Mercury chloride (HgCl2). A highly toxic compound that volatizes slightly at ordinary temperature and appreciably at 100 degrees C. It is corrosive to mucous membranes and used as a topical antiseptic and disinfectant.
A silver metallic element that exists as a liquid at room temperature. It has the atomic symbol Hg (from hydrargyrum, liquid silver), atomic number 80, and atomic weight 200.59. Mercury is used in many industrial applications and its salts have been employed therapeutically as purgatives, antisyphilitics, disinfectants, and astringents. It can be absorbed through the skin and mucous membranes which leads to MERCURY POISONING. Because of its toxicity, the clinical use of mercury and mercurials is diminishing.
Stable mercury atoms that have the same atomic number as the element mercury, but differ in atomic weight. Hg-196, 198-201, and 204 are stable mercury isotopes.
Inorganic compounds derived from hydrochloric acid that contain the Cl- ion.
Inbreed BN (Brown Norway) rats are a strain of laboratory rats that are specifically bred for research purposes, characterized by their uniform genetic makeup and susceptibility to various diseases, which makes them ideal models for studying human physiology and pathophysiology.
Organic compounds in which mercury is attached to a methyl group.
Organic mercury compounds in which the mercury is attached to an alkyl group.
Pathological developments in the CECUM.
Mercury poisoning, also known as hydrargyria, is a type of metal toxicity caused by exposure to excessive levels of mercury, leading to harmful effects on the nervous system, kidneys, and other organs, often resulting from improper handling or ingestion of mercury-containing substances.
A polymer prepared from polyvinyl acetates by replacement of the acetate groups with hydroxyl groups. It is used as a pharmaceutic aid and ophthalmic lubricant as well as in the manufacture of surface coatings artificial sponges, cosmetics, and other products.
Organic mercury compounds in which the mercury is attached to a phenyl group. Often used as fungicides and seed treatment agents.
Agents employed in the preparation of histologic or pathologic specimens for the purpose of maintaining the existing form and structure of all of the constituent elements. Great numbers of different agents are used; some are also decalcifying and hardening agents. They must quickly kill and coagulate living tissue.
Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN.
A phase transition from liquid state to gas state, which is affected by Raoult's law. It can be accomplished by fractional distillation.
A class of porins that allow the passage of WATER and other small molecules across CELL MEMBRANES.
Process whereby the immune system reacts against the body's own tissues. Autoimmunity may produce or be caused by AUTOIMMUNE DISEASES.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
Inflammation of any one of the blood vessels, including the ARTERIES; VEINS; and rest of the vasculature system in the body.

Transport of fluid by lens epithelium. (1/431)

We report for the first time that cultured lens epithelial cell layers and rabbit lenses in vitro transport fluid. Layers of the alphaTN4 mouse cell line and bovine cell cultures were grown to confluence on permeable membrane inserts. Fluid movement across cultured layers and excised rabbit lenses was determined by volume clamp (37 degrees C). Cultured layers transported fluid from their basal to their apical sides against a pressure head of 3 cmH2O. Rates were (in microliter. h-1. cm-2) 3.3 +/- 0.3 for alphaTN4 cells (n = 27) and 4.7 +/- 1.0 for bovine layers (n = 6). Quinidine, a blocker of K+ channels, and p-chloromercuribenzenesulfonate and HgCl2, inhibitors of aquaporins, inhibited fluid transport. Rabbit lenses transported fluid from their anterior to their posterior sides against a 2.5-cmH2O pressure head at 10.3 +/- 0.62 microliter. h-1. lens-1 (n = 5) and along the same pressure head at 12.5 +/- 1.1 microliter. h-1. lens-1 (n = 6). We calculate that this flow could wash the lens extracellular space by convection about once every 2 h and therefore might contribute to lens homeostasis and transparency.  (+info)

The colonic mesenteric margin is most susceptible to injury in an experimental model of colonic ulceration. (2/431)

BACKGROUND: Crohn's disease ileal ulcers and indomethacin-induced jejunal ulceration in the rat tend to occur in the mucosa nearest to the mesentery (mesenteric margin), an area of the bowel wall that has a critical blood supply. Mercuric chloride induces caecal and colonic ulceration in the Brown Norway rat. AIM: To examine whether the mesenteric margin is more sensitive to injury by a substance known to be vasculotoxic in the caecum and colon. METHODS: Brown Norway rats received a single subcutaneous dose of either mercuric chloride 1 mg/kg or saline. The gastrointestinal tract was examined macro- and microscopically for lesions 48 h later. The vascular anatomy of the normal rat colon and caecum was also examined using the carbon ink perfusion technique. RESULTS: Mercuric chloride induced caecal and colonic ulceration preferentially along the mesenteric margin of the bowel wall. Histologically, the lesions showed mucosal necrosis and neutrophil infiltration. There was also extensive vascular degeneration/necrosis with microaneurysm formation and extensive submucosal haemorrhage. Cellular infiltration of the vasculature was not a feature. The caecal and colonic mesenteric margins in control rats were supplied by small end arteries. CONCLUSIONS: The colonic and caecal mesenteric margins are susceptible to injury by mercuric chloride, a chemical known to induce haemorrhagic vasculopathy in the rat gastrointestinal tract. The large bowel mesenteric margin may be susceptible to injury by mercuric chloride because of the critical blood supply to that side of the bowel wall.  (+info)

Mercury-induced anti-nucleolar autoantibodies can transgress the membrane of living cells in vivo and in vitro. (3/431)

Treatment with HgCl2 induces a systemic autoimmune disease in certain mice and rats. The major characteristic of this disease in mice with H-2s genotype is the production of anti-nucleolar autoantibodies (ANoIA). The exact mechanism(s) for the production and the functional role of mercury-induced ANoIA are not known. We have studied the ability of mercury-induced ANoIA to enter the living cells in vivo and in vitro. We found that in highly susceptible mice, treatment with mercury induced ANoIA capable of localizing in the nucleoli of kidney and liver cells in vivo. No detectable nucleoli localization of ANoIA were found in the cells of the heart, stomach, intestine and spleen. Consistent with the in vivo studies, mercury-induced ANoIA were also able to enter and translocate in the nucleoli of certain cells in vitro. The highest degree of antibody penetration was found in A-498 cells (a human kidney cell line) followed by 3T3 cells (a mouse fibroblast cell line), whereas the cells of lymphoid origin exhibited a very low degree of antibody penetration. Penetrated ANoIA could be recovered from the nucleoli of live 3T3 cells previously treated with ANoIA. The in vitro nucleolar translocation by ANoIA did not affect the DNA synthesis, but was found to be an active process dependent on time and temperature. Furthermore, pre-treatment of living cells with trypsin markedly inhibited both cell entry and nucleolar accumulation of ANoIA. Thus, mercury-induced ANoIA have a unique ability to transgress the membrane of certain living cells in vivo and in vitro, and to localize in the nucleoli.  (+info)

IL-2 may be a limiting factor precluding lymphocytes from genetically resistant mice from responding to HgCl2. (4/431)

It is unclear how HgCl2 causes autoimmune disorders in genetically predisposed rodents. We investigated the cytokine profile induced by HgCl2 in vitro, and found a high frequency of IL-2-secreting cells in splenocytes from susceptible A.SW and BALB/c mice, whereas the frequency was low in cells from resistant DBA/2 mice. More IL-2-secreting cells were induced in splenocytes from the high responder A.SW mice than in cells from the intermediate responder BALB/c mice. Unexpectedly, a similar level of IL-4 production was induced in splenocytes from BALB/c and DBA/2 mice. IL-4 production was high in unstimulated cells from A.SW mice and was further increased by HgCl2. IFN-gamma-secreting cells were detectable in splenocytes from all three strains after activation by HgCl2. The highest frequency of IL-10-secreting cells was found in splenocytes from A.SW mice after activation, whereas the frequency was lower in cells from BALB/c mice, followed by cells from DBA/2 mice. We showed that neutralizing anti-IL-2 antibody profoundly inhibited the in vitro response to HgCl2. In contrast, antibodies against IL-4, IFN-gamma and IL-10 did not significantly affect the response of splenocytes from either A.SW or DBA/2 mice. The addition of IL-2 into cultures enhanced the proliferative response to HgCl2 in splenocytes from DBA/2 mice to a level comparable with that in cells from BALB/c mice. We found no evidence for the suggestion that HgCl2 induces a Th1/Th2 imbalance in resistant/susceptible strains. We conclude that IL-2 may be a limiting factor precluding lymphocytes from resistant mice from responding to HgCl2.  (+info)

Multiple effects of mercuric chloride on hexose transport in Xenopus oocytes. (5/431)

HgCl(2) had both stimulatory and inhibitory effects on [(3)H]2-deoxyglucose (DG) uptake in Xenopus laevis oocytes. The Hg dose response was complex, with 0.1-10 microM Hg increasing total DG uptake, 30-50 microM Hg inhibiting, and concentrations >100 microM increasing uptake. Analyses of the effects of Hg on DG transport kinetics and cell membrane permeability indicated that low concentrations of Hg stimulated mediated uptake, intermediate concentrations inhibited mediated uptake, but high Hg concentrations increased non-mediated uptake. 10 microM Hg increased the apparent V(max) for DG uptake, but caused little or no change in apparent K(m). Phenylarsine oxide prevented the increase in DG uptake by 10 microM Hg, suggesting that the increase was due to transporter recruitment. Microinjecting low doses of HgCl(2) into the cell increased mediated DG uptake. Higher intracellular doses of Hg increased both mediated and non-mediated DG uptake. Both insulin and Hg cause cell swelling in isotonic media and, for insulin, this swelling has been linked to the mechanism of hormone action. Osmotically swelling Xenopus oocytes stimulated DG transport 2-5-fold and this increase was due to an increased apparent V(max). Exposing cells to 10 microM Hg or 140 nM insulin both increased cellular water content by 18% and increased hexose transport 2-4-fold. These data indicate that low concentrations of Hg and insulin affect hexose transport in a similar manner and that for both an increase cellular water content could be an early event in signaling the increase in hexose transport.  (+info)

Surgical stress increases renal glutathione content via increased glucocorticoid, and resistance to subsequent oxidative injury in the rat: significant link between endocrine response and cell defense system under the stress. (6/431)

Systemic and nonspecific stress response effects on the cellular defense mechanism were studied in the male rat kidney. Two days after laparotomy-induced surgical stress, rats showed increased serum corticosterone and renal cortical reduced glutathione (GSH). Rats were then injected s.c. with mercuric chloride (HgCl2) to oxidatively injure renal tubuli. Increased serum creatinine levels indicated that laparotomy pretreatment lessened renal damage. To study the effects of the activated pituitary-adrenal axis on renal cortical GSH content and vulnerability to subsequent oxidative injury, rats were injected s.c. with ACTH on two consecutive days. ACTH administration increased both corticosterone and aldosterone. These rats showed increased, dose-dependent renal cortical GSH content, i.e., controls (n=7): 1.25 +/- 0.23 micromol/g tissue, daily dose of 10 microg/100 gBW (n=7): 1.53 +/- 0.24 micromol/g tissue, and daily dose of 40 microg/100 gBW (n=7): 2.31 +/- 0.23 micromol/g tissue. Rats receiving daily doses of 40 microg of ACTH/100 gBW acquired resistance to oxidative injury, indicated by serum creatinine levels: controls (n=6), 22 +/- 4 micromol/L; HgCl2 (n=6), 145 +/- 88 micromol/L; ACTH and HgCl2 (n=6), 37 +/- 11 micromol/L. Morphological evidence indicated that ACTH pretreatment in HgCl2-injected rats prevented renal tissue from inflammatory cell infiltration but not from tubular degeneration. Cellular GSH content of LLC-PK1 cells, porcine renal-tubule-derived culture cells, increased significantly in incubation with dexamethasone or aldosterone, suggesting that adrenal steroids directly stimulate renal cell GSH. We demonstrated that stress or ACTH administration activates the defense mechanism in the kidney via increased GSH. This stress-activatable defense system may therefore indicate a connection between endocrine stress response and the cellular defense mechanism.  (+info)

Kinetics of transforming growth factor-beta1 and extracellular matrix in renal tubulointerstitial lesions of mercuric chloride-treated Brown Norway rats. (7/431)

Renal tubulointerstitial lesions in mercuric chloride(HgCl2)-treated Brown Norway rats were investigated focusing on the kinetics of transforming growth factor-beta1(TGF-beta1) and extracellular matrix (ECM). Rats were injected with 1 mg/kg b.w. of HgCl2 at days 0, 2, and 4, and 5 rats were killed at days 2, 4, 6, 8, 10, and 20, respectively. TGF-beta1 mRNA expression in the renal cortex measured by competitive RT-PCR method reached a peak at day 6, mildly decreased at days 8 and 10, and increased again toward day 20. Signals of TGF-beta1 mRNA examined by in situ hybridization method were recognized in the regenerative tubular epithelium at day 6, and in both tubular epithelium and infiltrated mononuclear cells at day 20. After tubular injury, strong immunoreactivity to TGF-beta1 protein was found in desquamated tubular epithelial cells. Then, positive staining was found in the regenerative tubular epithelial cells. Later, infiltrated mononuclear cells also became positive for TGF-beta1 protein. In the ECM, deposition of fibronectin was prominent throughout the experimental period. In conclusion, this strongly suggests that TGF-beta1 derived from tubular epithelial cells and some macrophages might be related to the development of renal interstitial fibrosis in HgCl2-treated BN rats.  (+info)

Early vasculitis in the mercuric chloride induced Brown Norway rat model is neutrophil independent. (8/431)

In the Brown Norway rat, mercuric chloride (HgCl2) induces an autoimmune syndrome characterized by necrotizing vasculitis, predominantly affecting the caecum, and a polyclonal B-cell response. The time course of vasculitis is biphasic, with an alphabeta T-cell independent phase occurring within 24 h, and a T-cell and neutrophil dependent phase, maximal at two weeks. The pathogenesis of the early phase of vasculitis is unclear, and this study aims to examine the role of neutrophils. Rat neutrophils were depleted using cyclophosphamide. RP3, an antirat neutrophil monoclonal antibody, inhibited neutrophil leucocytosis but did not deplete neutrophils. Vasculitis was induced by subcutaneous HgCl2 injection. Serial measurements of peripheral blood leucocyte count were made. Rats were killed after 24 or 72 h. The macroscopic appearance of the caecum was scored by an experienced observer, and samples taken for histological examination. Caecums were excised and myeloperoxidase, a marker enzyme for neutrophil infiltration, assayed. Cyclophosphamide induced marked neutropaenia whereas RP3 inhibited the neutrophilia observed after HgCl2 injection. Vasculitis was present in both treated and control animals, with no significant differences in macroscopic or microscopic scores between the groups. Tissue myeloperoxidase activity was low in all animals and did not differ significantly between groups. The data do not support a role for neutrophils in the initial pathogenesis of vasculitis in this model.  (+info)

Mercuric chloride, also known as corrosive sublimate, is defined medically as a white or colorless crystalline compound used historically as a topical antiseptic and caustic. It has been used in the treatment of various skin conditions such as warts, thrush, and some parasitic infestations. However, its use is limited nowadays due to its high toxicity and potential for serious side effects, including kidney damage, digestive problems, and nervous system disorders. It is classified as a hazardous substance and should be handled with care.

In the context of medicine, Mercury does not have a specific medical definition. However, it may refer to:

1. A heavy, silvery-white metal that is liquid at room temperature. It has been used in various medical and dental applications, such as therapeutic remedies (now largely discontinued) and dental amalgam fillings. Its use in dental fillings has become controversial due to concerns about its potential toxicity.
2. In microbiology, Mercury is the name of a bacterial genus that includes the pathogenic species Mercury deserti and Mercury avium. These bacteria can cause infections in humans and animals.

It's important to note that when referring to the planet or the use of mercury in astrology, these are not related to medical definitions.

Mercury isotopes refer to variants of the chemical element mercury (Hg) that have different numbers of neutrons in their atomic nuclei. This means that while all mercury isotopes have 80 protons in their nucleus, they can have different numbers of neutrons, ranging from 120 to 124 or more.

The most common and stable mercury isotope is Hg-202, which has 80 protons and 122 neutrons. However, there are several other mercury isotopes that occur naturally in trace amounts, including Hg-196, Hg-198, Hg-199, Hg-200, and Hg-204.

Mercury isotopes can also be produced artificially through various nuclear reactions. These isotopes may have different physical and chemical properties than the more common mercury isotopes, which can make them useful for a variety of applications, such as in medical imaging or environmental monitoring. However, some mercury isotopes are radioactive and can be hazardous to handle or dispose of improperly.

Chlorides are simple inorganic ions consisting of a single chlorine atom bonded to a single charged hydrogen ion (H+). Chloride is the most abundant anion (negatively charged ion) in the extracellular fluid in the human body. The normal range for chloride concentration in the blood is typically between 96-106 milliequivalents per liter (mEq/L).

Chlorides play a crucial role in maintaining electrical neutrality, acid-base balance, and osmotic pressure in the body. They are also essential for various physiological processes such as nerve impulse transmission, maintenance of membrane potentials, and digestion (as hydrochloric acid in the stomach).

Chloride levels can be affected by several factors, including diet, hydration status, kidney function, and certain medical conditions. Increased or decreased chloride levels can indicate various disorders, such as dehydration, kidney disease, Addison's disease, or diabetes insipidus. Therefore, monitoring chloride levels is essential for assessing a person's overall health and diagnosing potential medical issues.

"Rats, Inbred BN" are a strain of laboratory rats (Rattus norvegicus) that have been inbred for many generations to maintain a high level of genetic consistency and uniformity within the strain. The "BN" designation refers to the place where they were first developed, Bratislava, Czechoslovakia (now Slovakia).

These rats are often used in biomedical research because their genetic homogeneity makes them useful for studying the effects of specific genes or environmental factors on health and disease. They have been widely used as a model organism to study various physiological and pathophysiological processes, including hypertension, kidney function, immunology, and neuroscience.

Inbred BN rats are known for their low renin-angiotensin system activity, which makes them a useful model for studying hypertension and related disorders. They also have a unique sensitivity to dietary protein, making them a valuable tool for studying the relationship between diet and kidney function.

Overall, Inbred BN rats are an important tool in biomedical research, providing researchers with a consistent and well-characterized model organism for studying various aspects of human health and disease.

Methylmercury compounds are organic forms of mercury, created when methyl groups (CH3) bind to a mercury ion (Hg+). These compounds can be highly toxic and bioaccumulate in living organisms, including humans. They are primarily formed in the environment through the action of bacteria on inorganic mercury, but can also be produced synthetically.

Methylmercury is particularly dangerous because it easily passes through biological membranes, allowing it to enter the brain and other tissues where it can cause significant damage. Exposure to high levels of methylmercury can lead to neurological problems, developmental issues in children, and even death. It's commonly found in contaminated fish and seafood, making these a significant source of human exposure.

Alkylmercury compounds are organic derivatives of mercury, in which a mercury atom is bound to one or more carbon atoms through a covalent bond. These compounds were once used in various industrial and medical applications, including as antiseptics, fungicides, and vaccinal preservatives. However, due to their toxicity and potential for bioaccumulation, the use of alkylmercury compounds has been largely discontinued.

Examples of alkylmercury compounds include methylmercury (CH3Hg+), ethylmercury (C2H5Hg+), and phenylmercury (C6H5Hg+). Methylmercury, in particular, is notorious for its ability to accumulate in the food chain, especially in predatory fish like shark, swordfish, and tuna. Exposure to high levels of methylmercury can lead to serious neurological symptoms, including tremors, vision problems, and developmental delays in children.

It's worth noting that there is some controversy surrounding the safety of thimerosal, a mercury-containing compound used as a preservative in some vaccines. While some studies have suggested a link between thimerosal exposure and neurological disorders like autism, most research has found no evidence to support this claim. Nonetheless, many vaccine manufacturers have voluntarily reduced or eliminated the use of thimerosal in their products as a precautionary measure.

Cecal diseases refer to medical conditions that affect the cecum, which is a pouch-like structure located at the junction of the small and large intestines. The cecum plays an important role in digestion, particularly in the fermentation of certain types of food.

There are several different types of cecal diseases, including:

1. Cecal volvulus: This is a rare condition in which the cecum twists on itself, cutting off blood flow and causing severe pain and other symptoms.
2. Diverticulitis: This occurs when small pouches called diverticula form in the wall of the cecum and become inflamed or infected.
3. Appendicitis: Although not strictly a cecal disease, the appendix is a small tube-like structure that branches off from the cecum. Inflammation of the appendix (appendicitis) can cause severe pain in the lower right abdomen and may require surgical removal of the appendix.
4. Crohn's disease: This is a chronic inflammatory bowel disease that can affect any part of the digestive tract, including the cecum.
5. Tuberculosis: The cecum can also be affected by tuberculosis, which is a bacterial infection that primarily affects the lungs but can spread to other parts of the body.
6. Cancer: Although rare, cancer can also affect the cecum, leading to symptoms such as abdominal pain, bloating, and changes in bowel habits.

Treatment for cecal diseases depends on the specific condition and its severity. Treatment options may include antibiotics, surgery, or other medical interventions. If you are experiencing symptoms that may be related to a cecal disease, it is important to seek medical attention promptly.

Mercury poisoning, also known as hydrargyria or mercurialism, is a type of metal poisoning caused by exposure to mercury or its compounds. It can occur through inhalation, ingestion, or skin absorption. Symptoms may vary but can include sensory impairment (vision, hearing, speech), disturbed sensation and a lack of coordination. The type of symptoms can vary greatly, depending on the type and amount of mercury and the form in which it was taken. Long-term exposure to mercury can lead to serious neurological and kidney problems. It is usually diagnosed through tests that measure the amount of mercury in the body, such as blood or urine tests. Treatment generally involves eliminating the source of mercury exposure, supportive care, and, in some cases, chelation therapy which helps to remove mercury from the body.

I'm sorry for any confusion, but "Polyvinyl Alcohol" is not a medical term. It is a chemical compound used in various industrial and commercial applications, including the production of adhesives, paints, and medical devices. Polyvinyl Alcohol is a type of synthetic polymer made from the polymerization of vinyl acetate monomer, followed by alcoholysis to replace the acetate groups with hydroxyl groups.

In a medical context, Polyvinyl Alcohol might be used in certain medical devices or applications, such as contact lenses, eye drops, and drug delivery systems, due to its biocompatibility and resistance to protein absorption. However, it is not a term commonly used to describe a medical condition or treatment.

Phenylmercury compounds are organic mercury salts that contain a phenyl group, which is a functional group consisting of a benzene ring with a hydroxyl group (-PHenyl-). These compounds were once used in various industrial and medical applications, such as antiseptics, preservatives, and vaccines. However, due to their toxicity and potential for bioaccumulation, the use of phenylmercury compounds has been largely discontinued.

Exposure to phenylmercury compounds can cause a range of adverse health effects, including neurological damage, kidney dysfunction, and developmental problems in children. Therefore, it is important to minimize exposure to these compounds and handle them with care if they are still used in certain applications.

Fixatives are substances used in histology and pathology to preserve tissue specimens for microscopic examination. They work by stabilizing the structural components of cells and tissues, preventing decomposition and autolysis. This helps to maintain the original structure and composition of the specimen as closely as possible, allowing for accurate diagnosis and research. Commonly used fixatives include formalin, glutaraldehyde, methanol, and ethanol. The choice of fixative depends on the specific type of tissue being preserved and the intended use of the specimen.

Chloride channels are membrane proteins that form hydrophilic pores or gaps, allowing the selective passage of chloride ions (Cl-) across the lipid bilayer of cell membranes. They play crucial roles in various physiological processes, including regulation of neuronal excitability, maintenance of resting membrane potential, fluid and electrolyte transport, and pH and volume regulation of cells.

Chloride channels can be categorized into several groups based on their structure, function, and mechanism of activation. Some of the major classes include:

1. Voltage-gated chloride channels (ClC): These channels are activated by changes in membrane potential and have a variety of functions, such as regulating neuronal excitability and transepithelial transport.
2. Ligand-gated chloride channels: These channels are activated by the binding of specific ligands or messenger molecules, like GABA (gamma-aminobutyric acid) or glycine, and are involved in neurotransmission and neuromodulation.
3. Cystic fibrosis transmembrane conductance regulator (CFTR): This is a chloride channel primarily located in the apical membrane of epithelial cells, responsible for secreting chloride ions and water to maintain proper hydration and mucociliary clearance in various organs, including the lungs and pancreas.
4. Calcium-activated chloride channels (CaCCs): These channels are activated by increased intracellular calcium concentrations and participate in various physiological processes, such as smooth muscle contraction, neurotransmitter release, and cell volume regulation.
5. Swelling-activated chloride channels (ClSwells): Also known as volume-regulated anion channels (VRACs), these channels are activated by cell swelling or osmotic stress and help regulate cell volume and ionic homeostasis.

Dysfunction of chloride channels has been implicated in various human diseases, such as cystic fibrosis, myotonia congenita, epilepsy, and certain forms of cancer.

Volatilization, in the context of pharmacology and medicine, refers to the process by which a substance (usually a medication or drug) transforms into a vapor state at room temperature or upon heating. This change in physical state allows the substance to evaporate and be transferred into the air, potentially leading to inhalation exposure.

In some medical applications, volatilization is used intentionally, such as with essential oils for aromatherapy or topical treatments that utilize a vapor action. However, it can also pose concerns when volatile substances are unintentionally released into the air, potentially leading to indoor air quality issues or exposure risks.

It's important to note that in clinical settings, volatilization is not typically used as a route of administration for medications, as other methods such as oral, intravenous, or inhalation via nebulizers are more common and controlled.

Aquaporins are a type of membrane protein that function as water channels, allowing the selective and efficient transport of water molecules across biological membranes. They play crucial roles in maintaining fluid homeostasis, regulating cell volume, and supporting various physiological processes in the body. In humans, there are 13 different aquaporin subtypes (AQP0 to AQP12) that have been identified, each with distinct tissue expression patterns and functions. Some aquaporins also facilitate the transport of small solutes such as glycerol and urea. Dysfunction or misregulation of aquaporins has been implicated in several pathological conditions, including neurological disorders, cancer, and water balance-related diseases.

Autoimmunity is a medical condition in which the body's immune system mistakenly attacks and destroys healthy tissues within the body. In normal function, the immune system recognizes and fights off foreign substances such as bacteria, viruses, and toxins. However, when autoimmunity occurs, the immune system identifies self-molecules or tissues as foreign and produces an immune response against them.

This misguided response can lead to chronic inflammation, tissue damage, and impaired organ function. Autoimmune diseases can affect various parts of the body, including the joints, skin, glands, muscles, and blood vessels. Some common examples of autoimmune diseases are rheumatoid arthritis, lupus, multiple sclerosis, type 1 diabetes, Hashimoto's thyroiditis, and Graves' disease.

The exact cause of autoimmunity is not fully understood, but it is believed to involve a combination of genetic, environmental, and lifestyle factors that trigger an abnormal immune response in susceptible individuals. Treatment for autoimmune diseases typically involves managing symptoms, reducing inflammation, and suppressing the immune system's overactive response using medications such as corticosteroids, immunosuppressants, and biologics.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Vasculitis is a group of disorders characterized by inflammation of the blood vessels, which can cause changes in the vessel walls including thickening, narrowing, or weakening. These changes can restrict blood flow, leading to organ and tissue damage. The specific symptoms and severity of vasculitis depend on the size and location of the affected blood vessels and the extent of inflammation. Vasculitis can affect any organ system in the body, and its causes can vary, including infections, autoimmune disorders, or exposure to certain medications or chemicals.

No FAQ available that match "mercuric chloride"