Neuroendocrine cells in the INTERMEDIATE LOBE OF PITUITARY. They produce MELANOCYTE STIMULATING HORMONES and other peptides from the post-translational processing of pro-opiomelanocortin (POMC).
A species of the family Ranidae which occurs primarily in Europe and is used widely in biomedical research.
Peptides with the ability to stimulate pigmented cells MELANOCYTES in mammals and MELANOPHORES in lower vertebrates. By stimulating the synthesis and distribution of MELANIN in these pigmented cells, they increase coloration of skin and other tissue. MSHs, derived from pro-opiomelanocortin (POMC), are produced by MELANOTROPHS in the INTERMEDIATE LOBE OF PITUITARY; CORTICOTROPHS in the ANTERIOR LOBE OF PITUITARY, and the hypothalamic neurons in the ARCUATE NUCLEUS OF HYPOTHALAMUS.
A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM.
A hypothalamic tripeptide, enzymatic degradation product of OXYTOCIN, that inhibits the release of MELANOCYTE-STIMULATING HORMONES.
A 30-kDa protein synthesized primarily in the ANTERIOR PITUITARY GLAND and the HYPOTHALAMUS. It is also found in the skin and other peripheral tissues. Depending on species and tissues, POMC is cleaved by PROHORMONE CONVERTASES yielding various active peptides including ACTH; BETA-LIPOTROPIN; ENDORPHINS; MELANOCYTE-STIMULATING HORMONES; and others (GAMMA-LPH; CORTICOTROPIN-LIKE INTERMEDIATE LOBE PEPTIDE; N-terminal peptide of POMC or NPP).
A series of structurally-related alkaloids that contain the ergoline backbone structure.
Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
Venoms produced by the wasp (Vespid) family of stinging insects, including hornets; the venoms contain enzymes, biogenic amines, histamine releasing factors, kinins, toxic polypeptides, etc., and are similar to bee venoms.
A 13-amino acid peptide derived from proteolytic cleavage of ADRENOCORTICOTROPIC HORMONE, the N-terminal segment of ACTH. ACTH (1-13) is amidated at the C-terminal to form ACTH (1-13)NH2 which in turn is acetylated to form alpha-MSH in the secretory granules. Alpha-MSH stimulates the synthesis and distribution of MELANIN in MELANOCYTES in mammals and MELANOPHORES in lower vertebrates.
The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION.
Mammalian pigment cells that produce MELANINS, pigments found mainly in the EPIDERMIS, but also in the eyes and the hair, by a process called melanogenesis. Coloration can be altered by the number of melanocytes or the amount of pigment produced and stored in the organelles called MELANOSOMES. The large non-mammalian melanin-containing cells are called MELANOPHORES.
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).
The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
The ability of a substrate to allow the passage of ELECTRONS.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.

Distinct role of Rab3A and Rab3B in secretory activity of rat melanotrophs. (1/16)

Members of the Rab3 (A-D) subfamily of small GTPases are believed to play a key role in regulated exocytosis. These proteins share approximately 80% identity at amino acid level. The question of whether isoforms of Rab3 are functionally redundant was the subject of this study. We used RT-PCR analysis, in situ hybridization histochemistry, and confocal microscope-based analysis of immunocytochemistry to show that rat melanotrophs contain about equal amounts of Rab3A and Rab3B transcripts as well as proteins. Therefore, these cells are a suitable model to study the subcellular distribution and the role of these paralogous isoforms in regulated exocytosis. Secretory activity of single cells was monitored with patch-clamp capacitance measurements, and the cytosol was dialyzed with a high-calcium-containing patch pipette solution. Preinjection of antisense oligodeoxyribonucleotides specific to Rab3A, but not to Rab3B, induced a specific blockage of calcium-dependent secretory responses, indicating an exclusive requirement for Rab3A in melanotroph cell-regulated secretion. Although the injection of purified Rab3B protein was ineffective, the injection of recombinant Rab3A proteins into rat melanotrophs revealed that regulated secretion was stimulated by a GTP-bound Rab3A with an intact COOH terminus and inhibited by Rab3AT36N, impaired in GTP binding. These results indicate that Rab3A, but not Rab3B, enhances secretory output from rat melanotrophs and that their function is not redundant.  (+info)

Strain-specific steroidal control of pituitary function. (2/16)

We have previously shown that 7B2 null mice on the 129/SvEvTac (129) genetic background die at 5 weeks of age with hypercorticosteronemia due to a Cushing's-like disease unless they are rescued by adrenalectomy; however, 7B2 nulls on the C57BL/6NTac (B6) background remain healthy, with normal steroid levels. Since background exerts such a profound influence on the phenotype of this mutation, we have evaluated whether these two different mouse strains respond differently to high circulating steroids by chronically treating wild-type 129 and B6 mice with the synthetic steroid dexamethasone (Dex). Dex treatment decreased the dopamine content of the neurointermediate lobes (NIL) of 129 mice, leading to NIL enlargement and increased total D(2)R mRNA in the 129, but not the B6, NIL. Despite the decrease in this inhibitory transmitter, Dex-treated 129 mice exhibited reduced circulating alpha-melanocyte-stimulating hormone (alpha-MSH) along with reduced POMC-derived peptides compared with controls, possibly due to reduced POMC content in the NIL. In contrast, Dex-treated B6 mice showed lowered cellular ACTH, unchanged alpha-MSH and beta-endorphin, and increased circulating alpha-MSH, most likely due to increased cleavage of NIL ACTH by increased PC2. Dex-treated 129 mice exhibited hyperinsulinemia and lowered blood glucose, whereas Dex-treated B6 mice showed slightly increased glucose levels despite their considerably increased insulin levels. Taken together, our results suggest that the endocrinological response of 129 mice to chronic Dex treatment is very different from that of B6 mice. These strain-dependent differences in steroid sensitivity must be taken into account when comparing different lines of transgenic or knockout mice.  (+info)

Hes1 is required for pituitary growth and melanotrope specification. (3/16)

Rathke's pouch contains progenitor cells that differentiate into the endocrine cells of the pituitary gland. It gives rise to gonadotrope, thyrotrope, somatotrope, corticotrope and lactotrope cells in the anterior lobe and the intermediate lobe melanotropes. Pituitary precursor cells express many members of the Notch signaling pathway including the downstream effector gene Hes1. We hypothesized that Hes1 regulates the timing of precursor differentiation and cell fate determination. To test this idea, we expressed Hes1 in differentiating pituitary cells and found that it can inhibit gonadotrope and thyrotrope differentiation. Pituitaries of Hes1 deficient mice have anterior lobe hypoplasia. All cells in the anterior lobe are specified and differentiate, but an early period of increased cell death and reduced proliferation causes reduced growth, evident as early as e14.5. In addition, cells within the intermediate lobe differentiate into somatotropes instead of melanotropes. Thus, the Hes1 repressor is essential for melanotrope specification. These results demonstrate that Notch signaling plays multiple roles in pituitary development, influencing precursor number, organ size, cell differentiation and ultimately cell fate.  (+info)

Identification and characterization of two novel (neuro)endocrine long coiled-coil proteins. (4/16)

We have identified a novel vertebrate-specific gene by applying a Differential Display method on two distinct subtypes of pituitary melanotropes showing divergent secretory phenotypes of hypo- and hypersecretion. A paralogue of this gene was also identified. The existence of a long coiled-coil domain and a C-terminal transmembrane domain in the sequences, together with the Golgi distribution of the proteins in transfected cells, suggest that they can be considered as new members of the golgin family of proteins. Both genes were primarily expressed in (neuro)endocrine tissues in vertebrates thus supporting a role for these proteins in the regulated secretory pathway.  (+info)

Disparate effects of p24alpha and p24delta on secretory protein transport and processing. (5/16)

BACKGROUND: The p24 family is thought to be somehow involved in endoplasmic reticulum (ER)-to-Golgi protein transport. A subset of the p24 proteins (p24alpha(3), -beta(1), -gamma(3) and -delta(2)) is upregulated when Xenopus laevis intermediate pituitary melanotrope cells are physiologically activated to produce vast amounts of their major secretory cargo, the prohormone proopiomelanocortin (POMC). METHODOLOGY/PRINCIPAL FINDINGS: Here we find that transgene expression of p24alpha(3 )or p24delta(2) specifically in the Xenopus melanotrope cells in both cases causes an effective displacement of the endogenous p24 proteins, resulting in severely distorted p24 systems and disparate melanotrope cell phenotypes. Transgene expression of p24alpha(3) greatly reduces POMC transport and leads to accumulation of the prohormone in large, ER-localized electron-dense structures, whereas p24delta(2)-transgenesis does not influence the overall ultrastructure of the cells nor POMC transport and cleavage, but affects the Golgi-based processes of POMC glycomaturation and sulfation. CONCLUSIONS/SIGNIFICANCE: Transgenic expression of two distinct p24 family members has disparate effects on secretory pathway functioning, illustrating the specificity and non-redundancy of our transgenic approach. We conclude that members of the p24 family furnish subcompartments of the secretory pathway with specific sets of machinery cargo to provide the proper microenvironments for efficient and correct secretory protein transport and processing.  (+info)

Pituitary adenylate cyclase-activating polypeptide regulates brain-derived neurotrophic factor exon IV expression through the VPAC1 receptor in the amphibian melanotrope cell. (6/16)

 (+info)

Physiological manipulation of cellular activity tunes protein and ultrastructural profiles in a neuroendocrine cell. (7/16)

 (+info)

Illumination controls differentiation of dopamine neurons regulating behaviour. (8/16)

 (+info)

Melanotrophs are a type of neuroendocrine cell found in the pars intermedia of the anterior pituitary gland. They produce and secrete melanocyte-stimulating hormone (MSH), which plays a role in regulating pigmentation, energy homeostasis, and appetite. Melanotrophs are derived from the same precursor cells as corticotrophs, another type of neuroendocrine cell found in the anterior pituitary gland that produces and secretes adrenocorticotropic hormone (ACTH). Dysfunction of melanotrophs can lead to various endocrine disorders such as Cushing's disease or acromegaly.

"Rana ridibunda" is the scientific name for the European green frog or marsh frog. It's a species of true frog that is native to parts of Europe and Asia. These frogs are typically green in color, but they can also be brown or gray. They have smooth skin and long, powerful legs that they use to jump long distances. They are semiaquatic animals, living near bodies of water such as ponds, lakes, and rivers.

It is worth noting that the common name for this species may vary based on the region and the specific population of frogs being referred to. In some areas, they may be commonly called "green frogs" or "marsh frogs," while in other regions, these names may refer to different species entirely.

Melanocyte-stimulating hormones (MSH) are a group of peptide hormones that originate from the precursor protein proopiomelanocortin (POMC). They play crucial roles in various physiological processes, including pigmentation, energy balance, and appetite regulation.

There are several types of MSH, but the most well-known ones include α-MSH, β-MSH, and γ-MSH. These hormones bind to melanocortin receptors (MCRs), which are found in various tissues throughout the body. The binding of MSH to MCRs triggers a series of intracellular signaling events that ultimately lead to changes in cell behavior.

In the context of skin physiology, α-MSH and β-MSH bind to melanocortin 1 receptor (MC1R) on melanocytes, which are the cells responsible for producing pigment (melanin). This binding stimulates the production and release of eumelanin, a type of melanin that is brown or black in color. As a result, increased levels of MSH can lead to darkening of the skin, also known as hyperpigmentation.

Apart from their role in pigmentation, MSH hormones have been implicated in several other physiological processes. For instance, α-MSH has been shown to suppress appetite and promote weight loss by binding to melanocortin 4 receptor (MC4R) in the hypothalamus, a region of the brain that regulates energy balance. Additionally, MSH hormones have been implicated in inflammation, immune response, and sexual function.

Overall, melanocyte-stimulating hormones are a diverse group of peptide hormones that play important roles in various physiological processes, including pigmentation, energy balance, and appetite regulation.

The pituitary gland is a small, endocrine gland located at the base of the brain, in the sella turcica of the sphenoid bone. It is often called the "master gland" because it controls other glands and makes the hormones that trigger many body functions. The pituitary gland measures about 0.5 cm in height and 1 cm in width, and it weighs approximately 0.5 grams.

The pituitary gland is divided into two main parts: the anterior lobe (adenohypophysis) and the posterior lobe (neurohypophysis). The anterior lobe is further divided into three zones: the pars distalis, pars intermedia, and pars tuberalis. Each part of the pituitary gland has distinct functions and produces different hormones.

The anterior pituitary gland produces and releases several important hormones, including:

* Growth hormone (GH), which regulates growth and development in children and helps maintain muscle mass and bone strength in adults.
* Thyroid-stimulating hormone (TSH), which controls the production of thyroid hormones by the thyroid gland.
* Adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and other steroid hormones.
* Follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function in both males and females.
* Prolactin, which stimulates milk production in pregnant and lactating women.

The posterior pituitary gland stores and releases two hormones that are produced by the hypothalamus:

* Antidiuretic hormone (ADH), which helps regulate water balance in the body by controlling urine production.
* Oxytocin, which stimulates uterine contractions during childbirth and milk release during breastfeeding.

Overall, the pituitary gland plays a critical role in maintaining homeostasis and regulating various bodily functions, including growth, development, metabolism, and reproductive function.

Medical Definition of "MSH Release-Inhibiting Hormone" (MIF):

MIF, or Melanocyte-Stimulating Hormone Release-Inhibiting Hormone, is a peptide hormone that inhibits the release of melanocyte-stimulating hormone (MSH) from the pituitary gland. It is produced and released by the hypothalamus in response to various stimuli such as stress, inflammation, and glucocorticoids. MIF also plays a role in immune regulation and has been implicated in several disease processes including autoimmune disorders, cancer, and infection.

Pro-opiomelanocortin (POMC) is a precursor protein that gets cleaved into several biologically active peptides in the body. These peptides include adrenocorticotropic hormone (ACTH), beta-lipotropin, and multiple opioid peptides such as beta-endorphin, met-enkephalin, and leu-enkephalin.

ACTH stimulates the release of cortisol from the adrenal gland, while beta-lipotropin has various metabolic functions. The opioid peptides derived from POMC have pain-relieving (analgesic) and rewarding effects in the brain. Dysregulation of the POMC system has been implicated in several medical conditions, including obesity, addiction, and certain types of hormone deficiencies.

Ergolines are a group of ergot alkaloids that have been widely used in the development of various pharmaceutical drugs. These compounds are known for their ability to bind to and stimulate specific receptors in the brain, particularly dopamine receptors. As a result, they have been explored for their potential therapeutic benefits in the treatment of various neurological and psychiatric conditions, such as Parkinson's disease, migraine, and depression.

However, ergolines can also have significant side effects, including hallucinations, nausea, and changes in blood pressure. In addition, some ergot alkaloids have been associated with a rare but serious condition called ergotism, which is characterized by symptoms such as muscle spasms, vomiting, and gangrene. Therefore, the use of ergolines must be carefully monitored and managed to ensure their safety and effectiveness.

Some specific examples of drugs that contain ergolines include:

* Dihydroergotamine (DHE): used for the treatment of migraine headaches
* Pergolide: used for the treatment of Parkinson's disease
* Cabergoline: used for the treatment of Parkinson's disease and certain types of hormonal disorders

It is important to note that while ergolines have shown promise in some therapeutic areas, they are not without their risks. As with any medication, it is essential to consult with a healthcare provider before using any drug containing ergolines to ensure that it is safe and appropriate for an individual's specific needs.

Exocytosis is the process by which cells release molecules, such as hormones or neurotransmitters, to the extracellular space. This process involves the transport of these molecules inside vesicles (membrane-bound sacs) to the cell membrane, where they fuse and release their contents to the outside of the cell. It is a crucial mechanism for intercellular communication and the regulation of various physiological processes in the body.

Wasp venoms are complex mixtures of bioactive molecules produced by wasps (Hymenoptera: Vespidae) to defend themselves and paralyze prey. The main components include:

1. Phospholipases A2 (PLA2): Enzymes that can cause pain, inflammation, and damage to cell membranes.
2. Hyaluronidase: An enzyme that helps spread the venom by breaking down connective tissues.
3. Proteases: Enzymes that break down proteins and contribute to tissue damage and inflammation.
4. Antigen 5: A major allergen that can cause severe allergic reactions (anaphylaxis) in sensitive individuals.
5. Mastoparan: A peptide that induces histamine release, leading to localized inflammation and pain.
6. Neurotoxins: Some wasp venoms contain neurotoxins that can cause paralysis or neurological symptoms.

The composition of wasp venoms may vary among species, and individual sensitivity to the components can result in different reactions ranging from localized pain, swelling, and redness to systemic allergic responses.

Alpha-MSH (α-MSH) stands for alpha-melanocyte stimulating hormone. It is a peptide hormone that is produced in the pituitary gland and other tissues in the body. Alpha-MSH plays a role in various physiological processes, including:

1. Melanin production: Alpha-MSH stimulates melanin production in the skin, which leads to skin tanning.
2. Appetite regulation: Alpha-MSH acts as a appetite suppressant by signaling to the brain that the stomach is full.
3. Inflammation and immune response: Alpha-MSH has anti-inflammatory effects and helps regulate the immune response.
4. Energy balance and metabolism: Alpha-MSH helps regulate energy balance and metabolism by signaling to the brain to increase or decrease food intake and energy expenditure.

Alpha-MSH exerts its effects by binding to melanocortin receptors, specifically MC1R, MC3R, MC4R, and MC5R. Dysregulation of alpha-MSH signaling has been implicated in various medical conditions, including obesity, anorexia nervosa, and certain skin disorders.

The anterior pituitary, also known as the adenohypophysis, is the front portion of the pituitary gland. It is responsible for producing and secreting several important hormones that regulate various bodily functions. These hormones include:

* Growth hormone (GH), which stimulates growth and cell reproduction in bones and other tissues.
* Thyroid-stimulating hormone (TSH), which regulates the production of thyroid hormones by the thyroid gland.
* Adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and other steroid hormones.
* Follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function in both males and females by controlling the development and release of eggs or sperm.
* Prolactin, which stimulates milk production in pregnant and nursing women.
* Melanocyte-stimulating hormone (MSH), which regulates skin pigmentation and appetite.

The anterior pituitary gland is controlled by the hypothalamus, a small region of the brain located just above it. The hypothalamus produces releasing and inhibiting hormones that regulate the secretion of hormones from the anterior pituitary. These hormones are released into a network of blood vessels called the portal system, which carries them directly to the anterior pituitary gland.

Damage or disease of the anterior pituitary can lead to hormonal imbalances and various medical conditions, such as growth disorders, thyroid dysfunction, adrenal insufficiency, reproductive problems, and diabetes insipidus.

Melanocytes are specialized cells that produce, store, and transport melanin, the pigment responsible for coloring of the skin, hair, and eyes. They are located in the bottom layer of the epidermis (the outermost layer of the skin) and can also be found in the inner ear and the eye's retina. Melanocytes contain organelles called melanosomes, which produce and store melanin.

Melanin comes in two types: eumelanin (black or brown) and pheomelanin (red or yellow). The amount and type of melanin produced by melanocytes determine the color of a person's skin, hair, and eyes. Exposure to UV radiation from sunlight increases melanin production as a protective response, leading to skin tanning.

Melanocyte dysfunction or abnormalities can lead to various medical conditions, such as albinism (lack of melanin production), melasma (excessive pigmentation), and melanoma (cancerous growth of melanocytes).

Membrane potential is the electrical potential difference across a cell membrane, typically for excitable cells such as nerve and muscle cells. It is the difference in electric charge between the inside and outside of a cell, created by the selective permeability of the cell membrane to different ions. The resting membrane potential of a typical animal cell is around -70 mV, with the interior being negative relative to the exterior. This potential is generated and maintained by the active transport of ions across the membrane, primarily through the action of the sodium-potassium pump. Membrane potentials play a crucial role in many physiological processes, including the transmission of nerve impulses and the contraction of muscle cells.

Electrophysiology is a branch of medicine that deals with the electrical activities of the body, particularly the heart. In a medical context, electrophysiology studies (EPS) are performed to assess abnormal heart rhythms (arrhythmias) and to evaluate the effectiveness of certain treatments, such as medication or pacemakers.

During an EPS, electrode catheters are inserted into the heart through blood vessels in the groin or neck. These catheters can record the electrical activity of the heart and stimulate it to help identify the source of the arrhythmia. The information gathered during the study can help doctors determine the best course of treatment for each patient.

In addition to cardiac electrophysiology, there are also other subspecialties within electrophysiology, such as neuromuscular electrophysiology, which deals with the electrical activity of the nervous system and muscles.

Patch-clamp techniques are a group of electrophysiological methods used to study ion channels and other electrical properties of cells. These techniques were developed by Erwin Neher and Bert Sakmann, who were awarded the Nobel Prize in Physiology or Medicine in 1991 for their work. The basic principle of patch-clamp techniques involves creating a high resistance seal between a glass micropipette and the cell membrane, allowing for the measurement of current flowing through individual ion channels or groups of channels.

There are several different configurations of patch-clamp techniques, including:

1. Cell-attached configuration: In this configuration, the micropipette is attached to the outer surface of the cell membrane, and the current flowing across a single ion channel can be measured. This configuration allows for the study of the properties of individual channels in their native environment.
2. Whole-cell configuration: Here, the micropipette breaks through the cell membrane, creating a low resistance electrical connection between the pipette and the inside of the cell. This configuration allows for the measurement of the total current flowing across all ion channels in the cell membrane.
3. Inside-out configuration: In this configuration, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the inner surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in isolation from other cellular components.
4. Outside-out configuration: Here, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the outer surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in their native environment, but with the ability to control the composition of the extracellular solution.

Patch-clamp techniques have been instrumental in advancing our understanding of ion channel function and have contributed to numerous breakthroughs in neuroscience, pharmacology, and physiology.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Electric conductivity, also known as electrical conductance, is a measure of a material's ability to allow the flow of electric current through it. It is usually measured in units of Siemens per meter (S/m) or ohm-meters (Ω-m).

In medical terms, electric conductivity can refer to the body's ability to conduct electrical signals, which is important for various physiological processes such as nerve impulse transmission and muscle contraction. Abnormalities in electrical conductivity can be associated with various medical conditions, including neurological disorders and heart diseases.

For example, in electrocardiography (ECG), the electric conductivity of the heart is measured to assess its electrical activity and identify any abnormalities that may indicate heart disease. Similarly, in electromyography (EMG), the electric conductivity of muscles is measured to diagnose neuromuscular disorders.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Millisecond studies of calcium-dependent exocytosis in pituitary melanotrophs: comparison of the photolabile calcium chelators ... Millisecond studies of calcium-dependent exocytosis in pituitary melanotrophs: comparison of the photolabile calcium chelators ... and to load both calcium indicator dye and photolabile chelators into rat pituitary melanotrophs prior to flash photolysis. In ... A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs. Neuron 1993; 11: 93-104 ...
Larsson, L.; Rehfeld, J. (1981-08-14). "Pituitary gastrins occur in corticotrophs and melanotrophs". Science. 213 (4509): 768- ...
Multiple modulatory effects of the neuroactive steroid pregnanolone on GABAA receptor in frog pituitary melanotrophs. J Physiol ...
Adenylate Cyclase-Activating Polypeptide Potentiation Of Ca2+ Entry Via Protein Kinase C And A Pathways In Melanotrophs of the ...
Adenylate Cyclase-Activating Polypeptide Potentiation Of Ca2+ Entry Via Protein Kinase C And A Pathways In Melanotrophs of the ...
Melanotrophs A6.407.747.671.500 A6.407.747.750.500. A6.688.357.750.717.500 A6.688.357.750.750.500. A8.186.211.730.385.357. ...
Melanotrophs A6.407.747.671.500 A6.407.747.750.500. A6.688.357.750.717.500 A6.688.357.750.750.500. A8.186.211.730.385.357. ...
Melanotrophs A6.407.747.671.500 A6.407.747.750.500. A6.688.357.750.717.500 A6.688.357.750.750.500. A8.186.211.730.385.357. ...
Melanotrophs A6.407.747.671.500 A6.407.747.750.500. A6.688.357.750.717.500 A6.688.357.750.750.500. A8.186.211.730.385.357. ...
Melanotrophs A6.407.747.671.500 A6.407.747.750.500. A6.688.357.750.717.500 A6.688.357.750.750.500. A8.186.211.730.385.357. ...
Melanotrophs A6.407.747.671.500 A6.407.747.750.500. A6.688.357.750.717.500 A6.688.357.750.750.500. A8.186.211.730.385.357. ...
Melanotrophs A6.407.747.671.500 A6.407.747.750.500. A6.688.357.750.717.500 A6.688.357.750.750.500. A8.186.211.730.385.357. ...
Melanotrophs A6.407.747.671.500 A6.407.747.750.500. A6.688.357.750.717.500 A6.688.357.750.750.500. A8.186.211.730.385.357. ...
Melanotrophs A6.407.747.671.500 A6.407.747.750.500. A6.688.357.750.717.500 A6.688.357.750.750.500. A8.186.211.730.385.357. ...
Melanotrophs A6.407.747.671.500 A6.407.747.750.500. A6.688.357.750.717.500 A6.688.357.750.750.500. A8.186.211.730.385.357. ...
Melanotrophs A6.407.747.671.500 A6.407.747.750.500. A6.688.357.750.717.500 A6.688.357.750.750.500. A8.186.211.730.385.357. ...
Balasinor NH, DSouza R, Nanaware P, Idicula-Thomas S, Kedia-Mokashi N, He Z, Dym M. Effect of high intratesticular estrogen on global gene expression and testicular cell number in rats. Reprod Biol Endocrinol. 2010 Jun 23; 8:72 ...
Chang TC, Chin YT, Nana AW, Wang SH, Liao YM, Chen YR, Shih YJ, Changou CA, Yang YS, Wang K, Whang-Peng J, Wang LS, Stain SC, Shih A, Lin HY, Wu CH, Davis PJ. Enhancement by Nano-Diamino-Tetrac of Antiproliferative Action of Gefitinib on Colorectal Cancer Cells: Mediation by EGFR Sialylation and PI3K Activation. Horm Cancer. 2018 12; 9(6):420-432 ...
... gene is expressed in a subset of hypothalamic and hindbrain neurons and in pituitary melanotrophs and corticotrophs. POMC ...
MSH and CLIP in melanotrophs, the ARC, and the NTS is the presence of PC2 (Fig. 2). Further chemical modifications including ...
Descritores em Ciências da Saúde
I1.880.853.250 Melanotrophs A8.186.211.464.497.352.435.500.750.500 Merkel Cells A8.663.650.915.750.425 A8.675.650.915.750.425 ...
Descritores em Ciências da Saúde
Melanotrophs [A11.436.636] * Merkel Cells [A11.436.660] * Neuroepithelial Cells [A11.436.690] * Paneth Cells [A11.436.700] ...
Melanotrophs. Melanotrofos. Melanotrofos. Pituitary Gland, Intermediate. Adenohipófise Parte Intermédia. Adenohipófisis Porción ...
This graph shows the total number of publications written about "Parietal Cells, Gastric" by people in this website by year, and whether "Parietal Cells, Gastric" was a major or minor topic of these publications ...
Cylindrical epithelial cells in the innermost layer of the ENAMEL ORGAN. Their functions include contribution to the development of the dentinoenamel junction by the deposition of a layer of the matrix, thus producing the foundation for the prisms (the structural units of the DENTAL ENAMEL), and production of the matrix for the enamel prisms and interprismatic substance. (From Jablonskis Dictionary of Dentistry, 1992 ...
Cells with the capacity to take up and decarboxylate the amine precursors DIHYDROXYPHENYLALANINE or 5-HYDROXYTRYPTOPHAN. This is a property of endocrine cells of neural and non-neural origin. APUDOMA is a general term collectively applied to tumors associated with APUD cells ...
This graph shows the total number of publications written about "Goblet Cells" by people in this website by year, and whether "Goblet Cells" was a major or minor topic of these publications ...
Absorptive cells in the lining of the INTESTINAL MUCOSA. They are differentiated EPITHELIAL CELLS with apical MICROVILLI facing the intestinal lumen. Enterocytes are more abundant in the SMALL INTESTINE than in the LARGE INTESTINE. Their microvilli greatly increase the luminal surface area of the cell by 14- to 40 fold ...
  • Double immunocytochemistry revealed the expression of TSHRs in cultured corticotrophs and melanotrophs, in addition to previously identified receptors in folliculostellate cells. (nih.gov)