Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms.
The properties, processes, and behavior of biological systems under the action of mechanical forces.
Manner or style of walking.
A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358)
The physical activity of a human or an animal as a behavioral phenomenon.
An activity in which the body is propelled through water by specific movement of the arms and/or the legs. Swimming as propulsion through water by the movement of limbs, tail, or fins of animals is often studied as a form of PHYSICAL EXERTION or endurance.
Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73)
A front limb of a quadruped. (The Random House College Dictionary, 1980)
Recording of the changes in electric potential of muscle by means of surface or needle electrodes.
The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801)
An activity in which the body advances at a slow to moderate pace by moving the feet in a coordinated fashion. This includes recreational walking, walking for fitness, and competitive race-walking.
The observable response an animal makes to any situation.
A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER.
The farthest or outermost projections of the body, such as the HAND and FOOT.
Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth.
An activity in which the body is propelled by moving the legs rapidly. Running is performed at a moderate to rapid pace and should be differentiated from JOGGING, which is performed at a much slower pace.
The storing or preserving of video signals for television to be played back later via a transmitter or receiver. Recordings may be made on magnetic tape or discs (VIDEODISC RECORDING).
The region in the hindlimb of a quadruped, corresponding to the human ANKLE.
Neurons which activate MUSCLE CELLS.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian).
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
*Medical Definition:* 'Lizards' are not typically defined in the field of medicine, as they are a type of reptile and not a medical condition or healthcare-related concept; however, certain lizard species such as the Gila monster and beaded lizards possess venomous bites, which can lead to medical emergencies like envenomation requiring medical attention.
An order of heavy-bodied, largely terrestrial BIRDS including pheasants, TURKEYS, grouse, QUAIL, and CHICKENS.
Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions.
The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior.
Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.).
An increase in the rate of speed.
Use of electric potential or currents to elicit biological responses.
The art, technique, or business of producing motion pictures for entertainment, propaganda, or instruction.
Gait abnormalities that are a manifestation of nervous system dysfunction. These conditions may be caused by a wide variety of disorders which affect motor control, sensory feedback, and muscle strength including: CENTRAL NERVOUS SYSTEM DISEASES; PERIPHERAL NERVOUS SYSTEM DISEASES; NEUROMUSCULAR DISEASES; or MUSCULAR DISEASES.
A species of nematode that is widely used in biological, biochemical, and genetic studies.
A departure from the normal gait in animals.
The physical state of supporting an applied load. This often refers to the weight-bearing bones or joints that support the body's weight, especially those in the spine, hip, knee, and foot.
The position or attitude of the body.
Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
A decrease in the rate of speed.
A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE.
Relatively invariant mode of behavior elicited or determined by a particular situation; may be verbal, postural, or expressive.
The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction.
Arrest of cell locomotion or cell division when two cells come into contact.
The chemical reactions involved in the production and utilization of various forms of energy in cells.
The application of electronic, computerized control systems to mechanical devices designed to perform human functions. Formerly restricted to industry, but nowadays applied to artificial organs controlled by bionic (bioelectronic) devices, like automated insulin pumps and other prostheses.
The use of wings or wing-like appendages to remain aloft and move through the air.
Motor neurons which activate the contractile regions of intrafusal SKELETAL MUSCLE FIBERS, thus adjusting the sensitivity of the MUSCLE SPINDLES to stretch. Gamma motor neurons may be "static" or "dynamic" according to which aspect of responsiveness (or which fiber types) they regulate. The alpha and gamma motor neurons are often activated together (alpha gamma coactivation) which allows the spindles to contribute to the control of movement trajectories despite changes in muscle length.
A pharmacologic congener of serotonin that contracts smooth muscle and has actions similar to those of tricyclic antidepressants. It has been proposed as an oxytocic.
The distal extremity of the leg in vertebrates, consisting of the tarsus (ANKLE); METATARSUS; phalanges; and the soft tissues surrounding these bones.
An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
Stereotyped patterns of response, characteristic of a given species, that have been phylogenetically adapted to a specific type of situation.
Large herbivorous tropical American lizards.
A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator.
A region extending from the PONS & MEDULLA OBLONGATA through the MESENCEPHALON, characterized by a diversity of neurons of various sizes and shapes, arranged in different aggregations and enmeshed in a complicated fiber network.
An order of flightless birds comprising the ostriches, which naturally inhabit open, low rainfall areas of Africa.
The tendency to explore or investigate a novel environment. It is considered a motivation not clearly distinguishable from curiosity.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
The physical measurements of a body.
Networks of nerve cells that control the firing patterns of MOTOR NEURONS to produce rhythmic movements such as MASTICATION; WALKING; SWIMMING; RESPIRATION; and PERISTALSIS.
Elements of limited time intervals, contributing to particular results or situations.
A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction.
Excessive movement of muscles of the body as a whole, which may be associated with organic or psychological disorders.
Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons.
One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action.
Also known as articulations, these are points of connection between the ends of certain separate bones, or where the borders of other bones are juxtaposed.
Region of the back including the LUMBAR VERTEBRAE, SACRUM, and nearby structures.
Innate response elicited by sensory stimuli associated with a threatening situation, or actual confrontation with an enemy.
A suborder of PRIMATES consisting of the following five families: CHEIROGALEIDAE; Daubentoniidae; Indriidae; LEMURIDAE; and LORISIDAE.
The coordination of a sensory or ideational (cognitive) process and a motor activity.
MOTOR NEURONS in the anterior (ventral) horn of the SPINAL CORD which project to SKELETAL MUSCLES.
Surface resistance to the relative motion of one body against the rubbing, sliding, rolling, or flowing of another with which it is in contact.
The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT.
Proteins from the nematode species CAENORHABDITIS ELEGANS. The proteins from this species are the subject of scientific interest in the area of multicellular organism MORPHOGENESIS.
An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake.
Nerve structures through which impulses are conducted from a peripheral part toward a nerve center.
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
The lateral of the two terminal branches of the sciatic nerve. The peroneal (or fibular) nerve provides motor and sensory innervation to parts of the leg and foot.
Sensory functions that transduce stimuli received by proprioceptive receptors in joints, tendons, muscles, and the INNER EAR into neural impulses to be transmitted to the CENTRAL NERVOUS SYSTEM. Proprioception provides sense of stationary positions and movements of one's body parts, and is important in maintaining KINESTHESIA and POSTURAL BALANCE.
Fibrous bands or cords of CONNECTIVE TISSUE at the ends of SKELETAL MUSCLE FIBERS that serve to attach the MUSCLES to bones and other structures.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot.
The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems.
##### I apologize, but the term "turtles" is not a recognized medical term or concept. It is commonly referred to as a group of reptiles with a shell, and does not have any direct relevance to medical definition.
The largest family of snakes, comprising five subfamilies: Colubrinae, Natricinae, Homalopsinae, Lycodontinae, and Xenodontinae. They show a great diversity of eating habits, some eating almost anything, others having a specialized diet. They can be oviparous, ovoviviparous, or viviparous. The majority of North American snakes are colubrines. Among the colubrids are king snakes, water moccasins, water snakes, and garter snakes. Some genera are poisonous. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, pp321-29)
Contractile tissue that produces movement in animals.
Any one of five terminal digits of the vertebrate FOOT.
A mechanism of communicating one's own sensory system information about a task, movement or skill.
Nonexpendable items used in the performance of orthopedic surgery and related therapy. They are differentiated from ORTHOTIC DEVICES, apparatus used to prevent or correct deformities in patients.
Recording of visual and sometimes sound signals on magnetic tape.
Large, long-tailed reptiles, including caimans, of the order Loricata.
The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA.
Acceleration produced by the mutual attraction of two masses, and of magnitude inversely proportional to the square of the distance between the two centers of mass. It is also the force imparted by the earth, moon, or a planet to an object near its surface. (From NASA Thesaurus, 1988)
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.
Insects of the order Dictyoptera comprising several families including Blaberidae, BLATTELLIDAE, Blattidae (containing the American cockroach PERIPLANETA americana), Cryptocercidae, and Polyphagidae.
A POSTURE in which an ideal body mass distribution is achieved. Postural balance provides the body carriage stability and conditions for normal functions in stationary position or in movement, such as sitting, standing, or walking.
Neurons which send impulses peripherally to activate muscles or secretory cells.
Microscopy in which television cameras are used to brighten magnified images that are otherwise too dark to be seen with the naked eye. It is used frequently in TELEPATHOLOGY.
Drugs that block the transport of DOPAMINE into axon terminals or into storage vesicles within terminals. Most of the ADRENERGIC UPTAKE INHIBITORS also inhibit dopamine uptake.
Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM.
Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA.
An amino acid that, as the D-isomer, is the defining agonist for the NMDA receptor subtype of glutamate receptors (RECEPTORS, NMDA).
The physiological mechanisms that govern the rhythmic occurrence of certain biochemical, physiological, and behavioral phenomena.
A loosely defined group of drugs that tend to increase behavioral alertness, agitation, or excitation. They work by a variety of mechanisms, but usually not by direct excitation of neurons. The many drugs that have such actions as side effects to their main therapeutic use are not included here.
The relationship between the dose of an administered drug and the response of the organism to the drug.
The inferior part of the lower extremity between the KNEE and the ANKLE.
The science and application of a double-beam transmission interference microscope in which the illuminating light beam is split into two paths. One beam passes through the specimen while the other beam reflects off a reference mirror before joining and interfering with the other. The observed optical path difference between the two beams can be measured and used to discriminate minute differences in thickness and refraction of non-stained transparent specimens, such as living cells in culture.

Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries. (1/4052)

BACKGROUND AND PURPOSE: Wheelchair- and subject-related factors influence the efficiency of wheelchair propulsion. The purpose of this study was to compare wheelchair propulsion in ultralight and standard wheelchairs in people with different levels of spinal cord injury. SUBJECTS: Seventy-four subjects (mean age=26.2 years, SD=7.14, range=17-50) with spinal cord injury resulting in motor loss (30 with tetraplegia and 44 with paraplegia) were studied. METHOD: Each subject propelled standard and ultralight wheelchairs around an outdoor track at self-selected speeds, while data were collected at 4 predetermined intervals. Speed, distance traveled, and oxygen cost (VO2 mL/kg/m) were compared by wheelchair, group, and over time, using a Bonferroni correction. RESULTS: In the ultralight wheelchair, speed and distance traveled were greater for both subjects with paraplegia and subjects with tetraplegia, whereas VO2 was less only for subjects with paraplegia. Subjects with paraplegia propelled faster and farther than did subjects with tetraplegia. CONCLUSION AND DISCUSSION: The ultralight wheelchair improved the efficiency of propulsion in the tested subjects. Subjects with tetraplegia, especially at the C6 level, are limited in their ability to propel a wheelchair.  (+info)

Does nicotine modify the psychotoxic effect of methamphetamine? Assessment in terms of locomotor sensitization in mice. (2/4052)

In this study, effects of nicotine on locomotor sensitization to methamphetamine in mice were investigated to assess whether nicotine modified induction and expression of psychotoxic action of methamphetamine. Although nicotine (0.03-1 mg/kg s.c.) had no effect at first administration, 5-time nicotine administrations at 3-day intervals progressively developed a significant locomotor stimulant effect, and caused an enhanced sensitivity (cross-sensitization) to methamphetamine (2 mg/kg s.c.). Five-time administrations of methamphetamine (2 mg/kg) at 3-day intervals produced not only a locomotor sensitization to methamphetamine itself, but also a cross-sensitization to nicotine (0.1-1 mg/kg). Nicotine (0.03-1 mg/kg) did not affect the locomotor stimulant effect of methamphetamine (2 mg/kg) in the drug-naive mice. However, nicotine acted dose-dependently to reduce the progressive enhancement of the locomotor stimulant effect of methamphetamine during 5-time repeated administrations. Mice treated with coadministration of methamphetamine with nicotine (1 mg/kg) showed less sensitization to methamphetamine than mice treated with methamphetamine alone. In addition, nicotine (1 mg/kg) inhibited the locomotor stimulant effect of methamphetamine in mice sensitized to methamphetamine. These results suggest that methamphetamine and nicotine produce a symmetrical cross-sensitization, although nicotine may act to inhibit the induction and expression of locomotor sensitization to methamphetamine in mice.  (+info)

Active signaling of leg loading and unloading in the cockroach. (3/4052)

The ability to detect changes in load is important for effective use of a leg in posture and locomotion. While a number of limb receptors have been shown to encode increases in load, few afferents have been demonstrated to signal leg unloading, which occurs cyclically during walking and is indicative of slipping or perturbations. We applied mechanical forces to the cockroach leg at controlled rates and recorded activities of the tibial group of campaniform sensilla, mechanoreceptors that encode forces through the strains they produce in the exoskeleton. Discrete responses were elicited from the group to decreasing as well as increasing levels of leg loading. Discharges of individual afferents depended on the direction of force application, and unit responses were correlated morphologically with the orientation of the receptor's cuticular cap. No units responded bidirectionally. Although discharges to decreasing levels of load were phasic, we found that these bursts could effectively encode the rate of force decreases. These discharges may be important in indicating leg unloading in the step cycle during walking and could rapidly signal force decreases during perturbations or loss of ground support.  (+info)

Plantar aponeurosis and internal architecture of the ball of the foot. (4/4052)

On the basis of its internal structure, the ball of the foot can be divided into three transverse areas, each with a different mechanical function: (1) an area proximal to the heads of the metatarsals in which the retinacula cutis are developed into a series of transverse bands, and in which the deep fibres of the plantar aponeurosis form ten sagittal septa connected to the deep transverse metatarsal ligament and through this the proximal phalanges of the toes, (2) an area below the heads of the metatarsals in which vertical fibres from the joint capsules and the sides of the fibrous flexor sheaths form a cushion below each metatarsal head, and in which fat bodies cover the digital nerves and vessels in their passage between the cushions, and (3) a distal area which comprises the interdigital web. The superficial fibres of the plantar aponeurosis are inserted into the skin of this distal area, and deep to them the plantar interdigital ligament forms a series of transverse lamellae connected to the proximal phalanges by a mooring ligament which arches from one fibrous flexor sheath to the next. When the metatarsophalangeal joints are extended, the fibres of the three areas are tensed and the skin is anchored firmly to the skeleton. The direction of the fibres in the distal and proximal area promotes the transfer of forces exerted on the skin during push-off and braking respectively, while the intermediate area is adapted to bear the weight of the body. A concentration of Pacinian corpuscles is found along the digital nerves in the weight-bearing area below the transverse metatarsal ligament. The nerves for the second, and especially for the third, interstice are close to or in contact with the sharp proximal edges of the sagittal septa.  (+info)

Mound-cell movement and morphogenesis in Dictyostelium. (5/4052)

To examine the mechanisms of cell locomotion within a three-dimensional (3-D) cell mass, we have undertaken a systematic 3-D analysis of individual cell movements in the Dictyostelium mound, the first 3-D structure to form during development of the fruiting body. We used time-lapse deconvolution microscopy to examine two strains whose motion represents endpoints on the spectrum of motile behaviors that we have observed in mounds. In AX-2 mounds, cell motion is slow and trajectories are a combination of random and radial, compared to KAX-3, in which motion is fivefold faster and most trajectories are rotational. Although radial or rotational motion was correlated with the optical-density wave patterns present in each strain, we also found small but significant subpopulations of cells that moved differently from the majority, demonstrating that optical-density waves are at best insufficient to explain all motile behavior in mounds. In examining morphogenesis in these strains, we noted that AX-2 mounds tended to culminate directly to a fruiting body, whereas KAX-3 mounds first formed a migratory slug. By altering buffering conditions we could interchange these behaviors and then found that mound-cell motions also changed accordingly. This demonstrates a correlation between mound-cell motion and subsequent development, but it is not obligatory. Chimeric mounds composed of only 10% KAX-3 cells and 90% AX-2 cells exhibited rotational motion, suggesting that a diffusible molecule induces rotation, but many of these mounds still culminated directly, demonstrating that rotational motion does not always lead to slug migration. Our observations provide a detailed analysis of cell motion for two distinct modes of mound and slug formation in Dictyostelium.  (+info)

Gliding mutants of Myxococcus xanthus with high reversal frequencies and small displacements. (6/4052)

Myxococcus xanthus cells move on a solid surface by gliding motility. Several genes required for gliding motility have been identified, including those of the A- and S-motility systems as well as the mgl and frz genes. However, the cellular defects in gliding movement in many of these mutants were unknown. We conducted quantitative, high-resolution single-cell motility assays and found that mutants defective in mglAB or in cglB, an A-motility gene, reversed the direction of gliding at frequencies which were more than 1 order of magnitude higher than that of wild type cells (2.9 min-1 for DeltamglAB mutants and 2.7 min-1 for cglB mutants, compared to 0.17 min-1 for wild-type cells). The average gliding speed of DeltamglAB mutant cells was 40% of that of wild-type cells (on average 1.9 micrometers/min for DeltamglAB mutants, compared to 4.4 micrometers/min for wild-type cells). The mglA-dependent reversals and gliding speeds were dependent on the level of intracellular MglA protein: mglB mutant cells, which contain only 15 to 20% of the wild-type level of MglA protein, glided with an average reversal frequency of about 1.8 min-1 and an average speed of 2.6 micrometers/min. These values range between those exhibited by wild-type cells and by DeltamglAB mutant cells. Epistasis analysis of frz mutants, which are defective in aggregation and in single-cell reversals, showed that a frzD mutation, but not a frzE mutation, partially suppressed the mglA phenotype. In contrast to mgl mutants, cglB mutant cells were able to move with wild-type speeds only when in close proximity to each other. However, under those conditions, these mutant cells were found to glide less often with those speeds. By analyzing double mutants, the high reversing movements and gliding speeds of cglB cells were found to be strictly dependent on type IV pili, encoded by S-motility genes, whereas the high-reversal pattern of mglAB cells was only partially reduced by a pilR mutation. These results suggest that the MglA protein is required for both control of reversal frequency and gliding speed and that in the absence of A motility, type IV pilus-dependent cell movement includes reversals at high frequency. Furthermore, mglAB mutants behave as if they were severely defective in A motility but only partially defective in S motility.  (+info)

Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. II. Effects of noradrenergic and serotoninergic drugs. (7/4052)

The effects of serotoninergic and noradrenergic drugs (applied intrathecally) on treadmill locomotion were evaluated in two adult cats subjected to a ventral and ventrolateral spinal lesion (T13). Despite the extensive spinal lesion, severely damaging important descending pathways such as the reticulo- and vestibulospinal tracts, both cats recovered quadrupedal voluntary locomotion. As detailed in a previous paper, the locomotor recovery occurred in three stages defined as early period, when the animal could not walk with its hindlimbs, recovery period, when progressive improvement occurred, and plateau period, when a more stable locomotor performance was observed. At this latter stage, the cats suffered from postural and locomotor deficits, such as poor lateral stability, irregular stepping of the hindlimbs, and inconsistent homolateral fore- and hindlimb coupling. The present study aimed at evaluating the potential of serotoninergic and/or noradrenergic drugs to improve the locomotor abilities in the early and late stages. Both cats were implanted chronically with an intrathecal cannula and electromyographic (EMG) electrodes, which allowed determination, under similar recording conditions, of the locomotor performance pre- and postlesion and comparisons of the effects of different drugs. EMG and kinematic analyses showed that norepinephrine (NE) injected in early and plateau periods improved the regularity of the hindlimb stepping and stabilized the interlimb coupling, permitting to maintain constant locomotion for longer periods of time. Methoxamine, the alpha1-agonist (tested only at the plateau period), had similar effects. In contrast, the alpha2-agonist, clonidine, deteriorated walking. Serotoninergic drugs, such as the neurotransmitter itself, serotonin (5HT), the precursor 5-hydroxytryptophan (5HTP), and the agonist quipazine improved the locomotion by increasing regularity of the hindlimb stepping and by increasing the step cycle duration. In contrast, the 5HT1A agonist 8-hydroxy-dipropylaminotetralin (DPAT) caused foot drag in one of the cats, resulting in frequent stumbling. Injection of combination of methoxamine and quipazine resulted in maintained, regular stepping with smooth movements and good lateral stability. Our results show that the effects of drugs can be integrated to the residual voluntary locomotion and improve some of its postural aspects. However, this work shows clearly that the effects of drugs (such as clonidine) may depend on whether or not the spinal lesion is complete. In a clinical context, this may suggest that different classes of drugs could be used in patients with different types of spinal cord injuries. Possible mechanisms underlying the effect of noradrenergic and serotoninergic drugs on the locomotion after partial spinal lesions are discussed.  (+info)

Gating of transmission in climbing fibre paths to cerebellar cortical C1 and C3 zones in the rostral paramedian lobule during locomotion in the cat. (8/4052)

1. Climbing fibre field potentials evoked by low intensity (non-noxious) electrical stimulation of the ipsilateral superficial radial nerve have been recorded in the rostral paramedian lobule (PML) in awake cats. Chronically implanted microwires were used to monitor the responses at eight different C1 and C3 zone sites during quiet rest and during steady walking on a moving belt. The latency and other characteristics of the responses identified them as mediated mainly via the dorsal funiculus-spino-olivocerebellar path (DF-SOCP). 2. At each site, mean size of response (measured as the area under the field, in mV ms) varied systematically during the step cycle without parallel fluctuations in size of the peripheral nerve volley. Largest responses occurred overwhelmingly during the stance phase of the step cycle in the ipsilateral forelimb while smallest responses occurred most frequently during swing. 3. Simultaneous recording from pairs of C1 zone sites located in the anterior lobe (lobule V) and C1 or C3 zone sites in rostral PML revealed markedly different patterns of step-related modulation. 4. The findings shed light on the extent to which the SOCPs projecting to different parts of a given zone can be regarded as functionally uniform and have implications as to their reliability as channels for conveying peripheral signals to the cerebellum during locomotion.  (+info)

Locomotion, in a medical context, refers to the ability to move independently and change location. It involves the coordinated movement of the muscles, bones, and nervous system that enables an individual to move from one place to another. This can include walking, running, jumping, or using assistive devices such as wheelchairs or crutches. Locomotion is a fundamental aspect of human mobility and is often assessed in medical evaluations to determine overall health and functioning.

Biomechanics is the application of mechanical laws to living structures and systems, particularly in the field of medicine and healthcare. A biomechanical phenomenon refers to a observable event or occurrence that involves the interaction of biological tissues or systems with mechanical forces. These phenomena can be studied at various levels, from the molecular and cellular level to the tissue, organ, and whole-body level.

Examples of biomechanical phenomena include:

1. The way that bones and muscles work together to produce movement (known as joint kinematics).
2. The mechanical behavior of biological tissues such as bone, cartilage, tendons, and ligaments under various loads and stresses.
3. The response of cells and tissues to mechanical stimuli, such as the way that bone tissue adapts to changes in loading conditions (known as Wolff's law).
4. The biomechanics of injury and disease processes, such as the mechanisms of joint injury or the development of osteoarthritis.
5. The use of mechanical devices and interventions to treat medical conditions, such as orthopedic implants or assistive devices for mobility impairments.

Understanding biomechanical phenomena is essential for developing effective treatments and prevention strategies for a wide range of medical conditions, from musculoskeletal injuries to neurological disorders.

Gait is a medical term used to describe the pattern of movement of the limbs during walking or running. It includes the manner or style of walking, including factors such as rhythm, speed, and step length. A person's gait can provide important clues about their physical health and neurological function, and abnormalities in gait may indicate the presence of underlying medical conditions, such as neuromuscular disorders, orthopedic problems, or injuries.

A typical human gait cycle involves two main phases: the stance phase, during which the foot is in contact with the ground, and the swing phase, during which the foot is lifted and moved forward in preparation for the next step. The gait cycle can be further broken down into several sub-phases, including heel strike, foot flat, midstance, heel off, and toe off.

Gait analysis is a specialized field of study that involves observing and measuring a person's gait pattern using various techniques, such as video recordings, force plates, and motion capture systems. This information can be used to diagnose and treat gait abnormalities, improve mobility and function, and prevent injuries.

A decerebrate state is a medical condition that results from severe damage to the brainstem, specifically to the midbrain and above. This type of injury can cause motor responses characterized by rigid extension of the arms and legs, with the arms rotated outward and the wrists and fingers extended. The legs are also extended and the toes pointed downward. These postures are often referred to as "decerebrate rigidity" or "posturing."

The decerebrate state is typically seen in patients who have experienced severe trauma, such as a car accident or gunshot wound, or who have suffered from a large stroke or other type of brain hemorrhage. It can also occur in some cases of severe hypoxia (lack of oxygen) to the brain, such as during cardiac arrest or drowning.

The decerebrate state is a serious medical emergency that requires immediate treatment. If left untreated, it can lead to further brain damage and even death. Treatment typically involves providing supportive care, such as mechanical ventilation to help with breathing, medications to control blood pressure and prevent seizures, and surgery to repair any underlying injuries or bleeding. In some cases, patients may require long-term rehabilitation to regain lost function and improve their quality of life.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

I'm sorry for any confusion, but "swimming" is not typically considered a medical term. It refers to the act of moving through water using your arms and legs in a rhythmic pattern, often as a form of exercise, recreation, or competition. However, if you're referring to a medical condition related to swimming, such as "swimmer's ear" (otitis externa), I would be happy to provide a definition for that.

Swimmer's ear is a type of outer ear infection caused by water remaining in the ear after swimming or bathing, creating a moist environment that can lead to bacterial growth. It can also be caused by scratching or damaging the lining of the ear canal through the use of cotton swabs or other objects. Symptoms may include itching, redness, pain, and sometimes discharge from the ear. If left untreated, swimmer's ear can lead to more serious complications, such as hearing loss or damage to the inner ear.

A hindlimb, also known as a posterior limb, is one of the pair of extremities that are located distally to the trunk in tetrapods (four-legged vertebrates) and include mammals, birds, reptiles, and amphibians. In humans and other primates, hindlimbs are equivalent to the lower limbs, which consist of the thigh, leg, foot, and toes.

The primary function of hindlimbs is locomotion, allowing animals to move from one place to another. However, they also play a role in other activities such as balance, support, and communication. In humans, the hindlimbs are responsible for weight-bearing, standing, walking, running, and jumping.

In medical terminology, the term "hindlimb" is not commonly used to describe human anatomy. Instead, healthcare professionals use terms like lower limbs or lower extremities to refer to the same region of the body. However, in comparative anatomy and veterinary medicine, the term hindlimb is still widely used to describe the corresponding structures in non-human animals.

A forelimb is a term used in animal anatomy to refer to the upper limbs located in the front of the body, primarily involved in movement and manipulation of the environment. In humans, this would be equivalent to the arms, while in quadrupedal animals (those that move on four legs), it includes the structures that are comparable to both the arms and legs of humans, such as the front legs of dogs or the forepaws of cats. The bones that make up a typical forelimb include the humerus, radius, ulna, carpals, metacarpals, and phalanges.

Electromyography (EMG) is a medical diagnostic procedure that measures the electrical activity of skeletal muscles during contraction and at rest. It involves inserting a thin needle electrode into the muscle to record the electrical signals generated by the muscle fibers. These signals are then displayed on an oscilloscope and may be heard through a speaker.

EMG can help diagnose various neuromuscular disorders, such as muscle weakness, numbness, or pain, and can distinguish between muscle and nerve disorders. It is often used in conjunction with other diagnostic tests, such as nerve conduction studies, to provide a comprehensive evaluation of the nervous system.

EMG is typically performed by a neurologist or a physiatrist, and the procedure may cause some discomfort or pain, although this is usually minimal. The results of an EMG can help guide treatment decisions and monitor the progression of neuromuscular conditions over time.

"Cat" is a common name that refers to various species of small carnivorous mammals that belong to the family Felidae. The domestic cat, also known as Felis catus or Felis silvestris catus, is a popular pet and companion animal. It is a subspecies of the wildcat, which is found in Europe, Africa, and Asia.

Domestic cats are often kept as pets because of their companionship, playful behavior, and ability to hunt vermin. They are also valued for their ability to provide emotional support and therapy to people. Cats are obligate carnivores, which means that they require a diet that consists mainly of meat to meet their nutritional needs.

Cats are known for their agility, sharp senses, and predatory instincts. They have retractable claws, which they use for hunting and self-defense. Cats also have a keen sense of smell, hearing, and vision, which allow them to detect prey and navigate their environment.

In medical terms, cats can be hosts to various parasites and diseases that can affect humans and other animals. Some common feline diseases include rabies, feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), and toxoplasmosis. It is important for cat owners to keep their pets healthy and up-to-date on vaccinations and preventative treatments to protect both the cats and their human companions.

Medical science often defines and describes "walking" as a form of locomotion or mobility where an individual repeatedly lifts and sets down each foot to move forward, usually bearing weight on both legs. It is a complex motor activity that requires the integration and coordination of various systems in the human body, including the musculoskeletal, neurological, and cardiovascular systems.

Walking involves several components such as balance, coordination, strength, and endurance. The ability to walk independently is often used as a measure of functional mobility and overall health status. However, it's important to note that the specific definition of walking may vary depending on the context and the medical or scientific field in question.

'Animal behavior' refers to the actions or responses of animals to various stimuli, including their interactions with the environment and other individuals. It is the study of the actions of animals, whether they are instinctual, learned, or a combination of both. Animal behavior includes communication, mating, foraging, predator avoidance, and social organization, among other things. The scientific study of animal behavior is called ethology. This field seeks to understand the evolutionary basis for behaviors as well as their physiological and psychological mechanisms.

The spinal cord is a major part of the nervous system, extending from the brainstem and continuing down to the lower back. It is a slender, tubular bundle of nerve fibers (axons) and support cells (glial cells) that carries signals between the brain and the rest of the body. The spinal cord primarily serves as a conduit for motor information, which travels from the brain to the muscles, and sensory information, which travels from the body to the brain. It also contains neurons that can independently process and respond to information within the spinal cord without direct input from the brain.

The spinal cord is protected by the bony vertebral column (spine) and is divided into 31 segments: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. Each segment corresponds to a specific region of the body and gives rise to pairs of spinal nerves that exit through the intervertebral foramina at each level.

The spinal cord is responsible for several vital functions, including:

1. Reflexes: Simple reflex actions, such as the withdrawal reflex when touching a hot surface, are mediated by the spinal cord without involving the brain.
2. Muscle control: The spinal cord carries motor signals from the brain to the muscles, enabling voluntary movement and muscle tone regulation.
3. Sensory perception: The spinal cord transmits sensory information, such as touch, temperature, pain, and vibration, from the body to the brain for processing and awareness.
4. Autonomic functions: The sympathetic and parasympathetic divisions of the autonomic nervous system originate in the thoracolumbar and sacral regions of the spinal cord, respectively, controlling involuntary physiological responses like heart rate, blood pressure, digestion, and respiration.

Damage to the spinal cord can result in various degrees of paralysis or loss of sensation below the level of injury, depending on the severity and location of the damage.

The term "extremities" in a medical context refers to the most distant parts of the body, including the hands and feet (both fingers and toes), as well as the arms and legs. These are the farthest parts from the torso and head. Medical professionals may examine a patient's extremities for various reasons, such as checking circulation, assessing nerve function, or looking for injuries or abnormalities.

I'm sorry for any confusion, but "lampreys" is not a medical term. It refers to a type of jawless aquatic vertebrate that are eel-like in appearance. They are parasitic creatures, with a suction cup-like mouth and circular rows of teeth, which they use to attach to fish and suck their body fluids. If you have any questions about medical terminology or concepts, I'd be happy to help with those!

I couldn't find a specific medical definition for "running" as an exercise or physical activity. However, in a medical or clinical context, running usually refers to the act of moving at a steady speed by lifting and setting down each foot in turn, allowing for a faster motion than walking. It is often used as a form of exercise, recreation, or transportation.

Running can be described medically in terms of its biomechanics, physiological effects, and potential health benefits or risks. For instance, running involves the repetitive movement of the lower extremities, which can lead to increased heart rate, respiratory rate, and metabolic demand, ultimately improving cardiovascular fitness and burning calories. However, it is also associated with potential injuries such as runner's knee, shin splints, or plantar fasciitis, especially if proper precautions are not taken.

It is important to note that before starting any new exercise regimen, including running, individuals should consult their healthcare provider, particularly those with pre-existing medical conditions or concerns about their ability to engage in physical activity safely.

I apologize, but "video recording" is not a term that has a specific medical definition. It generally refers to the process of capturing and storing moving visual images on electronic media, which is used in various medical fields for different purposes such as surgical training, telemedicine consultations, or monitoring patient conditions. However, there is no unique medical meaning associated with this term.

In animal anatomy, the tarsus is the section of the lower limb that is equivalent to the human ankle and rearfoot. It is the part of the leg between the metatarsus, which contains the bones of the toes, and the crus (the lower leg), which contains the tibia and fibula bones. The tarsus is made up of several bones, including the talus, calcaneus, cuboid, navicular, and three cuneiform bones in humans. In animals, these bones may be fused or partially fused, depending on the species. The tarsus plays a crucial role in weight-bearing and movement, providing stability and support for the animal's body.

Motor neurons are specialized nerve cells in the brain and spinal cord that play a crucial role in controlling voluntary muscle movements. They transmit electrical signals from the brain to the muscles, enabling us to perform actions such as walking, talking, and swallowing. There are two types of motor neurons: upper motor neurons, which originate in the brain's motor cortex and travel down to the brainstem and spinal cord; and lower motor neurons, which extend from the brainstem and spinal cord to the muscles. Damage or degeneration of these motor neurons can lead to various neurological disorders, such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA).

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

In the context of medicine, "periodicity" refers to the occurrence of events or phenomena at regular intervals or cycles. This term is often used in reference to recurring symptoms or diseases that have a pattern of appearing and disappearing over time. For example, some medical conditions like menstrual cycles, sleep-wake disorders, and certain infectious diseases exhibit periodicity. It's important to note that the duration and frequency of these cycles can vary depending on the specific condition or individual.

Cell movement, also known as cell motility, refers to the ability of cells to move independently and change their location within tissue or inside the body. This process is essential for various biological functions, including embryonic development, wound healing, immune responses, and cancer metastasis.

There are several types of cell movement, including:

1. **Crawling or mesenchymal migration:** Cells move by extending and retracting protrusions called pseudopodia or filopodia, which contain actin filaments. This type of movement is common in fibroblasts, immune cells, and cancer cells during tissue invasion and metastasis.
2. **Amoeboid migration:** Cells move by changing their shape and squeezing through tight spaces without forming protrusions. This type of movement is often observed in white blood cells (leukocytes) as they migrate through the body to fight infections.
3. **Pseudopodial extension:** Cells extend pseudopodia, which are temporary cytoplasmic projections containing actin filaments. These protrusions help the cell explore its environment and move forward.
4. **Bacterial flagellar motion:** Bacteria use a whip-like structure called a flagellum to propel themselves through their environment. The rotation of the flagellum is driven by a molecular motor in the bacterial cell membrane.
5. **Ciliary and ependymal movement:** Ciliated cells, such as those lining the respiratory tract and fallopian tubes, have hair-like structures called cilia that beat in coordinated waves to move fluids or mucus across the cell surface.

Cell movement is regulated by a complex interplay of signaling pathways, cytoskeletal rearrangements, and adhesion molecules, which enable cells to respond to environmental cues and navigate through tissues.

I apologize for any confusion, but "lizards" is not a term used in medical definition. Lizards are a group of scaled reptiles constituting the order Squamata, characterized by having skin covered with overlapping scales, external ears, and movable eyelids. They are found worldwide in a variety of habitats, ranging from desert to tropical environments. If you have any questions related to medical terminology or health concerns, I'd be happy to help!

Galliformes is not a medical term, but a taxonomic order in ornithology, which is the study of birds. It includes landfowl such as grouses, turkeys, chickens, pheasants, quails, and other related species. These birds are characterized by their strong and stout bodies, short tails, and rounded wings. They typically inhabit a variety of terrestrial habitats worldwide, except for Australia and some oceanic islands. Some members of this order have cultural and economic significance as sources of food and feathers.

Interneurons are a type of neuron that is located entirely within the central nervous system (CNS), including the brain and spinal cord. They are called "inter" neurons because they connect and communicate with other nearby neurons, forming complex networks within the CNS. Interneurons receive input from sensory neurons and/or other interneurons and then send output signals to motor neurons or other interneurons.

Interneurons are responsible for processing information and modulating neural circuits in the CNS. They can have either excitatory or inhibitory effects on their target neurons, depending on the type of neurotransmitters they release. Excitatory interneurons release neurotransmitters such as glutamate that increase the likelihood of an action potential in the postsynaptic neuron, while inhibitory interneurons release neurotransmitters such as GABA (gamma-aminobutyric acid) or glycine that decrease the likelihood of an action potential.

Interneurons are diverse and can be classified based on various criteria, including their morphology, electrophysiological properties, neurochemical characteristics, and connectivity patterns. They play crucial roles in many aspects of CNS function, such as sensory processing, motor control, cognition, and emotion regulation. Dysfunction or damage to interneurons has been implicated in various neurological and psychiatric disorders, including epilepsy, Parkinson's disease, schizophrenia, and autism spectrum disorder.

In the context of medicine and healthcare, "movement" refers to the act or process of changing physical location or position. It involves the contraction and relaxation of muscles, which allows for the joints to move and the body to be in motion. Movement can also refer to the ability of a patient to move a specific body part or limb, which is assessed during physical examinations. Additionally, "movement" can describe the progression or spread of a disease within the body.

Spinal cord injuries (SCI) refer to damage to the spinal cord that results in a loss of function, such as mobility or feeling. This injury can be caused by direct trauma to the spine or by indirect damage resulting from disease or degeneration of surrounding bones, tissues, or blood vessels. The location and severity of the injury on the spinal cord will determine which parts of the body are affected and to what extent.

The effects of SCI can range from mild sensory changes to severe paralysis, including loss of motor function, autonomic dysfunction, and possible changes in sensation, strength, and reflexes below the level of injury. These injuries are typically classified as complete or incomplete, depending on whether there is any remaining function below the level of injury.

Immediate medical attention is crucial for spinal cord injuries to prevent further damage and improve the chances of recovery. Treatment usually involves immobilization of the spine, medications to reduce swelling and pressure, surgery to stabilize the spine, and rehabilitation to help regain lost function. Despite advances in treatment, SCI can have a significant impact on a person's quality of life and ability to perform daily activities.

In the context of medicine and physiology, acceleration refers to the process of increasing or quickening a function or process. For example, heart rate acceleration is an increase in the speed at which the heart beats. It can also refer to the rate at which something increases, such as the acceleration of muscle strength during rehabilitation. In physics terms, acceleration refers to the rate at which an object changes its velocity, but this definition is not typically used in a medical context.

Electric stimulation, also known as electrical nerve stimulation or neuromuscular electrical stimulation, is a therapeutic treatment that uses low-voltage electrical currents to stimulate nerves and muscles. It is often used to help manage pain, promote healing, and improve muscle strength and mobility. The electrical impulses can be delivered through electrodes placed on the skin or directly implanted into the body.

In a medical context, electric stimulation may be used for various purposes such as:

1. Pain management: Electric stimulation can help to block pain signals from reaching the brain and promote the release of endorphins, which are natural painkillers produced by the body.
2. Muscle rehabilitation: Electric stimulation can help to strengthen muscles that have become weak due to injury, illness, or surgery. It can also help to prevent muscle atrophy and improve range of motion.
3. Wound healing: Electric stimulation can promote tissue growth and help to speed up the healing process in wounds, ulcers, and other types of injuries.
4. Urinary incontinence: Electric stimulation can be used to strengthen the muscles that control urination and reduce symptoms of urinary incontinence.
5. Migraine prevention: Electric stimulation can be used as a preventive treatment for migraines by applying electrical impulses to specific nerves in the head and neck.

It is important to note that electric stimulation should only be administered under the guidance of a qualified healthcare professional, as improper use can cause harm or discomfort.

I'm sorry for any confusion, but "Motion Pictures as Topic" is not a medical term or concept. It is actually a subject heading used in library and information sciences to categorize materials related to the study or analysis of motion pictures as a medium or art form. This could include books, articles, and other resources about film theory, film history, film criticism, and so on.

If you have any questions about medical terminology or concepts, I would be happy to help!

A gait disorder is a disturbance in the ability to walk that can't be attributed to physical disabilities such as weakness or paralysis. Neurologic gait disorders are those specifically caused by underlying neurological conditions. These disorders can result from damage to the brain, spinal cord, or peripheral nerves that disrupts communication between the muscles and the brain.

Neurologic gait disorders can present in various ways, including:

1. **Spastic Gait:** This is a stiff, foot-dragging walk caused by increased muscle tone (hypertonia) and stiffness (spasticity). It's often seen in conditions like cerebral palsy or multiple sclerosis.

2. **Ataxic Gait:** This is a broad-based, unsteady, and irregular walk caused by damage to the cerebellum, which affects balance and coordination. Conditions such as cerebellar atrophy or stroke can cause this type of gait disorder.

3. **Parkinsonian Gait:** This is a shuffling walk with small steps, flexed knees, and difficulty turning. It's often seen in Parkinson's disease.

4. **Neuropathic Gait:** This is a high-stepping walk caused by foot drop (difficulty lifting the front part of the foot), which results from damage to the peripheral nerves. Conditions such as diabetic neuropathy or Guillain-Barre syndrome can cause this type of gait disorder.

5. **Choreic Gait:** This is an irregular, dance-like walk caused by involuntary movements (chorea) seen in conditions like Huntington's disease.

6. **Mixed Gait:** Sometimes, a person may exhibit elements of more than one type of gait disorder.

The specific type of gait disorder can provide important clues about the underlying neurological condition and help guide diagnosis and treatment.

'Caenorhabditis elegans' is a species of free-living, transparent nematode (roundworm) that is widely used as a model organism in scientific research, particularly in the fields of biology and genetics. It has a simple anatomy, short lifespan, and fully sequenced genome, making it an ideal subject for studying various biological processes and diseases.

Some notable features of C. elegans include:

* Small size: Adult hermaphrodites are about 1 mm in length.
* Short lifespan: The average lifespan of C. elegans is around 2-3 weeks, although some strains can live up to 4 weeks under laboratory conditions.
* Development: C. elegans has a well-characterized developmental process, with adults developing from eggs in just 3 days at 20°C.
* Transparency: The transparent body of C. elegans allows researchers to observe its internal structures and processes easily.
* Genetics: C. elegans has a fully sequenced genome, which contains approximately 20,000 genes. Many of these genes have human homologs, making it an excellent model for studying human diseases.
* Neurobiology: C. elegans has a simple nervous system, with only 302 neurons in the hermaphrodite and 383 in the male. This simplicity makes it an ideal organism for studying neural development, function, and behavior.

Research using C. elegans has contributed significantly to our understanding of various biological processes, including cell division, apoptosis, aging, learning, and memory. Additionally, studies on C. elegans have led to the discovery of many genes associated with human diseases such as cancer, neurodegenerative disorders, and metabolic conditions.

Lameness in animals refers to an alteration in the animal's normal gait or movement, which is often caused by pain, injury, or disease affecting the locomotor system. This can include structures such as bones, joints, muscles, tendons, and ligaments. The severity of lameness can vary from subtle to non-weight bearing, and it can affect one or more limbs.

Lameness can have various causes, including trauma, infection, degenerative diseases, congenital defects, and neurological disorders. In order to diagnose and treat lameness in animals, a veterinarian will typically perform a physical examination, observe the animal's gait and movement, and may use diagnostic imaging techniques such as X-rays or ultrasound to identify the underlying cause. Treatment for lameness can include medication, rest, physical therapy, surgery, or a combination of these approaches.

"Weight-bearing" is a term used in the medical field to describe the ability of a body part or limb to support the weight or pressure exerted upon it, typically while standing, walking, or performing other physical activities. In a clinical setting, healthcare professionals often use the term "weight-bearing exercise" to refer to physical activities that involve supporting one's own body weight, such as walking, jogging, or climbing stairs. These exercises can help improve bone density, muscle strength, and overall physical function, particularly in individuals with conditions affecting the bones, joints, or muscles.

In addition, "weight-bearing" is also used to describe the positioning of a body part during medical imaging studies, such as X-rays or MRIs. For example, a weight-bearing X-ray of the foot or ankle involves taking an image while the patient stands on the affected limb, allowing healthcare providers to assess any alignment or stability issues that may not be apparent in a non-weight-bearing position.

Posture is the position or alignment of body parts supported by the muscles, especially the spine and head in relation to the vertebral column. It can be described as static (related to a stationary position) or dynamic (related to movement). Good posture involves training your body to stand, walk, sit, and lie in positions where the least strain is placed on supporting muscles and ligaments during movement or weight-bearing activities. Poor posture can lead to various health issues such as back pain, neck pain, headaches, and respiratory problems.

A larva is a distinct stage in the life cycle of various insects, mites, and other arthropods during which they undergo significant metamorphosis before becoming adults. In a medical context, larvae are known for their role in certain parasitic infections. Specifically, some helminth (parasitic worm) species use larval forms to infect human hosts. These invasions may lead to conditions such as cutaneous larva migrans, visceral larva migrans, or gnathostomiasis, depending on the specific parasite involved and the location of the infection within the body.

The larval stage is characterized by its markedly different morphology and behavior compared to the adult form. Larvae often have a distinct appearance, featuring unsegmented bodies, simple sense organs, and undeveloped digestive systems. They are typically adapted for a specific mode of life, such as free-living or parasitic existence, and rely on external sources of nutrition for their development.

In the context of helminth infections, larvae may be transmitted to humans through various routes, including ingestion of contaminated food or water, direct skin contact with infective stages, or transmission via an intermediate host (such as a vector). Once inside the human body, these parasitic larvae can cause tissue damage and provoke immune responses, leading to the clinical manifestations of disease.

It is essential to distinguish between the medical definition of 'larva' and its broader usage in biology and zoology. In those fields, 'larva' refers to any juvenile form that undergoes metamorphosis before reaching adulthood, regardless of whether it is parasitic or not.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

In medical terms, deceleration refers to a decrease in the rate or speed of a physiological process or body function. It is often used in the context of fetal heart rate monitoring during labor and delivery, where a deceleration is a decrease in the fetal heart rate from its baseline level. Decelerations can be classified into early, late, and variable types based on their timing and shape, and they may indicate fetal distress or hypoxia if they are prolonged or severe. Other examples of deceleration in medical context include blood pressure deceleration during a surgical procedure or deceleration in the respiratory rate during anesthesia.

Amphetamine is a central nervous system stimulant drug that works by increasing the levels of certain neurotransmitters (chemical messengers) in the brain, such as dopamine and norepinephrine. It is used medically to treat conditions such as attention deficit hyperactivity disorder (ADHD), narcolepsy, and obesity, due to its appetite-suppressing effects.

Amphetamines can be prescribed in various forms, including tablets, capsules, or liquids, and are available under several brand names, such as Adderall, Dexedrine, and Vyvanse. They are also known by their street names, such as speed, uppers, or wake-ups, and can be abused for their euphoric effects and ability to increase alertness, energy, and concentration.

Long-term use of amphetamines can lead to dependence, tolerance, and addiction, as well as serious health consequences, such as cardiovascular problems, mental health disorders, and malnutrition. It is essential to use amphetamines only under the supervision of a healthcare provider and follow their instructions carefully.

Stereotyped behavior, in the context of medicine and psychology, refers to repetitive, rigid, and invariant patterns of behavior or movements that are purposeless and often non-functional. These behaviors are not goal-directed or spontaneous and typically do not change in response to environmental changes or social interactions.

Stereotypies can include a wide range of motor behaviors such as hand flapping, rocking, head banging, body spinning, self-biting, or complex sequences of movements. They are often seen in individuals with developmental disabilities, intellectual disabilities, autism spectrum disorder, and some mental health conditions.

Stereotyped behaviors can also be a result of substance abuse, neurological disorders, or brain injuries. In some cases, these behaviors may serve as a self-soothing mechanism or a way to cope with stress, anxiety, or boredom. However, they can also interfere with daily functioning and social interactions, and in severe cases, may cause physical harm to the individual.

Chemotaxis, Leukocyte is the movement of leukocytes (white blood cells) towards a higher concentration of a particular chemical substance, known as a chemotactic factor. This process plays a crucial role in the immune system's response to infection and injury.

When there is an infection or tissue damage, certain cells release chemotactic factors, which are small molecules or proteins that can attract leukocytes to the site of inflammation. Leukocytes have receptors on their surface that can detect these chemotactic factors and move towards them through a process called chemotaxis.

Once they reach the site of inflammation, leukocytes can help eliminate pathogens or damaged cells by phagocytosis (engulfing and destroying) or releasing toxic substances that kill the invading microorganisms. Chemotaxis is an essential part of the immune system's defense mechanisms and helps to maintain tissue homeostasis and prevent the spread of infection.

Contact inhibition is a biological phenomenon primarily observed in cell culture systems, where cells come into contact with each other and stop growing or dividing. This process helps to regulate cell growth and prevent overcrowding, allowing the cells to form a monolayer that covers the surface of the culture dish evenly.

In more detail, when normal animal cells come into contact with neighboring cells during migration or proliferation, they stop growing and dividing, and may even retract their processes or move away from each other. This behavior is thought to be mediated by a variety of mechanisms, including the activation of specific signaling pathways that inhibit cell cycle progression and promote cytoskeletal changes leading to retraction of cellular protrusions.

Contact inhibition plays an important role in maintaining tissue homeostasis and preventing uncontrolled cell growth, which can lead to tumor formation. In some cases, cancer cells may lose contact inhibition, allowing them to continue growing and dividing even when they come into contact with other cells, leading to the formation of tumors and invasive growth patterns.

Energy metabolism is the process by which living organisms produce and consume energy to maintain life. It involves a series of chemical reactions that convert nutrients from food, such as carbohydrates, fats, and proteins, into energy in the form of adenosine triphosphate (ATP).

The process of energy metabolism can be divided into two main categories: catabolism and anabolism. Catabolism is the breakdown of nutrients to release energy, while anabolism is the synthesis of complex molecules from simpler ones using energy.

There are three main stages of energy metabolism: glycolysis, the citric acid cycle (also known as the Krebs cycle), and oxidative phosphorylation. Glycolysis occurs in the cytoplasm of the cell and involves the breakdown of glucose into pyruvate, producing a small amount of ATP and nicotinamide adenine dinucleotide (NADH). The citric acid cycle takes place in the mitochondria and involves the further breakdown of pyruvate to produce more ATP, NADH, and carbon dioxide. Oxidative phosphorylation is the final stage of energy metabolism and occurs in the inner mitochondrial membrane. It involves the transfer of electrons from NADH and other electron carriers to oxygen, which generates a proton gradient across the membrane. This gradient drives the synthesis of ATP, producing the majority of the cell's energy.

Overall, energy metabolism is a complex and essential process that allows organisms to grow, reproduce, and maintain their bodily functions. Disruptions in energy metabolism can lead to various diseases, including diabetes, obesity, and neurodegenerative disorders.

Robotics, in the medical context, refers to the branch of technology that deals with the design, construction, operation, and application of robots in medical fields. These machines are capable of performing a variety of tasks that can aid or replicate human actions, often with high precision and accuracy. They can be used for various medical applications such as surgery, rehabilitation, prosthetics, patient care, and diagnostics. Surgical robotics, for example, allows surgeons to perform complex procedures with increased dexterity, control, and reduced fatigue, while minimizing invasiveness and improving patient outcomes.

"Animal Flight" is not a medical term per se, but it is a concept that is studied in the field of comparative physiology and biomechanics, which are disciplines related to medicine. Animal flight refers to the ability of certain animal species to move through the air by flapping their wings or other appendages. This mode of locomotion is most commonly associated with birds, bats, and insects, but some mammals such as flying squirrels and sugar gliders are also capable of gliding through the air.

The study of animal flight involves understanding the biomechanics of how animals generate lift and propulsion, as well as the physiological adaptations that allow them to sustain flight. For example, birds have lightweight skeletons and powerful chest muscles that enable them to flap their wings rapidly and generate lift. Bats, on the other hand, use a more complex system of membranes and joints to manipulate their wings and achieve maneuverability in flight.

Understanding animal flight has important implications for the design of aircraft and other engineering systems, as well as for our broader understanding of how animals have evolved to adapt to their environments.

Gamma motor neurons are a type of motor neuron found in the spinal cord and brainstem. They innervate the intrafusal fibers of muscle spindles, which are specialized sensory receptors that detect changes in muscle length and stretch. Gamma motor neurons help regulate the sensitivity of muscle spindles by adjusting the tension in the intrafusal fibers. This is important for maintaining muscle tone, coordinating movements, and providing feedback to the brain about the position and movement of body parts.

Gamma motor neurons are activated by various signals from the brain, including descending pathways that carry information about planned movements and sensory inputs from other parts of the nervous system. They are also influenced by reflex circuits that help regulate muscle tone and posture. Dysfunction in gamma motor neurons has been implicated in several neurological conditions, including spasticity, dystonia, and some forms of muscle weakness.

Quipazine is not generally considered a medical term, but it is a chemical compound that has been studied in the field of medicine and neuroscience. Quipazine is a type of drug known as a serotonin receptor agonist, which means it binds to and activates serotonin receptors in the brain.

Serotonin is a neurotransmitter, a chemical that transmits signals in the brain and nervous system, that plays a role in regulating mood, appetite, sleep, and other functions. Quipazine has been studied for its potential therapeutic uses in various conditions, including depression, anxiety, schizophrenia, and substance abuse disorders. However, it is not currently approved for use as a medication in any country.

It's important to note that while quipazine may have potential therapeutic benefits, it also has significant side effects, including seizures, changes in heart rate and blood pressure, and neuroleptic malignant syndrome, a potentially life-threatening condition characterized by muscle rigidity, fever, and autonomic dysfunction. As such, its use is generally limited to research settings.

In medical terms, the foot is the part of the lower limb that is distal to the leg and below the ankle, extending from the tarsus to the toes. It is primarily responsible for supporting body weight and facilitating movement through push-off during walking or running. The foot is a complex structure made up of 26 bones, 33 joints, and numerous muscles, tendons, ligaments, and nerves that work together to provide stability, balance, and flexibility. It can be divided into three main parts: the hindfoot, which contains the talus and calcaneus (heel) bones; the midfoot, which includes the navicular, cuboid, and cuneiform bones; and the forefoot, which consists of the metatarsals and phalanges that form the toes.

A reflex is an automatic, involuntary and rapid response to a stimulus that occurs without conscious intention. In the context of physiology and neurology, it's a basic mechanism that involves the transmission of nerve impulses between neurons, resulting in a muscle contraction or glandular secretion.

Reflexes are important for maintaining homeostasis, protecting the body from harm, and coordinating movements. They can be tested clinically to assess the integrity of the nervous system, such as the knee-j jerk reflex, which tests the function of the L3-L4 spinal nerve roots and the sensitivity of the stretch reflex arc.

In the context of medicine and biology, instinct is not typically used as a medical term. However, in general terms, instinct refers to a complex, adaptive behavior that is inherited and is not based on learning or reasoning. It's a genetically programmed response to certain stimuli that helps an organism survive and reproduce.

In psychology, instincts are often considered to be innate drives or motivations that underlie behavior. In this context, the term "instinct" may be used in a medical or clinical setting to describe certain behaviors or responses that are thought to have a strong biological basis and are not primarily learned or voluntary.

It's important to note that the concept of instinct is complex and can be interpreted differently across various fields of study, so any definition may depend on the context in which it is being used.

Iguanas are not a medical term. They refer to a type of large, herbivorous lizard that is native to Central and South America, as well as the Caribbean. Some species of iguanas are also found in Mexico and parts of the southern United States. The green iguana is the most common species kept as pets. If you're looking for a medical definition, it might be a case of mistaken identity or misspelling, please make sure the term is correct.

Serotonin, also known as 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter that is found primarily in the gastrointestinal (GI) tract, blood platelets, and the central nervous system (CNS) of humans and other animals. It is produced by the conversion of the amino acid tryptophan to 5-hydroxytryptophan (5-HTP), and then to serotonin.

In the CNS, serotonin plays a role in regulating mood, appetite, sleep, memory, learning, and behavior, among other functions. It also acts as a vasoconstrictor, helping to regulate blood flow and blood pressure. In the GI tract, it is involved in peristalsis, the contraction and relaxation of muscles that moves food through the digestive system.

Serotonin is synthesized and stored in serotonergic neurons, which are nerve cells that use serotonin as their primary neurotransmitter. These neurons are found throughout the brain and spinal cord, and they communicate with other neurons by releasing serotonin into the synapse, the small gap between two neurons.

Abnormal levels of serotonin have been linked to a variety of disorders, including depression, anxiety, schizophrenia, and migraines. Medications that affect serotonin levels, such as selective serotonin reuptake inhibitors (SSRIs), are commonly used to treat these conditions.

The reticular formation is not a single structure but rather a complex network of interconnected neurons located in the brainstem, extending from the medulla oblongata through the pons and mesencephalon (midbrain) up to the diencephalon (thalamus and hypothalamus). It forms part of the reticular activating system, which is involved in regulating arousal, awareness, and sleep-wake cycles.

The reticular formation plays a crucial role in various functions such as:

1. Modulation of sensory input: The neurons in the reticular formation receive inputs from all senses (visual, auditory, tactile, etc.) and help filter and prioritize this information before it reaches higher cognitive areas.

2. Control of motor function: The reticular formation contributes to the regulation of muscle tone, posture, and locomotion by modulating the activity of motor neurons in the spinal cord.

3. Regulation of autonomic functions: The reticular formation is involved in controlling heart rate, blood pressure, respiration, and other visceral functions through its connections with the autonomic nervous system.

4. Consciousness and arousal: The ascending reticular activating system (ARAS) originates from the reticular formation and projects to the thalamus and cerebral cortex, where it helps maintain wakefulness and arousal. Damage to the ARAS can lead to coma or other states of altered consciousness.

5. Sleep-wake cycle regulation: The reticular formation contains cells that release neurotransmitters like histamine, serotonin, and orexin/hypocretin, which are essential for sleep-wake regulation. Dysfunction in these circuits has been implicated in various sleep disorders, such as narcolepsy and insomnia.

Struthioniformes is an order of large, flightless birds that includes ostriches, emus, cassowaries, and rheas. These birds are characterized by their inability to fly, long necks, and strong legs adapted for running. They are found in various parts of the world, with ostriches native to Africa, emus to Australia, cassowaries to Indonesia and Papua New Guinea, and rheas to South America. Struthioniformes birds are known for their fast running speed, with the ostrich being the fastest bird on land, capable of reaching speeds up to 60 miles per hour. They also lay large, hard-shelled eggs that are among the largest in the animal kingdom.

Exploratory behavior refers to the actions taken by an individual to investigate and gather information about their environment. This type of behavior is often driven by curiosity and a desire to understand new or unfamiliar situations, objects, or concepts. In a medical context, exploratory behavior may refer to a patient's willingness to learn more about their health condition, try new treatments, or engage in self-care activities. It can also refer to the behaviors exhibited by young children as they explore their world and develop their cognitive and motor skills. Exploratory behavior is an important aspect of learning and development, and it can have a positive impact on overall health and well-being.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

"Body size" is a general term that refers to the overall physical dimensions and proportions of an individual's body. It can encompass various measurements, including height, weight, waist circumference, hip circumference, blood pressure, and other anthropometric measures.

In medical and public health contexts, body size is often used to assess health status, risk factors for chronic diseases, and overall well-being. For example, a high body mass index (BMI) may indicate excess body fat and increase the risk of conditions such as diabetes, hypertension, and cardiovascular disease. Similarly, a large waist circumference or high blood pressure may also be indicators of increased health risks.

It's important to note that body size is just one aspect of health and should not be used as the sole indicator of an individual's overall well-being. A holistic approach to health that considers multiple factors, including diet, physical activity, mental health, and social determinants of health, is essential for promoting optimal health outcomes.

Central pattern generators (CPGs) are neural networks located within the central nervous system that are capable of generating and controlling rhythmic movements without sensory feedback. These networks are responsible for producing patterns of muscle activation necessary for various motor behaviors, such as walking, swimming, and breathing. CPGs can generate these patterns autonomously, allowing for the coordination of movement even in the absence of input from the environment or higher-level cognitive processes. They are thought to consist of interconnected populations of neurons that can produce oscillatory activity, which forms the basis for rhythmic movements. The properties and organization of CPGs have been studied extensively in various animal models, including invertebrates and vertebrates, and they are an active area of research in neuroscience and robotics.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

A nerve net, also known as a neural net or neuronal network, is not a medical term per se, but rather a concept in neuroscience and artificial intelligence (AI). It refers to a complex network of interconnected neurons that process and transmit information. In the context of the human body, the nervous system can be thought of as a type of nerve net, with the brain and spinal cord serving as the central processing unit and peripheral nerves carrying signals to and from various parts of the body.

In the field of AI, artificial neural networks are computational models inspired by the structure and function of biological nerve nets. These models consist of interconnected nodes or "neurons" that process information and learn patterns through a process of training and adaptation. They have been used in a variety of applications, including image recognition, natural language processing, and machine learning.

Hyperkinesis is not considered a formal medical diagnosis. However, the term is often used informally to refer to a state of excessive or involuntary muscle movements. It is sometimes used as a synonym for hyperkinetic movement disorders, which are a group of neurological conditions characterized by an excess of involuntary movements. Examples of hyperkinetic movement disorders include chorea, dystonia, tics, myoclonus, and stereotypies.

It is important to note that the term "hyperkinesis" is not used in the current diagnostic classifications such as the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) or the International Classification of Diseases (ICD-10). Instead, specific movement disorders are diagnosed and classified based on their underlying causes and symptoms.

Efferent pathways refer to the neural connections that carry signals from the central nervous system (CNS), which includes the brain and spinal cord, to the peripheral effectors such as muscles and glands. These pathways are responsible for the initiation and control of motor responses, as well as regulating various autonomic functions.

Efferent pathways can be divided into two main types:

1. Somatic efferent pathways: These pathways carry signals from the CNS to the skeletal muscles, enabling voluntary movements and postural control. The final common pathway for somatic motor innervation is the alpha-motor neuron, which synapses directly onto skeletal muscle fibers.
2. Autonomic efferent pathways: These pathways regulate the function of internal organs, smooth muscles, and glands. They are further divided into two subtypes: sympathetic and parasympathetic. The sympathetic system is responsible for the 'fight or flight' response, while the parasympathetic system promotes rest and digestion. Both systems use a two-neuron chain to transmit signals from the CNS to the effector organs. The preganglionic neuron has its cell body in the CNS and synapses with the postganglionic neuron in an autonomic ganglion located near the effector organ. The postganglionic neuron then innervates the target organ or tissue.

In summary, efferent pathways are the neural connections that carry signals from the CNS to peripheral effectors, enabling motor responses and regulating various autonomic functions. They can be divided into somatic and autonomic efferent pathways, with further subdivisions within the autonomic system.

Dopamine is a type of neurotransmitter, which is a chemical messenger that transmits signals in the brain and nervous system. It plays several important roles in the body, including:

* Regulation of movement and coordination
* Modulation of mood and motivation
* Control of the reward and pleasure centers of the brain
* Regulation of muscle tone
* Involvement in memory and attention

Dopamine is produced in several areas of the brain, including the substantia nigra and the ventral tegmental area. It is released by neurons (nerve cells) and binds to specific receptors on other neurons, where it can either excite or inhibit their activity.

Abnormalities in dopamine signaling have been implicated in several neurological and psychiatric conditions, including Parkinson's disease, schizophrenia, and addiction.

A joint is the location at which two or more bones make contact. They are constructed to allow movement and provide support and stability to the body during motion. Joints can be classified in several ways, including structure, function, and the type of tissue that forms them. The three main types of joints based on structure are fibrous (or fixed), cartilaginous, and synovial (or diarthrosis). Fibrous joints do not have a cavity and have limited movement, while cartilaginous joints allow for some movement and are connected by cartilage. Synovial joints, the most common and most movable type, have a space between the articular surfaces containing synovial fluid, which reduces friction and wear. Examples of synovial joints include hinge, pivot, ball-and-socket, saddle, and condyloid joints.

The lumbosacral region is the lower part of the back where the lumbar spine (five vertebrae in the lower back) connects with the sacrum (a triangular bone at the base of the spine). This region is subject to various conditions such as sprains, strains, herniated discs, and degenerative disorders that can cause pain and discomfort. It's also a common site for surgical intervention when non-surgical treatments fail to provide relief.

An "escape reaction" is a behavioral response displayed by an organism when it attempts to escape from a harmful, noxious, or stressful stimulus or situation. This response is typically characterized by rapid and directed movement away from the source of discomfort or danger. It is a fundamental survival mechanism that is observed across many species, including humans.

In a medical context, an escape reaction may be observed in response to painful medical procedures or treatments. For example, a patient may try to move or pull away during an injection or other invasive procedure. Healthcare providers must be aware of and prepared to manage escape reactions to ensure the safety and comfort of their patients during medical procedures.

Strepsirhini is a term used in primatology and physical anthropology to refer to a parvorder of primates that includes lemurs, lorises, and galagos (bushbabies). This group is characterized by several features, including a wet nose, a grooming claw on the second digit of the hind foot, and a toothcomb - a set of lower incisors and canines specialized for grooming.

The term Strepsirhini comes from the Greek words "streptos" meaning twisted and "rhinos" meaning nose, referring to the wet, rhinarium (naked, moist snout) found in these primates. This is one of the two major divisions within the infraorder Lemuriformes, the other being Haplorhini, which includes tarsiers, monkeys, apes, and humans.

Psychomotor performance refers to the integration and coordination of mental processes (cognitive functions) with physical movements. It involves the ability to perform complex tasks that require both cognitive skills, such as thinking, remembering, and perceiving, and motor skills, such as gross and fine motor movements. Examples of psychomotor performances include driving a car, playing a musical instrument, or performing surgical procedures.

In a medical context, psychomotor performance is often used to assess an individual's ability to perform activities of daily living (ADLs) and instrumental activities of daily living (IADLs), such as bathing, dressing, cooking, cleaning, and managing medications. Deficits in psychomotor performance can be a sign of neurological or psychiatric disorders, such as dementia, Parkinson's disease, or depression.

Assessment of psychomotor performance may involve tests that measure reaction time, coordination, speed, precision, and accuracy of movements, as well as cognitive functions such as attention, memory, and problem-solving skills. These assessments can help healthcare professionals develop appropriate treatment plans and monitor the progression of diseases or the effectiveness of interventions.

Anterior horn cells, also known as motor neurons, are a type of nerve cell located in the anterior (ventral) horn of the spinal cord's gray matter. These cells play a crucial role in initiating and regulating voluntary muscle movement by transmitting signals from the brain to the muscles via the peripheral nervous system.

Damage or degeneration of the anterior horn cells can result in various neuromuscular disorders, such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). These conditions can lead to muscle weakness, atrophy, and paralysis.

I'm sorry for any confusion, but "friction" is not a term that has a specific medical definition. Friction is a physical concept that describes the force that resists the sliding of one surface over another. It is commonly described as the "roughness" between two surfaces. While friction can have effects on various biological processes and medical devices, it does not have a unique medical meaning in and of itself.

Physiological adaptation refers to the changes or modifications that occur in an organism's biological functions or structures as a result of environmental pressures or changes. These adaptations enable the organism to survive and reproduce more successfully in its environment. They can be short-term, such as the constriction of blood vessels in response to cold temperatures, or long-term, such as the evolution of longer limbs in animals that live in open environments.

In the context of human physiology, examples of physiological adaptation include:

1. Acclimatization: The process by which the body adjusts to changes in environmental conditions, such as altitude or temperature. For example, when a person moves to a high-altitude location, their body may produce more red blood cells to compensate for the lower oxygen levels, leading to improved oxygen delivery to tissues.

2. Exercise adaptation: Regular physical activity can lead to various physiological adaptations, such as increased muscle strength and endurance, enhanced cardiovascular function, and improved insulin sensitivity.

3. Hormonal adaptation: The body can adjust hormone levels in response to changes in the environment or internal conditions. For instance, during prolonged fasting, the body releases stress hormones like cortisol and adrenaline to help maintain energy levels and prevent muscle wasting.

4. Sensory adaptation: Our senses can adapt to different stimuli over time. For example, when we enter a dark room after being in bright sunlight, it takes some time for our eyes to adjust to the new light level. This process is known as dark adaptation.

5. Aging-related adaptations: As we age, various physiological changes occur that help us adapt to the changing environment and maintain homeostasis. These include changes in body composition, immune function, and cognitive abilities.

'Caenorhabditis elegans' (C. elegans) is a type of free-living, transparent nematode (roundworm) that is often used as a model organism in scientific research. C. elegans proteins refer to the various types of protein molecules that are produced by the organism's genes and play crucial roles in maintaining its biological functions.

Proteins are complex molecules made up of long chains of amino acids, and they are involved in virtually every cellular process, including metabolism, DNA replication, signal transduction, and transportation of molecules within the cell. In C. elegans, proteins are encoded by genes, which are transcribed into messenger RNA (mRNA) molecules that are then translated into protein sequences by ribosomes.

Studying C. elegans proteins is important for understanding the basic biology of this organism and can provide insights into more complex biological systems, including humans. Because C. elegans has a relatively simple nervous system and a short lifespan, it is often used to study neurobiology, aging, and development. Additionally, because many of the genes and proteins in C. elegans have counterparts in other organisms, including humans, studying them can provide insights into human disease processes and potential therapeutic targets.

Cocaine is a highly addictive stimulant drug derived from the leaves of the coca plant (Erythroxylon coca). It is a powerful central nervous system stimulant that affects the brain and body in many ways. When used recreationally, cocaine can produce feelings of euphoria, increased energy, and mental alertness; however, it can also cause serious negative consequences, including addiction, cardiovascular problems, seizures, and death.

Cocaine works by increasing the levels of dopamine in the brain, a neurotransmitter associated with pleasure and reward. This leads to the pleasurable effects that users seek when they take the drug. However, cocaine also interferes with the normal functioning of the brain's reward system, making it difficult for users to experience pleasure from natural rewards like food or social interactions.

Cocaine can be taken in several forms, including powdered form (which is usually snorted), freebase (a purer form that is often smoked), and crack cocaine (a solid form that is typically heated and smoked). Each form of cocaine has different risks and potential harms associated with its use.

Long-term use of cocaine can lead to a number of negative health consequences, including addiction, heart problems, malnutrition, respiratory issues, and mental health disorders like depression or anxiety. It is important to seek help if you or someone you know is struggling with cocaine use or addiction.

Afferent pathways, also known as sensory pathways, refer to the neural connections that transmit sensory information from the peripheral nervous system to the central nervous system (CNS), specifically to the brain and spinal cord. These pathways are responsible for carrying various types of sensory information, such as touch, temperature, pain, pressure, vibration, hearing, vision, and taste, to the CNS for processing and interpretation.

The afferent pathways begin with sensory receptors located throughout the body, which detect changes in the environment and convert them into electrical signals. These signals are then transmitted via afferent neurons, also known as sensory neurons, to the spinal cord or brainstem. Within the CNS, the information is further processed and integrated with other neural inputs before being relayed to higher cognitive centers for conscious awareness and response.

Understanding the anatomy and physiology of afferent pathways is essential for diagnosing and treating various neurological conditions that affect sensory function, such as neuropathies, spinal cord injuries, and brain disorders.

An action potential is a brief electrical signal that travels along the membrane of a nerve cell (neuron) or muscle cell. It is initiated by a rapid, localized change in the permeability of the cell membrane to specific ions, such as sodium and potassium, resulting in a rapid influx of sodium ions and a subsequent efflux of potassium ions. This ion movement causes a brief reversal of the electrical potential across the membrane, which is known as depolarization. The action potential then propagates along the cell membrane as a wave, allowing the electrical signal to be transmitted over long distances within the body. Action potentials play a crucial role in the communication and functioning of the nervous system and muscle tissue.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

The Peroneal nerve, also known as the common fibular nerve, is a branch of the sciatic nerve that supplies the muscles of the lower leg and provides sensation to the skin on the outer part of the lower leg and the top of the foot. It winds around the neck of the fibula (calf bone) and can be vulnerable to injury in this area, leading to symptoms such as weakness or numbness in the foot and leg.

Proprioception is the unconscious perception of movement and spatial orientation arising from stimuli within the body itself. It is sometimes described as the "sixth sense" and it's all about knowing where your body parts are, how they are moving, and the effort being used to move them. This information is crucial for motor control, balance, and coordination.

The proprioceptive system includes sensory receptors called proprioreceptors located in muscles, tendons, and joints that send messages to the brain through nerves regarding body position and movement. These messages are then integrated with information from other senses, such as vision and vestibular sense (related to balance), to create a complete understanding of the body's position and motion in space.

Deficits in proprioception can lead to problems with coordination, balance, and fine motor skills.

A tendon is the strong, flexible band of tissue that connects muscle to bone. It helps transfer the force produced by the muscle to allow various movements of our body parts. Tendons are made up of collagen fibers arranged in parallel bundles and have a poor blood supply, making them prone to injuries and slow to heal. Examples include the Achilles tendon, which connects the calf muscle to the heel bone, and the patellar tendon, which connects the kneecap to the shinbone.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Functional laterality, in a medical context, refers to the preferential use or performance of one side of the body over the other for specific functions. This is often demonstrated in hand dominance, where an individual may be right-handed or left-handed, meaning they primarily use their right or left hand for tasks such as writing, eating, or throwing.

However, functional laterality can also apply to other bodily functions and structures, including the eyes (ocular dominance), ears (auditory dominance), or legs. It's important to note that functional laterality is not a strict binary concept; some individuals may exhibit mixed dominance or no strong preference for one side over the other.

In clinical settings, assessing functional laterality can be useful in diagnosing and treating various neurological conditions, such as stroke or traumatic brain injury, where understanding any resulting lateralized impairments can inform rehabilitation strategies.

The mesencephalon, also known as the midbrain, is the middle portion of the brainstem that connects the hindbrain (rhombencephalon) and the forebrain (prosencephalon). It plays a crucial role in several important functions including motor control, vision, hearing, and the regulation of consciousness and sleep-wake cycles. The mesencephalon contains several important structures such as the cerebral aqueduct, tectum, tegmentum, cerebral peduncles, and several cranial nerve nuclei (III and IV).

I'm sorry for any confusion, but "turtles" is not a medical term. It refers to the group of reptiles that have a shell and include various species such as tortoises and terrapins. If you have any medical concerns or questions, I would be happy to try to help with those!

Colubridae is a family of snakes that includes a large majority of the world's snake species. It is a diverse group, with members ranging from relatively small and harmless species to large and potentially dangerous ones. Some colubrids have evolved specialized adaptations for specific hunting strategies or defense mechanisms.

Colubridae species are found worldwide, except in Antarctica, and they inhabit various environments such as forests, grasslands, deserts, and wetlands. Many colubrids are constrictors, meaning they kill their prey by wrapping their bodies around it and squeezing until the prey can no longer breathe.

It is worth noting that some colubrid species were previously classified under other families such as Natricidae or Dipsadidae, but recent genetic studies have led to a reclassification of these snakes into Colubridae.

Some examples of colubrids include rat snakes, gopher snakes, racers, whip snakes, and tree snakes. The family also includes some well-known species like the king cobra (Ophiophagus hannah) and the black mamba (Dendroaspis polylepis), which are among the longest and most venomous snakes in the world. However, it is important to note that not all colubrids are venomous, and those that are typically pose little threat to humans due to their mild venom or shy nature.

A muscle is a soft tissue in our body that contracts to produce force and motion. It is composed mainly of specialized cells called muscle fibers, which are bound together by connective tissue. There are three types of muscles: skeletal (voluntary), smooth (involuntary), and cardiac. Skeletal muscles attach to bones and help in movement, while smooth muscles are found within the walls of organs and blood vessels, helping with functions like digestion and circulation. Cardiac muscle is the specific type that makes up the heart, allowing it to pump blood throughout the body.

In medical terms, toes are the digits located at the end of the foot. Humans typically have five toes on each foot, consisting of the big toe (hallux), second toe, third toe, fourth toe, and little toe (fifth toe). The bones of the toes are called phalanges, with the exception of the big toe, which has a different bone structure and is composed of a proximal phalanx, distal phalanx, and sometimes a sesamoid bone.

Toes play an essential role in maintaining balance and assisting in locomotion by helping to push off the ground during walking or running. They also contribute to the overall stability and posture of the body. Various medical conditions can affect toes, such as ingrown toenails, bunions, hammertoes, and neuromas, which may require specific treatments or interventions to alleviate pain, restore function, or improve appearance.

Sensory feedback refers to the information that our senses (such as sight, sound, touch, taste, and smell) provide to our nervous system about our body's interaction with its environment. This information is used by our brain and muscles to make adjustments in movement, posture, and other functions to maintain balance, coordination, and stability.

For example, when we walk, our sensory receptors in the skin, muscles, and joints provide feedback to our brain about the position and movement of our limbs. This information is used to adjust our muscle contractions and make small corrections in our gait to maintain balance and avoid falling. Similarly, when we touch a hot object, sensory receptors in our skin send signals to our brain that activate the withdrawal reflex, causing us to quickly pull away our hand.

In summary, sensory feedback is an essential component of our nervous system's ability to monitor and control our body's movements and responses to the environment.

Orthopedic equipment refers to devices or appliances used in the practice of orthopedics, which is a branch of medicine focused on the correction, support, and prevention of disorders, injuries, or deformities of the skeletal system, including bones, joints, ligaments, tendons, and muscles. These devices can be categorized into various types based on their function and application:

1. Mobility aids: Equipment that helps individuals with impaired mobility to move around more easily, such as walkers, crutches, canes, wheelchairs, and scooters.
2. Immobilization devices: Used to restrict movement of a specific body part to promote healing, prevent further injury, or provide support during rehabilitation, including casts, braces, splints, slings, and collars.
3. Prosthetics: Artificial limbs that replace missing body parts due to amputation, illness, or congenital defects, enabling individuals to perform daily activities and maintain independence.
4. Orthotics: Custom-made or off-the-shelf devices worn inside shoes or on the body to correct foot alignment issues, provide arch support, or alleviate pain in the lower extremities.
5. Rehabilitation equipment: Devices used during physical therapy sessions to improve strength, flexibility, balance, and coordination, such as resistance bands, exercise balls, balance boards, and weight training machines.
6. Surgical instruments: Specialized tools used by orthopedic surgeons during operations to repair fractures, replace joints, or correct deformities, including saws, drills, retractors, and screwdrivers.
7. Diagnostic equipment: Imaging devices that help healthcare professionals assess musculoskeletal conditions, such as X-ray machines, CT scanners, MRI machines, and ultrasound systems.

These various types of orthopedic equipment play a crucial role in the diagnosis, treatment, rehabilitation, and management of orthopedic disorders and injuries, enhancing patients' quality of life and functional abilities.

I'm sorry for any confusion, but "videotape recording" is not a term that has a specific medical definition. Videotape recording is a general technology term that refers to the process of capturing and storing visual and/or audio content on magnetic tape in the form of a videocassette.

In a medical context, videotape recordings might be used for various purposes, such as documenting medical procedures or patient consultations, creating educational materials, or conducting research. However, the use of videotape recording in these situations would not change the fundamental meaning of the term.

Alligators and crocodiles are large, semi-aquatic reptiles belonging to the order Crocodylia. They are characterized by a long, broad snout, powerful tail, and sharp teeth designed for grabbing and holding onto prey. Alligators and crocodiles are similar in appearance but can be distinguished by their snouts: alligators have a wider, U-shaped snout, while crocodiles have a more V-shaped snout.

Alligators (family Alligatoridae) are native to the United States and China, with two living species: the American alligator (Alligator mississippiensis) and the Chinese alligator (Alligator sinensis). They prefer freshwater habitats such as rivers, lakes, and marshes.

Crocodiles (family Crocodylidae) are found in tropical regions around the world, including Africa, Asia, Australia, and the Americas. There are 14 species of crocodiles, including the Nile crocodile (Crocodylus niloticus), the Saltwater crocodile (Crocodylus porosus), and the American crocodile (Crocodylus acutus). Crocodiles can tolerate both freshwater and saltwater environments.

Both alligators and crocodiles are apex predators, feeding on a variety of animals such as fish, birds, and mammals. They are known for their powerful bite force and have been reported to take down large prey, including deer and cattle. Alligators and crocodiles play an important role in maintaining the balance of their ecosystems by controlling populations of other animals and helping to keep waterways clean.

While alligators and crocodiles are often feared due to their size and predatory nature, they are also threatened by habitat loss, pollution, and hunting. Several species are considered endangered or vulnerable, and conservation efforts are underway to protect them and their habitats.

The brainstem is the lower part of the brain that connects to the spinal cord. It consists of the midbrain, pons, and medulla oblongata. The brainstem controls many vital functions such as heart rate, breathing, and blood pressure. It also serves as a relay center for sensory and motor information between the cerebral cortex and the rest of the body. Additionally, several cranial nerves originate from the brainstem, including those that control eye movements, facial movements, and hearing.

I'm sorry for any confusion, but "gravitation" is not a term that is typically used in the context of medical definitions. Gravitation is a fundamental force that attracts two objects with mass towards each other. It is the force that causes objects to fall towards the earth and keeps the planets in orbit around the sun.

In the field of medicine, the concepts of gravity or gravitational forces are not directly relevant to the diagnosis or treatment of medical conditions. However, there may be some indirect applications related to physiology and human health, such as the effects of microgravity on the human body during space travel.

Muscle contraction is the physiological process in which muscle fibers shorten and generate force, leading to movement or stability of a body part. This process involves the sliding filament theory where thick and thin filaments within the sarcomeres (the functional units of muscles) slide past each other, facilitated by the interaction between myosin heads and actin filaments. The energy required for this action is provided by the hydrolysis of adenosine triphosphate (ATP). Muscle contractions can be voluntary or involuntary, and they play a crucial role in various bodily functions such as locomotion, circulation, respiration, and posture maintenance.

Cockroaches are not a medical condition or disease. They are a type of insect that can be found in many parts of the world. Some species of cockroaches are known to carry diseases and allergens, which can cause health problems for some people. Cockroach allergens can trigger asthma symptoms, especially in children. Additionally, cockroaches can contaminate food and surfaces with bacteria and other germs, which can lead to illnesses such as salmonellosis and gastroenteritis.

If you have a problem with cockroaches in your home or workplace, it is important to take steps to eliminate them to reduce the risk of health problems. This may include cleaning up food and water sources, sealing entry points, and using pesticides or hiring a professional pest control service.

Postural balance is the ability to maintain, achieve, or restore a state of equilibrium during any posture or activity. It involves the integration of sensory information (visual, vestibular, and proprioceptive) to control and adjust body position in space, thereby maintaining the center of gravity within the base of support. This is crucial for performing daily activities and preventing falls, especially in older adults and individuals with neurological or orthopedic conditions.

Efferent neurons are specialized nerve cells that transmit signals from the central nervous system (CNS), which includes the brain and spinal cord, to effector organs such as muscles or glands. These signals typically result in a response or action, hence the term "efferent," derived from the Latin word "efferre" meaning "to carry away."

Efferent neurons are part of the motor pathway and can be further classified into two types:

1. Somatic efferent neurons: These neurons transmit signals to skeletal muscles, enabling voluntary movements and posture maintenance. They have their cell bodies located in the ventral horn of the spinal cord and send their axons through the ventral roots to innervate specific muscle fibers.
2. Autonomic efferent neurons: These neurons are responsible for controlling involuntary functions, such as heart rate, digestion, respiration, and pupil dilation. They have a two-neuron chain arrangement, with the preganglionic neuron having its cell body in the CNS (brainstem or spinal cord) and synapsing with the postganglionic neuron in an autonomic ganglion near the effector organ. Autonomic efferent neurons can be further divided into sympathetic, parasympathetic, and enteric subdivisions based on their functions and innervation patterns.

In summary, efferent neurons are a critical component of the nervous system, responsible for transmitting signals from the CNS to various effector organs, ultimately controlling and coordinating numerous bodily functions and responses.

Video microscopy is a medical technique that involves the use of a microscope equipped with a video camera to capture and display real-time images of specimens on a monitor. This allows for the observation and documentation of dynamic processes, such as cell movement or chemical reactions, at a level of detail that would be difficult or impossible to achieve with the naked eye. Video microscopy can also be used in conjunction with image analysis software to measure various parameters, such as size, shape, and motion, of individual cells or structures within the specimen.

There are several types of video microscopy, including brightfield, darkfield, phase contrast, fluorescence, and differential interference contrast (DIC) microscopy. Each type uses different optical techniques to enhance contrast and reveal specific features of the specimen. For example, fluorescence microscopy uses fluorescent dyes or proteins to label specific structures within the specimen, allowing them to be visualized against a dark background.

Video microscopy is used in various fields of medicine, including pathology, microbiology, and neuroscience. It can help researchers and clinicians diagnose diseases, study disease mechanisms, develop new therapies, and understand fundamental biological processes at the cellular and molecular level.

Dopamine uptake inhibitors are a class of medications that work by blocking the reuptake of dopamine, a neurotransmitter, into the presynaptic neuron. This results in an increased concentration of dopamine in the synapse, leading to enhanced dopaminergic transmission and activity.

These drugs are used in various medical conditions where dopamine is implicated, such as depression, attention deficit hyperactivity disorder (ADHD), and neurological disorders like Parkinson's disease. They can also be used to treat substance abuse disorders, such as cocaine addiction, by blocking the reuptake of dopamine and reducing the rewarding effects of the drug.

Examples of dopamine uptake inhibitors include:

* Bupropion (Wellbutrin), which is used to treat depression and ADHD
* Methylphenidate (Ritalin, Concerta), which is used to treat ADHD
* Amantadine (Symmetrel), which is used to treat Parkinson's disease and also has antiviral properties.

It's important to note that dopamine uptake inhibitors can have side effects, including increased heart rate, blood pressure, and anxiety. They may also have the potential for abuse and dependence, particularly in individuals with a history of substance abuse. Therefore, these medications should be used under the close supervision of a healthcare provider.

Afferent neurons, also known as sensory neurons, are a type of nerve cell that conducts impulses or signals from peripheral receptors towards the central nervous system (CNS), which includes the brain and spinal cord. These neurons are responsible for transmitting sensory information such as touch, temperature, pain, sound, and light to the CNS for processing and interpretation. Afferent neurons have specialized receptor endings that detect changes in the environment and convert them into electrical signals, which are then transmitted to the CNS via synapses with other neurons. Once the signals reach the CNS, they are processed and integrated with other information to produce a response or reaction to the stimulus.

The nucleus accumbens is a part of the brain that is located in the ventral striatum, which is a key region of the reward circuitry. It is made up of two subregions: the shell and the core. The nucleus accumbens receives inputs from various sources, including the prefrontal cortex, amygdala, and hippocampus, and sends outputs to the ventral pallidum and other areas.

The nucleus accumbens is involved in reward processing, motivation, reinforcement learning, and addiction. It plays a crucial role in the release of the neurotransmitter dopamine, which is associated with pleasure and reinforcement. Dysfunction in the nucleus accumbens has been implicated in various neurological and psychiatric conditions, including substance use disorders, depression, and obsessive-compulsive disorder.

N-Methyl-D-Aspartate (NMDA) is not a medication but a type of receptor, specifically a glutamate receptor, found in the post-synaptic membrane in the central nervous system. Glutamate is a major excitatory neurotransmitter in the brain. NMDA receptors are involved in various functions such as synaptic plasticity, learning, and memory. They also play a role in certain neurological disorders like epilepsy, neurodegenerative diseases, and chronic pain.

NMDA receptors are named after N-Methyl-D-Aspartate, a synthetic analog of the amino acid aspartic acid, which is a selective agonist for this type of receptor. An agonist is a substance that binds to a receptor and causes a response similar to that of the natural ligand (in this case, glutamate).

"Biological clocks" refer to the internal time-keeping systems in living organisms that regulate the timing of various physiological processes and behaviors according to a daily (circadian) rhythm. These rhythms are driven by genetic mechanisms and can be influenced by environmental factors such as light and temperature.

In humans, biological clocks help regulate functions such as sleep-wake cycles, hormone release, body temperature, and metabolism. Disruptions to these internal timekeeping systems have been linked to various health problems, including sleep disorders, mood disorders, and cognitive impairment.

Central nervous system (CNS) stimulants are a class of drugs that increase alertness, attention, energy, and/or mood by directly acting on the brain. They can be prescribed to treat medical conditions such as narcolepsy, attention deficit hyperactivity disorder (ADHD), and depression that has not responded to other treatments.

Examples of CNS stimulants include amphetamine (Adderall), methylphenidate (Ritalin, Concerta), and modafinil (Provigil). These medications work by increasing the levels of certain neurotransmitters, such as dopamine and norepinephrine, in the brain.

In addition to their therapeutic uses, CNS stimulants are also sometimes misused for non-medical reasons, such as to enhance cognitive performance or to get high. However, it's important to note that misusing these drugs can lead to serious health consequences, including addiction, cardiovascular problems, and mental health issues.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

In medical terms, the leg refers to the lower portion of the human body that extends from the knee down to the foot. It includes the thigh (femur), lower leg (tibia and fibula), foot, and ankle. The leg is primarily responsible for supporting the body's weight and enabling movements such as standing, walking, running, and jumping.

The leg contains several important structures, including bones, muscles, tendons, ligaments, blood vessels, nerves, and joints. These structures work together to provide stability, support, and mobility to the lower extremity. Common medical conditions that can affect the leg include fractures, sprains, strains, infections, peripheral artery disease, and neurological disorders.

Interference microscopy is a type of microscopy that uses the interference of light waves to enhance contrast and visualize details in a specimen. It is often used to measure thin transparent samples, such as cells or tissues, with very high precision. One common method of interference microscopy is phase contrast microscopy, which converts differences in the optical path length of light passing through the sample into changes in amplitude and/or phase of the transmitted light. This results in enhanced contrast and visibility of details that may be difficult to see using other forms of microscopy. Other types of interference microscopy include differential interference contrast (DIC) microscopy, which uses polarized light to enhance contrast, and holographic microscopy, which records and reconstructs the wavefront of light passing through the sample to create a 3D image.

Robot locomotion, of man-made devices Aquatic locomotion Flight Locomotion in space Terrestrial locomotion Animal locomotion ... "Locomotion", a 1958 song by John Coltrane from Blue Train Locomotion (periodical), a railway-related magazine Locomotion, a ... Microswimmer Protist locomotion, locomotion of unicellular eukaryotes Bacterial motility Loco Motion (Youth Group), a film and ... Locomotion means the act or ability of something to transport or move itself from place to place. Locomotion may refer to: ...
... or rectilinear progression is a mode of locomotion most often associated with snakes. In particular, it ... the snake flexes its body only when turning in rectilinear locomotion. Rectilinear locomotion relies upon two opposing muscles ... This method of locomotion is extremely slow (between 0.01-0.06 m/s (0.033-0.197 ft/s)), but is also almost noiseless and very ... Rectilinear locomotion may also be useful after snakes eat. Snakes have more difficulty bending their spines after consuming ...
... official website IWFL official website v t e v t e (Pages using infobox sports team with color1, color2 ... The Chattanooga Locomotion was a team in the Independent Women's Football League based in Chattanooga, Tennessee. The Home ... Before the first game of the 2007 Season, the Locomotion also lost Jeff Ellis, an important member of the team performing many ... From their inception in 2001 until 2008, the Locomotion played in the National Women's Football Association. Schandra "Sunshine ...
... , usually referred to as the Vojta method, is a technique for the treatment of physical and mental impairment ...
Animal locomotion Aquatic Fish fin Locomotion in space Robot locomotion Role of skin in locomotion Terrestrial locomotion ... This locomotion is used as a means to escape predators such as starfish. Afterwards, the shell acts as a hydrofoil to ... Anguilliform locomotion is usually seen in fish with long, slender bodies like eels, lampreys, oarfish, and a number of catfish ... Aquatic locomotion or swimming is biologically propelled motion through a liquid medium. The simplest propulsive systems are ...
It is important to note that inputs from the hip appear to play a critical role in spinal locomotion. Experiments on spinal ... Spinal locomotion results from intricate dynamic interactions between a central program in lower thoracolumbar spine and ... On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Research. 146, 269-277. Pearson, K.G., ... The effect of dorsal root transection on the efferent motor pattern in the cat's hindlimb during locomotion. Acta Physiologica ...
... locomotion Aquatic locomotion Comparative foot morphology Locomotion in space Robot locomotion Role of skin in locomotion ... This mode of locomotion requires these irregularities to function. Another form of locomotion, rectilinear locomotion, is used ... Terrestrial locomotion has evolved as animals adapted from aquatic to terrestrial environments. Locomotion on land raises ... Movement on appendages is the most common form of terrestrial locomotion, it is the basic form of locomotion of two major ...
Arboreal locomotion is the locomotion of animals in trees. Some animals may only scale trees occasionally, while others are ... The energetics of locomotion involves the energy expenditure by animals in moving. Energy consumed in locomotion is not ... A relatively few animals use five limbs for locomotion. Prehensile quadrupeds may use their tail to assist in locomotion and ... mode of locomotion. A few modern mammalian species are habitual bipeds, i.e., whose normal method of locomotion is two-legged. ...
Locomotion, previously known as Locomotion the National Railway Museum at Shildon, is a railway museum in Shildon, County ... "Locomotion Reaches 2.5M Visitor Milestone". Retrieved 22 July 2022. "Prime Minister opens Shildon Locomotion museum" The ... Locomotion. Retrieved 8 February 2020. "WATCH: Locomotion No 1 arrives in Shildon". The Northern Echo. Retrieved 15 May 2021. " ... Locomotion was shortlisted as one of the final five contenders in the Gulbenkian Prize, which is the largest arts prize in the ...
This style of locomotion is known as punting and is very similar to walking as the force appears to be generated from direct ... Benthic rays rely entirely on rajiform locomotion. Another difference between the two is the role of the tail. Skates have ... Koester, David M.; Spirito, Carl P. (2003). "Punting: An Unusual Mode of Locomotion in the Little Skate, Leucoraja erinacea ( ... This distinctive morphology has resulted in several unique forms of locomotion. Most Batoids exhibit median paired fin swimming ...
List of railroad-related periodicals Title page Locomotion Issue 2 v t e v t e (Use dmy dates from July 2019, Rail transport ... Locomotion is a railway-related magazine published irregularly in Australia by the Australian Railway Historical Society, New ...
Look up robot locomotion in Wiktionary, the free dictionary. Robot Locomotion (CS1 maint: multiple names: authors list, ... Robot locomotion is the collective name for the various methods that robots use to transport themselves from place to place. ... Autonomous robot locomotion is a major technological obstacle for many areas of robotics, such as humanoids (like Honda's Asimo ... A detailed study of the anatomy of this organism provides some detail about the mechanisms for locomotion. The hind legs of the ...
During locomotion on the ground, the location of the center of mass may swing from side to side. But during arboreal locomotion ... Arboreal locomotion is the locomotion of animals in trees. In habitats in which trees are present, animals have evolved to move ... Cartmill, M. (1974). Pads and claws in arboreal locomotion. In Primate Locomotion, (ed. F. A. J. Jenkins), pp. 45-83. New York ... Only a few species are brachiators, and all of these are primates; it is a major means of locomotion among spider monkeys and ...
Animal locomotion Aquatic locomotion Locomotion in space Locomotive Robot locomotion Terrestrial locomotion Guo, Z. V.; ... In limbless locomotion, forward locomotion is generated by propagating flexural waves along the length of the animal's body. ... Terrestrial Locomotion: EMG recordings show a longer absolute duration and duty cycle of muscle activity during locomotion on ... However, while this pattern is characteristic of undulatory locomotion, it too can vary with environment. Aquatic Locomotion: ...
Arachnid Bowerman, Robert F. (1981). "Arachnid Locomotion". In Herreid, Clyde F.; Fourtner, Charles R. (eds.). Locomotion and ... Arachnid locomotion is the various means by which arachnids walk, run, or jump; they make use of more than muscle contraction, ... Hydraulic locomotion in arachnids has acted as an inspiration for many modern biomimetic concepts in robotics intended for use ... In larger variants of arachnids, such as the tarantulas and hairy desert spiders, another mechanism used for locomotion is an ...
... is the various types of animal locomotion used by fish, principally by swimming. This is achieved in different ... Pelagic stingrays, such as the manta, cownose, eagle and bat rays use oscillatory locomotion. In tetraodontiform locomotion, ... Aquatic locomotion, Animal locomotion, Articles containing video clips). ... Fins used for locomotion (1) pectoral fins (paired), (2) pelvic fins (paired), (3) dorsal fin, (4) adipose fin, (5) anal fin, ( ...
Active locomotion, targeting and steering of concentrated therapeutic and diagnostic agents embedded in mobile microrobots to ... Aquatic locomotion Bacterial motility Cytoskeleton Spirostomum Squirmer Vorticella Hinchliff, Cody E.; Smith, Stephen A.; ... Flagella attached to the same body might follow different beating patterns, leading to a complex locomotion strategy that often ... Jahn, T. L.; Votta, J. J. (1972). "Locomotion of Protozoa". Annual Review of Fluid Mechanics. 4: 93-116. Bibcode:1972AnRFM...4 ...
"The Locomotion Interruption" at CBS.com "The Locomotion Interruption" at IMDb (Articles with short description, Short ... "The Locomotion Interruption" is the first episode of the eighth season of The Big Bang Theory, which first aired on CBS on ... In "The Locomotion Interruption", Sheldon returns to Pasadena, Penny has a job interview for a pharmaceutical sales position, ... The filming of "The Locomotion Interruption" was originally supposed to begin on July 31, 2014, but it was delayed due to ...
"The Loco-Motion" (Remix) "The Loco-Motion" (The Sankie Mix) "The Loco-Motion" (Alternative Sankie Mix) "The Loco-Motion" (12- ... "Locomotion" (Australian version) "Locomotion" "Locomotion" (Chugga-Motion Mix) "Locomotion" (The Girl Meets Boy Mix) "Getting ... "The Loco-Motion" (or "Locomotion") is a 1962 pop song written by American songwriters Gerry Goffin and Carole King. "The Loco- ... " "The Loco-Motion" "The Loco-Motion" (7-inch mix) "The Loco-Motion" (The Kohaku Mix) "The Loco-Motion" (7-inch instrumental) ( ...
Locomotion in these conditions is different from locomotion in a gravitational field. There are many factors that contribute to ... gait transitions and the mechanics of locomotion, which means that the kinematics of locomotion in space need to be studied in ... Locomotion in space includes all actions or methods used to move one's body in microgravity conditions through the outer space ... When locomotion is studied in space, these same relations do not always apply. For example, the inverted pendulum model for ...
Locomotion has also since been the subject of open-source redevelopment by third parties. Locomotion is an isometric transport ... Chris Sawyer's Locomotion (often abbreviated to Locomotion) is a video game designed and programmed by independent game ... "Chris Sawyer's Locomotion". PC Zone (149): 90. December 2004. Sefton, Jamie (May 2005). "Chris Sawyer's Locomotion". PC Zone ( ... Chris Sawyer's Locomotion: Game Manual. Atari. 2004. "Chris Sawyer's Locomotion - Train Driving Mode!". Chris Sawyer. 2005. ...
The "Locomotion" was shown left of the "circle" in an Italicized font. This was used from 1999 to May 2002. Locomotion's third ... Thanks to Locomotion, groups like Boeing and Miranda! began their career, today being recognized by MTV. Locomotion had a 30 ... Neon Genesis Evangelion had aired on Locomotion, and would also air on Animax, although 3 years after Locomotion's shutdown. ... Locomotion's first logo resembled a red-colored head with a "Loco" on its face (the "O"s being in where the eyes are, the "L" ...
Locomotion Trust. OCLC 504762380. Lloyd, Chris (11 March 2021). "Darlington to have replica Locomotion No 1 on display". The ... It is presently at the Locomotion museum in Shildon. A working replica of Locomotion has also been built and following years of ... 1". Locomotion. Science Museum Group. 5 March 2021. Retrieved 10 June 2021. Satow, F. (1976). Locomotion : concept to creation ... Wikimedia Commons has media related to Locomotion No.1. Darlington Railway Centre and Museum Photograph of Locomotion at the ...
... occurs mostly in aquatic locomotion, and rarely in terrestrial locomotion. From the three common ... Animal locomotion Kinematics Terrestrial locomotion Flammang, B.E. and Lauder, G.V. 2008. Caudal fin shape modulation and ... Aquatic locomotion consists of swimming, whereas terrestrial locomotion encompasses walking, 'crutching', jumping, digging as ... mostly fresh or saltwater and used in locomotion, steering and balancing of the body. Locomotion is important in order to ...
Loco-Motion at the Killer List of Videogames Technical information on Loco-Motion Loco-Motion entry at the Centuri.net Arcade ... "Loco-Motion". IntellvisionLives.com. Archived from the original on 2018-06-11. Crazy Train at Generation-MSX Loco-Motion ... Loco-Motion, known as Guttang Gottong in Japan, is an arcade puzzle game developed by Konami in 1982 and released by Sega in ... In Loco-Motion, the player builds a path for their unstoppable locomotive by moving tracks which will allow it to pick up ...
Legged locomotion is a dominant form of terrestrial locomotion, the movement on land. The motion of limbs is quantified by ... In animal locomotion, kinematics is used to describe the motion of the body and limbs of an animal. The goal is ultimately to ... Aerial locomotion is a form of movement used by many organisms and is typically powered by at least one pair of wings. Some ... During legged locomotion, an animal flexes and extends its joints in an oscillatory manner, creating a joint angle pattern that ...
Loco Motion is a youth film and media group based in Basildon, Essex. The club was created and launched in 2004, and is now a ... Youth members of Loco Motion applied to Essex County Council's Youth Capital Fund and received £20,000 to complete the ... In 2007, Loco Motion has been supporting Woodlands School to expand its specialist performing arts status into the local ... Loco Motion has formed partnerships with many other organisations, including Woodlands School, Essex, The Basildon District ...
Cutaneous, superficial, or skin reflexes, are activated by skin receptors and play a valuable role in locomotion, providing ... In addition to the role in normal locomotion, cutaneous reflexes are being studied for their potential in enhancing ... Video example of the Stumble Response in NYC Gait Analysis Interlimb Coordination of Locomotion Upper limb reflexes in ... The major muscles impacted involve four (4) motions important to locomotion: Thigh muscles responding to cutaneous reflex Lower ...
In biomechanics, center of pressure (CoP) is the term given to the point of application of the ground reaction force vector. The ground reaction force vector represents the sum of all forces acting between a physical object and its supporting surface. Analysis of the center of pressure is common in studies on human postural control and gait. It is thought that changes in motor control may be reflected in changes in the center of pressure. In biomechanical studies, the effect of some experimental condition on movement execution will regularly be quantified by alterations in the center of pressure. The center of pressure is not a static outcome measure. For instance, during human walking, the center of pressure is near the heel at the time of heelstrike and moves anteriorly throughout the step, being located near the toes at toe-off. For this reason, analysis of the center of pressure will need to take into account the dynamic nature of the signal. In the scientific literature various methods for ...
Robot locomotion, of man-made devices Aquatic locomotion Flight Locomotion in space Terrestrial locomotion Animal locomotion ... "Locomotion", a 1958 song by John Coltrane from Blue Train Locomotion (periodical), a railway-related magazine Locomotion, a ... Microswimmer Protist locomotion, locomotion of unicellular eukaryotes Bacterial motility Loco Motion (Youth Group), a film and ... Locomotion means the act or ability of something to transport or move itself from place to place. Locomotion may refer to: ...
As amazing as it seems, we have footprints of sauropods on nearly every continent, left during their 140-million-year stint on Earth. And those footprints, many in long trackways, provide some of t...
... soil by a process called concertina locomotion, in which the body alternately folds and extends itself along its entire length ... Other articles where concertina locomotion is discussed: amphibian: Caecilians: … ... variety of locomotion*. In locomotion: Concertina locomotion. Concertina locomotion is used when there is not enough frictional ... In snake: Locomotion. …of these is known as "concertina" locomotion, because the snake in action resembles the opening and ...
A verse novel in which 11-year-old Lonnie recovers from the trauma that results when his parents are killed in a fire.. ...
Get the latest bipedal locomotion info from our tech-obsessed editors with breaking news, in-depth reviews, hands-on videos, ... bipedal locomotion. *. Watch a blind robot successfully navigate stairs. It was able to go both up and down with high success ...
The Virtual Locomotion Setup consists of a 6DoF Stewart motion platform, similar to one that is usually used for flight ...
... [rss]. Ideas are sorted alphabetically.. Ideas in bold have been created this week.. ...
Physical sciences/Physics/Mechanics/Biomechanics/Locomotion/Animal locomotion * /Applied sciences and engineering/Engineering/ ... Unique means of animal locomotion reported for first time. Tufts University. Journal. Current Biology. Funder. DOE/US ... Unique means of animal locomotion reported for first time Novel two-body system could have implications for robotics, human ... "Although internal tissue movement caused by locomotion has been identified in many organisms, the caterpillars seemed to be ...
Amy and Leonard take a surprise road trip to Arizona, while Penny goes on a job interview at Bernadettes company, and Howard has problems wrapping his head around Stuarts relationship with Mrs. Wolowitz.
More specifically, they use a form of locomotion called knuckle-walking, meaning they walk on the top of their knuckles as ...
composed by Benjamin Sneyd-Utting and Craig Utting for piano ...
Talaria VR released a video highlighting some of the capabilities of the companys in-development VR locomotion peripheral, ... The Talaria VR locomotion wearable is designed to be strapped to your foot, which is similar to how the Omni tracks your ... Great choices for locomotion. Any estimates on price and availability for purchase?. Too early to say, but accessibility is a ... Alternatively, if a developer wishes to include full integration of Talaria locomotion, its a simple drag-and-drop asset into ...
Locomotion: Criss Cross After reading Locomotion by Jacqueline Woodson use this printable and interactive Criss Cross puzzle ... Locomotion: Word Search After reading Locomotion by Jacqueline Woodson use this printable and interactive Word Search puzzle ...
... Common back problems may be caused by evolution of human ... They say this could be explained by the different modes of locomotion and contributes to the understanding of the human ... Researchers studied the vertebrae of humans, chimpanzees and orangutans to examine links between vertebral shape, locomotion, ... and one widely discussed explanation for this is the stress placed on the spine by bipedal locomotion. This research backs up ...
... while facilitating smooth locomotion (impact between robot and surface). Locomotion strategies for such robots involve altering ... while facilitating smooth locomotion (impact between robot and surface). Locomotion strategies for such robots involve altering ... The presented static equilibrium analysis of sphericon with mass is the first step in the direction of dynamic locomotion ... and locomotion capabilities. The paper introduces a design methodology for fabricating tensegrity robots of varying ...
781 of which were published in the book Animal Locomotion. ...
Our collection database is a work in progress. We may update this record based on further research and review. Learn more about our approach to sharing our collection online.. If you would like to know how you can use content on this page, see the Smithsonians Terms of Use. If you need to request an image for publication or other use, please visit Rights and Reproductions.. ...
Locomotion Field Trip Request. After submitting form, scroll down this page to ensure it successfully submitted. Form will not ...
Buy Locomotion Thrusting Silicone Vibrator and more at eXtremeRestraints: The Vibrating Thrust Vibe Key Features Thrusting ...
For controlling rolling locomotion, a controller which can compensate robot’s energy loss during rolling locomotion is ... The dynamic model describes planar rolling locomotion based on an assumption that the quadruped robot does not fall down while ... In conclusion, it is shown that the proposed control approach is effective in achieving the periodic rolling locomotion on the ... The numerical simulation of rolling locomotion on the flat ground verifies the effectiveness of the proposed controller. The ...
Spinal Basis of Direction Control during Locomotion in Larval Zebrafish. Michael Jay, Malcolm A. MacIver and David L. McLean ... Spinal Basis of Direction Control during Locomotion in Larval Zebrafish Message Subject (Your Name) has forwarded a page to you ... SIGNIFICANCE STATEMENT Spinal circuits play an essential role in coordinating movements during locomotion. However, it is ... Navigation requires steering and propulsion, but how spinal circuits contribute to direction control during ongoing locomotion ...
Free Admission is courtesy of Amanda and Glenn Fuhrman. © 2000-23 Institute of Contemporary ...
Loco Motion: 1st Trombone PDF Download By Todd Stalter 1st Trombone Part Grade: 3.5 (Medium) Item: 00-PC-0017052_TN1 $3.00 ... Loco Motion: 1st Trombone PDF Download By Todd Stalter 1st Trombone Part Grade: 3.5 (Medium) Item: 00-PC-0017052_TN1 $3.00 ... Access Loco Motion interactive sheet music today with when you start a no-risk 30 day free trial (no credit card information ... "Loco Motion" is a musical word play on the title, with emphasis on the "loco" (in essence, "crazy rhythm"). The wind parts are ...
Our results suggest that geckos can sustain adhesive locomotion for at least 2 m on wet substrates. ... Geckos go the Distance: Waters Effect on the Speed of Adhesive Locomotion in Geckos. ... Waters Effect on the Speed of Adhesive Locomotion in Geckos," Journal of Herpetology, 51(2), 240-244, (3 April 2017) Include: ... Waters Effect on the Speed of Adhesive Locomotion in Geckos," Journal of Herpetology 51(2), 240-244, (3 April 2017). https:// ...
Tag: animal locomotion. dog, pregnant, walking. © beierle + keijser. Mel Trittin from bph tadalafil pointed to "a where to ... despite Muybridges efforts to improve our understanding of animal locomotion. Readings things like this makes me wonder why ...
Locomotion, part of Uncharted: The Nathan Drake Collection on PS4. ... In this Uncharted 2: Among Thieves guide, well help you find the three treasures in Chapter 13 "Locomotion," part of the PS4s ... Share All sharing options for: Uncharted 2: Among Thieves Locomotion treasure locations guide ...
Locomotion Beginners. Are you a beginner with Locomotion? Learn the basics here. ... Locomotion Gameplay Guides (Old stickies) Last post by Badger « 30 Jun 2010 13:51. ... Tutorial: How to use the Locomotion tools, Last post by Greyfox « 21 Aug 2014 00:11. ...
  • video: Tufts University-led researchers studying caterpillars have reported on a unique system of locomotion never before reported for any animal, which may have implications for robot design and for human biomechanics. (eurekalert.org)
  • The methodology is used to explore different robot morphologies that attempt to minimize structural complexity (number of elements) while facilitating smooth locomotion (impact between robot and surface). (frontiersin.org)
  • We have developed a biologically inspired reconfigurable quadruped robot which can perform walking and rolling locomotion and transform between walking and rolling by reconfiguring its legs. (hindawi.com)
  • This paper presents an approach to control rolling locomotion with the biologically inspired quadruped robot. (hindawi.com)
  • For controlling rolling locomotion, a controller which can compensate robot's energy loss during rolling locomotion is designed based on a dynamic model of the quadruped robot. (hindawi.com)
  • The dynamic model describes planar rolling locomotion based on an assumption that the quadruped robot does not fall down while rolling and the influences of collision and contact with the ground, and it is applied for computing the mechanical energy and a plant in a numerical simulation. (hindawi.com)
  • The simulation results show that the quadruped robot can perform periodic rolling locomotion with the proposed energy-based controller. (hindawi.com)
  • have focused on a caterpillar that can escape rapidly from predators by reconfiguring its body structure like a wheel and have developed a caterpillar-inspired soft robot, which has attempted rolling locomotion [ 17 ]. (hindawi.com)
  • King has focused on somersault rolling locomotion performed by a spider called "huntsman spider ( Cebrennus villosus )" and has developed a quadruped robot capable of somersaulting, which has performed somersault rolling locomotion [ 18 ]. (hindawi.com)
  • In this paper, we discuss periodic rolling locomotion control of one of our platforms called the huntsman-spider-inspired quadruped robot. (hindawi.com)
  • We show that the quadruped robot performs periodic rolling locomotion with energy-based control. (hindawi.com)
  • The quadruped robot loses some of robot's energy due to collision and contact with the ground while rolling, and therefore it cannot perform periodic rolling locomotion without energy supply. (hindawi.com)
  • Within a year of moving to the University of Pennsylvania, Muybridge created more than 100,000 negatives of people and animals in motion, 781 of which were published in the book Animal Locomotion. (rockfordartmuseum.org)
  • Muybridge is most remembered for his contributions to the understanding of human and animal locomotion. (20x200.com)
  • They say this could be explained by the different modes of locomotion and contributes to the understanding of the human evolution of bipedalism. (biomedcentral.com)
  • Unique modes of locomotion - The wheels of the robots are actuated or passive, so the robots have unique modes of locomotion. (azorobotics.com)
  • After reading Locomotion by Jacqueline Woodson use this printable and interactive Criss Cross puzzle. (rif.org)
  • Humans are more commonly afflicted with spinal disease than non-human primates, and one widely discussed explanation for this is the stress placed on the spine by bipedal locomotion. (biomedcentral.com)
  • Modifications in the locomotion (bipedal to quadrupedal) and the successive increase in body mass seem to be the main attributes driving sauropodomorph morphospace distribution during the Late Triassic and earliest Jurassic. (unboundmedicine.com)
  • Enter your email to be notified by email when Animal Locomotion: Plate 596 (Horse) becomes available. (20x200.com)
  • In one Turkish family, affected people walk on their hands and feet (quadrupedal locomotion). (medlineplus.gov)
  • In the eighth season premiere, "The Locomotion Interruption", Sheldon's cross-country train journey comes to an abrupt end in Arizona, where Leonard and Amy must go pick him up. (the-big-bang-theory.com)
  • Pictures from the eighth season premiere of The Big Bang Theory, "The Locomotion Interruption", have been released. (the-big-bang-theory.com)
  • The Virtual Locomotion Setup consists of a 6DoF Stewart motion platform, similar to one that is usually used for flight simulators, and is able to carry 1.5t of equipment. (uni-ulm.de)
  • A rich volume including all of Muybridge's renowned sequential photographs of humans and animals in motion that vastly improved our understanding of the particularities of locomotion. (stoutbooks.com)
  • When I think of my book, LOCOMOTION, the story of Lonnie Collins Motion began, for me, in the fifth grade -- the first year I knew I was going to be a writer. (huffpost.com)
  • In PEACE, LOCOMOTION, we meet Lonnie again -- a year older, settling into his new family, coming to terms with his own internal wars ( a teacher who tells him he is not a real writer until he's published, a younger sister who wants to forget the past) and the war his foster brother is fighting in. (huffpost.com)
  • In PEACE, LOCOMOTION, I took Lonnie/myself into the heart of the world of PTSD -- as a means of figuring out how one can walk through this tragedy, and emerge whole. (huffpost.com)
  • Four other morphological traits essential for locomotion and food acquisition that are commonly measured in fishes were also included in the study. (bvsalud.org)
  • In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. (sciweavers.org)
  • Robustness, compactness, and portability of tensegrity robots make them suitable candidates for locomotion on unknown terrains. (frontiersin.org)
  • Locomotion strategies for such robots involve altering the position of center-of-mass (referred to as internal mass shifting) to induce "tip-over. (frontiersin.org)
  • This contrasts to the sudden and piece-wise continuous change for the case of robots with traditional straight links which generate impulse reaction forces during locomotion. (frontiersin.org)
  • The two resulting robots-the Icosahedron and the Sphericon Tensegrity Robots-display shape morphing (packing-unpacking) capabilities and achieve locomotion through internal mass-shifting. (frontiersin.org)
  • The presented static equilibrium analysis of sphericon with mass is the first step in the direction of dynamic locomotion control of these curved link robots. (frontiersin.org)
  • Reconfigurable robots inspired by a creature performing walking and rolling locomotion particularly provide the capability to attain the fast and energy-efficient movement on the flat ground with rolling locomotion and high stability and mobility on the uneven ground with walking locomotion. (hindawi.com)
  • For periodic rolling locomotion, we focus on robot's energy during rolling locomotion, though previous studies of rolling locomotion on reconfigurable robots [ 8 , 11 , 20 , 21 ] have focused on the movement of robot's center of gravity (COG). (hindawi.com)
  • Despite these advantages, challenges remain relating to ease of fabrication, shape morphing (packing-unpacking), and locomotion capabilities. (frontiersin.org)
  • MEDFORD/SOMERVILLE, Mass. -- Biologists at Tufts University's School of Arts and Sciences studying crawling caterpillars have reported a unique "two-body" system of locomotion that has not previously been reported in any animal. (eurekalert.org)
  • Animal Locomotion. (si.edu)
  • despite Muybridge's efforts to improve our understanding of animal locomotion. (beikey.net)
  • The photos were published in 1887 as a 11 volume collotype portfolio with 781 plates: Animal Locomotion: an Electro-photographic Investigation of Consecutive Phases of Animal Movements. (laurencemillergallery.com)
  • Currently, it is accepted that animal locomotion is controlled by a central pattern generator in the spinal cord. (lu.se)
  • Our results suggest that geckos can sustain adhesive locomotion for at least 2 m on wet substrates. (bioone.org)
  • Experiments and models show that rhythm generating neurons and genetically determined network properties could sustain oscillatory output activity suitable for locomotion. (lu.se)
  • of these is known as "concertina" locomotion, because the snake in action resembles the opening and closing of an accordion or a concertina. (britannica.com)
  • SIGNIFICANCE STATEMENT Spinal circuits play an essential role in coordinating movements during locomotion. (jneurosci.org)
  • In this review article we address the problem of distance perception during locomotion. (bvsalud.org)
  • In conclusion, it is shown that the proposed control approach is effective in achieving the periodic rolling locomotion on the flat ground. (hindawi.com)
  • Navigation requires steering and propulsion, but how spinal circuits contribute to direction control during ongoing locomotion is not well understood. (jneurosci.org)
  • However, current central pattern generator models do not explain how a spinal cord circuitry, which has the same basic genetic plan across species, can adapt to control the different biomechanical properties and locomotion patterns existing in these species. (lu.se)
  • Researchers studied the vertebrae of humans, chimpanzees and orangutans to examine links between vertebral shape, locomotion, and the appearance of vertical disc herniation in humans. (biomedcentral.com)
  • You can set it up so that you can move freely within your room-scale space until you click a button on your controller to enable Talaria's locomotion system. (tomshardware.com)
  • The numerical simulation of rolling locomotion on the flat ground verifies the effectiveness of the proposed controller. (hindawi.com)
  • The effectiveness of the proposed controller is verified through a numerical simulation of its rolling locomotion. (hindawi.com)
  • Although internal tissue movement caused by locomotion has been identified in many organisms, the caterpillars seemed to be propelling themselves by means of a two-body system -- the body wall container and the gut it contained. (eurekalert.org)
  • Locomotion System The locomotion system uses a holonomic drive system with four Mecanum wheels mounted on servos. (lu.se)
  • We have optimized the design mechanism presented in [ 18 ] and have developed reconfigurable robotic platforms which can perform walking and rolling locomotion and transform between walking and rolling by reconfiguring their legs. (hindawi.com)
  • The book was a National Book Award finalist, won the Coretta Scott King Honor, and inspired a second book, PEACE, LOCOMOTION, but the story started much earlier than that. (huffpost.com)
  • soil by a process called concertina locomotion, in which the body alternately folds and extends itself along its entire length, often occurring within the envelope of skin as well as by flexures of the entire body. (britannica.com)
  • It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. (bvsalud.org)
  • Locomotion means the act or ability of something to transport or move itself from place to place. (wikipedia.org)
  • During 2 visits (before and after training) a survey was administered to identify management practices in place that concern dairy cow welfare and BQA, and an attempt was made to evaluate every lactating cow for BCS and locomotion score. (cdc.gov)
  • Austin M. Garner , Alyssa Y. Stark , Scott A. Thomas , and Peter H. Niewiarowski "Geckos go the Distance: Water's Effect on the Speed of Adhesive Locomotion in Geckos," Journal of Herpetology 51(2), 240-244, (3 April 2017). (bioone.org)
  • Our findings suggest a modular organization of spinal premotor circuits that enables uninterrupted adjustments in direction during ongoing locomotion. (jneurosci.org)
  • Changes in key traits versus depth and latitude suggest energy-efficient locomotion, opportunistic feeding and light lead to adaptive morphologies of marine fishes. (bvsalud.org)
  • The Talaria VR locomotion wearable is designed to be strapped to your foot, which is similar to how the Omni tracks your movement. (tomshardware.com)
  • Concertina locomotion is used when there is not enough frictional resistance along the locomotor surface for serpentine locomotion. (britannica.com)
  • In this Uncharted 2: Among Thieves guide, we'll help you find the three treasures in Chapter 13 "Locomotion," part of the PS4's Uncharted: The Nathan Drake Collection . (polygon.com)
  • And here is where Locomotion arrives -- because this story was always coming, was always being told -- in bits and pieces, the story of a boy who is learning to love himself, his life, his world -- through poetry. (huffpost.com)
  • Its dynamic model describes planar rolling locomotion based on an assumption that it does not fall down while rolling and the influences of collision and contact with the ground. (hindawi.com)
  • Comfortable locomotion might be the most prominent of those problems. (tomshardware.com)
  • The 2 semilunar-shaped sesamoid bones aid the foot in locomotion. (msdmanuals.com)
  • Look up locomotion in Wiktionary, the free dictionary. (wikipedia.org)