A triterpene that derives from the chair-boat-chair-boat folding of 2,3-oxidosqualene. It is metabolized to CHOLESTEROL and CUCURBITACINS.
An NADPH-dependent P450 enzyme that plays an essential role in the sterol biosynthetic pathway by catalyzing the demethylation of 14-methyl sterols such as lanosterol. The enzyme acts via the repeated hydroxylation of the 14-methyl group, resulting in its stepwise conversion into an alcohol, an aldehyde and then a carboxylate, which is removed as formic acid. Sterol 14-demethylase is an unusual cytochrome P450 enzyme in that it is found in a broad variety of organisms including ANIMALS; PLANTS; FUNGI; and protozoa.
Enzymes of the isomerase class that catalyze the transfer of acyl-, phospho-, amino- or other groups from one position within a molecule to another. EC 5.4.
'Squalene' is a biologically occurring triterpene compound, naturally produced in humans, animals, and plants, that forms an essential part of the lipid-rich membranes in various tissues, including the skin surface and the liver, and has been studied for its potential benefits in skincare, dietary supplements, and vaccine adjuvant systems.
Steroids with a hydroxyl group at C-3 and most of the skeleton of cholestane. Additional carbon atoms may be present in the side chain. (IUPAC Steroid Nomenclature, 1987)
A steroid of interest both because its biosynthesis in FUNGI is a target of ANTIFUNGAL AGENTS, notably AZOLES, and because when it is present in SKIN of animals, ULTRAVIOLET RAYS break a bond to result in ERGOCALCIFEROL.
Cholestadiene derivatives containing a hydroxy group anywhere in the molecule.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
Steroids with methyl groups at C-10 and C-13 and a branched 8-carbon chain at C-17. Members include compounds with any degree of unsaturation; however, CHOLESTADIENES is available for derivatives containing two double bonds.
Broad spectrum antifungal agent used for long periods at high doses, especially in immunosuppressed patients.
An intermediate in the synthesis of cholesterol.
A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism.
Mevalonic acid is a crucial intermediate compound in the HMG-CoA reductase pathway, which is a metabolic route that produces cholesterol, other steroids, and isoprenoids in cells.
Compounds that specifically inhibit STEROL 14-DEMETHYLASE. A variety of azole-derived ANTIFUNGAL AGENTS act through this mechanism.
An anticholesteremic agent that inhibits sterol biosynthesis in animals.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
An imidazole antifungal agent that is used topically and by intravenous infusion.
Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID.
A class of organic compounds known as STEROLS or STEROIDS derived from plants.
Five membered rings containing a NITROGEN atom.
A species of METHYLOCOCCUS which forms capsules and is capable of autotrophic carbon dioxide fixation. (From Bergey's Manual of Determinative Bacteriology, 9th ed)
Triterpenes are a class of naturally occurring compounds consisting of six isoprene units arranged to form a 30-carbon skeleton, often found in plants and some animals, with various bioactivities including anti-inflammatory, antiviral, and cytotoxic properties.
Derivatives of the saturated steroid cholestane with methyl groups at C-18 and C-19 and an iso-octyl side chain at C-17.
The second enzyme in the committed pathway for CHOLESTEROL biosynthesis, this enzyme catalyzes the first oxygenation step in the biosynthesis of STEROLS and is thought to be a rate limiting enzyme in this pathway. Specifically, this enzyme catalyzes the conversion of SQUALENE to (S)-squalene-2,3-epoxide.
Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix.
A mushroom, Ganoderma lucidum, of the POLYPORALES order of basidiomycetous fungi. It has long been used in traditional Chinese medicine in various forms.
Substances that destroy fungi by suppressing their ability to grow or reproduce. They differ from FUNGICIDES, INDUSTRIAL because they defend against fungi present in human or animal tissues.
A plant genus of the family ARACEAE. Members contain acrid calcium oxalate and LECTINS. Polynesians prepare the root into poi. Common names of Taro and Coco Yam (Cocoyam) may be confused with other ARACEAE; XANTHOSOMA; or with common yam (DIOSCOREA).
Triazole antifungal agent that is used to treat oropharyngeal CANDIDIASIS and cryptococcal MENINGITIS in AIDS.
Enzymes that catalyze the transposition of double bond(s) in a steroid molecule. EC 5.3.3.
A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5.
Chemicals that kill or inhibit the growth of fungi in agricultural applications, on wood, plastics, or other materials, in swimming pools, etc.
A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis).
A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4.
Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough.
Lists of persons or organizations, systematically arranged, usually in alphabetic or classed order, giving address, affiliations, etc., for individuals, and giving address, officers, functions, and similar data for organizations. (ALA Glossary of Library and Information Science, 1983)
Complex pharmaceutical substances, preparations, or matter derived from organisms usually obtained by biological methods or assay.
A parliamentary democracy with a constitutional monarch in southeast Asia, consisting of 11 states (West Malaysia) on the Malay Peninsula and two states (East Malaysia) on the island of BORNEO. It is also called the Federation of Malaysia. Its capital is Kuala Lumpur. Before 1963 it was the Union of Malaya. It reorganized in 1948 as the Federation of Malaya, becoming independent from British Malaya in 1957 and becoming Malaysia in 1963 as a federation of Malaya, Sabah, Sarawak, and Singapore (which seceded in 1965). The form Malay- probably derives from the Tamil malay, mountain, with reference to its geography. (From Webster's New Geographical Dictionary, 1988, p715 & Room, Brewer's Dictionary of Names, 1992, p329)
Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals.
Agents that increase energy expenditure and weight loss by neural and chemical regulation. Beta-adrenergic agents and serotoninergic drugs have been experimentally used in patients with non-insulin dependent diabetes mellitus (NIDDM) to treat obesity.
A book is not a medical term, but generally refers to a set of printed or written sheets of paper bound together that can contain a wide range of information including literature, research, educational content, and more, which may be utilized in the medical field for various purposes such as learning, reference, or patient education.
A directory in a medical context is an organized list or catalog of medical professionals, facilities, services, or information for easy reference and access, often specific to a particular region, specialty, or organization.

Predominant inhibition of ganodermic acid S on the thromboxane A2-dependent pathway in human platelets response to collagen. (1/184)

Ganodermic acid S (GAS), a membrane acting agent, exerts multiple effects on human platelet function (C.N. Wang et al. (1991) Biochem. J. 277, 189-197). The study reported how GAS affected the response of human gel-filtered platelets (GFP) to collagen. The agent inhibited cell aggregation by prolonging lag and shape change periods and decreasing the initial cell aggregation rate. However, the inhibitory efficiency was less than its inhibition on GFP response to U46619, a thromboxane (TX) A2 mimetic. In the agent-effect on biochemical events, GAS effectively inhibited Ca2+ mobilization, phosphorylation of myosin light chain, dense granule secretion and TXB2 generation. The inhibitions might originate from blocking Ca2+ mobilization of the TXA2-dependent pathway. GAS partially decreased the phosphorylation of most phosphotyrosine proteins from early activation to the integrin alphaIIbbeta3-regulated steps. The agent did not affect the phosphorylation of three proteins at the steps regulated by integrin alphaIIbbeta3. The results suggest that GAS inhibits the collagen response predominantly on the TXA2-dependent signaling, and the tyrosine kinase-dependent pathway in collagen response plays a major role in aggregation.  (+info)

Cholesterol biosynthesis from lanosterol. Molecular cloning, tissue distribution, expression, chromosomal localization, and regulation of rat 7-dehydrocholesterol reductase, a Smith-Lemli-Opitz syndrome-related protein. (2/184)

The cDNA encoding the 471-amino acid rat 7-dehydrocholesterol reductase (DHCR), an enzyme that has been implicated in both cholesterol biosynthesis and developmental abnormalities (e.g. Smith-Lemli-Opitz syndrome) in mammals, has been cloned and sequenced, and the primary structure of the enzyme has been deduced. The DHCR gene was mapped to chromosome 8q2.1 by fluorescence in situ hybridization. Rat DHCR, calculated molecular mass of 54.15-kDa polypeptide, shares a close amino acid identity with mouse and human DHCRs (96 and 87%, respectively) as compared with its other related proteins (e.g. fungal sterol Delta14-reductase) and exhibits high hydrophobicity (>68%) with 9 transmembrane domains. Five putative sterol-sensing domains were predicted to be localized in transmembrane domains 4-8, which are highly homologous to those found in 3-hydroxymethylglutaryl-CoA reductase, sterol regulatory element-binding protein cleavage-activating protein, and patched protein. The polypeptide encoded by DHCR cDNA was expressed in yeast as a 55.45-kDa myc-tagged fusion protein, which was recognized with anti-myc monoclonal antibody 9E10 and shown to possess full DHCR activity with respect to dependence on NADPH and sensitivity to DHCR inhibitors. Northern blot analysis indicates that the highest expression of DHCR mRNA was detected in liver, followed by kidney and brain. In rat brains, the highest level of mRNA encoding DHCR was detected in the midbrain, followed by the spinal cord and medulla. Feeding rats 5% cholestyramine plus 0.1% lovastatin in chow resulted in both approximately a 3-fold induction of DHCR mRNA and a 5-fold increase of the enzymic activity in the liver. When rats were fed 0.1% (w/w) AY-9944 (in chow) for 14-days, a complete inhibition of DHCR activity and a significant reduction in serum total cholesterol level were observed. However, the level of hepatic DHCR mRNA fell only slightly, suggesting that AY-9944 may act more rapidly at the protein level than at the level of transcription of the DHCR gene under these conditions.  (+info)

Sterol content of the Myxomycetes Physarum polycephalum and P. flavicomum. (3/184)

The sterol content of two Myxomycetes, Physarum polycephalum and P. flavicomum has been examined. The sterols of the two species are apparently identical, the two major sterols in each being poriferasterol and 22-dihydroporiferasterol. Threee minor sterols are probably delta5-ergostenol, ergostanol, and poriferastanol. The triterpenoids of the two species differ in that, though lanosterol was identified in both, 22-dihydrolanosterol was indicated only in P. flavicomum. The occurrence of lanosterol together with a typical mixture of plant sterols is somewhat unusual.  (+info)

Cholesterol starvation decreases p34(cdc2) kinase activity and arrests the cell cycle at G2. (4/184)

As a major component of mammalian cell plasma membranes, cholesterol is essential for cell growth. Accordingly, the restriction of cholesterol provision has been shown to result in cell proliferation inhibition. We explored the potential regulatory role of cholesterol on cell cycle progression. MOLT-4 and HL-60 cell lines were cultured in a cholesterol-deficient medium and simultaneously exposed to SKF 104976, which is a specific inhibitor of lanosterol 14-alpha demethylase. Through HPLC analyses with on-line radioactivity detection, we found that SKF 104976 efficiently blocked the [(14)C]-acetate incorporation into cholesterol, resulting in an accumulation of lanosterol and dihydrolanosterol, without affecting the synthesis of mevalonic acid. The inhibitor also produced a rapid and intense inhibition of cell proliferation (IC(50) = 0.1 microM), as assessed by both [(3)H]-thymidine incorporation into DNA and cell counting. Flow cytometry and morphological examination showed that treatment with SKF 104976 for 48 h or longer resulted in the accumulation of cells specifically at G2 phase, whereas both the G1 traversal and the transition through S were unaffected. The G2 arrest was accompanied by an increase in the hyperphosphorylated form of p34(cdc2) and a reduction of its activity, as determined by assaying the H1 histone phosphorylating activity of p34(cdc2) immunoprecipitates. The persistent deficiency of cholesterol induced apoptosis. However, supplementing the medium with cholesterol, either in the form of LDL or free cholesterol dissolved in ethanol, completely abolished these effects, whereas mevalonate was ineffective. Caffeine, which abrogates the G2 checkpoint by preventing p34(cdc2) phosphorylation, reduced the accumulation in G2 when added to cultures containing cells on transit to G2, but was ineffective in cells arrested at G2 by sustained cholesterol starvation. Cells arrested in G2, however, were still viable and responded to cholesterol provision by activating p34(cdc2) and resuming the cell cycle. We conclude that in both lymphoblastoid and promyelocytic cells, cholesterol availability governs the G2 traversal, probably by affecting p34(cdc2) activity.  (+info)

Characterization of the Saccharomyces cerevisiae ERG27 gene encoding the 3-keto reductase involved in C-4 sterol demethylation. (5/184)

The last unidentified gene encoding an enzyme involved in ergosterol biosynthesis in Saccharomyces cerevisiae has been cloned. This gene, designated ERG27, encodes the 3-keto sterol reductase, which, in concert with the C-4 sterol methyloxidase (ERG25) and the C-3 sterol dehydrogenase (ERG26), catalyzes the sequential removal of the two methyl groups at the sterol C-4 position. We developed a strategy to isolate a mutant deficient in converting 3-keto to 3-hydroxy-sterols. An ergosterol auxotroph unable to synthesize sterol or grow without sterol supplementation was mutagenized. Colonies were then selected that were nystatin-resistant in the presence of 3-ketoergostadiene and cholesterol. A new ergosterol auxotroph unable to grow on 3-ketosterols without the addition of cholesterol was isolated. The gene (YLR100w) was identified by complementation. Segregants containing the YLR100w disruption failed to grow on various types of 3-keto sterol substrates. Surprisingly, when erg27 was grown on cholesterol- or ergosterol-supplemented media, the endogenous compounds that accumulated were noncyclic sterol intermediates (squalene, squalene epoxide, and squalene dioxide), and there was little or no accumulation of lanosterol or 3-ketosterols. Feeding experiments in which erg27 strains were supplemented with lanosterol (an upstream intermediate of the C-4 demethylation process) and cholesterol (an end-product sterol) demonstrated accumulation of four types of 3-keto sterols identified by GC/MS and chromatographic properties: 4-methyl-zymosterone, zymosterone, 4-methyl-fecosterone, and ergosta-7,24 (28)-dien-3-one. In addition, a fifth intermediate was isolated and identified by (1)H NMR as a 4-methyl-24, 25-epoxy-cholesta-7-en-3-one. Implications of these results are discussed.  (+info)

Contribution of Are1p and Are2p to steryl ester synthesis in the yeast Saccharomyces cerevisiae. (6/184)

In the yeast Saccharomyces cerevisiae, two acyl-CoA:sterol acyltransferases (ASATs) that catalyze the synthesis of steryl esters have been identified, namely Are2p (Sat1p) and Are1p (Sat2p). Deletion of either ARE1 or ARE2 has no effect on cell viability, and are1are2 double mutants grow in a similar manner to wild-type despite the complete lack of cellular ASAT activity and steryl ester formation [Yang, H., Bard, M., Bruner, D. A., Gleeson, A., Deckelbaum, R. J., Aljinovic, G., Pohl, T. M., Rothstein, R. & Sturley, S. L. (1996) Science 272, 1353-1356; Yu, C., Kennedy, J., Chang, C. C. Y. & Rothblatt, J. A. (1996) J. Biol. Chem. 271, 24157-24163]. Here we show that both Are2p and Are1p reside in the endoplasmic reticulum as demonstrated by measuring ASAT activity in subcellular fractions of are1 and are2 deletion strains. This localization was confirmed by fluorescence microscopy using hybrid proteins of Are2p and Are1p fused to green fluorescent protein (GFP). Lipid analysis of are1 and are2 deletion strains revealed that Are2p and Are1p utilize sterol substrates in vivo with different efficiency; Are2p has a significant preference for ergosterol as a substrate, whereas Are1p esterifies sterol precursors, mainly lanosterol, as well as ergosterol. The specificity towards fatty acids is similar for both isoenzymes. The lack of steryl esters in are1are2 mutant cells is largely compensated by an increased level of free sterols. Nevertheless, terbinafine, an inhibitor of ergosterol biosynthesis, inhibits growth of are1are2 cells more efficiently than growth of wild-type. In a growth competition experiment are1are2 cells grow more slowly than wild-type after several rounds of cultivation, suggesting that Are1p and Are2p or steryl esters, the product formed by these two enzymes, are more important in the natural environment than under laboratory conditions.  (+info)

Sterol metabolism and ERG2 gene regulation in the yeast Saccharomyces cerevisiae. (7/184)

Certain exogenously-supplied sterols, like ergost-8-enol, are efficiently converted into ergosterol in yeast. We have taken advantage of this property to study the regulation of the Delta8-Delta7-sterol isomerase-encoding ERG2 gene in an ergosterol auxotrophic mutant devoid of squalene-synthase activity. Ergosterol starvation leads to an 8-16-fold increase in ERG2 gene expression. Such an increase was also observed in wild-type cells either grown anaerobically or treated with SR31747A a sterol isomerase inhibitor. Exogenously-supplied zymosterol is entirely transformed into ergosterol, which represses ERG2 transcription. By contrast, exogenously-supplied ergosterol has little or no effect on ERG2 transcription.  (+info)

Effect of inhibition of sterol delta 14-reductase on accumulation of meiosis-activating sterol and meiotic resumption in cumulus-enclosed mouse oocytes in vitro. (8/184)

Two sterols of the cholesterol biosynthetic pathway induce resumption of meiosis in mouse oocytes in vitro. The sterols, termed meiosis-activating sterols (MAS), have been isolated from human follicular fluid (FF-MAS, 4,4-dimethyl-5 alpha-cholest-8,14,24-triene-3 beta-ol) and from bull testicular tissue (T-MAS, 4,4-dimethyl-5 alpha-cholest-8,24-diene-3 beta-ol). FF-MAS is the first intermediate in the cholesterol biosynthesis from lanosterol and is converted to T-MAS by sterol delta 14-reductase. An inhibitor of delta 7-reductase and delta 14 reductase, AY9944-A-7, causes cells with a constitutive cholesterol biosynthesis to accumulate FF-MAS and possibly other intermediates between lanosterol and cholesterol. The aim of the present study was to evaluate whether AY9944-A-7 added to cultures of cumulus-oocyte complexes (COC) from mice resulted in accumulation of MAS and meiotic maturation. AY9944-A-7 stimulated dose dependently (5-25 mumol l-1) COC to resume meiosis when cultured for 22 h in alpha minimal essential medium (alpha-MEM) containing 4 mmol hypoxanthine l-1, a natural inhibitor of meiotic maturation. In contrast, naked oocytes were not induced to resume meiosis by AY9944-A-7. When cumulus cells were separated from their oocytes and co-cultured, AY9944-A-7 did not affect resumption of meiosis, indicating that intact oocyte-cumulus cell connections are important for AY9944-A-7 to exert its effect on meiosis. Cultures of COC with 10 mumol AY9944-A-7 l-1 in the presence of [3H]mevalonic acid, a natural precursor for steroid synthesis, resulted in accumulation of labelled FF-MAS, which had an 11-fold greater amount of radioactivity incorporated per COC compared with the control culture without AY9944-A-7. In contrast, incorporation of radioactivity into the cholesterol fraction was reduced 30-fold in extracts from the same oocytes. The present findings demonstrate for the first time that COC can synthesize cholesterol from mevalonate and accumulate FF-MAS in the presence of AY9944-A-7. Furthermore, AY9944-A-7 stimulated meiotic maturation dose dependently, indicating that FF-MAS, and possibly other sterol intermediates of the cholesterol synthesis pathway, play a central role in stimulating mouse oocytes to resume meiosis. The results also indicate that oocytes may not synthesize steroids from mevalonate.  (+info)

Lanosterol is a steroid that is an intermediate in the biosynthetic pathway of cholesterol in animals and other eukaryotic organisms. It's a complex organic molecule with a structure based on four fused hydrocarbon rings, and it plays a crucial role in maintaining the integrity and function of cell membranes.

In the biosynthetic pathway, lanosterol is produced from squalene through a series of enzymatic reactions. Lanosterol then undergoes several additional steps, including the removal of three methyl groups and the reduction of two double bonds, to form cholesterol.

Abnormal levels or structure of lanosterol have been implicated in certain genetic disorders, such as lamellar ichthyosis type 3 and congenital hemidysplasia with ichthyosiform erythroderma and limb defects (CHILD) syndrome.

Sterol 14-demethylase is an enzyme that plays a crucial role in the biosynthesis of sterols, particularly ergosterol in fungi and cholesterol in animals. This enzyme is classified as a cytochrome P450 (CYP) enzyme and is located in the endoplasmic reticulum.

The function of sterol 14-demethylase is to remove methyl groups from the sterol molecule at the 14th position, which is a necessary step in the biosynthesis of ergosterol or cholesterol. Inhibition of this enzyme can disrupt the normal functioning of cell membranes and lead to various physiological changes, including impaired growth and development.

Sterol 14-demethylase inhibitors (SDIs) are a class of antifungal drugs that target this enzyme and are used to treat fungal infections. Examples of SDIs include fluconazole, itraconazole, and ketoconazole. These drugs work by binding to the heme group of the enzyme and inhibiting its activity, leading to the accumulation of toxic sterol intermediates and disruption of fungal cell membranes.

Intramolecular transferases are a specific class of enzymes that catalyze the transfer of a functional group from one part of a molecule to another within the same molecule. These enzymes play a crucial role in various biochemical reactions, including the modification of complex carbohydrates, lipids, and nucleic acids. By facilitating intramolecular transfers, these enzymes help regulate cellular processes, signaling pathways, and metabolic functions.

The systematic name for this class of enzymes is: [donor group]-transferring intramolecular transferases. The classification system developed by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) categorizes them under EC 2.5. This category includes enzymes that transfer alkyl or aryl groups, other than methyl groups; methyl groups; hydroxylyl groups, including glycosyl groups; and various other specific functional groups.

Examples of intramolecular transferases include:

1. Protein kinases (EC 2.7.11): Enzymes that catalyze the transfer of a phosphate group from ATP to a specific amino acid residue within a protein, thereby regulating protein function and cellular signaling pathways.
2. Glycosyltransferases (EC 2.4): Enzymes that facilitate the transfer of glycosyl groups between donor and acceptor molecules; some of these enzymes can catalyze intramolecular transfers, playing a role in the biosynthesis and modification of complex carbohydrates.
3. Methyltransferases (EC 2.1): Enzymes that transfer methyl groups between donor and acceptor molecules; some of these enzymes can catalyze intramolecular transfers, contributing to the regulation of gene expression and other cellular processes.

Understanding the function and regulation of intramolecular transferases is essential for elucidating their roles in various biological processes and developing targeted therapeutic strategies for diseases associated with dysregulation of these enzymes.

Squalene is a organic compound that is a polyunsaturated triterpene. It is a natural component of human skin surface lipids and sebum, where it plays a role in maintaining the integrity and permeability barrier of the stratum corneum. Squalene is also found in various plant and animal tissues, including olive oil, wheat germ oil, and shark liver oil.

In the body, squalene is an intermediate in the biosynthesis of cholesterol and other sterols. It is produced in the liver and transported to other tissues via low-density lipoproteins (LDLs). Squalene has been studied for its potential health benefits due to its antioxidant properties, as well as its ability to modulate immune function and reduce the risk of certain types of cancer. However, more research is needed to confirm these potential benefits.

Sterols are a type of organic compound that is derived from steroids and found in the cell membranes of organisms. In animals, including humans, cholesterol is the most well-known sterol. Sterols help to maintain the structural integrity and fluidity of cell membranes, and they also play important roles as precursors for the synthesis of various hormones and other signaling molecules. Phytosterols are plant sterols that have been shown to have cholesterol-lowering effects in humans when consumed in sufficient amounts.

Ergosterol is a steroid found in the cell membranes of fungi, which is similar to cholesterol in animals. It plays an important role in maintaining the fluidity and permeability of fungal cell membranes. Ergosterol is also the target of many antifungal medications, which work by disrupting the synthesis of ergosterol or binding to it, leading to increased permeability and eventual death of the fungal cells.

Cholestadienols are a type of steroid alcohol that contain a double bond in the side chain. They are precursors to the synthesis of cholesterol, which is an essential component of cell membranes and a precursor to various hormones and vitamins. Cholestadienols can be found in some foods, such as fish liver oil, and are also produced endogenously in the body. They are not typically used in medical treatments, but understanding their role in cholesterol synthesis is important for developing therapies to treat conditions related to cholesterol metabolism, such as high cholesterol and certain inherited disorders of cholesterol biosynthesis.

Oxidoreductases are a class of enzymes that catalyze oxidation-reduction reactions, which involve the transfer of electrons from one molecule (the reductant) to another (the oxidant). These enzymes play a crucial role in various biological processes, including energy production, metabolism, and detoxification.

The oxidoreductase-catalyzed reaction typically involves the donation of electrons from a reducing agent (donor) to an oxidizing agent (acceptor), often through the transfer of hydrogen atoms or hydride ions. The enzyme itself does not undergo any permanent chemical change during this process, but rather acts as a catalyst to lower the activation energy required for the reaction to occur.

Oxidoreductases are classified and named based on the type of electron donor or acceptor involved in the reaction. For example, oxidoreductases that act on the CH-OH group of donors are called dehydrogenases, while those that act on the aldehyde or ketone groups are called oxidases. Other examples include reductases, peroxidases, and catalases.

Understanding the function and regulation of oxidoreductases is important for understanding various physiological processes and developing therapeutic strategies for diseases associated with impaired redox homeostasis, such as cancer, neurodegenerative disorders, and cardiovascular disease.

Cholestenes are a type of steroid that is characterized by having a double bond between the second and third carbon atoms in the steroid nucleus. They are precursors to cholesterol, which is an essential component of cell membranes and a precursor to various hormones and bile acids. Cholestenes can be found in some foods, but they are also synthesized in the body from other steroids.

Cholestenes are not typically referred to in medical terminology, as the term is more commonly used in biochemistry and organic chemistry. However, abnormal levels of cholestenes or related compounds may be detected in certain medical tests, such as those used to diagnose liver or gallbladder disorders.

Ketoconazole is an antifungal medication that is primarily used to treat various fungal infections, including those caused by dermatophytes, Candida, and pityrosporum. It works by inhibiting the synthesis of ergosterol, a crucial component of fungal cell membranes, which leads to increased permeability and ultimately results in fungal cell death.

Ketoconazole is available as an oral tablet for systemic use and as a topical cream or shampoo for localized applications. The oral formulation is used to treat severe or invasive fungal infections, while the topical preparations are primarily indicated for skin and scalp infections, such as athlete's foot, ringworm, jock itch, candidiasis, and seborrheic dermatitis.

Common side effects of oral ketoconazole include nausea, vomiting, headache, and altered liver function tests. Rare but serious adverse reactions may include hepatotoxicity, adrenal insufficiency, and interactions with other medications that can affect the metabolism and elimination of drugs. Topical ketoconazole is generally well-tolerated, with local irritation being the most common side effect.

It's important to note that due to its potential for serious liver toxicity and drug-drug interactions, oral ketoconazole has been largely replaced by other antifungal agents, such as fluconazole and itraconazole, which have more favorable safety profiles. Topical ketoconazole remains a valuable option for treating localized fungal infections due to its effectiveness and lower risk of systemic side effects.

Desmosterol is a sterol, which is a type of lipid molecule similar to cholesterol. It is an intermediate in the biosynthetic pathway that leads to the production of cholesterol in the body. Specifically, desmosterol is produced from 7-dehydrocholesterol and is then converted to cholesterol through a series of additional steps.

Desmosterol is found in small amounts in various tissues throughout the body, including the brain, where it plays important roles in maintaining cell membrane structure and function. However, abnormal accumulations of desmosterol have been associated with certain genetic disorders, such as desmosterolosis and lathosterolosis, which are characterized by developmental delays, cataracts, and other neurological symptoms.

It's worth noting that while desmosterol is an important molecule in the body, it is not typically measured or monitored in a clinical setting unless there is a specific reason to suspect a problem with its metabolism.

The Cytochrome P-450 (CYP450) enzyme system is a group of enzymes found primarily in the liver, but also in other organs such as the intestines, lungs, and skin. These enzymes play a crucial role in the metabolism and biotransformation of various substances, including drugs, environmental toxins, and endogenous compounds like hormones and fatty acids.

The name "Cytochrome P-450" refers to the unique property of these enzymes to bind to carbon monoxide (CO) and form a complex that absorbs light at a wavelength of 450 nm, which can be detected spectrophotometrically.

The CYP450 enzyme system is involved in Phase I metabolism of xenobiotics, where it catalyzes oxidation reactions such as hydroxylation, dealkylation, and epoxidation. These reactions introduce functional groups into the substrate molecule, which can then undergo further modifications by other enzymes during Phase II metabolism.

There are several families and subfamilies of CYP450 enzymes, each with distinct substrate specificities and functions. Some of the most important CYP450 enzymes include:

1. CYP3A4: This is the most abundant CYP450 enzyme in the human liver and is involved in the metabolism of approximately 50% of all drugs. It also metabolizes various endogenous compounds like steroids, bile acids, and vitamin D.
2. CYP2D6: This enzyme is responsible for the metabolism of many psychotropic drugs, including antidepressants, antipsychotics, and beta-blockers. It also metabolizes some endogenous compounds like dopamine and serotonin.
3. CYP2C9: This enzyme plays a significant role in the metabolism of warfarin, phenytoin, and nonsteroidal anti-inflammatory drugs (NSAIDs).
4. CYP2C19: This enzyme is involved in the metabolism of proton pump inhibitors, antidepressants, and clopidogrel.
5. CYP2E1: This enzyme metabolizes various xenobiotics like alcohol, acetaminophen, and carbon tetrachloride, as well as some endogenous compounds like fatty acids and prostaglandins.

Genetic polymorphisms in CYP450 enzymes can significantly affect drug metabolism and response, leading to interindividual variability in drug efficacy and toxicity. Understanding the role of CYP450 enzymes in drug metabolism is crucial for optimizing pharmacotherapy and minimizing adverse effects.

Mevalonic acid is not a term that is typically used in medical definitions, but rather it is a biochemical concept. Mevalonic acid is a key intermediate in the biosynthetic pathway for cholesterol and other isoprenoids. It is formed from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) by the enzyme HMG-CoA reductase, which is the target of cholesterol-lowering drugs known as statins.

In a medical context, mevalonic acid may be mentioned in relation to certain rare genetic disorders, such as mevalonate kinase deficiency (MKD) or hyperimmunoglobulinemia D and periodic fever syndrome (HIDS), which are caused by mutations in the gene encoding mevalonate kinase, an enzyme involved in the metabolism of mevalonic acid. These conditions can cause recurrent fevers, rashes, joint pain, and other symptoms.

14-alpha Demethylase Inhibitors are a class of antifungal medications that work by inhibiting the enzyme 14-alpha demethylase, which is essential for the synthesis of ergosterol, a critical component of fungal cell membranes. By inhibiting this enzyme, the drugs disrupt the structure and function of the fungal cell membrane, leading to fungal cell death.

Examples of 14-alpha Demethylase Inhibitors include:

* Fluconazole (Diflucan)
* Itraconazole (Sporanox)
* Ketoconazole (Nizoral)
* Posaconazole (Noxafil)
* Voriconazole (Vfend)

These medications are used to treat a variety of fungal infections, including candidiasis, aspergillosis, and cryptococcosis. However, they can also have significant drug-drug interactions and toxicities, so their use must be monitored closely by healthcare professionals.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

Miconazole is an antifungal medication used to treat various fungal infections, including those affecting the skin, mouth, and vagina. According to the Medical Subject Headings (MeSH) database maintained by the National Library of Medicine, miconazole is classified as an imidazole antifungal agent that works by inhibiting the synthesis of ergosterol, a key component of fungal cell membranes. By disrupting the structure and function of the fungal cell membrane, miconazole can help to kill or suppress the growth of fungi, providing therapeutic benefits in patients with fungal infections.

Miconazole is available in various formulations, including creams, ointments, powders, tablets, and vaginal suppositories, and is typically applied or administered topically or vaginally, depending on the site of infection. In some cases, miconazole may also be given intravenously for the treatment of severe systemic fungal infections.

As with any medication, miconazole can have side effects and potential drug interactions, so it is important to use it under the guidance of a healthcare professional. Common side effects of miconazole include skin irritation, redness, and itching at the application site, while more serious side effects may include allergic reactions, liver damage, or changes in heart rhythm. Patients should be sure to inform their healthcare provider of any other medications they are taking, as well as any medical conditions they have, before using miconazole.

Hydroxymethylglutaryl CoA (HMG-CoA) reductase is an enzyme that plays a crucial role in the synthesis of cholesterol in the body. It is found in the endoplasmic reticulum of cells and catalyzes the conversion of HMG-CoA to mevalonic acid, which is a key rate-limiting step in the cholesterol biosynthetic pathway.

The reaction catalyzed by HMG-CoA reductase is as follows:

HMG-CoA + 2 NADPH + 2 H+ → mevalonic acid + CoA + 2 NADP+

This enzyme is the target of statin drugs, which are commonly prescribed to lower cholesterol levels in the treatment of cardiovascular diseases. Statins work by inhibiting HMG-CoA reductase, thereby reducing the production of cholesterol in the body.

Phytosterols are a type of plant-derived sterol that have a similar structure to cholesterol, a compound found in animal products. They are found in small quantities in many fruits, vegetables, nuts, seeds, legumes, and vegetable oils. Phytosterols are known to help lower cholesterol levels by reducing the absorption of dietary cholesterol in the digestive system.

In medical terms, phytosterols are often referred to as "plant sterols" or "phytostanols." They have been shown to have a modest but significant impact on lowering LDL (or "bad") cholesterol levels when consumed in sufficient quantities, typically in the range of 2-3 grams per day. As a result, foods fortified with phytosterols are sometimes recommended as part of a heart-healthy diet for individuals with high cholesterol or a family history of cardiovascular disease.

It's worth noting that while phytosterols have been shown to be safe and effective in reducing cholesterol levels, they should not be used as a substitute for other lifestyle changes such as regular exercise, smoking cessation, and weight management. Additionally, individuals with sitosterolemia, a rare genetic disorder characterized by an abnormal accumulation of plant sterols in the body, should avoid consuming foods fortified with phytosterols.

"Azoles" is a class of antifungal medications that have a similar chemical structure, specifically a five-membered ring containing nitrogen and two carbon atoms (a "azole ring"). The most common azoles used in medicine include:

1. Imidazoles: These include drugs such as clotrimazole, miconazole, and ketoconazole. They are used to treat a variety of fungal infections, including vaginal yeast infections, thrush, and skin infections.
2. Triazoles: These include drugs such as fluconazole, itraconazole, and voriconazole. They are also used to treat fungal infections, but have a broader spectrum of activity than imidazoles and are often used for more serious or systemic infections.

Azoles work by inhibiting the synthesis of ergosterol, an essential component of fungal cell membranes. This leads to increased permeability of the cell membrane, which ultimately results in fungal cell death.

While azoles are generally well-tolerated, they can cause side effects such as nausea, vomiting, and abdominal pain. In addition, some azoles can interact with other medications and affect liver function, so it's important to inform your healthcare provider of all medications you are taking before starting an azole regimen.

"Methylococcus capsulatus" is a species of gram-negative, facultatively aerobic, methane-oxidizing bacteria that belongs to the family Methylococcaceae. These bacteria are characterized by their ability to use methane as their sole source of carbon and energy for growth, a process known as methanotrophy. "Methylococcus capsulatus" is commonly found in freshwater and terrestrial environments, such as soil, lakes, and rivers.

The bacteria are spherical to oval-shaped and are surrounded by a distinct, protective outer layer called a capsule, which gives the species its name "capsulatus." The cells can exist as single cells or in pairs, and they may form aggregates when grown in culture. They are able to grow at a wide range of temperatures, from 4°C to 37°C, making them adaptable to various environmental conditions.

"Methylococcus capsulatus" has attracted interest for its potential use in bioremediation and waste treatment due to its ability to consume methane, a potent greenhouse gas. Additionally, the bacteria have been studied as a source of single-cell protein and other valuable bioproducts.

Triterpenes are a type of natural compound that are composed of six isoprene units and have the molecular formula C30H48. They are synthesized through the mevalonate pathway in plants, fungi, and some insects, and can be found in a wide variety of natural sources, including fruits, vegetables, and medicinal plants.

Triterpenes have diverse structures and biological activities, including anti-inflammatory, antiviral, and cytotoxic effects. Some triterpenes are also used in traditional medicine, such as glycyrrhizin from licorice root and betulinic acid from the bark of birch trees.

Triterpenes can be further classified into various subgroups based on their carbon skeletons, including squalene, lanostane, dammarane, and ursane derivatives. Some triterpenes are also modified through various biochemical reactions to form saponins, steroids, and other compounds with important biological activities.

Cholestanes are a type of steroid compound that are derived from cholesterol. They are characterized by a fully saturated steroid nucleus, which means that all of the double bonds in the cholesterol molecule have been reduced to single bonds through a process called hydrogenation.

Cholestanes are important intermediates in the biosynthesis of other steroids, such as bile acids and steroid hormones. They can also be found in some natural sources, including certain plants and fungi.

It's worth noting that cholestanes themselves do not have any specific medical significance, but they are important for understanding the biochemistry of steroids and their role in human health and disease.

Squalene monooxygenase is an enzyme involved in the biosynthesis of cholesterol and other sterols. This enzyme catalyzes the conversion of squalene to squalene 2,3-epoxide, which is a key step in the biosynthetic pathway leading to the formation of cholesterol. The reaction catalyzed by squalene monooxygenase involves the incorporation of molecular oxygen and the reduction of NADPH to NADP+.

The gene that encodes squalene monooxygenase is called SQLE, which is located on human chromosome 8 (8p21.3). Mutations in this gene have been associated with several genetic disorders, including Smith-Lemli-Opitz syndrome and desmosterolosis, which are characterized by abnormal cholesterol metabolism.

Squalene monooxygenase is an important enzyme in the regulation of cholesterol biosynthesis, and its activity is regulated by several factors, including sterol regulatory element-binding proteins (SREBPs) and insulin-induced gene 1 (INSIG1). Inhibition of squalene monooxygenase has been explored as a potential therapeutic strategy for the treatment of hypercholesterolemia and related cardiovascular diseases.

Chromatography, gas (GC) is a type of chromatographic technique used to separate, identify, and analyze volatile compounds or vapors. In this method, the sample mixture is vaporized and carried through a column packed with a stationary phase by an inert gas (carrier gas). The components of the mixture get separated based on their partitioning between the mobile and stationary phases due to differences in their adsorption/desorption rates or solubility.

The separated components elute at different times, depending on their interaction with the stationary phase, which can be detected and quantified by various detection systems like flame ionization detector (FID), thermal conductivity detector (TCD), electron capture detector (ECD), or mass spectrometer (MS). Gas chromatography is widely used in fields such as chemistry, biochemistry, environmental science, forensics, and food analysis.

Ganoderma lucidum, also known as Reishi or Lingzhi, is a species of fungus that has been used in traditional medicine for centuries. In medical terms, it's classified as a medicinal mushroom. It's native to various parts of Asia and can be found growing on the trunks of deciduous trees.

Reishi mushrooms contain various bioactive compounds, including triterpenoids, polysaccharides, and peptidoglycans, which are believed to have several health benefits. These benefits include boosting the immune system, reducing stress, improving sleep, and having potential anti-cancer effects. However, more scientific research is needed to confirm these claims and understand the optimal dosages and potential side effects.

Antifungal agents are a type of medication used to treat and prevent fungal infections. These agents work by targeting and disrupting the growth of fungi, which include yeasts, molds, and other types of fungi that can cause illness in humans.

There are several different classes of antifungal agents, including:

1. Azoles: These agents work by inhibiting the synthesis of ergosterol, a key component of fungal cell membranes. Examples of azole antifungals include fluconazole, itraconazole, and voriconazole.
2. Echinocandins: These agents target the fungal cell wall, disrupting its synthesis and leading to fungal cell death. Examples of echinocandins include caspofungin, micafungin, and anidulafungin.
3. Polyenes: These agents bind to ergosterol in the fungal cell membrane, creating pores that lead to fungal cell death. Examples of polyene antifungals include amphotericin B and nystatin.
4. Allylamines: These agents inhibit squalene epoxidase, a key enzyme in ergosterol synthesis. Examples of allylamine antifungals include terbinafine and naftifine.
5. Griseofulvin: This agent disrupts fungal cell division by binding to tubulin, a protein involved in fungal cell mitosis.

Antifungal agents can be administered topically, orally, or intravenously, depending on the severity and location of the infection. It is important to use antifungal agents only as directed by a healthcare professional, as misuse or overuse can lead to resistance and make treatment more difficult.

Colocasia is a genus of flowering plants in the arum family, Araceae. It includes several species commonly known as taro or elephant ears, which are cultivated for their edible corms and leaves. The term "colocasia" is also used more specifically to refer to certain species within this genus, such as Colocasia esculenta, which is one of the most widely consumed types of taro.

It's important to note that while colocasia plants have many uses and are an important food source in many parts of the world, they also contain calcium oxalate crystals, which can cause irritation and discomfort if eaten raw or improperly prepared. Proper cooking and preparation is necessary to remove these crystals and make colocasia safe to eat.

Fluconazole is an antifungal medication used to treat and prevent various fungal infections, such as candidiasis (yeast infections), cryptococcal meningitis, and other fungal infections that affect the mouth, throat, blood, lungs, genital area, and other parts of the body. It works by inhibiting the growth of fungi that cause these infections. Fluconazole is available in various forms, including tablets, capsules, and intravenous (IV) solutions, and is typically prescribed to be taken once daily.

The medical definition of Fluconazole can be found in pharmacological or medical dictionaries, which describe it as a triazole antifungal agent that inhibits fungal cytochrome P450-dependent synthesis of ergosterol, a key component of the fungal cell membrane. This results in increased permeability and leakage of cellular contents, ultimately leading to fungal death. Fluconazole has a broad spectrum of activity against various fungi, including Candida, Cryptococcus, Aspergillus, and others.

It is important to note that while Fluconazole is an effective antifungal medication, it may have side effects and interactions with other medications. Therefore, it should only be used under the guidance of a healthcare professional.

Steroid isomerases are a class of enzymes that catalyze the interconversion of steroids by rearranging various chemical bonds within their structures, leading to the formation of isomers. These enzymes play crucial roles in steroid biosynthesis and metabolism, enabling the production of a diverse array of steroid hormones with distinct biological activities.

There are several types of steroid isomerases, including:

1. 3-beta-hydroxysteroid dehydrogenase/delta(5)-delta(4) isomerase (3-beta-HSD): This enzyme catalyzes the conversion of delta(5) steroids to delta(4) steroids, accompanied by the oxidation of a 3-beta-hydroxyl group to a keto group. It is essential for the biosynthesis of progesterone, cortisol, and aldosterone.
2. Aromatase: This enzyme converts androgens (such as testosterone) into estrogens (such as estradiol) by introducing a phenolic ring, which results in the formation of an aromatic A-ring. It is critical for the development and maintenance of female secondary sexual characteristics.
3. 17-beta-hydroxysteroid dehydrogenase (17-beta-HSD): This enzyme catalyzes the interconversion between 17-keto and 17-beta-hydroxy steroids, playing a key role in the biosynthesis of estrogens, androgens, and glucocorticoids.
4. 5-alpha-reductase: This enzyme catalyzes the conversion of testosterone to dihydrotestosterone (DHT) by reducing the double bond between carbons 4 and 5 in the A-ring. DHT is a more potent androgen than testosterone, playing essential roles in male sexual development and prostate growth.
5. 20-alpha-hydroxysteroid dehydrogenase (20-alpha-HSD): This enzyme catalyzes the conversion of corticosterone to aldosterone, a critical mineralocorticoid involved in regulating electrolyte and fluid balance.
6. 3-beta-hydroxysteroid dehydrogenase (3-beta-HSD): This enzyme catalyzes the conversion of pregnenolone to progesterone and 17-alpha-hydroxypregnenolone to 17-alpha-hydroxyprogesterone, which are essential intermediates in steroid hormone biosynthesis.

These enzymes play crucial roles in the biosynthesis, metabolism, and elimination of various steroid hormones, ensuring proper endocrine function and homeostasis. Dysregulation or mutations in these enzymes can lead to various endocrine disorders, including congenital adrenal hyperplasia (CAH), polycystic ovary syndrome (PCOS), androgen insensitivity syndrome (AIS), and others.

Isomerases are a class of enzymes that catalyze the interconversion of isomers of a single molecule. They do this by rearranging atoms within a molecule to form a new structural arrangement or isomer. Isomerases can act on various types of chemical bonds, including carbon-carbon and carbon-oxygen bonds.

There are several subclasses of isomerases, including:

1. Racemases and epimerases: These enzymes interconvert stereoisomers, which are molecules that have the same molecular formula but different spatial arrangements of their atoms in three-dimensional space.
2. Cis-trans isomerases: These enzymes interconvert cis and trans isomers, which differ in the arrangement of groups on opposite sides of a double bond.
3. Intramolecular oxidoreductases: These enzymes catalyze the transfer of electrons within a single molecule, resulting in the formation of different isomers.
4. Mutases: These enzymes catalyze the transfer of functional groups within a molecule, resulting in the formation of different isomers.
5. Tautomeres: These enzymes catalyze the interconversion of tautomers, which are isomeric forms of a molecule that differ in the location of a movable hydrogen atom and a double bond.

Isomerases play important roles in various biological processes, including metabolism, signaling, and regulation.

Industrial fungicides are antimicrobial agents used to prevent, destroy, or inhibit the growth of fungi and their spores in industrial settings. These can include uses in manufacturing processes, packaging materials, textiles, paints, and other industrial products. They work by interfering with the cellular structure or metabolic processes of fungi, thereby preventing their growth or reproduction. Examples of industrial fungicides include:

* Sodium hypochlorite (bleach)
* Formaldehyde
* Glutaraldehyde
* Quaternary ammonium compounds
* Peracetic acid
* Chlorhexidine
* Iodophors

It's important to note that some of these fungicides can be harmful or toxic to humans and other organisms, so they must be used with caution and in accordance with safety guidelines.

'Candida albicans' is a species of yeast that is commonly found in the human body, particularly in warm and moist areas such as the mouth, gut, and genital region. It is a part of the normal microbiota and usually does not cause any harm. However, under certain conditions like a weakened immune system, prolonged use of antibiotics or steroids, poor oral hygiene, or diabetes, it can overgrow and cause infections known as candidiasis. These infections can affect various parts of the body including the skin, nails, mouth (thrush), and genital area (yeast infection).

The medical definition of 'Candida albicans' is:

A species of yeast belonging to the genus Candida, which is commonly found as a commensal organism in humans. It can cause opportunistic infections when there is a disruption in the normal microbiota or when the immune system is compromised. The overgrowth of C. albicans can lead to various forms of candidiasis, such as oral thrush, vaginal yeast infection, and invasive candidiasis.

NADPH-ferrihemoprotein reductase, also known as diaphorase or NO synthase reductase, is an enzyme that catalyzes the reduction of ferrihemoproteins using NADPH as a reducing cofactor. This reaction plays a crucial role in various biological processes such as the detoxification of certain compounds and the regulation of cellular signaling pathways.

The systematic name for this enzyme is NADPH:ferrihemoprotein oxidoreductase, and it belongs to the family of oxidoreductases that use NADH or NADPH as electron donors. The reaction catalyzed by this enzyme can be represented as follows:

NADPH + H+ + ferrihemoprotein ↔ NADP+ + ferrohemoprotein

In this reaction, the ferric (FeIII) form of hemoproteins is reduced to its ferrous (FeII) form by accepting electrons from NADPH. This enzyme is widely distributed in various tissues and organisms, including bacteria, fungi, plants, and animals. It has been identified as a component of several multi-enzyme complexes involved in different metabolic pathways, such as nitric oxide synthase (NOS) and cytochrome P450 reductase.

In summary, NADPH-ferrihemoprotein reductase is an essential enzyme that catalyzes the reduction of ferrihemoproteins using NADPH as a reducing agent, playing a critical role in various biological processes and metabolic pathways.

Microsomes, liver refers to a subcellular fraction of liver cells (hepatocytes) that are obtained during tissue homogenization and subsequent centrifugation. These microsomal fractions are rich in membranous structures known as the endoplasmic reticulum (ER), particularly the rough ER. They are involved in various important cellular processes, most notably the metabolism of xenobiotics (foreign substances) including drugs, toxins, and carcinogens.

The liver microsomes contain a variety of enzymes, such as cytochrome P450 monooxygenases, that are crucial for phase I drug metabolism. These enzymes help in the oxidation, reduction, or hydrolysis of xenobiotics, making them more water-soluble and facilitating their excretion from the body. Additionally, liver microsomes also host other enzymes involved in phase II conjugation reactions, where the metabolites from phase I are further modified by adding polar molecules like glucuronic acid, sulfate, or acetyl groups.

In summary, liver microsomes are a subcellular fraction of liver cells that play a significant role in the metabolism and detoxification of xenobiotics, contributing to the overall protection and maintenance of cellular homeostasis within the body.

A medical directory is a collection of information about healthcare professionals, organizations, and facilities, arranged in a systematic and searchable manner. Medical directories can be found in both print and digital formats and serve as a valuable resource for patients, doctors, researchers, and other healthcare providers.

The information contained in medical directories may include the names and contact details of physicians, specialists, and other healthcare professionals, along with their qualifications, areas of expertise, and professional affiliations. Medical directories may also provide information about hospitals, clinics, research institutions, and other healthcare organizations, including their services, accreditation status, and quality indicators.

Medical directories can be used for a variety of purposes, such as finding a specialist in a particular field, locating a nearby hospital or clinic, verifying the credentials of a healthcare provider, or conducting research on healthcare trends and outcomes. Some medical directories may also include patient reviews and ratings, which can help consumers make informed decisions about their care.

Examples of medical directories include the American Medical Association (AMA) Physician Masterfile, the National Provider Identifier (NPI) Registry, and the Healthcare Bluebook.

According to the United States Food and Drug Administration (FDA), biological products are "products that are made from or contain a living organism or its derivatives, such as vaccines, blood and blood components, cells, genes, tissues, and proteins." These products can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, and they can come from many sources, including humans, animals, microorganisms, or plants.

Biological products are often used to diagnose, prevent, or treat a wide range of medical conditions, and they can be administered in various ways, such as through injection, inhalation, or topical application. Because biological products are derived from living organisms, their manufacturing processes can be complex and must be tightly controlled to ensure the safety, purity, and potency of the final product.

It's important to note that biological products are not the same as drugs, which are chemically synthesized compounds. While drugs are designed to interact with specific targets in the body, such as enzymes or receptors, biological products can have more complex and varied mechanisms of action, making them potentially more difficult to characterize and regulate.

I'm sorry for any confusion, but "Malaysia" is not a medical term or concept. It is a country located in Southeast Asia, consisting of thirteen states and three federal territories. If you have any questions about Malaysia's geography, culture, or people, I would be happy to try to help answer those! However, if you have a question related to medicine or healthcare, please provide more details so I can give you an accurate and helpful response.

Medicinal plants are defined as those plants that contain naturally occurring chemical compounds which can be used for therapeutic purposes, either directly or indirectly. These plants have been used for centuries in various traditional systems of medicine, such as Ayurveda, Chinese medicine, and Native American medicine, to prevent or treat various health conditions.

Medicinal plants contain a wide variety of bioactive compounds, including alkaloids, flavonoids, tannins, terpenes, and saponins, among others. These compounds have been found to possess various pharmacological properties, such as anti-inflammatory, analgesic, antimicrobial, antioxidant, and anticancer activities.

Medicinal plants can be used in various forms, including whole plant material, extracts, essential oils, and isolated compounds. They can be administered through different routes, such as oral, topical, or respiratory, depending on the desired therapeutic effect.

It is important to note that while medicinal plants have been used safely and effectively for centuries, they should be used with caution and under the guidance of a healthcare professional. Some medicinal plants can interact with prescription medications or have adverse effects if used inappropriately.

Anti-obesity agents are medications that are used to treat obesity and overweight. They work by reducing appetite, increasing feelings of fullness, decreasing fat absorption, or increasing metabolism. Some examples of anti-obesity agents include orlistat, lorcaserin, phentermine, and topiramate. These medications are typically used in conjunction with diet and exercise to help people lose weight and maintain a healthy body weight. It's important to note that these medications can have side effects and should be used under the close supervision of a healthcare provider.

I apologize for any confusion, but "books" is a general term that refers to bound sets of pages that are printed or written with text, illustrations, or signs, and are meant to be read, studied, or consulted. It does not have a specific medical definition. If you're looking for information about a specific medical term or concept, please let me know and I'd be happy to help!

In the context of medical terminology, a directory generally refers to a list or catalog of healthcare providers, organizations, or services. It can be used to provide information about various aspects such as their names, contact details, specialties, qualifications, and locations. This type of directory is often found in hospitals, clinics, insurance companies, and medical associations to facilitate access to healthcare resources for patients, practitioners, and administrative purposes.

Elaboration of lanosterol under enzyme catalysis leads to the core structure of steroids. 14-Demethylation of lanosterol by ... In 2018, Lanosterol was shown to improve lens clarity in cells with lens clouding due to aging or physical stressors. A ... Lanosterol is a tetracyclic triterpenoid and is the compound from which all animal and fungal steroids are derived. By contrast ... "Do Lanosterol eye drops work for dogs? - PetACS Pet Health Products". petacs.com. Retrieved 2023-06-06. Huff, M; Telford, D ( ...
Lanosterol is a key four-ringed intermediate in cholesterol biosynthesis. In humans, lanosterol synthase is encoded by the LSS ... Studies in which lanosterol synthase is partially inhibited have shown both a direct decrease in lanosterol formation and a ... Lanosterol synthase catalyzes the conversion of (S)-2,3-epoxysqualene to lanosterol, a key four-ringed intermediate in ... The oxysterol 24(S),25-epoxylanosterol, which is preferentially formed over lanosterol during partial lanosterol synthase ...
Lanosterol 14α-demethylase (CYP51A1) is the animal version of a cytochrome P450 enzyme that is involved in the conversion of ... As a member of this family, lanosterol 14α-demethylase is responsible for an essential step in the biosynthesis of sterols. In ... Aoyama Y, Yoshida Y (March 1992). "The 4 beta-methyl group of substrate does not affect the activity of lanosterol 14 alpha- ... The enzyme-catalyzed demethylation of lanosterol is believed to occur in three steps, each of which requires one molecule of ...
All steroids are manufactured in cells from the sterols lanosterol (opisthokonts) or cycloartenol (plants). Lanosterol and ... the isoprene units are joined to make squalene and folded into a set of rings to make lanosterol. Lanosterol can then be ... Both lanosterol and cycloartenol derive from cyclization of the triterpenoid squalene. Lanosterol and cycloartenol are ... The hundreds of steroids found in animals, fungi, and plants are made from lanosterol (in animals and fungi; see examples above ...
Kawata S, Trzaskos JM, Gaylor JL (1985). "Microsomal enzymes of cholesterol biosynthesis from lanosterol. Purification and ... Risley John M (2002). "Cholesterol biosynthesis: Lanosterol to cholesterol". Journal of Chemical Education. 79 (3): 377. doi: ...
Lanosterol Obtusifoliol Cycloartenol Lepesheva, GI; Waterman, MR (March 2007). "Sterol 14alpha-demethylase cytochrome P450 ( ... Aoyama, Y; Yoshida, Y (15 August 1991). "Different substrate specificities of lanosterol 14a-demethylase (P-45014DM) of ... is a sterol and the C24-25 hydrogenated products of lanosterol, dihydrolanosterol can be demethylated by mammal or yeast ...
In fungi, lanosterol is then converted to ergosterol; in humans, lanosterol becomes cholesterol. However, as fungi and animals ... an enzyme that catalyzes the conversion of squalene to lanosterol. ...
Lanosterol is found within the yeast plasma membrane. It is a class of methylsterol. Within a normal yeast cell, lanosterol is ... Terconazole binds to the heme iron component on the cytochrome P450 enzyme lanosterol of fungi, also known as CYP3A4. The gene ... Terconazole targets fungi specifically since humans do not use lanosterol in this pathway. This process does not affect all ... This occurs by transforming lanosterol into 4,4'-dimethyl cholesta-8,14,24-triene-3-β-ol. This stops respiration by prohibiting ...
In 2015, Zhang discovered that lanosterol can be used in eyedrop form to help prevent cataracts. In 2019, Zhang took on a new ... Zhang is particularly known for his work on lanosterol, stem cell research (particularly limbal stem cells), gene editing, and ... July 2015). "Lanosterol reverses protein aggregation in cataracts". Nature. 523 (7562): 607-611. Bibcode:2015Natur.523..607Z. ... "Lanosterol reverses protein aggregation in cataracts". Nature. 523 (7562): 607-11. Bibcode:2015Natur.523..607Z. doi:10.1038/ ...
Fukushima H, Grinstead GF, Gaylor JL (May 1981). "Total enzymic synthesis of cholesterol from lanosterol. Cytochrome b5- ...
If there are two double bonds, the molecule is known as a "cholestadiene". Examples include fusidic acid, lanosterol, and ... Red Yeast Rice Cholesterol Cholestane Fusidic Acid Lanosterol Stigmasterol v t e (Chemical articles without CAS registry number ...
Chen N, Zhou J, Li J, Xu J, Wu R (March 2014). "Concerted Cyclization of Lanosterol C-Ring and D-Ring Under Human Oxidosqualene ... Sawai S, Akashi T, Sakurai N, Suzuki H, Shibata D, Ayabe S, Aoki T (May 2006). "Plant lanosterol synthase: divergence of the ... Diao H, Chen N, Wang K, Zhang F, Wang YH, Wu R (2020-02-07). "Biosynthetic Mechanism of Lanosterol: A Completed Story". ACS ... The crystal structure of the OSC-lanosterol complex confirms that Tyr503 and His232 are in optimal positions for this final de- ...
... is a smaller molecule than lanosterol; it is synthesized by combining two molecules of farnesyl pyrophosphate, a 15- ... carbon-long terpenoid, into lanosterol, which has 30 carbons. Then, two methyl groups are removed, making ergosterol. The " ... inhibiting synthesis of ergosterol from lanosterol by interfering with 14α-demethylase. ... of antifungal agents inhibit the enzyme that performs these demethylation steps in the biosynthetic pathway between lanosterol ...
Oxidosqualene cyclase then cyclizes squalene to form lanosterol. Finally, lanosterol is converted to cholesterol via either of ... This is followed by 19 additional steps to convert the resulting lanosterol into cholesterol.[citation needed] A human male ...
Incorporation of lanosterol into viridin has been described. Although the mechanisms and order of the remaining steps from ... Golder, Walter S.; Watson, Thomas R. (1980). "Lanosterol derivatives as precursors in the biosynthesis of viridin. Part 1". ... position of mevalonic acid and represents the C-4β-methyl group of lanosterol. Oxidation and decarboxylation of the C-4α-methyl ... lanosterol, dehydroxydemethoxyviridin, and demethoxyviridin was reported. This suggests that the vicinal oxygenations at C-1 ...
This enzyme is also called lanosterol Delta24-reductase. This enzyme participates in biosynthesis of steroids. Bae SH, Paik YK ... development of a novel assay method and characterization of rat liver microsomal lanosterol delta 24-reductase". Biochem. J. ...
They both inhibit the enzyme squalene-epoxidase, which converts squalene to lanosterol, the raw material for producing ... Azole antifungals inhibit the enzyme that converts lanosterol into ergosterol. Common examples of azole antifungals include ... thus preventing the demethylation of lanosterol to ergosterol which is an essential component of the fungal cell membrane. The ...
25-epoxylanosterol by lanosterol synthase. Model organisms have been used in the study of SQLE function. A conditional knockout ...
Later researchers synthesized protosteroids called lanosterol, cycloartenol, and 24-methylene cycloartenol. Then researchers ...
From the flowers, diosgenin, β-sitosterol, and lanosterol have been isolated. Goji Gouqi jiu List of culinary fruits List of ...
... is the substrate of various oxidosqualene cyclases, including lanosterol synthase, which produces lanosterol ... The stereoisomer 2,3-(R)-oxidosqualene is an inhibitor of lanosterol synthase. Abe I. (2007). "Enzymatic synthesis of cyclic ... is an intermediate in the synthesis of the cell membrane sterol precursors lanosterol and cycloartenol, as well as saponins. It ...
Lanosterol can then be converted into other sterols such as cholesterol and ergosterol. Organisms vary in their ability to ... Here, the isoprene units are joined to make squalene and then folded up and formed into a set of rings to make lanosterol. ...
Lanosterol can then be converted into other steroids such as cholesterol and ergosterol. Beta oxidation is the metabolic ... the isoprene units are joined together to make squalene and then folded up and formed into a set of rings to make lanosterol. ...
... (INN, codenamed RS-21607) is an anti-obesity drug acting as a lanosterol 14α-demethylase inhibitor. "International ... July 1993). "Selective inhibition of mammalian lanosterol 14 alpha-demethylase: a possible strategy for cholesterol lowering". ... August 1995). "Azalanstat (RS-21607), a lanosterol 14 alpha-demethylase inhibitor with cholesterol-lowering activity". ... Lanosterol 14α-demethylase inhibitors, Thioethers, All stub articles, Gastrointestinal system drug stubs). ...
The synthesis of sterols such as lanosterol has been observed in G. obscuriglobus. Lanosterol is common in eukaryotes and two ...
"Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol". Molecular and Cellular ...
This enzyme participates in the sterol biosynthesis pathway that leads from lanosterol to ergosterol. Lower doses of ... Lanosterol 14α-demethylase inhibitors, Nonsteroidal antiandrogens, Piperazines, Pregnane X receptor antagonists, Wikipedia ...
Lanosterol 14-alpha demethylase from Cunninghamella elegans on www.uniprot.org Cha, C. J.; Kim, S. J.; Kim, Y. H.; Stingley, R ... C. elegans also possesses a lanosterol 14-alpha demethylase, another enzyme in the cytochrome P450 family. Cunninghamella ...
It has also been reported to inhibit mammalian sterol biosynthesis by affecting lanosterol demethylation. Although used in ...
Through several more biosynthetic steps, squalene is transformed into lanosterol, a direct precursor for cholesterol. Notably, ...
Elaboration of lanosterol under enzyme catalysis leads to the core structure of steroids. 14-Demethylation of lanosterol by ... In 2018, Lanosterol was shown to improve lens clarity in cells with lens clouding due to aging or physical stressors. A ... Lanosterol is a tetracyclic triterpenoid and is the compound from which all animal and fungal steroids are derived. By contrast ... "Do Lanosterol eye drops work for dogs? - PetACS Pet Health Products". petacs.com. Retrieved 2023-06-06. Huff, M; Telford, D ( ...
LANOSTEROL (UNII: 1J05Z83K3M) (LANOSTEROL - UNII:1J05Z83K3M) LANOSTEROL. 8 [hp_X] in 1 mL. ... Label: VASCUFLOW (melatonin, l-arginine, l-citrulline, ubidecarenonum, lanosterol, mevalonolactone, squalene, calcarea ... melatonin, l-arginine, l-citrulline, ubidecarenonum, lanosterol, mevalonolactone, squalene, calcarea carbonica, cholesterinum, ... VASCUFLOW (melatonin, l-arginine, l-citrulline, ubidecarenonum, lanosterol, mevalonolactone, squalene, calcarea carbonica, ...
Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol Cell Biol, 23 (3): ...
The lanosterol eye drops that claim to dissolve cataracts have appeared. A study released in July 2015 shows that lanosterol ... Because lanosterol has extremely low solubility, it is not easy for the lanosterol molecules in eye drops to reach the ... Hence, simple lanosterol eye drops alone cannot deliver the lanosterol molecules into the lens, which is why Zhangs team ... They injected the lanosterol solution directly into the vitreous body of the eyes, then administered the lanosterol solution ...
... Lanosterol: A promising ... Lanosterol is a natural sterol that is found in the body. It has been shown to improve proteasome activity and prevent protein ... Tagged Alzheimers, Lanosterol, neurodegeneration, Parkinsons, proteostasis Post navigation. A Novel Authentication Technique ... Lanosterol treatment also prevented the aggregation of model proteins, which are proteins that are known to misfold and ...
At the end of the 24-mo follow-up period, campesterol (P , 0.001) and lanosterol (P = 0.016) amounts were significantly higher ... The concentration of apolipoprotein B-100 correlated with cholesterol metabolism (ρ = 0.299 and P = 0.020 for lanosterol; ρ = - ... lanosterol: -16.5%, P = 0.008) during the active weight-loss phase (first 6 mo, weight loss of 5%, 6%, and 10% in the 3 diet ... We assessed circulating phytosterol and lanosterol concentrations and their ratios to cholesterol and apolipoproteins A-I and B ...
7-Dehydrocholesterin ≥95.0% (HPLC); CAS Number: 434-16-2; EC Number: 207-100-5; Synonyms: (−)-7-Dehydrocholesterin,3β-Hydroxy-5,7-cholestadien,5,7-Cholestadien-3β-ol,Provitamin D3; find Sigma-Aldrich-30800 MSDS, related peer-reviewed papers, technical documents, similar products & more at Sigma-Aldrich
Here we show that the lanosterol cyclase inhibitor, Ro 48-8071, when fed to BALB/c mice in a chow diet (20 mg/day/kg body ... Here we show that the lanosterol cyclase inhibitor, Ro 48-8071, when fed to BALB/c mice in a chow diet (20 mg/day/kg body ... Here we show that the lanosterol cyclase inhibitor, Ro 48-8071, when fed to BALB/c mice in a chow diet (20 mg/day/kg body ... Here we show that the lanosterol cyclase inhibitor, Ro 48-8071, when fed to BALB/c mice in a chow diet (20 mg/day/kg body ...
Hypoxia stimulates degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase through accumulation of lanosterol and ... Hypoxia stimulates degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase through accumulation of lanosterol and ...
Lanosterol 14-alpha-demethylase; catalyzes C-14 demethylation of lanosterol to form 4,4-dimethyl cholesta-8,14,24-triene-3- ... Lanosterol 14-alpha-demethylase; catalyzes the demethylation of lanosterol during the biosynthesis of ergosterol; localizes to ... ERG11 encodes a lanosterol 14-alpha-demethylase, a cytochrome P450 family member that catalyzes some of the enzymatic steps ... that lead from lanosterol to zymosterol in the ergosterol biosynthesis pathway. Ergosterol, the major sterol in fungi and the ...
... a tetrazole-based lanosterol 14α-demethylase inhibitor; APX001, which interrupts glycosylphosphatidylinositol biosynthesis by ...
AQUA (WATER) , ACRYLATES COPOLYMER , CERA ALBA (BEESWAX) , JOJOBA ESTERS , C10-30 CHOLESTEROL/LANOSTEROL ESTERS , VP/EICOSENE ...
Squalene is then processed biosynthetically to generate either lanosterol or cycloartenol, the structural precursors to all the ...
This isolate exchanges ergosterol from the membrane for other sterols such as lanosterol and fecosterol, among others [115]. ... which act by inhibiting the 14-α lanosterol demethylase that is encoded by the ERG11 gene. The ERG11 gene is known to ...
The topical azoles inhibit the enzyme lanosterol 14-alpha-demethylase, a cytochrome P-450-dependent enzyme that converts ... lanosterol to ergosterol. Inhibition of this enzyme results in unstable fungal cell membranes and causes membrane leakage. ...
Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol.. ... lanosterol, or 24,25-dihydrolanosterol (Figure 2A). WB. Human. ...
Clotrimazole inhibits the microsomal cytochrome P450 (CYP450)-dependent event 14-α- lanosterol demethylation, which is a vital ... Lanosterol 14-α) , Cytochrome P450 , Inhibitor , Enzymes , Polycyclic aromatic hydrocarbon cancer , PAH ...
The azoles mechanism of action is to inhibit 14α-lanosterol demethylase, encoded by the ERG11. gene, which converts lanosterol ... genes (lanosterol 14α-demethylase and C-5 sterol desaturase, respectively), leads to the exchange of ergosterol for alternative ... also lead to a decrease, or even a total absence, of ergosterol in the plasma membrane [17]. Lanosterol demethylase inactivity ... a) Azoles disrupt the ergosterol synthesis by inhibiting the enzyme 14-α-lanosterol demethylase (ERG11) involved in the ...
Friedelin and lanosterol from Garcinia prainiana stimulated glucose uptake and adipocytes differentiation in 3T3-L1 adipocytes ...
Human Pregnane X Receptor Activation and CYP3A4/CYP2B6 Induction by 2,3-Oxidosqualene:Lanosterol Cyclase Inhibition Zofia ...
... function of the lamin B receptor allows the protein to perform one of several steps that convert a molecule called lanosterol ...
The mechanisms of resistance may include mutations in the gene ERG11 (encodes for the target enzyme, lanosterol 14-α- ... The primary mode of action of voriconazole is the inhibition of fungal cytochrome P-450-mediated 14 alpha-lanosterol ...
In July, researchers from UC San Diego reported that lanosterol, a steroid found in the human eye, reversed cataracts in dogs. ...
This is possibly due to the antiviral effect of lanosterol and/or the action of betulin and betulinic acid, all of which are ... 4 Two of the main phyto-sterols contained in Chaga are lanosterol (45 percent) and inotodial (25 percent). Laboratory and ...
Bakers Yeast로부터 Oxidosqualene-Lanosterol Cyclase의 분리 및 성질에 관한 연구(Ⅱ). Yong seog Chung ... Purification and Characterization of Oxidosqualene-Lanosterol Cyclase from Bakers Yeast(Ⅱ). ...
... lanosterol to cholesterol in animals, and to stigmasterol or ergosterol etc. in plants and fungi. Interestingly, none of the ...
Crepey Skin Escape is also formulated with antioxidants, amino acids and cholesterol/lanosterol esters to help your skin regain ... C10-30 cholesterol/lanosterol esters, polysorbate 80, allantoin, aloe barbadensis (aloe vera) gel, glycine, leucine, ...

No FAQ available that match "lanosterol"