The full collection of microbes (bacteria, fungi, virus, etc.) that naturally exist within a particular biological niche such as an organism, soil, a body of water, etc.
A collective genome representative of the many organisms, primarily microorganisms, existing in a community.
Generally refers to the digestive structures stretching from the MOUTH to ANUS, but does not include the accessory glandular organs (LIVER; BILIARY TRACT; PANCREAS).
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE.
Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.
Non-digestible food ingredients mostly of a carbohydrate base that improve human health by selectively stimulating the growth and/or activity of existing BACTERIA in the COLON.
A rod-shaped, gram-positive, non-acid-fast, non-spore-forming, non-motile bacterium that is a genus of the family Bifidobacteriaceae, order Bifidobacteriales, class ACTINOBACTERIA. It inhabits the intestines and feces of humans as well as the human vagina.
The spectrum of different living organisms inhabiting a particular region, habitat, or biotope.
Electrophoresis in which various denaturant gradients are used to induce nucleic acids to melt at various stages resulting in separation of molecules based on small sequence differences including SNPs. The denaturants used include heat, formamide, and urea.
Animals not contaminated by or associated with any foreign organisms.
Live microbial DIETARY SUPPLEMENTS which beneficially affect the host animal by improving its intestinal microbial balance. Antibiotics and other related compounds are not included in this definition. In humans, lactobacilli are commonly used as probiotics, either as single species or in mixed culture with other bacteria. Other genera that have been used are bifidobacteria and streptococci. (J. Nutr. 1995;125:1401-12)
Changes in quantitative and qualitative composition of MICROBIOTA. The changes may lead to altered host microbial interaction or homeostatic imbalance that can contribute to a disease state often with inflammation.
The variety of all native living organisms and their various forms and interrelationships.
A phylum of bacteria comprised of three classes: Bacteroides, Flavobacteria, and Sphingobacteria.
A genus of gram-positive, microaerophilic, rod-shaped bacteria occurring widely in nature. Its species are also part of the many normal flora of the mouth, intestinal tract, and vagina of many mammals, including humans. Pathogenicity from this genus is rare.
A genus of gram-negative, anaerobic, rod-shaped bacteria. Its organisms are normal inhabitants of the oral, respiratory, intestinal, and urogenital cavities of humans, animals, and insects. Some species may be pathogenic.
The blind sac or outpouching area of the LARGE INTESTINE that is below the entrance of the SMALL INTESTINE. It has a worm-like extension, the vermiform APPENDIX.
Measurable quantity of bacteria in an object, organism, or organism compartment.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
The relationships of groups of organisms as reflected by their genetic makeup.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
The genomic analysis of assemblages of organisms.
Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI.
DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA.
The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON.
Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing.
A phylum of gram-negative bacteria containing seven class-level groups from a wide variety of environments. Most members are chemoheterotrophs.
Physiological processes and properties of BACTERIA.
The inter- and intra-relationships between various microorganisms. This can include both positive (like SYMBIOSIS) and negative (like ANTIBIOSIS) interactions. Examples include virus - bacteria and bacteria - bacteria.
The relationship between two different species of organisms that are interdependent; each gains benefits from the other or a relationship between different species where both of the organisms in question benefit from the presence of the other.
Nutritional supplements combining PROBIOTICS (bacteria) and PREBIOTICS (sugars).
The genital canal in the female, extending from the UTERUS to the VULVA. (Stedman, 25th ed)
A genus of motile or nonmotile gram-positive bacteria of the family Clostridiaceae. Many species have been identified with some being pathogenic. They occur in water, soil, and in the intestinal tract of humans and lower animals.
A phylum of bacteria consisting of the purple bacteria and their relatives which form a branch of the eubacterial tree. This group of predominantly gram-negative bacteria is classified based on homology of equivalent nucleotide sequences of 16S ribosomal RNA or by hybridization of ribosomal RNA or DNA with 16S and 23S ribosomal RNA.
A genus of gram-positive bacteria in the family Lachnospiraceae that inhabits the RUMEN; LARGE INTESTINE; and CECUM of MAMMALS.
The oval-shaped oral cavity located at the apex of the digestive tract and consisting of two parts: the vestibule and the oral cavity proper.
Class of BACTERIA with diverse morphological properties. Strains of Actinobacteria show greater than 80% 16S rDNA/rRNA sequence similarity among each other and also the presence of certain signature nucleotides. (Stackebrandt E. et al, Int. J. Syst. Bacteriol. (1997) 47:479-491)
A genus of gram-negative, anaerobic, nonsporeforming, nonmotile rods. Organisms of this genus had originally been classified as members of the BACTEROIDES genus but overwhelming biochemical and chemical findings in 1990 indicated the need to separate them from other Bacteroides species, and hence, this new genus was established.
Chronic, non-specific inflammation of the GASTROINTESTINAL TRACT. Etiology may be genetic or environmental. This term includes CROHN DISEASE and ULCERATIVE COLITIS.
Polymicrobial, nonspecific vaginitis associated with positive cultures of Gardnerella vaginalis and other anaerobic organisms and a decrease in lactobacilli. It remains unclear whether the initial pathogenic event is caused by the growth of anaerobes or a primary decrease in lactobacilli.
A group of different species of microorganisms that act together as a community.
Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis.
Inflammation of the COLON section of the large intestine (INTESTINE, LARGE), usually with symptoms such as DIARRHEA (often with blood and mucus), ABDOMINAL PAIN, and FEVER.
A genus of gram-positive, anaerobic, cocci to short rod-shaped ARCHAEA, in the family METHANOBACTERIACEAE, order METHANOBACTERIALES. They are found in the GASTROINTESTINAL TRACT or other anoxic environments.
An order of gram-positive bacteria in the class Bacilli, that have the ability to ferment sugars to lactic acid. They are widespread in nature and commonly used to produce fermented foods.
A group of organs stretching from the MOUTH to the ANUS, serving to breakdown foods, assimilate nutrients, and eliminate waste. In humans, the digestive system includes the GASTROINTESTINAL TRACT and the accessory glands (LIVER; BILIARY TRACT; PANCREAS).
A phylum of anaerobic, gram-negative bacteria with a chemoorganotrophic heterotrophic metabolism. They are resident flora of the OROPHARYNX.
Treatment of diseases with biological materials or biological response modifiers, such as the use of GENES; CELLS; TISSUES; organs; SERUM; VACCINES; and humoral agents.
A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both.
The passage of viable bacteria from the GASTROINTESTINAL TRACT to extra-intestinal sites, such as the mesenteric lymph node complex, liver, spleen, kidney, and blood. Factors that promote bacterial translocation include overgrowth with gram-negative enteric bacilli, impaired host immune defenses, and injury to the INTESTINAL MUCOSA resulting in increased intestinal permeability. Bacterial translocation from the lung to the circulation is also possible and sometimes accompanies MECHANICAL VENTILATION.
Short-chain fatty acids of up to six carbon atoms in length. They are the major end products of microbial fermentation in the ruminant digestive tract and have also been implicated in the causation of neurological diseases in humans.
Regular course of eating and drinking adopted by a person or animal.
Liquid formulations for the nutrition of infants that can substitute for BREAST MILK.
Techniques of nucleotide sequence analysis that increase the range, complexity, sensitivity, and accuracy of results by greatly increasing the scale of operations and thus the number of nucleotides, and the number of copies of each nucleotide sequenced. The sequencing may be done by analysis of the synthesis or ligation products, hybridization to preexisting sequences, etc.
Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID.
Substances that reduce the growth or reproduction of BACTERIA.
A film that attaches to teeth, often causing DENTAL CARIES and GINGIVITIS. It is composed of MUCINS, secreted from salivary glands, and microorganisms.
Bacteria which retain the crystal violet stain when treated by Gram's method.
The interactions between a host and a pathogen, usually resulting in disease.
Mathematical procedure that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components.
Nonsusceptibility to the pathogenic effects of foreign microorganisms or antigenic substances as a result of antibody secretions of the mucous membranes. Mucosal epithelia in the gastrointestinal, respiratory, and reproductive tracts produce a form of IgA (IMMUNOGLOBULIN A, SECRETORY) that serves to protect these ports of entry into the body.
An order of insects, restricted mostly to the tropics, containing at least eight families. A few species occur in temperate regions of North America.
A species of gram-positive, rod-shaped bacteria isolated from the intestinal tract of humans and animals, the human mouth, and vagina. This organism produces the fermented product, acidophilus milk.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
A family of gram-negative bacteria found primarily in the intestinal tracts and mucous membranes of warm-blooded animals. Its organisms are sometimes pathogenic.
Using MOLECULAR BIOLOGY techniques, such as DNA SEQUENCE ANALYSIS; PULSED-FIELD GEL ELECTROPHORESIS; and DNA FINGERPRINTING, to identify, classify, and compare organisms and their subtypes.
A species of gram-positive, rod-shaped LACTIC ACID bacteria found naturally in the human intestinal flora and BREAST MILK.
A genus of gram-positive, rod-shaped bacteria found in cavities of man and animals, animal and plant products, infections of soft tissue, and soil. Some species may be pathogenic. No endospores are produced. The genus Eubacterium should not be confused with EUBACTERIA, one of the three domains of life.
A natural association between organisms that is detrimental to at least one of them. This often refers to the production of chemicals by one microorganism that is harmful to another.
Pathological processes in any segment of the INTESTINE from DUODENUM to RECTUM.
The dynamic collection of metabolites which represent a cell's or organism's net metabolic response to current conditions.
A segment of the LOWER GASTROINTESTINAL TRACT that includes the CECUM; the COLON; and the RECTUM.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A functional system which includes the organisms of a natural community together with their environment. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed)
Animals or humans raised in the absence of a particular disease-causing virus or other microorganism. Less frequently plants are cultivated pathogen-free.
A species in the genus GARDNERELLA previously classified as Haemophilus vaginalis. This bacterium, also isolated from the female genital tract of healthy women, is implicated in the cause of bacterial vaginosis (VAGINOSIS, BACTERIAL).
A disorder with chronic or recurrent colonic symptoms without a clearcut etiology. This condition is characterized by chronic or recurrent ABDOMINAL PAIN, bloating, MUCUS in FECES, and an erratic disturbance of DEFECATION.
A family of gram-negative, facultatively anaerobic, rod-shaped bacteria that do not form endospores. Its organisms are distributed worldwide with some being saprophytes and others being plant and animal parasites. Many species are of considerable economic importance due to their pathogenic effects on agriculture and livestock.
A family of gram-negative bacteria, in the phylum FIRMICUTES.
'Anaerobic Bacteria' are types of bacteria that do not require oxygen for growth and can often cause diseases in humans, including dental caries, gas gangrene, and tetanus, among others.
Inflammation of the MUCOSA of both the SMALL INTESTINE and the LARGE INTESTINE. Etiology includes ISCHEMIA, infections, allergic, and immune responses.
The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
A species of gram-positive, rod-shaped bacteria associated with DENTAL CARIES.
The contents included in all or any segment of the GASTROINTESTINAL TRACT.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A species of gram-positive, rod-shaped bacteria used in PROBIOTICS.
The state of the organism when it functions optimally without evidence of disease.
Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form.
A species of HELICOBACTER that colonizes the CECUM and COLON of several strains of MICE, and is associated with HEPATITIS and carcinogenesis.
Infections with bacteria of the genus CLOSTRIDIUM.
Genes, found in both prokaryotes and eukaryotes, which are transcribed to produce the RNA which is incorporated into RIBOSOMES. Prokaryotic rRNA genes are usually found in OPERONS dispersed throughout the GENOME, whereas eukaryotic rRNA genes are clustered, multicistronic transcriptional units.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment.
A common inhabitant of the colon flora in human infants and sometimes in adults. It produces a toxin that causes pseudomembranous enterocolitis (ENTEROCOLITIS, PSEUDOMEMBRANOUS) in patients receiving antibiotic therapy.
Inflammation of any segment of the SMALL INTESTINE.
A technique for identifying individuals of a species that is based on the uniqueness of their DNA sequence. Uniqueness is determined by identifying which combination of allelic variations occur in the individual at a statistically relevant number of different loci. In forensic studies, RESTRICTION FRAGMENT LENGTH POLYMORPHISM of multiple, highly polymorphic VNTR LOCI or MICROSATELLITE REPEAT loci are analyzed. The number of loci used for the profile depends on the ALLELE FREQUENCY in the population.
A plant genus in the family PINACEAE, order Pinales, class Pinopsida, division Coniferophyta. It is the source of cedarwood oil. Cedar ordinarily refers to this but also forms part of the name of plants in other genera.
A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
Inflammation and loss of connective tissues supporting or surrounding the teeth. This may involve any part of the PERIODONTIUM. Periodontitis is currently classified by disease progression (CHRONIC PERIODONTITIS; AGGRESSIVE PERIODONTITIS) instead of age of onset. (From 1999 International Workshop for a Classification of Periodontal Diseases and Conditions, American Academy of Periodontology)
A species of gram-negative bacteria in the genus CITROBACTER, family ENTEROBACTERIACEAE. As an important pathogen of laboratory mice, it serves as a model for investigating epithelial hyperproliferation and tumor promotion. It was previously considered a strain of CITROBACTER FREUNDII.
Foodstuff used especially for domestic and laboratory animals, or livestock.
A species of rod-shaped, LACTIC ACID bacteria used in PROBIOTICS and SILAGE production.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
Aerobic bacteria are types of microbes that require oxygen to grow and reproduce, and use it in the process of respiration to break down organic matter and produce energy, often found in environments where oxygen is readily available such as the human body's skin, mouth, and intestines.
A status with BODY WEIGHT that is grossly above the acceptable or desirable weight, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
Methods used for detecting the amplified DNA products from the polymerase chain reaction as they accumulate instead of at the end of the reaction.
The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS.
A genus of gram-negative bacteria in the family ACIDAMINOCOCCACEAE, found in the RUMEN of SHEEP and CATTLE, and also in humans.
Consumption of excessive DIETARY FATS.
Oral tissue surrounding and attached to TEETH.
Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure.
Acute or chronic inflammation of tissues surrounding the apical portion of a tooth, associated with the collection of pus, resulting from infection following pulp infection through a carious lesion or as a result of an injury causing pulp necrosis. (Dorland, 27th ed)
The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM.
A genus of gram-negative, anaerobic cocci parasitic in the mouth and in the intestinal and respiratory tracts of man and other animals.
A sulfuric acid dimer, formed by disulfide linkage. This compound has been used to prolong coagulation time and as an antidote in cyanide poisoning.
The body's defense mechanism against foreign organisms or substances and deviant native cells. It includes the humoral immune response and the cell-mediated response and consists of a complex of interrelated cellular, molecular, and genetic components.
Gram-negative bacteria occurring in the lower intestinal tracts of man and other animals. It is the most common species of anaerobic bacteria isolated from human soft tissue infections.
Genotypic differences observed among individuals in a population.
The principle immunoglobulin in exocrine secretions such as milk, respiratory and intestinal mucin, saliva and tears. The complete molecule (around 400 kD) is composed of two four-chain units of IMMUNOGLOBULIN A, one SECRETORY COMPONENT and one J chain (IMMUNOGLOBULIN J-CHAINS).
A genus of SPONGES in the family Crambeidae characterized by desmoid spicules. The type species is Crambe crambe.
A species of gram-negative bacteria of the family ACETOBACTERACEAE found in FLOWERS and FRUIT. Cells are ellipsoidal to rod-shaped and straight or slightly curved.
The inanimate matter of Earth, the structures and properties of this matter, and the processes that affect it.
The clear, viscous fluid secreted by the SALIVARY GLANDS and mucous glands of the mouth. It contains MUCINS, water, organic salts, and ptylin.
The processes whereby the internal environment of an organism tends to remain balanced and stable.
A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies.
A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei.
ENTEROCOLITIS with extensive ulceration (ULCER) and NECROSIS. It is observed primarily in LOW BIRTH WEIGHT INFANT.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Diseases in any segment of the GASTROINTESTINAL TRACT from ESOPHAGUS to RECTUM.
The study of literature in its widest sense, including grammar, etymology, criticism, literary history, language history, linguistic history, systems of writing, and anything else that is relevant to literature or language viewed as literature. Philology as a discipline has both philosophical and scientific overtones.
An abnormal extension of a gingival sulcus not accompanied by the apical migration of the epithelial attachment.
The simultaneous analysis, on a microchip, of multiple samples or targets arranged in an array format.
The segment of GASTROINTESTINAL TRACT that includes the small intestine below the DUODENUM, and the LARGE INTESTINE.
'Human Milk' is the secretion from human mammary glands, primarily composed of water, carbohydrates, fats, proteins, and various bioactive components, which serves as the complete source of nutrition for newborn infants, supporting their growth, development, and immune system.
Polysaccharides composed of D-fructose units.
Differentiated epithelial cells of the INTESTINAL MUCOSA, found in the basal part of the intestinal crypts of Lieberkuhn. Paneth cells secrete GROWTH FACTORS, digestive enzymes such as LYSOZYME and antimicrobial peptides such as cryptdins (ALPHA-DEFENSINS) into the crypt lumen.
A group of anaerobic coccoid bacteria that show up as pink (negative) when treated by the gram-staining method.
Semisynthetic broad-spectrum cephalosporin with a tetrazolyl moiety that is resistant to beta-lactamase. It has been proposed especially against Pseudomonas infections.
A genus of nematode worms comprising the whipworms.
An infant during the first month after birth.
An antibiotic produced by the soil actinomycete Streptomyces griseus. It acts by inhibiting the initiation and elongation processes during protein synthesis.
The remnants of plant cell walls that are resistant to digestion by the alimentary enzymes of man. It comprises various polysaccharides and lignins.
A group of the proteobacteria comprised of facultatively anaerobic and fermentative gram-negative bacteria.
Products in capsule, tablet or liquid form that provide dietary ingredients, and that are intended to be taken by mouth to increase the intake of nutrients. Dietary supplements can include macronutrients, such as proteins, carbohydrates, and fats; and/or MICRONUTRIENTS, such as VITAMINS; MINERALS; and PHYTOCHEMICALS.
An offensive, foul breath odor resulting from a variety of causes such as poor oral hygiene, dental or oral infections, or the ingestion of certain foods.
Organic compounds that have a relatively high VAPOR PRESSURE at room temperature.
Milk modified with controlled FERMENTATION. This should not be confused with KAFFIR LIME or with KAFFIR CORN.
The middle portion of the pharynx that lies posterior to the mouth, inferior to the SOFT PALATE, and superior to the base of the tongue and EPIGLOTTIS. It has a digestive function as food passes from the mouth into the oropharynx before entering ESOPHAGUS.
A genus of gram-positive, coccoid bacteria consisting of organisms causing variable hemolysis that are normal flora of the intestinal tract. Previously thought to be a member of the genus STREPTOCOCCUS, it is now recognized as a separate genus.
A plant genus of the family ARACEAE. Members contain konjac glucomannan (MANNANS) and SEROTONIN.
A clinical syndrome with intermittent abdominal pain characterized by sudden onset and cessation that is commonly seen in infants. It is usually associated with obstruction of the INTESTINES; of the CYSTIC DUCT; or of the URINARY TRACT.
A gram-negative gliding bacterium isolated from the oral cavity. It is a pathogen often causing PERIODONTITIS.
A family of gram-positive bacteria found regularly in the mouth and intestinal tract of man and other animals, in food and dairy products, and in fermenting vegetable juices. A few species are highly pathogenic.
A genus of gram-negative, anaerobic, nonsporeforming, nonmotile rods or coccobacilli. Organisms in this genus had originally been classified as members of the BACTEROIDES genus but overwhelming biochemical and chemical findings indicated the need to separate them from other Bacteroides species, and hence, this new genus was created.
An ethnic group with shared religious beliefs. Originating in Switzerland in the late 1600s, and first migrating to the mid-Atlantic, they now live throughout Eastern and Mid-Western United States and elsewhere. Communities are usually close-knit and marriage is within the community.
A gel-forming mucin found predominantly in SMALL INTESTINE and variety of mucous membrane-containing organs. It provides a protective, lubricating barrier against particles and infectious agents.
The use of humans as investigational subjects.
A class in the phylum PROTEOBACTERIA comprised of chemoheterotrophs and chemoautotrophs which derive nutrients from decomposition of organic material.
An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa.
The science of the earth and other celestial bodies and their history as recorded in the rocks. It includes the study of geologic processes of an area such as rock formations, weathering and erosion, and sedimentation. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
An acute inflammation of the INTESTINAL MUCOSA that is characterized by the presence of pseudomembranes or plaques in the SMALL INTESTINE (pseudomembranous enteritis) and the LARGE INTESTINE (pseudomembranous colitis). It is commonly associated with antibiotic therapy and CLOSTRIDIUM DIFFICILE colonization.
A genus of gram-negative, anaerobic, rod-shaped bacteria found in cavities of humans and other animals. No endospores are formed. Some species are pathogenic and occur in various purulent or gangrenous infections.
Long-chain polymer of glucose containing 17-20% sulfur. It has been used as an anticoagulant and also has been shown to inhibit the binding of HIV-1 to CD4-POSITIVE T-LYMPHOCYTES. It is commonly used as both an experimental and clinical laboratory reagent and has been investigated for use as an antiviral agent, in the treatment of hypolipidemia, and for the prevention of free radical damage, among other applications.
Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES.
The nursing of an infant at the breast.
An inflammatory process with loss of supporting bone in the tissues surrounding functioning DENTAL IMPLANTS.
Alteration of the immune system or of an immune response by agents that activate or suppress its function. This can include IMMUNIZATION or administration of immunomodulatory drugs. Immunomodulation can also encompass non-therapeutic alteration of the immune system effected by endogenous or exogenous substances.
The segment of LARGE INTESTINE between ASCENDING COLON and DESCENDING COLON. It passes from the RIGHT COLIC FLEXURE across the ABDOMEN, then turns sharply at the left colonic flexure into the descending colon.
Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Baked food product made of flour or meal that is moistened, kneaded, and sometimes fermented. A major food since prehistoric times, it has been made in various forms using a variety of ingredients and methods.
The small ribonucleoprotein component of RIBOSOMES. It contains the MESSENGER RNA binding site and two TRANSFER RNA binding sites - one for the incoming AMINO ACYL TRNA (A site) and the other (P site) for the peptidyl tRNA carrying the elongating peptide chain.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
A chronic transmural inflammation that may involve any part of the DIGESTIVE TRACT from MOUTH to ANUS, mostly found in the ILEUM, the CECUM, and the COLON. In Crohn disease, the inflammation, extending through the intestinal wall from the MUCOSA to the serosa, is characteristically asymmetric and segmental. Epithelioid GRANULOMAS may be seen in some patients.
A TETRACYCLINE with a 7-chloro substitution.
A rod-shaped bacterium isolated from milk and cheese, dairy products and dairy environments, sour dough, cow dung, silage, and human mouth, human intestinal contents and stools, and the human vagina.
Infection with nematodes of the genus TRICHURIS, formerly called Trichocephalus.
A family of gram-positive, lactic acid-producing bacteria in the order Lactobacillales. It includes both high-pressure-loving species (piezophiles) found in the deep ocean, and Antarctic species.
The genetic complement of a BACTERIA as represented in its DNA.
A group of ANTI-BACTERIAL AGENTS characterized by a chromophoric naphthohydroquinone group spanned by an aliphatic bridge not previously found in other known ANTI-BACTERIAL AGENTS. They have been isolated from fermentation broths of Streptomyces mediterranei.
High molecular weight mucoproteins that protect the surface of EPITHELIAL CELLS by providing a barrier to particulate matter and microorganisms. Membrane-anchored mucins may have additional roles concerned with protein interactions at the cell surface.
A class of annelid worms with few setae per segment. It includes the earthworms such as Lumbricus and Eisenia.
Elements of limited time intervals, contributing to particular results or situations.
A family of gram-positive non-sporing bacteria including many parasitic, pathogenic, and saprophytic forms.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
The branch of science concerned with the interrelationship of organisms and their ENVIRONMENT, especially as manifested by natural cycles and rhythms, community development and structure, interactions between different kinds of organisms, geographic distributions, and population alterations. (Webster's, 3d ed)
Type species of the genus CLOSTRIDIUM, a gram-positive bacteria in the family Clostridiaceae. It is used as a source of PROBIOTICS.
The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about.
An increased liquidity or decreased consistency of FECES, such as running stool. Fecal consistency is related to the ratio of water-holding capacity of insoluble solids to total water, rather than the amount of water present. Diarrhea is not hyperdefecation or increased fecal weight.
A genus of gram-positive, facultatively anaerobic bacteria in the family Aerococcaceae.
Infections by bacteria, general or unspecified.
Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions.
Any of a group of polysaccharides of the general formula (C6-H10-O5)n, composed of a long-chain polymer of glucose in the form of amylose and amylopectin. It is the chief storage form of energy reserve (carbohydrates) in plants.
A genus of gram-negative, anaerobic bacteria in the family Fibrobacteraceae, isolated from the human GASTROINTESTINAL TRACT.
An intracellular signaling adaptor protein that plays a role in TOLL-LIKE RECEPTOR and INTERLEUKIN 1 RECEPTORS signal transduction. It forms a signaling complex with the activated cell surface receptors and members of the IRAK KINASES.
Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping.
A genus of gram-positive, facultatively anaerobic bacteria whose growth is dependent on the presence of a fermentable carbohydrate. No endospores are produced. Its organisms are found in fermenting plant products and are nonpathogenic to plants and animals, including humans.
A member of the S-100 protein family that is present at high levels in the blood and interstitial fluid in several infectious, inflammatory, and malignant disorders, including rheumatoid arthritis, inflammatory bowel disease, and cystic fibrosis. It is a complex of a light chain (CALGRANULIN A) and a heavy chain (CALGRANULIN B). L1 binds calcium through an EF-hand motif, and has been shown to possess antimicrobial activity.
Protection from an infectious disease agent that is mediated by B- and T- LYMPHOCYTES following exposure to specific antigen, and characterized by IMMUNOLOGIC MEMORY. It can result from either previous infection with that agent or vaccination (IMMUNITY, ACTIVE), or transfer of antibody or lymphocytes from an immune donor (IMMUNIZATION, PASSIVE).
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.

Impact of deoxynivalenol on the intestinal microflora of pigs. (1/360)

 (+info)

The role of probiotics in the poultry industry. (2/360)

 (+info)

Estimating population diversity with unreliable low frequency counts. (3/360)

We consider the classical population diversity estimation scenario based on frequency count data (the number of classes or taxa represented once, twice, etc. in the sample), but with the proviso that the lowest frequency counts, especially the singletons, may not be reliably observed. This arises especially in data derived from modern high-throughput DNA sequencing, where errors may cause sequences to be incorrectly assigned to new taxa instead of being matched to existing, observed taxa. We look at a spectrum of methods for addressing this issue, focusing in particular on fitting a parametric mixture model and deleting the highest-diversity component; we also consider regarding the data as left-censored and effectively pooling two or more low frequency counts. We find that these purely statistical "downstream" corrections will depend strongly on their underlying assumptions, but that such methods can be useful nonetheless.  (+info)

Comparisons of distance methods for combining covariates and abundances in microbiome studies. (4/360)

This article compares different methods for combining abundance data, phylogenetic trees and clinical covariates in a nonparametric setting. In particular we study the output from the principal coordinates analysis on UNIFRAC and WEIGHTED UNIFRAC distances and the output from a double principal coordinate analyses DPCOA using distances computed on the phylogenetic tree. We also present power comparisons for some of the standard tests of phylogenetic signal between different types of samples. These methods are compared both on simulated and real data sets. Our study shows that DPCoA is less robust to outliers, and more robust to small noisy fluctuations around zero.  (+info)

Proteotyping of microbial communities by optimization of tandem mass spectrometry data interpretation. (5/360)

We report the development of a novel high performance computing method for the identification of proteins from unknown (environmental) samples. The method uses computational optimization to provide an effective way to control the false discovery rate for environmental samples and complements de novo peptide sequencing. Furthermore, the method provides information based on the expressed protein in a microbial community, and thus complements DNA-based identification methods. Testing on blind samples demonstrates that the method provides 79-95% overlap with analogous results from searches involving only the correct genomes. We provide scaling and performance evaluations for the software that demonstrate the ability to carry out large-scale optimizations on 1258 genomes containing 4.2M proteins.  (+info)

Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. (6/360)

We present a detailed description of a new Bioconductor package, phyloseq, for integrated data and analysis of taxonomically-clustered phylogenetic sequencing data in conjunction with related data types. The phyloseq package integrates abundance data, phylogenetic information and covariates so that exploratory transformations, plots, and confirmatory testing and diagnostic plots can be carried out seamlessly. The package is built following the S4 object-oriented framework of the R language so that once the data have been input the user can easily transform, plot and analyze the data. We present some examples that highlight the methods and the ease with which we can leverage existing packages.  (+info)

Artificial functional difference between microbial communities caused by length difference of sequencing reads. (7/360)

Homology-based approaches are often used for the annotation of microbial communities, providing functional profiles that are used to characterize and compare the content and the functionality of microbial communities. Metagenomic reads are the starting data for these studies, however considerable differences are observed between the functional profiles-built from sequencing reads produced by different sequencing techniques-for even the same microbial community. Using simulation experiments, we show that such functional differences are likely to be caused by the actual difference in read lengths, and are not the results of a sampling bias of the sequencing techniques. Furthermore, the functional differences derived from different sequencing techniques cannot be fully explained by the read-count bias, i.e. 1) the higher fraction of unannotated shorter reads (i.e., "read length matters"), and 2) the different lengths of proteins in different functional categories. Instead, we show here that specific functional categories are under-annotated, because similarity-search-based functional annotation tools tend to miss more reads from functional categories that contain less conserved genes/proteins. In addition, the accuracy of functional annotation of short reads for different functions varies, further skewing the functional profiles. To address these issues, we present a simple yet efficient method to improve the frequency estimates of different functional categories in the functional profiles of metagenomes, based on the functional annotation of simulated reads from complete microbial genomes.  (+info)

MetaDomain: a profile HMM-based protein domain classification tool for short sequences. (8/360)

Protein homology search provides basis for functional profiling in metagenomic annotation. Profile HMM-based methods classify reads into annotated protein domain families and can achieve better sensitivity for remote protein homology search than pairwise sequence alignment. However, their sensitivity deteriorates with the decrease of read length. As a result, a large number of short reads cannot be classified into their native domain families. In this work, we introduce MetaDomain, a protein domain classification tool designed for short reads generated by next-generation sequencing technologies. MetaDomain uses relaxed position-specific score thresholds to align more reads to a profile HMM while using the distribution of alignment positions as an additional constraint to control false positive matches. In this work MetaDomain is applied to the transcriptomic data of a bacterial genome and a soil metagenomic data set. The experimental results show that it can achieve better sensitivity than the state-of-the-art profile HMM alignment tool in identifying encoded domains from short sequences. The source codes of MetaDomain are available at http://sourceforge.net/projects/metadomain/.  (+info)

Medical Definition of Microbiota:

The community of microorganisms, including bacteria, viruses, fungi, and other microscopic life forms, that inhabit a specific environment or body part. In the human body, microbiota can be found on the skin, in the mouth, gut, and other areas. The largest concentration of microbiota is located in the intestines, where it plays an essential role in digestion, immune function, and overall health.

The composition of the microbiota can vary depending on factors such as age, diet, lifestyle, genetics, and environmental exposures. Dysbiosis, or imbalance of the microbiota, has been linked to various health conditions, including gastrointestinal disorders, allergies, autoimmune diseases, and neurological disorders.

Therefore, maintaining a healthy and diverse microbiota is crucial for overall health and well-being. This can be achieved through a balanced diet, regular exercise, adequate sleep, stress management, and other lifestyle practices that support the growth and maintenance of beneficial microorganisms in the body.

A metagenome is the collective genetic material contained within a sample taken from a specific environment, such as soil or water, or within a community of organisms, like the microbiota found in the human gut. It includes the genomes of all the microorganisms present in that environment or community, including bacteria, archaea, fungi, viruses, and other microbes, whether they can be cultured in the lab or not. By analyzing the metagenome, scientists can gain insights into the diversity, abundance, and functional potential of the microbial communities present in that environment.

The gastrointestinal (GI) tract, also known as the digestive tract, is a continuous tube that starts at the mouth and ends at the anus. It is responsible for ingesting, digesting, absorbing, and excreting food and waste materials. The GI tract includes the mouth, esophagus, stomach, small intestine (duodenum, jejunum, ileum), large intestine (cecum, colon, rectum, anus), and accessory organs such as the liver, gallbladder, and pancreas. The primary function of this system is to process and extract nutrients from food while also protecting the body from harmful substances, pathogens, and toxins.

Bacteria are single-celled microorganisms that are among the earliest known life forms on Earth. They are typically characterized as having a cell wall and no membrane-bound organelles. The majority of bacteria have a prokaryotic organization, meaning they lack a nucleus and other membrane-bound organelles.

Bacteria exist in diverse environments and can be found in every habitat on Earth, including soil, water, and the bodies of plants and animals. Some bacteria are beneficial to their hosts, while others can cause disease. Beneficial bacteria play important roles in processes such as digestion, nitrogen fixation, and biogeochemical cycling.

Bacteria reproduce asexually through binary fission or budding, and some species can also exchange genetic material through conjugation. They have a wide range of metabolic capabilities, with many using organic compounds as their source of energy, while others are capable of photosynthesis or chemosynthesis.

Bacteria are highly adaptable and can evolve rapidly in response to environmental changes. This has led to the development of antibiotic resistance in some species, which poses a significant public health challenge. Understanding the biology and behavior of bacteria is essential for developing strategies to prevent and treat bacterial infections and diseases.

The intestines, also known as the bowel, are a part of the digestive system that extends from the stomach to the anus. They are responsible for the further breakdown and absorption of nutrients from food, as well as the elimination of waste products. The intestines can be divided into two main sections: the small intestine and the large intestine.

The small intestine is a long, coiled tube that measures about 20 feet in length and is lined with tiny finger-like projections called villi, which increase its surface area and enhance nutrient absorption. The small intestine is where most of the digestion and absorption of nutrients takes place.

The large intestine, also known as the colon, is a wider tube that measures about 5 feet in length and is responsible for absorbing water and electrolytes from digested food, forming stool, and eliminating waste products from the body. The large intestine includes several regions, including the cecum, colon, rectum, and anus.

Together, the intestines play a critical role in maintaining overall health and well-being by ensuring that the body receives the nutrients it needs to function properly.

Feces are the solid or semisolid remains of food that could not be digested or absorbed in the small intestine, along with bacteria and other waste products. After being stored in the colon, feces are eliminated from the body through the rectum and anus during defecation. Feces can vary in color, consistency, and odor depending on a person's diet, health status, and other factors.

Ribosomal RNA (rRNA) is a type of RNA that combines with proteins to form ribosomes, which are complex structures inside cells where protein synthesis occurs. The "16S" refers to the sedimentation coefficient of the rRNA molecule, which is a measure of its size and shape. In particular, 16S rRNA is a component of the smaller subunit of the prokaryotic ribosome (found in bacteria and archaea), and is often used as a molecular marker for identifying and classifying these organisms due to its relative stability and conservation among species. The sequence of 16S rRNA can be compared across different species to determine their evolutionary relationships and taxonomic positions.

Prebiotics are non-digestible dietary components that selectively stimulate the growth and/or activity of beneficial bacteria in the colon, thereby improving host health. They are typically carbohydrate-based food ingredients, such as fructooligosaccharides (FOS), galactooligosaccharides (GOS), inulin, and other oligosaccharides, that resist digestion in the upper gastrointestinal tract and are fermented by gut microbiota in the large intestine. Prebiotics promote the proliferation of probiotic bacteria, enhance the gut barrier function, modulate the immune system, and contribute to overall health maintenance and disease prevention.

Bifidobacterium is a genus of Gram-positive, non-motile, often branching anaerobic bacteria that are commonly found in the gastrointestinal tracts of humans and other animals, as well as in fermented foods. These bacteria play an important role in maintaining the health and balance of the gut microbiota by aiding in digestion, producing vitamins, and preventing the growth of harmful bacteria.

Bifidobacteria are also known for their probiotic properties and are often used as dietary supplements to improve digestive health, boost the immune system, and alleviate symptoms of various gastrointestinal disorders such as irritable bowel syndrome and inflammatory bowel disease.

There are over 50 species of Bifidobacterium, with some of the most common ones found in the human gut being B. bifidum, B. longum, B. breve, and B. adolescentis. These bacteria are characterized by their ability to ferment a variety of carbohydrates, including dietary fibers, oligosaccharides, and sugars, producing short-chain fatty acids (SCFAs) such as acetate, lactate, and formate as end products.

Bifidobacteria have a complex cell wall structure that contains unique polysaccharides called exopolysaccharides (EPS), which have been shown to have prebiotic properties and can stimulate the growth of other beneficial bacteria in the gut. Additionally, some strains of Bifidobacterium produce antimicrobial compounds that inhibit the growth of pathogenic bacteria, further contributing to their probiotic effects.

Overall, Bifidobacterium is an important genus of beneficial bacteria that play a crucial role in maintaining gut health and promoting overall well-being.

'Biota' is a term that refers to the total collection of living organisms in a particular habitat, ecosystem, or region. It includes all forms of life such as plants, animals, fungi, bacteria, and other microorganisms. Biota can be used to describe the communities of living things in a specific area, like a forest biota or marine biota, and it can also refer to the study of these organisms and their interactions with each other and their environment. In medical contexts, 'biota' may specifically refer to the microorganisms that inhabit the human body, such as the gut microbiota.

Denaturing Gradient Gel Electrophoresis (DGGE) is a laboratory technique used in molecular biology to separate and analyze DNA fragments (or PCR products) based on their melting behavior. This technique is particularly useful for the analysis of complex DNA mixtures, such as those found in environmental samples or in studies of microbial communities.

In DGGE, the DNA samples are subjected to an increasing gradient of denaturing agents (such as urea and formamide) during electrophoresis. As the DNA fragments migrate through the gel, they begin to denature (or melt) at specific points along the gradient, depending on their sequence and base composition. This results in a distinct melting profile for each DNA fragment, which can be visualized as a band on the gel.

The technique allows for the separation of DNA fragments that differ by only a few base pairs, making it a powerful tool for identifying and comparing different DNA sequences within a mixture. DGGE is often used in conjunction with PCR to amplify specific regions of interest in the DNA sample, such as genes or operons involved in specific metabolic pathways. The resulting PCR products can then be analyzed by DGGE to identify and compare different sequence variants (or "types") within a population.

Overall, DGGE is a valuable tool for studying the diversity and composition of complex DNA mixtures, and has applications in fields such as microbial ecology, molecular biology, and genetic engineering.

A germ-free life refers to an existence in which an individual is not exposed to or colonized by any harmful microorganisms, such as bacteria, viruses, fungi, or parasites. This condition is also known as "sterile" or "aseptic." In a medical context, achieving a germ-free state is often the goal in certain controlled environments, such as operating rooms, laboratories, and intensive care units, where the risk of infection must be minimized. However, it is not possible to maintain a completely germ-free life outside of these settings, as microorganisms are ubiquitous in the environment and are an essential part of the human microbiome. Instead, maintaining good hygiene practices and a healthy immune system is crucial for preventing illness and promoting overall health.

Probiotics are defined by the World Health Organization (WHO) as "live microorganisms which when administered in adequate amounts confer a health benefit on the host." They are often referred to as "good" or "friendly" bacteria because they help keep your gut healthy. Probiotics are naturally found in certain foods such as fermented foods like yogurt, sauerkraut, and some cheeses, or they can be taken as dietary supplements.

The most common groups of probiotics are lactic acid bacteria (like Lactobacillus) and bifidobacteria. They can help restore the balance of bacteria in your gut when it's been disrupted by things like illness, medication (such as antibiotics), or poor diet. Probiotics have been studied for their potential benefits in a variety of health conditions, including digestive issues, skin conditions, and even mental health disorders, although more research is needed to fully understand their effects and optimal uses.

Dysbiosis is a term used to describe an imbalance in the microbiota, or the community of microorganisms, that normally live on and inside the body. These microorganisms include bacteria, viruses, fungi, and other microbes. In a healthy state, these microorganisms exist in a balanced relationship with each other and with their human host. However, when this balance is disrupted, it can lead to an overgrowth of harmful microbes and a decrease in the number of beneficial ones. This imbalance can occur in different parts of the body, such as the gut, skin, or mouth, and can contribute to various health problems.

In medical terms, dysbiosis is often used to describe an alteration in the composition of the gut microbiota that has been associated with a variety of diseases, including inflammatory bowel disease, irritable bowel syndrome, obesity, diabetes, and even some neurological disorders. The exact mechanisms by which dysbiosis contributes to these conditions are not fully understood, but it is thought to involve changes in the metabolic activities of the microbiota, as well as their interactions with the host's immune system.

It's important to note that while dysbiosis has been linked to various health issues, it does not necessarily mean that it is the cause of those conditions. More research is needed to fully understand the role of dysbiosis in human health and disease.

Biodiversity is the variety of different species of plants, animals, and microorganisms that live in an ecosystem. It also includes the variety of genes within a species and the variety of ecosystems (such as forests, grasslands, deserts, and oceans) that exist in a region or on Earth as a whole. Biodiversity is important for maintaining the health and balance of ecosystems, providing resources and services such as food, clean water, and pollination, and contributing to the discovery of new medicines and other useful products. The loss of biodiversity can have negative impacts on the functioning of ecosystems and the services they provide, and can threaten the survival of species and the livelihoods of people who depend on them.

Bacteroidetes is a large phylum of gram-negative, predominantly anaerobic bacteria that are commonly found in the gastrointestinal tract of animals, including humans. They play an important role in the breakdown and fermentation of complex carbohydrates in the gut, producing short-chain fatty acids as a byproduct. Some species of Bacteroidetes have also been identified as opportunistic pathogens and can cause infections in immunocompromised individuals or under certain conditions.

The medical relevance of Bacteroidetes lies in their role in maintaining gut homeostasis, modulating the immune system, and protecting against pathogenic bacteria. Dysbiosis of the gut microbiota, including changes in the abundance and diversity of Bacteroidetes, has been associated with various diseases such as inflammatory bowel disease, obesity, diabetes, and cardiovascular disease. Therefore, understanding the ecology and function of Bacteroidetes is important for developing novel therapeutic strategies to target these conditions.

Lactobacillus is a genus of gram-positive, rod-shaped, facultatively anaerobic or microaerophilic, non-spore-forming bacteria. They are part of the normal flora found in the intestinal, urinary, and genital tracts of humans and other animals. Lactobacilli are also commonly found in some fermented foods, such as yogurt, sauerkraut, and sourdough bread.

Lactobacilli are known for their ability to produce lactic acid through the fermentation of sugars, which contributes to their role in maintaining a healthy microbiota and lowering the pH in various environments. Some species of Lactobacillus have been shown to provide health benefits, such as improving digestion, enhancing immune function, and preventing infections, particularly in the urogenital and intestinal tracts. They are often used as probiotics, either in food or supplement form, to promote a balanced microbiome and support overall health.

Bacteroides are a genus of gram-negative, anaerobic, rod-shaped bacteria that are normally present in the human gastrointestinal tract. They are part of the normal gut microbiota and play an important role in breaking down complex carbohydrates and other substances in the gut. However, some species of Bacteroides can cause opportunistic infections, particularly in individuals with weakened immune systems or when they spread to other parts of the body. They are resistant to many commonly used antibiotics, making infections caused by these bacteria difficult to treat.

The cecum is the first part of the large intestine, located at the junction of the small and large intestines. It is a pouch-like structure that connects to the ileum (the last part of the small intestine) and the ascending colon (the first part of the large intestine). The cecum is where the appendix is attached. Its function is to absorb water and electrolytes, and it also serves as a site for the fermentation of certain types of dietary fiber by gut bacteria. However, the exact functions of the cecum are not fully understood.

Bacterial load refers to the total number or concentration of bacteria present in a given sample, tissue, or body fluid. It is a measure used to quantify the amount of bacterial infection or colonization in a particular area. The bacterial load can be expressed as colony-forming units (CFU) per milliliter (ml), gram (g), or other units of measurement depending on the sample type. High bacterial loads are often associated with more severe infections and increased inflammation.

Bacterial DNA refers to the genetic material found in bacteria. It is composed of a double-stranded helix containing four nucleotide bases - adenine (A), thymine (T), guanine (G), and cytosine (C) - that are linked together by phosphodiester bonds. The sequence of these bases in the DNA molecule carries the genetic information necessary for the growth, development, and reproduction of bacteria.

Bacterial DNA is circular in most bacterial species, although some have linear chromosomes. In addition to the main chromosome, many bacteria also contain small circular pieces of DNA called plasmids that can carry additional genes and provide resistance to antibiotics or other environmental stressors.

Unlike eukaryotic cells, which have their DNA enclosed within a nucleus, bacterial DNA is present in the cytoplasm of the cell, where it is in direct contact with the cell's metabolic machinery. This allows for rapid gene expression and regulation in response to changing environmental conditions.

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Metagenomics is the scientific study of genetic material recovered directly from environmental samples. This field of research involves analyzing the collective microbial genomes found in a variety of environments, such as soil, ocean water, or the human gut, without the need to culture individual species in a lab. By using high-throughput DNA sequencing technologies and computational tools, metagenomics allows researchers to identify and study the functional potential and ecological roles of diverse microbial communities, contributing to our understanding of their impacts on ecosystems, health, and disease.

The intestinal mucosa is the innermost layer of the intestines, which comes into direct contact with digested food and microbes. It is a specialized epithelial tissue that plays crucial roles in nutrient absorption, barrier function, and immune defense. The intestinal mucosa is composed of several cell types, including absorptive enterocytes, mucus-secreting goblet cells, hormone-producing enteroendocrine cells, and immune cells such as lymphocytes and macrophages.

The surface of the intestinal mucosa is covered by a single layer of epithelial cells, which are joined together by tight junctions to form a protective barrier against harmful substances and microorganisms. This barrier also allows for the selective absorption of nutrients into the bloodstream. The intestinal mucosa also contains numerous lymphoid follicles, known as Peyer's patches, which are involved in immune surveillance and defense against pathogens.

In addition to its role in absorption and immunity, the intestinal mucosa is also capable of producing hormones that regulate digestion and metabolism. Dysfunction of the intestinal mucosa can lead to various gastrointestinal disorders, such as inflammatory bowel disease, celiac disease, and food allergies.

Ribosomal DNA (rDNA) refers to the specific regions of DNA in a cell that contain the genes for ribosomal RNA (rRNA). Ribosomes are complex structures composed of proteins and rRNA, which play a crucial role in protein synthesis by translating messenger RNA (mRNA) into proteins.

In humans, there are four types of rRNA molecules: 18S, 5.8S, 28S, and 5S. These rRNAs are encoded by multiple copies of rDNA genes that are organized in clusters on specific chromosomes. In humans, the majority of rDNA genes are located on the short arms of acrocentric chromosomes 13, 14, 15, 21, and 22.

Each cluster of rDNA genes contains both transcribed and non-transcribed spacer regions. The transcribed regions contain the genes for the four types of rRNA, while the non-transcribed spacers contain regulatory elements that control the transcription of the rRNA genes.

The number of rDNA copies varies between species and even within individuals of the same species. The copy number can also change during development and in response to environmental factors. Variations in rDNA copy number have been associated with various diseases, including cancer and neurological disorders.

The colon, also known as the large intestine, is a part of the digestive system in humans and other vertebrates. It is an organ that eliminates waste from the body and is located between the small intestine and the rectum. The main function of the colon is to absorb water and electrolytes from digested food, forming and storing feces until they are eliminated through the anus.

The colon is divided into several regions, including the cecum, ascending colon, transverse colon, descending colon, sigmoid colon, rectum, and anus. The walls of the colon contain a layer of muscle that helps to move waste material through the organ by a process called peristalsis.

The inner surface of the colon is lined with mucous membrane, which secretes mucus to lubricate the passage of feces. The colon also contains a large population of bacteria, known as the gut microbiota, which play an important role in digestion and immunity.

A "colony count" is a method used to estimate the number of viable microorganisms, such as bacteria or fungi, in a sample. In this technique, a known volume of the sample is spread onto the surface of a solid nutrient medium in a petri dish and then incubated under conditions that allow the microorganisms to grow and form visible colonies. Each colony that grows on the plate represents an individual cell (or small cluster of cells) from the original sample that was able to divide and grow under the given conditions. By counting the number of colonies that form, researchers can make a rough estimate of the concentration of microorganisms in the original sample.

The term "microbial" simply refers to microscopic organisms, such as bacteria, fungi, or viruses. Therefore, a "colony count, microbial" is a general term that encompasses the use of colony counting techniques to estimate the number of any type of microorganism in a sample.

Colony counts are used in various fields, including medical research, food safety testing, and environmental monitoring, to assess the levels of contamination or the effectiveness of disinfection procedures. However, it is important to note that colony counts may not always provide an accurate measure of the total number of microorganisms present in a sample, as some cells may be injured or unable to grow under the conditions used for counting. Additionally, some microorganisms may form clusters or chains that can appear as single colonies, leading to an overestimation of the true cell count.

Verrucomicrobia is a phylum of bacteria that includes both free-living and symbiotic species. These bacteria are characterized by their unique cell wall structure, which contains a specific type of polysaccharide called Verrucomicrobial polysaccharides. They are widely distributed in various environments, including soil, freshwater, marine habitats, and the guts of animals. Some members of this phylum have been found to play important roles in biogeochemical cycles and in host-associated microbiomes. However, a medical definition of Verrucomicrobia is not commonly used as they are not typically associated with specific human diseases or medical conditions.

Bacterial physiological phenomena refer to the various functional processes and activities that occur within bacteria, which are necessary for their survival, growth, and reproduction. These phenomena include:

1. Metabolism: This is the process by which bacteria convert nutrients into energy and cellular components. It involves a series of chemical reactions that break down organic compounds such as carbohydrates, lipids, and proteins to produce energy in the form of ATP (adenosine triphosphate).
2. Respiration: This is the process by which bacteria use oxygen to convert organic compounds into carbon dioxide and water, releasing energy in the form of ATP. Some bacteria can also perform anaerobic respiration, using alternative electron acceptors such as nitrate or sulfate instead of oxygen.
3. Fermentation: This is a type of anaerobic metabolism in which bacteria convert organic compounds into simpler molecules, releasing energy in the form of ATP. Unlike respiration, fermentation does not require an external electron acceptor.
4. Motility: Many bacteria are capable of moving independently, using various mechanisms such as flagella or twitching motility. This allows them to move towards favorable environments and away from harmful ones.
5. Chemotaxis: Bacteria can sense and respond to chemical gradients in their environment, allowing them to move towards attractants and away from repellents.
6. Quorum sensing: Bacteria can communicate with each other using signaling molecules called autoinducers. When the concentration of autoinducers reaches a certain threshold, the bacteria can coordinate their behavior, such as initiating biofilm formation or producing virulence factors.
7. Sporulation: Some bacteria can form spores, which are highly resistant to heat, radiation, and chemicals. Spores can remain dormant for long periods of time and germinate when conditions are favorable.
8. Biofilm formation: Bacteria can form complex communities called biofilms, which are composed of cells embedded in a matrix of extracellular polymeric substances (EPS). Biofilms can provide protection from environmental stressors and host immune responses.
9. Cell division: Bacteria reproduce by binary fission, where the cell divides into two identical daughter cells. This process is regulated by various cell cycle checkpoints and can be influenced by environmental factors such as nutrient availability.

Microbial interactions refer to the various ways in which different microorganisms, such as bacteria, fungi, viruses, and parasites, influence each other's growth, survival, and behavior in a shared environment. These interactions can be categorized into several types:

1. Commensalism: One organism benefits from the interaction while the other is neither harmed nor benefited (e.g., certain gut bacteria that feed on host-derived nutrients without affecting the host's health).
2. Mutualism: Both organisms benefit from the interaction (e.g., the partnership between rhizobia bacteria and leguminous plants, where the bacteria fix nitrogen for the plant, and the plant provides carbohydrates for the bacteria).
3. Parasitism: One organism benefits at the expense of the other, causing harm or disease to the host (e.g., the malaria parasite infecting human red blood cells).
4. Competition: Both organisms struggle for limited resources, like nutrients or space, leading to a negative impact on one or both parties (e.g., different bacterial species competing for limited iron sources in the environment).
5. Amensalism: One organism is harmed or inhibited while the other remains unaffected (e.g., antibiotic-producing bacteria inhibiting the growth of nearby susceptible bacteria).
6. Synergism: Multiple organisms work together to produce a combined effect greater than the sum of their individual effects (e.g., certain bacterial and fungal communities in soil that enhance plant growth and nutrient uptake).
7. Antagonism: One organism inhibits or kills another through various mechanisms, such as the production of antibiotics or enzymes (e.g., some bacteria producing bacteriocins to inhibit the growth of closely related species).

Understanding microbial interactions is crucial for developing strategies in areas like infectious disease control, probiotic applications, and managing microbial communities in various ecosystems, including the human body.

In the context of medicine and biology, symbiosis is a type of close and long-term biological interaction between two different biological organisms. Generally, one organism, called the symbiont, lives inside or on another organism, called the host. This interaction can be mutually beneficial (mutualistic), harmful to the host organism (parasitic), or have no effect on either organism (commensal).

Examples of mutualistic symbiotic relationships in humans include the bacteria that live in our gut and help us digest food, as well as the algae that live inside corals and provide them with nutrients. Parasitic symbioses, on the other hand, involve organisms like viruses or parasitic worms that live inside a host and cause harm to it.

It's worth noting that while the term "symbiosis" is often used in popular culture to refer to any close relationship between two organisms, in scientific contexts it has a more specific meaning related to long-term biological interactions.

Synbiotics are a combination of probiotics and prebiotics that work together to improve the survival, engraftment, and metabolic activity of the probiotic microorganisms in the gut. Probiotics are live beneficial bacteria or yeasts that are introduced into the body, often through food or supplements, with the aim of improving health. Prebiotics are non-digestible food ingredients that stimulate the growth and/or activity of these probiotic microorganisms.

The synergistic effect of combining both probiotics and prebiotics in a single product is believed to provide greater health benefits compared to using either one alone. The prebiotics serve as a food source for the probiotics, helping them to grow and multiply in the gut. This can lead to improved gut microbiota composition, enhanced immune function, and better overall health.

Examples of synbiotic products include yogurts with added prebiotic fibers or supplements containing specific strains of probiotic bacteria along with a prebiotic ingredient such as inulin or fructooligosaccharides (FOS). It is important to note that not all combinations of probiotics and prebiotics are considered synbiotics, as they must be shown to have a synergistic effect on the host's health.

The vagina is the canal that joins the cervix (the lower part of the uterus) to the outside of the body. It also is known as the birth canal because babies pass through it during childbirth. The vagina is where sexual intercourse occurs and where menstrual blood exits the body. It has a flexible wall that can expand and retract. During sexual arousal, the vaginal walls swell with blood to become more elastic in order to accommodate penetration.

It's important to note that sometimes people use the term "vagina" to refer to the entire female genital area, including the external structures like the labia and clitoris. But technically, these are considered part of the vulva, not the vagina.

'Clostridium' is a genus of gram-positive, rod-shaped bacteria that are widely distributed in nature, including in soil, water, and the gastrointestinal tracts of animals and humans. Many species of Clostridium are anaerobic, meaning they can grow and reproduce in environments with little or no oxygen. Some species of Clostridium are capable of producing toxins that can cause serious and sometimes life-threatening illnesses in humans and animals.

Some notable species of Clostridium include:

* Clostridium tetani, which causes tetanus (also known as lockjaw)
* Clostridium botulinum, which produces botulinum toxin, the most potent neurotoxin known and the cause of botulism
* Clostridium difficile, which can cause severe diarrhea and colitis, particularly in people who have recently taken antibiotics
* Clostridium perfringens, which can cause food poisoning and gas gangrene.

It is important to note that not all species of Clostridium are harmful, and some are even beneficial, such as those used in the production of certain fermented foods like sauerkraut and natto. However, due to their ability to produce toxins and cause illness, it is important to handle and dispose of materials contaminated with Clostridium species carefully, especially in healthcare settings.

Proteobacteria is a major class of Gram-negative bacteria that includes a wide variety of pathogens and free-living organisms. This class is divided into six subclasses: Alpha, Beta, Gamma, Delta, Epsilon, and Zeta proteobacteria. Proteobacteria are characterized by their single circular chromosome and the presence of lipopolysaccharide (LPS) in their outer membrane. They can be found in a wide range of environments, including soil, water, and the gastrointestinal tracts of animals. Some notable examples of Proteobacteria include Escherichia coli, Salmonella enterica, and Yersinia pestis.

Ruminococcus is a genus of obligate anaerobic, gram-positive bacteria that are commonly found in the gastrointestinal tracts of humans and other animals. These bacteria play a crucial role in breaking down complex carbohydrates and fibers in the gut through fermentation, producing short-chain fatty acids (SCFAs) as byproducts. Ruminococcus species are particularly abundant in the rumen of ruminants such as cows and sheep, where they help to digest plant material. In humans, Ruminococcus species have been associated with various aspects of health and disease, including gut inflammation, colon cancer, and metabolic disorders. However, more research is needed to fully understand the complex relationship between these bacteria and human health.

In medical terms, the mouth is officially referred to as the oral cavity. It is the first part of the digestive tract and includes several structures: the lips, vestibule (the space enclosed by the lips and teeth), teeth, gingiva (gums), hard and soft palate, tongue, floor of the mouth, and salivary glands. The mouth is responsible for several functions including speaking, swallowing, breathing, and eating, as it is the initial point of ingestion where food is broken down through mechanical and chemical processes, beginning the digestive process.

Actinobacteria are a group of gram-positive bacteria that are widely distributed in nature, including in soil, water, and various organic substrates. They are characterized by their high G+C content in their DNA and complex cell wall composition, which often contains mycolic acids. Some Actinobacteria are known to form branching filaments, giving them a characteristic "actinomycete" morphology. Many species of Actinobacteria have important roles in industry, agriculture, and medicine. For example, some produce antibiotics, enzymes, and other bioactive compounds, while others play key roles in biogeochemical cycles such as the decomposition of organic matter and the fixation of nitrogen. Additionally, some Actinobacteria are pathogenic and can cause diseases in humans, animals, and plants.

Preventella is a genus of Gram-negative, anaerobic, rod-shaped bacteria that are commonly found in the human oral cavity, gastrointestinal tract, and urogenital tract. They are part of the normal microbiota but can also be associated with various infections, particularly in individuals with compromised immune systems or underlying medical conditions.

Prevotella species have been implicated in a variety of diseases, including periodontal disease, dental caries, respiratory tract infections, bacteremia, soft tissue infections, and joint infections. They can also be found in association with abscesses, wound infections, and other types of infections, particularly in the head and neck region.

Prevotella species are generally resistant to antibiotics commonly used to treat anaerobic infections, such as clindamycin and metronidazole, making them difficult to eradicate. Therefore, accurate identification and susceptibility testing of Prevotella isolates is important for the appropriate management of infections caused by these organisms.

Inflammatory Bowel Diseases (IBD) are a group of chronic inflammatory conditions primarily affecting the gastrointestinal tract. The two main types of IBD are Crohn's disease and ulcerative colitis.

Crohn's disease can cause inflammation in any part of the digestive system, from the mouth to the anus, but it most commonly affects the lower part of the small intestine (the ileum) and/or the colon. The inflammation caused by Crohn's disease often spreads deep into the layers of affected bowel tissue.

Ulcerative colitis, on the other hand, is limited to the colon, specifically the innermost lining of the colon. It causes long-lasting inflammation and sores (ulcers) in the lining of the large intestine (colon) and rectum.

Symptoms can vary depending on the severity and location of inflammation but often include abdominal pain, diarrhea, fatigue, weight loss, and reduced appetite. IBD is not the same as irritable bowel syndrome (IBS), which is a functional gastrointestinal disorder.

The exact cause of IBD remains unknown, but it's thought to be a combination of genetic factors, an abnormal immune response, and environmental triggers. There is no cure for IBD, but treatments can help manage symptoms and reduce inflammation, potentially leading to long-term remission.

Bacterial vaginosis (BV) is a condition that occurs when there's an imbalance or overgrowth of bacteria in the vagina. It's not technically considered a sexually transmitted infection (STI), but certain activities such as unprotected sex can increase the risk of developing BV. The normal balance of bacteria in the vagina is disrupted, leading to symptoms such as abnormal vaginal discharge with a strong fishy odor, burning during urination, and itching or irritation around the outside of the vagina. Bacterial vaginosis is diagnosed through a pelvic examination and laboratory tests to identify the type of bacteria present in the vagina. Treatment typically involves antibiotics, either in the form of pills or creams that are inserted into the vagina. It's important to seek medical attention if you suspect you have bacterial vaginosis, as it can increase the risk of complications such as pelvic inflammatory disease and preterm labor during pregnancy.

Microbial consortia refer to a group or community of microorganisms, including bacteria, archaea, fungi, and viruses, that naturally exist together in a specific environment and interact with each other. These interactions can be synergistic, where the organisms benefit from each other's presence, or competitive, where they compete for resources.

Microbial consortia play important roles in various biological processes, such as biogeochemical cycling, plant growth promotion, and wastewater treatment. The study of microbial consortia is essential to understanding the complex interactions between microorganisms and their environment, and has implications for fields such as medicine, agriculture, and environmental science.

Bacterial RNA refers to the genetic material present in bacteria that is composed of ribonucleic acid (RNA). Unlike higher organisms, bacteria contain a single circular chromosome made up of DNA, along with smaller circular pieces of DNA called plasmids. These bacterial genetic materials contain the information necessary for the growth and reproduction of the organism.

Bacterial RNA can be divided into three main categories: messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA). mRNA carries genetic information copied from DNA, which is then translated into proteins by the rRNA and tRNA molecules. rRNA is a structural component of the ribosome, where protein synthesis occurs, while tRNA acts as an adapter that brings amino acids to the ribosome during protein synthesis.

Bacterial RNA plays a crucial role in various cellular processes, including gene expression, protein synthesis, and regulation of metabolic pathways. Understanding the structure and function of bacterial RNA is essential for developing new antibiotics and other therapeutic strategies to combat bacterial infections.

Colitis is a medical term that refers to inflammation of the inner lining of the colon or large intestine. The condition can cause symptoms such as diarrhea, abdominal cramps, and urgency to have a bowel movement. Colitis can be caused by a variety of factors, including infections, inflammatory bowel disease (such as Crohn's disease or ulcerative colitis), microscopic colitis, ischemic colitis, and radiation therapy. The specific symptoms and treatment options for colitis may vary depending on the underlying cause.

Methanobrevibacter is a genus of archaea (single-celled microorganisms) that are methanogens, meaning they produce methane as a metabolic byproduct. These organisms are commonly found in the digestive tracts of animals, including humans, where they help break down organic matter and recycle nutrients. They are strict anaerobes, requiring an environment free of oxygen to survive and grow. Some species within this genus have been associated with dental diseases such as periodontitis. However, more research is needed to fully understand their role in human health and disease.

Lactobacillales is an order of predominantly gram-positive, facultatively anaerobic or aerotolerant, rod-shaped bacteria. They are non-spore forming and often occur in pairs or chains. Lactobacillales are commonly found in various environments such as plants, sewage, dairy products, and the gastrointestinal and genitourinary tracts of humans and animals.

They are known for their ability to produce lactic acid as a major metabolic end product, hence the name "lactic acid bacteria." This characteristic makes them essential in food fermentation processes, including the production of yogurt, cheese, sauerkraut, and other fermented foods.

Within Lactobacillales, there are several families, including Aerococcaceae, Carnobacteriaceae, Enterococcaceae, Lactobacillaceae, Leuconostocaceae, and Streptococcaceae. Many species within these families have significant roles in human health and disease, either as beneficial probiotics or as pathogenic agents causing various types of infections.

The digestive system is a complex group of organs and glands that process food. It converts the food we eat into nutrients, which the body uses for energy, growth, and cell repair. The digestive system also eliminates waste from the body. It is made up of the gastrointestinal tract (GI tract) and other organs that help the body break down and absorb food.

The GI tract includes the mouth, esophagus, stomach, small intestine, large intestine, and anus. Other organs that are part of the digestive system include the liver, pancreas, gallbladder, and salivary glands.

The process of digestion begins in the mouth, where food is chewed and mixed with saliva. The food then travels down the esophagus and into the stomach, where it is broken down further by stomach acids. The digested food then moves into the small intestine, where nutrients are absorbed into the bloodstream. The remaining waste material passes into the large intestine, where it is stored until it is eliminated through the anus.

The liver, pancreas, and gallbladder play important roles in the digestive process as well. The liver produces bile, a substance that helps break down fats in the small intestine. The pancreas produces enzymes that help digest proteins, carbohydrates, and fats. The gallbladder stores bile until it is needed in the small intestine.

Overall, the digestive system is responsible for breaking down food, absorbing nutrients, and eliminating waste. It plays a critical role in maintaining our health and well-being.

Fusobacteria is a group of obligate anaerobic, gram-negative bacilli that are commonly found as normal flora in the human oral cavity, gastrointestinal tract, and female genital tract. Some species of Fusobacteria have been associated with various human diseases, including periodontal disease, inflammatory bowel disease, and bloodstream infections. They can also play a role in the development of bacterial biofilms and are sometimes found in mixed infections with other anaerobic bacteria.

Fusobacteria have a unique morphology, often appearing as elongated, curved or spiral-shaped rods. They are non-motile and do not form spores. Some species of Fusobacteria can produce butyric acid, which can contribute to the foul odor associated with certain infections.

Fusobacterium nucleatum is one of the most well-known species of Fusobacteria and has been extensively studied for its role in periodontal disease. It is a common colonizer of dental plaque and has been shown to have a variety of virulence factors that allow it to adhere to and invade host tissues, evade the immune response, and cause tissue damage.

Overall, Fusobacteria are important members of the human microbiome, but under certain circumstances, they can also contribute to the development of various infectious diseases.

Biological therapy, also known as biotherapy or immunotherapy, is a type of medical treatment that uses biological agents (such as substances derived from living organisms or laboratory-made versions of these substances) to identify and modify specific targets in the body to treat diseases, including cancer. These therapies can work by boosting the body's natural defenses to fight illness, interfering with the growth and spread of abnormal cells, or replacing absent or faulty proteins in the body. Examples of biological therapies include monoclonal antibodies, cytokines, and vaccines.

Cluster analysis is a statistical method used to group similar objects or data points together based on their characteristics or features. In medical and healthcare research, cluster analysis can be used to identify patterns or relationships within complex datasets, such as patient records or genetic information. This technique can help researchers to classify patients into distinct subgroups based on their symptoms, diagnoses, or other variables, which can inform more personalized treatment plans or public health interventions.

Cluster analysis involves several steps, including:

1. Data preparation: The researcher must first collect and clean the data, ensuring that it is complete and free from errors. This may involve removing outlier values or missing data points.
2. Distance measurement: Next, the researcher must determine how to measure the distance between each pair of data points. Common methods include Euclidean distance (the straight-line distance between two points) or Manhattan distance (the distance between two points along a grid).
3. Clustering algorithm: The researcher then applies a clustering algorithm, which groups similar data points together based on their distances from one another. Common algorithms include hierarchical clustering (which creates a tree-like structure of clusters) or k-means clustering (which assigns each data point to the nearest centroid).
4. Validation: Finally, the researcher must validate the results of the cluster analysis by evaluating the stability and robustness of the clusters. This may involve re-running the analysis with different distance measures or clustering algorithms, or comparing the results to external criteria.

Cluster analysis is a powerful tool for identifying patterns and relationships within complex datasets, but it requires careful consideration of the data preparation, distance measurement, and validation steps to ensure accurate and meaningful results.

Bacterial translocation is a medical condition that refers to the migration and establishment of bacteria from the gastrointestinal tract to normally sterile sites inside the body, such as the mesenteric lymph nodes, bloodstream, or other organs. This phenomenon is most commonly associated with impaired intestinal barrier function, which can occur in various clinical settings, including severe trauma, burns, sepsis, major surgery, and certain gastrointestinal diseases like inflammatory bowel disease (IBD) and liver cirrhosis.

The translocation of bacteria from the gut to other sites can lead to systemic inflammation, sepsis, and multiple organ dysfunction syndrome (MODS), which can be life-threatening in severe cases. The underlying mechanisms of bacterial translocation are complex and involve several factors, such as changes in gut microbiota, increased intestinal permeability, impaired immune function, and altered intestinal motility.

Preventing bacterial translocation is an important goal in the management of patients at risk for this condition, and strategies may include optimizing nutritional support, maintaining adequate fluid and electrolyte balance, using probiotics or antibiotics to modulate gut microbiota, and promoting intestinal barrier function through various pharmacological interventions.

Volatile fatty acids (VFA) are a type of fatty acid that have a low molecular weight and are known for their ability to evaporate at room temperature. They are produced in the body during the breakdown of carbohydrates and proteins in the absence of oxygen, such as in the digestive tract by certain bacteria.

The most common volatile fatty acids include acetic acid, propionic acid, and butyric acid. These compounds have various roles in the body, including providing energy to cells in the intestines, modulating immune function, and regulating the growth of certain bacteria. They are also used as precursors for the synthesis of other molecules, such as cholesterol and bile acids.

In addition to their role in the body, volatile fatty acids are also important in the food industry, where they are used as flavorings and preservatives. They are produced naturally during fermentation and aging processes, and are responsible for the distinctive flavors of foods such as yogurt, cheese, and wine.

A diet, in medical terms, refers to the planned and regular consumption of food and drinks. It is a balanced selection of nutrient-rich foods that an individual eats on a daily or periodic basis to meet their energy needs and maintain good health. A well-balanced diet typically includes a variety of fruits, vegetables, whole grains, lean proteins, and low-fat dairy products.

A diet may also be prescribed for therapeutic purposes, such as in the management of certain medical conditions like diabetes, hypertension, or obesity. In these cases, a healthcare professional may recommend specific restrictions or modifications to an individual's regular diet to help manage their condition and improve their overall health.

It is important to note that a healthy and balanced diet should be tailored to an individual's age, gender, body size, activity level, and any underlying medical conditions. Consulting with a healthcare professional, such as a registered dietitian or nutritionist, can help ensure that an individual's dietary needs are being met in a safe and effective way.

Infant formula is a manufactured food designed and marketed for feeding to babies and infants under 12 months of age, but may also be used as a supplementary feedings for older children. It is usually derived from cow's milk, but can also be made from soy or other proteins. Infant formulas are designed to provide a well-balanced diet with appropriate amounts of protein, fat, carbohydrate, vitamins, and minerals to support growth and development in infants who are not breastfed. They come in various forms such as powder, concentrate, or ready-to-feed liquid and must meet strict nutritional and safety standards set by regulatory agencies like the U.S. Food and Drug Administration (FDA) and the European Commission (EC).

High-throughput nucleotide sequencing, also known as next-generation sequencing (NGS), refers to a group of technologies that allow for the rapid and parallel determination of nucleotide sequences of DNA or RNA molecules. These techniques enable the sequencing of large numbers of DNA or RNA fragments simultaneously, resulting in the generation of vast amounts of sequence data in a single run.

High-throughput sequencing has revolutionized genomics research by allowing for the rapid and cost-effective sequencing of entire genomes, transcriptomes, and epigenomes. It has numerous applications in basic research, including genome assembly, gene expression analysis, variant detection, and methylation profiling, as well as in clinical settings, such as diagnosis of genetic diseases, identification of pathogens, and monitoring of cancer progression and treatment response.

Some common high-throughput sequencing platforms include Illumina (sequencing by synthesis), Ion Torrent (semiconductor sequencing), Pacific Biosciences (single molecule real-time sequencing), and Oxford Nanopore Technologies (nanopore sequencing). Each platform has its strengths and limitations, and the choice of technology depends on the specific research question and experimental design.

Fermentation is a metabolic process in which an organism converts carbohydrates into alcohol or organic acids using enzymes. In the absence of oxygen, certain bacteria, yeasts, and fungi convert sugars into carbon dioxide, hydrogen, and various end products, such as alcohol, lactic acid, or acetic acid. This process is commonly used in food production, such as in making bread, wine, and beer, as well as in industrial applications for the production of biofuels and chemicals.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

Dental plaque is a biofilm or mass of bacteria that accumulates on the surface of the teeth, restorative materials, and prosthetic devices such as dentures. It is initiated when bacterial colonizers attach to the smooth surfaces of teeth through van der Waals forces and specific molecular adhesion mechanisms.

The microorganisms within the dental plaque produce extracellular polysaccharides that help to stabilize and strengthen the biofilm, making it resistant to removal by simple brushing or rinsing. Over time, if not regularly removed through oral hygiene practices such as brushing and flossing, dental plaque can mineralize and harden into tartar or calculus.

The bacteria in dental plaque can cause tooth decay (dental caries) by metabolizing sugars and producing acid that demineralizes the tooth enamel. Additionally, certain types of bacteria in dental plaque can cause periodontal disease, an inflammation of the gums that can lead to tissue damage and bone loss around the teeth. Regular professional dental cleanings and good oral hygiene practices are essential for preventing the buildup of dental plaque and maintaining good oral health.

Gram-positive bacteria are a type of bacteria that stain dark purple or blue when subjected to the Gram staining method, which is a common technique used in microbiology to classify and identify different types of bacteria based on their structural differences. This staining method was developed by Hans Christian Gram in 1884.

The key characteristic that distinguishes Gram-positive bacteria from other types, such as Gram-negative bacteria, is the presence of a thick layer of peptidoglycan in their cell walls, which retains the crystal violet stain used in the Gram staining process. Additionally, Gram-positive bacteria lack an outer membrane found in Gram-negative bacteria.

Examples of Gram-positive bacteria include Staphylococcus aureus, Streptococcus pyogenes, and Bacillus subtilis. Some Gram-positive bacteria can cause various human diseases, while others are beneficial or harmless.

Host-pathogen interactions refer to the complex and dynamic relationship between a living organism (the host) and a disease-causing agent (the pathogen). This interaction can involve various molecular, cellular, and physiological processes that occur between the two entities. The outcome of this interaction can determine whether the host will develop an infection or not, as well as the severity and duration of the illness.

During host-pathogen interactions, the pathogen may release virulence factors that allow it to evade the host's immune system, colonize tissues, and obtain nutrients for its survival and replication. The host, in turn, may mount an immune response to recognize and eliminate the pathogen, which can involve various mechanisms such as inflammation, phagocytosis, and the production of antimicrobial agents.

Understanding the intricacies of host-pathogen interactions is crucial for developing effective strategies to prevent and treat infectious diseases. This knowledge can help identify new targets for therapeutic interventions, inform vaccine design, and guide public health policies to control the spread of infectious agents.

Principal Component Analysis (PCA) is not a medical term, but a statistical technique that is used in various fields including bioinformatics and medicine. It is a method used to identify patterns in high-dimensional data by reducing the dimensionality of the data while retaining most of the variation in the dataset.

In medical or biological research, PCA may be used to analyze large datasets such as gene expression data or medical imaging data. By applying PCA, researchers can identify the principal components, which are linear combinations of the original variables that explain the maximum amount of variance in the data. These principal components can then be used for further analysis, visualization, and interpretation of the data.

PCA is a widely used technique in data analysis and has applications in various fields such as genomics, proteomics, metabolomics, and medical imaging. It helps researchers to identify patterns and relationships in complex datasets, which can lead to new insights and discoveries in medical research.

Mucosal immunity refers to the immune system's defense mechanisms that are specifically adapted to protect the mucous membranes, which line various body openings such as the respiratory, gastrointestinal, and urogenital tracts. These membranes are constantly exposed to foreign substances, including potential pathogens, and therefore require a specialized immune response to maintain homeostasis and prevent infection.

Mucosal immunity is primarily mediated by secretory IgA (SIgA) antibodies, which are produced by B cells in the mucosa-associated lymphoid tissue (MALT). These antibodies can neutralize pathogens and prevent them from adhering to and invading the epithelial cells that line the mucous membranes.

In addition to SIgA, other components of the mucosal immune system include innate immune cells such as macrophages, dendritic cells, and neutrophils, which can recognize and respond to pathogens through pattern recognition receptors (PRRs). T cells also play a role in mucosal immunity, particularly in the induction of cell-mediated immunity against viruses and other intracellular pathogens.

Overall, mucosal immunity is an essential component of the body's defense system, providing protection against a wide range of potential pathogens while maintaining tolerance to harmless antigens present in the environment.

'Isoptera' is an outdated term for a taxonomic order of social insects commonly known as termites. These eusocial insects are closely related to cockroaches and share some similarities in their appearance, but they have specialized castes including workers, soldiers, and reproductives that live in colonies. Termites feed on wood, plant fibers, and other materials containing cellulose, which they break down with the help of symbiotic protozoa living in their gut. The order Isoptera is no longer recognized by modern taxonomists, who now place termites within the cockroach family Blattodea.

Lactobacillus acidophilus is a species of gram-positive, rod-shaped bacteria that naturally occurs in the human body, particularly in the mouth, intestines, and vagina. It is a type of lactic acid bacterium (LAB) that converts sugars into lactic acid as part of its metabolic process.

In the intestines, Lactobacillus acidophilus helps maintain a healthy balance of gut flora by producing bacteriocins, which are natural antibiotics that inhibit the growth of harmful bacteria. It also helps in the digestion and absorption of food, produces vitamins (such as vitamin K and some B vitamins), and supports the immune system.

Lactobacillus acidophilus is commonly used as a probiotic supplement to help restore or maintain a healthy balance of gut bacteria, particularly after taking antibiotics or in cases of gastrointestinal disturbances. It can be found in fermented foods such as yogurt, kefir, sauerkraut, and some cheeses.

It's important to note that while Lactobacillus acidophilus has many potential health benefits, it should not be used as a substitute for medical treatment or advice from a healthcare professional.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Bacteroidaceae is a family of gram-negative, anaerobic or facultatively anaerobic, non-spore forming bacteria that are commonly found in the human gastrointestinal tract. They are rod-shaped and can vary in size and shape. Bacteroidaceae are important breakdowners of complex carbohydrates and proteins in the gut, and play a significant role in maintaining the health and homeostasis of the intestinal microbiota. Some members of this family can also be opportunistic pathogens and have been associated with various infections and diseases, such as abscesses, bacteremia, and periodontal disease.

Molecular typing is a laboratory technique used to identify and characterize specific microorganisms, such as bacteria or viruses, at the molecular level. This method is used to differentiate between strains of the same species based on their genetic or molecular differences. Molecular typing techniques include methods such as pulsed-field gel electrophoresis (PFGE), multiple-locus variable number tandem repeat analysis (MLVA), and whole genome sequencing (WGS). These techniques allow for high-resolution discrimination between strains, enabling epidemiological investigations of outbreaks, tracking the transmission of pathogens, and studying the evolution and population biology of microorganisms.

Lactobacillus reuteri is a species of gram-positive, facultatively anaerobic bacteria that belongs to the lactic acid bacteria group. It is commonly found in the gastrointestinal tract of humans and other animals, as well as in some fermented foods.

Lactobacillus reuteri has been studied for its potential probiotic benefits, including its ability to inhibit the growth of harmful bacteria, stimulate the immune system, and promote digestive health. It produces several antimicrobial compounds, such as lactic acid, reuterin, and bacteriocins, which help maintain a healthy balance of microorganisms in the gut.

Lactobacillus reuteri has also been shown to have anti-inflammatory effects, which may be beneficial in treating conditions such as inflammatory bowel disease, irritable bowel syndrome, and eczema. Additionally, it may help prevent dental cavities by inhibiting the growth of harmful oral bacteria.

It's worth noting that while Lactobacillus reuteri has shown promise in various studies, more research is needed to fully understand its potential health benefits and safety.

"Eubacterium" is a genus of Gram-positive, obligately anaerobic, non-sporeforming bacteria that are commonly found in the human gastrointestinal tract. These bacteria are typically rod-shaped and can be either straight or curved. They play an important role in the breakdown of complex carbohydrates and the production of short-chain fatty acids in the gut, which are beneficial for host health. Some species of Eubacterium have also been shown to have probiotic properties and may provide health benefits when consumed in appropriate quantities. However, other species can be opportunistic pathogens and cause infections under certain circumstances.

Antibiosis is a type of interaction between different organisms in which one organism, known as the antibiotic producer, produces a chemical substance (known as an antibiotic) that inhibits or kills another organism, called the susceptible organism. This phenomenon was first discovered in bacteria and fungi, where certain species produce antibiotics to inhibit the growth of competing species in their environment.

The term "antibiosis" is derived from Greek words "anti" meaning against, and "biosis" meaning living together. It is a natural form of competition that helps maintain the balance of microbial communities in various environments, such as soil, water, and the human body.

In medical contexts, antibiosis refers to the use of antibiotics to treat or prevent bacterial infections in humans and animals. Antibiotics are chemical substances produced by microorganisms or synthesized artificially that can inhibit or kill other microorganisms. The discovery and development of antibiotics have revolutionized modern medicine, saving countless lives from bacterial infections that were once fatal.

However, the overuse and misuse of antibiotics have led to the emergence of antibiotic-resistant bacteria, which can no longer be killed or inhibited by conventional antibiotics. Antibiotic resistance is a significant global health concern that requires urgent attention and action from healthcare providers, policymakers, and the public.

Intestinal diseases refer to a wide range of conditions that affect the function or structure of the small intestine, large intestine (colon), or both. These diseases can cause various symptoms such as abdominal pain, diarrhea, constipation, bloating, nausea, vomiting, and weight loss. They can be caused by infections, inflammation, genetic disorders, or other factors. Some examples of intestinal diseases include inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, Crohn's disease, ulcerative colitis, and intestinal infections. The specific medical definition may vary depending on the context and the specific condition being referred to.

The metabolome is the complete set of small molecule metabolites, such as carbohydrates, lipids, nucleic acids, and amino acids, present in a biological sample at a given moment. It reflects the physiological state of a cell, tissue, or organism and provides information about the biochemical processes that are taking place. The metabolome is dynamic and constantly changing due to various factors such as genetics, environment, diet, and disease. Studying the metabolome can help researchers understand the underlying mechanisms of health and disease and develop diagnostic tools and treatments for various medical conditions.

The large intestine, also known as the colon, is the lower part of the gastrointestinal tract that extends from the cecum, where it joins the small intestine, to the anus. It is called "large" because it has a larger diameter compared to the small intestine and is responsible for several important functions in the digestive process.

The large intestine measures about 1.5 meters (5 feet) long in adults and consists of four main regions: the ascending colon, transverse colon, descending colon, and sigmoid colon. The primary function of the large intestine is to absorb water and electrolytes from undigested food materials, compact the remaining waste into feces, and store it until it is eliminated through defecation.

The large intestine also contains a diverse population of bacteria that aid in digestion by breaking down complex carbohydrates, producing vitamins like vitamin K and some B vitamins, and competing with harmful microorganisms to maintain a healthy balance within the gut. Additionally, the large intestine plays a role in immune function and helps protect the body from pathogens through the production of mucus, antimicrobial substances, and the activation of immune cells.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

An "ecosystem" is not a term that has a specific medical definition, as it is a concept that is more commonly used in the fields of ecology and environmental science. However, I can provide you with the general ecological definition of an ecosystem:

An ecosystem is a community of living organisms interacting with each other and their non-living environment, including both biotic factors (plants, animals, microorganisms) and abiotic factors (climate, soil, water, and air). These interactions create a complex network of relationships that form the foundation of ecological processes, such as energy flow, nutrient cycling, and population dynamics.

While there is no direct medical definition for an ecosystem, understanding the principles of ecosystems can have important implications for human health. For example, healthy ecosystems can provide clean air and water, regulate climate, support food production, and offer opportunities for recreation and relaxation, all of which contribute to overall well-being. Conversely, degraded ecosystems can lead to increased exposure to environmental hazards, reduced access to natural resources, and heightened risks of infectious diseases. Therefore, maintaining the health and integrity of ecosystems is crucial for promoting human health and preventing disease.

"Specific Pathogen-Free (SPF)" is a term used to describe animals or organisms that are raised and maintained in a controlled environment, free from specific pathogens (disease-causing agents) that could interfere with research outcomes or pose a risk to human or animal health. The "specific" part of the term refers to the fact that the exclusion of pathogens is targeted to those that are relevant to the particular organism or research being conducted.

To maintain an SPF status, animals are typically housed in specialized facilities with strict biosecurity measures, such as air filtration systems, quarantine procedures, and rigorous sanitation protocols. They are usually bred and raised in isolation from other animals, and their health status is closely monitored to ensure that they remain free from specific pathogens.

It's important to note that SPF does not necessarily mean "germ-free" or "sterile," as some microorganisms may still be present in the environment or on the animals themselves, even in an SPF facility. Instead, it means that the animals are free from specific pathogens that have been identified and targeted for exclusion.

In summary, Specific Pathogen-Free Organisms refer to animals or organisms that are raised and maintained in a controlled environment, free from specific disease-causing agents that are relevant to the research being conducted or human/animal health.

Gardnerella vaginalis is a gram-variable, rod-shaped, non-motile bacterium that is part of the normal microbiota of the human vagina. However, an overgrowth of this organism can lead to a condition known as bacterial vaginosis (BV), which is characterized by a shift in the balance of vaginal flora, resulting in a decrease in beneficial lactobacilli and an increase in Gardnerella vaginalis and other anaerobic bacteria. This imbalance can cause symptoms such as abnormal vaginal discharge with a fishy odor, itching, and burning. It's important to note that while G. vaginalis is commonly associated with BV, its presence alone does not necessarily indicate the presence of the condition.

Irritable Bowel Syndrome (IBS) is a functional gastrointestinal disorder characterized by recurrent abdominal pain, bloating, and altered bowel habits in the absence of any structural or biochemical abnormalities. The symptoms can vary from person to person, ranging from mild to severe.

The exact cause of IBS is not known, but it's thought to involve a combination of factors such as muscle contractions in the intestine, abnormalities in the nervous system, inflammation in the intestines, severe infection, or changes in bacteria in the gut.

It's important to note that while IBS can cause great discomfort and distress, it does not lead to serious complications such as changes in bowel tissue or increased risk of colorectal cancer. However, it can significantly affect a person's quality of life and daily activities.

Enterobacteriaceae is a family of gram-negative, rod-shaped bacteria that are commonly found in the intestines of humans and animals. Many species within this family are capable of causing various types of infections, particularly in individuals with weakened immune systems. Some common examples of Enterobacteriaceae include Escherichia coli (E. coli), Klebsiella pneumoniae, Proteus mirabilis, and Salmonella enterica.

These bacteria are typically characterized by their ability to ferment various sugars and produce acid and gas as byproducts. They can also be distinguished by their biochemical reactions, such as their ability to produce certain enzymes or resist specific antibiotics. Infections caused by Enterobacteriaceae can range from mild to severe, depending on the species involved and the overall health of the infected individual.

Some infections caused by Enterobacteriaceae include urinary tract infections, pneumonia, bloodstream infections, and foodborne illnesses. Proper hygiene, such as handwashing and safe food handling practices, can help prevent the spread of these bacteria and reduce the risk of infection.

Veillonellaceae is a family of Gram-negative, anaerobic bacteria found in various environments, including the human mouth and gut. The bacteria are known for their ability to produce acetic and lactic acid as end products of their metabolism. They are often part of the normal microbiota of the body, but they can also be associated with certain infections, particularly in individuals with weakened immune systems.

It's important to note that while Veillonellaceae bacteria are generally considered to be commensal organisms, meaning they exist harmoniously with their human hosts, they have been implicated in some disease states, such as periodontitis (gum disease) and bacterial pneumonia. However, more research is needed to fully understand the role of these bacteria in health and disease.

Anaerobic bacteria are a type of bacteria that do not require oxygen to grow and survive. Instead, they can grow in environments that have little or no oxygen. Some anaerobic bacteria can even be harmed or killed by exposure to oxygen. These bacteria play important roles in many natural processes, such as decomposition and the breakdown of organic matter in the digestive system. However, some anaerobic bacteria can also cause disease in humans and animals, particularly when they infect areas of the body that are normally oxygen-rich. Examples of anaerobic bacterial infections include tetanus, gas gangrene, and dental abscesses.

Enterocolitis is a medical condition that involves inflammation of the small intestine (enteritis) and large intestine (colitis). This condition can affect people of all ages, but it is most commonly seen in infants and young children. The symptoms of enterocolitis may include diarrhea, abdominal cramps, bloating, nausea, vomiting, fever, and dehydration.

There are several types of enterocolitis, including:

1. Infectious Enterocolitis: This type is caused by a bacterial, viral, or parasitic infection in the intestines. Common causes include Salmonella, Shigella, Escherichia coli (E. coli), and norovirus.
2. Antibiotic-Associated Enterocolitis: This type is caused by an overgrowth of harmful bacteria in the intestines following the use of antibiotics that kill off beneficial gut bacteria.
3. Pseudomembranous Enterocolitis: This is a severe form of antibiotic-associated enterocolitis caused by the bacterium Clostridioides difficile (C. diff).
4. Necrotizing Enterocolitis: This is a serious condition that primarily affects premature infants, causing inflammation and damage to the intestinal tissue, which can lead to perforations and sepsis.
5. Ischemic Enterocolitis: This type is caused by reduced blood flow to the intestines, often due to conditions such as mesenteric ischemia or vasculitis.
6. Radiation Enterocolitis: This type occurs as a complication of radiation therapy for cancer treatment, which can damage the intestinal lining and lead to inflammation.
7. Eosinophilic Enterocolitis: This is a rare condition characterized by an excessive buildup of eosinophils (a type of white blood cell) in the intestinal tissue, leading to inflammation and symptoms similar to those seen in inflammatory bowel disease.

Treatment for enterocolitis depends on the underlying cause and severity of the condition. It may include antibiotics, antiparasitic medications, probiotics, or surgery in severe cases.

The ileum is the third and final segment of the small intestine, located between the jejunum and the cecum (the beginning of the large intestine). It plays a crucial role in nutrient absorption, particularly for vitamin B12 and bile salts. The ileum is characterized by its thin, lined walls and the presence of Peyer's patches, which are part of the immune system and help surveil for pathogens.

Lactobacillus fermentum is a species of gram-positive, facultatively anaerobic, rod-shaped bacteria that belongs to the lactic acid bacteria group. It is commonly found in various environments such as plant material, dairy products, and the human gastrointestinal tract.

Lactobacillus fermentum is known for its ability to produce lactic acid through the fermentation of carbohydrates, which can help lower the pH of the environment and inhibit the growth of harmful bacteria. It also produces various antimicrobial compounds such as bacteriocins, which can further contribute to its probiotic properties.

Lactobacillus fermentum has been studied for its potential health benefits, including its ability to enhance immune function, improve gut health, and reduce symptoms of gastrointestinal disorders such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). It is also being investigated for its potential role in preventing urogenital infections and reducing the risk of certain types of cancer.

However, it's important to note that while some studies suggest potential health benefits of Lactobacillus fermentum, more research is needed to fully understand its effects and safety profile. As with any probiotic supplement, it's recommended to consult with a healthcare provider before taking Lactobacillus fermentum or any other probiotics.

Gastrointestinal (GI) contents refer to the physical substances within the gastrointestinal tract, which includes the stomach, small intestine, and large intestine. These contents can vary depending on the time since the last meal and the digestive process that is underway. Generally, GI contents include food, fluids, digestive enzymes, secretions, bacteria, and other waste products.

In a more specific context, GI contents may also refer to the stomach contents, which are often analyzed during autopsies or in cases of suspected poisoning or overdose. Stomach contents can provide valuable information about the type and amount of substances that have been ingested within a few hours prior to the analysis.

It is important to note that GI contents should not be confused with gastrointestinal fluids, which specifically refer to the secretions produced by the gastrointestinal tract, such as gastric juice in the stomach or bile in the small intestine.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Lactobacillus rhamnosus is a species of gram-positive, facultatively anaerobic bacteria that belongs to the genus Lactobacillus. It is a rod-shaped bacterium that is commonly found in the human gastrointestinal tract and is also present in some fermented foods like yogurt and cheese.

L. rhamnosus is known for its ability to produce lactic acid, which helps maintain a healthy balance of microflora in the gut and inhibit the growth of harmful bacteria. It has been studied for its potential probiotic benefits, including improving digestive health, enhancing immune function, and alleviating symptoms of certain gastrointestinal disorders like irritable bowel syndrome and inflammatory bowel disease.

L. rhamnosus is also known to adhere well to the intestinal epithelium, which allows it to persist in the gut for longer periods compared to other lactobacilli species. This property has made it a popular strain for use in various probiotic supplements and functional foods. However, it is important to note that while L. rhamnosus has shown promise in several clinical studies, more research is needed to fully understand its potential health benefits and safety profile.

The World Health Organization (WHO) defines health as "a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity." This definition emphasizes that health is more than just the absence of illness, but a positive state of well-being in which an individual is able to realize their own potential, cope with normal stresses of life, work productively, and contribute to their community. It recognizes that physical, mental, and social factors are interconnected and can all impact a person's overall health. This definition also highlights the importance of addressing the social determinants of health, such as poverty, education, housing, and access to healthcare, in order to promote health and prevent disease.

Oligosaccharides are complex carbohydrates composed of relatively small numbers (3-10) of monosaccharide units joined together by glycosidic linkages. They occur naturally in foods such as milk, fruits, vegetables, and legumes. In the body, oligosaccharides play important roles in various biological processes, including cell recognition, signaling, and protection against pathogens.

There are several types of oligosaccharides, classified based on their structures and functions. Some common examples include:

1. Disaccharides: These consist of two monosaccharide units, such as sucrose (glucose + fructose), lactose (glucose + galactose), and maltose (glucose + glucose).
2. Trisaccharides: These contain three monosaccharide units, like maltotriose (glucose + glucose + glucose) and raffinose (galactose + glucose + fructose).
3. Oligosaccharides found in human milk: Human milk contains unique oligosaccharides that serve as prebiotics, promoting the growth of beneficial bacteria in the gut. These oligosaccharides also help protect infants from pathogens by acting as decoy receptors and inhibiting bacterial adhesion to intestinal cells.
4. N-linked and O-linked glycans: These are oligosaccharides attached to proteins in the body, playing crucial roles in protein folding, stability, and function.
5. Plant-derived oligosaccharides: Fructooligosaccharides (FOS) and galactooligosaccharides (GOS) are examples of plant-derived oligosaccharides that serve as prebiotics, promoting the growth of beneficial gut bacteria.

Overall, oligosaccharides have significant impacts on human health and disease, particularly in relation to gastrointestinal function, immunity, and inflammation.

"Helicobacter hepaticus" is a gram-negative, spiral-shaped bacterium that colonizes the liver of various animals, including primates. It was initially identified in 1992 and has been associated with chronic active hepatitis and hepatic adenocarcinoma (liver cancer) in mice. While its role in human disease is not fully understood, some studies have suggested a possible link between H. hepaticus infection and liver inflammation or cancer in humans. However, more research is needed to confirm this association and establish the clinical significance of H. hepaticus in human health.

Clostridium infections are caused by bacteria of the genus Clostridium, which are gram-positive, rod-shaped, spore-forming, and often anaerobic organisms. These bacteria can be found in various environments, including soil, water, and the human gastrointestinal tract. Some Clostridium species can cause severe and potentially life-threatening infections in humans. Here are some of the most common Clostridium infections with their medical definitions:

1. Clostridioides difficile infection (CDI): An infection caused by the bacterium Clostridioides difficile, previously known as Clostridium difficile. It typically occurs after antibiotic use disrupts the normal gut microbiota, allowing C. difficile to overgrow and produce toxins that cause diarrhea, colitis, and other gastrointestinal symptoms. Severe cases can lead to sepsis, toxic megacolon, or even death.
2. Clostridium tetani infection: Also known as tetanus, this infection is caused by the bacterium Clostridium tetani. The spores of this bacterium are commonly found in soil and animal feces. They can enter the body through wounds, cuts, or punctures, germinate, and produce a potent exotoxin called tetanospasmin. This toxin causes muscle stiffness and spasms, particularly in the neck and jaw (lockjaw), which can lead to difficulty swallowing, breathing, and potentially fatal complications.
3. Clostridium botulinum infection: This infection is caused by the bacterium Clostridium botulinum and results in botulism, a rare but severe paralytic illness. The bacteria produce neurotoxins (botulinum toxins) that affect the nervous system, causing symptoms such as double vision, drooping eyelids, slurred speech, difficulty swallowing, dry mouth, and muscle weakness. In severe cases, botulism can lead to respiratory failure and death.
4. Gas gangrene (Clostridium perfringens infection): A rapidly progressing soft tissue infection caused by Clostridium perfringens or other clostridial species. The bacteria produce potent exotoxins that cause tissue destruction, gas production, and widespread necrosis. Gas gangrene is characterized by severe pain, swelling, discoloration, and a foul-smelling discharge. If left untreated, it can lead to sepsis, multi-organ failure, and death.
5. Clostridioides difficile infection (C. difficile infection): Although not caused by a typical clostridial species, C. difficile is a gram-positive, spore-forming bacterium that can cause severe diarrhea and colitis, particularly in hospitalized patients or those who have recently taken antibiotics. The bacteria produce toxins A and B, which damage the intestinal lining and contribute to inflammation and diarrhea. C. difficile infection can range from mild to life-threatening, with complications such as sepsis, toxic megacolon, and bowel perforation.

rRNA (ribosomal RNA) is not a type of gene itself, but rather a crucial component that is transcribed from genes known as ribosomal DNA (rDNA). In cells, rRNA plays an essential role in protein synthesis by assembling with ribosomal proteins to form ribosomes. Ribosomes are complex structures where the translation of mRNA into proteins occurs. There are multiple types of rRNA molecules, including 5S, 5.8S, 18S, and 28S rRNAs in eukaryotic cells, each with specific functions during protein synthesis.

In summary, 'Genes, rRNA' would refer to the genetic regions (genes) that code for ribosomal RNA molecules, which are vital components of the protein synthesis machinery within cells.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Restriction Fragment Length Polymorphism (RFLP) is a term used in molecular biology and genetics. It refers to the presence of variations in DNA sequences among individuals, which can be detected by restriction enzymes. These enzymes cut DNA at specific sites, creating fragments of different lengths.

In RFLP analysis, DNA is isolated from an individual and treated with a specific restriction enzyme that cuts the DNA at particular recognition sites. The resulting fragments are then separated by size using gel electrophoresis, creating a pattern unique to that individual's DNA. If there are variations in the DNA sequence between individuals, the restriction enzyme may cut the DNA at different sites, leading to differences in the length of the fragments and thus, a different pattern on the gel.

These variations can be used for various purposes, such as identifying individuals, diagnosing genetic diseases, or studying evolutionary relationships between species. However, RFLP analysis has largely been replaced by more modern techniques like polymerase chain reaction (PCR)-based methods and DNA sequencing, which offer higher resolution and throughput.

'Clostridium difficile' (also known as 'C. difficile' or 'C. diff') is a type of Gram-positive, spore-forming bacterium that can be found in the environment, including in soil, water, and human and animal feces. It is a common cause of healthcare-associated infections, particularly in individuals who have recently received antibiotics or have other underlying health conditions that weaken their immune system.

C. difficile produces toxins that can cause a range of symptoms, from mild diarrhea to severe colitis (inflammation of the colon) and potentially life-threatening complications such as sepsis and toxic megacolon. The most common toxins produced by C. difficile are called TcdA and TcdB, which damage the lining of the intestine and cause inflammation.

C. difficile infections (CDIs) can be difficult to treat, particularly in severe cases or in patients who have recurrent infections. Treatment typically involves discontinuing any unnecessary antibiotics, if possible, and administering specific antibiotics that are effective against C. difficile, such as metronidazole, vancomycin, or fidaxomicin. In some cases, fecal microbiota transplantation (FMT) may be recommended as a last resort for patients with recurrent or severe CDIs who have not responded to other treatments.

Preventing the spread of C. difficile is critical in healthcare settings, and includes measures such as hand hygiene, contact precautions, environmental cleaning, and antibiotic stewardship programs that promote the appropriate use of antibiotics.

Enteritis is a medical term that refers to inflammation of the small intestine. The small intestine is responsible for digesting and absorbing nutrients from food, so inflammation in this area can interfere with these processes and lead to symptoms such as diarrhea, abdominal pain, nausea, vomiting, and weight loss.

Enteritis can be caused by a variety of factors, including bacterial or viral infections, parasites, autoimmune disorders, medications, and exposure to toxins. In some cases, the cause of enteritis may be unknown. Treatment for enteritis depends on the underlying cause, but may include antibiotics, antiparasitic drugs, anti-inflammatory medications, or supportive care such as fluid replacement therapy.

DNA fingerprinting, also known as DNA profiling or genetic fingerprinting, is a laboratory technique used to identify and compare the unique genetic makeup of individuals by analyzing specific regions of their DNA. This method is based on the variation in the length of repetitive sequences of DNA called variable number tandem repeats (VNTRs) or short tandem repeats (STRs), which are located at specific locations in the human genome and differ significantly among individuals, except in the case of identical twins.

The process of DNA fingerprinting involves extracting DNA from a sample, amplifying targeted regions using the polymerase chain reaction (PCR), and then separating and visualizing the resulting DNA fragments through electrophoresis. The fragment patterns are then compared to determine the likelihood of a match between two samples.

DNA fingerprinting has numerous applications in forensic science, paternity testing, identity verification, and genealogical research. It is considered an essential tool for providing strong evidence in criminal investigations and resolving disputes related to parentage and inheritance.

"Cedrus" is a genus of evergreen coniferous trees in the plant family Pinaceae. It includes several species commonly known as cedars, such as the Atlas cedar (Cedrus atlantica), the Deodar cedar (Cedrus deodara), and the Lebanon cedar (Cedrus libani). These trees are native to the mountains of the Mediterranean region and the Himalayas. They are known for their distinctive, pyramidal shape, thick, scaly bark, and long, needle-like leaves. The wood of Cedrus species is highly valued for its durability, aroma, and resistance to pests, making it a popular choice for use in construction, furniture-making, and essential oil production.

Inulin is a soluble fiber that is not digestible by human enzymes. It is a fructan, a type of carbohydrate made up of chains of fructose molecules, and is found in various plants such as chicory root, Jerusalem artichokes, and onions.

Inulin has a number of potential health benefits, including promoting the growth of beneficial bacteria in the gut (prebiotic effect), slowing down the absorption of sugar to help regulate blood glucose levels, and increasing feelings of fullness to aid in weight management. It is often used as a functional food ingredient or dietary supplement for these purposes.

Inulin can also be used as a diagnostic tool in medical testing to measure kidney function, as it is excreted unchanged in the urine.

Periodontitis is a severe form of gum disease that damages the soft tissue and destroys the bone supporting your teeth. If left untreated, it can lead to tooth loss. It is caused by the buildup of plaque, a sticky film of bacteria that constantly forms on our teeth. The body's immune system fights the bacterial infection, which causes an inflammatory response. If the inflammation continues for a long time, it can damage the tissues and bones that support the teeth.

The early stage of periodontitis is called gingivitis, which is characterized by red, swollen gums that bleed easily when brushed or flossed. When gingivitis is not treated, it can advance to periodontitis. In addition to plaque, other factors that increase the risk of developing periodontitis include smoking or using tobacco products, poor oral hygiene, diabetes, a weakened immune system, and genetic factors.

Regular dental checkups and good oral hygiene practices, such as brushing twice a day, flossing daily, and using an antimicrobial mouth rinse, can help prevent periodontitis. Treatment for periodontitis may include deep cleaning procedures, medications, or surgery in severe cases.

Citrobacter rodentium is a gram-negative, facultative anaerobic, rod-shaped bacterium that belongs to the family Enterobacteriaceae. It is a natural pathogen in mice and has been used as a model organism to study enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) infections in humans, due to its similar virulence mechanisms. C. rodentium primarily colonizes the large intestine, causing inflammation, diarrhea, and weight loss in mice. It is not considered a significant human pathogen, but there have been rare reports of Citrobacter species causing opportunistic infections in immunocompromised individuals.

Animal feed refers to any substance or mixture of substances, whether processed, unprocessed, or partially processed, which is intended to be used as food for animals, including fish, without further processing. It includes ingredients such as grains, hay, straw, oilseed meals, and by-products from the milling, processing, and manufacturing industries. Animal feed can be in the form of pellets, crumbles, mash, or other forms, and is used to provide nutrients such as energy, protein, fiber, vitamins, and minerals to support the growth, reproduction, and maintenance of animals. It's important to note that animal feed must be safe, nutritious, and properly labeled to ensure the health and well-being of the animals that consume it.

Lactobacillus plantarum is a species of gram-positive, rod-shaped bacteria that belongs to the lactic acid bacteria group. It is a facultative anaerobe, meaning it can grow in the presence or absence of oxygen. Lactobacillus plantarum is commonly found in a variety of environments, including fermented foods such as sauerkraut, kimchi, and sourdough bread, as well as in the gastrointestinal tract of humans and other animals.

Lactobacillus plantarum is known for its ability to produce lactic acid through the fermentation of carbohydrates, which can help to preserve food and inhibit the growth of harmful bacteria. It also produces various antimicrobial compounds that can help to protect against pathogens in the gut.

In addition to its use in food preservation and fermentation, Lactobacillus plantarum has been studied for its potential probiotic benefits. Probiotics are live bacteria and yeasts that are believed to provide health benefits when consumed, including improving digestive health, enhancing the immune system, and reducing the risk of certain diseases.

Research has suggested that Lactobacillus plantarum may have a range of potential health benefits, including:

* Improving gut barrier function and reducing inflammation in the gut
* Enhancing the immune system and reducing the risk of infections
* Alleviating symptoms of irritable bowel syndrome (IBS) and other gastrointestinal disorders
* Reducing the risk of allergies and asthma
* Improving oral health by reducing plaque and preventing tooth decay

However, more research is needed to fully understand the potential health benefits of Lactobacillus plantarum and to determine its safety and effectiveness as a probiotic supplement.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Aerobic bacteria are a type of bacteria that require oxygen to live and grow. These bacteria use oxygen as the final electron acceptor in their respiratory chain to generate energy in the form of ATP (adenosine triphosphate). Aerobic bacteria can be found in various environments, including soil, water, and the air, as well as on the surfaces of living things. Some examples of aerobic bacteria include species of Pseudomonas, Bacillus, and Staphylococcus.

It's worth noting that some bacteria can switch between aerobic and anaerobic metabolism depending on the availability of oxygen. These bacteria are called facultative anaerobes. In contrast, obligate anaerobes are bacteria that cannot tolerate oxygen and will die in its presence.

Obesity is a complex disease characterized by an excess accumulation of body fat to the extent that it negatively impacts health. It's typically defined using Body Mass Index (BMI), a measure calculated from a person's weight and height. A BMI of 30 or higher is indicative of obesity. However, it's important to note that while BMI can be a useful tool for identifying obesity in populations, it does not directly measure body fat and may not accurately reflect health status in individuals. Other factors such as waist circumference, blood pressure, cholesterol levels, and blood sugar levels should also be considered when assessing health risks associated with weight.

Real-Time Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences in real-time. It is a sensitive and specific method that allows for the quantification of target nucleic acids, such as DNA or RNA, through the use of fluorescent reporter molecules.

The RT-PCR process involves several steps: first, the template DNA is denatured to separate the double-stranded DNA into single strands. Then, primers (short sequences of DNA) specific to the target sequence are added and allowed to anneal to the template DNA. Next, a heat-stable enzyme called Taq polymerase adds nucleotides to the annealed primers, extending them along the template DNA until a new double-stranded DNA molecule is formed.

During each amplification cycle, fluorescent reporter molecules are added that bind specifically to the newly synthesized DNA. As more and more copies of the target sequence are generated, the amount of fluorescence increases in proportion to the number of copies present. This allows for real-time monitoring of the PCR reaction and quantification of the target nucleic acid.

RT-PCR is commonly used in medical diagnostics, research, and forensics to detect and quantify specific DNA or RNA sequences. It has been widely used in the diagnosis of infectious diseases, genetic disorders, and cancer, as well as in the identification of microbial pathogens and the detection of gene expression.

Innate immunity, also known as non-specific immunity or natural immunity, is the inherent defense mechanism that provides immediate protection against potentially harmful pathogens (like bacteria, viruses, fungi, and parasites) without the need for prior exposure. This type of immunity is present from birth and does not adapt to specific threats over time.

Innate immune responses involve various mechanisms such as:

1. Physical barriers: Skin and mucous membranes prevent pathogens from entering the body.
2. Chemical barriers: Enzymes, stomach acid, and lysozyme in tears, saliva, and sweat help to destroy or inhibit the growth of microorganisms.
3. Cellular responses: Phagocytic cells (neutrophils, monocytes, macrophages) recognize and engulf foreign particles and pathogens, while natural killer (NK) cells target and eliminate virus-infected or cancerous cells.
4. Inflammatory response: When an infection occurs, the innate immune system triggers inflammation to increase blood flow, recruit immune cells, and remove damaged tissue.
5. Complement system: A group of proteins that work together to recognize and destroy pathogens directly or enhance phagocytosis by coating them with complement components (opsonization).

Innate immunity plays a crucial role in initiating the adaptive immune response, which is specific to particular pathogens and provides long-term protection through memory cells. Both innate and adaptive immunity work together to maintain overall immune homeostasis and protect the body from infections and diseases.

"Megasphaera" is a genus of Gram-negative, anaerobic, coccoid or rod-shaped bacteria found in various environments, including the human mouth and gastrointestinal tract. These bacteria are commonly associated with dental caries, periodontal disease, and bacterial vaginosis. They have the ability to produce both acid and gas from carbohydrate fermentation, which can contribute to the development of dental plaque and tissue destruction in periodontal disease. In addition, certain species of Megasphaera have been implicated in the pathogenesis of intra-abdominal infections and other anaerobic infections in humans.

A high-fat diet is a type of eating plan that derives a significant proportion of its daily caloric intake from fat sources. While there is no universally agreed-upon definition for what constitutes a high-fat diet, it generally refers to diets in which total fat intake provides more than 30-35% of the total daily calories.

High-fat diets can vary widely in their specific composition and may include different types of fats, such as saturated, monounsaturated, polyunsaturated, and trans fats. Some high-fat diets emphasize the consumption of whole, unprocessed foods that are naturally high in fat, like nuts, seeds, avocados, fish, and olive oil. Others may allow for or even encourage the inclusion of processed and high-fat animal products, such as red meat, butter, and full-fat dairy.

It's important to note that not all high-fat diets are created equal, and some may be more healthful than others depending on their specific composition and the individual's overall dietary patterns. Some research suggests that high-fat diets that are low in carbohydrates and moderate in protein may offer health benefits for weight loss, blood sugar control, and cardiovascular risk factors, while other studies have raised concerns about the potential negative effects of high-fat diets on heart health and metabolic function.

As with any dietary approach, it's important to consult with a healthcare provider or registered dietitian before making significant changes to your eating habits, especially if you have any underlying medical conditions or are taking medications that may be affected by dietary changes.

Gingiva is the medical term for the soft tissue that surrounds the teeth and forms the margin of the dental groove, also known as the gum. It extends from the mucogingival junction to the base of the cervical third of the tooth root. The gingiva plays a crucial role in protecting and supporting the teeth and maintaining oral health by providing a barrier against microbial invasion and mechanical injury.

Butyrates are a type of fatty acid, specifically called short-chain fatty acids (SCFAs), that are produced in the gut through the fermentation of dietary fiber by gut bacteria. The name "butyrate" comes from the Latin word for butter, "butyrum," as butyrate was first isolated from butter.

Butyrates have several important functions in the body. They serve as a primary energy source for colonic cells and play a role in maintaining the health and integrity of the intestinal lining. Additionally, butyrates have been shown to have anti-inflammatory effects, regulate gene expression, and may even help prevent certain types of cancer.

In medical contexts, butyrate supplements are sometimes used to treat conditions such as ulcerative colitis, a type of inflammatory bowel disease (IBD), due to their anti-inflammatory properties and ability to promote gut health. However, more research is needed to fully understand the potential therapeutic uses of butyrates and their long-term effects on human health.

A periapical abscess is a localized infection that occurs at the tip of the tooth's root, specifically in the periapical tissue. This tissue surrounds the end of the tooth's root and helps anchor the tooth to the jawbone. The infection is usually caused by bacteria that enter the pulp chamber of the tooth as a result of dental caries (tooth decay), periodontal disease, or trauma that damages the tooth's protective enamel layer.

The infection leads to pus accumulation in the periapical tissue, forming an abscess. The symptoms of a periapical abscess may include:

1. Pain and tenderness in the affected tooth, which can be throbbing or continuous
2. Swelling in the gums surrounding the tooth
3. Sensitivity to hot, cold, or pressure on the tooth
4. Fever, general malaise, or difficulty swallowing (in severe cases)
5. A foul taste in the mouth or bad breath
6. Tooth mobility or loosening
7. Formation of a draining sinus tract (a small opening in the gums that allows pus to drain out)

Periapical abscesses require dental treatment, which typically involves removing the infected pulp tissue through root canal therapy and cleaning, shaping, and sealing the root canals. In some cases, antibiotics may be prescribed to help control the infection, but they do not replace the necessary dental treatment. If left untreated, a periapical abscess can lead to severe complications, such as the spread of infection to other parts of the body or tooth loss.

The small intestine is the portion of the gastrointestinal tract that extends from the pylorus of the stomach to the beginning of the large intestine (cecum). It plays a crucial role in the digestion and absorption of nutrients from food. The small intestine is divided into three parts: the duodenum, jejunum, and ileum.

1. Duodenum: This is the shortest and widest part of the small intestine, approximately 10 inches long. It receives chyme (partially digested food) from the stomach and begins the process of further digestion with the help of various enzymes and bile from the liver and pancreas.
2. Jejunum: The jejunum is the middle section, which measures about 8 feet in length. It has a large surface area due to the presence of circular folds (plicae circulares), finger-like projections called villi, and microvilli on the surface of the absorptive cells (enterocytes). These structures increase the intestinal surface area for efficient absorption of nutrients, electrolytes, and water.
3. Ileum: The ileum is the longest and final section of the small intestine, spanning about 12 feet. It continues the absorption process, mainly of vitamin B12, bile salts, and any remaining nutrients. At the end of the ileum, there is a valve called the ileocecal valve that prevents backflow of contents from the large intestine into the small intestine.

The primary function of the small intestine is to absorb the majority of nutrients, electrolytes, and water from ingested food. The mucosal lining of the small intestine contains numerous goblet cells that secrete mucus, which protects the epithelial surface and facilitates the movement of chyme through peristalsis. Additionally, the small intestine hosts a diverse community of microbiota, which contributes to various physiological functions, including digestion, immunity, and protection against pathogens.

Veillonella is a genus of Gram-negative, anaerobic, non-spore-forming, coccoid or rod-shaped bacteria. These bacteria are commonly found as normal flora in the human mouth, intestines, and female genital tract. They are known to be obligate parasites, meaning they rely on other organisms for nutrients and energy. Veillonella species are often associated with dental caries and have been implicated in various infections such as bacteremia, endocarditis, pneumonia, and wound infections, particularly in immunocompromised individuals or those with underlying medical conditions. Proper identification of Veillonella species is important for the diagnosis and treatment of these infections.

I'm sorry for any confusion, but Tetrathionic Acid is not a medical term. It is a chemical compound with the formula S4O62-. It's an acidic oxyanion of sulfur with the sulfur in the +5 oxidation state. It is not related to human health or medicine directly. If you have any questions about a medical topic, I'd be happy to help with that instead!

The immune system is a complex network of cells, tissues, and organs that work together to defend the body against harmful invaders. It recognizes and responds to threats such as bacteria, viruses, parasites, fungi, and damaged or abnormal cells, including cancer cells. The immune system has two main components: the innate immune system, which provides a general defense against all types of threats, and the adaptive immune system, which mounts specific responses to particular threats.

The innate immune system includes physical barriers like the skin and mucous membranes, chemical barriers such as stomach acid and enzymes in tears and saliva, and cellular defenses like phagocytes (white blood cells that engulf and destroy invaders) and natural killer cells (which recognize and destroy virus-infected or cancerous cells).

The adaptive immune system is more specific and takes longer to develop a response but has the advantage of "remembering" previous encounters with specific threats. This allows it to mount a faster and stronger response upon subsequent exposures, providing immunity to certain diseases. The adaptive immune system includes T cells (which help coordinate the immune response) and B cells (which produce antibodies that neutralize or destroy invaders).

Overall, the immune system is essential for maintaining health and preventing disease. Dysfunction of the immune system can lead to a variety of disorders, including autoimmune diseases, immunodeficiencies, and allergies.

'Bacteroides fragilis' is a species of gram-negative, anaerobic, rod-shaped bacteria that are commonly found in the human gastrointestinal tract. They are part of the normal gut flora and play an important role in maintaining a healthy digestive system. However, they can also cause infections when they enter other parts of the body, such as the abdomen or bloodstream, particularly in individuals with weakened immune systems.

Bacteroides fragilis is known for its ability to produce enzymes that allow it to resist antibiotics and evade the host's immune system. This makes it a challenging bacterium to treat and can lead to serious and potentially life-threatening infections, such as abscesses, sepsis, and meningitis.

Proper hygiene, such as handwashing and safe food handling practices, can help prevent the spread of Bacteroides fragilis and other bacteria that can cause infections. If an infection does occur, it is typically treated with a combination of surgical drainage and antibiotics that are effective against anaerobic bacteria.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

Immunoglobulin A (IgA), Secretory is a type of antibody that plays a crucial role in the immune function of mucous membranes. These membranes line various body openings, such as the respiratory and gastrointestinal tracts, and serve to protect the body from potential pathogens by producing mucus.

Secretory IgA (SIgA) is the primary immunoglobulin found in secretions of the mucous membranes, and it is produced by a special type of immune cell called plasma cells located in the lamina propria, a layer of tissue beneath the epithelial cells that line the mucosal surfaces.

SIgA exists as a dimer, consisting of two IgA molecules linked together by a protein called the J chain. This complex is then transported across the epithelial cell layer to the luminal surface, where it becomes associated with another protein called the secretory component (SC). The SC protects the SIgA from degradation by enzymes and helps it maintain its function in the harsh environment of the mucosal surfaces.

SIgA functions by preventing the attachment and entry of pathogens into the body, thereby neutralizing their infectivity. It can also agglutinate (clump together) microorganisms, making them more susceptible to removal by mucociliary clearance or peristalsis. Furthermore, SIgA can modulate immune responses and contribute to the development of oral tolerance, which is important for maintaining immune homeostasis in the gut.

The term "Crambe sponge" is actually a common name for a type of marine sponge, rather than a medical term. It's scientific name is *Crambe crambe*, which belongs to the family Crambeidae and the class Demospongiae.

This sponge species is commonly found in cold water environments, particularly in the North Atlantic Ocean. They are known for their large size and distinctive appearance, with a rough, horny texture and a yellow-brown or grayish color.

While not directly related to medical terminology, it's worth noting that marine sponges like Crambe sponge have been used in various medical and biomedical research contexts due to their unique chemical properties and potential bioactive compounds. However, the term "Crambe sponge" itself does not have a specific medical definition.

'Acetobacter' is a genus of gram-negative, aerobic, rod-shaped bacteria that are commonly found in various environments such as soil, water, and plant surfaces. They are known for their ability to oxidize alcohols to aldehydes and then to carboxylic acids, particularly the oxidation of ethanol to acetic acid. This property makes them important in the production of vinegar and other fermented foods. Some species of Acetobacter can also cause food spoilage and may be associated with certain human infections, although they are not considered primary human pathogens.

I'm sorry for any confusion, but "geological phenomena" is not a term typically used in medical definitions. Geological phenomena refer to natural processes and features related to the earth's physical structure, composition, and the various changes it undergoes over time. This could include things like volcanic eruptions, earthquakes, rock formations, or the formation of fossil fuels. If you have a term that you would like me to provide a medical definition for, I'd be happy to help!

Saliva is a complex mixture of primarily water, but also electrolytes, enzymes, antibacterial compounds, and various other substances. It is produced by the salivary glands located in the mouth. Saliva plays an essential role in maintaining oral health by moistening the mouth, helping to digest food, and protecting the teeth from decay by neutralizing acids produced by bacteria.

The medical definition of saliva can be stated as:

"A clear, watery, slightly alkaline fluid secreted by the salivary glands, consisting mainly of water, with small amounts of electrolytes, enzymes (such as amylase), mucus, and antibacterial compounds. Saliva aids in digestion, lubrication of oral tissues, and provides an oral barrier against microorganisms."

Homeostasis is a fundamental concept in the field of medicine and physiology, referring to the body's ability to maintain a stable internal environment, despite changes in external conditions. It is the process by which biological systems regulate their internal environment to remain in a state of dynamic equilibrium. This is achieved through various feedback mechanisms that involve sensors, control centers, and effectors, working together to detect, interpret, and respond to disturbances in the system.

For example, the body maintains homeostasis through mechanisms such as temperature regulation (through sweating or shivering), fluid balance (through kidney function and thirst), and blood glucose levels (through insulin and glucagon secretion). When homeostasis is disrupted, it can lead to disease or dysfunction in the body.

In summary, homeostasis is the maintenance of a stable internal environment within biological systems, through various regulatory mechanisms that respond to changes in external conditions.

Fungi, in the context of medical definitions, are a group of eukaryotic organisms that include microorganisms such as yeasts and molds, as well as the more familiar mushrooms. The study of fungi is known as mycology.

Fungi can exist as unicellular organisms or as multicellular filamentous structures called hyphae. They are heterotrophs, which means they obtain their nutrients by decomposing organic matter or by living as parasites on other organisms. Some fungi can cause various diseases in humans, animals, and plants, known as mycoses. These infections range from superficial, localized skin infections to systemic, life-threatening invasive diseases.

Examples of fungal infections include athlete's foot (tinea pedis), ringworm (dermatophytosis), candidiasis (yeast infection), histoplasmosis, coccidioidomycosis, and aspergillosis. Fungal infections can be challenging to treat due to the limited number of antifungal drugs available and the potential for drug resistance.

In situ hybridization, fluorescence (FISH) is a type of molecular cytogenetic technique used to detect and localize the presence or absence of specific DNA sequences on chromosomes through the use of fluorescent probes. This technique allows for the direct visualization of genetic material at a cellular level, making it possible to identify chromosomal abnormalities such as deletions, duplications, translocations, and other rearrangements.

The process involves denaturing the DNA in the sample to separate the double-stranded molecules into single strands, then adding fluorescently labeled probes that are complementary to the target DNA sequence. The probe hybridizes to the complementary sequence in the sample, and the location of the probe is detected by fluorescence microscopy.

FISH has a wide range of applications in both clinical and research settings, including prenatal diagnosis, cancer diagnosis and monitoring, and the study of gene expression and regulation. It is a powerful tool for identifying genetic abnormalities and understanding their role in human disease.

Necrotizing enterocolitis (NEC) is a serious gastrointestinal condition that primarily affects premature infants. It is characterized by the inflammation and death of intestinal tissue, which can lead to perforations (holes) in the bowel wall. Here's a brief medical definition:

Necrotizing enterocolitis (NEK-roh-tiz-ing en-ter-koh-li-TIE-tis): A gastrointestinal emergency in which the inner lining of the intestinal wall undergoes necrosis (tissue death) due to inflammation, often affecting premature infants. The condition may result in bowel perforations, sepsis, and other systemic complications, requiring surgical intervention and intensive care management.

The exact cause of NEC is not fully understood, but it's thought to be associated with factors such as prematurity, formula feeding, intestinal immaturity or injury, and disturbed blood flow in the intestines. Symptoms may include abdominal distention, bloody stools, feeding intolerance, lethargy, and temperature instability. Early recognition and prompt treatment are crucial for improving outcomes in affected infants.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Gastrointestinal diseases refer to a group of conditions that affect the gastrointestinal (GI) tract, which includes the organs from the mouth to the anus, responsible for food digestion, absorption, and elimination of waste. These diseases can affect any part of the GI tract, causing various symptoms such as abdominal pain, bloating, diarrhea, constipation, nausea, vomiting, and weight loss.

Common gastrointestinal diseases include:

1. Gastroesophageal reflux disease (GERD) - a condition where stomach acid flows back into the esophagus, causing heartburn and other symptoms.
2. Peptic ulcers - sores that develop in the lining of the stomach or duodenum, often caused by bacterial infection or long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs).
3. Inflammatory bowel disease (IBD) - a group of chronic inflammatory conditions of the intestine, including Crohn's disease and ulcerative colitis.
4. Irritable bowel syndrome (IBS) - a functional gastrointestinal disorder characterized by abdominal pain, bloating, and altered bowel habits.
5. Celiac disease - an autoimmune disorder where the ingestion of gluten leads to damage in the small intestine.
6. Diverticular disease - a condition that affects the colon, causing diverticula (small pouches) to form and potentially become inflamed or infected.
7. Constipation - a common gastrointestinal symptom characterized by infrequent bowel movements, hard stools, and difficulty passing stools.
8. Diarrhea - a common gastrointestinal symptom characterized by loose, watery stools and frequent bowel movements.
9. Food intolerances and allergies - adverse reactions to specific foods or food components that can cause various gastrointestinal symptoms.
10. Gastrointestinal infections - caused by bacteria, viruses, parasites, or fungi that can lead to a range of symptoms, including diarrhea, vomiting, and abdominal pain.

I'm sorry for any confusion, but "philology" is not a term typically used in the field of medicine. Philology is actually a branch of knowledge concerned with the literary texts and written records of ancient and historical languages. It involves the study of language forms, origins, and developments; textual criticism and history; and the interpretation of texts.

If you have any medical terms or concepts that you would like me to define or explain, please let me know!

A gingival pocket, also known as a sulcus, is a small space or groove between the gum tissue (gingiva) and the tooth. It's a normal anatomical structure found in healthy teeth and gums, and it measures about 1-3 millimeters in depth. The purpose of the gingival pocket is to allow for the movement of the gum tissue during functions such as eating, speaking, and swallowing.

However, when the gums become inflamed due to bacterial buildup (plaque) or other factors, the pocket can deepen, leading to the formation of a pathological gingival pocket. Pathological pockets are typically deeper than 3 millimeters and may indicate the presence of periodontal disease. These pockets can harbor harmful bacteria that can cause further damage to the gum tissue and bone supporting the tooth, potentially leading to tooth loss if left untreated.

Microarray analysis is a laboratory technique used to measure the expression levels of large numbers of genes (or other types of DNA sequences) simultaneously. This technology allows researchers to monitor the expression of thousands of genes in a single experiment, providing valuable information about which genes are turned on or off in response to various stimuli or diseases.

In microarray analysis, samples of RNA from cells or tissues are labeled with fluorescent dyes and then hybridized to a solid surface (such as a glass slide) onto which thousands of known DNA sequences have been spotted in an organized array. The intensity of the fluorescence at each spot on the array is proportional to the amount of RNA that has bound to it, indicating the level of expression of the corresponding gene.

Microarray analysis can be used for a variety of applications, including identifying genes that are differentially expressed between healthy and diseased tissues, studying genetic variations in populations, and monitoring gene expression changes over time or in response to environmental factors. However, it is important to note that microarray data must be analyzed carefully using appropriate statistical methods to ensure the accuracy and reliability of the results.

The lower gastrointestinal (GI) tract is the segment of the digestive system that includes the large intestine (colon), rectum, and anus. The primary function of this part of the digestive system is to absorb water and electrolytes from undigested food, form and store feces (stool), and eliminate waste through defecation.

The large intestine is responsible for the final stages of nutrient absorption, mainly the fermentation of dietary fiber by gut bacteria, producing short-chain fatty acids that can be absorbed. The colon also absorbs water and electrolytes, while the rectum and anus store and evacuate feces.

Various medical conditions can affect the lower GI tract, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), diverticular disease, colorectal cancer, and infections.

Human milk, also known as breast milk, is the nutrient-rich fluid produced by the human female mammary glands to feed and nourish their infants. It is the natural and species-specific first food for human babies, providing all the necessary nutrients in a form that is easily digestible and absorbed. Human milk contains a balance of proteins, carbohydrates, fats, vitamins, minerals, and other bioactive components that support the growth, development, and immunity of newborns and young infants. Its composition changes over time, adapting to meet the changing needs of the growing infant.

Fructans are a type of carbohydrate known as oligosaccharides, which are made up of chains of fructose molecules. They are found in various plants, including wheat, onions, garlic, and artichokes. Some people may have difficulty digesting fructans due to a lack of the enzyme needed to break them down, leading to symptoms such as bloating, diarrhea, and stomach pain. This condition is known as fructan intolerance or fructose malabsorption. Fructans are also considered a type of FODMAP (Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols), which are short-chain carbohydrates that can be poorly absorbed by the body and may cause digestive symptoms in some individuals.

Paneth cells are specialized epithelial cells located in the small intestine, specifically in the crypts of Lieberkühn. They play an essential role in the immune function and maintenance of the intestinal environment. Paneth cells are characterized by their large, granulated secretory vesicles that contain antimicrobial peptides and proteins, such as defensins and lysozyme. These substances help to control the growth of bacteria in the small intestine and maintain a balanced microbiota. Additionally, Paneth cells secrete other factors that support the function and survival of stem cells located in the crypts. They are also involved in the inflammatory response by producing cytokines and chemokines, which help to recruit immune cells to the site of infection or injury.

"Gram-Negative Anaerobic Cocci" refer to a specific group of anaerobic bacteria that are spherical in shape (cocci) and do not stain gram-negative due to the absence of a thick peptidoglycan layer in their cell walls. These bacteria are strict anaerobes, meaning they cannot grow in the presence of oxygen. They can be pathogenic and are often found in various human body sites, such as the oral cavity, gastrointestinal tract, and female genital tract. Some examples of Gram-negative anaerobic cocci include species of the genera Veillonella, Megasphaera, and Selenomonas.

Cefoperazone is a type of antibiotic known as a cephalosporin, which is used to treat a variety of bacterial infections. It works by interfering with the bacteria's ability to form a cell wall, which is necessary for its survival. Without a functional cell wall, the bacteria are not able to grow and multiply, and are eventually destroyed by the body's immune system.

Cefoperazone is often used to treat infections of the respiratory tract, urinary tract, skin, and soft tissues. It may also be used to prevent infections during surgery. Like all antibiotics, cefoperazone should only be used under the direction of a healthcare professional, as misuse can lead to the development of drug-resistant bacteria.

It is important to note that cefoperazone, like other antibiotics, can have side effects, including gastrointestinal symptoms such as diarrhea, nausea, and vomiting. It may also cause allergic reactions in some people. If you experience any unusual symptoms while taking cefoperazone, it is important to contact your healthcare provider right away.

"Trichuris" is a genus of parasitic roundworms that are known to infect the intestines of various mammals, including humans. The species that commonly infects humans is called "Trichuris trichiura," which is also known as the human whipworm. These worms are named for their long, thin shape that resembles a whip.

The life cycle of Trichuris involves ingestion of eggs containing infective larvae through contaminated food or water. Once inside the human body, the larvae hatch and migrate to the large intestine, where they mature into adult worms that live in the caecum and colon. Adult female worms lay thousands of eggs every day, which are passed in the feces and can survive in the environment for years, waiting to infect a new host.

Infections with Trichuris trichiura can cause symptoms such as diarrhea, abdominal pain, bloating, and weight loss. In severe cases, it can lead to anemia, malnutrition, and impaired growth in children. Treatment for trichuriasis typically involves medication that kills the adult worms, such as albendazole or mebendazole.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

Streptomycin is an antibiotic drug derived from the actinobacterium Streptomyces griseus. It belongs to the class of aminoglycosides and works by binding to the 30S subunit of the bacterial ribosome, thereby inhibiting protein synthesis and leading to bacterial death.

Streptomycin is primarily used to treat a variety of infections caused by gram-negative and gram-positive bacteria, including tuberculosis, brucellosis, plague, tularemia, and certain types of bacterial endocarditis. It is also used as part of combination therapy for the treatment of multidrug-resistant tuberculosis (MDR-TB).

Like other aminoglycosides, streptomycin has a narrow therapeutic index and can cause ototoxicity (hearing loss) and nephrotoxicity (kidney damage) with prolonged use or high doses. Therefore, its use is typically limited to cases where other antibiotics are ineffective or contraindicated.

It's important to note that the use of streptomycin requires careful monitoring of drug levels and kidney function, as well as regular audiometric testing to detect any potential hearing loss.

Dietary fiber, also known as roughage, is the indigestible portion of plant foods that makes up the structural framework of the plants we eat. It is composed of cellulose, hemicellulose, pectin, gums, lignins, and waxes. Dietary fiber can be classified into two categories: soluble and insoluble.

Soluble fiber dissolves in water to form a gel-like material in the gut, which can help slow down digestion, increase feelings of fullness, and lower cholesterol levels. Soluble fiber is found in foods such as oats, barley, fruits, vegetables, legumes, and nuts.

Insoluble fiber does not dissolve in water and passes through the gut intact, helping to add bulk to stools and promote regular bowel movements. Insoluble fiber is found in foods such as whole grains, bran, seeds, and the skins of fruits and vegetables.

Dietary fiber has numerous health benefits, including promoting healthy digestion, preventing constipation, reducing the risk of heart disease, controlling blood sugar levels, and aiding in weight management. The recommended daily intake of dietary fiber is 25-38 grams per day for adults, depending on age and gender.

Gammaproteobacteria is a class of proteobacteria, a group of Gram-negative bacteria. This class includes several important pathogens that can cause various diseases in humans, animals, and plants. Some examples of Gammaproteobacteria include Escherichia coli (a common cause of food poisoning), Pseudomonas aeruginosa (a leading cause of hospital-acquired infections), Vibrio cholerae (the causative agent of cholera), and Yersinia pestis (the bacterium that causes plague).

Gammaproteobacteria are characterized by their single flagellum, which is used for motility, and their outer membrane, which contains lipopolysaccharides that can elicit an immune response in host organisms. They are found in a wide range of environments, including soil, water, and the guts of animals. Some species are capable of fixing nitrogen, making them important contributors to nutrient cycling in ecosystems.

It's worth noting that while Gammaproteobacteria includes many pathogenic species, the majority of proteobacteria are not harmful and play important roles in various ecological systems.

A dietary supplement is a product that contains nutrients, such as vitamins, minerals, amino acids, herbs or other botanicals, and is intended to be taken by mouth, to supplement the diet. Dietary supplements can include a wide range of products, such as vitamin and mineral supplements, herbal supplements, and sports nutrition products.

Dietary supplements are not intended to treat, diagnose, cure, or alleviate the effects of diseases. They are intended to be used as a way to add extra nutrients to the diet or to support specific health functions. It is important to note that dietary supplements are not subject to the same rigorous testing and regulations as drugs, so it is important to choose products carefully and consult with a healthcare provider if you have any questions or concerns about using them.

Halitosis is a medical term that refers to noticeably unpleasant breath. It's also commonly known as bad breath. This condition can result from several factors, including poor oral hygiene, certain foods, smoking, alcohol use, dry mouth, and various medical conditions (such as gastrointestinal issues, respiratory infections, or liver and kidney problems). Regular dental check-ups and good oral hygiene practices, like brushing twice a day and flossing daily, can help prevent halitosis. In some cases, mouthwashes, sugar-free gums, or mints may provide temporary relief. However, if bad breath persists, it is recommended to consult with a healthcare professional or dentist for further evaluation and appropriate treatment.

Volatile Organic Compounds (VOCs) are organic chemicals that have a low boiling point and easily evaporate at room temperature. They can be liquids or solids. VOCs include a variety of chemicals, such as benzene, toluene, xylene, and formaldehyde, which are found in many household products, including paints, paint strippers, and other solvents; cleaning supplies; pesticides; building materials and furnishings; office equipment such as copiers and printers, correction fluids and carbonless copy paper; and glues and adhesives.

VOCs can cause both short- and long-term health effects. Short-term exposure to high levels of VOCs can cause headaches, dizziness, visual disturbances, and memory problems. Long-term exposure can cause damage to the liver, kidneys, and central nervous system. Some VOCs are also suspected or known carcinogens.

It is important to properly use, store, and dispose of products that contain VOCs to minimize exposure. Increasing ventilation by opening windows and doors or using fans can also help reduce exposure to VOCs.

Cultured milk products are fermented dairy foods that contain live or active cultures of beneficial bacteria. The fermentation process involves the addition of specific strains of bacteria, such as lactic acid bacteria, to milk. This causes the milk to thicken and develop a tangy flavor.

Common cultured milk products include:

1. Yogurt: A fermented dairy product made from milk and bacterial cultures, including Lactobacillus bulgaricus and Streptococcus thermophilus. Yogurt is often consumed for its taste, nutritional value, and potential health benefits associated with probiotics.
2. Buttermilk: Traditionally, buttermilk was the thin, liquid byproduct of churning butter from cultured cream. Nowadays, most commercial buttermilk is made by adding bacterial cultures to low-fat or skim milk and allowing it to ferment. The result is a tangy, slightly thickened beverage.
3. Kefir: A fermented milk drink that originated in the Caucasus Mountains. It's made using kefir grains, which are symbiotic colonies of bacteria and yeast, to ferment milk. The final product is a carbonated, tangy beverage with a consistency similar to thin yogurt.
4. Cheese: While not all cheeses are cultured milk products, many types undergo a fermentation process using specific bacterial cultures. This helps develop the cheese's flavor, texture, and aroma during the aging process. Examples of cultured cheeses include cheddar, gouda, brie, and feta.
5. Sour cream: A dairy product made by fermenting cream with lactic acid bacteria, resulting in a thick, tangy condiment or topping.
6. Crème fraîche: Similar to sour cream but made from heavy cream instead of milk, crème fraîche has a richer texture and milder flavor. It's produced by allowing pasteurized cream to ferment naturally with bacterial cultures.
7. Cultured butter: This type of butter is made from cultured cream that has been allowed to ferment before churning. The fermentation process imparts a tangy, slightly cheesy flavor to the butter.
8. Viili and Fil Mjölk: These are traditional Nordic fermented milk products with a ropy texture due to specific bacterial cultures used in their production.

The oropharynx is the part of the throat (pharynx) that is located immediately behind the mouth and includes the back one-third of the tongue, the soft palate, the side and back walls of the throat, and the tonsils. It serves as a passageway for both food and air, and is also an important area for the immune system due to the presence of tonsils.

Enterococcus is a genus of gram-positive, facultatively anaerobic bacteria that are commonly found in the intestinal tracts of humans and animals. They are part of the normal gut microbiota but can also cause a variety of infections, particularly in hospital settings. Enterococci are known for their ability to survive in harsh environments and can be resistant to many antibiotics, making them difficult to treat. Some species, such as Enterococcus faecalis and Enterococcus faecium, are more commonly associated with human infections.

In medical terms, an "Enterococcus infection" refers to an infection caused by any species of the Enterococcus genus. These infections can occur in various parts of the body, including the urinary tract, bloodstream, and abdominal cavity. They can cause symptoms such as fever, chills, and pain, depending on the location of the infection. Treatment typically involves the use of antibiotics that are effective against Enterococcus species, although resistance to multiple antibiotics is a growing concern.

"Amorphophallus" is a genus of flowering plants in the family Araceae, also known as the aroid family. These plants are native to tropical regions of Africa, Asia, and the Pacific Islands. They are characterized by their large, distinctive inflorescences, which are often accompanied by a strong, unpleasant odor that attracts pollinators such as flies and beetles.

The name "Amorphophallus" comes from the Greek words "amorphos," meaning formless, and "phallos," meaning penis, and refers to the shape of the inflorescence in some species. The most well-known species is Amorphophallus titanum, also known as the corpse flower, which produces one of the largest and smelliest inflorescences in the plant kingdom.

In addition to their unusual inflorescences, many species of Amorphophallus are also grown for their large, starchy tubers, which are used as a food source in some cultures.

Colic is a term used to describe excessive, frequent crying or fussiness in a healthy infant, often lasting several hours a day and occurring several days a week. Although the exact cause of colic is unknown, it may be related to digestive issues, such as gas or indigestion. The medical community defines colic by the "Rule of Three": crying for more than three hours per day, for more than three days per week, and for longer than three weeks in an infant who is well-fed and otherwise healthy. It typically begins within the first few weeks of life and improves on its own, usually by age 3-4 months. While colic can be distressing for parents and caregivers, it does not cause any long-term harm to the child.

Capnocytophaga is a genus of gram-negative, rod-shaped bacteria that are part of the normal oral flora of humans and some animals. These bacteria are facultative anaerobes, meaning they can grow in both the presence and absence of oxygen. They are known to cause various types of infections, including bloodstream infections, meningitis, and soft tissue infections, particularly in individuals with weakened immune systems. The infection can be acquired through animal bites or scratches, or through close contact with saliva from infected animals. In humans, Capnocytophaga can also be part of the normal oral flora, but it rarely causes disease.

It is important to note that while Capnocytophaga can cause serious infections, they are relatively rare and proper hygiene and handling of pets can help reduce the risk of infection. If you have a weakened immune system or if you develop symptoms such as fever, chills, or severe illness after being bitten or scratched by an animal, it is important to seek medical attention promptly.

Lactobacillaceae is a family of gram-positive, facultatively anaerobic or microaerophilic, rod-shaped bacteria. They are non-spore forming and often occur in pairs or chains. Lactobacillaceae are commonly found in various environments such as the oral cavity, gastrointestinal tract, and vagina of humans and animals, as well as in fermented foods like yogurt, sauerkraut, and sourdough bread.

These bacteria are known for their ability to produce lactic acid as a major end product of carbohydrate metabolism, which gives them the name "lactic acid bacteria." They play an essential role in maintaining a healthy microbiota and have been associated with various health benefits, such as improving digestion, enhancing immune function, and preventing harmful bacterial overgrowth.

Some well-known genera within the family Lactobacillaceae include Lactobacillus, Lactococcus, Leuconostoc, and Weissella. It is important to note that recent taxonomic revisions have led to some changes in the classification of these bacteria, and some genera previously classified within Lactobacillaceae are now placed in other families within the order Lactobacillales.

"Porphyromonas" is a genus of gram-negative, anaerobic bacteria that are commonly found in the human oral cavity and other areas of the body. One species, "Porphyromonas gingivalis," is a major contributor to chronic periodontitis, a severe form of gum disease. These bacteria are also associated with various systemic diseases, including atherosclerosis, rheumatoid arthritis, and aspiration pneumonia. The name "Porphyromonas" comes from the Greek words "porphyra," meaning purple, and "monas," meaning unit, referring to the bacteria's ability to produce porphyrins, which are pigments that can give a purple color to their colonies.

There is no medical definition for the term "Amish." The Amish are a group of traditional, Christian communities primarily located in North America, known for their simple living, plain dress, and reluctance to adopt modern technology. While there may be health studies or observations related to the Amish community due to their unique lifestyle, culture, or genetic characteristics, the term "Amish" itself does not have a medical definition.

Mucin-2, also known as MUC2, is a type of mucin that is primarily produced by the goblet cells in the mucous membranes lining the gastrointestinal tract. It is a large, heavily glycosylated protein that forms the gel-like structure of mucus, which provides lubrication and protection to the epithelial surfaces. Mucin-2 is the major component of intestinal mucus and plays an important role in maintaining the integrity of the gut barrier by preventing the adhesion and colonization of harmful microorganisms. Additionally, it has been shown to have anti-inflammatory properties and may play a role in regulating immune responses in the gut.

Human experimentation is a branch of medical research that involves conducting experiments on human subjects. According to the World Medical Association's Declaration of Helsinki, which sets ethical standards for medical research involving human subjects, human experimentation is defined as "systematic study designed to develop or contribute to generalizable knowledge."

Human experimentation can take many forms, including clinical trials of new drugs or medical devices, observational studies, and interventional studies. In all cases, the principles of informed consent, risk minimization, and respect for the autonomy and dignity of the research subjects must be strictly adhered to.

Human experimentation has a controversial history, with many instances of unethical practices and abuse, such as the notorious Tuskegee syphilis study in which African American men were deliberately left untreated for syphilis without their informed consent. As a result, there are strict regulations and guidelines governing human experimentation to ensure that it is conducted ethically and with the utmost respect for the rights and welfare of research subjects.

Betaproteobacteria is a class of proteobacteria, a group of gram-negative bacteria. This class includes several genera of bacteria that are widely distributed in the environment, and can be found in soil, water, and various organisms including humans. Some members of Betaproteobacteria are important pathogens, causing diseases such as meningitis, pneumonia, and urinary tract infections. Other members of this class are capable of breaking down environmental pollutants, making them useful in bioremediation applications.

A mucous membrane is a type of moist, protective lining that covers various body surfaces inside the body, including the respiratory, gastrointestinal, and urogenital tracts, as well as the inner surface of the eyelids and the nasal cavity. These membranes are composed of epithelial cells that produce mucus, a slippery secretion that helps trap particles, microorganisms, and other foreign substances, preventing them from entering the body or causing damage to tissues. The mucous membrane functions as a barrier against infection and irritation while also facilitating the exchange of gases, nutrients, and waste products between the body and its environment.

I'm sorry for any confusion, but "geology" is not a medical term. It is a scientific discipline that deals with the Earth's physical structure and substance, its history, and the processes that act on it. If you have any questions about medical terminology or concepts, I would be happy to help!

Pseudomembranous enterocolitis is a medical condition characterized by inflammation of the inner lining of the small intestine (enteritis) and large intestine (colitis), resulting in the formation of pseudomembranes – raised, yellowish-white plaques composed of fibrin, mucus, and inflammatory cells. The condition is most commonly caused by a toxin produced by the bacterium Clostridioides difficile (C. difficile), which can overgrow in the gut following disruption of the normal gut microbiota, often after antibiotic use. Symptoms may include diarrhea, abdominal cramps, fever, nausea, and dehydration. Severe cases can lead to complications such as sepsis, toxic megacolon, or even death if left untreated. Treatment typically involves discontinuing the offending antibiotic, administering oral metronidazole or vancomycin to eliminate C. difficile, and managing symptoms with supportive care. In some cases, fecal microbiota transplantation (FMT) may be considered as a treatment option.

Fusobacterium is a genus of obligate anaerobic, gram-negative, non-spore forming bacilli that are commonly found as normal flora in the human oral cavity, gastrointestinal tract, and female genital tract. Some species of Fusobacterium have been associated with various clinical infections and diseases, such as periodontal disease, abscesses, bacteremia, endocarditis, and inflammatory bowel disease.

Fusobacterium nucleatum is the most well-known species in this genus and has been extensively studied for its role in various diseases. It is a opportunistic pathogen that can cause severe infections in immunocompromised individuals or when it invades damaged tissues. Fusobacterium necrophorum, another important species, is a leading cause of Lemierre's syndrome, a rare but serious condition characterized by septic thrombophlebitis of the internal jugular vein and metastatic infections.

Fusobacteria are known to have a complex relationship with other microorganisms and host cells, and they can form biofilms that contribute to their virulence and persistence in the host. Further research is needed to fully understand the pathogenic mechanisms of Fusobacterium species and to develop effective strategies for prevention and treatment of Fusobacterium-associated diseases.

Dextran sulfate is a type of polysaccharide (a complex carbohydrate) that is made up of repeating units of the sugar dextran, which has been sulfonated (introduced with a sulfonic acid group). It is commonly used as a molecular weight standard in laboratory research and can also be found in some medical products.

In medicine, dextran sulfate is often used as a treatment for hemodialysis patients to prevent the formation of blood clots in the dialyzer circuit. It works by binding to and inhibiting the activity of certain clotting factors in the blood. Dextran sulfate may also have anti-inflammatory effects, and it has been studied as a potential treatment for conditions such as inflammatory bowel disease and hepatitis.

It is important to note that dextran sulfate can have side effects, including allergic reactions, low blood pressure, and bleeding. It should be used under the close supervision of a healthcare professional.

Carbohydrate metabolism is the process by which the body breaks down carbohydrates into glucose, which is then used for energy or stored in the liver and muscles as glycogen. This process involves several enzymes and chemical reactions that convert carbohydrates from food into glucose, fructose, or galactose, which are then absorbed into the bloodstream and transported to cells throughout the body.

The hormones insulin and glucagon regulate carbohydrate metabolism by controlling the uptake and storage of glucose in cells. Insulin is released from the pancreas when blood sugar levels are high, such as after a meal, and promotes the uptake and storage of glucose in cells. Glucagon, on the other hand, is released when blood sugar levels are low and signals the liver to convert stored glycogen back into glucose and release it into the bloodstream.

Disorders of carbohydrate metabolism can result from genetic defects or acquired conditions that affect the enzymes or hormones involved in this process. Examples include diabetes, hypoglycemia, and galactosemia. Proper management of these disorders typically involves dietary modifications, medication, and regular monitoring of blood sugar levels.

Breastfeeding is the process of providing nutrition to an infant or young child by feeding them breast milk directly from the mother's breast. It is also known as nursing. Breast milk is the natural food for newborns and infants, and it provides all the nutrients they need to grow and develop during the first six months of life.

Breastfeeding has many benefits for both the mother and the baby. For the baby, breast milk contains antibodies that help protect against infections and diseases, and it can also reduce the risk of sudden infant death syndrome (SIDS), allergies, and obesity. For the mother, breastfeeding can help her lose weight after pregnancy, reduce the risk of certain types of cancer, and promote bonding with her baby.

Breastfeeding is recommended exclusively for the first six months of an infant's life, and then continued along with appropriate complementary foods until the child is at least two years old or beyond. However, it is important to note that every mother and baby pair is unique, and what works best for one may not work as well for another. It is recommended that mothers consult with their healthcare provider to determine the best feeding plan for themselves and their baby.

Peri-implantitis is a medical term used to describe the inflammatory condition that affects the soft and hard tissues surrounding dental implants, leading to their progressive loss. It's characterized by an infection that causes inflammation in the gums and potentially in the bone around the implant.

The primary cause of peri-implantitis is bacterial biofilm accumulation, similar to what leads to periodontal disease around natural teeth. Other factors contributing to its development can include poor oral hygiene, smoking, diabetes, and genetic predisposition.

Symptoms may include redness, swelling, bleeding, and pus formation in the gums around the implant, as well as pain, mobility, or even loss of the affected dental implant if left untreated. Treatment options vary depending on the severity of the condition but often involve mechanical debridement, antibiotic therapy, and possible surgical intervention to regenerate lost tissue.

Immunomodulation is the process of modifying or regulating the immune system's response. It can involve either stimulating or suppressing various components of the immune system, such as white blood cells, antibodies, or cytokines. This can be achieved through various means, including medications (such as immunosuppressive drugs used in organ transplantation), vaccines, and other therapies.

The goal of immunomodulation is to restore balance to an overactive or underactive immune system, depending on the specific medical condition being treated. It can help to prevent or treat diseases that result from abnormal immune responses, such as autoimmune disorders, allergies, and infections.

The transverse colon is the section of the large intestine that runs horizontally across the abdomen, located between the ascending colon and the descending colon. It receives digested food material from the left side of the cecum via the transverse mesocolon, a double-layered fold of peritoneum that attaches it to the posterior abdominal wall.

The transverse colon is responsible for absorbing water, electrolytes, and vitamins from the digested food material before it moves into the distal sections of the large intestine. It also contains a large number of bacteria that help in the breakdown of complex carbohydrates and the production of certain vitamins, such as vitamin K and biotin.

The transverse colon is highly mobile and can change its position within the abdomen depending on factors such as respiration, digestion, and posture. It is also prone to various pathological conditions, including inflammation (colitis), diverticulosis, and cancer.

Gram-negative bacteria are a type of bacteria that do not retain the crystal violet stain used in the Gram staining method, a standard technique used in microbiology to classify and identify different types of bacteria based on their structural differences. This method was developed by Hans Christian Gram in 1884.

The primary characteristic distinguishing Gram-negative bacteria from Gram-positive bacteria is the composition and structure of their cell walls:

1. Cell wall: Gram-negative bacteria have a thin peptidoglycan layer, making it more susceptible to damage and less rigid compared to Gram-positive bacteria.
2. Outer membrane: They possess an additional outer membrane that contains lipopolysaccharides (LPS), which are endotoxins that can trigger strong immune responses in humans and animals. The outer membrane also contains proteins, known as porins, which form channels for the passage of molecules into and out of the cell.
3. Periplasm: Between the inner and outer membranes lies a compartment called the periplasm, where various enzymes and other molecules are located.

Some examples of Gram-negative bacteria include Escherichia coli (E. coli), Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella enterica, Shigella spp., and Neisseria meningitidis. These bacteria are often associated with various infections, such as urinary tract infections, pneumonia, sepsis, and meningitis. Due to their complex cell wall structure, Gram-negative bacteria can be more resistant to certain antibiotics, making them a significant concern in healthcare settings.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

I apologize, but "bread" is a common food item and not a medical term. It is typically made from flour, water, yeast, and salt, and is baked at high temperatures. There is no medical definition for bread. If you have any specific concerns about bread or its ingredients in relation to your health, I would be happy to try to help address those.

A ribosome is a complex molecular machine found in all living cells, responsible for protein synthesis. It consists of two subunits: the small and the large subunit. The small ribosomal subunit plays a crucial role in decoding the messenger RNA (mRNA) molecule and positioning transfer RNA (tRNA) molecules during translation.

The small ribosomal subunit, specifically, is composed of ribosomal RNA (rRNA) and proteins. In eukaryotic cells, the small ribosomal subunit is composed of a 18S rRNA molecule and approximately 30 distinct proteins. Its primary function is to recognize the start codon on the mRNA and facilitate the binding of the initiator tRNA (tRNAi) to begin the translation process.

Together, the small and large ribosomal subunits form a functional ribosome that translates genetic information from mRNA into proteins, contributing to the maintenance and growth of cells.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Crohn's disease is a type of inflammatory bowel disease (IBD) that can affect any part of the gastrointestinal tract, from the mouth to the anus. It is characterized by chronic inflammation of the digestive tract, which can lead to symptoms such as abdominal pain, diarrhea, fatigue, weight loss, and malnutrition.

The specific causes of Crohn's disease are not fully understood, but it is believed to be related to a combination of genetic, environmental, and immune system factors. The disease can affect people of any age, but it is most commonly diagnosed in young adults between the ages of 15 and 35.

There is no cure for Crohn's disease, but treatments such as medications, lifestyle changes, and surgery can help manage symptoms and prevent complications. Treatment options depend on the severity and location of the disease, as well as the individual patient's needs and preferences.

Chlortetracycline is an antibiotic that belongs to the tetracycline class. It is primarily used to treat a variety of bacterial infections, including respiratory, urinary, and skin infections. Chlortetracycline works by inhibiting the bacteria's ability to produce proteins, which are essential for their survival and growth.

The medical definition of Chlortetracycline is as follows:

Chlortetracycline (CTC): A broad-spectrum antibiotic that is derived from the actinomycete Streptomyces aureofaciens. It is used to treat various bacterial infections, including respiratory, urinary, and skin infections. Chlortetracycline is a colorless crystalline powder that is soluble in water and alcohol. It has a molecular formula of C22H24ClN2O8 and a molecular weight of 476.93 g/mol.

Chlortetracycline is usually administered orally, but it can also be given intravenously or topically. The drug is absorbed well from the gastrointestinal tract and is widely distributed throughout the body. It has a half-life of about 8 hours and is excreted primarily in the urine.

Like other tetracyclines, Chlortetracycline can cause tooth discoloration and enamel hypoplasia in children under the age of 8. It can also cause photosensitivity, nausea, vomiting, and diarrhea. Prolonged use or high doses of Chlortetracycline can lead to bacterial resistance and may increase the risk of superinfection with fungi or other bacteria.

Chlortetracycline is no longer commonly used in human medicine due to the availability of newer antibiotics with fewer side effects. However, it is still used in veterinary medicine to treat infections in animals.

Lactobacillus casei is a species of Gram-positive, rod-shaped bacteria that belongs to the genus Lactobacillus. These bacteria are commonly found in various environments, including the human gastrointestinal tract, and are often used in food production, such as in the fermentation of dairy products like cheese and yogurt.

Lactobacillus casei is known for its ability to produce lactic acid, which gives it the name "lactic acid bacterium." This characteristic makes it an important player in maintaining a healthy gut microbiome, as it helps to lower the pH of the gut and inhibit the growth of harmful bacteria.

In addition to its role in food production and gut health, Lactobacillus casei has been studied for its potential probiotic benefits. Probiotics are live bacteria and yeasts that are beneficial to human health, particularly the digestive system. Some research suggests that Lactobacillus casei may help support the immune system, improve digestion, and alleviate symptoms of certain gastrointestinal disorders like irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). However, more research is needed to fully understand its potential health benefits and applications.

Trichuriasis is a parasitic infection caused by the nematode (roundworm) Trichuris trichiura, also known as the whipworm. This infection primarily affects the large intestine (cecum and colon). The main symptoms of trichuriasis include diarrhea, abdominal pain, and weight loss. In heavy infections, there can be severe complications such as anemia, growth retardation, and rectal prolapse. Trichuriasis is typically transmitted through the ingestion of contaminated soil containing Trichuris trichiura eggs, often through poor hygiene practices or exposure to contaminated food and water.

Carnobacteriaceae is a family of gram-positive, facultatively anaerobic bacteria that are commonly found in various environments such as soil, water, and decaying vegetation. Some species within this family can also be found in food products, particularly in refrigerated or processed meats and fish. Members of Carnobacteriaceae are non-spore forming, non-motile rods or cocci that may form pairs or short chains. They are generally considered to be psychrotrophic, meaning they can grow at low temperatures, which contributes to their ability to proliferate in refrigerated foods. Some species of Carnobacteriaceae have been associated with food spoilage and others have been shown to produce bacteriocins, which are protein molecules that inhibit the growth of other bacteria. However, some species within this family have also been investigated for their potential probiotic properties and ability to inhibit the growth of pathogenic bacteria in foods.

A bacterial genome is the complete set of genetic material, including both DNA and RNA, found within a single bacterium. It contains all the hereditary information necessary for the bacterium to grow, reproduce, and survive in its environment. The bacterial genome typically includes circular chromosomes, as well as plasmids, which are smaller, circular DNA molecules that can carry additional genes. These genes encode various functional elements such as enzymes, structural proteins, and regulatory sequences that determine the bacterium's characteristics and behavior.

Bacterial genomes vary widely in size, ranging from around 130 kilobases (kb) in Mycoplasma genitalium to over 14 megabases (Mb) in Sorangium cellulosum. The complete sequencing and analysis of bacterial genomes have provided valuable insights into the biology, evolution, and pathogenicity of bacteria, enabling researchers to better understand their roles in various diseases and potential applications in biotechnology.

Rifamycins are a class of antibiotics derived from the bacterium Amycolatopsis rifamycinica. They have a unique chemical structure and mechanism of action, which involves inhibiting bacterial DNA-dependent RNA polymerase. This leads to the prevention of bacterial transcription and ultimately results in bacteriostatic or bactericidal activity, depending on the drug concentration and the susceptibility of the bacteria.

Rifamycins are primarily used in the treatment of various types of infections caused by gram-positive and gram-negative bacteria, as well as mycobacteria. Some examples of rifamycin antibiotics include rifampin (also known as rifampicin), rifabutin, and rifapentine. These drugs are often used to treat tuberculosis, meningitis, and other serious infections. It is important to note that resistance to rifamycins can develop rapidly if the drugs are not used appropriately or if they are used to treat infections caused by bacteria that are already resistant to these antibiotics.

Mucins are high molecular weight, heavily glycosylated proteins that are the major components of mucus. They are produced and secreted by specialized epithelial cells in various organs, including the respiratory, gastrointestinal, and urogenital tracts, as well as the eyes and ears.

Mucins have a characteristic structure consisting of a protein backbone with numerous attached oligosaccharide side chains, which give them their gel-forming properties and provide a protective barrier against pathogens, environmental insults, and digestive enzymes. They also play important roles in lubrication, hydration, and cell signaling.

Mucins can be classified into two main groups based on their structure and function: secreted mucins and membrane-bound mucins. Secreted mucins are released from cells and form a physical barrier on the surface of mucosal tissues, while membrane-bound mucins are integrated into the cell membrane and participate in cell adhesion and signaling processes.

Abnormalities in mucin production or function have been implicated in various diseases, including chronic inflammation, cancer, and cystic fibrosis.

I'm sorry for any confusion, but "Oligochaeta" is not a medical term. It is a taxonomic category in biology, specifically referring to a class of segmented worms, including earthworms and related species. They are characterized by having a simple circulatory system, and most have separate sexes. They are not directly relevant to human medical definition or healthcare context.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Streptococcaceae is a family of coccoid gram-positive bacteria, many of which are part of the normal human microbiota. They are facultatively anaerobic and generally non-spore forming. Some species are pathogenic and can cause various infections in humans, such as strep throat, pneumonia, and meningitis. Members of this family are characterized by their ability to form chains during cell division and may be beta-hemolytic, alpha-hemolytic, or non-hemolytic on blood agar plates. The genera in Streptococcaceae include Streptococcus, Enterococcus, Lactococcus, and Vagococcus, among others.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Ecology is not a medical term, but rather a term used in the field of biology. It refers to the study of the relationships between living organisms and their environment. This includes how organisms interact with each other and with their physical surroundings, such as climate, soil, and water. Ecologists may study the distribution and abundance of species, the flow of energy through an ecosystem, and the effects of human activities on the environment. While ecology is not a medical field, understanding ecological principles can be important for addressing public health issues related to the environment, such as pollution, climate change, and infectious diseases.

'Clostridium butyricum' is a gram-positive, spore-forming, rod-shaped bacterium that is commonly found in the environment, including soil and water. It is also part of the normal gut microbiota in humans and animals. This organism produces butyric acid as one of its main fermentation products, hence the name 'butyricum'.

While 'Clostridium butyricum' can sometimes be associated with human diseases, particularly in individuals with weakened immune systems or underlying gastrointestinal disorders, it is also being investigated for its potential probiotic properties. Some studies suggest that certain strains of this bacterium may help prevent and treat various conditions, such as antibiotic-associated diarrhea, irritable bowel syndrome, and inflammatory bowel disease. However, more research is needed to confirm these findings and establish the safety and efficacy of 'Clostridium butyricum' as a probiotic.

The Respiratory System is a complex network of organs and tissues that work together to facilitate the process of breathing, which involves the intake of oxygen and the elimination of carbon dioxide. This system primarily includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, bronchioles, lungs, and diaphragm.

The nostrils or mouth take in air that travels through the pharynx, larynx, and trachea into the lungs. Within the lungs, the trachea divides into two bronchi, one for each lung, which further divide into smaller tubes called bronchioles. At the end of these bronchioles are tiny air sacs known as alveoli where the exchange of gases occurs. Oxygen from the inhaled air diffuses through the walls of the alveoli into the bloodstream, while carbon dioxide, a waste product, moves from the blood to the alveoli and is exhaled out of the body.

The diaphragm, a large muscle that separates the chest from the abdomen, plays a crucial role in breathing by contracting and relaxing to change the volume of the chest cavity, thereby allowing air to flow in and out of the lungs. Overall, the Respiratory System is essential for maintaining life by providing the body's cells with the oxygen needed for metabolism and removing waste products like carbon dioxide.

Diarrhea is a condition in which an individual experiences loose, watery stools frequently, often exceeding three times a day. It can be acute, lasting for several days, or chronic, persisting for weeks or even months. Diarrhea can result from various factors, including viral, bacterial, or parasitic infections, food intolerances, medications, and underlying medical conditions such as inflammatory bowel disease or irritable bowel syndrome. Dehydration is a potential complication of diarrhea, particularly in severe cases or in vulnerable populations like young children and the elderly.

Abiotrophia is a genus of gram-positive, facultatively anaerobic bacteria that are part of the normal flora in the human mouth and gastrointestinal tract. These bacteria are also known as nutritionally variant streptococci because they have complex growth requirements and need additional factors for growth, such as pyridoxal and hemin. Abiotrophia species can cause various infectious diseases, including endocarditis, bacteremia, and meningitis, especially in individuals with underlying medical conditions or compromised immune systems. The two main species of Abiotrophia are Abiotrophia defectiva and Abiotrophia adiacens.

Bacterial infections are caused by the invasion and multiplication of bacteria in or on tissues of the body. These infections can range from mild, like a common cold, to severe, such as pneumonia, meningitis, or sepsis. The symptoms of a bacterial infection depend on the type of bacteria invading the body and the area of the body that is affected.

Bacteria are single-celled microorganisms that can live in many different environments, including in the human body. While some bacteria are beneficial to humans and help with digestion or protect against harmful pathogens, others can cause illness and disease. When bacteria invade the body, they can release toxins and other harmful substances that damage tissues and trigger an immune response.

Bacterial infections can be treated with antibiotics, which work by killing or inhibiting the growth of bacteria. However, it is important to note that misuse or overuse of antibiotics can lead to antibiotic resistance, making treatment more difficult. It is also essential to complete the full course of antibiotics as prescribed, even if symptoms improve, to ensure that all bacteria are eliminated and reduce the risk of recurrence or development of antibiotic resistance.

Immunoglobulin A (IgA) is a type of antibody that plays a crucial role in the immune function of the human body. It is primarily found in external secretions, such as saliva, tears, breast milk, and sweat, as well as in mucous membranes lining the respiratory and gastrointestinal tracts. IgA exists in two forms: a monomeric form found in serum and a polymeric form found in secretions.

The primary function of IgA is to provide immune protection at mucosal surfaces, which are exposed to various environmental antigens, such as bacteria, viruses, parasites, and allergens. By doing so, it helps prevent the entry and colonization of pathogens into the body, reducing the risk of infections and inflammation.

IgA functions by binding to antigens present on the surface of pathogens or allergens, forming immune complexes that can neutralize their activity. These complexes are then transported across the epithelial cells lining mucosal surfaces and released into the lumen, where they prevent the adherence and invasion of pathogens.

In summary, Immunoglobulin A (IgA) is a vital antibody that provides immune defense at mucosal surfaces by neutralizing and preventing the entry of harmful antigens into the body.

I'm happy to help! However, it seems there might be a bit of confusion here. Starch is not typically considered a medical term, but rather a nutritional and biochemical concept. Here's a brief explanation:

Starch is a complex carbohydrate that serves as the primary form of energy storage in plants. It is made up of long chains of glucose molecules and can be found in various foods such as grains, legumes, fruits, and vegetables. Amylase, an enzyme present in our saliva and digestive system, helps break down starch into simpler sugars during the digestion process so that our bodies can absorb them for energy.

I hope this clarifies any confusion! If you have any other questions or need further information on a medical topic, please don't hesitate to ask.

Fibrobacter is a genus of anaerobic, gram-negative bacteria that primarily resides in the gastrointestinal tracts of ruminants and other herbivorous animals. These bacteria are specialized in breaking down complex plant fibers, such as cellulose and xylan, into simpler sugars through fermentation. This process plays a crucial role in the digestion and nutrient acquisition from plant-based diets in these animals.

In human medicine, Fibrobacter species have been found in the oral cavity and gastrointestinal tract, but their significance in human health and disease is not well understood. Some studies suggest that an increased abundance of Fibrobacter may be associated with certain gut disorders like irritable bowel syndrome or inflammatory bowel disease; however, more research is needed to establish a clear relationship and understand the underlying mechanisms.

Myeloid Differentiation Factor 88 (MYD88) is a signaling adaptor protein that plays a crucial role in the innate immune response. It is involved in the signal transduction pathways of several Toll-like receptors (TLRs), which are pattern recognition receptors that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs).

Upon activation of TLRs, MYD88 is recruited to the receptor complex where it interacts with IL-1 receptor-associated kinase 4 (IRAK4) and activates IRAK1. This leads to the activation of downstream signaling pathways, including the mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB), resulting in the production of proinflammatory cytokines and type I interferons.

MYD88 is widely expressed in various cell types, including hematopoietic cells, endothelial cells, and fibroblasts. Mutations in MYD88 have been associated with several human diseases, such as lymphomas, leukemias, and autoimmune disorders.

Bacterial typing techniques are methods used to identify and differentiate bacterial strains or isolates based on their unique characteristics. These techniques are essential in epidemiological studies, infection control, and research to understand the transmission dynamics, virulence, and antibiotic resistance patterns of bacterial pathogens.

There are various bacterial typing techniques available, including:

1. **Bacteriophage Typing:** This method involves using bacteriophages (viruses that infect bacteria) to identify specific bacterial strains based on their susceptibility or resistance to particular phages.
2. **Serotyping:** It is a technique that differentiates bacterial strains based on the antigenic properties of their cell surface components, such as capsules, flagella, and somatic (O) and flagellar (H) antigens.
3. **Biochemical Testing:** This method uses biochemical reactions to identify specific metabolic pathways or enzymes present in bacterial strains, which can be used for differentiation. Commonly used tests include the catalase test, oxidase test, and various sugar fermentation tests.
4. **Molecular Typing Techniques:** These methods use genetic markers to identify and differentiate bacterial strains at the DNA level. Examples of molecular typing techniques include:
* **Pulsed-Field Gel Electrophoresis (PFGE):** This method uses restriction enzymes to digest bacterial DNA, followed by electrophoresis in an agarose gel under pulsed electrical fields. The resulting banding patterns are analyzed and compared to identify related strains.
* **Multilocus Sequence Typing (MLST):** It involves sequencing specific housekeeping genes to generate unique sequence types that can be used for strain identification and phylogenetic analysis.
* **Whole Genome Sequencing (WGS):** This method sequences the entire genome of a bacterial strain, providing the most detailed information on genetic variation and relatedness between strains. WGS data can be analyzed using various bioinformatics tools to identify single nucleotide polymorphisms (SNPs), gene deletions or insertions, and other genetic changes that can be used for strain differentiation.

These molecular typing techniques provide higher resolution than traditional methods, allowing for more accurate identification and comparison of bacterial strains. They are particularly useful in epidemiological investigations to track the spread of pathogens and identify outbreaks.

Pediococcus is a genus of gram-positive, facultatively anaerobic cocci that typically occur in pairs or tetrads. These bacteria are catalase-negative and non-motile. They are commonly found in various environments such as plants, dairy products, and fermented foods. Some species of Pediococcus can cause food spoilage, while others are used in the production of fermented foods like sauerkraut and certain cheeses due to their ability to produce lactic acid. They are not typically associated with human diseases, but rarely can cause infection in immunocompromised individuals.

The Leukocyte L1 Antigen Complex, also known as CD58 or LFA-3 (Lymphocyte Function-Associated Antigen 3), is not a single entity but rather a glycoprotein found on the surface of various cells in the human body, including leukocytes (white blood cells). It plays a crucial role in the immune system's response by interacting with the CD2 receptor on T-cells and natural killer (NK) cells. This interaction helps facilitate cell-to-cell adhesion and activation of T-cells, which are essential for an effective immune response against infections and cancer.

The Leukocyte L1 Antigen Complex is often targeted by certain viruses to evade the host's immune system. For example, some strains of HIV (Human Immunodeficiency Virus) can downregulate the expression of this protein on infected cells, making it harder for the immune system to recognize and eliminate them.

It is important to note that while "Leukocyte L1 Antigen Complex" refers to a specific cell surface protein, CD58 or LFA-3 are alternative names used in the scientific literature to refer to this same protein.

Adaptive immunity is a specific type of immune response that involves the activation of immune cells, such as T-lymphocytes and B-lymphocytes, to recognize and respond to specific antigens. This type of immunity is called "adaptive" because it can change over time to better recognize and respond to particular threats.

Adaptive immunity has several key features that distinguish it from innate immunity, which is the other main type of immune response. One of the most important features of adaptive immunity is its ability to specifically recognize and target individual antigens. This is made possible by the presence of special receptors on T-lymphocytes and B-lymphocytes that can bind to specific proteins or other molecules on the surface of invading pathogens.

Another key feature of adaptive immunity is its ability to "remember" previous encounters with antigens. This allows the immune system to mount a more rapid and effective response when it encounters the same antigen again in the future. This is known as immunological memory, and it is the basis for vaccination, which exposes the immune system to a harmless form of an antigen in order to stimulate the production of immunological memory and protect against future infection.

Overall, adaptive immunity plays a crucial role in protecting the body against infection and disease, and it is an essential component of the overall immune response.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

"Lavandula" is the biological name for a genus of plants in the mint family, Lamiaceae. It includes around 39 species of flowering plants native to the Old World, primarily the Mediterranean region and parts of Africa, Asia, and Europe. The most common species is Lavandula angustifolia, also known as English lavender or true lavender. These plants are well-known for their fragrant purple flowers and have been used in various applications, such as perfumes, essential oils, and herbal remedies, due to their pleasant scent and potential medicinal properties. However, it is important to note that the term "Lavandula" itself does not constitute a medical definition but rather refers to a group of plants with diverse uses and benefits.

Anagenesis Biome Human virome List of bacterial vaginosis microbiota Marine microbiota Microbiota of the lower reproductive ... Clinically, new microbiota can be acquired through fecal microbiota transplant to treat infections such as chronic C. difficile ... The Human Microbiome Project sequenced the genome of the human microbiota, focusing particularly on the microbiota that ... Gut microbiota of the fruit fly can affect the way its gut looks, by impacting epithelial renewal rate, cellular spacing, and ...
... coniferous plants in the family Cupressaceae Gut microbiota Human microbiota Lung microbiota Skin microbiota Vaginal microbiota ... Microbiota are the microflora and microfauna in an ecosystem. Microbiota may also refer to: Microbiota (plant), a genus of ... Look up Microbiota or microbiota in Wiktionary, the free dictionary. ... This disambiguation page lists articles associated with the title Microbiota. If an internal link led you here, you may wish to ...
Arboretum de Villardebelle - Microbiota leaf and cone photos Gymnosperm Database - Microbiota decussata Conifers Around the ... Microbiota decussata is a prostrate shrub to 20-50 cm (8-20 in) in height, and 2-5 m (6.6-16.4 ft) in spreading width. The ... Microbiota is not to be confused with the range of microorganisms of the same name. The genus name was derived from micro-, ... Microbiota decussata is grown as an ornamental plant for use as evergreen groundcover in gardens and parks. It is valued for ...
... is the first fecal microbiota product approved by the US Food and Drug Administration (FDA). Fecal microbiota ... "Ferring Receives U.S. FDA Approval for Rebyota (fecal microbiota, live-jslm) - A Novel First-in-Class Microbiota-Based Live ... Fecal microbiota is prepared from stool donated by qualified individuals. The donors and the donated stool are tested for a ... Fecal microbiota was approved for medical use in the United States in November 2022. "Rebyota- donor human stool suspension". ...
Fecal microbiota, live (Rebyota) was approved for medical use in the United States in November 2022. Fecal microbiota spores, ... "Ferring Receives U.S. FDA Approval for Rebyota (fecal microbiota, live-jslm) - A Novel First-in-Class Microbiota-Based Live ... Fecal microbiota transplant (FMT), also known as a stool transplant, is the process of transferring fecal bacteria and other ... Fecal microbiota transplant is approximately 85-90% effective in people with CDI for whom antibiotics have not worked or in ...
This loss of microbiota diversity is likely involved in the increasing propensity for a broad range of inflammatory diseases, ... Microbiota-accessible carbohydrates (MACs) are carbohydrates that are resistant to digestion by a host's metabolism, and are ... However, porphyran would not be a MAC for those without a microbiota adaptation to seaweed. In similar fashion, germ-free mice ... The term, ''microbiota-accessible carbohydrate'' contributes to a conceptual framework for investigating and discussing the ...
Live fecal microbiota spores, sold under the brand name Vowst, is a fecal microbiota product usedto prevent the recurrence of ... It is the first fecal microbiota product that is taken by mouth (orally). Fecal microbiota spores(live) is indicated to prevent ... "Vowst- fecal microbiota spores, live-brpk capsule". DailyMed. 21 April 2023. Retrieved 19 May 2023. "FDA Approves First Orally ... In an analysis among 90 recipients of fecal microbiota spores, live, when compared to 92 recipients of placebo, the most ...
... vaginosis microbiota List of microbiota species of the lower reproductive tract of women Lung microbiota Gut microbiota Skin ... The vaginal microbiota in pregnancy varies markedly during the entire time of gestation. The species and diversity of the ...
The census and relationships among the microbiota are altered in BV resulting in a complex bacterial milieu. Some species have ... Nardis, C.; Mastromarino, P.; Mosca, L. (September 2013). "Vaginal microbiota and viral sexually transmitted diseases". Annali ... Clark, Natalie; Tal, Reshef; Sharma, Harsha; Segars, James (2014). "Microbiota and Pelvic Inflammatory Disease". Seminars in ...
For example, a part of the human microbiota such as the skin flora, gut flora, or vaginal flora, can become deranged, with ... Any disruption of the body's microbiota is able to lead to dysbiosis. Dysbiosis in the gut happens when the bacteria in the ... "Fecal Microbiota Transplantation". Emerging Infections Network. 2022. Chinna Meyyappan A, Forth E, Wallace CJ, Milev R (June ... There has also been evidence that the gut microbiota composition can be altered due to changes in behavior, and changing the ...
Corsetti, F. A.; Awramik, S. M.; Pierce, D. (2003). "A complex microbiota from snowball Earth times: Microfossils from the ... Corsetti, F. A.; Awramik, S. M.; Pierce, D. (2003). "A complex microbiota from snowball Earth times: Microfossils from the ... Awramik, S. M.; Barghoorn, E. S. (1977). "The Gunflint microbiota". Precambrian Research. 5 (2): 121. doi:10.1016/0301-9268(77) ... Corsetti and David Pierce published evidence in the Proceedings of the National Academy of Sciences of fossilized microbiota in ...
June 2020). "Specific microbiota enhances intestinal IgA levels by inducing TGF-β in T follicular helper cells of Peyer's ... nov., three new bacterial species identified from human gut microbiota". New Microbes and New Infections. 23: 44-47. doi: ... Sarmento A, Simões CD (2022-01-01). "1.31 - Gut Microbiota Dysbiosis and Chronic Intestinal Inflammation". In Glibetic M (ed ... Modulation of the microbiota-gut-brain axis". In Toldrá F (ed.). Advances in Food and Nutrition Research. Vol. 91. Academic ...
"Small neighbors/Microbiota". Pittsburgh City Paper. Retrieved 2014-03-01. "Daniel Maidman did a painting of a poem..." Kathleen ...
... assembly of the microbiota in early life, effect of practices that reduce microbiota transmission and colonization in humans, ... "The Microbiota Vault". 2021-01-11. Retrieved 2021-06-12. "Baby Friendly Space Club". rutgers.campuslabs.com. Retrieved 2021-06- ... Dominguez-Bello first proposed the idea of restoring the microbiota in C-section born neonates -void of the natural maternal ... "Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer". Nature Medicine. 22 (3): 250- ...
"Frontiers: Gut Microbiota". BBC Radio 4. Retrieved 5 September 2015. "Raising Allosaurus: the Dream of Jurassic Park". BBC ...
Diet and lifestyle changes also affects the gut, skin and respiratory microbiota.[citation needed] At the same time that ... Loke, P.; Lim, Y. A. L. (June 2015). "Helminths and the microbiota: parts of the hygiene hypothesis". Parasite Immunology. 37 ( ... Current research suggests that manipulating the intestinal microbiota may be able to treat or prevent allergies and other ... Antibiotic usage reduces the diversity of gut microbiota. Although several studies have shown associations between antibiotic ...
"Ideas worth spreading about microbes: review of "Follow Your Gut" by Rob Knight". Gut Microbiota News Watch. Retrieved 26 July ...
In Fecal microbiota transplant (FMT), also known as a stool transplant, fecal bacteria and other microbes from a healthy ... See: Fecal microbiota transplant. Ayurveda and Siddha medicine use various animal excreta in various forms. The dung and urine ...
rare) Microbiota decussata Kom. - (declining) Larix olgensis A. Henry - (declining) Picea glehnii (Fr. Schmidt) Mast. - (rare) ...
"Sensing the gut microbiota". Nature Immunology. 21 (7): 704-705. doi:10.1038/s41590-020-0645-1. ISSN 1529-2916. PMID 32577006. ...
Gut Microbiota for Health. January 4, 2021. "Peter Turnbaugh". American Institute of Chemical Engineers. April 8, 2020. ...
"Ferring Receives U.S. FDA Approval for Rebyota (fecal microbiota, live-jslm) - A Novel First-in-Class Microbiota-Based Live ... Fecal microbiota spores, live (Vowst) was approved for medical use in the United States in April 2023. It is the first fecal ... The microbiota of treated patients typically resembles that of the donor after transplantation. In a systematic review of the ... Additionally, microbiota can directly impact the central nervous system (CNS), as studies have shown that bacteria in the gut ...
are members of the oral and vaginal microbiota, and are recovered from anaerobic infections of the respiratory tract. These ... Using Wikipedia for Research Clark, Natalie; Tal, Reshef; Sharma, Harsha; Segars, James (2014). "Microbiota and Pelvic ... "Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa". Proceedings ...
The microbiota detected in the human genital and gut econiche do not appear to grow outside their host and probably are likely ... Pregnancy alters the microbiota with a reduction in species/genus diversity. A healthy vaginal microbiome aids in the ... Vaginal flora, vaginal microbiota or vaginal microbiome are the microorganisms that colonize the vagina. They were discovered ... Healthy, normal vaginal microbiota that is dominated by lactobacilli may differ among some ethnic groups. Non-pathogenic ...
The disturbance of the naturally occurring vaginal microbiota associated with bacterial vaginosis increases the risk of PID. N ... "Pelvic Inflammatory Disease (PID)". Sharma H, Tal R, Clark NA, Segars JH (2014). "Microbiota and pelvic inflammatory disease". ...
The gut microbiota, which is a population of microbes that live in the human digestive system, also has an important part in ... In terms of pathophysiological/mechanism interactions, an abnormal gut microbiota can play a role in metabolic disorder related ... Hur, Kyu Yeon; Lee, Myung-Shik (2015-06-01). "Gut Microbiota and Metabolic Disorders". Diabetes & Metabolism Journal. 39 (3): ...
Sharma H, Tal R, Clark NA, Segars JH (January 2014). "Microbiota and pelvic inflammatory disease". Seminars in Reproductive ...
Marchesi, editor, Julian R. (2014). The human microbiota and microbiome. Wallingford: CABI. ISBN 978-1-780-64049-5. {{cite book ... and Prebiotic Interventions on the Microbiota. Academic Press. ISBN 978-0-128-02544-4. Portal: Biology v t e (CS1 errors: ...
Healthy vaginal microbiota consists of species that neither cause symptoms or infections, nor negatively affect pregnancy. It ... One of the main risks for developing BV is douching, which alters the vaginal microbiota and predisposes women to developing BV ... BV is defined by the disequilibrium in the vaginal microbiota, with decline in the number of lactobacilli. While the infection ... Early evidence suggested that antibiotic treatment of male partners could re-establish the normal microbiota of the male ...
"Microbiota and Pelvic Inflammatory Disease". Seminars in Reproductive Medicine. 32 (1): 043-049. doi:10.1055/s-0033-1361822. ...
There is also evidence that microbiota influence eating behaviours based on the preferences of the microbiota, which can lead ... The change in gut microbiota causes no ill effects. The newborn's gut microbiota resemble the mother's first-trimester samples ... and their gut microbiota. A study in Chicago found that individuals in higher SES neighborhoods had greater microbiota ... the microbiota will spend energy and resources on competing with other microbiota and less on manipulating the host. The ...
The lung microbiota is the pulmonary microbial community consisting of a complex variety of microorganisms found in the lower ... In humans, S. aureus is part of the normal microbiota present in the upper respiratory tract, and on skin and in the gut mucosa ... The fungal genera that are commonly found make up the lung mycobiome, in the microbiota of the lung, and include Candida, ... The bacterial part of the microbiota has been more closely studied. It consists of a core of nine genera: Prevotella, ...
The initial acquisition of microbiota is the formation of an organism's microbiota immediately before and after birth. The ... Microbiota may be passed on to offspring via bacteriocytes associated with the ovaries or developing embryo, by feeding larvae ... Over the last few decades, research on the perinatal acquisition of microbiota in humans has expanded as a result of ... The microbiome is another term for microbiota or can refer to the collected genomes. Many of these microorganisms interact with ...
The microbiota populations change in response to the menstrual cycle. Pregnancy alters the microbiota, with a reduction in ... Vaginal microbiota composition may have a genetic component. These bacteria may be detected as transients or are marginally ... This microbiota is affiliated with ethnicity: Candida albicans and other spp. Pre-pubescent girls, women in menarche, and ... This is the list of healthy vaginal microbiota (VMB), which is defined as the group of species and genera that generally are ...
"Афиллофоровые грибы (Basidiomycota) заповедника Уссурийский(Приморский край, Дальний Восток России)}" (PDF). Microbiota. 35. ...
Anagenesis Biome Human virome List of bacterial vaginosis microbiota Marine microbiota Microbiota of the lower reproductive ... Clinically, new microbiota can be acquired through fecal microbiota transplant to treat infections such as chronic C. difficile ... The Human Microbiome Project sequenced the genome of the human microbiota, focusing particularly on the microbiota that ... Gut microbiota of the fruit fly can affect the way its gut looks, by impacting epithelial renewal rate, cellular spacing, and ...
The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16s rRNA sequencing. PLoS Biology, 6 ( ... Blumberg, R. & Powrie, F. Microbiota, disease, and back to health: a metastable journey. Sci. Transl. Med. 4, 137rv7 (2012). ... Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol. 20, ... Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowl syndrome. PLoS ONE 7, e39242 ...
... Guest Editor:. Tae Seok Moon: Engineering Biology Research Consortium, USA ... Given the complexity of global problems that are difficult to solve using a single microbe, microbiota engineering is likely to ... Biotechnology for Biofuels and Bioproducts is calling for submissions to our Collection on Microbiota for Future Sustainable ... approaches to address these global problems as well as associated issues such as biosafety and biosecurity when the microbiota ...
The symbiotic relationship between intestinal microbiota and host ensures appropriate development of the metabolic system in ... The central role of the intestinal microbiota in the progression and, equally, prevention of metabolic dysfunction is becoming ... Gut microbiota, obesity and diabetes Postgrad Med J. 2016 May;92(1087):286-300. doi: 10.1136/postgradmedj-2015-133285. Epub ... The central role of the intestinal microbiota in the progression and, equally, prevention of metabolic dysfunction is becoming ...
This article describes examines the evidence for the role of the gut microbiota in lipid metabolism. ... Lipids and the gut microbiota. Since the gut microbiota is clearly linked to the human host, does this mean that host ... Collectively, this is referred to as the "gut microbiota". The gut microbiota offers benefits to the human host, such as ... The gut microbiota, on the other hand, has the capability to metabolize fiber and resistant starch, as well as the remaining ...
... Proc Am Thorac Soc. 2012 May;9(2):69-71. doi: 10.1513/pats. ... The phenomenon of disappearing ancient microbiota may be a general paradigm driving the diseases of modernity. ...
Dysbiosis in gut microbiota has been implicated in several lung diseases, including allergy, asthma and cystic fibrosis. The bi ... A deeper understanding of the gut microbiome which comprises of all the genetic material within the gut microbiota and its role ... Diet plays an important role in determining the composition of the gut microbiota. Gut microbes help in assimilating dietary ... Gut microbiota) is known to impact metabolic functions as well as immune responses in our body. ...
Bacterial microbiota of human breast tissue. Applied and Environmental Microbiology, 2014; DOI: 10.1128/AEM.00242-14 ... First look at breast microbiota raises tantalizing questions. Date:. March 24, 2014. Source:. American Society for Microbiology ... Breast milk is one of the initial sources of gastrointestinal (GI) bacteria for newborns, and their GI microbiota are different ... Ten of these had undergone breast reduction, and their breast microbiota served as controls. The remaining women had had benign ...
Indeed, gut microbiota is involved in maintaining the regular functioning of intestinal barrier, in the development of the ... Microbiota were assessed using 16S rRNA sequencing of stool samples collected in 2015-2018. Associations of NAFLD with ... A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Gut Microbiota". ... The aim of this Special Issue is to report recent evidence on the role of the gut microbiota in gastrointestinal diseases, ...
Recent exploration into the interactions and relationship between hosts and their microbiota has revealed a connection between ...
A clinical trial has identified microorganisms key to improved fecal microbiota transplantation and treatment of recurrent C. ... Improved fecal microbiota transplantation, or FMT, can provide better outcomes for patients with recurrent Clostridium ... "As opposed to what we thought, complete engraftment of microbiota is not required to cure a patient," Sadowsky said. "The study ... Study may show ways to improve fecal microbiota transplantation. Study may provide new strategy to treat recurrent Clostridium ...
Recently, fecal microbiota transplantation (FMT) has been defined as the transfer of distal gut microbial communities from a ... Cutting Edge: Probiotics and Fecal Microbiota Transplantation in Immunomodulation. Wenjie Zeng. ,1,2Jie Shen. ,3Tao Bo. ,3 ... F. Zhang, W. Luo, Y. Shi, Z. Fan, and G. Ji, "Should we standardize the 1,700-year-old fecal microbiota transplantation?" The ... W. R. Brown, "Fecal microbiota transplantation in treating Clostridium difficile infection," Journal of Digestive Diseases, vol ...
... By Nikki Hancocks 30-Nov-2020. - Last updated on 30-Nov-2020 at 16:29. GMT ... van den Brink says. "The changes in the microbiota are rapid and dramatic, and there is almost no other setting in which you ... This gives us a good start toward understanding the forces that the microbiota exerts on the rebuilding of the immune system."​ ... "The parallel recoveries of the immune system and the microbiota, both of which are damaged and then restored, gives us a unique ...
A recent study in eClinicalMedicine found that fecal microbiota transplantation, combined with fruquintinib and tislelizumab, ... Based on previous observations that the gut microbiota can improve immune responses, fecal microbiota transplantation has been ... After a phase of native microbiota depletion, fecal microbiota transplantation was conducted using orally administered stool ... Fecal microbiota transplantation boosts survival in metastatic colorectal cancer treatment. *Download PDF Copy ...
An Irish government-backed project with multiple partners is investigating links between the gut microbiota and elderly ... Microbiota project seeks answers to better elderly nutrition. By Shane Starling 02-Jun-2013. - Last updated on 03-Jun-2013 at ... Eldermet said one of its aims was to fill the void that existed about nutritional inputs and the microbiota and put forward the ... "The faecal microbiota of elderly subjects was characterized by unusual phylum proportions and extreme variability. In addition ...
... By Nikki Hancocks 21-May-2021. - Last updated on 16-Jun-2021 at 10:39 ... The researchers used 16S rRNA gene sequencing for the analysis of the infants gut microbiota, with stool samples taken at 18 ... The assembly of the gut microbiota starts from birth, characterised by a rapid rate of colonisation and expansion of gut ... Seminal studies in germ-free mice​ emphasised that early colonisation with a complete specific-pathogen-free microbiota ...
However, it is currently unclear how the plant shapes its leaf microbiota and what role the plant immune system plays in this ... Our results show that the NADPH oxidase RBOHD is essential for microbiota homeostasis and emphasizes the importance of the ... Strain dropout experiments revealed that the lack of RBOHD unlocks the pathogenicity of individual microbiota members driving ... the absence of the plant NADPH oxidase RBOHD caused the most pronounced change in the composition of the leaf microbiota. The ...
Tag Archives: microbiota Covering the wild west of microbiome research #ahcj15 1 Reply ... This entry was posted in Conference, Hot Health Headline, Oral health and tagged #ahcj15, fecal microbiota transplant, fmt, ... microbiome, microbiota on April 27, 2015. by Mary Otto. Search. Member portal ... Member portal ... Join or renew today ...
The Club of Amsterdam is an independent, international, future-oriented think tank involved in channelling preferred futures. It involves those who dare to think out of the box and those who dont just talk about the future but actively participate in shaping outcomes.. We organized events, seminars and summits on relevant, global issues and publish findings & proceedings through various off-line and online media channels. We understand us as catalysts for innovation in industries, science and society. Currently our main activities are the Club of Amsterdam Journal and The Future Now Show.. ...
Microbiota: gut geography influences interactions between bacteria and their viruses. The gut microbiota houses a complex and ... Gut microbiota involved in depressive disorders The adult human body is composed of 100,000 billion cells. It also interacts ... Gut microbiota imbalance promotes the onset of colorectal cancer The gastroenterology team at Henri-Mondor AP-HP Hospital and ... Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system, Nature Communications ...
A diet rich in plant-based foods improves gut microbiota associated with lower risk for heart disease and other chronic ...
... , study finds By Will Chu 18-Sep-2020. - Last updated on 17-Sep-2020 ... Commenting on their findings the team adds that while dietary oil from C. finmarchicus​ was not able to restore the microbiota ... "The fact that calanus oil supplementation shows a benefit in gut microbiota just adds to the list of benefits we have ... "A high-fat diet altered the gut microbiota composition in an unhealthy direction by increasing the abundance of pro- ...
Using microbiota depletion by wide-spectrum antibiotics and germ-free (GF) female mice, we showed that the microbiota was ... Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A. 2016;113(47):E7554-E7563.. View ... reflecting the life-long proresorptive effect of the microbiota (30, 31). Confirming a requirement for the microbiota, iPTH ... The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357-1367.. View this article via: PubMed CrossRef ...
It seems the long-ears are better equipped with gut microbiota that can break down and extract energy from fiber. ... However, a recent study has suggested horses and ponies might have different microbiotas, so follow-up studies comparing them ... Future studies might also investigate how microbiota in different equids could be adjusted to help them better digest fibers ... They found that, overall, the donkeys, ponies, and mules had similar total concentrations of microbiota in the hindgut, Edwards ...
The microbial composition and metabolome of the intestinal microbiota of an animal model for COVID-19 were altered over the ... The intestinal microbiota, i.e., the entirety of the microorganisms (bacteria, viruses, yeasts, etc.) present in the gut¹, ... 1 - The intestinal microbiota is primarily located in the small and large intestines, as the gastric acid keeps the stomach ... SARS-CoV-2 infection in nonhuman primates alters the composition and functional activity of the gut microbiota I Gut Microbes, ...
gut microbiota. All about the Gut Microbiome and Probiotics, with Raja Dhir. Your gut health is connected to the well-being of ... Fecal Microbiota Transplants - an Update with Glenn Taylor. In this follow-up interview with Glenn Taylor of the Taymount ... Clinic in the U.K., we discuss the latest developments in fecal microbiota transplant (FMT). ...
Many of these patients we followed up with had been ill for a long time, but once they underwent the fecal microbiota ... Fecal Microbiota Transplants Effective Treatment for C. difficile. October 31, 2011. Article ... Growing evidence for the effectiveness of fecal microbiota transplants as a treatment for patients with recurrent bouts of ... The first study, Long-term Follow-up of Colonoscopic Fecal Microbiota Transplant (FMT) for Recurrent C. difficile Infection ( ...
Fecal Microbiota Transplantation. Fecal microbiota transplantation (FMT) is a novel therapy that involves the transfer of stool ... Data regarding fetal microbiota transplantation (FMT) in children with recurrent C difficile colitis are limited and focus on ... Fecal microbiota transplantation via nasogastric tube for recurrent clostridium difficile infection in pediatric patients. J ... Comparing fecal microbiota transplantation to standard-of-care treatment for recurrent Clostridium difficile infection: a ...
gut microbiota. immunology. maternal-fetal interactions. microbiology. microbiome. microbiota. pregnancy. reproductive biology ... Infographic: Maternal Microbiota Has Lasting Effects on Offspring Work in rodents shows that the bacteria living in a mothers ... The maternal microbiota, and the external factors that shape it, influence which immunomodulatory metabolites are produced and ... The maternal microbiota shapes the repertoire of commensal-targeting antibodies, which cross the placenta and are transferred ...
  • Microbiota play key roles in the intestinal immune and metabolic responses via their fermentation product (short-chain fatty acid), acetate. (wikipedia.org)
  • We will of course also try to establish the basis of this connection between intestinal microbiota and Parkinson's disease -- what kind of mechanism binds them. (sciencedaily.com)
  • The intestinal microbiota undergoes diurnal compositional and functional oscillations that affect metabolic homeostasis, but the mechanisms by which the rhythmic microbiota influences host circadian activity remain elusive. (nih.gov)
  • Using integrated multi-omics and imaging approaches, we demonstrate that the gut microbiota features oscillating biogeographical localization and metabolome patterns that determine the rhythmic exposure of the intestinal epithelium to different bacterial species and their metabolites over the course of a day. (nih.gov)
  • As such, the rhythmic biogeography and metabolome of the intestinal microbiota regulates the temporal organization and functional outcome of host transcriptional and epigenetic programs. (nih.gov)
  • "Supplying iron either orally or intravenously has a very distinct effect on the intestinal microbiota ​," Professor Dirk Haller of Technical University of Munich (TUM) said in a release. (nutraingredients.com)
  • An elevated lipopolysaccharide (or endotoxin) concentrations, associated with dysbiosis of the intestinal microbiota, has been implicated in the development of both T2DM and CVD. (nih.gov)
  • Selective modulation of the intestinal microbiota with prebiotics reduces intestinal permeability and endotoxin concentrations, systemic and local inflammation, and metabolic dysfunction in rodent models. (nih.gov)
  • The review leads off with a description of the unique chemical structure of cranberry proanthocyanidin (PAC) polyphenols and how they are bio transformed by the gut microbiota, followed by a brief overview of microbial metabolites of cranberry and a discussion of the role of microRNAs in intestinal health and in response to cranberry PACs. (nutraingredients-usa.com)
  • More recently, evidence has emerged supporting a role for intestinal miRNA in host-microbiota crosstalk," the researchers noted. (nutraingredients-usa.com)
  • We and others demonstrated that miRNA expression is microbiota-dependent in various intestinal regions. (nutraingredients-usa.com)
  • Edited by a researcher from Yale University, Health and the Gut: The Emerging Role of Intestinal Microbiota in Disease and Therapeutics is an authoritative and easy-to-use reference, ideal for both researchers in the field and those who wish to gain more information about the impact of gut microbiota on human health. (routledge.com)
  • The effect of isoflavones is closely related to the state of the intestinal microbiota , because it is necessary that isoflavones be transformed so that they can be absorbed and have an effect on the body. (botanical-online.com)
  • To be absorbed, they must be transformed into aglycones and carbohydrates through the action of the intestinal microbiota (by the enzyme beta-glucosidase). (botanical-online.com)
  • It has been observed that a certain type of intestinal microbiota is capable of producing equol from isoflavone daizdein . (botanical-online.com)
  • The necessary transformation of isoflavones by the intestinal microbiota or flora shows that the assimilation of these components may be different between different individuals depending on the composition of their intestinal microbiota . (botanical-online.com)
  • One possible explanation for this fact seems to be the intestinal microbiota difference. (botanical-online.com)
  • This is shown by a study that also shows that it takes a remarkably long time for the mature intestinal microbiota to get established. (gu.se)
  • Professor Bäckhed and his group have previously demonstrated that the composition of children's intestinal microbiota is affected by their mode of delivery and diet. (gu.se)
  • One key conclusion is that the intestinal microbiota forms an ecosystem that takes a long time to mature. (gu.se)
  • However, when the children were 3 and 5 years the microbiota diversity and composition had caught up and were largely normalized intestinal microbiota. (gu.se)
  • It's striking that even at the age of 5 years, several of the bacteria that are important components of the intestinal microbiota in adults are missing in the children," he continues. (gu.se)
  • By investigating and understanding how the intestinal microbiota develops in healthy children, we may get a reference point to explorie if the microbiota may contribute to disease in future studies," he concludes. (gu.se)
  • Human microbiota-colonized C57BL/6NTac mice display immunological deficiencies in the gut and Effects of three different chow diets on colonization efficiency and the intestinal immunology of human microbiota-colonized mice . (taconic.com)
  • La composición de la microbiota intestinal (MBI) ha recibido atención en los últimos tiempos como un factor etiológico en el desarrollo de la obesidad. (immunology.org)
  • Esto explica sus efectos terapéuticos en pacientes con enfermedad inflamatoria intestinal (IBD). (immunology.org)
  • Algunas bacterias del tracto GI pueden suprimir el factor adiposo inducido por ayuno (Fiaf) del hospedador y las proteínas de uniones estrechas como ZO-1 y ocludina, expresadas en el epitelio intestinal. (immunology.org)
  • ILSI Europe's Concise Monograph Probiotics, Prebiotics and the Gut Microbiota provide readers with a single document compiling both probiotic and prebiotic concepts and an overall understanding of the function of the intestinal microbiota. (ilsi.org)
  • In addition, the intestinal microbiota produces metabolites-in particular some short-chain fatty acids-which, having neuroprotective and anti-inflammatory properties, directly or indirectly affect brain function. (medicalxpress.com)
  • Our results are indisputable: certain bacterial products of the intestinal microbiota are correlated with the quantity of amyloid plaques in the brain," explains Moira Marizzoni. (medicalxpress.com)
  • The microbiota-gut-brain axis: learning from intestinal bacteria? (bmj.com)
  • The intestinal microbiota is a diverse and dynamic ecosystem, 1 which has developed a mutualistic relationship with its host and plays a crucial role in the development of the host's innate and adaptive immune responses. (bmj.com)
  • An interaction between the intestinal microbiota and the central nervous system (CNS) may seem difficult to conceive at first sight, but clinicians are well aware of the benefit of oral antibiotics and laxatives in the treatment of hepatic encephalopathy. (bmj.com)
  • More recently, more definitive proof of concept studies using germ-free and reconstituted mice highlighted that intestinal microbiota are able to drive development of systemic autoantibody responses. (bmj.com)
  • Integrating intestinal microbiota into systemic lupus erythematosus (SLE) pathogenesis. (bmj.com)
  • In Annals of Rheumatic Diseases , Azzouz et al 5 describe the results of an in-depth analysis of the relationship between intestinal microbiota, development of anti-DNA antibodies and their link to development of lupus nephritis. (bmj.com)
  • Those intestinal microorganisms called microbiota and are involved in a variety of mechanisms of the organism, they interact with the host and therefore are in contact with the organs of the various systems. (bvsalud.org)
  • Thus, it has pre-viously noted that the gut microbiota can participate in the pathogenesis of autoimmune diseases , chronic intestinal inflammation , diabetes mellitus , obesity and atherosclerosis , neurological disorders (e.g., neurological diseases , autism , etc.) colorectal cancer , and more. (bvsalud.org)
  • Fecal microbiota transplantation (FMT) helps to replace some of the "bad" bacteria of your colon with "good" bacteria. (medlineplus.gov)
  • Researchers are now hopeful that a procedure known as fecal microbiota transplantation (FMT) and other therapies that target human gut microbiome can be used to treat these diseases in the future. (disabled-world.com)
  • Fecal microbiota transplant is the process of transplantation of fecal bacteria from a healthy individual into a recipient. (disabled-world.com)
  • Researchers at Memorial Sloan Kettering Cancer Center have shown that autologous fecal microbiota transplantation (auto-FMT) is a safe and effective way to help replenish beneficial gut bacteria in cancer patients who require intense antibiotics during allogenic hematopoietic stem cell transplantation. (nih.gov)
  • The American Academy of Pediatrics provides guidance for pediatricians on the use of fecal microbiota transplantation in children within a new clinical report that looks at the promising uses of the procedure and what remains unknown. (healthychildren.org)
  • Fecal microbiota transplantation has been successful in treating a potentially life-threatening infection, Clostridioides difficile . (healthychildren.org)
  • The clinical report, ' Guidance for the Clinician in Rendering Patient Care Fecal Microbiota Transplantation: Information for the Pediatrician ,' is published in the December 2023 issue of Pediatrics . (healthychildren.org)
  • The report, written by the Section on Gastroenterology, Hepatology and Nutrition and Committee on Infectious Diseases, recommends the use of fecal microbiota transplantation in children with a moderate to severe or a recurrent infection of Clostridioides difficile, also called CDI or C diff . (healthychildren.org)
  • Fecal microbiota transplantation involves the transfer of stool from a healthy donor to another individual, to replace 'good' bacteria in the gut that has sometimes been destroyed by use of antibiotics. (healthychildren.org)
  • Fecal microbiota transplantation should always be performed in a center with experience in the procedure. (healthychildren.org)
  • And while the long-term effects of fecal microbiota transplantation are unknown, according to the AAP, the clinical report authors say that the field of microbial therapies is anticipated to quickly advance. (healthychildren.org)
  • The first publication, Antibiotic-treated versus germ-free rodents for microbiota transplantation studies 1 , helps researchers understand which model is best used depending on the aim of their research. (taconic.com)
  • In the second manuscript, Microbiota composition of simultaneously colonized mice housed under either gnotobiotic isolator or individually ventilated cage regime 2 , Dr. Lundberg reports on key findings in a fecal microbiota transplantation (FMT) studies using a traditional gnotobiotic technique and an emerging technology in microbiome research using individually ventilated cage (IVC) racks. (taconic.com)
  • Dr. Lundberg would be pleased to send you a PDF of her dissertation Optimizing Microbiota Transplantation Studies in Mice . (taconic.com)
  • A research consortium recently began enrolling patients in a clinical trial examining whether fecal microbiota transplantation (FMT) by enema-putting stool from a healthy donor in the colon of a recipient-is safe and can prevent recurrent Clostridium difficile -associated disease (CDAD), a potentially life-threatening diarrheal illness. (nih.gov)
  • Clinically, new microbiota can be acquired through fecal microbiota transplant to treat infections such as chronic C. difficile infection. (wikipedia.org)
  • Dr. Lundberg's work improved the understanding of how to conduct fecal microbiota transplant studies in mice. (taconic.com)
  • In this follow-up interview with Glenn Taylor of the Taymount Clinic in the U.K., we discuss the latest developments in fecal microbiota transplant (FMT). (chriskresser.com)
  • Taymount was founded in 2003, and it's one of the only dedicated FMT (fecal microbiota transplant) clinics in the world, that I'm aware of. (chriskresser.com)
  • General information regarding Fecal microbiota transplants (FMT), the taking of feces from a person and and placing it inside the colon of someone else. (disabled-world.com)
  • The presence of microbiota in human and other metazoan guts has been critical for understanding the co-evolution between metazoans and bacteria. (wikipedia.org)
  • The human microbiota includes bacteria, fungi, archaea and viruses. (wikipedia.org)
  • Despite our understanding of the important role of the oral ecosystem in health and disease, limited information is available regarding the oral microbiota (comprising bacteria, archaea, fungi and viruses) in HIV pathogenesis. (nih.gov)
  • The bacteria residing in your digestive tract, or your gut microbiota, may play an important role in your ability to respond to chemotherapy drugs in the clinic, according to a new study by scientists at the University of Massachusetts Medical School. (news-medical.net)
  • The scientists were thus able to follow the successive incorporation of various bacteria into the children's gut microbiota. (gu.se)
  • It has been reported that a lower diversity of gut microbiota composition with significant reduction of short chain fatty acid (SCFA) producer bacteria such as Faecalibacterium prausnitzii results to an increased risk of asthma and cystic fibrosis (CF) in children [ 14 , 15 ]. (hindawi.com)
  • Gut microbiota consists of over 100 trillion microorganisms including at least 1000 different species of bacteria and is crucially involved in physiological and pathophysiological processes occurring in the host. (hindawi.com)
  • Microbiota is the good (and bad bacteria) in your gut. (nestlenutrition-institute.org)
  • Their microbiota has indeed a reduced microbial diversity, with an over-representation of certain bacteria and a strong decrease in other microbes. (medicalxpress.com)
  • Also known as skin flora, the skin microbiota is the community of micro-organisms living on the surface and inside your skin (viruses, bacteria, fungi. (dermaceutic.com)
  • But in aged mice, just eight weeks on a low-tryptophan diet results in some unhealthy changes in the trillions of bacteria that comprise the gut microbiota and higher levels of systemic inflammation, they report in the International Journal of Molecular Sciences. (scitechdaily.com)
  • In the microbiota analyses, they found alterations in all three domains of life (fungi, archaea, and bacteria), as well as viruses, in relation to the development of colorectal cancer. (who.int)
  • The recent availability of high-throughput, deep-sequencing techniques has made it possible to obtain more insight in the microbiota in humans, including the not yet cultivated fraction of bacteria. (cdc.gov)
  • These techniques have elucidated that bacteria of the human microbiota outnumber human host cells by 10-fold, and microbiota composition varies greatly between body sites and persons. (cdc.gov)
  • The Oral Microbiota and Bacterial Disease Program in the Integrative Biology and Infectious Disease Branch supports extramural basic and translational research on the role of oral microbes in health and disease. (nih.gov)
  • Faecal samples were obtained for determination of the gut microbiota by fluorescence in situ hybridization of bacterial cells. (karger.com)
  • The bacterial population in the gut, known as the gut microbiota, performs many vital functions for the body. (pasteur.fr)
  • Current attempts to modulate the human microbiota and immune responses are based on probiotics or human-derived bacterial transplants. (helsinki.fi)
  • The various bacterial communities that make up the gut microbiota have many functions including metabolic, barrier effect, and trophic functions. (nih.gov)
  • To determine whether inflammation mediators and bacterial metabolites constitute a link between the gut microbiota and amyloid pathology in Alzheimer's disease, we studied a cohort of 89 people between 65 and 85 years of age. (medicalxpress.com)
  • Researchers from Texas A&M University set out to test bacterial microbiota on different skin surfaces of healthy cats and cats with allergic skin disease. (aaha.org)
  • The specific serotypes of the first licensed 7-valent pneumococcal vaccine are common colonizers of the upper respiratory tract of children during the first years of life, in which these serotypes generally reside as part of the nasopharyngeal microbiota (bacterial community) ( 3 ). (cdc.gov)
  • Perturbations of these interactive microbial structures (e.g., by environmental change or vaccinations) alter the bacterial network structures and may thereby influence the presence and containment of other microbiota members, and these alterations have effects on health and susceptibility to disease ( 13 , 14 ). (cdc.gov)
  • We statistically evaluated if intake of added sugar (as well as with the support of the urinary sucrose and fructose biomarker as mentioned in a previous blog post ), sugar-sweetened beverages and artificially sweetened beverages associated with any of the 64 bacterial genera or with various measures of microbiota composition and diversity, such as alpa diversity, beta diversity and the Firmicutes:Bacteroidetes ratio. (lu.se)
  • This funding opportunity announcement (FOA) encourages hypothesis driven basic and translational sciences that will enhance our understanding of the role of microbiota in changing the immune response to HIV pathogenesis in the oral cavity. (nih.gov)
  • Gut microbiota may participate in the pathogenesis of ITP through affecting cytokine secretion, interfering with fatty metabolism. (frontiersin.org)
  • Our group has discovered that gut microbiota, via specific microbial choline trimethylamine-lyases, play an obligatory role in the generation of trimethylamine N -oxide (TMAO), a bioactive metabolite of choline or L- carnitine that contributes to cardiovascular disease pathogenesis. (bmj.com)
  • Specific sections pertain the role of the altered gut microbiota in the pathogenesis of Alzheimer's disease, depression, and type 2 diabetes mellitus. (hindawi.com)
  • Cranberry polyphenols and their gut microbiota metabolites may exert anti-inflammatory effects by modulating host microRNAs, according to a recent study from University of Toronto researchers. (nutraingredients-usa.com)
  • The researchers noted that much of the research into their beneficial effects has focused on urinary tract and H. pylori ​infections, with only a few studies on the microbial response to PACs (despite the increased attention on gut microbiota-derived metabolites as mediators of health effects). (nutraingredients-usa.com)
  • Understanding the compositional structures and metabolites of gut microbiota involved in development and chemotherapy resistance of colorectal cancer will provide strategies for developing novel therapies. (frontiersin.org)
  • This Research Topic particularly focuses on the mechanisms of the influence of gut microbiota, or their metabolites, on chemotherapy resistance of colorectal cancer. (frontiersin.org)
  • The gut microbiota can modulate the host physiology, as a function of their composition and derivatives (e.g., metabolites and other components). (hindawi.com)
  • However, the role of gut microbiota and its metabolites have remained unclear. (mdpi.com)
  • But the reality that just increasing tryptophan did not always correct problems, and that some tryptophan metabolites are actually harmful, provides more evidence that a better option is giving select metabolites early on to help keep the microbiota functioning optimally, rather than attempting a tryptophan rescue, the investigators say. (scitechdaily.com)
  • These close relationships between gut microbiota, health, and disease, have led to great interest in using probiotics (i.e. live micro-organisms), or prebiotics (i.e. non-digestible substrates) to positively modulate the gut microbiota to prevent or treat some diseases. (nih.gov)
  • The authors concluded that gut microbiota modulate host metabolism and seizure susceptibility in mice. (medscape.com)
  • How Gut Microbiota Modulate Seizure Susceptibility - Medscape - Nov 03, 2018. (medscape.com)
  • Laboratory mice reconstituted with natural microbiota exhibited reduced inflammation and increased survival following influenza virus infection and improved resistance against mutagen/inflammation-induced colorectal tumorigenesis. (nih.gov)
  • This includes how changes in the oral microbiota of an HIV-infected individual impact mucosal immunity, acute and chronic inflammation, HIV viremia, transmission, and latency, and how antiretroviral therapy (ART) influences the oral microbiota. (nih.gov)
  • Additionally, the gut microbiota composition affects (and is affected by) the expression of angiotensin-converting enzyme-2 (ACE2), which is the main receptor for SARS-CoV-2 and contributes to regulate inflammation. (hindawi.com)
  • Beyond changing the colonies of microbiota in the gut, stress will also alter the tight connections between the cells lining the gut so the lining becomes more permeable to pathogens and to secretions from these pathogens, further contributing to systemic inflammation (Kiliaan et al. (madinamerica.com)
  • The objective was to determine the effect of iron fortification on gut microbiota and gut inflammation in African children. (greenmedinfo.com)
  • We measured changes in hemoglobin concentrations, inflammation, iron status, helminths, diarrhea, fecal calprotectin concentrations, and microbiota diversity and composition (n = 60) and the prevalence of selected enteropathogens. (greenmedinfo.com)
  • Thus, iron fortification in this population produces a potentially more pathogenic gut microbiota profile, and this profile is associated with increased gut inflammation. (greenmedinfo.com)
  • hence the hypothesis that we wanted to test here: could inflammation in the blood be a mediator between the microbiota and the brain? (medicalxpress.com)
  • A blend of natural components that provides a variety of nutrients to reduce skin redness, imperfections and inflammation by supporting skin microbiota. (dermaceutic.com)
  • A healthy gut microbiota always translates to overall wellness and a stronger immune system, while dysbiosis (microbial imbalance) results in a dysfunctional immune system , persistent inflammation and gastric diseases like inflammatory bowel disease (IBD). (naturalnews.com)
  • It was the unhealthy changes they saw in the microbiota that made Fulzele, Isales and their colleagues also suspect increased release of inflammation-promoting signaling molecules called cytokines, hypothesizing that microbiota changes might induce release of the molecules body-wide. (scitechdaily.com)
  • Fecal microbiota transplants (FMT) are just what they sound like. (disabled-world.com)
  • Clostridium difficile -associated disease, a significant problem in healthcare facilities, causes an estimated 15,000 deaths in the United States each year," said NIAID Director Anthony S. Fauci, M.D. "This randomized, controlled trial aims to provide critical data on the efficacy and long-term safety of using fecal microbiota transplants by enema to cure C. diff infections. (nih.gov)
  • Acute and chronic HIV infection, along with changes in local and systemic immunity, may perturb the normal oral microbiota. (nih.gov)
  • It is well established that human health and disease depend on interactions between the immunity system and a coevolved microbial population, called the microbiota. (hindawi.com)
  • In a symbiotic state, the gut microbiota reinforces health status through beneficial local and systemic interactions with the host, especially by regulating innate and adaptive immunity and providing critical defense against pathogenic colonization in the gut and other organs (e.g., lungs), thus creating a gut-lung axis [ 11 , 12 ]. (hindawi.com)
  • Therefore, disruption of the gut microbiota composition (dysbiosis), which can result from changes in diet or antibiotic consumption, adversely affects the lung microbiota composition, immunity, and pathophysiology and can predispose to respiratory diseases [ 13 ]. (hindawi.com)
  • To evaluate differences in the establishment of gut microbiota in infants born by vaginal or caesarean delivery and its impact on mucosal immunity. (karger.com)
  • A balanced microbiota ensures the health and immunity of the skin, as well as its aesthetics and protection. (dermaceutic.com)
  • In their latest study, NIH researchers have finally uncovered how the gut microbiota fends off harmful invaders - a process known as colonization resistance - and enhances host immunity in the process. (naturalnews.com)
  • Microbiota are the range of microorganisms that may be commensal, mutualistic, or pathogenic found in and on all multicellular organisms, including plants. (wikipedia.org)
  • Recent technological advances have increased the interest on the relationship between the microorganisms inhabiting the gut (gut microbiota) and human health. (hindawi.com)
  • Seminal studies in germ-free mice ​ emphasised that early colonisation with a complete specific-pathogen-free microbiota ameliorated brain development and behavioural abnormalities. (nutraingredients.com)
  • After establishing how streptomycin alters the gut microbiota in mice, the researchers fed a different set of mice E. coli that were genetically modified to either internalize-and therefore, deplete-environmental AI-2 or produce high amounts of extracellular AI-2, beginning on day two of streptomycin treatment. (the-scientist.com)
  • When researchers did the reverse fecal transplant experiment, transferring the intrepid mice microbiota into the skittish mice, the skittish mice became daring and showed an increase in BDNF in their hippocampi (Collins, Kassam, & Bercik, 2013). (madinamerica.com)
  • In a dramatic demonstration, researchers transferred the gut microbiota from the obese mice to the thin mice. (madinamerica.com)
  • Scientists from the Institut Pasteur, the CNRS and Inserm recently discovered that after transferring the microbiota of stressed, anxious mice to healthy mice, the psychological traits of the former could soon be transferred in the latter. (pasteur.fr)
  • In the mice whose depression was caused by an imbalance in the gut microbiota, the scientists demonstrated the inefficacy of an antidepressant such as fluoxetine. (pasteur.fr)
  • After transferring the microbiota to germ-free mice, the researchers then exposed the animals to Kpn and found that the microbiota helped protect the mice from infection . (naturalnews.com)
  • When the researchers supplemented mice with taurine, they found that this alone was enough to prime their gut microbiota to fight off foreign invaders. (naturalnews.com)
  • The main commensal microbial community, known as the gut microbiota, is located in the gut, an apparatus with the greatest mucosal surface and interactions with external stimuli. (hindawi.com)
  • Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P and Flint HJ 2008 Human colonic microbiota associated with diet, obesity and weight loss. (springer.com)
  • 6. Harris K, Kassis A, Geneviève M, Chieh C. Is the Gut Microbiota a New Factor Contributing to Obesity and Its Metabolic Disorders? (immunology.org)
  • In addition, the BMI at age two was not significantly higher in children who later became overweight/obese, indicating that gut microbiota composition may be the earliest warning sign for detecting obesity. (integrativepractitioner.com)
  • Our study provides more evidence that the gut microbiota might be playing a role in later obesity," said lead author Maggie Stanislawski, PhD, who is a research associate at the LEAD Center, University of Colorado Anschutz Medical Campus, Colorado School of Public Health, Aurora, Colorado. (integrativepractitioner.com)
  • If our findings can be confirmed by other studies, the gut microbiota might play an important part of the obesity prediction algorithm, to identify at-risk kids early in life, before they start to gain any excess weight that might put them at risk for later obesity. (integrativepractitioner.com)
  • Prior to this study, a growing body of evidence has demonstrated that the gut microbiota plays a role in obesity, and there is some evidence that the role might be causal. (integrativepractitioner.com)
  • The findings suggest that the gut microbiota phenotype was present before any overt sign of overweight or obesity. (integrativepractitioner.com)
  • Since the gut microbiota is influenced by diet, this association could also reflect dietary choices that are precursors to obesity. (integrativepractitioner.com)
  • Haemer MA, Huang TT, Daniels SR. The effect of neurohormonal factors, epigenetic factors, and gut microbiota on risk of obesity. (cdc.gov)
  • Iron replacement therapy in patients with inflammatory bowel disease alters gut microbiota depending on how it is administered, suggest scientists. (nutraingredients.com)
  • The researchers found qualitative differences in the composition of children's gut microbiota at day ten and at two years that were associated with BMI z-scores at age 12. (integrativepractitioner.com)
  • The objectives of this Funding Opportunity Announcement (FOA) are to expand our understanding of the interactions between HIV and the oral microbiota and the perturbations to the oral microbiota that may occur in the context of HIV infection. (nih.gov)
  • However, only a few studies have attempted to characterize the oral microbiota in the context of HIV infection. (nih.gov)
  • Her data indicates that, when transplanting a complex microbiota, IVCs will support a stable microbiota. (taconic.com)
  • A research group from the University of Turku led by Professor Laura Elo has developed a new mass spectrometry-based method, which enables extensive studying of protein levels in complex microbiota samples. (utu.fi)
  • Gut microbiota manipulation including probiotics, faecal microbial transplant and antibiotics has been studied in alcoholic liver disease with varying success. (nature.com)
  • The pulmonary microbiota studies in human beings showed that type and diversity of microbes are affected by disease conditions, antibiotic therapy, environmental factors, and socio-demographic factors. (springer.com)
  • Until recently, the research on microbiota has strongly focused on discovering which microbes are present in a sample, but analysing the functionality of the microbiota has been challenging. (utu.fi)
  • For many years, researchers have known that the gut microbiota - a diverse but harmonious community of microbes hosted by the digestive system - directly influences immune function. (naturalnews.com)
  • Simultaneously, the gut microbiota undergoes functional changes so that the number of microbes that can utilize taurine increases. (naturalnews.com)
  • Microbiota revolution: How gut microbes regulate our lives. (bvsalud.org)
  • Read my take on why I believe live biotherapeutic products for microbiota restoration following a Clostridioides difficile infection (CDI) are game changers for preventing CDI recurrences. (clinicaloptions.com)
  • Parkinson's disease sufferers have a different microbiota in their intestines than their healthy counterparts, according to a study. (sciencedaily.com)
  • Parkinson's disease sufferers have a different microbiota in their intestines than their healthy counterparts, according to a study conducted at the University of Helsinki and the Helsinki University Central Hospital. (sciencedaily.com)
  • The goal of FMT is to treat the condition by restoring a patient's gut microbiota to that more typical of a healthy person. (disabled-world.com)
  • The IGC team's results point to a potential way to manipulate this molecule, called pan-species autoinducer-2 (AI-2), to promote healthy gut microbiota following diet- and disease-related perturbations. (the-scientist.com)
  • Previous studies demonstrated that the diversity and composition of respiratory microbiota in TB patients were different from healthy individuals. (springer.com)
  • Therefore, the aim of the present analysis was to estimate the relative proportion of respiratory microbiota at phylum and genus levels among TB cases and healthy controls. (springer.com)
  • The composition of the respiratory microbiota in TB patients and healthy controls were quite different. (springer.com)
  • Several studies demonstrated an altered microbiota composition in patients infected with SARS-CoV-2, compared to healthy individuals. (hindawi.com)
  • Does a healthy microbiota lead to a healthy mind? (pasteur.fr)
  • Despite the difficulties in defining a "good" microbiota, data suggest that, in adulthood, a healthy microbiota is characterized by the community stability and the species diversity. (hindawi.com)
  • Microbiota and SCFA in Lean and Overweight Healthy Subjects. (immunology.org)
  • In a normally reciprocal relationship that appears to go awry with age, sufficient tryptophan, which we consume in foods like milk, turkey, chicken, and oats, helps keep our microbiota healthy. (scitechdaily.com)
  • A healthy microbiota, in turn, helps ensure that tryptophan mainly results in good things for us like producing the neurotransmitter serotonin, which reduces depression risk, and melatonin, which aids a good night's sleep, says Dr. Sadanand Fulzele, an aging researcher in the Medical College of Georgia Department of Medicine. (scitechdaily.com)
  • Do certain types microbiota show up on the skin of allergic cats that aren't on the skin of healthy cats? (aaha.org)
  • Specific alterations in the gut-liver-brain axis that are complicit in the interactions between the gut microbiota and alcohol addiction are also reviewed. (nature.com)
  • In infants, this mechanistic relationship has not been empirically demonstrated but several associations between gut microbiota and behaviour have been reported. (nutraingredients.com)
  • The researchers used 16S rRNA gene sequencing for the analysis of the infants' gut microbiota, with stool samples taken at 18 months of age. (nutraingredients.com)
  • At the age of 4 months, the gut microbiota in the cesarean-born infants was less diverse compared with vaginally born infants. (gu.se)
  • Evaluating the gut microbiota of infants may help identify children who are at risk for becoming overweight or obese, according to results from a recent study published October 23 in mBio . (integrativepractitioner.com)
  • To determine whether gut microbiota, fatty metabolism and cytokines were associated with immune thrombocytopenia (ITP). (frontiersin.org)
  • Our study revealed a relationship between microbiota and fatty metabolism in ITP. (frontiersin.org)
  • For example, about 0.5-14.2 μM butyrate derived from gut microbiota entered the circulatory system after being absorbed by colon cells and hepatic metabolism. (frontiersin.org)
  • Commensalism, a concept developed by Pierre-Joseph van Beneden (1809-1894), a Belgian professor at the University of Louvain during the nineteenth century is central to the microbiome, where microbiota colonize a host in a non-harmful coexistence. (wikipedia.org)
  • The Human Microbiome Project sequenced the genome of the human microbiota, focusing particularly on the microbiota that normally inhabit the skin, mouth, nose, digestive tract, and vagina. (wikipedia.org)
  • 2018). Microbiota: los microbios de tu organismo. (powtoon.com)
  • This Review focuses on clinical studies involving the gut microbiota in patients with alcoholic liver disease across the spectrum from alcoholic fatty liver to cirrhosis and alcoholic hepatitis. (nature.com)
  • Bioinformatics analysis of clinical data about gut microbiota and prognosis of chemotherapy are also welcome. (frontiersin.org)
  • We investigated associations of habitual dietary intake with the taxonomic composition and diversity of the human gut microbiota in 222 Koreans aged 18-58 years in a cross-sectional study. (nih.gov)
  • In fact, these are so small that there are around 100 trillion microbiota on the human body. (wikipedia.org)
  • With the recognition that many of these physiological functions are influenced by human and environmental-associated microbiota, we urge a greater exploration of a potential microbial mismatch. (biomedcentral.com)
  • In the last few years a number of studies have shown that gut microbiota plays an important role in several human diseases, including irritable bowel syndrome (IBS), Clostridium difficile infection (CDI), Parkinson's disease (PD), and autism spectrum disorder (ASD). (disabled-world.com)
  • The study shows how sensitively the gut microbiota responds to iron replacement, said Haller, who coordinated the three-month human study started at the TUM's ZIEL Institute for Food & Health (ZIEL) involving a group of international researchers. (nutraingredients.com)
  • The characterisation of the functionality of gut microbiota is central in the study of human health and disease as well as disease prediction, prevention, and treatment. (utu.fi)
  • Previous studies have mainly focused on cataloguing the composition of microbiota, but little is known about the functionality of the human gut microbiota. (utu.fi)
  • The important role of the gut microbiota on human health and their role in different diseases has been recognised in studies published over the recent years. (utu.fi)
  • The human gut is a huge complex ecosystem where microbiota, nutrients, and host cells interact extensively, a process crucial for the gut homeostasis and host development with a real partnership. (nih.gov)
  • Every human being carries about 1-2kg of gut microbiota representing a number of cells far bigger than all our body cells together. (nestlenutrition-institute.org)
  • Each human has a unique microbiota that results from our birth mothers, and can change based on what we consume, breathe in or are otherwise exposed to over time. (scitechdaily.com)
  • Both epidemiological and interventional studies, preferably with metagenomic sequencing and of larger study samples, are needed to further evaluate if a link exists between intake of sugars and sweeteners and the human gut microbiota. (lu.se)
  • It has been demonstrated that the microbiota has a crucial role in establishing immune responses against respiratory infections, which are controlled by a bidirectional cross-talk, known as the "gut-lung axis. (hindawi.com)
  • The effects of microbiota on antiviral immune responses, including dendritic cell (DC) function and lymphocyte homing in the gut-lung axis, have been reported in the recent literature. (hindawi.com)
  • Therefore, the importance of the gut microbiota composition in the lung immune system and ACE2 expression could be valuable to provide optimal therapeutic approaches for SARS-CoV-2 and to preserve the symbiotic relationship of the microbiota with the host. (hindawi.com)
  • The gut microbiota continuously interacts with the host to preserve homeostasis through the regulation of major signaling pathways (e.g., immune, metabolic, neurologic, and endocrine pathways), as well as by modulating the epigenetic status [ 6 , 7 ]. (hindawi.com)
  • According to immunologists at the NIH, the gut microbiota " plays a fundamental role in the induction, training and function of the host immune system. (naturalnews.com)
  • The researchers also hope that their discoveries could ultimately be used to develop a testing method which would improve the diagnostics in Parkinson's disease and perhaps finally find a way to treat or even prevent Parkinson's by focusing on gut microbiota. (sciencedaily.com)
  • This is aligned with the understanding that cranberry may also exert prebiotic effects, by conferring health beneficial effects to the host via the modulation of gut microbiota," the researchers wrote. (nutraingredients-usa.com)
  • The researchers compared the BMI at age 12 with gut microbiota samples from six time points throughout their childhood, at day four, day 10, one month, four months, one year, and two years. (integrativepractitioner.com)
  • Researchers from the International Agency for Research on Cancer (IARC) and partner institutions have uncovered alterations in the gut microbiota that are associated with colorectal cancer and are present in biological samples from eight distinct geographical cohorts from around the world. (who.int)
  • Gut microbiota play a crucial role in development and progression of colorectal cancer. (frontiersin.org)
  • There are various bidirectional pathways, including the gut-brain, gut-liver, gut-kidney, and gut-lung pathways, which give rise to interorgan communication, with microbiota playing a key role [ 7 - 10 ]. (hindawi.com)
  • In recent years, the scientific community has suspected that the gut microbiota plays a role in the development of the disease. (medicalxpress.com)
  • These included changes like reduced levels of the bacterium Mucispirillum and Blautia, which play a big role in maintaining microbiota health in humans and animals. (scitechdaily.com)
  • The role of the gut microbiota for health has been largely realized in the past years, and the public media is not shy of jumping to strong conslusions in regards to it. (lu.se)
  • Studies of the gut microbiota after HIV infection suggest that the loss of homeostasis in the enteric community of the gut may lead to additional adverse health outcomes. (nih.gov)
  • Thus, increasing colonic iron could select gut microbiota for humans that are unfavorable to the host. (greenmedinfo.com)
  • In humans, about 1/3 of gut microbiota is "common," while the other 2/3 is different from one individual to another, providing our "personal identity" [ 2 ]. (hindawi.com)
  • Diet has been directly linked to microbiota composition in humans and rodents, they write, and they were able to document impactful shifts. (scitechdaily.com)
  • Microbiota changes might also alter brain function, and the gut-brain axis might be a potential target to reduce alcoholic relapse risk. (nature.com)
  • Our study adds to the mounting evidence connecting the gut microbiota with the gut-brain axis, where the initial stages of gut colonization and assemblage may be linked with neurodevelopmental outcomes with potential long-term associations. (nutraingredients.com)
  • In this study, we focused on various aspects of microbiota in the gut-lung axis that can be considered as potential strategies exploitable for preventing, controlling, and treating respiratory infections, especially coronavirus disease 2019 (COVID-19). (hindawi.com)
  • Here, we report a comparative analysis and quantification of dominant gut microbiota of lean, normal, obese and surgically treated obese individuals of Indian origin. (springer.com)
  • These results, published in the Journal of Alzheimer's Disease , make it possible to envisage new preventive strategies based on the modulation of the microbiota of people at risk. (medicalxpress.com)
  • Over the past decade, numerous studies have found an association between the gut microbiota composition and many diseases. (nih.gov)
  • Professor Hansen's research focus is on how the microbiota impacts laboratory animal models for inflammatory diseases and how this works in conjunction with the diet. (taconic.com)
  • Hence, any dysbiosis could have negative consequences in terms of health and many diseases have been associated to impairment of the gut microbiota. (nih.gov)
  • The research laboratory of neurologist Giovanni Frisoni, director of the HUG Memory Centre and professor at the Department of Rehabilitation and Geriatrics of the UNIGE Faculty of Medicine, has been working for several years now on the potential influence of the gut microbiota on the brain, and more particularly on neurodegenerative diseases. (medicalxpress.com)
  • Taken together, the findings suggest that a single mild infection is enough to induce the gut microbiota to develop resistance against a specific pathogen. (naturalnews.com)
  • Gut microbiota data were obtained by 16S rRNA gene sequencing on DNA extracted from fecal samples. (nih.gov)
  • They performed 16s rRNA gene sequencing on the gut microbiota samples and looked at whether there were specific taxa that were predictive of later BMI at each time point. (integrativepractitioner.com)
  • The composition of the microbiota community is important because some species are highly inflammatory whereas other species are anti-inflammatory. (madinamerica.com)
  • Note: we also found species-specific microbiotas that changed in constituents and abundance in parallel with the speciation events of their Nasonia wasp hosts. (blogspot.com)
  • Is the microbiota species specific? (blogspot.com)
  • This work thus provides proof of an association between certain proteins of the gut microbiota and cerebral amyloidosis through a blood inflammatory phenomenon. (medicalxpress.com)
  • Here we encourage experts in diverse fields (including but not limited to - anthropology, microbiology, design, nutrition, ecology, mental health, horticulture) to present their ideas and novel research concerning the ways in which microbiota (or loss of microbial diversity) might influence physiological adaptations to modern living environments. (biomedcentral.com)
  • With little standardization, many scientists conducting fecal microbiota studies have been subject to trial and error when conducting their studies. (taconic.com)
  • Your gut microbiota helps shield you from infections, and for the longest time, scientists have wondered how. (naturalnews.com)
  • Microbioma vs Microbiota Pacheco Pérez Y, Bello Fernández Z, Góngora Parra K. (2019). (powtoon.com)
  • pathogens and composition of gut microbiota as they relate Recent investigations of enteric illness have shown many to Shigella spp. (cdc.gov)