop potential therapeutic interventions to prevent or mitigate the negative effects of disuse on the musculoskeletal system.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

A syndrome, in medical terms, is a set of symptoms that collectively indicate or characterize a disease, disorder, or underlying pathological process. It's essentially a collection of signs and/or symptoms that frequently occur together and can suggest a particular cause or condition, even though the exact physiological mechanisms might not be fully understood.

For example, Down syndrome is characterized by specific physical features, cognitive delays, and other developmental issues resulting from an extra copy of chromosome 21. Similarly, metabolic syndromes like diabetes mellitus type 2 involve a group of risk factors such as obesity, high blood pressure, high blood sugar, and abnormal cholesterol or triglyceride levels that collectively increase the risk of heart disease, stroke, and diabetes.

It's important to note that a syndrome is not a specific diagnosis; rather, it's a pattern of symptoms that can help guide further diagnostic evaluation and management.

June 2012). "Autosomal dominant congenital spinal muscular atrophy: a true form of spinal muscular atrophy caused by early loss ... Congenital distal spinal muscular atrophy (cDSMA), also known as distal hereditary motor neuropathy (or neuronopathy) type VIII ... February 2004). "Congenital form of spinal muscular atrophy predominantly affecting the lower limbs: a clinical and muscle MRI ... Spinal muscular atrophies Oates EC, Reddel S, Rodriguez ML, et al. ( ...
... (SMAJ), also known as late-onset spinal motor neuronopathy (LOSMoN), is an ultra-rare ... "Spinal muscular atrophy, jokela type (Concept Id: C3554398) - MedGen - NCBI". www.ncbi.nlm.nih.gov. Retrieved 5 May 2021. " ... Medicine portal Chromosome 22 Finnish heritage disease Spinal muscular atrophies "Uusi hitaasti etenevä motoneuronitauti ... Late-onset spinal motor neuronopathy- a new neuromuscular disease at www.doria.fi Penttilä, Sini; Jokela, Manu; Huovinen, Sanna ...
Spinal muscular atrophies Arvin, Shelley (2013-04-01). "Analysis of inconsistencies in terminology of spinal and bulbar ... Spinal and bulbar muscular atrophy (SBMA), popularly known as Kennedy's disease, is a rare, adult-onset, X-linked recessive ... Kennedy, W. R.; Alter, M.; Sung, J. H. (1968). "Progressive proximal spinal and bulbar muscular atrophy of late onset. A sex- ... Atsuta, Naoki (2006). "Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients". Brain. ...
... (DSMA2), also known as Jerash type distal hereditary motor neuropathy (HMNJ), is a very ... Spinal muscular atrophies Distal hereditary motor neuropathies Christodoulou, K; Zamba, E; Tsingis, M; Mubaidin, A; Horani, K; ... v t e v t e (Articles with short description, Short description is different from Wikidata, Muscular disorders, Genetic ...
... (DSMA1), also known as spinal muscular atrophy with respiratory distress type 1 (SMARD1 ... Distal hereditary motor neuropathies Spinal muscular atrophies Spinal muscular atrophy Messina, M. F.; Messina, S.; Gaeta, M.; ... There is no published practice standard for the care in DSMA1, even though the Spinal Muscular Atrophy Standard of Care ... DSMA1 was identified and classified as a sub-group of spinal muscular atrophies (SMA) in 1974. Currently, various ...
... spinal muscular atrophies can be divided into:[citation needed] Proximal spinal muscular atrophies, i.e., conditions that ... spinal muscular atrophies are traditionally divided into:[citation needed] Autosomal recessive proximal spinal muscular atrophy ... with an exception of X-linked spinal muscular atrophy type 1), only motor neurons, located at the anterior horn of spinal cord ... Spinal muscular atrophies (SMAs) are a genetically and clinically heterogeneous group of rare debilitating disorders ...
... in the spinal cord and brain stem A child with these symptoms are likely to have X-linked spinal muscular atrophy. In order to ... Spinal muscular atrophies Arthrogryposis Ramser, J.; Ahearn, M. E.; Lenski, C.; Yariz, K. O.; Hellebrand, H.; Von Rhein, M.; ... X-linked spinal muscular atrophy type 2 (SMAX2, XLSMA), also known as arthrogryposis multiplex congenita X-linked type 1 (AMCX1 ... Symptoms resemble the more severe forms of the more common spinal muscular atrophy (SMA); however, SMAX2 is caused by a ...
Spinal muscular atrophies Spinal muscular atrophy with lower extremity predominance 1 Spinal muscular atrophy with lower ... Spinal muscular atrophy with lower extremity predominance 2A (SMALED2A) is a rare neuromuscular disorder characterised by ... Systemic atrophies primarily affecting the central nervous system, All stub articles, Genetic disorder stubs). ...
Spinal muscular atrophies Spinal muscular atrophy with lower extremity predominance 1 Spinal muscular atrophy with lower ... Spinal muscular atrophy with lower extremity predominance 2B (SMALED2B) is a rare neuromuscular disorder characterised by ... "In-frame de novo mutation in BICD2 in two patients with muscular atrophy and arthrogryposis". Cold Spring Harbor Molecular Case ... Systemic atrophies primarily affecting the central nervous system, All stub articles, Genetic disorder stubs). ...
... spinal muscular atrophy, poliomyelitis, cerebral palsy, spinal cord trauma, and myotonia. Scoliosis often presents itself, or ... Lunn, Mitchell R; Wang, Ching H (2008). "Spinal muscular atrophy". The Lancet. 371 (9630): 2120-2133. doi:10.1016/S0140-6736(08 ... spinal muscular atrophy, syringomyelia, and pectus carinatum. Another form of secondary scoliosis is degenerative scoliosis, ... Secondary scoliosis due to neuropathic and myopathic conditions can lead to a loss of muscular support for the spinal column so ...
Melki J (October 1997). "Spinal muscular atrophy". Current Opinion in Neurology. 10 (5): 381-5. doi:10.1097/00019052-199710000- ... and loss of function to the SMN complex has been correlated with the neurodegenerative disease spinal muscular atrophy. Also ...
RNA-Processing Dysfunction in Spinal Muscular Atrophy". In Sumner CJ, Paushkin S, KO CP (eds.). Spinal Muscular Atrophy. ... the presence of anti-SRP antibodies are associated with more prominent muscle weakness and atrophy. Signal recognition particle ...
Liu Q, Fischer U, Wang F, Dreyfuss G (September 1997). "The spinal muscular atrophy disease gene product, SMN, and its ... Mutations in SMN1 are associated with spinal muscular atrophy. Mutations in SMN2 alone do not lead to disease, although ... "Spinal muscular atrophy due to an isolated deletion of exon 8 of the telomeric survival motor neuron gene". Annals of Neurology ... "Spinal muscular atrophy of childhood at the edge of the centuries". Functional Neurology. 16 (4 Suppl): 247-53. PMID 11996521. ...
Breakwell, Spike (11 March 2006). "Inside story: spinal muscular atrophy". The Times. London. Retrieved 1 June 2007. Fowler, ...
He had Spinal muscular atrophy. Echenique was elected a member of the Congress of Deputies in the April 2019 Spanish general ... People with spinal muscular atrophy, Scientists with disabilities, Podemos (Spanish political party) MEPs, Politicians with ...
Grunseich, C; Fischbeck, KH (November 2015). "Spinal and Bulbar Muscular Atrophy". Neurologic Clinics. 33 (4): 847-54. doi: ... proportion of male gynecomastia cases may be seen with rare inherited disorders such as spinal and bulbar muscular atrophy and ...
... spinal muscular atrophy". The Times. UK. Retrieved 8 October 2008. Bev Creagh (19 November 2021). "Meet Dunstable's wannabe ...
Spinal muscular atrophy is caused by loss-of-function mutations in the SMN1 gene which codes for survival motor neuron (SMN) ... The drug is used to treat spinal muscular atrophy associated with a mutation in the SMN1 gene. It is administered directly to ... Nusinersen for treating spinal muscular atrophy. NICE Technology appraisal guidance [TA588] 2019 "Drugmaker urges HSE to ... In around 60% of infants affected by type 1 spinal muscular atrophy, it improves motor function. People treated with nusinersen ...
In the United States, risdiplam is indicated to treat people two months of age and older with spinal muscular atrophy. In two ... Risdiplam, sold under the brand name Evrysdi, is a medication used to treat spinal muscular atrophy (SMA) and the first oral ... Ramdas S, Servais L (February 2020). Grech D, Mikhailidis D, Abdollahi M (eds.). "New treatments in spinal muscular atrophy: an ... "FDA Approves Genentech's Evrysdi (risdiplam) for Treatment of Spinal Muscular Atrophy (SMA) in Adults and Children 2 Months and ...
Spinal muscular atrophy - Mutations in the survival motor neuron-1 (SMN1) gene result in the degeneration of spinal motor ... Spinal muscular atrophy affects up to 1 in 6,000 people and is the second leading cause of neuromuscular disease, after ... Spinal muscular atrophies. In: Kliegman RM, Behrman RE, Jenson HB, Stanton BF. Nelson Textbook of Pediatrics. 19th ed. ... Duchenne muscular dystrophy. Dyskeratosis congenita - Mutations in the assembled snRNPs are also found to be a cause of ...
Van Meerbeke JP, Sumner CJ (October 2011). "Progress and promise: the current status of spinal muscular atrophy therapeutics". ... Lewelt A, Newcomb TM, Swoboda KJ (February 2012). "New therapeutic approaches to spinal muscular atrophy". Current Neurology ... It has also been tested in a trial aimed at treatment of spinal muscular atrophy; it is speculated to modulate the alternative ...
An AAV9 vector is currently used in an FDA-approved gene therapy of spinal muscular atrophy (SMA) in infants and children. The ... Philadelphia, The Children's Hospital of (2019-12-20). "Gene Therapy for Spinal Muscular Atrophy (SMA)". www.chop.edu. ... Conversely, females with little to no enzyme activity will have major structural brain abnormalities and atrophy. Males with ...
... which Kornblihtt's team used in studying potential therapies for Skeletal Muscular Atrophy. Spinal Muscular Atrophy (SMA) is a ... In 2015, the families of Spinal Muscular Atrophy patients encouraged Kornblihtt and Krainer to work together to improve the ... Chen, Inês (November 19, 2019). "An antisense oligonucleotide splicing modulator to treat spinal muscular atrophy". Nature ... Alternative splicing and spinal muscular atrophy; 4) Ultraviolet light irradiation and alternative splicing; and 5) Alternative ...
His specific disability is Spinal Muscular Atrophy. He won the gold medal during the 2012 Summer Paralympics in BC3 mixed pairs ...
Meadows JC, Marsden CD (1969). "A distal form of chronic spinal muscular atrophy". Neurology. 19 (1): 53-8. doi:10.1212/wnl. ... D'Alessandro R, Montagna P, Govoni E, Pazzaglia P (1982). "Benign familial spinal muscular atrophy with hypertrophy of the ... Groen RJ, Sie OG, van Weerden TW (1993). "Dominant inherited distal spinal muscular atrophy with atrophic and hypertrophic ... "A rapidly progressive autosomal dominant scapulohumeral form of spinal muscular atrophy". Ann. Neurol. 20 (4): 538-40. doi: ...
Spinal muscular atrophy : of flies, worms and men. ox.ac.uk (DPhil thesis). University of Oxford. OCLC 59391590. EThOS uk.bl. ...
X-linked spinal muscular atrophy type 2 "The Free Dictionary: Arthrogryposis". Retrieved 11 July 2013. Kalampokas E, Kalampokas ... Arthrogryposis multiplex congenita distal (AMCD), also known as X-linked spinal muscular atrophy type 2. Gordon syndrome, also ... "Severe lethal spinal muscular atrophy variant with arthrogryposis". Pediatric Neurology. 32 (3): 201-4. doi:10.1016/j. ... Some of the different types of AMC include: Arthrogryposis multiplex due to muscular dystrophy. Arthrogryposis ectodermal ...
Coady, Tristan H.; Lorson, Christian L. (2011). "SMN in spinal muscular atrophy and snRNP biogenesis". Wiley Interdisciplinary ... may account for the motor neuron pathology observed in the genetic disorder spinal muscular atrophy. Several human and yeast ...
... a type of distal muscular dystrophy. Welander is also known for her work with Eric Kugelberg on spinal muscular atrophy (SMA). ... Dubowitz, Victor (2009). "Ramblings in the history of spinal muscular atrophy". Neuromuscular Disorders. 19 (1): 69-73. doi: ... Kugelberg, E., Welander, L. (1956). "Heredofamilial juvenile muscular atrophy simulating muscular dystrophy". Archives of ... doi:10.1159/000150998 Welander, L. (1961). Genetic research in muscular diseases in Sweden. In Proceeding df the Second ...
Mutations in the SMN1 gene are the underlying cause to spinal muscular atrophy (SMA). WRAP53β is overexpressed in a variety of ... May 2012). "Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy ... Coady TH, Lorson CL (2011). "SMN in spinal muscular atrophy and snRNP biogenesis". Wiley Interdisciplinary Reviews. RNA. 2 (4 ... July 1997). "Correlation between severity and SMN protein level in spinal muscular atrophy". Nature Genetics. 16 (3): 265-9. ...
"Spinal Muscular Atrophy". NORD (National Organization for Rare Disorders). Retrieved 27 May 2019. "Spinal muscular atrophy". ... "Spinal muscular atrophy: MedlinePlus Genetics". medlineplus.gov. Retrieved 24 October 2020. "Spinal Muscular Atrophy (SMA) , ... "Spinal muscular atrophy". Genetics Home Reference. Retrieved 27 May 2019. "Spinal Muscular Atrophy - Conditions , Children's ... "Spinal Muscular Atrophy". uptodate.com. Retrieved 1 December 2017. Bach JR, Niranjan V, Weaver B (April 2000). "Spinal muscular ...
... (SMA-PME), sometimes called Jankovic-Rivera syndrome, is a very ... "Spinal muscular atrophy with progressive myoclonic epilepsy". Genetics Home Reference. Retrieved 2018-09-24. Zhou, J.; Tawk, M ... National Institutes of Health (December 2013). "Genetics Home Reference: Spinal muscular atrophy with progressive myoclonic ... "Spinal Muscular Atrophy Associated with Progressive Myoclonic Epilepsy is Caused by Mutations in ASAH1". The American Journal ...
... 1 Spinal muscular atrophy with lower extremity predominance 2A Spinal ... Spinal muscular atrophy with lower extremity predominance, sometimes called lower extremity-predominant spinal muscular atrophy ... 2B Spinal muscular atrophies This disambiguation page lists articles associated with the title Spinal muscular atrophy with ...
Spinal muscular atrophies Spinal muscular atrophy with lower extremity predominance 2A Spinal muscular atrophy with lower ... Spinal muscular atrophy with lower extremity predominance 1 (SMALED1) is an extremely rare neuromuscular disorder of infants ... "Dominant spinal muscular atrophy with lower extremity predominance: Linkage to 14q32". Neurology. 75 (6): 539-546. doi:10.1212/ ... "Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy". Neurology. 78 (16): 1714-20. doi:10.1212/WNL. ...
"Spinal Muscular Atrophy". NORD (National Organization for Rare Disorders). Retrieved 27 May 2019. "Spinal muscular atrophy". ... "Spinal muscular atrophy: MedlinePlus Genetics". medlineplus.gov. Retrieved 24 October 2020. "Spinal Muscular Atrophy (SMA) , ... "Spinal muscular atrophy". Genetics Home Reference. Retrieved 27 May 2019. "Spinal Muscular Atrophy - Conditions , Childrens ... "Spinal Muscular Atrophy". uptodate.com. Retrieved 1 December 2017. Bach JR, Niranjan V, Weaver B (April 2000). "Spinal muscular ...
... atrophy ) in muscles used for movement (skeletal muscles). Explore symptoms, inheritance, genetics of this condition. ... Spinal muscular atrophy is a genetic disorder characterized by weakness and wasting ( ... spinal muscular atrophy with lower extremity predominance, X-linked infantile spinal muscular atrophy, and spinal muscular ... Spinal muscular atrophy affects 1 per 8,000 to 10,000 people worldwide. Spinal muscular atrophy type I is the most common type ...
... attacks nerve cells in the spinal cord, weakening voluntary muscles. Read about the genetics, types, and what may help. ... Spinal and bulbar muscular atrophy: MedlinePlus Genetics (National Library of Medicine) * Spinal muscular atrophy with lower ... Spinal muscular atrophy: MedlinePlus Genetics (National Library of Medicine) * X-linked infantile spinal muscular atrophy: ... What is spinal muscular atrophy (SMA)?. Spinal muscular atrophy (SMA) is a group of genetic diseases that damages and kills ...
In the early 1980s, Werdnig and Hoffman described a disorder of progressive muscular weakness beginning in infancy that ... The spinal muscular atrophies (SMAs) comprise a group of autosomal-recessive disorders characterized by progressive weakness of ... encoded search term (Spinal Muscular Atrophy) and Spinal Muscular Atrophy What to Read Next on Medscape ... Distal infantile spinal muscular atrophy associated with paralysis of the diaphragm: a variant of infantile spinal muscular ...
... is a condition that causes muscle weakness and atrophy. Theres no cure, but therapy and other treatments can help most people ... Atrofia muscular espinal. What Is Spinal Muscular Atrophy (SMA)?. Spinal muscular atrophy (SMA) is a genetic condition that ... How Is Spinal Muscular Atrophy Treated?. Theres no cure for SMA, but a few treatment options are available. What doctors use ... What Are the Signs & Symptoms of Spinal Muscular Atrophy?. The signs of SMA can vary. In general, the later the symptoms appear ...
The Baylor Medicine Cure Spinal Muscular Atrophy Care Center clinic is dedicated to providing comprehensive and compassionate ... The Baylor Medicine Cure Spinal Muscular Atrophy Care Center clinic is dedicated to providing comprehensive and compassionate ... SMA care centers to help improve the standards of care and the quality of life of patients affected by spinal muscular atrophy. ... care to patients affected by spinal muscular atrophy (SMA). Our center is integrated with other ...
European Commission approves Roche s Evrysdi for babies under two months old with spinal muscular atrophy (SMA). Evrysdi ... European Commission approves Roche s Evrysdi for babies under two months old with spinal muscular atrophy (SMA). Evrysdi ... CHMP recommends Roche s Evrysdi for babies under two months old with spinal muscular atrophy (SMA). Positive recommendation is ... CHMP recommends Roche s Evrysdi for babies under two months old with spinal muscular atrophy (SMA). Positive recommendation is ...
Living with spinal muscular atrophy (SMA) is challenging. Staying informed about SMA is key to ensuring that your child has a ... Types:Spinal muscular atrophy. (2017).. http://www.nhs.uk/Conditions/Spinal-muscular-atrophy/Pages/symptoms.aspx. ... Spinal muscular atrophy (SMA), a genetic condition, can affect all aspects of your childs day-to-day life. Your child not only ... A diagnosis of spinal muscular atrophy brings with it life-changing circumstances. From one parent to another, heres some ...
2006). An approximately 140-kb deletion associated with feline spinal muscular atrophy implies an essential LIX1 function for ...
Spinal and bulbar muscular atrophy, also known as Kennedy disease, is a disorder of specialized nerve cells that control muscle ... medlineplus.gov/genetics/condition/spinal-and-bulbar-muscular-atrophy/ Spinal and bulbar muscular atrophy. ... Spinal and bulbar muscular atrophy mainly affects males and is characterized by muscle weakness and wasting (atrophy) that ... Spinal and bulbar muscular atrophy results from a particular type of mutation in the AR gene. This gene provides instructions ...
Spinal muscular atrophy 1. Print Disease Overview. Spinal muscular atrophy 1 (SMA1), also known as Werdnig Hoffmann disease, is ... due to loss of the lower motor neurons in the spinal cord and brain stem. Feeding and breathing problems are also present.[ ... Proximal spinal muscular atrophy, type 1. *Proximal spinal muscular atrophy type 1 ...
Gene therapy for spinal muscular atrophy might have a high up-front price tag. But by screening and treating infants early, the ... Testing and treating newborns for spinal muscular atrophy: saving lives and healthcare costs. ... Testing and treating newborns for spinal muscular atrophy: saving lives and healthcare costs ...
... Front Biosci (Landmark Ed). 2022 Jun 6 ... Introduction: Spinal muscular atrophy (SMA) is a progressive neurological disease with autosomal recessive transmission that ... Materials and methods: We observed 55 patients (children/adolescents) diagnosed with spinal muscular atrophy (SMA), who ...
Risdiplam showed continued improvements in motor milestones and functions for patients with spinal muscular atrophy. ... Risdiplam Data Reinforce Potential as Therapy for Spinal Muscular Atrophy. May 15, 2019. Jennifer Barrett, Associate Editor ... Genentech Presents Data from the Risdiplam Pivotal FIREFISH and SUNFISH Studies in Spinal Muscular Atrophy at the 2019 AAN ... Infants with type 1 spinal muscular atrophy (SMA) achieved key motor milestones 1 year after treatment with the investigational ...
... protein that affects alpha motoneurons in the spinal cord. Notch signaling is a cell-cell communication system well known as a ... Spinal muscular atrophy (SMA) is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN) ... model of SMA we also found increased astrocyte processes positive for Jagged1 and Delta1 in intimate contact with lumbar spinal ... Figure 3. Notch signaling is activated in spinal muscular atrophy (SMA) spinal cord motoneurons. (A,B) Representative images of ...
Spinal muscular atrophy ... SMN2 Spinal muscular atrophy is inherited in an autosomal recessive pattern, which means both ... Spinal Muscular Atrophy/Start Here ... Spinal Muscular Atrophy ... Cure SMA ... Make today a breakthrough. No two people with ... Autosomal recessive distal spinal muscular atrophy 1 DHMN6 Diaphragmatic spinal muscular atrophy Distal hereditary motor ... ... Limb-Girdle Muscular Dystrophy (LGMD) (Muscular Dystrophy Association) Muscular Dystrophy/Specifics ... Muscular Dystrophy ... ...
... care and advocacy for people living with muscular dystrophy, ALS, and related neuromuscular diseases. ... In spinal-bulbar muscular atrophy, swallowing and chewing muscle weakness pose a choking hazard. ... The Muscular Dystrophy Association (MDA) is a qualified 501(c)(3) tax-exempt organization. ... The Muscular Dystrophy Association (MDA) is a qualified 501(c)(3) tax-exempt organization. ...
A senior doctor is urging couples planning on starting a family to undergo genetic testing for Spinal Muscular Atrophy - a ... According to Spinal Muscular Atrophy Australia Inc. all SMA children appear normal at birth before the deterioration and loss ... A just 13 months old, Aviana suffers from Spinal Muscular Atrophy Type One, a rare genetic condition that causes progressive ... For more information, visit the Spinal Muscular Atrophy Inc website and speak to your doctor. ...
... disease characterized by degeneration of the motor neurons of the spinal cord causing proximal paralysis with muscle atrophy. ... Spinal muscular atrophy (SMA) is a frequent autosomal recessive ... Spinal muscular atrophy (SMA) is a frequent autosomal recessive ... A frame-shift deletion in the survival motor neuron gene in Spanish spinal muscular atrophy patients Nat Genet. 1995 Nov;11(3): ... disease characterized by degeneration of the motor neurons of the spinal cord causing proximal paralysis with muscle atrophy. ...
Multidisciplinary, Specialized Care for Spinal Muscular Atrophy * Evolving Treatment Options for Pediatric Spinal Muscular ... Spinal muscular atrophy (SMA) refers to a group of hereditary diseases that damage and kill motor neurons in the brain and ... Best Practices in the Care of Adult Patients With Spinal Muscular Atrophy 0.5 CME / CE / ABIM MOC Credits ... Best Practices in the Care of Adult Patients With Spinal Muscular Atrophy ...
Download the citation for this article by clicking on one of the following citation managers:. ...
... the First Approved Drug for Spinal Muscular Atrophy ... Spinraza, the First Approved Drug for Spinal Muscular Atrophy. ...
Spinal muscular atrophy (SMA) is a condition found in just 1 in 10,000 children born around the world and, if left untreated, ... Why location monitoring matters: Amelias journey with spinal muscular atrophy (SMA) By AmerisourceBergen ...
... the global spinal muscular atrophy treatment market is estimated to be valued at USD 2.22 billion in 2021, growing at a CAGR of ... The Spinal Muscular Atrophy Treatment Market Segmentation. The global Spinal Muscular Atrophy (SMA) Treatment Market on the ... The Spinal Muscular Atrophy Treatment Market Trends. The market for treating spinal muscular atrophy (SMA) is positively ... precisionbusinessinsights.com/market-reports/spinal-muscular-atrophy-sma-treatment-market/ The Spinal Muscular Atrophy ...
CANbridge-UMass Chan Medical School Spinal Muscular Atrophy Gene Therapy Animal Data to be Presented at the American Society of ... CANbridge-UMass Chan Medical School Spinal Muscular Atrophy Gene Therapy Animal Data to be Presented at the American Society of ... Title: Low-dose intracerebroventricular delivery of a second-generation AAV gene therapy for spinal muscular atrophy achieves ... spinal muscular atrophy (SMA) and other neuromuscular conditions, and collaborates with world-leading researchers and biotech ...
... help for those facing the incurable genetic disease Spinal Muscular Atrophy (SMA) also known as Werdnig-Hoffman. ...
Compound Heterozygous Variants in MAPK8IP3 Were Detected in Severe Congenital Hypotonia Mimicking Lethal Spinal Muscular ... Atrophy published in the scientific journal Am J Med. Genet. A. 2023 ... Evolving approaches to prenatal genetic counseling for Spinal Muscular Atrophy in the new treatment era ... Heterozygous Variants in MAPK8IP3 Were Detected in Severe Congenital Hypotonia Mimicking Lethal Spinal Muscular Atrophy ...
Background Spinal Muscular Atrophy type 1 (SMA1) is a rapidly progressing disease resulting in death/permanent ventilation by 2 ...
For the upcoming Singapore Presidential Election on 1st September, members of the civil society have spearheaded an initiative to strengthen our democratic fabric. We invite committed individuals to join us as Polling and Counting Agents, standing together for a transparent, fair, and just election. This vote counting exercise, organized by members of civil society, is not specifically in support of Mr Tan Kin Lian, a candidate in the upcoming Presidential Election. Its an exercise in active citizenry. Nonetheless, Mr Tan endorses this initiative, which hinges on his candidacy, championing transparency, and has given permission for the results to be shared publicly ...
Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene ... SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy.. ...
  • Most children with spinal muscular atrophy type I do not survive past early childhood due to respiratory failure. (medlineplus.gov)
  • Zolgensma, an FDA approved gene therapy, supplements the production of the SMN protein to improve motor neuron function in children with spinal muscular atrophy after just one dose. (neurosciencenews.com)
  • Genentech presented Evrysdi's data in previously-treated children with spinal muscular atrophy. (ipharmacenter.com)
  • There are many types of spinal muscular atrophy that are caused by changes in the same genes. (medlineplus.gov)
  • Mutations in the SMN1 gene cause all types of spinal muscular atrophy described above. (medlineplus.gov)
  • What are the types of spinal muscular atrophy (SMA) and what are their symptoms? (medlineplus.gov)
  • Since then, several types of spinal muscular atrophies have been described based on age when accompanying clinical features appear. (medscape.com)
  • The vice president of clinical development at Biohaven shed light on a newly initiated phase 3 study evaluating a promising agent for patients with all types of spinal muscular atrophy. (neurologylive.com)
  • There are five main types of spinal muscular atrophy. (msdmanuals.com)
  • Other forms of spinal muscular atrophy and related motor neuron diseases, such as spinal muscular atrophy with progressive myoclonic epilepsy , spinal muscular atrophy with lower extremity predominance , X-linked infantile spinal muscular atrophy , and spinal muscular atrophy with respiratory distress type 1 are caused by mutations in other genes. (medlineplus.gov)
  • The pivotal study assessed the efficacy of risdiplam (RG7916) in infants with type 1 spinal muscular atrophy (SMA), the most severe, infantile onset form of this rare and devastating neuromuscular disease. (pharmiweb.com)
  • Respiratory capacity course in patients with infantile spinal muscular atrophy. (medscape.com)
  • Spinal muscular atrophy type 1 (infantile spinal muscular atrophy, or Werdnig-Hoffmann disease) is also present in utero and becomes symptomatic by about age 6 months. (msdmanuals.com)
  • Kugelberg Welander spinal muscular atrophy (also known as Wohlfart-Kugelberg-Welander syndrome or mild SMA) is a milder form of SMA, with symptoms typically presenting after age 18 months. (medscape.com)
  • Loss of these neurons in the spinal cord prevents signalling between the brain and skeletal muscles. (wikipedia.org)
  • Motor neurons are a type of nerve cell in the spinal cord and lower part of the brain. (medlineplus.gov)
  • The central role of lower motor neuron degeneration was confirmed in subsequent pathologic studies demonstrating a loss of anterior horn cells in the spinal cord and cranial nerve nuclei. (medscape.com)
  • These nerves (called motor neurons ) are in the spinal cord and lower part of the brain. (kidshealth.org)
  • The medication is injected into the fluid surrounding the spinal cord. (healthline.com)
  • Although the extended CAG region changes the structure of the androgen receptor, it is unclear how the altered protein disrupts nerve cells in the brain and spinal cord. (medlineplus.gov)
  • Without treatment, symptoms of SMA1 become apparent before 6 months of age and include worsening muscle weakness and poor muscle tone (hypotonia) due to loss of the lower motor neurons in the spinal cord and brain stem. (rarediseases.org)
  • Spinal muscular atrophy (SMA) is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN) protein that affects alpha motoneurons in the spinal cord. (mdpi.com)
  • Spinal muscular atrophy (SMA) is a frequent autosomal recessive disease characterized by degeneration of the motor neurons of the spinal cord causing proximal paralysis with muscle atrophy. (nih.gov)
  • Spinal muscular atrophy (SMA) refers to a group of hereditary diseases that damage and kill motor neurons in the brain and spinal cord. (medscape.com)
  • SMA leads to the progressive loss of nerve cells in the spinal cord that control muscle movement. (pharmiweb.com)
  • BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by the degeneration of alpha motor neurons in the spinal cord, leading to muscular atrophy. (northwestern.edu)
  • Spinal muscular atrophies (SMAs) represent a rare group of inherited disorders that cause progressive degeneration of the anterior horn cells of the spinal cord. (medscape.com)
  • SMAs were first described in the 1890s, by Guido Werdnig, a physician from the University of Vienna, in his lecture "On a Case of Muscular Dystrophy with Positive Spinal Cord Findings. (medscape.com)
  • Both physicians conducted autopsies on their patients and found severe atrophy of the ventral roots of the spinal cord. (medscape.com)
  • Muscle atrophy, caused by a progressive loss of the anterior horn cells in the spinal cord, is universal. (medscape.com)
  • Muscle weakness in spinal muscular atrophy is caused by the loss of nerve cells that transmit signals from the brain and spinal cord to the muscles. (mysmateam.com)
  • Spinal muscular atrophy (SMA) is caused by biallelic mutations in the SMN1 ( survival motor neuron 1) gene on chromosome 5q13.2, which leads to a progressive degeneration of alpha motor neurons in the spinal cord and in motor nerve nuclei in the caudal brainstem . (bvsalud.org)
  • Spinal muscular atrophies include several types of hereditary disorders characterized by skeletal muscle wasting due to progressive degeneration of anterior horn cells in the spinal cord and of motor nuclei in the brain stem. (msdmanuals.com)
  • Spinal muscular atrophy (SMA) is a recessive, autosomal neuromuscular disease characterized by degeneration of anterior horn spinal cord motor cells and brain stem neurons 1-5 . (bvsalud.org)
  • 2023, Muscular Dystrophy Association Inc. All rights reserved. (mda.org)
  • 2023 'Quantification of the Number of Nuclear Gems as a Potential Biomarker for Spinal Muscular Atrophy' Preprints. (preprints.org)
  • Male individuals are most frequently affected, especially with the early-onset forms of spinal muscular atrophy, ie, types I and II. (medscape.com)
  • Spinal muscular atrophy is due to an abnormality (mutation) in the SMN1 gene which encodes SMN, a protein necessary for survival of motor neurons. (wikipedia.org)
  • More than 95% of patients with spinal muscular atrophy have a homozygous disruption in the SMN1 gene on chromosome 5q, caused by mutation, deletion, or rearrangement. (medscape.com)
  • However, all patients with spinal muscular atrophy retain at least 1 copy of SMN2 , which generates only 10% of the amount of full-length SMN protein versus SMN1 . (medscape.com)
  • When they think a child might have spinal muscular atrophy, doctors will order genetic testing to look for mutations in the SMN1 gene. (kidshealth.org)
  • The study reports that a novel second-generation hSMN1-AAV gene therapy vector, consisting of an endogenous SMN1 promoter and codon-optimized human SMN1 transgene in two different AAV serotypes, outperformed the benchmark gene therapy across several endpoints, including lifespan, weight gain and motor functions, in a mouse model of spinal muscular atrophy (SMA) when administered via intracerebroventricular (ICV) delivery. (biospace.com)
  • Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. (broadinstitute.org)
  • Spinal muscular atrophy (SMA) is a progressive, autosomal recessive neuromuscular disorder caused by a mutation of the SMN1 gene. (bmj.com)
  • Spinal muscular atrophy (SMA) is a severe neurodegenerative condition resulting from recessive mutations in the SMN1 gene and insufficient survival motor neuron (SMN) protein production. (bmj.com)
  • Spinal muscular atrophy is a neuromuscular disorder caused by mutationsin both copies of the survival motor neuron gene 1 (SMN1) which lead to reduction in the production of the SMN protein. (preprints.org)
  • Quantification of SMN1 and SMN2 genes by capillary electrophoresis for diagnosis of spinal muscular atrophy. (medscape.com)
  • Spinal muscular atrophies usually result from autosomal recessive mutations that affect the survival motor neuron 1 ( SMN1 ) gene on the long arm of chromosome 5, most often causing a homozygous deletion of exon 7. (msdmanuals.com)
  • Spinal muscular atrophy (SMA) is a rare neuromuscular disorder that results in the loss of motor neurons and progressive muscle wasting. (wikipedia.org)
  • Spinal muscular atrophy 1 (SMA1) , also known as Werdnig Hoffmann disease, is a genetic neuromuscular disorder that affects the nerve cells that control voluntary muscles (motor neurons). (rarediseases.org)
  • Now, a new agent, taldefgrobep alfa (Biohaven), is set to be evaluated in a large-scale phase 3 trial after years of preclinical work and studies in patients with another neuromuscular disorder, Duchenne muscular dystrophy. (neurologylive.com)
  • The spinal muscular atrophies (SMAs) comprise a group of autosomal-recessive disorders characterized by progressive weakness of the lower motor neurons. (medscape.com)
  • The spinal muscular atrophies are the second most common autosomal-recessive inherited disorders after cystic fibrosis . (medscape.com)
  • Spinal muscular atrophy (SMA) is a progressive neurological disease with autosomal recessive transmission that affects motor neurons, causing their loss and resulting in muscle waste and motor deficiency. (nih.gov)
  • Simic G. Pathogenesis of proximal autosomal recessive spinal muscular atrophy. (medscape.com)
  • SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. (broadinstitute.org)
  • In 1995, the spinal muscular atrophy disease-causing gene, termed the survival motor neuron ( SMN ), was discovered. (medscape.com)
  • Spinal and bulbar muscular atrophy results from a particular type of mutation in the AR gene. (medlineplus.gov)
  • The AR gene mutation that causes spinal and bulbar muscular atrophy is the abnormal expansion of a DNA segment called a CAG triplet repeat . (medlineplus.gov)
  • Gene therapy for spinal muscular atrophy might have a high up-front price tag. (edu.au)
  • The global Spinal Muscular Atrophy (SMA) Treatment Market on the basis of Treatment, the market is bifurcated into Gene and Therapy. (emailwire.com)
  • The CANbridge Next-Generation Innovation and Process Development Facility is developing novel, potentially curative, gene therapies for rare genetic diseases, including Pompe disease, Fabry disease, spinal muscular atrophy (SMA) and other neuromuscular conditions, and collaborates with world-leading researchers and biotech companies. (biospace.com)
  • This article describes two rare diseases - spinal muscular atrophy and Duchenne muscular dystrophy - and how NIH supports research and development on gene therapies to treat them. (medlineplus.gov)
  • It treats a group of rare genetic disorders called spinal muscular atrophies (SMAs) that cause loss of nerve cells that control skeletal muscles (muscles that allow us to move) leading to weakness. (medlineplus.gov)
  • Katsuno M, Banno H, Suzuki K, Adachi H, Tanaka F, Sobue G. Clinical features and molecular mechanisms of spinal and bulbar muscular atrophy (SBMA). (medlineplus.gov)
  • Spinal muscular atrophy type II (also called Dubowitz disease) is characterized by muscle weakness that develops in children between ages 6 and 12 months. (medlineplus.gov)
  • Spinal muscular atrophy type III (also called Kugelberg-Welander disease) typically causes muscle weakness after early childhood. (medlineplus.gov)
  • These therapies may also improve blood flow and slow muscle weakness and atrophy. (medlineplus.gov)
  • In the early 1890s, Werdnig and Hoffman described a disorder of progressive muscular weakness beginning in infancy that resulted in early death, though the age of death was variable. (medscape.com)
  • Spinal muscular atrophy (SMA) is a genetic condition that causes muscle weakness and atrophy (when muscles get smaller). (kidshealth.org)
  • Spinal and bulbar muscular atrophy mainly affects males and is characterized by muscle weakness and wasting (atrophy) that usually begins in adulthood and worsens slowly over time. (medlineplus.gov)
  • In spinal-bulbar muscular atrophy, swallowing and chewing muscle weakness pose a choking hazard. (mda.org)
  • This causes progressive muscle weakness and muscle atrophy. (bmj.com)
  • 1 Lack of SMN protein causes irreversible degeneration of lower motor neurons and consequential muscle atrophy and weakness. (bmj.com)
  • Soon after, Professor Johann Hoffmann from Heidelberg University presented a paper describing a syndrome of progressive atrophy, weakness, and death during the early childhood period of siblings with genetically normal parents. (medscape.com)
  • Muscle weakness generally worsens over time , meaning people may lose functionality as spinal muscular atrophy progresses. (mysmateam.com)
  • Problems with respiratory function can occur in spinal muscular atrophy because of weakness in the muscles that control breathing. (mysmateam.com)
  • Spinal muscular atrophy (SMA) is a rare genetic condition characterized by progressive muscle weakness and atrophy. (smanewstoday.com)
  • These SMA conditions also are characterized by muscle weakness and atrophy. (smanewstoday.com)
  • As a result, muscles do not get the electrical signals that normally tell them to move, resulting in muscle weakness and ultimately leading to muscle atrophy over time. (smanewstoday.com)
  • Spinal muscular atrophy type 4 (late-onset) can be recessive, dominant, or X-linked, with adult onset (age 30 to 60 years) and slow progression of primarily proximal muscle weakness and wasting. (msdmanuals.com)
  • spinal muscular atrophy patients present muscle weakness, orthopedic problems, nutritional complications and respiratory impairment. (bvsalud.org)
  • Muscular dystrophies are a group of inherited diseases that cause muscle wasting and weakness. (medlineplus.gov)
  • Spinal and bulbar muscular atrophy, also known as Kennedy disease, is a disorder of specialized nerve cells that control muscle movement (motor neurons). (medlineplus.gov)
  • Risdiplam is an orally administered survival motor neuron-2 splicing modifier for SMA, a severe and progressive neuromuscular disease that causes devastating muscle atrophy and disease-related complications. (pharmacytimes.com)
  • Spinal muscular atrophy (SMA) is a severe, inherited, progressive neuromuscular disease that causes devastating muscle atrophy and disease-related complications. (pharmiweb.com)
  • These early defects are followed by loss of the NMJ, denervation of the muscle and onset of muscle atrophy. (benthamscience.com)
  • Severe obstructive sleep apnea in a patient with spinal muscle atrophy. (medscape.com)
  • Some muscular dystrophies are caused by mutations in genes that make important muscle proteins. (medlineplus.gov)
  • In people with spinal and bulbar muscular atrophy, the CAG segment is repeated at least 38 times, and it may be two or three times its usual length. (medlineplus.gov)
  • People with a higher number of CAG repeats tend to develop signs and symptoms of spinal and bulbar muscular atrophy at an earlier age. (medlineplus.gov)
  • A hereditary condition known as spinal muscular atrophy causes the muscles used for movement to become weaker. (emailwire.com)
  • Spinal muscular atrophy (SMA) is a group of genetic diseases that damages and kills motor neurons. (medlineplus.gov)
  • One of the main reasons boosting market expansion is rising awareness of Spinal Muscular Atrophy (SMA) and the rising number of attempts to expand treatment choices for uncommon diseases. (emailwire.com)
  • A better understanding of the needs of adults with spinal muscular atrophy (SMA), best ensuring for their mental and social - as well as physical - well-being, is necessary to guide future research, care recommendations, and policy decisions, according to a review study published in Orphanet Journal of Rare Diseases . (rehabpub.com)
  • A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. (medscape.com)
  • Spinal muscular atrophy (SMA) is caused by mutations that reduce the level of the survival motor neuron protein (SMN) resulting in death of alpha-motor neurons, yet it is unclear why these cells are preferentially affected by a reduction in this ubiquitously-expressed protein. (benthamscience.com)
  • Fast Five Quiz: Spinal Muscular Atrophy - Medscape - Jan 14, 2021. (medscape.com)
  • Spinal muscular atrophy affects 1 per 8,000 to 10,000 people worldwide. (medlineplus.gov)
  • To help spread awareness of this condition, here are some facts about Spinal Muscular Atrophy: Spinal Muscular Atrophy is a degenerative neuro muscular disease that affects the motor neurons in the human body, causing severe spinal deformities and muscular atrophy. (neurosurgerycnj.com)
  • Duchenne muscular dystrophy (or DMD) is the most common muscular dystrophy in children, and it mostly affects boys in early childhood. (medlineplus.gov)
  • Baby Ben Kutschke was diagnosed at three months with spinal muscular atrophy, a rare inherited disorder which is the leading genetic cause of death in infancy globally. (medworm.com)
  • Spinal muscular atrophy (SMA), a genetic condition, can affect all aspects of your child's day-to-day life. (healthline.com)
  • A just 13 months old, Aviana suffers from Spinal Muscular Atrophy Type One, a rare genetic condition that causes progressive wastage of the muscles. (mamamia.com.au)
  • The age of onset and the severity of symptoms form the basis of the traditional classification of spinal muscular atrophy into a number of types. (wikipedia.org)
  • Currently, the consensus is that the phenotype of spinal muscular atrophy spans a continuum of symptoms without clear delineation of subtypes. (wikipedia.org)
  • What Are the Signs & Symptoms of Spinal Muscular Atrophy? (kidshealth.org)
  • Some infants with spinal muscular atrophy type 0 also have heart defects that are present from birth (congenital). (medlineplus.gov)
  • Infants with type 1 spinal muscular atrophy (SMA) achieved key motor milestones 1 year after treatment with the investigational therapy risdiplam, according to new data presented at the American Academy of Neurology Annual Meeting. (pharmacytimes.com)
  • Roche announced that Evrysdi (risdiplam) improved survival and motor milestones in infants with type 1 spinal muscular atrophy (SMA). (ipharmacenter.com)
  • Novartis presented the data of Zolgensma (onasemnogene abeparvovec) in presymptomatic and symptomatic infants with spinal muscular atrophy (SMA). (ipharmacenter.com)
  • Spinal muscular atrophies may involve the central nervous system and thus are not purely peripheral nervous system disorders. (msdmanuals.com)
  • These kinds of genetic medicines also have the potential for treating genetic defects that cause other neurological disorders including other rare muscular disorders. (medlineplus.gov)
  • The eponymous term Kugelberg-Welander disease named after Erik Klas Hendrik Kugelberg (1913-1983) and Lisa Welander (1909-2001), who first documented the late-onset form and distinguished it from muscular dystrophy. (wikipedia.org)
  • Spinal muscular atrophy type I (also called Werdnig-Hoffmann disease) is the most common form of the condition. (medlineplus.gov)
  • Finsterer J. Bulbar and spinal muscular atrophy (Kennedy's disease): a review. (medlineplus.gov)
  • Background Spinal Muscular Atrophy type 1 (SMA1) is a rapidly progressing disease resulting in death/permanent ventilation by 2 years of age. (bmj.com)
  • That's the cost of one Zolgensma injection used for children under two suffering from spinal muscular atrophy (SMA), the disease and its treatment once again in the headlines over a 15-month-old boy in Karnataka staring at an uncertain tomorrow. (udayavani.com)
  • Professor Matthew Wood's group has found a promising treatment for degenerative disease spinal muscular atrophy (SMA), a leading genetic cause of child death. (ox.ac.uk)
  • Spinal muscular atrophy type 3 (juvenile form, or Wohlfart-Kugelberg-Welander disease) usually manifests between age 15 months and 19 years. (msdmanuals.com)
  • Build newborn screening laboratory capacity to screen for new Recommended Uniform Screening Panel (RUSP) conditions: Pompe Disease, Mucopolysaccharidosis Type 1 (MPS-1), X-linked Adrenoleukodystrophy (X-ALD), and Spinal Muscular Atrophy (SMA). (cdc.gov)
  • Spinal muscular atrophy type 0 is evident before birth and is the rarest and most severe form of the condition. (medlineplus.gov)
  • Individuals with spinal muscular atrophy type II cannot stand or walk unaided. (medlineplus.gov)
  • The life span of individuals with spinal muscular atrophy type II varies, but many people with this condition live into their twenties or thirties. (medlineplus.gov)
  • People with spinal muscular atrophy type III typically have a normal life expectancy. (medlineplus.gov)
  • Spinal muscular atrophy type IV is rare and often begins in early adulthood. (medlineplus.gov)
  • Spinal muscular atrophy type I is the most common type, accounting for about half of all cases. (medlineplus.gov)
  • When Arabella Smygov was diagnosed with spinal muscular atrophy (SMA) type 1 at 3 months old, the first recommendation Dr. Fawn Leigh, a neurologist at Seattle Children's, gave her parents, Sarah and Vitaliy, was to wait on searching for information about SMA online. (neurosciencenews.com)
  • We aimed at studying fracture risk in patients with Duchenne's muscular dystrophy (DMD), Becker's muscular dystrophy (BEMD), and spinal muscular atrophy type II and III (SMA II and III). (medicaljournals.se)
  • Pulmonary function assessment in patients with spinal muscular atrophy type II and type III. (medscape.com)
  • Muscular Dystrophy Campaign sponsored workshop: recommendation for respiratory care of children with SMA type II and III. (medscape.com)
  • Training improves oxidative capacity, but not function in Spinal Muscular Atrophy Type III. (medscape.com)
  • to verify the body composition and chest expansion of type II and III spinal muscular atrophy patients. (bvsalud.org)
  • Therefore, the aim of this study is verify the body composition and chest expansion of type II and III spinal muscular atrophy patients. (bvsalud.org)
  • EMAILWIRE.COM , October 20, 2022 ) According to Precision Business Insights (PBI) latest report, the global spinal muscular atrophy treatment market is estimated to be valued at USD 2.22 billion in 2021, growing at a CAGR of 28.9% during the forecast period 2022-28. (emailwire.com)
  • Nevada will implement newborn screening tests for Spinal Muscular Atrophy (SMA) and X-linked Adrenoleukodystrophy (X-ALD). (cdc.gov)
  • The Baylor Medicine Cure Spinal Muscular Atrophy Care Center clinic is dedicated to providing comprehensive and compassionate care to patients affected by spinal muscular atrophy (SMA). (bcm.edu)
  • Our center is integrated with other SMA care centers to help improve the standards of care and the quality of life of patients affected by spinal muscular atrophy. (bcm.edu)
  • We observed 55 patients (children/adolescents) diagnosed with spinal muscular atrophy (SMA), who received nusinersen therapy. (nih.gov)
  • Risdiplam showed continued improvements in motor milestones and functions for patients with spinal muscular atrophy. (pharmacytimes.com)
  • Spinal muscular atrophy (SMA) is a condition found in just 1 in 10,000 children born around the world and, if left untreated, more than 90% of patients may die or require permanent ventilation by the age of two. (amerisourcebergen.com)
  • Paediatric patients with spinal muscular atrophy (SMA) have increased chances of survival and improved quality of life when managed by a multidisciplinary team of healthcare professionals. (mims.com)
  • patients with spinal muscular atrophy presented higher adiposity and lower chest expansion. (bvsalud.org)
  • Spinal muscular atrophy was then classified into 3-5 clinical types based either on the age of symptom onset or on the maximum motor function achieved. (wikipedia.org)
  • The mortality and/or morbidity rates of spinal muscular atrophy are inversely correlated with the age at onset. (medscape.com)
  • Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. (medscape.com)
  • One medicine, Nusinersen (or Spinrazaâ„¢), is given through a spinal tap . (kidshealth.org)
  • The Muscular Dystrophy Association (MDA) is a qualified 501(c)(3) tax-exempt organization. (mda.org)
  • Scoliosis in spinal muscular atrophy: review of 63 cases. (medscape.com)
  • Scoliosis in spinal muscular atrophy: natural history and management. (medscape.com)
  • Moosa A, Dubowitz V. Spinal muscular atrophy in childhood. (medscape.com)
  • 2006). An approximately 140-kb deletion associated with feline spinal muscular atrophy implies an essential LIX1 function for motor neuron survival. (antagene.com)
  • Spinal muscular atrophy (SMA) types III and IV, unlike types I and II, are consistent with survival well into adulthood. (medscape.com)
  • Recent data reveals that advances in NHS treatment have substantially improved the survival rates of babies born with spinal muscular atrophy (SMA). (ipharmacenter.com)
  • Genentech Presents Data from the Risdiplam Pivotal FIREFISH and SUNFISH Studies in Spinal Muscular Atrophy at the 2019 AAN Annual Meeting [news release]. (pharmacytimes.com)
  • The U.S. Food and Drug Administration approved Zolgensma for the treatment of Spinal Muscular Atrophy in children less than 2 years of age this month. (neurosciencenews.com)
  • As the motor neurons die off, your muscles start to weaken and atrophy (waste away). (medlineplus.gov)
  • Spinal muscular atrophy (SMA) is caused by successive motor unit degeneration. (medscape.com)