The transference of pancreatic islets within an individual, between individuals of the same species, or between individuals of different species.
Recirculating, dendritic, antigen-presenting cells containing characteristic racket-shaped granules (Birbeck granules). They are found principally in the stratum spinosum of the EPIDERMIS and are rich in Class II MAJOR HISTOCOMPATIBILITY COMPLEX molecules. Langerhans cells were the first dendritic cell to be described and have been a model of study for other dendritic cells (DCs), especially other migrating DCs such as dermal DCs and INTERSTITIAL DENDRITIC CELLS.
Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN.
The transference of a part of or an entire liver from one human or animal to another.
Transplantation between individuals of the same species. Usually refers to genetically disparate individuals in contradistinction to isogeneic transplantation for genetically identical individuals.
The transference of a kidney from one human or animal to another.
A group of disorders resulting from the abnormal proliferation of and tissue infiltration by LANGERHANS CELLS which can be detected by their characteristic Birbeck granules (X bodies), or by monoclonal antibody staining for their surface CD1 ANTIGENS. Langerhans-cell granulomatosis can involve a single organ, or can be a systemic disorder.
The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION.
Transfer of HEMATOPOIETIC STEM CELLS from BONE MARROW or BLOOD between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). Hematopoietic stem cell transplantation has been used as an alternative to BONE MARROW TRANSPLANTATION in the treatment of a variety of neoplasms.
The transference of a heart from one human or animal to another.
Transplantation of an individual's own tissue from one site to another site.
The transference of either one or both of the lungs from one human or animal to another.
The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host.
The transfer of STEM CELLS from one individual to another within the same species (TRANSPLANTATION, HOMOLOGOUS) or between species (XENOTRANSPLANTATION), or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS). The source and location of the stem cells determines their potency or pluripotency to differentiate into various cell types.
Preparative treatment of transplant recipient with various conditioning regimens including radiation, immune sera, chemotherapy, and/or immunosuppressive agents, prior to transplantation. Transplantation conditioning is very common before bone marrow transplantation.
Transference of an organ between individuals of the same species or between individuals of different species.
An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient.
The transference of a pancreas from one human or animal to another.
Individuals supplying living tissue, organs, cells, blood or blood components for transfer or transplantation to histocompatible recipients.
Transference of a tissue or organ from either an alive or deceased donor, within an individual, between individuals of the same species, or between individuals of different species.
A general term for the complex phenomena involved in allo- and xenograft rejection by a host and graft vs host reaction. Although the reactions involved in transplantation immunology are primarily thymus-dependent phenomena of cellular immunity, humoral factors also play a part in late rejection.
Transference of cells within an individual, between individuals of the same species, or between individuals of different species.
An organism that, as a result of transplantation of donor tissue or cells, consists of two or more cell lines descended from at least two zygotes. This state may result in the induction of donor-specific TRANSPLANTATION TOLERANCE.
Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging.
Transplantation between genetically identical individuals, i.e., members of the same species with identical histocompatibility antigens, such as monozygotic twins, members of the same inbred strain, or members of a hybrid population produced by crossing certain inbred strains.
A pancreatic beta-cell hormone that is co-secreted with INSULIN. It displays an anorectic effect on nutrient metabolism by inhibiting gastric acid secretion, gastric emptying and postprandial GLUCAGON secretion. Islet amyloid polypeptide can fold into AMYLOID FIBRILS that have been found as a major constituent of pancreatic AMYLOID DEPOSITS.
Transplantation of tissue typical of one area to a different recipient site. The tissue may be autologous, heterologous, or homologous.
A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).
The clinical entity characterized by anorexia, diarrhea, loss of hair, leukopenia, thrombocytopenia, growth retardation, and eventual death brought about by the GRAFT VS HOST REACTION.
The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Non-cadaveric providers of organs for transplant to related or non-related recipients.
Transplantation of STEM CELLS collected from the fetal blood remaining in the UMBILICAL CORD and the PLACENTA after delivery. Included are the HEMATOPOIETIC STEM CELLS.
The simultaneous, or near simultaneous, transference of heart and lungs from one human or animal to another.
A type of pancreatic cell representing about 50-80% of the islet cells. Beta cells secrete INSULIN.
Elements of limited time intervals, contributing to particular results or situations.
Deliberate prevention or diminution of the host's immune response. It may be nonspecific as in the administration of immunosuppressive agents (drugs or radiation) or by lymphocyte depletion or may be specific as in desensitization or the simultaneous administration of antigen and immunosuppressive drugs.
A subclass of lectins that are specific for CARBOHYDRATES that contain MANNOSE.
An induced state of non-reactivity to grafted tissue from a donor organism that would ordinarily trigger a cell-mediated or humoral immune response.
Rare malignant neoplasm of dendritic LANGERHANS CELLS exhibiting atypical cytology, frequent mitoses, and aggressive clinical behavior. They can be distinguished from other histiocytic and dendritic proliferations by immunohistochemical and ultrastructure studies. Cytologically benign proliferations of Langerhans cells are called LANGERHANS CELL HISTIOCYTOSIS.
The administrative procedures involved with acquiring TISSUES or organs for TRANSPLANTATION through various programs, systems, or organizations. These procedures include obtaining consent from TISSUE DONORS and arranging for transportation of donated tissues and organs, after TISSUE HARVESTING, to HOSPITALS for processing and transplantation.
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
The grafting of skin in humans or animals from one site to another to replace a lost portion of the body surface skin.
A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Transplantation of stem cells collected from the peripheral blood. It is a less invasive alternative to direct marrow harvesting of hematopoietic stem cells. Enrichment of stem cells in peripheral blood can be achieved by inducing mobilization of stem cells from the BONE MARROW.
Transplantation between animals of different species.
Transference of fetal tissue between individuals of the same species or between individuals of different species.
Identification of the major histocompatibility antigens of transplant DONORS and potential recipients, usually by serological tests. Donor and recipient pairs should be of identical ABO blood group, and in addition should be matched as closely as possible for HISTOCOMPATIBILITY ANTIGENS in order to minimize the likelihood of allograft rejection. (King, Dictionary of Genetics, 4th ed)
Severe inability of the LIVER to perform its normal metabolic functions, as evidenced by severe JAUNDICE and abnormal serum levels of AMMONIA; BILIRUBIN; ALKALINE PHOSPHATASE; ASPARTATE AMINOTRANSFERASE; LACTATE DEHYDROGENASES; and albumin/globulin ratio. (Blakiston's Gould Medical Dictionary, 4th ed)
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence.
Partial or total replacement of the CORNEA from one human or animal to another.
Pathologic processes that affect patients after a surgical procedure. They may or may not be related to the disease for which the surgery was done, and they may or may not be direct results of the surgery.
A type of acute or chronic skin reaction in which sensitivity is manifested by reactivity to materials or substances coming in contact with the skin. It may involve allergic or non-allergic mechanisms.
Glycoproteins expressed on cortical thymocytes and on some dendritic cells and B-cells. Their structure is similar to that of MHC Class I and their function has been postulated as similar also. CD1 antigens are highly specific markers for human LANGERHANS CELLS.
A type of pancreatic cell representing about 5-20% of the islet cells. Alpha cells secrete GLUCAGON.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Prospective patient listings for appointments or treatments.
The return of a sign, symptom, or disease after a remission.
Transfer of MESENCHYMAL STEM CELLS between individuals within the same species (TRANSPLANTATION, HOMOLOGOUS) or transfer within the same individual (TRANSPLANTATION, AUTOLOGOUS).
Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY.
A macrolide isolated from the culture broth of a strain of Streptomyces tsukubaensis that has strong immunosuppressive activity in vivo and prevents the activation of T-lymphocytes in response to antigenic or mitogenic stimulation in vitro.
The degree of antigenic similarity between the tissues of different individuals, which determines the acceptance or rejection of allografts.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
A cyclic undecapeptide from an extract of soil fungi. It is a powerful immunosupressant with a specific action on T-lymphocytes. It is used for the prophylaxis of graft rejection in organ and tissue transplantation. (From Martindale, The Extra Pharmacopoeia, 30th ed).
Neoplasms located in the blood and blood-forming tissue (the bone marrow and lymphatic tissue). The commonest forms are the various types of LEUKEMIA, of LYMPHOMA, and of the progressive, life-threatening forms of the MYELODYSPLASTIC SYNDROMES.
Transference of tissue within an individual, between individuals of the same species, or between individuals of different species.
A dead body, usually a human body.
The process by which organs are kept viable outside of the organism from which they were removed (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism).
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
Irradiation of the whole body with ionizing or non-ionizing radiation. It is applicable to humans or animals but not to microorganisms.
A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511)
Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION).
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
A benign tumor of the PANCREATIC BETA CELLS. Insulinoma secretes excess INSULIN resulting in HYPOGLYCEMIA.
A class of statistical procedures for estimating the survival function (function of time, starting with a population 100% well at a given time and providing the percentage of the population still well at later times). The survival analysis is then used for making inferences about the effects of treatments, prognostic factors, exposures, and other covariates on the function.
The proportion of survivors in a group, e.g., of patients, studied and followed over a period, or the proportion of persons in a specified group alive at the beginning of a time interval who survive to the end of the interval. It is often studied using life table methods.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
A strain of non-obese diabetic mice developed in Japan that has been widely studied as a model for T-cell-dependent autoimmune insulin-dependent diabetes mellitus in which insulitis is a major histopathologic feature, and in which genetic susceptibility is strongly MHC-linked.
Transference of brain tissue, either from a fetus or from a born individual, between individuals of the same species or between individuals of different species.
A class of animal lectins that bind to carbohydrate in a calcium-dependent manner. They share a common carbohydrate-binding domain that is structurally distinct from other classes of lectins.
'Rats, Inbred Lew' is a strain of laboratory rat that is widely used in biomedical research, known for its consistent genetic background and susceptibility to certain diseases, which makes it an ideal model for studying the genetic basis of complex traits and disease processes.
The number of CELLS of a specific kind, usually measured per unit volume or area of sample.
The procedure established to evaluate the health status and risk factors of the potential DONORS of biological materials. Donors are selected based on the principles that their health will not be compromised in the process, and the donated materials, such as TISSUES or organs, are safe for reuse in the recipients.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
The most benign and common form of Langerhans-cell histiocytosis which involves localized nodular lesions predominantly of the bones but also of the gastric mucosa, small intestine, lungs, or skin, with infiltration by EOSINOPHILS.
The transference between individuals of the entire face or major facial structures. In addition to the skin and cartilaginous tissue (CARTILAGE), it may include muscle and bone as well.
Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
Pathological processes of the LIVER.
Endocrine cells found throughout the GASTROINTESTINAL TRACT and in islets of the PANCREAS. D cells secrete SOMATOSTATIN that acts in both an endocrine and paracrine manner. Somatostatin acts on a variety of tissues including the PITUITARY GLAND; gastrointestinal tract; pancreas; and KIDNEY by inhibiting the release of hormones, such as GROWTH HORMONE; GASTRIN; INSULIN; and RENIN.
A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
A layer of vascularized connective tissue underneath the EPIDERMIS. The surface of the dermis contains innervated papillae. Embedded in or beneath the dermis are SWEAT GLANDS; HAIR FOLLICLES; and SEBACEOUS GLANDS.
An alkylating agent having a selective immunosuppressive effect on BONE MARROW. It has been used in the palliative treatment of chronic myeloid leukemia (MYELOID LEUKEMIA, CHRONIC), but although symptomatic relief is provided, no permanent remission is brought about. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), busulfan is listed as a known carcinogen.
Organs, tissues, or cells taken from the body for grafting into another area of the same body or into another individual.
Progenitor cells from which all blood cells derive.
The procedure of removing TISSUES, organs, or specimens from DONORS for reuse, such as TRANSPLANTATION.
Cell separation is the process of isolating and distinguishing specific cell types or individual cells from a heterogeneous mixture, often through the use of physical or biological techniques.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION.
Glycoproteins found on immature hematopoietic cells and endothelial cells. They are the only molecules to date whose expression within the blood system is restricted to a small number of progenitor cells in the bone marrow.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Removal and pathologic examination of specimens in the form of small pieces of tissue from the living body.
A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006)
Glucose in blood.
Serum containing GAMMA-GLOBULINS which are antibodies for lymphocyte ANTIGENS. It is used both as a test for HISTOCOMPATIBILITY and therapeutically in TRANSPLANTATION.
The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used.
Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells.
Antibodies produced by a single clone of cells.
Inflammation of the BRONCHIOLES leading to an obstructive lung disease. Bronchioles are characterized by fibrous granulation tissue with bronchial exudates in the lumens. Clinical features include a nonproductive cough and DYSPNEA.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
An antibiotic substance derived from Penicillium stoloniferum, and related species. It blocks de novo biosynthesis of purine nucleotides by inhibition of the enzyme inosine monophosphate dehydrogenase. Mycophenolic acid is important because of its selective effects on the immune system. It prevents the proliferation of T-cells, lymphocytes, and the formation of antibodies from B-cells. It also may inhibit recruitment of leukocytes to inflammatory sites. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1301)
The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc.
An antibiotic that is produced by Stretomyces achromogenes. It is used as an antineoplastic agent and to induce diabetes in experimental animals.
The period following a surgical operation.
A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations.
Therapeutic act or process that initiates a response to a complete or partial remission level.
The transference of a complete HAND, as a composite of many tissue types, from one individual to another.
A form of anemia in which the bone marrow fails to produce adequate numbers of peripheral blood elements.
Non-human animals, selected because of specific characteristics, for use in experimental research, teaching, or testing.
Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated.
"WF (Wistar Furth) rats are an inbred strain of albino rats that were developed through brother-sister mating for over 80 generations, resulting in a high degree of genetic uniformity and predictability, making them widely used in biomedical research."
An antigenic mismatch between donor and recipient blood. Antibodies present in the recipient's serum may be directed against antigens in the donor product. Such a mismatch may result in a transfusion reaction in which, for example, donor blood is hemolyzed. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984).
Disease having a short and relatively severe course.
Infection with CYTOMEGALOVIRUS, characterized by enlarged cells bearing intranuclear inclusions. Infection may be in almost any organ, but the salivary glands are the most common site in children, as are the lungs in adults.
Agents that destroy bone marrow activity. They are used to prepare patients for BONE MARROW TRANSPLANTATION or STEM CELL TRANSPLANTATION.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells.
Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer.
A state of prolonged irreversible cessation of all brain activity, including lower brain stem function with the complete absence of voluntary movements, responses to stimuli, brain stem reflexes, and spontaneous respirations. Reversible conditions which mimic this clinical state (e.g., sedative overdose, hypothermia, etc.) are excluded prior to making the determination of brain death. (From Adams et al., Principles of Neurology, 6th ed, pp348-9)
Death resulting from the presence of a disease in an individual, as shown by a single case report or a limited number of patients. This should be differentiated from DEATH, the physiological cessation of life and from MORTALITY, an epidemiological or statistical concept.
Final stage of a liver disease when the liver failure is irreversible and LIVER TRANSPLANTATION is needed.
They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system.
Criteria and standards used for the determination of the appropriateness of the inclusion of patients with specific conditions in proposed treatment plans and the criteria used for the inclusion of subjects in various clinical trials and other research protocols.
Experimental transplantation of neoplasms in laboratory animals for research purposes.
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
A short thick vein formed by union of the superior mesenteric vein and the splenic vein.
Period after successful treatment in which there is no appearance of the symptoms or effects of the disease.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
General term for the abnormal appearance of histiocytes in the blood. Based on the pathological features of the cells involved rather than on clinical findings, the histiocytic diseases are subdivided into three groups: HISTIOCYTOSIS, LANGERHANS CELL; HISTIOCYTOSIS, NON-LANGERHANS-CELL; and HISTIOCYTIC DISORDERS, MALIGNANT.
Process of classifying cells of the immune system based on structural and functional differences. The process is commonly used to analyze and sort T-lymphocytes into subsets based on CD antigens by the technique of flow cytometry.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
Mice homozygous for the mutant autosomal recessive gene "scid" which is located on the centromeric end of chromosome 16. These mice lack mature, functional lymphocytes and are thus highly susceptible to lethal opportunistic infections if not chronically treated with antibiotics. The lack of B- and T-cell immunity resembles severe combined immunodeficiency (SCID) syndrome in human infants. SCID mice are useful as animal models since they are receptive to implantation of a human immune system producing SCID-human (SCID-hu) hematochimeric mice.
The transfer of lymphocytes from a donor to a recipient or reinfusion to the donor.
The middle segment of proinsulin that is between the N-terminal B-chain and the C-terminal A-chain. It is a pancreatic peptide of about 31 residues, depending on the species. Upon proteolytic cleavage of proinsulin, equimolar INSULIN and C-peptide are released. C-peptide immunoassay has been used to assess pancreatic beta cell function in diabetic patients with circulating insulin antibodies or exogenous insulin. Half-life of C-peptide is 30 min, almost 8 times that of insulin.
An encapsulated lymphatic organ through which venous blood filters.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation.
Solutions used to store organs and minimize tissue damage, particularly while awaiting implantation.
An alkylating nitrogen mustard that is used as an antineoplastic in the form of the levo isomer - MELPHALAN, the racemic mixture - MERPHALAN, and the dextro isomer - MEDPHALAN; toxic to bone marrow, but little vesicant action; potential carcinogen.
A form of rapid-onset LIVER FAILURE, also known as fulminant hepatic failure, caused by severe liver injury or massive loss of HEPATOCYTES. It is characterized by sudden development of liver dysfunction and JAUNDICE. Acute liver failure may progress to exhibit cerebral dysfunction even HEPATIC COMA depending on the etiology that includes hepatic ISCHEMIA, drug toxicity, malignant infiltration, and viral hepatitis such as post-transfusion HEPATITIS B and HEPATITIS C.
The major human blood type system which depends on the presence or absence of two antigens A and B. Type O occurs when neither A nor B is present and AB when both are present. A and B are genetic factors that determine the presence of enzymes for the synthesis of certain glycoproteins mainly in the red cell membrane.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Ducts that collect PANCREATIC JUICE from the PANCREAS and supply it to the DUODENUM.
Methods for maintaining or growing CELLS in vitro.
The occurrence in an individual of two or more cell populations of different chromosomal constitutions, derived from different individuals. This contrasts with MOSAICISM in which the different cell populations are derived from a single individual.
Blood of the fetus. Exchange of nutrients and waste between the fetal and maternal blood occurs via the PLACENTA. The cord blood is blood contained in the umbilical vessels (UMBILICAL CORD) at the time of delivery.
A malignancy of mature PLASMA CELLS engaging in monoclonal immunoglobulin production. It is characterized by hyperglobulinemia, excess Bence-Jones proteins (free monoclonal IMMUNOGLOBULIN LIGHT CHAINS) in the urine, skeletal destruction, bone pain, and fractures. Other features include ANEMIA; HYPERCALCEMIA; and RENAL INSUFFICIENCY.
A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes.
A form of ischemia-reperfusion injury occurring in the early period following transplantation. Significant pathophysiological changes in MITOCHONDRIA are the main cause of the dysfunction. It is most often seen in the transplanted lung, liver, or kidney and can lead to GRAFT REJECTION.
A fibrous protein complex that consists of proteins folded into a specific cross beta-pleated sheet structure. This fibrillar structure has been found as an alternative folding pattern for a variety of functional proteins. Deposits of amyloid in the form of AMYLOID PLAQUES are associated with a variety of degenerative diseases. The amyloid structure has also been found in a number of functional proteins that are unrelated to disease.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Liver disease in which the normal microcirculation, the gross vascular anatomy, and the hepatic architecture have been variably destroyed and altered with fibrous septa surrounding regenerated or regenerating parenchymal nodules.
A synthetic anti-inflammatory glucocorticoid derived from CORTISONE. It is biologically inert and converted to PREDNISOLONE in the liver.
Irritants and reagents for labeling terminal amino acid groups.
General dysfunction of an organ occurring immediately following its transplantation. The term most frequently refers to renal dysfunction following KIDNEY TRANSPLANTATION.
An individual that contains cell populations derived from different zygotes.
Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell.
Immunological rejection of leukemia cells following bone marrow transplantation.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
Immunosuppression by reduction of circulating lymphocytes or by T-cell depletion of bone marrow. The former may be accomplished in vivo by thoracic duct drainage or administration of antilymphocyte serum. The latter is performed ex vivo on bone marrow before its transplantation.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES.
The process by which antigen is presented to lymphocytes in a form they can recognize. This is performed by antigen presenting cells (APCs). Some antigens require processing before they can be recognized. Antigen processing consists of ingestion and partial digestion of the antigen by the APC, followed by presentation of fragments on the cell surface. (From Rosen et al., Dictionary of Immunology, 1989)
Antibodies from an individual that react with ISOANTIGENS of another individual of the same species.
The chilling of a tissue or organ during decreased BLOOD perfusion or in the absence of blood supply. Cold ischemia time during ORGAN TRANSPLANTATION begins when the organ is cooled with a cold perfusion solution after ORGAN PROCUREMENT surgery, and ends after the tissue reaches physiological temperature during implantation procedures.
The process by which a tissue or aggregate of cells is kept alive outside of the organism from which it was derived (i.e., kept from decay by means of a chemical agent, cooling, or a fluid substitute that mimics the natural state within the organism).
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
The application of probability and statistical methods to calculate the risk of occurrence of any event, such as onset of illness, recurrent disease, hospitalization, disability, or death. It may include calculation of the anticipated money costs of such events and of the premiums necessary to provide for payment of such costs.
The release of stem cells from the bone marrow into the peripheral blood circulation for the purpose of leukapheresis, prior to stem cell transplantation. Hematopoietic growth factors or chemotherapeutic agents often are used to stimulate the mobilization.
Progressive destruction or the absence of all or part of the extrahepatic BILE DUCTS, resulting in the complete obstruction of BILE flow. Usually, biliary atresia is found in infants and accounts for one third of the neonatal cholestatic JAUNDICE.
A primary malignant neoplasm of the pancreatic ISLET CELLS. Usually it involves the non-INSULIN-producing cell types, the PANCREATIC ALPHA CELLS and the pancreatic delta cells (SOMATOSTATIN-SECRETING CELLS) in GLUCAGONOMA and SOMATOSTATINOMA, respectively.
Glyceraldehyde is a triose sugar, a simple monosaccharide (sugar) that contains three carbon atoms, with the molecular formula C3H6O3, and it exists in two structural forms, namely D-glyceraldehyde and L-glyceraldehyde, which are diastereomers of each other, and it is a key intermediate in several biochemical pathways, including glycolysis and gluconeogenesis.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
Measure of histocompatibility at the HL-A locus. Peripheral blood lymphocytes from two individuals are mixed together in tissue culture for several days. Lymphocytes from incompatible individuals will stimulate each other to proliferate significantly (measured by tritiated thymidine uptake) whereas those from compatible individuals will not. In the one-way MLC test, the lymphocytes from one of the individuals are inactivated (usually by treatment with MITOMYCIN or radiation) thereby allowing only the untreated remaining population of cells to proliferate in response to foreign histocompatibility antigens.
The induction of prolonged survival and growth of allografts of either tumors or normal tissues which would ordinarily be rejected. It may be induced passively by introducing graft-specific antibodies from previously immunized donors, which bind to the graft's surface antigens, masking them from recognition by T-cells; or actively by prior immunization of the recipient with graft antigens which evoke specific antibodies and form antigen-antibody complexes which bind to the antigen receptor sites of the T-cells and block their cytotoxic activity.
Invasion of the host organism by microorganisms that can cause pathological conditions or diseases.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells.
Small antigenic determinants capable of eliciting an immune response only when coupled to a carrier. Haptens bind to antibodies but by themselves cannot elicit an antibody response.
A contact dermatitis due to allergic sensitization to various substances. These substances subsequently produce inflammatory reactions in the skin of those who have acquired hypersensitivity to them as a result of prior exposure.
A delayed hypersensitivity involving the reaction between sunlight or other radiant energy source and a chemical substance to which the individual has been previously exposed and sensitized. It manifests as a papulovesicular, eczematous, or exudative dermatitis occurring chiefly on the light-exposed areas of the skin.
Any of a group of malignant tumors of lymphoid tissue that differ from HODGKIN DISEASE, being more heterogeneous with respect to malignant cell lineage, clinical course, prognosis, and therapy. The only common feature among these tumors is the absence of giant REED-STERNBERG CELLS, a characteristic of Hodgkin's disease.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.

Tolerance to antigen-presenting cell-depleted islet allografts is CD4 T cell dependent. (1/1138)

Pretreatment of pancreatic islets in 95% oxygen culture depletes graft-associated APCs and leads to indefinite allograft acceptance in immunocompetent recipients. As such, the APC-depleted allograft represents a model of peripheral alloantigen presentation in the absence of donor-derived costimulation. Over time, a state of donor-specific tolerance develops in which recipients are resistant to donor APC-induced graft rejection. Thus, persistence of the graft is sufficient to induce tolerance independent of other immune interventions. Donor-specific tolerance could be adoptively transferred to immune-deficient SCID recipient mice transplanted with fresh immunogenic islet allografts, indicating that the original recipient was not simply "ignorant" of donor antigens. Interestingly, despite the fact that the original islet allograft presented only MHC class I alloantigens, CD8+ T cells obtained from tolerant animals readily collaborated with naive CD4+ T cells to reject donor-type islet grafts. Conversely, tolerant CD4+ T cells failed to collaborate effectively with naive CD8+ T cells for the rejection of donor-type grafts. In conclusion, the MHC class I+, II- islet allograft paradoxically leads to a change in the donor-reactive CD4 T cell subset and not in the CD8 subset. We hypothesize that the tolerant state is not due to direct class I alloantigen presentation to CD8 T cells but, rather, occurs via the indirect pathway of donor Ag presentation to CD4 T cells in the context of host MHC class II molecules.  (+info)

Auto- and alloimmune reactivity to human islet allografts transplanted into type 1 diabetic patients. (2/1138)

Allogeneic islet transplantation can restore an insulin-independent state in C-peptide-negative type 1 diabetic patients. We recently reported three cases of surviving islet allografts that were implanted in type 1 diabetic patients under maintenance immune suppression for a previous kidney graft. The present study compares islet graft-specific cellular auto- and alloreactivity in peripheral blood from those three recipients and from four patients with failing islet allografts measured over a period of 6 months after portal islet implantation. The three cases that remained C-peptide-positive for >1 year exhibited no signs of alloreactivity, and their autoreactivity to islet autoantigens was only marginally increased. In contrast, rapid failure (<3 weeks) in three other cases was accompanied by increases in precursor frequencies of graft-specific alloreactive T-cells; in one of them, the alloreactivity was preceded by a sharply increased autoreactivity to several islet autoantigens. One recipient had a delayed loss of islet graft function (33 weeks); he did not exhibit signs of graft-specific alloimmunity, but developed a delayed increase in autoreactivity. The parallel between metabolic outcome of human beta-cell allografts and cellular auto- and alloreactivity in peripheral blood suggests a causal relationship. The present study therefore demonstrates that T-cell reactivities in peripheral blood can be used to monitor immune mechanisms, which influence survival of beta-cell allografts in diabetic patients.  (+info)

Islet transplantation restores normal levels of insulin receptor and substrate tyrosine phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle and myocardium of streptozocin-induced diabetic rats. (3/1138)

Insulin-dependent diabetes in rats is characterized by abnormalities of post-binding insulin signaling reactions that are not fully corrected by exogenous insulin therapy. The aim of this study was to investigate the effects of islet transplantation on insulin signaling in skeletal muscle and myocardium of streptozocin (STZ)-induced diabetic rats. Control rats, untreated diabetic rats, and diabetic rats transplanted with syngeneic islets under the kidney capsule were studied. Compared with controls, diabetic rats were characterized by multiple insulin signaling abnormalities in skeletal muscle, which included 1) increased insulin-stimulated tyrosine phosphorylation of the insulin receptor beta-subunit and insulin receptor substrates IRS-1 and IRS-2, 2) increased substrate tyrosine phosphorylation in the basal state, 3) a decreased amount of IRS-1 protein, 4) markedly elevated basal and insulin-stimulated phosphatidylinositol (PI) 3-kinase activity in anti-IRS-1 immunoprecipitates from total tissue extracts, and 5) increased PI 3-kinase activity in low-density microsomes. A similar augmentation of insulin receptor and substrate tyrosine phosphorylation in response to STZ-diabetes was also found in myocardium, although with lower magnitude than that found in skeletal muscle. In addition, STZ-diabetes resulted in decreased IRS-1 and increased IRS-2 protein levels in myocardium. Islet transplantation fully corrected the diabetes-induced changes in protein tyrosine phosphorylation and PI 3-kinase activity and normalized IRS-1 and IRS-2 protein content in both skeletal muscle and myocardium. Thus, insulin delivered into the systemic circulation by pancreatic islets transplanted under the kidney capsule can adequately correct altered insulin signaling mechanisms in insulinopenic diabetes.  (+info)

In autoimmune diabetes the transition from benign to pernicious insulitis requires an islet cell response to tumor necrosis factor alpha. (4/1138)

The islet-infiltrating and disease-causing leukocytes that are a hallmark of insulin-dependent diabetes mellitus produce and respond to a set of cytokine molecules. Of these, interleukin 1beta, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma are perhaps the most important. However, as pleiotropic molecules, they can impact the path leading to beta cell apoptosis and diabetes at multiple points. To understand how these cytokines influence both the formative and effector phases of insulitis, it is critical to determine their effects on the assorted cell types comprising the lesion: the effector T cells, antigen-presenting cells, vascular endothelium, and target islet tissue. Here, we report using nonobese diabetic chimeric mice harboring islets deficient in specific cytokine receptors or cytokine-induced effector molecules to assess how these compartmentalized loss-of-function mutations alter the events leading to diabetes. We found that islets deficient in Fas, IFN-gamma receptor, or inducible nitric oxide synthase had normal diabetes development; however, the specific lack of TNF- alpha receptor 1 (p55) afforded islets a profound protection from disease by altering the ability of islet-reactive, CD4(+) T cells to establish insulitis and subsequently destroy islet beta cells. These results argue that islet cells play a TNF-alpha-dependent role in their own demise.  (+info)

CTLA4 signals are required to optimally induce allograft tolerance with combined donor-specific transfusion and anti-CD154 monoclonal antibody treatment. (5/1138)

Sensitization to donor Ags is an enormous problem in clinical transplantation. In an islet allograft model, presensitization of recipients through donor-specific transfusion (DST) 4 wk before transplantation results in accelerated rejection. We demonstrate that combined DST with anti-CD154 (CD40L) therapy not only prevents the deleterious presensitization produced by pretransplant DST in the islet allograft model, it also induces broad alloantigen-specific tolerance and permits subsequent engraftment of donor islet or cardiac grafts without further treatment. In addition, our data strongly indicate that CTLA4-negative T cell signals are required to achieve prolonged engraftment of skin allograft or tolerance to islet allograft in recipients treated with a combination of pretransplant DST and anti-CD154 mAb. We provide direct evidence that a CD28-independent CTLA4 signal delivers a strong negative signal to CD4+ T cells that can block alloimmune MLR responses. In this study immune deviation into a Th2 (IL-4) response was associated with, but did not insure, graft tolerance, as the inopportune timing of B7 blockade with CTLA4/Ig therapy prevented uniform tolerance but did not prevent Th2-type immune deviation. While CTLA4-negative signals are necessary for tolerance induction, Th1 to Th2 immune deviation cannot be sufficient for tolerance induction. Combined pretransplant DST with anti-CD154 mAb treatment may be attractive for clinical deployment, and strategies aimed to selectively block CD28 without interrupting CTLA4/B7 interaction might prove highly effective in the induction of tolerance.  (+info)

Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. (6/1138)

Glutamic acid decarboxylase (GAD) is a pancreatic beta cell autoantigen in humans and nonobese diabetic (NOD) mice. beta Cell-specific suppression of GAD expression in two lines of antisense GAD transgenic NOD mice prevented autoimmune diabetes, whereas persistent GAD expression in the beta cells in the other four lines of antisense GAD transgenic NOD mice resulted in diabetes, similar to that seen in transgene-negative NOD mice. Complete suppression of beta cell GAD expression blocked the generation of diabetogenic T cells and protected islet grafts from autoimmune injury. Thus, beta cell-specific GAD expression is required for the development of autoimmune diabetes in NOD mice, and modulation of GAD might, therefore, have therapeutic value in type 1 diabetes.  (+info)

Prior streptozotocin treatment does not inhibit pancreas regeneration after 90% pancreatectomy in rats. (7/1138)

The effects of residual beta-cell mass and glycemia on regeneration of endocrine pancreas after 90% pancreatectomy were investigated. Streptozotocin or buffer alone was injected into 4-wk-old male Lewis rats (day 0). On day 7, varying numbers of syngeneic islets were transplanted under the kidney capsule to achieve varying degrees of glucose normalization. On day 14, a 90% pancreatectomy or sham pancreatectomy was performed. On day 19, rats were killed and the pancreas was fixed for quantitative morphometric determination of beta-cell mass. Focal areas of regenerating pancreas were observed in all animals that underwent partial pancreatectomy. The percentage of remnant pancreas classified as foci was unaffected by streptozotocin treatment or by plasma glucose. Moderate to severe hyperglycemia did not promote regeneration of the pancreatic beta-cell mass; rather the total endocrine cell mass was inversely related to the plasma glucose level (r = -0.5, P < 0.01). These data suggest that the precursor population for both endocrine and exocrine tissue is not susceptible to damage by streptozotocin and that local effects of residual beta-cell mass are not important to regeneration after a 90% pancreatectomy.  (+info)

NOD mice have a generalized defect in their response to transplantation tolerance induction. (8/1138)

A protocol consisting of a single donor-specific transfusion (DST) plus a brief course of anti-CD154 monoclonal antibody (anti-CD40 ligand mAb) induces permanent islet allograft survival in chemically diabetic mice, but its efficacy in mice with autoimmune diabetes is unknown. Confirming a previous report, we first observed that treatment of young female NOD mice with anti-CD154 mAb reduced the frequency of diabetes through 1 year of age to 43%, compared with 73% in untreated controls. We also confirmed that spontaneously diabetic NOD mice transplanted with syngeneic (NOD-Prkdc(scid)/Prkdc(scid)) or allogeneic (BALB/c) islets rapidly reject their grafts. Graft survival was not prolonged, however, by pretreatment with either anti-CD154 mAb alone or anti-CD154 mAb plus DST. In addition, allograft rejection in NOD mice was not restricted to islet grafts. Anti-CD154 mAb plus DST treatment failed to prolong skin allograft survival in nondiabetic male NOD mice. The inability to induce transplantation tolerance in NOD (H2g7) mice was associated with non-major histocompatibility complex (MHC) genes. Treatment with DST and anti-CD154 mAb prolonged skin allograft survival in both C57BL/6 (H2b) and C57BL/6.NOD-H2g7 mice, but it was ineffective in NOD, NOD.SWR-H2q, and NOR (H2g7) mice. Mitogen-stimulated interleukin-1beta production by antigen-presenting cells was greater in strains susceptible to tolerance induction than in the strains resistant to tolerance induction. The results suggest the existence of a general defect in tolerance mechanisms in NOD mice. This genetic defect involves defective antigen-presenting cell maturation, leads to spontaneous autoimmune diabetes in the presence of the H2g7 MHC, and precludes the induction of transplantation tolerance irrespective of MHC haplotype. Promising islet transplantation methods based on overcoming the alloimmune response by interference with costimulation may require modification or amplification for use in the setting of autoimmune diabetes.  (+info)

Islets of Langerhans transplantation is a surgical procedure that involves the transplantation of isolated islets from a deceased donor's pancreas into another person with type 1 diabetes. The islets of Langerhans are clusters of cells within the pancreas that produce hormones, including insulin, which regulates blood sugar levels.

In type 1 diabetes, the body's immune system mistakenly attacks and destroys these insulin-producing cells, leading to high blood sugar levels. Islet transplantation aims to replace the damaged islets with healthy ones from a donor, allowing the recipient's body to produce and regulate its own insulin again.

The procedure involves extracting the islets from the donor pancreas and infusing them into the recipient's liver through a small incision in the abdomen. Once inside the liver, the islets can sense glucose levels in the bloodstream and release insulin as needed to maintain normal blood sugar levels.

Islet transplantation has shown promising results in improving blood sugar control and reducing the risk of severe hypoglycemia (low blood sugar) in people with type 1 diabetes. However, it requires long-term immunosuppressive therapy to prevent rejection of the transplanted islets, which can have side effects and increase the risk of infections.

Langerhans cells are specialized dendritic cells that are found in the epithelium, including the skin (where they are named after Paul Langerhans who first described them in 1868) and mucous membranes. They play a crucial role in the immune system as antigen-presenting cells, contributing to the initiation of immune responses.

These cells contain Birbeck granules, unique organelles that are involved in the transportation of antigens from the cell surface to the lysosomes for processing and presentation to T-cells. Langerhans cells also produce cytokines, which help regulate immune responses and attract other immune cells to the site of infection or injury.

It is important to note that although Langerhans cells are a part of the immune system, they can sometimes contribute to the development of certain skin disorders, such as allergic contact dermatitis and some forms of cancer, like Langerhans cell histiocytosis.

The Islets of Langerhans are clusters of specialized cells within the pancreas, an organ located behind the stomach. These islets are named after Paul Langerhans, who first identified them in 1869. They constitute around 1-2% of the total mass of the pancreas and are distributed throughout its substance.

The Islets of Langerhans contain several types of cells, including:

1. Alpha (α) cells: These produce and release glucagon, a hormone that helps to regulate blood sugar levels by promoting the conversion of glycogen to glucose in the liver when blood sugar levels are low.
2. Beta (β) cells: These produce and release insulin, a hormone that promotes the uptake and utilization of glucose by cells throughout the body, thereby lowering blood sugar levels.
3. Delta (δ) cells: These produce and release somatostatin, a hormone that inhibits the release of both insulin and glucagon and helps regulate their secretion in response to changing blood sugar levels.
4. PP cells (gamma or γ cells): These produce and release pancreatic polypeptide, which plays a role in regulating digestive enzyme secretion and gastrointestinal motility.

Dysfunction of the Islets of Langerhans can lead to various endocrine disorders, such as diabetes mellitus, where insulin-producing beta cells are damaged or destroyed, leading to impaired blood sugar regulation.

Liver transplantation is a surgical procedure in which a diseased or failing liver is replaced with a healthy one from a deceased donor or, less commonly, a portion of a liver from a living donor. The goal of the procedure is to restore normal liver function and improve the patient's overall health and quality of life.

Liver transplantation may be recommended for individuals with end-stage liver disease, acute liver failure, certain genetic liver disorders, or liver cancers that cannot be treated effectively with other therapies. The procedure involves complex surgery to remove the diseased liver and implant the new one, followed by a period of recovery and close medical monitoring to ensure proper function and minimize the risk of complications.

The success of liver transplantation has improved significantly in recent years due to advances in surgical techniques, immunosuppressive medications, and post-transplant care. However, it remains a major operation with significant risks and challenges, including the need for lifelong immunosuppression to prevent rejection of the new liver, as well as potential complications such as infection, bleeding, and organ failure.

Homologous transplantation is a type of transplant surgery where organs or tissues are transferred between two genetically non-identical individuals of the same species. The term "homologous" refers to the similarity in structure and function of the donated organ or tissue to the recipient's own organ or tissue.

For example, a heart transplant from one human to another is an example of homologous transplantation because both organs are hearts and perform the same function. Similarly, a liver transplant, kidney transplant, lung transplant, and other types of organ transplants between individuals of the same species are also considered homologous transplantations.

Homologous transplantation is in contrast to heterologous or xenogeneic transplantation, where organs or tissues are transferred from one species to another, such as a pig heart transplanted into a human. Homologous transplantation is more commonly performed than heterologous transplantation due to the increased risk of rejection and other complications associated with xenogeneic transplants.

Kidney transplantation is a surgical procedure where a healthy kidney from a deceased or living donor is implanted into a patient with end-stage renal disease (ESRD) or permanent kidney failure. The new kidney takes over the functions of filtering waste and excess fluids from the blood, producing urine, and maintaining the body's electrolyte balance.

The transplanted kidney is typically placed in the lower abdomen, with its blood vessels connected to the recipient's iliac artery and vein. The ureter of the new kidney is then attached to the recipient's bladder to ensure proper urine flow. Following the surgery, the patient will require lifelong immunosuppressive therapy to prevent rejection of the transplanted organ by their immune system.

Langerhans cell histiocytosis (LCH) is a rare disorder characterized by the abnormal proliferation and accumulation of dendritic cells called Langerhans cells in various tissues and organs of the body. These cells are part of the immune system and normally help to fight infection. However, in LCH, an overactive immune response leads to the excessive buildup of these cells, forming granulomas that can damage organs and impair their function.

The exact cause of LCH is not fully understood, but it is thought to involve genetic mutations that lead to uncontrolled cell growth and division. The disorder can affect people of any age, although it is most commonly diagnosed in children under the age of 15.

LCH can affect a single organ or multiple organs, depending on the severity and extent of the disease. Commonly affected sites include the bones, skin, lymph nodes, lungs, liver, spleen, and pituitary gland. Symptoms vary widely depending on the location and severity of the disease, but may include bone pain, rashes, fatigue, fever, weight loss, cough, and difficulty breathing.

Treatment for LCH depends on the extent and severity of the disease. In mild cases, observation and monitoring may be sufficient. More severe cases may require chemotherapy, radiation therapy, or surgery to remove affected tissues. In some cases, immunosuppressive drugs or targeted therapies that target specific genetic mutations may be used.

Overall, LCH is a complex and poorly understood disorder that requires careful evaluation and management by a team of medical specialists. While the prognosis for patients with LCH has improved in recent years, some cases can be life-threatening or lead to long-term complications.

Bone marrow transplantation (BMT) is a medical procedure in which damaged or destroyed bone marrow is replaced with healthy bone marrow from a donor. Bone marrow is the spongy tissue inside bones that produces blood cells. The main types of BMT are autologous, allogeneic, and umbilical cord blood transplantation.

In autologous BMT, the patient's own bone marrow is used for the transplant. This type of BMT is often used in patients with lymphoma or multiple myeloma who have undergone high-dose chemotherapy or radiation therapy to destroy their cancerous bone marrow.

In allogeneic BMT, bone marrow from a genetically matched donor is used for the transplant. This type of BMT is often used in patients with leukemia, lymphoma, or other blood disorders who have failed other treatments.

Umbilical cord blood transplantation involves using stem cells from umbilical cord blood as a source of healthy bone marrow. This type of BMT is often used in children and adults who do not have a matched donor for allogeneic BMT.

The process of BMT typically involves several steps, including harvesting the bone marrow or stem cells from the donor, conditioning the patient's body to receive the new bone marrow or stem cells, transplanting the new bone marrow or stem cells into the patient's body, and monitoring the patient for signs of engraftment and complications.

BMT is a complex and potentially risky procedure that requires careful planning, preparation, and follow-up care. However, it can be a life-saving treatment for many patients with blood disorders or cancer.

Hematopoietic Stem Cell Transplantation (HSCT) is a medical procedure where hematopoietic stem cells (immature cells that give rise to all blood cell types) are transplanted into a patient. This procedure is often used to treat various malignant and non-malignant disorders affecting the hematopoietic system, such as leukemias, lymphomas, multiple myeloma, aplastic anemia, inherited immune deficiency diseases, and certain genetic metabolic disorders.

The transplantation can be autologous (using the patient's own stem cells), allogeneic (using stem cells from a genetically matched donor, usually a sibling or unrelated volunteer), or syngeneic (using stem cells from an identical twin).

The process involves collecting hematopoietic stem cells, most commonly from the peripheral blood or bone marrow. The collected cells are then infused into the patient after the recipient's own hematopoietic system has been ablated (or destroyed) using high-dose chemotherapy and/or radiation therapy. This allows the donor's stem cells to engraft, reconstitute, and restore the patient's hematopoietic system.

HSCT is a complex and potentially risky procedure with various complications, including graft-versus-host disease, infections, and organ damage. However, it offers the potential for cure or long-term remission in many patients with otherwise fatal diseases.

Heart transplantation is a surgical procedure where a diseased, damaged, or failing heart is removed and replaced with a healthy donor heart. This procedure is usually considered as a last resort for patients with end-stage heart failure or severe coronary artery disease who have not responded to other treatments. The donor heart typically comes from a brain-dead individual whose family has agreed to donate their loved one's organs for transplantation. Heart transplantation is a complex and highly specialized procedure that requires a multidisciplinary team of healthcare professionals, including cardiologists, cardiac surgeons, anesthesiologists, perfusionists, nurses, and other support staff. The success rates for heart transplantation have improved significantly over the past few decades, with many patients experiencing improved quality of life and increased survival rates. However, recipients of heart transplants require lifelong immunosuppressive therapy to prevent rejection of the donor heart, which can increase the risk of infections and other complications.

Autologous transplantation is a medical procedure where cells, tissues, or organs are removed from a person, stored and then returned back to the same individual at a later time. This is different from allogeneic transplantation where the tissue or organ is obtained from another donor. The term "autologous" is derived from the Greek words "auto" meaning self and "logos" meaning study.

In autologous transplantation, the patient's own cells or tissues are used to replace or repair damaged or diseased ones. This reduces the risk of rejection and eliminates the need for immunosuppressive drugs, which are required in allogeneic transplants to prevent the body from attacking the foreign tissue.

Examples of autologous transplantation include:

* Autologous bone marrow or stem cell transplantation, where stem cells are removed from the patient's blood or bone marrow, stored and then reinfused back into the same individual after high-dose chemotherapy or radiation therapy to treat cancer.
* Autologous skin grafting, where a piece of skin is taken from one part of the body and transplanted to another area on the same person.
* Autologous chondrocyte implantation, where cartilage cells are harvested from the patient's own knee, cultured in a laboratory and then implanted back into the knee to repair damaged cartilage.

Lung transplantation is a surgical procedure where one or both diseased lungs are removed and replaced with healthy lungs from a deceased donor. It is typically considered as a treatment option for patients with end-stage lung diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis, idiopathic pulmonary fibrosis, and alpha-1 antitrypsin deficiency, who have exhausted all other medical treatments and continue to suffer from severe respiratory failure.

The procedure involves several steps, including evaluating the patient's eligibility for transplantation, matching the donor's lung size and blood type with the recipient, and performing the surgery under general anesthesia. After the surgery, patients require close monitoring and lifelong immunosuppressive therapy to prevent rejection of the new lungs.

Lung transplantation can significantly improve the quality of life and survival rates for some patients with end-stage lung disease, but it is not without risks, including infection, bleeding, and rejection. Therefore, careful consideration and thorough evaluation are necessary before pursuing this treatment option.

Graft survival, in medical terms, refers to the success of a transplanted tissue or organ in continuing to function and integrate with the recipient's body over time. It is the opposite of graft rejection, which occurs when the recipient's immune system recognizes the transplanted tissue as foreign and attacks it, leading to its failure.

Graft survival depends on various factors, including the compatibility between the donor and recipient, the type and location of the graft, the use of immunosuppressive drugs to prevent rejection, and the overall health of the recipient. A successful graft survival implies that the transplanted tissue or organ has been accepted by the recipient's body and is functioning properly, providing the necessary physiological support for the recipient's survival and improved quality of life.

Stem cell transplantation is a medical procedure where stem cells, which are immature and unspecialized cells with the ability to differentiate into various specialized cell types, are introduced into a patient. The main purpose of this procedure is to restore the function of damaged or destroyed tissues or organs, particularly in conditions that affect the blood and immune systems, such as leukemia, lymphoma, aplastic anemia, and inherited metabolic disorders.

There are two primary types of stem cell transplantation: autologous and allogeneic. In autologous transplantation, the patient's own stem cells are collected, stored, and then reinfused back into their body after high-dose chemotherapy or radiation therapy to destroy the diseased cells. In allogeneic transplantation, stem cells are obtained from a donor (related or unrelated) whose human leukocyte antigen (HLA) type closely matches that of the recipient.

The process involves several steps: first, the patient undergoes conditioning therapy to suppress their immune system and make space for the new stem cells. Then, the harvested stem cells are infused into the patient's bloodstream, where they migrate to the bone marrow and begin to differentiate and produce new blood cells. This procedure requires close monitoring and supportive care to manage potential complications such as infections, graft-versus-host disease, and organ damage.

Transplantation conditioning, also known as preparative regimen or immunoablative therapy, refers to the use of various treatments prior to transplantation of cells, tissues or organs. The main goal of transplantation conditioning is to suppress the recipient's immune system, allowing for successful engraftment and minimizing the risk of rejection of the donor tissue.

There are two primary types of transplantation conditioning: myeloablative and non-myeloablative.

1. Myeloablative conditioning is a more intensive regimen that involves the use of high-dose chemotherapy, radiation therapy or both. This approach eliminates not only immune cells but also stem cells in the bone marrow, requiring the recipient to receive a hematopoietic cell transplant (HCT) from the donor to reconstitute their blood and immune system.
2. Non-myeloablative conditioning is a less intensive regimen that primarily targets immune cells while sparing the stem cells in the bone marrow. This approach allows for mixed chimerism, where both recipient and donor immune cells coexist, reducing the risk of severe complications associated with myeloablative conditioning.

The choice between these two types of transplantation conditioning depends on various factors, including the type of transplant, patient's age, overall health, and comorbidities. Both approaches carry risks and benefits, and the decision should be made carefully by a multidisciplinary team of healthcare professionals in consultation with the patient.

Organ transplantation is a surgical procedure where an organ or tissue from one person (donor) is removed and placed into another person (recipient) whose organ or tissue is not functioning properly or has been damaged beyond repair. The goal of this complex procedure is to replace the non-functioning organ with a healthy one, thereby improving the recipient's quality of life and overall survival.

Organs that can be transplanted include the heart, lungs, liver, kidneys, pancreas, and intestines. Tissues such as corneas, skin, heart valves, and bones can also be transplanted. The donor may be deceased or living, depending on the type of organ and the medical circumstances.

Organ transplantation is a significant and life-changing event for both the recipient and their families. It requires careful evaluation, matching, and coordination between the donor and recipient, as well as rigorous post-transplant care to ensure the success of the procedure and minimize the risk of rejection.

Graft rejection is an immune response that occurs when transplanted tissue or organ (the graft) is recognized as foreign by the recipient's immune system, leading to the activation of immune cells to attack and destroy the graft. This results in the failure of the transplant and the need for additional medical intervention or another transplant. There are three types of graft rejection: hyperacute, acute, and chronic. Hyperacute rejection occurs immediately or soon after transplantation due to pre-existing antibodies against the graft. Acute rejection typically occurs within weeks to months post-transplant and is characterized by the infiltration of T-cells into the graft. Chronic rejection, which can occur months to years after transplantation, is a slow and progressive process characterized by fibrosis and tissue damage due to ongoing immune responses against the graft.

Pancreas transplantation is a surgical procedure that involves implanting a healthy pancreas from a deceased donor into a recipient with diabetes. The primary goal of this procedure is to restore the recipient's insulin production and eliminate the need for insulin injections, thereby improving their quality of life and reducing the risk of long-term complications associated with diabetes.

There are three main types of pancreas transplantation:

1. Simultaneous pancreas-kidney (SPK) transplantation: This is the most common type of pancreas transplant, performed simultaneously with a kidney transplant in patients with diabetes and end-stage renal disease (ESRD). The new pancreas not only restores insulin production but also helps prevent further kidney damage.
2. Pancreas after kidney (PAK) transplantation: In this procedure, a patient receives a kidney transplant first, followed by a pancreas transplant at a later time. This is typically performed in patients who have already undergone a successful kidney transplant and wish to improve their diabetes management.
3. Pancreas transplantation alone (PTA): In rare cases, a pancreas transplant may be performed without a concurrent kidney transplant. This is usually considered for patients with brittle diabetes who experience severe hypoglycemic episodes despite optimal medical management and lifestyle modifications.

The success of pancreas transplantation has significantly improved over the years, thanks to advancements in surgical techniques, immunosuppressive medications, and post-transplant care. However, it is essential to weigh the benefits against the risks, such as potential complications related to surgery, infection, rejection, and long-term use of immunosuppressive drugs. Ultimately, the decision to undergo pancreas transplantation should be made in consultation with a multidisciplinary team of healthcare professionals, considering each patient's unique medical history and personal circumstances.

A tissue donor is an individual who has agreed to allow organs and tissues to be removed from their body after death for the purpose of transplantation to restore the health or save the life of another person. The tissues that can be donated include corneas, heart valves, skin, bone, tendons, ligaments, veins, and cartilage. These tissues can enhance the quality of life for many recipients and are often used in reconstructive surgeries. It is important to note that tissue donation does not interfere with an open casket funeral or other cultural or religious practices related to death and grieving.

Transplantation is a medical procedure where an organ or tissue is removed from one person (the donor) and placed into another person (the recipient) for the purpose of replacing the recipient's damaged or failing organ or tissue with a functioning one. The goal of transplantation is to restore normal function, improve quality of life, and extend lifespan in individuals with organ failure or severe tissue damage. Common types of transplants include kidney, liver, heart, lung, pancreas, small intestine, and bone marrow transplantations. The success of a transplant depends on various factors, including the compatibility between the donor and recipient, the health of both individuals, and the effectiveness of immunosuppressive therapy to prevent rejection of the transplanted organ or tissue.

Transplantation Immunology is a branch of medicine that deals with the immune responses occurring between a transplanted organ or tissue and the recipient's body. It involves understanding and managing the immune system's reaction to foreign tissue, which can lead to rejection of the transplanted organ. This field also studies the use of immunosuppressive drugs to prevent rejection and the potential risks and side effects associated with their use. The main goal of transplantation immunology is to find ways to promote the acceptance of transplanted tissue while minimizing the risk of infection and other complications.

Cell transplantation is the process of transferring living cells from one part of the body to another or from one individual to another. In medicine, cell transplantation is often used as a treatment for various diseases and conditions, including neurodegenerative disorders, diabetes, and certain types of cancer. The goal of cell transplantation is to replace damaged or dysfunctional cells with healthy ones, thereby restoring normal function to the affected area.

In the context of medical research, cell transplantation may involve the use of stem cells, which are immature cells that have the ability to develop into many different types of specialized cells. Stem cell transplantation has shown promise in the treatment of a variety of conditions, including spinal cord injuries, stroke, and heart disease.

It is important to note that cell transplantation carries certain risks, such as immune rejection and infection. As such, it is typically reserved for cases where other treatments have failed or are unlikely to be effective.

A transplantation chimera is a rare medical condition that occurs after an organ or tissue transplant, where the recipient's body accepts and integrates the donor's cells or tissues to such an extent that the two sets of DNA coexist and function together. This phenomenon can lead to the presence of two different genetic profiles in one individual.

In some cases, this may result in the development of donor-derived cells or organs within the recipient's body, which can express the donor's unique genetic traits. Transplantation chimerism is more commonly observed in bone marrow transplants, where the donor's immune cells can repopulate and establish themselves within the recipient's bone marrow and bloodstream.

It is important to note that while transplantation chimerism can be beneficial for the success of the transplant, it may also pose some risks, such as an increased likelihood of developing graft-versus-host disease (GVHD), where the donor's immune cells attack the recipient's tissues.

Immunosuppressive agents are medications that decrease the activity of the immune system. They are often used to prevent the rejection of transplanted organs and to treat autoimmune diseases, where the immune system mistakenly attacks the body's own tissues. These drugs work by interfering with the immune system's normal responses, which helps to reduce inflammation and damage to tissues. However, because they suppress the immune system, people who take immunosuppressive agents are at increased risk for infections and other complications. Examples of immunosuppressive agents include corticosteroids, azathioprine, cyclophosphamide, mycophenolate mofetil, tacrolimus, and sirolimus.

Isogeneic transplantation is a type of transplant where the donor and recipient are genetically identical, meaning they are identical twins or have the same genetic makeup. In this case, the immune system recognizes the transplanted organ or tissue as its own and does not mount an immune response to reject it. This reduces the need for immunosuppressive drugs, which are typically required in other types of transplantation to prevent rejection.

In medical terms, isogeneic transplantation is defined as the transfer of genetic identical tissues or organs between genetically identical individuals, resulting in minimal risk of rejection and no need for immunosuppressive therapy.

Islet Amyloid Polypeptide (IAPP), also known as amylin, is a 37-amino acid peptide co-secreted with insulin from pancreatic beta-cells in response to meals. It plays crucial roles in regulating glucose homeostasis by suppressing glucagon secretion, slowing gastric emptying, and promoting satiety. In type 2 diabetes, IAPP can form amyloid fibrils, which deposit in pancreatic islets, contributing to beta-cell dysfunction and death. This contributes to the progressive nature of type 2 diabetes.

Heterotopic transplantation is a type of organ or tissue transplant where the graft is placed in a different location from where it normally resides while still maintaining its original site. This is often done to supplement the function of the existing organ rather than replacing it. A common example of heterotopic transplantation is a heart transplant, where the donor's heart is placed in a new location in the recipient's body, while the recipient's own heart remains in place but is typically nonfunctional. This allows for the possibility of returning the function of the recipient's heart if the transplanted organ fails.

In heterotopic kidney transplantation, the donor kidney is placed in a different location, usually in the lower abdomen, while the recipient's own kidneys are left in place. This approach can be beneficial for recipients with poor renal function or other medical conditions that make traditional kidney transplantation too risky.

Heterotopic transplantation is also used in liver transplantation, where a portion of the donor liver is placed in a different location, typically in the recipient's abdomen, while the recipient's own liver remains in place. This approach can be useful for recipients with acute liver failure or other conditions that make traditional liver transplantation too risky.

One advantage of heterotopic transplantation is that it allows for the possibility of returning the function of the recipient's organ if the transplanted organ fails, as well as reducing the risk of rejection and improving overall outcomes for the recipient. However, this approach also has some disadvantages, such as increased complexity of the surgical procedure, potential for complications related to the placement of the graft, and the need for ongoing immunosuppression therapy to prevent rejection.

Insulin is a hormone produced by the beta cells of the pancreatic islets, primarily in response to elevated levels of glucose in the circulating blood. It plays a crucial role in regulating blood glucose levels and facilitating the uptake and utilization of glucose by peripheral tissues, such as muscle and adipose tissue, for energy production and storage. Insulin also inhibits glucose production in the liver and promotes the storage of excess glucose as glycogen or triglycerides.

Deficiency in insulin secretion or action leads to impaired glucose regulation and can result in conditions such as diabetes mellitus, characterized by chronic hyperglycemia and associated complications. Exogenous insulin is used as a replacement therapy in individuals with diabetes to help manage their blood glucose levels and prevent long-term complications.

Graft-versus-host disease (GVHD) is a condition that can occur after an allogeneic hematopoietic stem cell transplantation (HSCT), where the donated immune cells (graft) recognize the recipient's tissues (host) as foreign and attack them. This results in inflammation and damage to various organs, particularly the skin, gastrointestinal tract, and liver.

Acute GVHD typically occurs within 100 days of transplantation and is characterized by symptoms such as rash, diarrhea, and liver dysfunction. Chronic GVHD, on the other hand, can occur after 100 days or even years post-transplant and may present with a wider range of symptoms, including dry eyes and mouth, skin changes, lung involvement, and issues with mobility and flexibility in joints.

GVHD is a significant complication following allogeneic HSCT and can have a substantial impact on the patient's quality of life and overall prognosis. Preventative measures, such as immunosuppressive therapy, are often taken to reduce the risk of GVHD, but its management remains a challenge in transplant medicine.

The epidermis is the outermost layer of the skin, composed mainly of stratified squamous epithelium. It forms a protective barrier that prevents water loss and inhibits the entry of microorganisms. The epidermis contains no blood vessels, and its cells are nourished by diffusion from the underlying dermis. The bottom-most layer of the epidermis, called the stratum basale, is responsible for generating new skin cells that eventually move up to replace dead cells on the surface. This process of cell turnover takes about 28 days in adults.

The most superficial part of the epidermis consists of dead cells called squames, which are constantly shed and replaced. The exact rate at which this happens varies depending on location; for example, it's faster on the palms and soles than elsewhere. Melanocytes, the pigment-producing cells, are also located in the epidermis, specifically within the stratum basale layer.

In summary, the epidermis is a vital part of our integumentary system, providing not only physical protection but also playing a crucial role in immunity and sensory perception through touch receptors called Pacinian corpuscles.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

A living donor is a person who voluntarily donates an organ or part of an organ to another person while they are still alive. This can include donations such as a kidney, liver lobe, lung, or portion of the pancreas or intestines. The donor and recipient typically undergo medical evaluation and compatibility testing to ensure the best possible outcome for the transplantation procedure. Living donation is regulated by laws and ethical guidelines to ensure that donors are fully informed and making a voluntary decision.

Cord blood stem cell transplantation is a medical procedure that involves the infusion of stem cells derived from the umbilical cord blood into a patient. These stem cells, specifically hematopoietic stem cells, have the ability to differentiate into various types of blood cells, including red and white blood cells and platelets.

Cord blood stem cell transplantation is often used as a treatment for patients with various malignant and non-malignant disorders, such as leukemia, lymphoma, sickle cell disease, and metabolic disorders. The procedure involves collecting cord blood from the umbilical cord and placenta after the birth of a baby, processing and testing it for compatibility with the recipient's immune system, and then infusing it into the patient through a vein in a process similar to a blood transfusion.

The advantages of using cord blood stem cells include their availability, low risk of transmission of infectious diseases, and reduced risk of graft-versus-host disease compared to other sources of hematopoietic stem cells, such as bone marrow or peripheral blood. However, the number of stem cells in a cord blood unit is generally lower than that found in bone marrow or peripheral blood, which can limit its use in some patients, particularly adults.

Overall, cord blood stem cell transplantation is an important and promising area of regenerative medicine, offering hope for patients with a wide range of disorders.

Heart-lung transplantation is a surgical procedure where both the heart and lungs of a patient are replaced with those from a deceased donor. This complex and highly specialized surgery is typically considered as a last resort for patients suffering from end-stage lung or heart-lung diseases, such as cystic fibrosis, pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), or certain forms of congenital heart disease, who have exhausted all other treatment options and face imminent death.

The procedure involves removing the patient's diseased heart and lungs en bloc, followed by implanting the donor's heart and lungs in their place. The surgery requires a skilled multidisciplinary team of cardiothoracic surgeons, anesthesiologists, perfusionists, transplant coordinators, and intensive care specialists.

Following the transplantation, patients require lifelong immunosuppressive therapy to prevent rejection of the transplanted organs. Despite the significant risks associated with this procedure, including infection, bleeding, and rejection, heart-lung transplantation can significantly improve both survival and quality of life for carefully selected patients with advanced heart-lung disease.

Insulin-secreting cells, also known as beta cells, are a type of cell found in the pancreas. They are responsible for producing and releasing insulin, a hormone that regulates blood glucose levels by allowing cells in the body to take in glucose from the bloodstream. Insulin-secreting cells are clustered together in the pancreatic islets, along with other types of cells that produce other hormones such as glucagon and somatostatin. In people with diabetes, these cells may not function properly, leading to an impaired ability to regulate blood sugar levels.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Immunosuppression is a state in which the immune system's ability to mount an immune response is reduced, compromised or inhibited. This can be caused by certain medications (such as those used to prevent rejection of transplanted organs), diseases (like HIV/AIDS), or genetic disorders. As a result, the body becomes more susceptible to infections and cancer development. It's important to note that immunosuppression should not be confused with immunity, which refers to the body's ability to resist and fight off infections and diseases.

Mannose-binding lectins (MBLs) are a group of proteins that belong to the collectin family and play a crucial role in the innate immune system. They are primarily produced by the liver and secreted into the bloodstream. MBLs have a specific affinity for mannose sugar residues found on the surface of various microorganisms, including bacteria, viruses, fungi, and parasites.

The primary function of MBLs is to recognize and bind to these mannose-rich structures, which triggers the complement system's activation through the lectin pathway. This process leads to the destruction of the microorganism by opsonization (coating the microbe to enhance phagocytosis) or direct lysis. MBLs also have the ability to neutralize certain viruses and inhibit the replication of others, further contributing to their antimicrobial activity.

Deficiencies in MBL levels or function have been associated with an increased susceptibility to infections, particularly in children and older adults. However, the clinical significance of MBL deficiency remains a subject of ongoing research.

Transplantation tolerance, also known as immunological tolerance or transplant tolerance, is a state in which the immune system of a transplant recipient does not mount an immune response against the transplanted organ or tissue. This is an important goal in transplantation medicine to prevent graft rejection and reduce the need for long-term immunosuppressive therapy, which can have significant side effects.

Transplantation tolerance can be achieved through various mechanisms, including the deletion or regulation of donor-reactive T cells, the induction of regulatory T cells (Tregs) that suppress immune responses against the graft, and the modulation of innate immune responses. The development of strategies to induce transplantation tolerance is an active area of research in transplantation medicine.

Langerhans cell sarcoma is a very rare and aggressive type of cancer that affects a specific group of cells called Langerhans cells, which are part of the immune system. These cells are normally found in the skin and mucous membranes, where they help to fight infection. In Langerhans cell sarcoma, these cells become malignant (cancerous) and can multiply and spread to other parts of the body.

Langerhans cell sarcoma is distinct from a more common type of cancer called Langerhans cell histiocytosis, which is not considered a true cancer but rather a disorder of the immune system. The exact cause of Langerhans cell sarcoma is not known, but it is thought to arise from genetic mutations that occur in Langerhans cells.

Symptoms of Langerhans cell sarcoma can vary depending on the location and extent of the cancer. Common symptoms may include skin rashes or lesions, fever, fatigue, weight loss, and swollen lymph nodes. Treatment for Langerhans cell sarcoma typically involves a combination of surgery, chemotherapy, and radiation therapy. However, because this is such a rare and aggressive cancer, treatment options may vary depending on the individual case.

Tissue and organ procurement is the process of obtaining viable tissues and organs from deceased or living donors for the purpose of transplantation, research, or education. This procedure is performed by trained medical professionals in a sterile environment, adhering to strict medical standards and ethical guidelines. The tissues and organs that can be procured include hearts, lungs, livers, kidneys, pancreases, intestines, corneas, skin, bones, tendons, and heart valves. The process involves a thorough medical evaluation of the donor, as well as consent from the donor or their next of kin. After procurement, the tissues and organs are preserved and transported to recipients in need.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

Skin transplantation, also known as skin grafting, is a surgical procedure that involves the removal of healthy skin from one part of the body (donor site) and its transfer to another site (recipient site) that has been damaged or lost due to various reasons such as burns, injuries, infections, or diseases. The transplanted skin can help in healing wounds, restoring functionality, and improving the cosmetic appearance of the affected area. There are different types of skin grafts, including split-thickness grafts, full-thickness grafts, and composite grafts, which vary in the depth and size of the skin removed and transplanted. The success of skin transplantation depends on various factors, including the size and location of the wound, the patient's overall health, and the availability of suitable donor sites.

Glucose is a simple monosaccharide (or single sugar) that serves as the primary source of energy for living organisms. It's a fundamental molecule in biology, often referred to as "dextrose" or "grape sugar." Glucose has the molecular formula C6H12O6 and is vital to the functioning of cells, especially those in the brain and nervous system.

In the body, glucose is derived from the digestion of carbohydrates in food, and it's transported around the body via the bloodstream to cells where it can be used for energy. Cells convert glucose into a usable form through a process called cellular respiration, which involves a series of metabolic reactions that generate adenosine triphosphate (ATP)—the main currency of energy in cells.

Glucose is also stored in the liver and muscles as glycogen, a polysaccharide (multiple sugar) that can be broken down back into glucose when needed for energy between meals or during physical activity. Maintaining appropriate blood glucose levels is crucial for overall health, and imbalances can lead to conditions such as diabetes mellitus.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Peripheral Blood Stem Cell Transplantation (PBSCT) is a medical procedure that involves the transplantation of stem cells, which are immature cells found in the bone marrow that can develop into different types of blood cells. In PBSCT, these stem cells are collected from the peripheral blood instead of directly from the bone marrow.

The process begins with mobilization, where a growth factor medication is given to the donor to stimulate the release of stem cells from the bone marrow into the peripheral blood. After several days, the donor's blood is then removed through a procedure called apheresis, where the stem cells are separated and collected while the remaining blood components are returned to the donor.

The collected stem cells are then infused into the recipient's bloodstream, where they migrate to the bone marrow and begin to repopulate, leading to the production of new blood cells. This procedure is often used as a treatment for various malignant and non-malignant disorders, such as leukemia, lymphoma, multiple myeloma, and aplastic anemia.

PBSCT offers several advantages over traditional bone marrow transplantation, including faster engraftment, lower risk of graft failure, and reduced procedure-related morbidity. However, it also has its own set of challenges, such as the potential for increased incidence of chronic graft-versus-host disease (GVHD) and the need for more stringent HLA matching between donor and recipient.

Heterologous transplantation is a type of transplantation where an organ or tissue is transferred from one species to another. This is in contrast to allogeneic transplantation, where the donor and recipient are of the same species, or autologous transplantation, where the donor and recipient are the same individual.

In heterologous transplantation, the immune systems of the donor and recipient are significantly different, which can lead to a strong immune response against the transplanted organ or tissue. This is known as a graft-versus-host disease (GVHD), where the immune cells in the transplanted tissue attack the recipient's body.

Heterologous transplantation is not commonly performed in clinical medicine due to the high risk of rejection and GVHD. However, it may be used in research settings to study the biology of transplantation and to develop new therapies for transplant rejection.

Fetal tissue transplantation is a medical procedure that involves the surgical implantation of tissue from developing fetuses into patients for therapeutic purposes. The tissue used in these procedures typically comes from elective abortions, and can include tissues such as neural cells, liver cells, pancreatic islets, and heart valves.

The rationale behind fetal tissue transplantation is that the developing fetus has a high capacity for cell growth and regeneration, making its tissues an attractive source of cells for transplantation. Additionally, because fetal tissue is often less mature than adult tissue, it may be less likely to trigger an immune response in the recipient, reducing the risk of rejection.

Fetal tissue transplantation has been explored as a potential treatment for a variety of conditions, including Parkinson's disease, diabetes, and heart disease. However, the use of fetal tissue in medical research and therapy remains controversial due to ethical concerns surrounding the sourcing of the tissue.

Histocompatibility testing, also known as tissue typing, is a medical procedure that determines the compatibility of tissues between two individuals, usually a potential donor and a recipient for organ or bone marrow transplantation. The test identifies specific antigens, called human leukocyte antigens (HLAs), found on the surface of most cells in the body. These antigens help the immune system distinguish between "self" and "non-self" cells.

The goal of histocompatibility testing is to find a donor whose HLA markers closely match those of the recipient, reducing the risk of rejection of the transplanted organ or tissue. The test involves taking blood samples from both the donor and the recipient and analyzing them for the presence of specific HLA antigens using various laboratory techniques such as molecular typing or serological testing.

A high degree of histocompatibility between the donor and recipient is crucial to ensure the success of the transplantation procedure, minimize complications, and improve long-term outcomes.

Liver failure is a serious condition in which the liver is no longer able to perform its normal functions, such as removing toxins and waste products from the blood, producing bile to help digest food, and regulating blood clotting. This can lead to a buildup of toxins in the body, jaundice (yellowing of the skin and eyes), fluid accumulation in the abdomen, and an increased risk of bleeding. Liver failure can be acute (sudden) or chronic (developing over time). Acute liver failure is often caused by medication toxicity, viral hepatitis, or other sudden illnesses. Chronic liver failure is most commonly caused by long-term damage from conditions such as cirrhosis, hepatitis, alcohol abuse, and non-alcoholic fatty liver disease.

It's important to note that Liver Failure is a life threatening condition and need immediate medical attention.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Diabetes Mellitus, Type 1 is a chronic autoimmune disease characterized by the destruction of insulin-producing beta cells in the pancreas, leading to an absolute deficiency of insulin. This results in an inability to regulate blood glucose levels, causing hyperglycemia (high blood sugar). Type 1 diabetes typically presents in childhood or early adulthood, although it can develop at any age. It is usually managed with regular insulin injections or the use of an insulin pump, along with monitoring of blood glucose levels and adjustments to diet and physical activity. Uncontrolled type 1 diabetes can lead to serious complications such as kidney damage, nerve damage, blindness, and cardiovascular disease.

Corneal transplantation, also known as keratoplasty, is a surgical procedure in which all or part of a damaged or diseased cornea is replaced with healthy corneal tissue from a deceased donor. The cornea is the clear, dome-shaped surface at the front of the eye that plays an important role in focusing vision. When it becomes cloudy or misshapen due to injury, infection, or inherited conditions, vision can become significantly impaired.

During the procedure, the surgeon carefully removes a circular section of the damaged cornea and replaces it with a similarly sized piece of donor tissue. The new cornea is then stitched into place using very fine sutures that are typically removed several months after surgery.

Corneal transplantation has a high success rate, with more than 90% of procedures resulting in improved vision. However, as with any surgical procedure, there are risks involved, including infection, rejection of the donor tissue, and bleeding. Regular follow-up care is essential to monitor for any signs of complications and ensure proper healing.

Postoperative complications refer to any unfavorable condition or event that occurs during the recovery period after a surgical procedure. These complications can vary in severity and may include, but are not limited to:

1. Infection: This can occur at the site of the incision or inside the body, such as pneumonia or urinary tract infection.
2. Bleeding: Excessive bleeding (hemorrhage) can lead to a drop in blood pressure and may require further surgical intervention.
3. Blood clots: These can form in the deep veins of the legs (deep vein thrombosis) and can potentially travel to the lungs (pulmonary embolism).
4. Wound dehiscence: This is when the surgical wound opens up, which can lead to infection and further complications.
5. Pulmonary issues: These include atelectasis (collapsed lung), pneumonia, or respiratory failure.
6. Cardiovascular problems: These include abnormal heart rhythms (arrhythmias), heart attack, or stroke.
7. Renal failure: This can occur due to various reasons such as dehydration, blood loss, or the use of certain medications.
8. Pain management issues: Inadequate pain control can lead to increased stress, anxiety, and decreased mobility.
9. Nausea and vomiting: These can be caused by anesthesia, opioid pain medication, or other factors.
10. Delirium: This is a state of confusion and disorientation that can occur in the elderly or those with certain medical conditions.

Prompt identification and management of these complications are crucial to ensure the best possible outcome for the patient.

Contact dermatitis is a type of inflammation of the skin that occurs when it comes into contact with a substance that the individual has developed an allergic reaction to or that causes irritation. It can be divided into two main types: allergic contact dermatitis and irritant contact dermatitis.

Allergic contact dermatitis is caused by an immune system response to a substance, known as an allergen, which the individual has become sensitized to. When the skin comes into contact with this allergen, it triggers an immune reaction that results in inflammation and characteristic symptoms such as redness, swelling, itching, and blistering. Common allergens include metals (such as nickel), rubber, medications, fragrances, and cosmetics.

Irritant contact dermatitis, on the other hand, is caused by direct damage to the skin from a substance that is inherently irritating or corrosive. This can occur after exposure to strong acids, alkalis, solvents, or even prolonged exposure to milder irritants like water or soap. Symptoms of irritant contact dermatitis include redness, pain, burning, and dryness at the site of contact.

The treatment for contact dermatitis typically involves avoiding further exposure to the allergen or irritant, as well as managing symptoms with topical corticosteroids, antihistamines, or other medications as needed. In some cases, patch testing may be performed to identify specific allergens that are causing the reaction.

CD1 antigens are a group of molecules found on the surface of certain immune cells, including dendritic cells and B cells. They play a role in the immune system by presenting lipid antigens to T cells, which helps initiate an immune response against foreign substances such as bacteria and viruses. CD1 molecules are distinct from other antigen-presenting molecules like HLA because they present lipids rather than peptides. There are five different types of CD1 molecules (CD1a, CD1b, CD1c, CD1d, and CD1e) that differ in their tissue distribution and the types of lipid antigens they present.

Glucagon-secreting cells, also known as alpha (α) cells, are a type of cell located in the pancreatic islets of Langerhans. These cells are responsible for producing and secreting the hormone glucagon, which plays a crucial role in regulating blood glucose levels.

Glucagon works in opposition to insulin, another hormone produced by different cells in the pancreas called beta (β) cells. When blood glucose levels are low, such as during fasting or exercise, glucagon is released into the bloodstream and travels to the liver, where it stimulates the breakdown of glycogen (stored glucose) into glucose, which is then released into the bloodstream to raise blood glucose levels.

Abnormalities in glucagon-secreting cells can contribute to various endocrine disorders, such as diabetes and hypoglycemia.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

The pancreas is a glandular organ located in the abdomen, posterior to the stomach. It has both exocrine and endocrine functions. The exocrine portion of the pancreas consists of acinar cells that produce and secrete digestive enzymes into the duodenum via the pancreatic duct. These enzymes help in the breakdown of proteins, carbohydrates, and fats in food.

The endocrine portion of the pancreas consists of clusters of cells called islets of Langerhans, which include alpha, beta, delta, and F cells. These cells produce and secrete hormones directly into the bloodstream, including insulin, glucagon, somatostatin, and pancreatic polypeptide. Insulin and glucagon are critical regulators of blood sugar levels, with insulin promoting glucose uptake and storage in tissues and glucagon stimulating glycogenolysis and gluconeogenesis to raise blood glucose when it is low.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

A waiting list, in the context of healthcare and medicine, refers to a list of patients who are awaiting a particular medical service or procedure, such as surgery, consultation with a specialist, or therapy. These lists are often established when the demand for certain services exceeds the immediate supply of resources, including physician time, hospital beds, or specialized equipment.

Patients on waiting lists are typically ranked based on factors like the severity of their condition, the urgency of their need for treatment, and the date they were placed on the list. The goal is to ensure that those with the most pressing medical needs receive care as soon as possible, while also providing a fair and transparent system for allocating limited resources.

However, it's important to note that extended waiting times can have negative consequences for patients, including worsening of symptoms, decreased quality of life, and potential complications. As such, healthcare systems strive to minimize wait times through various strategies, such as increasing resource allocation, improving efficiency, and implementing alternative service delivery models.

Recurrence, in a medical context, refers to the return of symptoms or signs of a disease after a period of improvement or remission. It indicates that the condition has not been fully eradicated and may require further treatment. Recurrence is often used to describe situations where a disease such as cancer comes back after initial treatment, but it can also apply to other medical conditions. The likelihood of recurrence varies depending on the type of disease and individual patient factors.

Mesenchymal Stem Cell Transplantation (MSCT) is a medical procedure that involves the transplantation of mesenchymal stem cells (MSCs), which are multipotent stromal cells that can differentiate into a variety of cell types, including bone, cartilage, fat, and muscle. These cells can be obtained from various sources, such as bone marrow, adipose tissue, umbilical cord blood, or dental pulp.

In MSCT, MSCs are typically harvested from the patient themselves (autologous transplantation) or from a donor (allogeneic transplantation). The cells are then processed and expanded in a laboratory setting before being injected into the patient's body, usually through an intravenous infusion.

MSCT is being investigated as a potential treatment for a wide range of medical conditions, including degenerative diseases, autoimmune disorders, and tissue injuries. The rationale behind this approach is that MSCs have the ability to migrate to sites of injury or inflammation, where they can help to modulate the immune response, reduce inflammation, and promote tissue repair and regeneration.

However, it's important to note that while MSCT holds promise as a therapeutic option, more research is needed to establish its safety and efficacy for specific medical conditions.

I couldn't find a medical definition specifically for "Diabetes Mellitus, Experimental." However, I can provide you with information about experimental diabetes research and its relevance to understanding the disease.

Experimental diabetes models are used in biomedical research to study the pathophysiology of diabetes mellitus and to test potential therapies or treatments. These models can be broadly categorized into two types: chemically-induced and genetically modified.

1. Chemically-induced diabetes models: These involve administering chemicals, such as alloxan or streptozotocin, to animals (commonly mice or rats) to destroy their pancreatic β-cells, which produce insulin. This results in hyperglycemia and symptoms similar to those seen in type 1 diabetes in humans.
2. Genetically modified diabetes models: These involve altering the genes of animals (commonly mice) to create a diabetes phenotype. Examples include non-obese diabetic (NOD) mice, which develop an autoimmune form of diabetes similar to human type 1 diabetes, and various strains of obese mice with insulin resistance, such as ob/ob or db/db mice, which model aspects of type 2 diabetes.

These experimental models help researchers better understand the mechanisms behind diabetes development and progression, identify new therapeutic targets, and test potential treatments before moving on to human clinical trials. However, it's essential to recognize that these models may not fully replicate all aspects of human diabetes, so findings from animal studies should be interpreted with caution.

Tacrolimus is an immunosuppressant drug that is primarily used to prevent the rejection of transplanted organs. It works by inhibiting the activity of T-cells, which are a type of white blood cell that plays a central role in the body's immune response. By suppressing the activity of these cells, tacrolimus helps to reduce the risk of an immune response being mounted against the transplanted organ.

Tacrolimus is often used in combination with other immunosuppressive drugs, such as corticosteroids and mycophenolate mofetil, to provide a comprehensive approach to preventing organ rejection. It is available in various forms, including capsules, oral solution, and intravenous injection.

The drug was first approved for use in the United States in 1994 and has since become a widely used immunosuppressant in transplant medicine. Tacrolimus is also being studied as a potential treatment for a variety of other conditions, including autoimmune diseases and cancer.

Histocompatibility is the compatibility between tissues or organs from different individuals in terms of their histological (tissue) structure and antigenic properties. The term is most often used in the context of transplantation, where it refers to the degree of match between the human leukocyte antigens (HLAs) and other proteins on the surface of donor and recipient cells.

A high level of histocompatibility reduces the risk of rejection of a transplanted organ or tissue by the recipient's immune system, as their immune cells are less likely to recognize the donated tissue as foreign and mount an attack against it. Conversely, a low level of histocompatibility increases the likelihood of rejection, as the recipient's immune system recognizes the donated tissue as foreign and attacks it.

Histocompatibility testing is therefore an essential part of organ and tissue transplantation, as it helps to identify the best possible match between donor and recipient and reduces the risk of rejection.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Cyclosporine is a medication that belongs to a class of drugs called immunosuppressants. It is primarily used to prevent the rejection of transplanted organs, such as kidneys, livers, and hearts. Cyclosporine works by suppressing the activity of the immune system, which helps to reduce the risk of the body attacking the transplanted organ.

In addition to its use in organ transplantation, cyclosporine may also be used to treat certain autoimmune diseases, such as rheumatoid arthritis and psoriasis. It does this by suppressing the overactive immune response that contributes to these conditions.

Cyclosporine is available in capsule, oral solution, and injectable forms. Common side effects of the medication include kidney problems, high blood pressure, tremors, headache, and nausea. Long-term use of cyclosporine can also increase the risk of certain types of cancer and infections.

It is important to note that cyclosporine should only be used under the close supervision of a healthcare provider, as it requires regular monitoring of blood levels and kidney function.

Hematologic neoplasms, also known as hematological malignancies, are a group of diseases characterized by the uncontrolled growth and accumulation of abnormal blood cells or bone marrow cells. These disorders can originate from the myeloid or lymphoid cell lines, which give rise to various types of blood cells, including red blood cells, white blood cells, and platelets.

Hematologic neoplasms can be broadly classified into three categories:

1. Leukemias: These are cancers that primarily affect the bone marrow and blood-forming tissues. They result in an overproduction of abnormal white blood cells, which interfere with the normal functioning of the blood and immune system. There are several types of leukemia, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML).
2. Lymphomas: These are cancers that develop from the lymphatic system, which is a part of the immune system responsible for fighting infections. Lymphomas can affect lymph nodes, spleen, bone marrow, and other organs. The two main types of lymphoma are Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL).
3. Myelomas: These are cancers that arise from the plasma cells, a type of white blood cell responsible for producing antibodies. Multiple myeloma is the most common type of myeloma, characterized by an excessive proliferation of malignant plasma cells in the bone marrow, leading to the production of abnormal amounts of monoclonal immunoglobulins (M proteins) and bone destruction.

Hematologic neoplasms can have various symptoms, such as fatigue, weakness, frequent infections, easy bruising or bleeding, weight loss, swollen lymph nodes, and bone pain. The diagnosis typically involves a combination of medical history, physical examination, laboratory tests, imaging studies, and sometimes bone marrow biopsy. Treatment options depend on the type and stage of the disease and may include chemotherapy, radiation therapy, targeted therapy, immunotherapy, stem cell transplantation, or a combination of these approaches.

Tissue transplantation is a medical procedure where tissues from one part of the body or from another individual's body are removed and implanted in a recipient to replace damaged, diseased, or missing tissues. The tissues may include skin, bone, tendons, ligaments, heart valves, corneas, or even entire organs such as hearts, lungs, livers, and kidneys.

The donor tissue must be compatible with the recipient's body to reduce the risk of rejection, which is the immune system attacking and destroying the transplanted tissue. This often requires matching certain proteins called human leukocyte antigens (HLAs) found on the surface of most cells in the body.

Tissue transplantation can significantly improve a patient's quality of life or, in some cases, save their life. However, it does carry risks such as infection, bleeding, and rejection, which require careful monitoring and management.

A cadaver is a deceased body that is used for medical research or education. In the field of medicine, cadavers are often used in anatomy lessons, surgical training, and other forms of medical research. The use of cadavers allows medical professionals to gain a deeper understanding of the human body and its various systems without causing harm to living subjects. Cadavers may be donated to medical schools or obtained through other means, such as through consent of the deceased or their next of kin. It is important to handle and treat cadavers with respect and dignity, as they were once living individuals who deserve to be treated with care even in death.

Organ preservation is a medical technique used to maintain the viability and functionality of an organ outside the body for a certain period, typically for transplantation purposes. This process involves cooling the organ to slow down its metabolic activity and prevent tissue damage, while using specialized solutions that help preserve the organ's structure and function. Commonly preserved organs include hearts, livers, kidneys, lungs, and pancreases. The goal of organ preservation is to ensure that the transplanted organ remains in optimal condition until it can be successfully implanted into a recipient.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Whole-Body Irradiation (WBI) is a medical procedure that involves the exposure of the entire body to a controlled dose of ionizing radiation, typically used in the context of radiation therapy for cancer treatment. The purpose of WBI is to destroy cancer cells or suppress the immune system prior to a bone marrow transplant. It can be delivered using various sources of radiation, such as X-rays, gamma rays, or electrons, and is carefully planned and monitored to minimize harm to healthy tissues while maximizing the therapeutic effect on cancer cells. Potential side effects include nausea, vomiting, fatigue, and an increased risk of infection due to decreased white blood cell counts.

Glucagon is a hormone produced by the alpha cells of the pancreas. Its main function is to regulate glucose levels in the blood by stimulating the liver to convert stored glycogen into glucose, which can then be released into the bloodstream. This process helps to raise blood sugar levels when they are too low, such as during hypoglycemia.

Glucagon is a 29-amino acid polypeptide that is derived from the preproglucagon protein. It works by binding to glucagon receptors on liver cells, which triggers a series of intracellular signaling events that lead to the activation of enzymes involved in glycogen breakdown.

In addition to its role in glucose regulation, glucagon has also been shown to have other physiological effects, such as promoting lipolysis (the breakdown of fat) and inhibiting gastric acid secretion. Glucagon is often used clinically in the treatment of hypoglycemia, as well as in diagnostic tests to assess pancreatic function.

Dendritic cells (DCs) are a type of immune cell that play a critical role in the body's defense against infection and cancer. They are named for their dendrite-like projections, which they use to interact with and sample their environment. DCs are responsible for processing antigens (foreign substances that trigger an immune response) and presenting them to T cells, a type of white blood cell that plays a central role in the immune system's response to infection and cancer.

DCs can be found throughout the body, including in the skin, mucous membranes, and lymphoid organs. They are able to recognize and respond to a wide variety of antigens, including those from bacteria, viruses, fungi, and parasites. Once they have processed an antigen, DCs migrate to the lymph nodes, where they present the antigen to T cells. This interaction activates the T cells, which then go on to mount a targeted immune response against the invading pathogen or cancerous cells.

DCs are a diverse group of cells that can be divided into several subsets based on their surface markers and function. Some DCs, such as Langerhans cells and dermal DCs, are found in the skin and mucous membranes, where they serve as sentinels for invading pathogens. Other DCs, such as plasmacytoid DCs and conventional DCs, are found in the lymphoid organs, where they play a role in activating T cells and initiating an immune response.

Overall, dendritic cells are essential for the proper functioning of the immune system, and dysregulation of these cells has been implicated in a variety of diseases, including autoimmune disorders and cancer.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

Insulinoma is a rare type of neuroendocrine tumor that originates from the beta cells of the pancreatic islets (islets of Langerhans). These tumors produce and secrete excessive amounts of insulin, leading to hypoglycemia (low blood sugar levels) even when the person hasn't eaten for a while. Insulinomas are typically slow-growing and benign (noncancerous), but about 10% of them can be malignant (cancerous) and may spread to other parts of the body. Common symptoms include sweating, confusion, dizziness, and weakness due to low blood sugar levels. The diagnosis is often confirmed through imaging tests like CT scans or MRI, and measuring insulin and C-peptide levels in the blood during a fasting test. Treatment usually involves surgical removal of the tumor.

Survival analysis is a branch of statistics that deals with the analysis of time to event data. It is used to estimate the time it takes for a certain event of interest to occur, such as death, disease recurrence, or treatment failure. The event of interest is called the "failure" event, and survival analysis estimates the probability of not experiencing the failure event until a certain point in time, also known as the "survival" probability.

Survival analysis can provide important information about the effectiveness of treatments, the prognosis of patients, and the identification of risk factors associated with the event of interest. It can handle censored data, which is common in medical research where some participants may drop out or be lost to follow-up before the event of interest occurs.

Survival analysis typically involves estimating the survival function, which describes the probability of surviving beyond a certain time point, as well as hazard functions, which describe the instantaneous rate of failure at a given time point. Other important concepts in survival analysis include median survival times, restricted mean survival times, and various statistical tests to compare survival curves between groups.

Medical survival rate is a statistical measure used to determine the percentage of patients who are still alive for a specific period of time after their diagnosis or treatment for a certain condition or disease. It is often expressed as a five-year survival rate, which refers to the proportion of people who are alive five years after their diagnosis. Survival rates can be affected by many factors, including the stage of the disease at diagnosis, the patient's age and overall health, the effectiveness of treatment, and other health conditions that the patient may have. It is important to note that survival rates are statistical estimates and do not necessarily predict an individual patient's prognosis.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

Inbred NOD (Nonobese Diabetic) mice are a strain of laboratory mice that are genetically predisposed to develop autoimmune diabetes. This strain was originally developed in Japan and has been widely used as an animal model for studying type 1 diabetes and its complications.

NOD mice typically develop diabetes spontaneously at around 12-14 weeks of age, although the onset and severity of the disease can vary between individual mice. The disease is caused by a breakdown in immune tolerance, leading to an autoimmune attack on the insulin-producing beta cells of the pancreas.

Inbred NOD mice are highly valuable for research purposes because they exhibit many of the same genetic and immunological features as human patients with type 1 diabetes. By studying these mice, researchers can gain insights into the underlying mechanisms of the disease and develop new treatments and therapies.

Brain tissue transplantation is a medical procedure that involves the surgical implantation of healthy brain tissue into a damaged or diseased brain. The goal of this procedure is to replace the non-functioning brain cells with healthy ones, in order to restore lost function or improve neurological symptoms.

The brain tissue used for transplantation can come from various sources, including fetal brain tissue, embryonic stem cells, or autologous cells (the patient's own cells). The most common type of brain tissue transplantation is fetal brain tissue transplantation, where tissue from aborted fetuses is used.

Brain tissue transplantation has been explored as a potential treatment for various neurological conditions, including Parkinson's disease, Huntington's disease, and stroke. However, the procedure remains highly experimental and is not widely available outside of clinical trials. There are also ethical concerns surrounding the use of fetal brain tissue, which has limited its widespread adoption.

It is important to note that while brain tissue transplantation holds promise as a potential treatment for neurological disorders, it is still an area of active research and much more needs to be learned about its safety and efficacy before it becomes a standard treatment option.

C-type lectins are a family of proteins that contain one or more carbohydrate recognition domains (CRDs) with a characteristic pattern of conserved sequence motifs. These proteins are capable of binding to specific carbohydrate structures in a calcium-dependent manner, making them important in various biological processes such as cell adhesion, immune recognition, and initiation of inflammatory responses.

C-type lectins can be further classified into several subfamilies based on their structure and function, including selectins, collectins, and immunoglobulin-like receptors. They play a crucial role in the immune system by recognizing and binding to carbohydrate structures on the surface of pathogens, facilitating their clearance by phagocytic cells. Additionally, C-type lectins are involved in various physiological processes such as cell development, tissue repair, and cancer progression.

It is important to note that some C-type lectins can also bind to self-antigens and contribute to autoimmune diseases. Therefore, understanding the structure and function of these proteins has important implications for developing new therapeutic strategies for various diseases.

I'm happy to help! "Rats, Inbred Lew" is a specific strain of laboratory rats that have been inbred for research purposes. The "Lew" part of the name refers to the location where they were first developed, the Lewis Institute in Lake Bluff, Illinois, USA.

Inbreeding is a process of mating closely related individuals over many generations to create a genetically homogeneous population. This results in a high degree of genetic similarity among members of the strain, making them ideal for use as experimental models because any differences observed between individuals are more likely to be due to the experimental manipulation rather than genetic variation.

Inbred Lew rats have been widely used in biomedical research, particularly in studies related to hypertension and cardiovascular disease. They exhibit a number of unique characteristics that make them useful for these types of studies, including their susceptibility to developing high blood pressure when fed a high-salt diet or given certain drugs.

It's important to note that while inbred strains like Lew rats can be very useful tools for researchers, they are not perfect models for human disease. Because they have been bred in a controlled environment and selected for specific traits, they may not respond to experimental manipulations in the same way that humans or other animals would. Therefore, it's important to interpret findings from these studies with caution and consider multiple lines of evidence before drawing any firm conclusions.

"Cell count" is a medical term that refers to the process of determining the number of cells present in a given volume or sample of fluid or tissue. This can be done through various laboratory methods, such as counting individual cells under a microscope using a specialized grid called a hemocytometer, or using automated cell counters that use light scattering and electrical impedance techniques to count and classify different types of cells.

Cell counts are used in a variety of medical contexts, including hematology (the study of blood and blood-forming tissues), microbiology (the study of microscopic organisms), and pathology (the study of diseases and their causes). For example, a complete blood count (CBC) is a routine laboratory test that includes a white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin level, hematocrit value, and platelet count. Abnormal cell counts can indicate the presence of various medical conditions, such as infections, anemia, or leukemia.

Donor selection is the process of evaluating and choosing potential organ, tissue, or stem cell donors based on various medical and non-medical criteria to ensure the safety and efficacy of the transplantation. The goal of donor selection is to identify a compatible donor with minimal risk of rejection and transmission of infectious diseases while also considering ethical and legal considerations.

Medical criteria for donor selection may include:

1. Age: Donors are typically required to be within a certain age range, depending on the type of organ or tissue being donated.
2. Blood type and human leukocyte antigen (HLA) typing: Compatibility between the donor's and recipient's blood types and HLA markers is crucial to reduce the risk of rejection.
3. Medical history: Donors must undergo a thorough medical evaluation, including a review of their medical history, physical examination, and laboratory tests to assess their overall health and identify any potential risks or contraindications for donation.
4. Infectious disease screening: Donors are tested for various infectious diseases, such as HIV, hepatitis B and C, syphilis, and cytomegalovirus (CMV), among others, to ensure they do not transmit infections to the recipient.
5. Tissue typing: For organ transplants, tissue typing is performed to assess the compatibility of the donor's and recipient's major histocompatibility complex (MHC) antigens, which play a significant role in the immune response and rejection risk.

Non-medical criteria for donor selection may include:

1. Consent: Donors must provide informed consent for organ or tissue donation, and their next of kin or legal representative may be involved in the decision-making process for deceased donors.
2. Legal considerations: There are specific laws and regulations governing organ and tissue donation that must be followed, such as age restrictions, geographical proximity between the donor and recipient, and cultural or religious beliefs.
3. Ethical considerations: Donor selection should adhere to ethical principles, such as fairness, respect for autonomy, and non-maleficence, to ensure that the process is transparent, equitable, and free from coercion or exploitation.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

Eosinophilic granuloma is a term used in pathology to describe a specific type of inflammatory lesion that is characterized by the accumulation of eosinophils, a type of white blood cell, and the formation of granulomas. A granuloma is a small nodular structure formed by the accumulation of immune cells, typically including macrophages, lymphocytes, and other inflammatory cells.

Eosinophilic granulomas can occur in various organs of the body, but they are most commonly found in the lungs, skin, and bones. In the lungs, eosinophilic granulomas are often associated with hypersensitivity reactions to inhaled antigens, such as dust mites or fungal spores. They can also be seen in association with certain diseases, such as Langerhans cell histiocytosis, an uncommon disorder characterized by the abnormal proliferation of a type of immune cell called Langerhans cells.

The symptoms of eosinophilic granuloma depend on the location and extent of the lesion. In the lungs, eosinophilic granulomas may cause cough, chest pain, or shortness of breath. In the skin, they may present as nodules, plaques, or ulcers. In the bones, they can cause pain, swelling, and fractures.

The diagnosis of eosinophilic granuloma is typically made based on a combination of clinical, radiological, and pathological findings. Treatment may include avoidance of known antigens, corticosteroids, or other immunosuppressive medications, depending on the severity and location of the lesion.

Facial transplantation is a surgical procedure that involves replacing all or part of a patient's face with facial tissue from a deceased donor. The procedure typically includes the skin, muscles, nerves, and bones of the face, and may also include the eyes and eyelids, ears, and tongue. Facial transplantation is performed to significantly improve the appearance and function of a person's face, usually in cases where the patient has suffered severe facial trauma or disfigurement due to burns, cancer, or other medical conditions.

The procedure requires extensive planning, coordination, and expertise from a multidisciplinary team of healthcare professionals, including plastic surgeons, transplant specialists, anesthesiologists, nurses, psychiatrists, and rehabilitation therapists. The surgery itself can take up to 30 hours or more, depending on the extent of the transplant.

Following the procedure, patients must undergo rigorous immunosuppressive therapy to prevent their immune system from rejecting the donor tissue. This involves taking medications that weaken the immune system and make the patient more susceptible to infections and other complications. Despite these risks, facial transplantation has been shown to significantly improve the quality of life for some patients who have undergone the procedure.

HLA (Human Leukocyte Antigen) antigens are a group of proteins found on the surface of cells in our body. They play a crucial role in the immune system's ability to differentiate between "self" and "non-self." HLA antigens are encoded by a group of genes located on chromosome 6, known as the major histocompatibility complex (MHC).

There are three types of HLA antigens: HLA class I, HLA class II, and HLA class III. HLA class I antigens are found on the surface of almost all cells in the body and help the immune system recognize and destroy virus-infected or cancerous cells. They consist of three components: HLA-A, HLA-B, and HLA-C.

HLA class II antigens are primarily found on the surface of immune cells, such as macrophages, B cells, and dendritic cells. They assist in the presentation of foreign particles (like bacteria and viruses) to CD4+ T cells, which then activate other parts of the immune system. HLA class II antigens include HLA-DP, HLA-DQ, and HLA-DR.

HLA class III antigens consist of various molecules involved in immune responses, such as cytokines and complement components. They are not directly related to antigen presentation.

The genetic diversity of HLA antigens is extensive, with thousands of variations or alleles. This diversity allows for a better ability to recognize and respond to a wide range of pathogens. However, this variation can also lead to compatibility issues in organ transplantation, as the recipient's immune system may recognize the donor's HLA antigens as foreign and attack the transplanted organ.

Cell movement, also known as cell motility, refers to the ability of cells to move independently and change their location within tissue or inside the body. This process is essential for various biological functions, including embryonic development, wound healing, immune responses, and cancer metastasis.

There are several types of cell movement, including:

1. **Crawling or mesenchymal migration:** Cells move by extending and retracting protrusions called pseudopodia or filopodia, which contain actin filaments. This type of movement is common in fibroblasts, immune cells, and cancer cells during tissue invasion and metastasis.
2. **Amoeboid migration:** Cells move by changing their shape and squeezing through tight spaces without forming protrusions. This type of movement is often observed in white blood cells (leukocytes) as they migrate through the body to fight infections.
3. **Pseudopodial extension:** Cells extend pseudopodia, which are temporary cytoplasmic projections containing actin filaments. These protrusions help the cell explore its environment and move forward.
4. **Bacterial flagellar motion:** Bacteria use a whip-like structure called a flagellum to propel themselves through their environment. The rotation of the flagellum is driven by a molecular motor in the bacterial cell membrane.
5. **Ciliary and ependymal movement:** Ciliated cells, such as those lining the respiratory tract and fallopian tubes, have hair-like structures called cilia that beat in coordinated waves to move fluids or mucus across the cell surface.

Cell movement is regulated by a complex interplay of signaling pathways, cytoskeletal rearrangements, and adhesion molecules, which enable cells to respond to environmental cues and navigate through tissues.

Liver diseases refer to a wide range of conditions that affect the normal functioning of the liver. The liver is a vital organ responsible for various critical functions such as detoxification, protein synthesis, and production of biochemicals necessary for digestion.

Liver diseases can be categorized into acute and chronic forms. Acute liver disease comes on rapidly and can be caused by factors like viral infections (hepatitis A, B, C, D, E), drug-induced liver injury, or exposure to toxic substances. Chronic liver disease develops slowly over time, often due to long-term exposure to harmful agents or inherent disorders of the liver.

Common examples of liver diseases include hepatitis, cirrhosis (scarring of the liver tissue), fatty liver disease, alcoholic liver disease, autoimmune liver diseases, genetic/hereditary liver disorders (like Wilson's disease and hemochromatosis), and liver cancers. Symptoms may vary widely depending on the type and stage of the disease but could include jaundice, abdominal pain, fatigue, loss of appetite, nausea, and weight loss.

Early diagnosis and treatment are essential to prevent progression and potential complications associated with liver diseases.

Somatostatin-secreting cells, also known as delta cells or D cells, are a type of neuroendocrine cell found in the pancreatic islets and the central nervous system. These cells produce and secrete somatostatin, a peptide hormone that inhibits the release of several other hormones such as insulin, glucagon, and gastrin.

Somatostatin has a wide range of physiological effects, including inhibition of gastrointestinal motility, secretion, and blood flow; modulation of neurotransmission; and regulation of cell growth and differentiation. Somatostatin-secreting cells play an essential role in maintaining hormonal homeostasis by regulating the release of other hormones in response to various physiological stimuli.

In the pancreas, somatostatin-secreting cells are located in the islets of Langerhans, where they represent about 10% of the endocrine cell population. They are scattered among the insulin-producing beta cells and glucagon-producing alpha cells and form a dense network of fine processes that surround other islet cells. Somatostatin released from these cells acts in a paracrine manner to regulate the secretion of insulin, glucagon, and other hormones produced by the islet cells.

In the central nervous system, somatostatin-secreting cells are found in various regions, including the hypothalamus, hippocampus, and cortex. They play a role in regulating neurotransmission, neuronal excitability, and synaptic plasticity. Dysfunction of somatostatin-secreting cells has been implicated in several neurological and endocrine disorders, such as diabetes, acromegaly, and certain types of tumors.

Proinsulin is the precursor protein to insulin, produced in the beta cells of the pancreas. It has a molecular weight of around 9,000 daltons and is composed of three distinct regions: the A-chain, the B-chain, and the C-peptide. The A-chain and B-chain are linked together by disulfide bonds and will eventually become the insulin molecule after a series of enzymatic cleavages. The C-peptide is removed during this process and is released into the bloodstream in equimolar amounts to insulin. Proinsulin levels can be measured in the blood and are sometimes used as a marker for beta cell function in certain clinical settings, such as diagnosing or monitoring insulinoma (a tumor of the pancreas that produces insulin) or assessing the risk of diabetes-related complications.

The dermis is the layer of skin located beneath the epidermis, which is the outermost layer of the skin. It is composed of connective tissue and provides structure and support to the skin. The dermis contains blood vessels, nerves, hair follicles, sweat glands, and oil glands. It is also responsible for the production of collagen and elastin, which give the skin its strength and flexibility. The dermis can be further divided into two layers: the papillary dermis, which is the upper layer and contains finger-like projections called papillae that extend upwards into the epidermis, and the reticular dermis, which is the lower layer and contains thicker collagen bundles. Together, the epidermis and dermis make up the true skin.

Busulfan is a chemotherapy medication used to treat various types of cancer, including chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML). It is an alkylating agent that works by damaging the DNA of cancer cells, which prevents them from dividing and growing.

The medical definition of Busulfan is:

A white crystalline powder used in chemotherapy to treat various types of cancer. Busulfan works by alkylating and cross-linking DNA, which inhibits DNA replication and transcription, leading to cell cycle arrest and apoptosis (programmed cell death) in rapidly dividing cells, including cancer cells. It is administered orally or intravenously and is often used in combination with other chemotherapy agents. Common side effects include nausea, vomiting, diarrhea, and bone marrow suppression, which can lead to anemia, neutropenia, thrombocytopenia, and increased susceptibility to infection. Long-term use of busulfan has been associated with pulmonary fibrosis, infertility, and an increased risk of secondary malignancies.

A transplant is a medical procedure where an organ or tissue is removed from one person (the donor) and placed into another person (the recipient) for the purpose of replacing the recipient's damaged or failing organ or tissue with a healthy functioning one. The transplanted organ or tissue can come from a deceased donor, a living donor who is genetically related to the recipient, or a living donor who is not genetically related to the recipient.

Transplantation is an important medical intervention for many patients with end-stage organ failure or severe tissue damage, and it can significantly improve their quality of life and longevity. However, transplantation is a complex and risky procedure that requires careful matching of donor and recipient, rigorous evaluation and preparation of the recipient, and close monitoring and management of the transplanted organ or tissue to prevent rejection and other complications.

Hematopoietic stem cells (HSCs) are immature, self-renewing cells that give rise to all the mature blood and immune cells in the body. They are capable of both producing more hematopoietic stem cells (self-renewal) and differentiating into early progenitor cells that eventually develop into red blood cells, white blood cells, and platelets. HSCs are found in the bone marrow, umbilical cord blood, and peripheral blood. They have the ability to repair damaged tissues and offer significant therapeutic potential for treating various diseases, including hematological disorders, genetic diseases, and cancer.

Tissue and organ harvesting is the surgical removal of healthy tissues or organs from a living or deceased donor for the purpose of transplantation into another person in need of a transplant. This procedure is performed with great care, adhering to strict medical standards and ethical guidelines, to ensure the safety and well-being of both the donor and the recipient.

In the case of living donors, the harvested tissue or organ is typically removed from a site that can be safely spared, such as a kidney, a portion of the liver, or a segment of the lung. The donor must undergo extensive medical evaluation to ensure they are physically and psychologically suitable for the procedure.

For deceased donors, tissue and organ harvesting is performed in a manner that respects their wishes and those of their family, as well as adheres to legal and ethical requirements. Organs and tissues must be recovered promptly after death to maintain their viability for transplantation.

Tissue and organ harvesting is an essential component of the transplant process, allowing individuals with terminal illnesses or severe injuries to receive life-saving or life-enhancing treatments. It is a complex and highly regulated medical practice that requires specialized training, expertise, and coordination among healthcare professionals, donor families, and recipients.

Cell separation is a process used to separate and isolate specific cell types from a heterogeneous mixture of cells. This can be accomplished through various physical or biological methods, depending on the characteristics of the cells of interest. Some common techniques for cell separation include:

1. Density gradient centrifugation: In this method, a sample containing a mixture of cells is layered onto a density gradient medium and then centrifuged. The cells are separated based on their size, density, and sedimentation rate, with denser cells settling closer to the bottom of the tube and less dense cells remaining near the top.

2. Magnetic-activated cell sorting (MACS): This technique uses magnetic beads coated with antibodies that bind to specific cell surface markers. The labeled cells are then passed through a column placed in a magnetic field, which retains the magnetically labeled cells while allowing unlabeled cells to flow through.

3. Fluorescence-activated cell sorting (FACS): In this method, cells are stained with fluorochrome-conjugated antibodies that recognize specific cell surface or intracellular markers. The stained cells are then passed through a laser beam, which excites the fluorophores and allows for the detection and sorting of individual cells based on their fluorescence profile.

4. Filtration: This simple method relies on the physical size differences between cells to separate them. Cells can be passed through filters with pore sizes that allow smaller cells to pass through while retaining larger cells.

5. Enzymatic digestion: In some cases, cells can be separated by enzymatically dissociating tissues into single-cell suspensions and then using various separation techniques to isolate specific cell types.

These methods are widely used in research and clinical settings for applications such as isolating immune cells, stem cells, or tumor cells from biological samples.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

Chronic kidney failure, also known as chronic kidney disease (CKD) stage 5 or end-stage renal disease (ESRD), is a permanent loss of kidney function that occurs gradually over a period of months to years. It is defined as a glomerular filtration rate (GFR) of less than 15 ml/min, which means the kidneys are filtering waste and excess fluids at less than 15% of their normal capacity.

CKD can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and recurrent kidney infections. Over time, the damage to the kidneys can lead to a buildup of waste products and fluids in the body, which can cause a range of symptoms including fatigue, weakness, shortness of breath, nausea, vomiting, and confusion.

Treatment for chronic kidney failure typically involves managing the underlying condition, making lifestyle changes such as following a healthy diet, and receiving supportive care such as dialysis or a kidney transplant to replace lost kidney function.

CD34 is a type of antigen that is found on the surface of certain cells in the human body. Specifically, CD34 antigens are present on hematopoietic stem cells, which are immature cells that can develop into different types of blood cells. These stem cells are found in the bone marrow and are responsible for producing red blood cells, white blood cells, and platelets.

CD34 antigens are a type of cell surface marker that is used in medical research and clinical settings to identify and isolate hematopoietic stem cells. They are also used in the development of stem cell therapies and transplantation procedures. CD34 antigens can be detected using various laboratory techniques, such as flow cytometry or immunohistochemistry.

It's important to note that while CD34 is a useful marker for identifying hematopoietic stem cells, it is not exclusive to these cells and can also be found on other cell types, such as endothelial cells that line blood vessels. Therefore, additional markers are often used in combination with CD34 to more specifically identify and isolate hematopoietic stem cells.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

A biopsy is a medical procedure in which a small sample of tissue is taken from the body to be examined under a microscope for the presence of disease. This can help doctors diagnose and monitor various medical conditions, such as cancer, infections, or autoimmune disorders. The type of biopsy performed will depend on the location and nature of the suspected condition. Some common types of biopsies include:

1. Incisional biopsy: In this procedure, a surgeon removes a piece of tissue from an abnormal area using a scalpel or other surgical instrument. This type of biopsy is often used when the lesion is too large to be removed entirely during the initial biopsy.

2. Excisional biopsy: An excisional biopsy involves removing the entire abnormal area, along with a margin of healthy tissue surrounding it. This technique is typically employed for smaller lesions or when cancer is suspected.

3. Needle biopsy: A needle biopsy uses a thin, hollow needle to extract cells or fluid from the body. There are two main types of needle biopsies: fine-needle aspiration (FNA) and core needle biopsy. FNA extracts loose cells, while a core needle biopsy removes a small piece of tissue.

4. Punch biopsy: In a punch biopsy, a round, sharp tool is used to remove a small cylindrical sample of skin tissue. This type of biopsy is often used for evaluating rashes or other skin abnormalities.

5. Shave biopsy: During a shave biopsy, a thin slice of tissue is removed from the surface of the skin using a sharp razor-like instrument. This technique is typically used for superficial lesions or growths on the skin.

After the biopsy sample has been collected, it is sent to a laboratory where a pathologist will examine the tissue under a microscope and provide a diagnosis based on their findings. The results of the biopsy can help guide further treatment decisions and determine the best course of action for managing the patient's condition.

Leukemia is a type of cancer that originates from the bone marrow - the soft, inner part of certain bones where new blood cells are made. It is characterized by an abnormal production of white blood cells, known as leukocytes or blasts. These abnormal cells accumulate in the bone marrow and interfere with the production of normal blood cells, leading to a decrease in red blood cells (anemia), platelets (thrombocytopenia), and healthy white blood cells (leukopenia).

There are several types of leukemia, classified based on the specific type of white blood cell affected and the speed at which the disease progresses:

1. Acute Leukemias - These types of leukemia progress rapidly, with symptoms developing over a few weeks or months. They involve the rapid growth and accumulation of immature, nonfunctional white blood cells (blasts) in the bone marrow and peripheral blood. The two main categories are:
- Acute Lymphoblastic Leukemia (ALL) - Originates from lymphoid progenitor cells, primarily affecting children but can also occur in adults.
- Acute Myeloid Leukemia (AML) - Develops from myeloid progenitor cells and is more common in older adults.

2. Chronic Leukemias - These types of leukemia progress slowly, with symptoms developing over a period of months to years. They involve the production of relatively mature, but still abnormal, white blood cells that can accumulate in large numbers in the bone marrow and peripheral blood. The two main categories are:
- Chronic Lymphocytic Leukemia (CLL) - Affects B-lymphocytes and is more common in older adults.
- Chronic Myeloid Leukemia (CML) - Originates from myeloid progenitor cells, characterized by the presence of a specific genetic abnormality called the Philadelphia chromosome. It can occur at any age but is more common in middle-aged and older adults.

Treatment options for leukemia depend on the type, stage, and individual patient factors. Treatments may include chemotherapy, targeted therapy, immunotherapy, stem cell transplantation, or a combination of these approaches.

Blood glucose, also known as blood sugar, is the concentration of glucose in the blood. Glucose is a simple sugar that serves as the main source of energy for the body's cells. It is carried to each cell through the bloodstream and is absorbed into the cells with the help of insulin, a hormone produced by the pancreas.

The normal range for blood glucose levels in humans is typically between 70 and 130 milligrams per deciliter (mg/dL) when fasting, and less than 180 mg/dL after meals. Levels that are consistently higher than this may indicate diabetes or other metabolic disorders.

Blood glucose levels can be measured through a variety of methods, including fingerstick blood tests, continuous glucose monitoring systems, and laboratory tests. Regular monitoring of blood glucose levels is important for people with diabetes to help manage their condition and prevent complications.

Antilymphocyte serum (ALS) is a type of immune serum that contains antibodies against human lymphocytes. It is produced by immunizing animals, such as horses or rabbits, with human lymphocytes to stimulate an immune response and the production of anti-lymphocyte antibodies. The resulting serum is then collected and can be used as a therapeutic agent to suppress the activity of the immune system in certain medical conditions.

ALS is primarily used in the treatment of transplant rejection, particularly in organ transplantation, where it helps to prevent the recipient's immune system from attacking and rejecting the transplanted organ. It can also be used in the management of autoimmune diseases, such as rheumatoid arthritis and lupus, to suppress the overactive immune response that contributes to these conditions.

It is important to note that the use of ALS carries a risk of side effects, including allergic reactions, fever, and decreased white blood cell counts. Close monitoring and appropriate management of these potential adverse events are essential during treatment with ALS.

Combined modality therapy (CMT) is a medical treatment approach that utilizes more than one method or type of therapy simultaneously or in close succession, with the goal of enhancing the overall effectiveness of the treatment. In the context of cancer care, CMT often refers to the combination of two or more primary treatment modalities, such as surgery, radiation therapy, and systemic therapies (chemotherapy, immunotherapy, targeted therapy, etc.).

The rationale behind using combined modality therapy is that each treatment method can target cancer cells in different ways, potentially increasing the likelihood of eliminating all cancer cells and reducing the risk of recurrence. The specific combination and sequence of treatments will depend on various factors, including the type and stage of cancer, patient's overall health, and individual preferences.

For example, a common CMT approach for locally advanced rectal cancer may involve preoperative (neoadjuvant) chemoradiation therapy, followed by surgery to remove the tumor, and then postoperative (adjuvant) chemotherapy. This combined approach allows for the reduction of the tumor size before surgery, increases the likelihood of complete tumor removal, and targets any remaining microscopic cancer cells with systemic chemotherapy.

It is essential to consult with a multidisciplinary team of healthcare professionals to determine the most appropriate CMT plan for each individual patient, considering both the potential benefits and risks associated with each treatment method.

According to the National Institutes of Health (NIH), stem cells are "initial cells" or "precursor cells" that have the ability to differentiate into many different cell types in the body. They can also divide without limit to replenish other cells for as long as the person or animal is still alive.

There are two main types of stem cells: embryonic stem cells, which come from human embryos, and adult stem cells, which are found in various tissues throughout the body. Embryonic stem cells have the ability to differentiate into all cell types in the body, while adult stem cells have more limited differentiation potential.

Stem cells play an essential role in the development and repair of various tissues and organs in the body. They are currently being studied for their potential use in the treatment of a wide range of diseases and conditions, including cancer, diabetes, heart disease, and neurological disorders. However, more research is needed to fully understand the properties and capabilities of these cells before they can be used safely and effectively in clinical settings.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Bronchiolitis obliterans is a medical condition characterized by the inflammation and scarring (fibrosis) of the bronchioles, which are the smallest airways in the lungs. This results in the narrowing or complete obstruction of the airways, leading to difficulty breathing and reduced lung function.

The condition is often caused by a respiratory infection, such as adenovirus or mycoplasma pneumonia, but it can also be associated with exposure to certain chemicals, drugs, or radiation therapy. In some cases, the cause may be unknown.

Symptoms of bronchiolitis obliterans include cough, shortness of breath, wheezing, and crackles heard on lung examination. Diagnosis typically involves a combination of medical history, physical exam, imaging studies (such as chest X-ray or CT scan), and pulmonary function tests. In some cases, a biopsy may be necessary to confirm the diagnosis.

Treatment for bronchiolitis obliterans is focused on managing symptoms and preventing further lung damage. This may include bronchodilators to help open up the airways, corticosteroids to reduce inflammation, and oxygen therapy to help with breathing. In severe cases, a lung transplant may be necessary.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Mycophenolic Acid (MPA) is an immunosuppressive drug that is primarily used to prevent rejection in organ transplantation. It works by inhibiting the enzyme inosine monophosphate dehydrogenase, which is a key enzyme for the de novo synthesis of guanosine nucleotides, an essential component for the proliferation of T and B lymphocytes. By doing this, MPA reduces the activity of the immune system, thereby preventing it from attacking the transplanted organ.

Mycophenolic Acid is available in two forms: as the sodium salt (Mycophenolate Sodium) and as the morpholinoethyl ester (Mycophenolate Mofetil), which is rapidly hydrolyzed to Mycophenolic Acid after oral administration. Common side effects of MPA include gastrointestinal symptoms such as diarrhea, nausea, and vomiting, as well as an increased risk of infections due to its immunosuppressive effects.

Immune tolerance, also known as immunological tolerance or specific immune tolerance, is a state of unresponsiveness or non-reactivity of the immune system towards a particular substance (antigen) that has the potential to elicit an immune response. This occurs when the immune system learns to distinguish "self" from "non-self" and does not attack the body's own cells, tissues, and organs.

In the context of transplantation, immune tolerance refers to the absence of a destructive immune response towards the transplanted organ or tissue, allowing for long-term graft survival without the need for immunosuppressive therapy. Immune tolerance can be achieved through various strategies, including hematopoietic stem cell transplantation, costimulation blockade, and regulatory T cell induction.

In summary, immune tolerance is a critical mechanism that prevents the immune system from attacking the body's own structures while maintaining the ability to respond appropriately to foreign pathogens and antigens.

Streptozocin is an antibiotic and antineoplastic agent, which is primarily used in the treatment of metastatic pancreatic islet cell carcinoma (a type of pancreatic cancer). It is a naturally occurring compound produced by the bacterium Streptomyces achromogenes.

Medically, streptozocin is classified as an alkylating agent due to its ability to interact with DNA and RNA, disrupting the growth and multiplication of malignant cells. However, it can also have adverse effects on non-cancerous cells, particularly in the kidneys and pancreas, leading to potential side effects such as nephrotoxicity (kidney damage) and hyperglycemia (high blood sugar).

It is essential that streptozocin be administered under the supervision of a healthcare professional, who can monitor its effectiveness and potential side effects. The drug is typically given through intravenous infusion, with the dosage and duration tailored to individual patient needs and treatment responses.

The postoperative period is the time following a surgical procedure during which the patient's response to the surgery and anesthesia is monitored, and any complications or adverse effects are managed. This period can vary in length depending on the type of surgery and the individual patient's needs, but it typically includes the immediate recovery phase in the post-anesthesia care unit (PACU) or recovery room, as well as any additional time spent in the hospital for monitoring and management of pain, wound healing, and other aspects of postoperative care.

The goals of postoperative care are to ensure the patient's safety and comfort, promote optimal healing and rehabilitation, and minimize the risk of complications such as infection, bleeding, or other postoperative issues. The specific interventions and treatments provided during this period will depend on a variety of factors, including the type and extent of surgery performed, the patient's overall health and medical history, and any individualized care plans developed in consultation with the patient and their healthcare team.

Prognosis is a medical term that refers to the prediction of the likely outcome or course of a disease, including the chances of recovery or recurrence, based on the patient's symptoms, medical history, physical examination, and diagnostic tests. It is an important aspect of clinical decision-making and patient communication, as it helps doctors and patients make informed decisions about treatment options, set realistic expectations, and plan for future care.

Prognosis can be expressed in various ways, such as percentages, categories (e.g., good, fair, poor), or survival rates, depending on the nature of the disease and the available evidence. However, it is important to note that prognosis is not an exact science and may vary depending on individual factors, such as age, overall health status, and response to treatment. Therefore, it should be used as a guide rather than a definitive forecast.

Remission induction is a treatment approach in medicine, particularly in the field of oncology and hematology. It refers to the initial phase of therapy aimed at reducing or eliminating the signs and symptoms of active disease, such as cancer or autoimmune disorders. The primary goal of remission induction is to achieve a complete response (disappearance of all detectable signs of the disease) or a partial response (a decrease in the measurable extent of the disease). This phase of treatment is often intensive and may involve the use of multiple drugs or therapies, including chemotherapy, immunotherapy, or targeted therapy. After remission induction, patients may receive additional treatments to maintain the remission and prevent relapse, known as consolidation or maintenance therapy.

Hand transplantation is a surgical procedure that involves the attachment of a donor's hand or hands to a recipient who has lost their hand(s) due to trauma, illness, or congenital conditions. The procedure involves meticulous microvascular and nerve reconstruction to reconnect bones, tendons, nerves, and blood vessels, allowing for the recovery of sensory and motor functions in the transplanted hand. It is an advanced reconstructive option that requires a careful selection of candidates, rigorous postoperative care, and immunosuppressive therapy to prevent rejection of the transplanted organ.

Aplastic anemia is a medical condition characterized by pancytopenia (a decrease in all three types of blood cells: red blood cells, white blood cells, and platelets) due to the failure of bone marrow to produce new cells. It is called "aplastic" because the bone marrow becomes hypocellular or "aplastic," meaning it contains few or no blood-forming stem cells.

The condition can be acquired or inherited, with acquired aplastic anemia being more common. Acquired aplastic anemia can result from exposure to toxic chemicals, radiation, drugs, viral infections, or autoimmune disorders. Inherited forms of the disease include Fanconi anemia and dyskeratosis congenita.

Symptoms of aplastic anemia may include fatigue, weakness, shortness of breath, pale skin, easy bruising or bleeding, frequent infections, and fever. Treatment options for aplastic anemia depend on the severity of the condition and its underlying cause. They may include blood transfusions, immunosuppressive therapy, and stem cell transplantation.

An animal model in medicine refers to the use of non-human animals in experiments to understand, predict, and test responses and effects of various biological and chemical interactions that may also occur in humans. These models are used when studying complex systems or processes that cannot be easily replicated or studied in human subjects, such as genetic manipulation or exposure to harmful substances. The choice of animal model depends on the specific research question being asked and the similarities between the animal's and human's biological and physiological responses. Examples of commonly used animal models include mice, rats, rabbits, guinea pigs, and non-human primates.

Surface antigens are molecules found on the surface of cells that can be recognized by the immune system as being foreign or different from the host's own cells. Antigens are typically proteins or polysaccharides that are capable of stimulating an immune response, leading to the production of antibodies and activation of immune cells such as T-cells.

Surface antigens are important in the context of infectious diseases because they allow the immune system to identify and target infected cells for destruction. For example, viruses and bacteria often display surface antigens that are distinct from those found on host cells, allowing the immune system to recognize and attack them. In some cases, these surface antigens can also be used as targets for vaccines or other immunotherapies.

In addition to their role in infectious diseases, surface antigens are also important in the context of cancer. Tumor cells often display abnormal surface antigens that differ from those found on normal cells, allowing the immune system to potentially recognize and attack them. However, tumors can also develop mechanisms to evade the immune system, making it difficult to mount an effective response.

Overall, understanding the properties and behavior of surface antigens is crucial for developing effective immunotherapies and vaccines against infectious diseases and cancer.

I'm happy to help! However, I believe there may be a slight error in your question. "WF" is not a recognized strain identifier for inbred rats used in scientific research. Instead, "WI" or "Wistar-Imamichi" is sometimes used to refer to an inbred strain of rat developed in Japan.

Assuming you meant to ask about "Rats, Inbred WI," here's a definition:

Inbred WI rats are a strain of laboratory rats that have been selectively bred for research purposes. "Inbred" means that the rats have been brother-sister mated for at least 20 generations, resulting in a high degree of genetic uniformity within the strain. This uniformity makes it easier to control variables and repeat experiments.

WI rats were developed in Japan by crossing outbred Wistar rats with an inbred strain called F344. They have since been maintained as an independent inbred strain.

These rats are often used in biomedical research due to their well-characterized genetic background and consistent phenotypic traits, such as their size, behavior, and susceptibility to certain diseases. However, like all animal models, they have limitations and may not always accurately reflect human physiology or disease processes.

Blood group incompatibility refers to a situation where the blood type of a donor and a recipient are not compatible, leading to an immune response and destruction of the donated red blood cells. This is because the recipient's immune system recognizes the donor's red blood cells as foreign due to the presence of incompatible antigens on their surface.

The most common type of blood group incompatibility occurs between individuals with different ABO blood types, such as when a person with type O blood receives type A, B, or AB blood. This can lead to agglutination and hemolysis of the donated red blood cells, causing potentially life-threatening complications such as hemolytic transfusion reaction.

Another type of blood group incompatibility occurs between Rh-negative mothers and their Rh-positive fetuses. If a mother's immune system is exposed to her fetus's Rh-positive red blood cells during pregnancy or childbirth, she may develop antibodies against them. This can lead to hemolytic disease of the newborn if the mother becomes pregnant with another Rh-positive fetus in the future.

To prevent these complications, it is essential to ensure that donated blood is compatible with the recipient's blood type before transfusion and that appropriate measures are taken during pregnancy and childbirth to prevent sensitization of Rh-negative mothers to Rh-positive red blood cells.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Cytomegalovirus (CMV) infections are caused by the human herpesvirus 5 (HHV-5), a type of herpesvirus. The infection can affect people of all ages, but it is more common in individuals with weakened immune systems, such as those with HIV/AIDS or who have undergone organ transplantation.

CMV can be spread through close contact with an infected person's saliva, urine, blood, tears, semen, or breast milk. It can also be spread through sexual contact or by sharing contaminated objects, such as toys, eating utensils, or drinking glasses. Once a person is infected with CMV, the virus remains in their body for life and can reactivate later, causing symptoms to recur.

Most people who are infected with CMV do not experience any symptoms, but some may develop a mononucleosis-like illness, characterized by fever, fatigue, swollen glands, and sore throat. In people with weakened immune systems, CMV infections can cause more severe symptoms, including pneumonia, gastrointestinal disease, retinitis, and encephalitis.

Congenital CMV infection occurs when a pregnant woman passes the virus to her fetus through the placenta. This can lead to serious complications, such as hearing loss, vision loss, developmental delays, and mental disability.

Diagnosis of CMV infections is typically made through blood tests or by detecting the virus in bodily fluids, such as urine or saliva. Treatment depends on the severity of the infection and the patient's overall health. Antiviral medications may be prescribed to help manage symptoms and prevent complications.

I'm sorry for any confusion, but "Myeloablative Agonists" is not a recognized medical term. Myeloablation is a medical process that involves destroying or damaging the bone marrow, often as part of a preparatory regimen before a stem cell transplant. Agonists are substances that bind to receptors and activate them, causing a response in the body. However, combining these two terms doesn't form a recognized medical concept. If you have any questions about myeloablation or agonists individually, I'd be happy to help clarify those concepts!

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Histocompatibility antigens Class II are a group of cell surface proteins that play a crucial role in the immune system's response to foreign substances. They are expressed on the surface of various cells, including immune cells such as B lymphocytes, macrophages, dendritic cells, and activated T lymphocytes.

Class II histocompatibility antigens are encoded by the major histocompatibility complex (MHC) class II genes, which are located on chromosome 6 in humans. These antigens are composed of two non-covalently associated polypeptide chains, an alpha (α) and a beta (β) chain, which form a heterodimer. There are three main types of Class II histocompatibility antigens, known as HLA-DP, HLA-DQ, and HLA-DR.

Class II histocompatibility antigens present peptide antigens to CD4+ T helper cells, which then activate other immune cells, such as B cells and macrophages, to mount an immune response against the presented antigen. Because of their role in initiating an immune response, Class II histocompatibility antigens are important in transplantation medicine, where mismatches between donor and recipient can lead to rejection of the transplanted organ or tissue.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Bone marrow cells are the types of cells found within the bone marrow, which is the spongy tissue inside certain bones in the body. The main function of bone marrow is to produce blood cells. There are two types of bone marrow: red and yellow. Red bone marrow is where most blood cell production takes place, while yellow bone marrow serves as a fat storage site.

The three main types of bone marrow cells are:

1. Hematopoietic stem cells (HSCs): These are immature cells that can differentiate into any type of blood cell, including red blood cells, white blood cells, and platelets. They have the ability to self-renew, meaning they can divide and create more hematopoietic stem cells.
2. Red blood cell progenitors: These are immature cells that will develop into mature red blood cells, also known as erythrocytes. Red blood cells carry oxygen from the lungs to the body's tissues and carbon dioxide back to the lungs.
3. Myeloid and lymphoid white blood cell progenitors: These are immature cells that will develop into various types of white blood cells, which play a crucial role in the body's immune system by fighting infections and diseases. Myeloid progenitors give rise to granulocytes (neutrophils, eosinophils, and basophils), monocytes, and megakaryocytes (which eventually become platelets). Lymphoid progenitors differentiate into B cells, T cells, and natural killer (NK) cells.

Bone marrow cells are essential for maintaining a healthy blood cell count and immune system function. Abnormalities in bone marrow cells can lead to various medical conditions, such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis, depending on the specific type of blood cell affected. Additionally, bone marrow cells are often used in transplantation procedures to treat patients with certain types of cancer, such as leukemia and lymphoma, or other hematologic disorders.

Cyclophosphamide is an alkylating agent, which is a type of chemotherapy medication. It works by interfering with the DNA of cancer cells, preventing them from dividing and growing. This helps to stop the spread of cancer in the body. Cyclophosphamide is used to treat various types of cancer, including lymphoma, leukemia, multiple myeloma, and breast cancer. It can be given orally as a tablet or intravenously as an injection.

Cyclophosphamide can also have immunosuppressive effects, which means it can suppress the activity of the immune system. This makes it useful in treating certain autoimmune diseases, such as rheumatoid arthritis and lupus. However, this immunosuppression can also increase the risk of infections and other side effects.

Like all chemotherapy medications, cyclophosphamide can cause a range of side effects, including nausea, vomiting, hair loss, fatigue, and increased susceptibility to infections. It is important for patients receiving cyclophosphamide to be closely monitored by their healthcare team to manage these side effects and ensure the medication is working effectively.

Brain death is a legal and medical determination that an individual has died because their brain has irreversibly lost all functions necessary for life. It is characterized by the absence of brainstem reflexes, unresponsiveness to stimuli, and the inability to breathe without mechanical support. Brain death is different from a vegetative state or coma, where there may still be some brain activity.

The determination of brain death involves a series of tests and examinations to confirm the absence of brain function. These tests are typically performed by trained medical professionals and may include clinical assessments, imaging studies, and electroencephalograms (EEGs) to confirm the absence of electrical activity in the brain.

Brain death is an important concept in medicine because it allows for the organ donation process to proceed, potentially saving the lives of others. In many jurisdictions, brain death is legally equivalent to cardiopulmonary death, which means that once a person has been declared brain dead, they are considered deceased and their organs can be removed for transplantation.

A fatal outcome is a term used in medical context to describe a situation where a disease, injury, or illness results in the death of an individual. It is the most severe and unfortunate possible outcome of any medical condition, and is often used as a measure of the severity and prognosis of various diseases and injuries. In clinical trials and research, fatal outcome may be used as an endpoint to evaluate the effectiveness and safety of different treatments or interventions.

End-stage liver disease (ESLD) is a term used to describe advanced and irreversible liver damage, usually caused by chronic liver conditions such as cirrhosis, hepatitis, or alcoholic liver disease. At this stage, the liver can no longer function properly, leading to a range of serious complications.

The symptoms of ESLD may include:

* Jaundice (yellowing of the skin and eyes)
* Ascites (accumulation of fluid in the abdomen)
* Encephalopathy (confusion, drowsiness, or coma caused by the buildup of toxins in the brain)
* Bleeding from the gastrointestinal tract
* Infections
* Kidney failure

Treatment for ESLD typically focuses on managing symptoms and preventing complications. In some cases, a liver transplant may be necessary to improve survival. However, due to the shortage of available donor livers, many people with ESLD are not eligible for transplantation. The prognosis for individuals with ESLD is generally poor, with a median survival time of less than one year.

Lymph nodes are small, bean-shaped organs that are part of the immune system. They are found throughout the body, especially in the neck, armpits, groin, and abdomen. Lymph nodes filter lymph fluid, which carries waste and unwanted substances such as bacteria, viruses, and cancer cells. They contain white blood cells called lymphocytes that help fight infections and diseases by attacking and destroying the harmful substances found in the lymph fluid. When an infection or disease is present, lymph nodes may swell due to the increased number of immune cells and fluid accumulation as they work to fight off the invaders.

Patient selection, in the context of medical treatment or clinical research, refers to the process of identifying and choosing appropriate individuals who are most likely to benefit from a particular medical intervention or who meet specific criteria to participate in a study. This decision is based on various factors such as the patient's diagnosis, stage of disease, overall health status, potential risks, and expected benefits. The goal of patient selection is to ensure that the selected individuals will receive the most effective and safe care possible while also contributing to meaningful research outcomes.

Neoplasm transplantation is not a recognized or established medical procedure in the field of oncology. The term "neoplasm" refers to an abnormal growth of cells, which can be benign or malignant (cancerous). "Transplantation" typically refers to the surgical transfer of living cells, tissues, or organs from one part of the body to another or between individuals.

The concept of neoplasm transplantation may imply the transfer of cancerous cells or tissues from a donor to a recipient, which is not a standard practice due to ethical considerations and the potential harm it could cause to the recipient. In some rare instances, researchers might use laboratory animals to study the transmission and growth of human cancer cells, but this is done for scientific research purposes only and under strict regulatory guidelines.

In summary, there is no medical definition for 'Neoplasm Transplantation' as it does not represent a standard or ethical medical practice.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

The portal vein is the large venous trunk that carries blood from the gastrointestinal tract, spleen, pancreas, and gallbladder to the liver. It is formed by the union of the superior mesenteric vein (draining the small intestine and a portion of the large intestine) and the splenic vein (draining the spleen and pancreas). The portal vein then divides into right and left branches within the liver, where the blood flows through the sinusoids and gets enriched with oxygen and nutrients before being drained by the hepatic veins into the inferior vena cava. This unique arrangement allows the liver to process and detoxify the absorbed nutrients, remove waste products, and regulate metabolic homeostasis.

Disease-free survival (DFS) is a term used in medical research and clinical practice, particularly in the field of oncology. It refers to the length of time after primary treatment for a cancer during which no evidence of the disease can be found. This means that the patient shows no signs or symptoms of the cancer, and any imaging studies or other tests do not reveal any tumors or other indications of the disease.

DFS is often used as an important endpoint in clinical trials to evaluate the effectiveness of different treatments for cancer. By measuring the length of time until the cancer recurs or a new cancer develops, researchers can get a better sense of how well a particular treatment is working and whether it is improving patient outcomes.

It's important to note that DFS is not the same as overall survival (OS), which refers to the length of time from primary treatment until death from any cause. While DFS can provide valuable information about the effectiveness of cancer treatments, it does not necessarily reflect the impact of those treatments on patients' overall survival.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Histiocytosis is a term used to describe a group of rare disorders characterized by an abnormal increase in the number of histiocytes, which are a type of white blood cell that helps fight infection and helps in healing processes. These disorders can affect various organs and tissues in the body, leading to different symptoms and severity.

There are several types of histiocytosis, including Langerhans cell histiocytosis (LCH), Erdheim-Chester disease (ECD), and hemophagocytic lymphohistiocytosis (HLH). Each type has its own specific features and diagnostic criteria.

For example, LCH is characterized by the abnormal accumulation of Langerhans cells, a type of histiocyte found in the skin and mucous membranes. These cells can form tumors or lesions in various organs, such as the bones, lungs, liver, and skin.

HLH, on the other hand, is a life-threatening condition that occurs when there is an overactive immune response leading to excessive activation of histiocytes and other immune cells. This can result in fever, enlargement of the liver and spleen, and decreased blood cell counts.

The exact cause of histiocytosis is not fully understood, but it is believed to involve genetic mutations that lead to uncontrolled proliferation and accumulation of histiocytes. Treatment for histiocytosis depends on the type and severity of the disorder and may include chemotherapy, radiation therapy, immunosuppressive drugs, or stem cell transplantation.

Immunophenotyping is a medical laboratory technique used to identify and classify cells, usually in the context of hematologic (blood) disorders and malignancies (cancers), based on their surface or intracellular expression of various proteins and antigens. This technique utilizes specific antibodies tagged with fluorochromes, which bind to the target antigens on the cell surface or within the cells. The labeled cells are then analyzed using flow cytometry, allowing for the detection and quantification of multiple antigenic markers simultaneously.

Immunophenotyping helps in understanding the distribution of different cell types, their subsets, and activation status, which can be crucial in diagnosing various hematological disorders, immunodeficiencies, and distinguishing between different types of leukemias, lymphomas, and other malignancies. Additionally, it can also be used to monitor the progression of diseases, evaluate the effectiveness of treatments, and detect minimal residual disease (MRD) during follow-up care.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

SCID mice is an acronym for Severe Combined Immunodeficiency mice. These are genetically modified mice that lack a functional immune system due to the mutation or knockout of several key genes required for immunity. This makes them ideal for studying the human immune system, infectious diseases, and cancer, as well as testing new therapies and treatments in a controlled environment without the risk of interference from the mouse's own immune system. SCID mice are often used in xenotransplantation studies, where human cells or tissues are transplanted into the mouse to study their behavior and interactions with the human immune system.

A lymphocyte transfusion is not a standard medical practice. However, the term "lymphocyte transfusion" generally refers to the infusion of lymphocytes, a type of white blood cell, from a donor to a recipient. This procedure is rarely performed and primarily used in research or experimental settings, such as in the context of adoptive immunotherapy for cancer treatment.

In adoptive immunotherapy, T lymphocytes (a subtype of lymphocytes) are collected from the patient or a donor, activated, expanded in the laboratory, and then reinfused into the patient to enhance their immune response against cancer cells. This is not a common procedure and should only be performed under the guidance of experienced medical professionals in specialized centers.

It's important to note that lymphocyte transfusions are different from stem cell or bone marrow transplants, which involve the infusion of hematopoietic stem cells to reconstitute the recipient's entire blood and immune system.

C-peptide is a byproduct that is produced when the hormone insulin is generated in the body. Insulin is a hormone that helps regulate blood sugar levels, and it is produced in the pancreas by specialized cells called beta cells. When these cells produce insulin, they also generate C-peptide as a part of the same process.

C-peptide is often used as a marker to measure the body's insulin production. By measuring C-peptide levels in the blood, healthcare providers can get an idea of how much insulin the body is producing on its own. This can be helpful in diagnosing and monitoring conditions such as diabetes, which is characterized by impaired insulin production or function.

It's worth noting that C-peptide is not typically used as a treatment for any medical conditions. Instead, it is primarily used as a diagnostic tool to help healthcare providers better understand their patients' health status and make informed treatment decisions.

The spleen is an organ in the upper left side of the abdomen, next to the stomach and behind the ribs. It plays multiple supporting roles in the body:

1. It fights infection by acting as a filter for the blood. Old red blood cells are recycled in the spleen, and platelets and white blood cells are stored there.
2. The spleen also helps to control the amount of blood in the body by removing excess red blood cells and storing platelets.
3. It has an important role in immune function, producing antibodies and removing microorganisms and damaged red blood cells from the bloodstream.

The spleen can be removed without causing any significant problems, as other organs take over its functions. This is known as a splenectomy and may be necessary if the spleen is damaged or diseased.

Inbred strains of mice are defined as lines of mice that have been brother-sister mated for at least 20 consecutive generations. This results in a high degree of homozygosity, where the mice of an inbred strain are genetically identical to one another, with the exception of spontaneous mutations.

Inbred strains of mice are widely used in biomedical research due to their genetic uniformity and stability, which makes them useful for studying the genetic basis of various traits, diseases, and biological processes. They also provide a consistent and reproducible experimental system, as compared to outbred or genetically heterogeneous populations.

Some commonly used inbred strains of mice include C57BL/6J, BALB/cByJ, DBA/2J, and 129SvEv. Each strain has its own unique genetic background and phenotypic characteristics, which can influence the results of experiments. Therefore, it is important to choose the appropriate inbred strain for a given research question.

Organ preservation solutions are specialized fluids used to maintain the viability and functionality of organs ex vivo (outside the body) during the process of transplantation. These solutions are designed to provide optimal conditions for the organ by preventing tissue damage, reducing metabolic activity, and minimizing ischemic injuries that may occur during the time between organ removal from the donor and implantation into the recipient.

The composition of organ preservation solutions typically includes various ingredients such as:

1. Cryoprotectants: These help prevent ice crystal formation and damage to cell membranes during freezing and thawing processes, especially for organs like the heart and lungs that require deep hypothermia for preservation.
2. Buffers: They maintain physiological pH levels and counteract acidosis caused by anaerobic metabolism in the absence of oxygen supply.
3. Colloids: These substances, such as hydroxyethyl starch or dextran, help preserve oncotic pressure and prevent cellular edema.
4. Electrolytes: Balanced concentrations of ions like sodium, potassium, calcium, magnesium, chloride, and bicarbonate are essential for maintaining physiological osmolarity and membrane potentials.
5. Energy substrates: Glucose, lactate, or other energy-rich compounds can serve as fuel sources to support the metabolic needs of the organ during preservation.
6. Antioxidants: These agents protect against oxidative stress and lipid peroxidation induced by ischemia-reperfusion injuries.
7. Anti-inflammatory agents and immunosuppressants: Some solutions may contain substances that mitigate the inflammatory response and reduce immune activation in the transplanted organ.

Examples of commonly used organ preservation solutions include University of Wisconsin (UW) solution, Histidine-Tryptophan-Ketoglutarate (HTK) solution, Custodiol HTK solution, and Euro-Collins solution. The choice of preservation solution depends on the specific organ being transplanted and the duration of preservation required.

Melphalan is an antineoplastic agent, specifically an alkylating agent. It is used in the treatment of multiple myeloma and other types of cancer. The medical definition of Melphalan is:

A nitrogen mustard derivative that is used as an alkylating agent in the treatment of cancer, particularly multiple myeloma and ovarian cancer. Melphalan works by forming covalent bonds with DNA, resulting in cross-linking of the double helix and inhibition of DNA replication and transcription. This ultimately leads to cell cycle arrest and apoptosis (programmed cell death) in rapidly dividing cells, such as cancer cells.

Melphalan is administered orally or intravenously, and its use is often accompanied by other anticancer therapies, such as radiation therapy or chemotherapy. Common side effects of Melphalan include nausea, vomiting, diarrhea, and bone marrow suppression, which can lead to anemia, neutropenia, and thrombocytopenia. Other potential side effects include hair loss, mucositis, and secondary malignancies.

It is important to note that Melphalan should be used under the close supervision of a healthcare professional, as it can cause serious adverse reactions if not administered correctly.

Acute liver failure is a sudden and severe loss of liver function that occurs within a few days or weeks. It can be caused by various factors such as drug-induced liver injury, viral hepatitis, or metabolic disorders. In acute liver failure, the liver cannot perform its vital functions, including protein synthesis, detoxification, and metabolism of carbohydrates, fats, and proteins.

The symptoms of acute liver failure include jaundice (yellowing of the skin and eyes), coagulopathy (bleeding disorders), hepatic encephalopathy (neurological symptoms such as confusion, disorientation, and coma), and elevated levels of liver enzymes in the blood. Acute liver failure is a medical emergency that requires immediate hospitalization and treatment, which may include medications, supportive care, and liver transplantation.

The ABO blood-group system is a classification system used in blood transfusion medicine to determine the compatibility of donated blood with a recipient's blood. It is based on the presence or absence of two antigens, A and B, on the surface of red blood cells (RBCs), as well as the corresponding antibodies present in the plasma.

There are four main blood types in the ABO system:

1. Type A: These individuals have A antigens on their RBCs and anti-B antibodies in their plasma.
2. Type B: They have B antigens on their RBCs and anti-A antibodies in their plasma.
3. Type AB: They have both A and B antigens on their RBCs but no natural antibodies against either A or B antigens.
4. Type O: They do not have any A or B antigens on their RBCs, but they have both anti-A and anti-B antibodies in their plasma.

Transfusing blood from a donor with incompatible ABO antigens can lead to an immune response, causing the destruction of donated RBCs and potentially life-threatening complications such as acute hemolytic transfusion reaction. Therefore, it is crucial to match the ABO blood type between donors and recipients before performing a blood transfusion.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

The pancreatic ducts are a set of tubular structures within the pancreas that play a crucial role in the digestive system. The main pancreatic duct, also known as the duct of Wirsung, is responsible for transporting pancreatic enzymes and bicarbonate-rich fluid from the pancreas to the duodenum, which is the first part of the small intestine.

The exocrine portion of the pancreas contains numerous smaller ducts called interlobular ducts and intralobular ducts that merge and ultimately join the main pancreatic duct. This system ensures that the digestive enzymes and fluids produced by the pancreas are effectively delivered to the small intestine, where they aid in the breakdown and absorption of nutrients from food.

In addition to the main pancreatic duct, there is an accessory pancreatic duct, also known as Santorini's duct, which can sometimes join the common bile duct before emptying into the duodenum through a shared opening called the ampulla of Vater. However, in most individuals, the accessory pancreatic duct usually drains into the main pancreatic duct before entering the duodenum.

Cell culture is a technique used in scientific research to grow and maintain cells from plants, animals, or humans in a controlled environment outside of their original organism. This environment typically consists of a sterile container called a cell culture flask or plate, and a nutrient-rich liquid medium that provides the necessary components for the cells' growth and survival, such as amino acids, vitamins, minerals, and hormones.

There are several different types of cell culture techniques used in research, including:

1. Adherent cell culture: In this technique, cells are grown on a flat surface, such as the bottom of a tissue culture dish or flask. The cells attach to the surface and spread out, forming a monolayer that can be observed and manipulated under a microscope.
2. Suspension cell culture: In suspension culture, cells are grown in liquid medium without any attachment to a solid surface. These cells remain suspended in the medium and can be agitated or mixed to ensure even distribution of nutrients.
3. Organoid culture: Organoids are three-dimensional structures that resemble miniature organs and are grown from stem cells or other progenitor cells. They can be used to study organ development, disease processes, and drug responses.
4. Co-culture: In co-culture, two or more different types of cells are grown together in the same culture dish or flask. This technique is used to study cell-cell interactions and communication.
5. Conditioned medium culture: In this technique, cells are grown in a medium that has been conditioned by previous cultures of other cells. The conditioned medium contains factors secreted by the previous cells that can influence the growth and behavior of the new cells.

Cell culture techniques are widely used in biomedical research to study cellular processes, develop drugs, test toxicity, and investigate disease mechanisms. However, it is important to note that cell cultures may not always accurately represent the behavior of cells in a living organism, and results from cell culture experiments should be validated using other methods.

Chimerism is a medical term that refers to the presence of genetically distinct cell populations within an individual. This phenomenon can occur naturally or as a result of a medical procedure such as a stem cell transplant. In natural chimerism, an individual may have cells with different genetic compositions due to events that occurred during embryonic development, such as the fusion of two fertilized eggs (also known as "twinning") or the exchange of cells between twins in utero.

In the context of a stem cell transplant, chimerism can occur when a donor's stem cells engraft and begin to produce new blood cells in the recipient's body. This can result in the presence of both the recipient's own cells and the donor's cells in the recipient's body. The degree of chimerism can vary, with some individuals showing complete chimerism (where all blood cells are derived from the donor) or mixed chimerism (where both the recipient's and donor's cells coexist).

Monitoring chimerism levels is important in stem cell transplantation to assess the success of the procedure and to detect any potential signs of graft rejection or relapse of the original disease.

Fetal blood refers to the blood circulating in a fetus during pregnancy. It is essential for the growth and development of the fetus, as it carries oxygen and nutrients from the placenta to the developing tissues and organs. Fetal blood also removes waste products, such as carbon dioxide, from the fetal tissues and transports them to the placenta for elimination.

Fetal blood has several unique characteristics that distinguish it from adult blood. For example, fetal hemoglobin (HbF) is the primary type of hemoglobin found in fetal blood, whereas adults primarily have adult hemoglobin (HbA). Fetal hemoglobin has a higher affinity for oxygen than adult hemoglobin, which allows it to more efficiently extract oxygen from the maternal blood in the placenta.

Additionally, fetal blood contains a higher proportion of reticulocytes (immature red blood cells) and nucleated red blood cells compared to adult blood. These differences reflect the high turnover rate of red blood cells in the developing fetus and the need for rapid growth and development.

Examination of fetal blood can provide important information about the health and well-being of the fetus during pregnancy. For example, fetal blood sampling (also known as cordocentesis or percutaneous umbilical blood sampling) can be used to diagnose genetic disorders, infections, and other conditions that may affect fetal development. However, this procedure carries risks, including preterm labor, infection, and fetal loss, and is typically only performed when there is a significant risk of fetal compromise or when other diagnostic tests have been inconclusive.

Multiple myeloma is a type of cancer that forms in a type of white blood cell called a plasma cell. Plasma cells help your body fight infection by producing antibodies. In multiple myeloma, cancerous plasma cells accumulate in the bone marrow and crowd out healthy blood cells. Rather than producing useful antibodies, the cancer cells produce abnormal proteins that can cause complications such as kidney damage, bone pain and fractures.

Multiple myeloma is a type of cancer called a plasma cell neoplasm. Plasma cell neoplasms are diseases in which there is an overproduction of a single clone of plasma cells. In multiple myeloma, this results in the crowding out of normal plasma cells, red and white blood cells and platelets, leading to many of the complications associated with the disease.

The abnormal proteins produced by the cancer cells can also cause damage to organs and tissues in the body. These abnormal proteins can be detected in the blood or urine and are often used to monitor the progression of multiple myeloma.

Multiple myeloma is a relatively uncommon cancer, but it is the second most common blood cancer after non-Hodgkin lymphoma. It typically occurs in people over the age of 65, and men are more likely to develop multiple myeloma than women. While there is no cure for multiple myeloma, treatments such as chemotherapy, radiation therapy, and stem cell transplantation can help manage the disease and its symptoms, and improve quality of life.

CD4-positive T-lymphocytes, also known as CD4+ T cells or helper T cells, are a type of white blood cell that plays a crucial role in the immune response. They express the CD4 receptor on their surface and help coordinate the immune system's response to infectious agents such as viruses and bacteria.

CD4+ T cells recognize and bind to specific antigens presented by antigen-presenting cells, such as dendritic cells or macrophages. Once activated, they can differentiate into various subsets of effector cells, including Th1, Th2, Th17, and Treg cells, each with distinct functions in the immune response.

CD4+ T cells are particularly important in the immune response to HIV (human immunodeficiency virus), which targets and destroys these cells, leading to a weakened immune system and increased susceptibility to opportunistic infections. The number of CD4+ T cells is often used as a marker of disease progression in HIV infection, with lower counts indicating more advanced disease.

Primary graft dysfunction (PGD) is a severe complication that can occur after an organ transplant, such as a lung or heart transplant. It refers to the early functional impairment of the grafted organ that is not due to surgical complications, rejection, or recurrence of the original disease.

In the case of lung transplants, PGD is defined as the evidence of poor oxygenation and stiffness in the lungs within the first 72 hours after the transplant. It is typically caused by inflammation, injury to the blood vessels, or other damage to the lung tissue during the transplant procedure or due to pre-existing conditions in the donor organ.

PGD can lead to serious complications, including respiratory failure, and is associated with increased morbidity and mortality after transplantation. Treatment may include supportive care, such as mechanical ventilation and medications to support lung function, as well as strategies to reduce inflammation and prevent further damage to the grafted organ.

Amyloid is a term used in medicine to describe abnormally folded protein deposits that can accumulate in various tissues and organs of the body. These misfolded proteins can form aggregates known as amyloid fibrils, which have a characteristic beta-pleated sheet structure. Amyloid deposits can be composed of different types of proteins, depending on the specific disease associated with the deposit.

In some cases, amyloid deposits can cause damage to organs and tissues, leading to various clinical symptoms. Some examples of diseases associated with amyloidosis include Alzheimer's disease (where amyloid-beta protein accumulates in the brain), systemic amyloidosis (where amyloid fibrils deposit in various organs such as the heart, kidneys, and liver), and type 2 diabetes (where amyloid deposits form in the pancreas).

It's important to note that not all amyloid deposits are harmful or associated with disease. However, when they do cause problems, treatment typically involves managing the underlying condition that is leading to the abnormal protein accumulation.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Liver cirrhosis is a chronic, progressive disease characterized by the replacement of normal liver tissue with scarred (fibrotic) tissue, leading to loss of function. The scarring is caused by long-term damage from various sources such as hepatitis, alcohol abuse, nonalcoholic fatty liver disease, and other causes. As the disease advances, it can lead to complications like portal hypertension, fluid accumulation in the abdomen (ascites), impaired brain function (hepatic encephalopathy), and increased risk of liver cancer. It is generally irreversible, but early detection and treatment of underlying causes may help slow down its progression.

Prednisone is a synthetic glucocorticoid, which is a type of corticosteroid hormone. It is primarily used to reduce inflammation in various conditions such as asthma, allergies, arthritis, and autoimmune disorders. Prednisone works by mimicking the effects of natural hormones produced by the adrenal glands, suppressing the immune system's response and reducing the release of substances that cause inflammation.

It is available in oral tablet form and is typically prescribed to be taken at specific times during the day, depending on the condition being treated. Common side effects of prednisone include increased appetite, weight gain, mood changes, insomnia, and easy bruising. Long-term use or high doses can lead to more serious side effects such as osteoporosis, diabetes, cataracts, and increased susceptibility to infections.

Healthcare providers closely monitor patients taking prednisone for extended periods to minimize the risk of adverse effects. It is essential to follow the prescribed dosage regimen and not discontinue the medication abruptly without medical supervision, as this can lead to withdrawal symptoms or a rebound of the underlying condition.

Dinitrofluorobenzene (DNFB) is a chemical compound that is often used in laboratory settings for research purposes. It is an aromatic organic compound that contains two nitro groups and a fluorine atom attached to a benzene ring. Dinitrofluorobenzene is primarily known for its ability to act as a hapten, which means it can bind to proteins in the body and stimulate an immune response.

In medical research, DNFB has been used as a contact sensitizer to study the mechanisms of allergic contact dermatitis, a type of skin reaction that occurs when the immune system becomes sensitized to a particular substance and then reacts to it upon subsequent exposure. When applied to the skin, DNFB can cause a red, itchy, and painful rash in individuals who have been previously sensitized to the compound. By studying this reaction, researchers can gain insights into the immune responses that underlie allergic reactions more broadly.

It is important to note that dinitrofluorobenzene is not used as a therapeutic agent in clinical medicine and should only be handled by trained professionals in a controlled laboratory setting due to its potential hazards, including skin and eye irritation, respiratory problems, and potential long-term health effects.

Delayed graft function (DGF) is a term used in the medical field, particularly in transplant medicine. It refers to a situation where a transplanted organ, most commonly a kidney, fails to function normally immediately after the transplantation procedure. This failure to function occurs within the first week after the transplant and is usually associated with poor urine output and elevated levels of creatinine in the blood.

DGF can be caused by several factors, including pre-existing conditions in the recipient, such as diabetes or hypertension, poor quality of the donor organ, or complications during the surgery. It may also result from the immune system's reaction to the transplanted organ, known as rejection.

In many cases, DGF can be managed with medical interventions, such as administering medications to help reduce inflammation and improve blood flow to the organ. However, in some instances, it may lead to more severe complications, including acute or chronic rejection of the transplanted organ, which could require additional treatments or even another transplant.

It's important to note that not all cases of DGF lead to long-term complications, and many patients with DGF can still go on to have successful transplants with proper management and care.

A chimera, in the context of medicine and biology, is a single organism that is composed of cells with different genetics. This can occur naturally in some situations, such as when fraternal twins do not fully separate in utero and end up sharing some organs or tissues. The term "chimera" can also refer to an organism that contains cells from two different species, which can happen in certain types of genetic research or medical treatments. For example, a patient's cells might be genetically modified in a lab and then introduced into their body to treat a disease; if some of these modified cells mix with the patient's original cells, the result could be a chimera.

It's worth noting that the term "chimera" comes from Greek mythology, where it referred to a fire-breathing monster that was part lion, part goat, and part snake. In modern scientific usage, the term has a specific technical meaning related to genetics and organisms, but it may still evoke images of fantastical creatures for some people.

Keratinocytes are the predominant type of cells found in the epidermis, which is the outermost layer of the skin. These cells are responsible for producing keratin, a tough protein that provides structural support and protection to the skin. Keratinocytes undergo constant turnover, with new cells produced in the basal layer of the epidermis and older cells moving upward and eventually becoming flattened and filled with keratin as they reach the surface of the skin, where they are then shed. They also play a role in the immune response and can release cytokines and other signaling molecules to help protect the body from infection and injury.

The "Graft versus Leukemia (GvL) Effect" is a term used in the field of hematopoietic stem cell transplantation to describe a desirable outcome where the donor's immune cells (graft) recognize and attack the recipient's leukemia cells (host). This effect occurs when the donor's T-lymphocytes, natural killer cells, and other immune cells become activated against the recipient's malignant cells.

The GvL effect is often observed in patients who have undergone allogeneic hematopoietic stem cell transplantation (allo-HSCT), where the donor and recipient are not genetically identical. The genetic disparity between the donor and recipient creates an environment that allows for the recognition of host leukemia cells as foreign, triggering an immune response against them.

While the GvL effect can be beneficial in eliminating residual leukemia cells, it can also lead to complications such as graft-versus-host disease (GvHD), where the donor's immune cells attack the recipient's healthy tissues. Balancing the GvL effect and minimizing GvHD remains a significant challenge in allo-HSCT.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Lymphocyte depletion is a medical term that refers to the reduction in the number of lymphocytes (a type of white blood cell) in the body. Lymphocytes play a crucial role in the immune system, as they help to fight off infections and diseases.

Lymphocyte depletion can occur due to various reasons, including certain medical treatments such as chemotherapy or radiation therapy, immune disorders, viral infections, or bone marrow transplantation. This reduction in lymphocytes can make a person more susceptible to infections and diseases, as their immune system is weakened.

There are different types of lymphocytes, including T cells, B cells, and natural killer (NK) cells, and lymphocyte depletion can affect one or all of these types. In some cases, lymphocyte depletion may be temporary and resolve on its own or with treatment. However, in other cases, it may be more prolonged and require medical intervention to manage the associated risks and complications.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Acute myeloid leukemia (AML) is a type of cancer that originates in the bone marrow, the soft inner part of certain bones where new blood cells are made. In AML, the immature cells, called blasts, in the bone marrow fail to mature into normal blood cells. Instead, these blasts accumulate and interfere with the production of normal blood cells, leading to a shortage of red blood cells (anemia), platelets (thrombocytopenia), and normal white blood cells (leukopenia).

AML is called "acute" because it can progress quickly and become severe within days or weeks without treatment. It is a type of myeloid leukemia, which means that it affects the myeloid cells in the bone marrow. Myeloid cells are a type of white blood cell that includes monocytes and granulocytes, which help fight infection and defend the body against foreign invaders.

In AML, the blasts can build up in the bone marrow and spread to other parts of the body, including the blood, lymph nodes, liver, spleen, and brain. This can cause a variety of symptoms, such as fatigue, fever, frequent infections, easy bruising or bleeding, and weight loss.

AML is typically treated with a combination of chemotherapy, radiation therapy, and/or stem cell transplantation. The specific treatment plan will depend on several factors, including the patient's age, overall health, and the type and stage of the leukemia.

Antigen presentation is the process by which certain cells in the immune system, known as antigen presenting cells (APCs), display foreign or abnormal proteins (antigens) on their surface to other immune cells, such as T-cells. This process allows the immune system to recognize and mount a response against harmful pathogens, infected or damaged cells.

There are two main types of antigen presentation: major histocompatibility complex (MHC) class I and MHC class II presentation.

1. MHC class I presentation: APCs, such as dendritic cells, macrophages, and B-cells, process and load antigens onto MHC class I molecules, which are expressed on the surface of almost all nucleated cells in the body. The MHC class I-antigen complex is then recognized by CD8+ T-cells (cytotoxic T-cells), leading to the destruction of infected or damaged cells.
2. MHC class II presentation: APCs, particularly dendritic cells and B-cells, process and load antigens onto MHC class II molecules, which are mainly expressed on the surface of professional APCs. The MHC class II-antigen complex is then recognized by CD4+ T-cells (helper T-cells), leading to the activation of other immune cells, such as B-cells and macrophages, to eliminate the pathogen or damaged cells.

In summary, antigen presentation is a crucial step in the adaptive immune response, allowing for the recognition and elimination of foreign or abnormal substances that could potentially harm the body.

Isoantibodies are antibodies produced by the immune system that recognize and react to antigens (markers) found on the cells or tissues of another individual of the same species. These antigens are typically proteins or carbohydrates present on the surface of red blood cells, but they can also be found on other cell types.

Isoantibodies are formed when an individual is exposed to foreign antigens, usually through blood transfusions, pregnancy, or tissue transplantation. The exposure triggers the immune system to produce specific antibodies against these antigens, which can cause a harmful immune response if the individual receives another transfusion or transplant from the same donor in the future.

There are two main types of isoantibodies:

1. Agglutinins: These are IgM antibodies that cause red blood cells to clump together (agglutinate) when mixed with the corresponding antigen. They develop rapidly after exposure and can cause immediate transfusion reactions or hemolytic disease of the newborn in pregnant women.
2. Hemolysins: These are IgG antibodies that destroy red blood cells by causing their membranes to become more permeable, leading to lysis (bursting) of the cells and release of hemoglobin into the plasma. They take longer to develop but can cause delayed transfusion reactions or hemolytic disease of the newborn in pregnant women.

Isoantibodies are detected through blood tests, such as the crossmatch test, which determines compatibility between a donor's and recipient's blood before transfusions or transplants.

Cold ischemia is a medical term that refers to the loss of blood flow and subsequent lack of oxygen delivery to an organ or tissue, which is then cooled and stored in a solution at temperatures between 0-4°C (32-39°F) for the purpose of transplantation. The term "cold" indicates the temperature range, while "ischemia" refers to the lack of blood flow and oxygen delivery to the tissue.

During cold ischemia, the metabolic activity of the organ or tissue slows down significantly, which helps to reduce the rate of cellular damage that would otherwise occur due to the absence of oxygen and nutrients. However, even with cold storage, there is still some degree of injury to the organ or tissue, and this can affect its function after transplantation.

The duration of cold ischemia time is an important factor in determining the success of a transplant procedure. Prolonged cold ischemia times are associated with increased risk of poor organ function and rejection, as well as decreased graft survival rates. Therefore, it is essential to minimize the cold ischemia time as much as possible during organ transplantation to ensure optimal outcomes for the recipient.

Tissue preservation is the process of preventing decomposition or autolysis (self-digestion) of tissues after they have been removed from a living organism. This is typically achieved through the use of fixatives, such as formaldehyde or glutaraldehyde, which stabilize proteins and other cellular structures by creating cross-links between them. Other methods of tissue preservation include freezing, dehydration, and embedding in paraffin or plastic resins. Properly preserved tissues can be stored for long periods of time and used for various research and diagnostic purposes, such as histology, immunohistochemistry, and molecular biology studies.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Actuarial analysis is a process used in the field of actuarial science to evaluate and manage risk, typically for financial or insurance purposes. It involves the use of statistical modeling, mathematical calculations, and data analysis to estimate the probability and potential financial impact of various events or outcomes.

In a medical context, actuarial analysis may be used to assess the risks and costs associated with different health conditions, treatments, or patient populations. For example, an actuary might use data on morbidity rates, mortality rates, and healthcare utilization patterns to estimate the expected costs of providing coverage to a group of patients with a particular medical condition.

Actuarial analysis can help healthcare organizations, insurers, and policymakers make informed decisions about resource allocation, pricing, and risk management. It can also be used to develop predictive models that identify high-risk populations or forecast future trends in healthcare utilization and costs.

Hematopoietic Stem Cell Mobilization is the process of mobilizing hematopoietic stem cells (HSCs) from the bone marrow into the peripheral blood. HSCs are immature cells that have the ability to differentiate into all types of blood cells, including red and white blood cells and platelets.

Mobilization is often achieved through the use of medications such as granulocyte-colony stimulating factor (G-CSF) or plerixafor, which stimulate the release of HSCs from the bone marrow into the peripheral blood. This allows for the collection of HSCs from the peripheral blood through a procedure called apheresis.

Mobilized HSCs can be used in stem cell transplantation procedures to reconstitute a patient's hematopoietic system after high-dose chemotherapy or radiation therapy. It is an important process in the field of regenerative medicine and has been used to treat various diseases such as leukemia, lymphoma, and sickle cell disease.

Biliary atresia is a rare, progressive liver disease in infants and children, characterized by the inflammation, fibrosis, and obstruction of the bile ducts. This results in the impaired flow of bile from the liver to the intestine, leading to cholestasis (accumulation of bile in the liver), jaundice (yellowing of the skin and eyes), and eventually liver cirrhosis and failure if left untreated.

The exact cause of biliary atresia is not known, but it is believed to be a combination of genetic and environmental factors. It can occur as an isolated condition or in association with other congenital anomalies. The diagnosis of biliary atresia is typically made through imaging studies, such as ultrasound and cholangiography, and confirmed by liver biopsy.

The standard treatment for biliary atresia is a surgical procedure called the Kasai portoenterostomy, which aims to restore bile flow from the liver to the intestine. In this procedure, the damaged bile ducts are removed and replaced with a loop of intestine that is connected directly to the liver. The success of the Kasai procedure depends on several factors, including the age at diagnosis and surgery, the extent of liver damage, and the skill and experience of the surgeon.

Despite successful Kasai surgery, many children with biliary atresia will eventually develop cirrhosis and require liver transplantation. The prognosis for children with biliary atresia has improved significantly over the past few decades due to earlier diagnosis, advances in surgical techniques, and better postoperative care. However, it remains a challenging condition that requires close monitoring and multidisciplinary management by pediatric hepatologists, surgeons, and other healthcare professionals.

Carcinoma, islet cell, also known as pancreatic neuroendocrine tumor or pancreatic endocrine carcinoma, is a type of malignancy that arises from the islets of Langerhans within the pancreas. These tumors can produce and release hormones such as insulin, glucagon, gastrin, and somatostatin, leading to various clinical syndromes depending on the specific hormone produced.

Islet cell carcinomas are relatively rare, accounting for less than 5% of all pancreatic malignancies. They can occur at any age but are more common in adults between 40 and 60 years old. The prognosis for islet cell carcinoma varies widely depending on the stage and grade of the tumor, as well as the presence or absence of metastases. Treatment options may include surgery, chemotherapy, radiation therapy, and targeted therapies.

Glyceraldehyde is a triose, a simple sugar consisting of three carbon atoms. It is a clear, colorless, sweet-tasting liquid that is used as a sweetener and preservative in the food industry. In the medical field, glyceraldehyde is used in research and diagnostics, particularly in the study of carbohydrate metabolism and enzyme function.

Glyceraldehyde is also an important intermediate in the glycolytic pathway, which is a series of reactions that convert glucose into pyruvate, producing ATP and NADH as energy-rich compounds. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an enzyme that catalyzes the conversion of glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate in this pathway.

In addition, glyceraldehyde has been studied for its potential role in the development of diabetic complications and other diseases associated with carbohydrate metabolism disorders.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

A Lymphocyte Culture Test, Mixed (LCTM) is not a standardized medical test with a universally accepted definition. However, in some contexts, it may refer to a laboratory procedure where both T-lymphocytes and B-lymphocytes are cultured together from a sample of peripheral blood or other tissues. This test is sometimes used in research or specialized diagnostic settings to evaluate the immune function or to study the interactions between T-cells and B-cells in response to various stimuli, such as antigens or mitogens.

The test typically involves isolating lymphocytes from a sample, adding them to a culture medium along with appropriate stimulants, and then incubating the mixture for a period of time. The resulting responses, such as proliferation, differentiation, or production of cytokines, can be measured and analyzed to gain insights into the immune function or dysfunction.

It's important to note that LCTM is not a routine diagnostic test and its use and interpretation may vary depending on the specific laboratory or research setting.

Immunologic graft enhancement refers to the manipulation of the immune system to increase the acceptance and survival of a transplanted tissue or organ (graft) in the recipient's body. This is achieved by suppressing the immune response that recognizes and attacks the graft as foreign, thereby reducing the risk of rejection.

Various strategies can be used for immunologic graft enhancement, including:

1. Immunosuppressive therapy: The use of medications to inhibit the activity of the immune system and prevent it from attacking the graft. Commonly used drugs include corticosteroids, calcineurin inhibitors, antiproliferative agents, and monoclonal antibodies.
2. Induction therapy: The administration of high doses of immunosuppressive drugs before or immediately after transplantation to suppress the initial immune response and reduce the risk of early rejection.
3. Tolerance induction: The manipulation of the recipient's immune system to promote tolerance to the graft, allowing for long-term acceptance without the need for ongoing immunosuppression. This can be achieved through various methods, such as costimulatory blockade, regulatory T cell therapy, or mixed chimerism.
4. Desensitization: The reduction of antibodies against the graft in sensitized recipients, who have previously been exposed to foreign antigens and developed an immune response. This can be achieved through various methods, such as plasmapheresis, intravenous immunoglobulin therapy, or protein A immunoabsorption.

It is important to note that while these strategies can enhance graft survival and reduce the risk of rejection, they also increase the risk of infection and malignancy due to the suppression of the immune system. Therefore, careful monitoring and management of the recipient's immune status is essential for successful transplantation outcomes.

Infection is defined medically as the invasion and multiplication of pathogenic microorganisms such as bacteria, viruses, fungi, or parasites within the body, which can lead to tissue damage, illness, and disease. This process often triggers an immune response from the host's body in an attempt to eliminate the infectious agents and restore homeostasis. Infections can be transmitted through various routes, including airborne particles, direct contact with contaminated surfaces or bodily fluids, sexual contact, or vector-borne transmission. The severity of an infection may range from mild and self-limiting to severe and life-threatening, depending on factors such as the type and quantity of pathogen, the host's immune status, and any underlying health conditions.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Lymphocyte activation is the process by which B-cells and T-cells (types of lymphocytes) become activated to perform effector functions in an immune response. This process involves the recognition of specific antigens presented on the surface of antigen-presenting cells, such as dendritic cells or macrophages.

The activation of B-cells leads to their differentiation into plasma cells that produce antibodies, while the activation of T-cells results in the production of cytotoxic T-cells (CD8+ T-cells) that can directly kill infected cells or helper T-cells (CD4+ T-cells) that assist other immune cells.

Lymphocyte activation involves a series of intracellular signaling events, including the binding of co-stimulatory molecules and the release of cytokines, which ultimately result in the expression of genes involved in cell proliferation, differentiation, and effector functions. The activation process is tightly regulated to prevent excessive or inappropriate immune responses that can lead to autoimmunity or chronic inflammation.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Bone marrow is the spongy tissue found inside certain bones in the body, such as the hips, thighs, and vertebrae. It is responsible for producing blood-forming cells, including red blood cells, white blood cells, and platelets. There are two types of bone marrow: red marrow, which is involved in blood cell production, and yellow marrow, which contains fatty tissue.

Red bone marrow contains hematopoietic stem cells, which can differentiate into various types of blood cells. These stem cells continuously divide and mature to produce new blood cells that are released into the circulation. Red blood cells carry oxygen throughout the body, white blood cells help fight infections, and platelets play a crucial role in blood clotting.

Bone marrow also serves as a site for immune cell development and maturation. It contains various types of immune cells, such as lymphocytes, macrophages, and dendritic cells, which help protect the body against infections and diseases.

Abnormalities in bone marrow function can lead to several medical conditions, including anemia, leukopenia, thrombocytopenia, and various types of cancer, such as leukemia and multiple myeloma. Bone marrow aspiration and biopsy are common diagnostic procedures used to evaluate bone marrow health and function.

A hapten is a small molecule that can elicit an immune response only when it is attached to a larger carrier protein. On its own, a hapten is too small to be recognized by the immune system as a foreign substance. However, when it binds to a carrier protein, it creates a new antigenic site that can be detected by the immune system. This process is known as haptenization.

Haptens are important in the study of immunology and allergies because they can cause an allergic response when they bind to proteins in the body. For example, certain chemicals found in cosmetics, drugs, or industrial products can act as haptens and trigger an allergic reaction when they come into contact with the skin or mucous membranes. The resulting immune response can cause symptoms such as rash, itching, or inflammation.

Haptens can also be used in the development of vaccines and diagnostic tests, where they are attached to carrier proteins to stimulate an immune response and produce specific antibodies that can be measured or used for therapy.

Allergic contact dermatitis is a type of inflammatory skin reaction that occurs when the skin comes into contact with a substance (allergen) that the immune system recognizes as foreign and triggers an allergic response. This condition is characterized by redness, itching, swelling, blistering, and cracking of the skin, which usually develops within 24-48 hours after exposure to the allergen. Common allergens include metals (such as nickel), rubber, medications, fragrances, and cosmetics. It is important to note that a person must first be sensitized to the allergen before developing an allergic response upon subsequent exposures.

Photoallergic dermatitis is a type of contact dermatitis that occurs as a result of an allergic reaction to a substance after it has been exposed to ultraviolet (UV) light. This means that when the substance (allergen) comes into contact with the skin and is then exposed to UV light, usually from the sun, an immune response is triggered, leading to an inflammatory reaction in the skin.

The symptoms of photoallergic dermatitis include redness, swelling, itching, and blistering or crusting of the skin. These symptoms typically appear within 24-72 hours after exposure to the allergen and UV light. The rash can occur anywhere on the body but is most commonly found in areas that have been exposed to the sun, such as the face, neck, arms, and hands.

Common allergens that can cause photoallergic dermatitis include certain medications, fragrances, sunscreens, and topical skin products. Once a person has become sensitized to a particular allergen, even small amounts of it can trigger a reaction when exposed to UV light.

Prevention measures for photoallergic dermatitis include avoiding known allergens, wearing protective clothing, and using broad-spectrum sunscreens that protect against both UVA and UVB rays. If a reaction does occur, topical corticosteroids or oral antihistamines may be prescribed to help relieve symptoms.

Non-Hodgkin lymphoma (NHL) is a type of cancer that originates in the lymphatic system, which is part of the immune system. It involves the abnormal growth and proliferation of malignant lymphocytes (a type of white blood cell), leading to the formation of tumors in lymph nodes, spleen, bone marrow, or other organs. NHL can be further classified into various subtypes based on the specific type of lymphocyte involved and its characteristics.

The symptoms of Non-Hodgkin lymphoma may include:

* Painless swelling of lymph nodes in the neck, armpits, or groin
* Persistent fatigue
* Unexplained weight loss
* Fever
* Night sweats
* Itchy skin

The exact cause of Non-Hodgkin lymphoma is not well understood, but it has been associated with certain risk factors such as age (most common in people over 60), exposure to certain chemicals, immune system deficiencies, and infection with viruses like Epstein-Barr virus or HIV.

Treatment for Non-Hodgkin lymphoma depends on the stage and subtype of the disease, as well as the patient's overall health. Treatment options may include chemotherapy, radiation therapy, immunotherapy, targeted therapy, stem cell transplantation, or a combination of these approaches. Regular follow-up care is essential to monitor the progression of the disease and manage any potential long-term side effects of treatment.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

Tolbutamide is defined as a first-generation sulfonylurea oral hypoglycemic agent used in the management of type 2 diabetes mellitus. It acts by stimulating the release of insulin from the pancreas, thereby reducing blood glucose levels. Tolbutamide is metabolized and excreted rapidly, with a half-life of about 6 hours, making it useful in patients with renal impairment.

Common side effects of tolbutamide include gastrointestinal symptoms such as nausea, vomiting, and diarrhea, as well as skin reactions such as rash and itching. Hypoglycemia is a potential adverse effect, particularly if the medication is dosed improperly or if the patient skips meals. Tolbutamide should be used with caution in patients with hepatic impairment, kidney disease, and the elderly due to an increased risk of hypoglycemia.

It's important to note that tolbutamide is not commonly used as a first-line treatment for type 2 diabetes mellitus due to the availability of newer medications with more favorable side effect profiles and efficacy.

Hepatic Veno-Occlusive Disease (VOD), also known as Sinusoidal Obstruction Syndrome (SOS), is a medical condition characterized by the obstruction or blockage of the small veins (venules) in the liver. This results in the backup of blood in the liver, leading to swelling and damage to the liver cells.

The obstruction is usually caused by the injury and inflammation of the endothelial cells lining the venules, which can be triggered by various factors such as chemotherapy drugs, radiation therapy, bone marrow transplantation, or exposure to certain toxins. The damage to the liver can lead to symptoms such as fluid accumulation in the abdomen (ascites), enlarged liver, jaundice, and in severe cases, liver failure.

The diagnosis of VOD/SOS is typically made based on a combination of clinical signs, symptoms, and imaging studies, such as ultrasound or CT scan. In some cases, a liver biopsy may be necessary to confirm the diagnosis. Treatment for VOD/SOS is primarily supportive, with the goal of managing symptoms and preventing complications. This may include medications to reduce swelling, improve liver function, and prevent infection. In severe cases, liver transplantation may be considered as a last resort.

A Glucose Tolerance Test (GTT) is a medical test used to diagnose prediabetes, type 2 diabetes, and gestational diabetes. It measures how well your body is able to process glucose, which is a type of sugar.

During the test, you will be asked to fast (not eat or drink anything except water) for at least eight hours before the test. Then, a healthcare professional will take a blood sample to measure your fasting blood sugar level. After that, you will be given a sugary drink containing a specific amount of glucose. Your blood sugar levels will be measured again after two hours and sometimes also after one hour.

The results of the test will indicate how well your body is able to process the glucose and whether you have normal, impaired, or diabetic glucose tolerance. If your blood sugar levels are higher than normal but not high enough to be diagnosed with diabetes, you may have prediabetes, which means that you are at increased risk of developing type 2 diabetes in the future.

It is important to note that a Glucose Tolerance Test should be performed under the supervision of a healthcare professional, as high blood sugar levels can be dangerous if not properly managed.

Surgical anastomosis is a medical procedure that involves the connection of two tubular structures, such as blood vessels or intestines, to create a continuous passage. This technique is commonly used in various types of surgeries, including vascular, gastrointestinal, and orthopedic procedures.

During a surgical anastomosis, the ends of the two tubular structures are carefully prepared by removing any damaged or diseased tissue. The ends are then aligned and joined together using sutures, staples, or other devices. The connection must be secure and leak-free to ensure proper function and healing.

The success of a surgical anastomosis depends on several factors, including the patient's overall health, the location and condition of the structures being joined, and the skill and experience of the surgeon. Complications such as infection, bleeding, or leakage can occur, which may require additional medical intervention or surgery.

Proper postoperative care is also essential to ensure the success of a surgical anastomosis. This may include monitoring for signs of complications, administering medications to prevent infection and promote healing, and providing adequate nutrition and hydration.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

In epidemiology, the incidence of a disease is defined as the number of new cases of that disease within a specific population over a certain period of time. It is typically expressed as a rate, with the number of new cases in the numerator and the size of the population at risk in the denominator. Incidence provides information about the risk of developing a disease during a given time period and can be used to compare disease rates between different populations or to monitor trends in disease occurrence over time.

Liver neoplasms refer to abnormal growths in the liver that can be benign or malignant. Benign liver neoplasms are non-cancerous tumors that do not spread to other parts of the body, while malignant liver neoplasms are cancerous tumors that can invade and destroy surrounding tissue and spread to other organs.

Liver neoplasms can be primary, meaning they originate in the liver, or secondary, meaning they have metastasized (spread) to the liver from another part of the body. Primary liver neoplasms can be further classified into different types based on their cell of origin and behavior, including hepatocellular carcinoma, cholangiocarcinoma, and hepatic hemangioma.

The diagnosis of liver neoplasms typically involves a combination of imaging studies, such as ultrasound, CT scan, or MRI, and biopsy to confirm the type and stage of the tumor. Treatment options depend on the type and extent of the neoplasm and may include surgery, radiation therapy, chemotherapy, or liver transplantation.

The "Graft vs Tumor Effect" is a term used in the field of transplantation medicine, particularly in allogeneic hematopoietic stem cell transplantation (HSCT). It refers to the anti-tumor activity exhibited by donor immune cells (graft) against residual malignant cells (tumor) in the recipient's body.

After HSCT, the donor's immune system is reconstituted in the recipient's body. If the donor and recipient are not identical, there may be differences in their major and minor histocompatibility antigens, which can lead to a graft-versus-host disease (GVHD) where the donor's immune cells attack the recipient's tissues. However, these same donor immune cells can also recognize and target any residual tumor cells in the recipient's body, leading to a graft vs tumor effect.

This effect can contribute to the elimination of residual malignant cells and reduce the risk of relapse, particularly in hematological malignancies such as leukemia and lymphoma. However, it is important to balance this effect with the risk of GVHD, which can cause significant morbidity and mortality. Therefore, strategies such as donor selection, graft manipulation, and immunosuppressive therapy are used to optimize the graft vs tumor effect while minimizing GVHD.

Antineoplastic combined chemotherapy protocols refer to a treatment plan for cancer that involves the use of more than one antineoplastic (chemotherapy) drug given in a specific sequence and schedule. The combination of drugs is used because they may work better together to destroy cancer cells compared to using a single agent alone. This approach can also help to reduce the likelihood of cancer cells becoming resistant to the treatment.

The choice of drugs, dose, duration, and frequency are determined by various factors such as the type and stage of cancer, patient's overall health, and potential side effects. Combination chemotherapy protocols can be used in various settings, including as a primary treatment, adjuvant therapy (given after surgery or radiation to kill any remaining cancer cells), neoadjuvant therapy (given before surgery or radiation to shrink the tumor), or palliative care (to alleviate symptoms and prolong survival).

It is important to note that while combined chemotherapy protocols can be effective in treating certain types of cancer, they can also cause significant side effects, including nausea, vomiting, hair loss, fatigue, and an increased risk of infection. Therefore, patients undergoing such treatment should be closely monitored and managed by a healthcare team experienced in administering chemotherapy.

Somatostatin is a hormone that inhibits the release of several hormones and also has a role in slowing down digestion. It is produced by the body in various parts of the body, including the hypothalamus (a part of the brain), the pancreas, and the gastrointestinal tract.

Somatostatin exists in two forms: somatostatin-14 and somatostatin-28, which differ in their length. Somatostatin-14 is the predominant form found in the brain, while somatostatin-28 is the major form found in the gastrointestinal tract.

Somatostatin has a wide range of effects on various physiological processes, including:

* Inhibiting the release of several hormones such as growth hormone, insulin, glucagon, and gastrin
* Slowing down digestion by inhibiting the release of digestive enzymes from the pancreas and reducing blood flow to the gastrointestinal tract
* Regulating neurotransmission in the brain

Somatostatin is used clinically as a diagnostic tool for detecting certain types of tumors that overproduce growth hormone or other hormones, and it is also used as a treatment for some conditions such as acromegaly (a condition characterized by excessive growth hormone production) and gastrointestinal disorders.

Precursor Cell Lymphoblastic Leukemia-Lymphoma (previously known as Precursor T-lymphoblastic Leukemia/Lymphoma) is a type of cancer that affects the early stages of T-cell development. It is a subtype of acute lymphoblastic leukemia (ALL), which is characterized by the overproduction of immature white blood cells called lymphoblasts in the bone marrow, blood, and other organs.

In Precursor Cell Lymphoblastic Leukemia-Lymphoma, these abnormal lymphoblasts accumulate primarily in the lymphoid tissues such as the thymus and lymph nodes, leading to the enlargement of these organs. This subtype is more aggressive than other forms of ALL and has a higher risk of spreading to the central nervous system (CNS).

The medical definition of Precursor Cell Lymphoblastic Leukemia-Lymphoma includes:

1. A malignant neoplasm of immature T-cell precursors, also known as lymphoblasts.
2. Characterized by the proliferation and accumulation of these abnormal cells in the bone marrow, blood, and lymphoid tissues such as the thymus and lymph nodes.
3. Often associated with chromosomal abnormalities, genetic mutations, or aberrant gene expression that contribute to its aggressive behavior and poor prognosis.
4. Typically presents with symptoms related to bone marrow failure (anemia, neutropenia, thrombocytopenia), lymphadenopathy (swollen lymph nodes), hepatosplenomegaly (enlarged liver and spleen), and potential CNS involvement.
5. Diagnosed through a combination of clinical evaluation, imaging studies, and laboratory tests, including bone marrow aspiration and biopsy, immunophenotyping, cytogenetic analysis, and molecular genetic testing.
6. Treated with intensive multi-agent chemotherapy regimens, often combined with radiation therapy and/or stem cell transplantation to achieve remission and improve survival outcomes.

Tissue culture techniques refer to the methods used to maintain and grow cells, tissues or organs from multicellular organisms in an artificial environment outside of the living body, called an in vitro culture. These techniques are widely used in various fields such as biology, medicine, and agriculture for research, diagnostics, and therapeutic purposes.

The basic components of tissue culture include a sterile growth medium that contains nutrients, growth factors, and other essential components to support the growth of cells or tissues. The growth medium is often supplemented with antibiotics to prevent contamination by microorganisms. The cells or tissues are cultured in specialized containers called culture vessels, which can be plates, flasks, or dishes, depending on the type and scale of the culture.

There are several types of tissue culture techniques, including:

1. Monolayer Culture: In this technique, cells are grown as a single layer on a flat surface, allowing for easy observation and manipulation of individual cells.
2. Organoid Culture: This method involves growing three-dimensional structures that resemble the organization and function of an organ in vivo.
3. Co-culture: In co-culture, two or more cell types are grown together to study their interactions and communication.
4. Explant Culture: In this technique, small pieces of tissue are cultured to maintain the original structure and organization of the cells within the tissue.
5. Primary Culture: This refers to the initial culture of cells directly isolated from a living organism. These cells can be further subcultured to generate immortalized cell lines.

Tissue culture techniques have numerous applications, such as studying cell behavior, drug development and testing, gene therapy, tissue engineering, and regenerative medicine.

"Unrelated donors" in the context of medicine, specifically in transplantation medicine, refer to individuals who are not genetically related to the recipient and are searched for in national or international registries. They are identified as having a similar human leukocyte antigen (HLA) type to the recipient, making them suitable to donate stem cells for bone marrow transplantation or solid organs such as kidneys, liver, heart, lungs, and pancreas.

The process of finding an unrelated donor is coordinated by transplant centers and registries, such as the National Marrow Donor Program (NMDP) in the United States or World Marrow Donor Association (WMDA) globally. The success of finding a suitable unrelated donor depends on various factors, including the recipient's HLA type, age, ethnicity, and medical urgency.

It is important to note that unrelated donors undergo rigorous screening processes to ensure their health and suitability for donation, as well as to minimize any potential risks to both the donor and the recipient.

Isoantigens are antigens that are present on the cells or tissues of one individual of a species, but are absent or different in another individual of the same species. They are also known as "alloantigens." Isoantigens are most commonly found on the surface of red blood cells and other tissues, and they can stimulate an immune response when transplanted into a different individual. This is because the recipient's immune system recognizes the isoantigens as foreign and mounts a defense against them. Isoantigens are important in the field of transplantation medicine, as they must be carefully matched between donor and recipient to reduce the risk of rejection.

Hepatectomy is a surgical procedure that involves the removal of part or all of the liver. This procedure can be performed for various reasons, such as removing cancerous or non-cancerous tumors, treating liver trauma, or donating a portion of the liver to another person in need of a transplant (live donor hepatectomy). The extent of the hepatectomy depends on the medical condition and overall health of the patient. It is a complex procedure that requires significant expertise and experience from the surgical team due to the liver's unique anatomy, blood supply, and regenerative capabilities.

Hematopoiesis is the process of forming and developing blood cells. It occurs in the bone marrow and includes the production of red blood cells (erythropoiesis), white blood cells (leukopoiesis), and platelets (thrombopoiesis). This process is regulated by various growth factors, hormones, and cytokines. Hematopoiesis begins early in fetal development and continues throughout a person's life. Disorders of hematopoiesis can result in conditions such as anemia, leukopenia, leukocytosis, thrombocytopenia, or thrombocytosis.

Lymphoproliferative disorders (LPDs) are a group of diseases characterized by the excessive proliferation of lymphoid cells, which are crucial components of the immune system. These disorders can arise from both B-cells and T-cells, leading to various clinical manifestations ranging from benign to malignant conditions.

LPDs can be broadly classified into reactive and neoplastic categories:

1. Reactive Lymphoproliferative Disorders: These are typically triggered by infections, autoimmune diseases, or immunodeficiency states. They involve an exaggerated response of the immune system leading to the excessive proliferation of lymphoid cells. Examples include:
* Infectious mononucleosis (IM) caused by Epstein-Barr virus (EBV)
* Lymph node enlargement due to various infections or autoimmune disorders
* Post-transplant lymphoproliferative disorder (PTLD), which occurs in the context of immunosuppression following organ transplantation
2. Neoplastic Lymphoproliferative Disorders: These are malignant conditions characterized by uncontrolled growth and accumulation of abnormal lymphoid cells, leading to the formation of tumors. They can be further classified into Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL). Examples include:
* Hodgkin lymphoma (HL): Classical HL and nodular lymphocyte-predominant HL
* Non-Hodgkin lymphoma (NHL): Various subtypes, such as diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, and Burkitt lymphoma

It is important to note that the distinction between reactive and neoplastic LPDs can sometimes be challenging, requiring careful clinical, histopathological, immunophenotypic, and molecular evaluations. Proper diagnosis and classification of LPDs are crucial for determining appropriate treatment strategies and predicting patient outcomes.

HLA-DR antigens are a type of human leukocyte antigen (HLA) class II molecule that plays a crucial role in the immune system. They are found on the surface of antigen-presenting cells, such as dendritic cells, macrophages, and B lymphocytes. HLA-DR molecules present peptide antigens to CD4+ T cells, also known as helper T cells, thereby initiating an immune response.

HLA-DR antigens are highly polymorphic, meaning that there are many different variants of these molecules in the human population. This diversity allows for a wide range of potential peptide antigens to be presented and recognized by the immune system. HLA-DR antigens are encoded by genes located on chromosome 6 in the major histocompatibility complex (MHC) region.

In transplantation, HLA-DR compatibility between donor and recipient is an important factor in determining the success of the transplant. Incompatibility can lead to a heightened immune response against the transplanted organ or tissue, resulting in rejection. Additionally, certain HLA-DR types have been associated with increased susceptibility to autoimmune diseases, such as rheumatoid arthritis and multiple sclerosis.

'C3H' is the name of an inbred strain of laboratory mice that was developed at the Jackson Laboratory in Bar Harbor, Maine. The mice are characterized by their uniform genetic background and have been widely used in biomedical research for many decades.

The C3H strain is particularly notable for its susceptibility to certain types of cancer, including mammary tumors and lymphomas. It also has a high incidence of age-related macular degeneration and other eye diseases. The strain is often used in studies of immunology, genetics, and carcinogenesis.

Like all inbred strains, the C3H mice are the result of many generations of brother-sister matings, which leads to a high degree of genetic uniformity within the strain. This makes them useful for studying the effects of specific genes or environmental factors on disease susceptibility and other traits. However, it also means that they may not always be representative of the genetic diversity found in outbred populations, including humans.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

CD8-positive T-lymphocytes, also known as CD8+ T cells or cytotoxic T cells, are a type of white blood cell that plays a crucial role in the adaptive immune system. They are named after the CD8 molecule found on their surface, which is a protein involved in cell signaling and recognition.

CD8+ T cells are primarily responsible for identifying and destroying virus-infected cells or cancerous cells. When activated, they release cytotoxic granules that contain enzymes capable of inducing apoptosis (programmed cell death) in the target cells. They also produce cytokines such as interferon-gamma, which can help coordinate the immune response and activate other immune cells.

CD8+ T cells are generated in the thymus gland and are a type of T cell, which is a lymphocyte that matures in the thymus and plays a central role in cell-mediated immunity. They recognize and respond to specific antigens presented on the surface of infected or cancerous cells in conjunction with major histocompatibility complex (MHC) class I molecules.

Overall, CD8+ T cells are an essential component of the immune system's defense against viral infections and cancer.

Postoperative care refers to the comprehensive medical treatment and nursing attention provided to a patient following a surgical procedure. The goal of postoperative care is to facilitate the patient's recovery, prevent complications, manage pain, ensure proper healing of the incision site, and maintain overall health and well-being until the patient can resume their normal activities.

This type of care includes monitoring vital signs, managing pain through medication or other techniques, ensuring adequate hydration and nutrition, helping the patient with breathing exercises to prevent lung complications, encouraging mobility to prevent blood clots, monitoring for signs of infection or other complications, administering prescribed medications, providing wound care, and educating the patient about postoperative care instructions.

The duration of postoperative care can vary depending on the type and complexity of the surgical procedure, as well as the individual patient's needs and overall health status. It may be provided in a hospital setting, an outpatient surgery center, or in the patient's home, depending on the level of care required.

Regeneration in a medical context refers to the process of renewal, restoration, and growth that replaces damaged or missing cells, tissues, organs, or even whole limbs in some organisms. This complex biological process involves various cellular and molecular mechanisms, such as cell proliferation, differentiation, and migration, which work together to restore the structural and functional integrity of the affected area.

In human medicine, regeneration has attracted significant interest due to its potential therapeutic applications in treating various conditions, including degenerative diseases, trauma, and congenital disorders. Researchers are actively studying the underlying mechanisms of regeneration in various model organisms to develop novel strategies for promoting tissue repair and regeneration in humans.

Examples of regeneration in human medicine include liver regeneration after partial hepatectomy, where the remaining liver lobes can grow back to their original size within weeks, and skin wound healing, where keratinocytes migrate and proliferate to close the wound and restore the epidermal layer. However, the regenerative capacity of humans is limited compared to some other organisms, such as planarians and axolotls, which can regenerate entire body parts or even their central nervous system.

Diazoxide is a medication that is primarily used to treat hypoglycemia (low blood sugar) in newborns and infants. It works by inhibiting the release of insulin from the pancreas, which helps to prevent the blood sugar levels from dropping too low. Diazoxide may also be used in adults with certain rare conditions that cause hypoglycemia.

In addition to its use as a hypoglycemic agent, diazoxide has been used off-label for other indications, such as the treatment of hypertension (high blood pressure) that is resistant to other medications. It works as a vasodilator, relaxing the smooth muscle in the walls of blood vessels and causing them to widen, which reduces the resistance to blood flow and lowers blood pressure.

Diazoxide is available as an injection and is typically administered in a hospital setting under the close supervision of a healthcare professional. Common side effects of diazoxide include fluid retention, headache, nausea, and vomiting. It may also cause rare but serious side effects such as heart rhythm disturbances and allergic reactions.

Chronic myelogenous leukemia (CML), BCR-ABL positive is a specific subtype of leukemia that originates in the bone marrow and involves the excessive production of mature granulocytes, a type of white blood cell. It is characterized by the presence of the Philadelphia chromosome, which is formed by a genetic translocation between chromosomes 9 and 22, resulting in the formation of the BCR-ABL fusion gene. This gene encodes for an abnormal protein with increased tyrosine kinase activity, leading to uncontrolled cell growth and division. The presence of this genetic abnormality is used to confirm the diagnosis and guide treatment decisions.

Myelodysplastic syndromes (MDS) are a group of diverse bone marrow disorders characterized by dysplasia (abnormal development or maturation) of one or more types of blood cells or by ineffective hematopoiesis, resulting in cytopenias (lower than normal levels of one or more types of blood cells). MDS can be classified into various subtypes based on the number and type of cytopenias, the degree of dysplasia, the presence of ring sideroblasts, and cytogenetic abnormalities.

The condition primarily affects older adults, with a median age at diagnosis of around 70 years. MDS can evolve into acute myeloid leukemia (AML) in approximately 30-40% of cases. The pathophysiology of MDS involves genetic mutations and chromosomal abnormalities that lead to impaired differentiation and increased apoptosis of hematopoietic stem and progenitor cells, ultimately resulting in cytopenias and an increased risk of developing AML.

The diagnosis of MDS typically requires a bone marrow aspiration and biopsy, along with cytogenetic and molecular analyses to identify specific genetic mutations and chromosomal abnormalities. Treatment options for MDS depend on the subtype, severity of cytopenias, and individual patient factors. These may include supportive care measures, such as transfusions and growth factor therapy, or more aggressive treatments, such as chemotherapy and stem cell transplantation.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Azathioprine is an immunosuppressive medication that is used to prevent the rejection of transplanted organs and to treat autoimmune diseases such as rheumatoid arthritis, lupus, and inflammatory bowel disease. It works by suppressing the activity of the immune system, which helps to reduce inflammation and prevent the body from attacking its own tissues.

Azathioprine is a prodrug that is converted into its active form, 6-mercaptopurine, in the body. This medication can have significant side effects, including decreased white blood cell count, increased risk of infection, and liver damage. It may also increase the risk of certain types of cancer, particularly skin cancer and lymphoma.

Healthcare professionals must carefully monitor patients taking azathioprine for these potential side effects. They may need to adjust the dosage or stop the medication altogether if serious side effects occur. Patients should also take steps to reduce their risk of infection and skin cancer, such as practicing good hygiene, avoiding sun exposure, and using sunscreen.

'Cell lineage' is a term used in biology and medicine to describe the developmental history or relationship of a cell or group of cells to other cells, tracing back to the original progenitor or stem cell. It refers to the series of cell divisions and differentiation events that give rise to specific types of cells in an organism over time.

In simpler terms, cell lineage is like a family tree for cells, showing how they are related to each other through a chain of cell division and specialization events. This concept is important in understanding the development, growth, and maintenance of tissues and organs in living beings.

Vidarabine is an antiviral medication used to treat herpes simplex infections, particularly severe cases such as herpes encephalitis (inflammation of the brain caused by the herpes simplex virus). It works by interfering with the DNA replication of the virus.

In medical terms, vidarabine is a nucleoside analogue that is phosphorylated intracellularly to the active form, vidarabine triphosphate. This compound inhibits viral DNA polymerase and incorporates into viral DNA, causing termination of viral DNA synthesis.

Vidarabine was previously used as an injectable medication but has largely been replaced by more modern antiviral drugs such as acyclovir due to its greater efficacy and lower toxicity.

Hematologic diseases, also known as hematological disorders, refer to a group of conditions that affect the production, function, or destruction of blood cells or blood-related components, such as plasma. These diseases can affect erythrocytes (red blood cells), leukocytes (white blood cells), and platelets (thrombocytes), as well as clotting factors and hemoglobin.

Hematologic diseases can be broadly categorized into three main types:

1. Anemia: A condition characterized by a decrease in the total red blood cell count, hemoglobin, or hematocrit, leading to insufficient oxygen transport to tissues and organs. Examples include iron deficiency anemia, sickle cell anemia, and aplastic anemia.
2. Leukemia and other disorders of white blood cells: These conditions involve the abnormal production or function of leukocytes, which can lead to impaired immunity and increased susceptibility to infections. Examples include leukemias (acute lymphoblastic leukemia, chronic myeloid leukemia), lymphomas, and myelodysplastic syndromes.
3. Platelet and clotting disorders: These diseases affect the production or function of platelets and clotting factors, leading to abnormal bleeding or clotting tendencies. Examples include hemophilia, von Willebrand disease, thrombocytopenia, and disseminated intravascular coagulation (DIC).

Hematologic diseases can have various causes, including genetic defects, infections, autoimmune processes, environmental factors, or malignancies. Proper diagnosis and management of these conditions often require the expertise of hematologists, who specialize in diagnosing and treating disorders related to blood and its components.

Salvage therapy, in the context of medical oncology, refers to the use of treatments that are typically considered less desirable or more aggressive, often due to greater side effects or lower efficacy, when standard treatment options have failed. These therapies are used to attempt to salvage a response or delay disease progression in patients with refractory or relapsed cancers.

In other words, salvage therapy is a last-resort treatment approach for patients who have not responded to first-line or subsequent lines of therapy. It may involve the use of different drug combinations, higher doses of chemotherapy, immunotherapy, targeted therapy, or radiation therapy. The goal of salvage therapy is to extend survival, improve quality of life, or achieve disease stabilization in patients with limited treatment options.

Glucose Transporter Type 2 (GLUT2) is a protein responsible for the facilitated diffusion of glucose across the cell membrane. It is a member of the solute carrier family 2 (SLC2), also known as the facilitative glucose transporter family. GLUT2 is primarily expressed in the liver, kidney, and intestines, where it plays a crucial role in regulating glucose homeostasis.

In the pancreas, GLUT2 is found in the beta cells of the islets of Langerhans, where it facilitates the uptake of glucose from the bloodstream into the cells. Once inside the cell, glucose is metabolized, leading to an increase in ATP levels and the closure of ATP-sensitive potassium channels. This results in the depolarization of the cell membrane and the subsequent opening of voltage-gated calcium channels, allowing for the release of insulin from secretory vesicles into the bloodstream.

In the intestines, GLUT2 is expressed in the enterocytes of the small intestine, where it facilitates the absorption of glucose and other monosaccharides from the lumen into the bloodstream. In the kidneys, GLUT2 is found in the proximal tubules, where it plays a role in reabsorbing glucose from the filtrate back into the bloodstream.

Mutations in the gene that encodes GLUT2 (SLC2A2) can lead to several genetic disorders, including Fanconi-Bickel syndrome, which is characterized by impaired glucose and galactose absorption in the intestines, hepatic glycogen accumulation, and renal tubular dysfunction.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

The Kaplan-Meier estimate is a statistical method used to calculate the survival probability over time in a population. It is commonly used in medical research to analyze time-to-event data, such as the time until a patient experiences a specific event like disease progression or death. The Kaplan-Meier estimate takes into account censored data, which occurs when some individuals are lost to follow-up before experiencing the event of interest.

The method involves constructing a survival curve that shows the proportion of subjects still surviving at different time points. At each time point, the survival probability is calculated as the product of the conditional probabilities of surviving from one time point to the next. The Kaplan-Meier estimate provides an unbiased and consistent estimator of the survival function, even when censoring is present.

In summary, the Kaplan-Meier estimate is a crucial tool in medical research for analyzing time-to-event data and estimating survival probabilities over time while accounting for censored observations.

Skin diseases of viral origin are conditions that affect the skin caused by viral infections. These infections can lead to various symptoms such as rashes, blisters, papules, and skin lesions. Some common examples of viral skin diseases include:

1. Herpes Simplex Virus (HSV) infection: This causes cold sores or genital herpes, which are characterized by small, painful blisters on the skin.
2. Varicella-zoster virus (VZV) infection: This causes chickenpox and shingles, which are characterized by itchy, fluid-filled blisters on the skin.
3. Human Papillomavirus (HPV) infection: This causes warts, which are small, rough growths on the skin.
4. Molluscum contagiosum: This is a viral infection that causes small, raised, and pearly white bumps on the skin.
5. Measles: This is a highly contagious viral disease characterized by fever, cough, runny nose, and a rash that spreads all over the body.
6. Rubella: Also known as German measles, this viral infection causes a red rash on the face and neck that spreads to the rest of the body.

Viral skin diseases can be spread through direct contact with an infected person or contaminated objects, such as towels or bedding. Some viral skin diseases can be prevented through vaccination, while others can be treated with antiviral medications or other therapies.

Cytoplasmic granules are small, membrane-bound organelles or inclusions found within the cytoplasm of cells. They contain various substances such as proteins, lipids, carbohydrates, and genetic material. Cytoplasmic granules have diverse functions depending on their specific composition and cellular location. Some examples include:

1. Secretory granules: These are found in secretory cells and store hormones, neurotransmitters, or enzymes before they are released by exocytosis.
2. Lysosomes: These are membrane-bound organelles that contain hydrolytic enzymes for intracellular digestion of waste materials, foreign substances, and damaged organelles.
3. Melanosomes: Found in melanocytes, these granules produce and store the pigment melanin, which is responsible for skin, hair, and eye color.
4. Weibel-Palade bodies: These are found in endothelial cells and store von Willebrand factor and P-selectin, which play roles in hemostasis and inflammation.
5. Peroxisomes: These are single-membrane organelles that contain enzymes for various metabolic processes, such as β-oxidation of fatty acids and detoxification of harmful substances.
6. Lipid bodies (also called lipid droplets): These are cytoplasmic granules that store neutral lipids, such as triglycerides and cholesteryl esters. They play a role in energy metabolism and intracellular signaling.
7. Glycogen granules: These are cytoplasmic inclusions that store glycogen, a polysaccharide used for energy storage in animals.
8. Protein bodies: Found in plants, these granules store excess proteins and help regulate protein homeostasis within the cell.
9. Electron-dense granules: These are found in certain immune cells, such as mast cells and basophils, and release mediators like histamine during an allergic response.
10. Granules of unknown composition or function may also be present in various cell types.

Chemokine (C-C motif) ligand 20, also known as CCL20 or EXODUS, is a small signaling protein that belongs to the chemokine family. Chemokines are a group of cytokines, or cell signaling molecules, that play crucial roles in immune responses and inflammation by recruiting various immune cells to the sites of infection or injury.

CCL20 specifically binds to its receptor CCR6 and plays an essential role in attracting immune cells like T lymphocytes (T cells), dendritic cells, and B lymphocytes (B cells) to the site of inflammation. It is produced by various cell types, including epithelial cells, fibroblasts, and immune cells, in response to infection, injury, or other stimuli.

CCL20 has been implicated in several physiological and pathological processes, such as:

1. Homeostatic regulation of immune cell trafficking: CCL20 helps maintain the normal migration and positioning of immune cells in various tissues under steady-state conditions.
2. Inflammatory responses: CCL20 is upregulated during inflammation, contributing to the recruitment of immune cells to the affected area.
3. Autoimmune diseases: Overexpression or dysregulation of CCL20 has been associated with several autoimmune disorders, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.
4. Cancer: CCL20 is involved in tumorigenesis and cancer progression by promoting the recruitment of immune cells that can either support or suppress tumor growth.
5. Infectious diseases: CCL20 plays a role in host defense against various pathogens, including bacteria, viruses, and parasites, by attracting immune cells to the site of infection.

I'm sorry for any confusion, but "Subrenal Capsule Assay" is not a widely recognized or established term in medicine or physiology. It appears that this term may be specific to certain research or experimental contexts.

In general, a capsule assay is a type of experimental setup where cells or tissues are encapsulated within a semi-permeable membrane, allowing for the study of cellular behavior and interactions with the external environment while being protected from immune system attack.

The term "subrenal" suggests that it may have something to do with the kidney, specifically below the renal capsule, which is the outermost layer of the kidney. However, without more context or information about the specific research or experimental procedure, it's difficult to provide a precise medical definition for this term.

If you could provide more context or details about where you encountered this term, I may be able to give a more accurate and helpful explanation.

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults. It originates from the hepatocytes, which are the main functional cells of the liver. This type of cancer is often associated with chronic liver diseases such as cirrhosis caused by hepatitis B or C virus infection, alcohol abuse, non-alcoholic fatty liver disease (NAFLD), and aflatoxin exposure.

The symptoms of HCC can vary but may include unexplained weight loss, lack of appetite, abdominal pain or swelling, jaundice, and fatigue. The diagnosis of HCC typically involves imaging tests such as ultrasound, CT scan, or MRI, as well as blood tests to measure alpha-fetoprotein (AFP) levels. Treatment options for Hepatocellular carcinoma depend on the stage and extent of the cancer, as well as the patient's overall health and liver function. Treatment options may include surgery, radiation therapy, chemotherapy, targeted therapy, or liver transplantation.

A "Graft versus Host Reaction" (GVHR) is a condition that can occur after an organ or bone marrow transplant, where the immune cells in the graft (transplanted tissue) recognize and attack the recipient's (host's) tissues as foreign. This reaction occurs because the donor's immune cells (graft) are able to recognize the host's cells as different from their own due to differences in proteins called human leukocyte antigens (HLAs).

The GVHR can affect various organs, including the skin, liver, gastrointestinal tract, and lungs. Symptoms may include rash, diarrhea, jaundice, and respiratory distress. The severity of the reaction can vary widely, from mild to life-threatening.

To prevent or reduce the risk of GVHR, immunosuppressive drugs are often given to the recipient before and after transplantation to suppress their immune system and prevent it from attacking the graft. Despite these measures, GVHR can still occur in some cases, particularly when there is a significant mismatch between the donor and recipient HLAs.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Heart-assist devices, also known as mechanical circulatory support devices, are medical equipment designed to help the heart function more efficiently. These devices can be used in patients with advanced heart failure who are not responding to medication or other treatments. They work by taking over some or all of the heart's pumping functions, reducing the workload on the heart and improving blood flow to the rest of the body.

There are several types of heart-assist devices, including:

1. Intra-aortic balloon pumps (IABPs): These devices are inserted into the aorta, the large artery that carries blood from the heart to the rest of the body. The IABP inflates and deflates in time with the heartbeat, helping to improve blood flow to the coronary arteries and reduce the workload on the heart.
2. Ventricular assist devices (VADs): These devices are more invasive than IABPs and are used to support the function of one or both ventricles, the lower chambers of the heart. VADs can be used to support the heart temporarily while a patient recovers from surgery or heart failure, or they can be used as a long-term solution for patients who are not candidates for a heart transplant.
3. Total artificial hearts (TAHs): These devices replace both ventricles and all four valves of the heart. TAHs are used in patients who are not candidates for a heart transplant and have severe biventricular failure, meaning that both ventricles are no longer functioning properly.

Heart-assist devices can be life-saving for some patients with advanced heart failure, but they also carry risks, such as infection, bleeding, and device malfunction. As with any medical treatment, the benefits and risks of using a heart-assist device must be carefully weighed for each individual patient.

Antigen-presenting cells (APCs) are a group of specialized cells in the immune system that play a critical role in initiating and regulating immune responses. They have the ability to engulf, process, and present antigens (molecules derived from pathogens or other foreign substances) on their surface in conjunction with major histocompatibility complex (MHC) molecules. This presentation of antigens allows APCs to activate T cells, which are crucial for adaptive immunity.

There are several types of APCs, including:

1. Dendritic cells (DCs): These are the most potent and professional APCs, found in various tissues throughout the body. DCs can capture antigens from their environment, process them, and migrate to lymphoid organs where they present antigens to T cells.
2. Macrophages: These large phagocytic cells are found in many tissues and play a role in both innate and adaptive immunity. They can engulf and digest pathogens, then present processed antigens on their MHC class II molecules to activate CD4+ T helper cells.
3. B cells: These are primarily responsible for humoral immune responses by producing antibodies against antigens. When activated, B cells can also function as APCs and present antigens on their MHC class II molecules to CD4+ T cells.

The interaction between APCs and T cells is critical for the development of an effective immune response against pathogens or other foreign substances. This process helps ensure that the immune system can recognize and eliminate threats while minimizing damage to healthy tissues.

Cyclosporins are a group of cyclic undecapeptides that have immunosuppressive properties. The most well-known and widely used cyclosporin is cyclosporine A, which is commonly used in organ transplantation to prevent rejection. It works by inhibiting the activation of T-cells, a type of white blood cell that plays a central role in the immune response. By suppressing the activity of T-cells, cyclosporine A reduces the risk of an immune response against the transplanted organ.

Cyclosporins are also used in the treatment of autoimmune diseases, such as rheumatoid arthritis and psoriasis, where they help to reduce inflammation and prevent damage to tissues. Like all immunosuppressive drugs, cyclosporins can increase the risk of infection and cancer, so they must be used with caution and under close medical supervision.

Multivariate analysis is a statistical method used to examine the relationship between multiple independent variables and a dependent variable. It allows for the simultaneous examination of the effects of two or more independent variables on an outcome, while controlling for the effects of other variables in the model. This technique can be used to identify patterns, associations, and interactions among multiple variables, and is commonly used in medical research to understand complex health outcomes and disease processes. Examples of multivariate analysis methods include multiple regression, factor analysis, cluster analysis, and discriminant analysis.

Lymphocytes are a type of white blood cell that is an essential part of the immune system. They are responsible for recognizing and responding to potentially harmful substances such as viruses, bacteria, and other foreign invaders. There are two main types of lymphocytes: B-lymphocytes (B-cells) and T-lymphocytes (T-cells).

B-lymphocytes produce antibodies, which are proteins that help to neutralize or destroy foreign substances. When a B-cell encounters a foreign substance, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies. These antibodies bind to the foreign substance, marking it for destruction by other immune cells.

T-lymphocytes, on the other hand, are involved in cell-mediated immunity. They directly attack and destroy infected cells or cancerous cells. T-cells can also help to regulate the immune response by producing chemical signals that activate or inhibit other immune cells.

Lymphocytes are produced in the bone marrow and mature in either the bone marrow (B-cells) or the thymus gland (T-cells). They circulate throughout the body in the blood and lymphatic system, where they can be found in high concentrations in lymph nodes, the spleen, and other lymphoid organs.

Abnormalities in the number or function of lymphocytes can lead to a variety of immune-related disorders, including immunodeficiency diseases, autoimmune disorders, and cancer.

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine, a type of small signaling protein involved in immune response and inflammation. It is primarily produced by activated macrophages, although other cell types such as T-cells, natural killer cells, and mast cells can also produce it.

TNF-α plays a crucial role in the body's defense against infection and tissue injury by mediating inflammatory responses, activating immune cells, and inducing apoptosis (programmed cell death) in certain types of cells. It does this by binding to its receptors, TNFR1 and TNFR2, which are found on the surface of many cell types.

In addition to its role in the immune response, TNF-α has been implicated in the pathogenesis of several diseases, including autoimmune disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, as well as cancer, where it can promote tumor growth and metastasis.

Therapeutic agents that target TNF-α, such as infliximab, adalimumab, and etanercept, have been developed to treat these conditions. However, these drugs can also increase the risk of infections and other side effects, so their use must be carefully monitored.

Interleukin-1 (IL-1) is a type of cytokine, which are proteins that play a crucial role in cell signaling. Specifically, IL-1 is a pro-inflammatory cytokine that is involved in the regulation of immune and inflammatory responses in the body. It is produced by various cells, including monocytes, macrophages, and dendritic cells, in response to infection or injury.

IL-1 exists in two forms, IL-1α and IL-1β, which have similar biological activities but are encoded by different genes. Both forms of IL-1 bind to the same receptor, IL-1R, and activate intracellular signaling pathways that lead to the production of other cytokines, chemokines, and inflammatory mediators.

IL-1 has a wide range of biological effects, including fever induction, activation of immune cells, regulation of hematopoiesis (the formation of blood cells), and modulation of bone metabolism. Dysregulation of IL-1 production or activity has been implicated in various inflammatory diseases, such as rheumatoid arthritis, gout, and inflammatory bowel disease. Therefore, IL-1 is an important target for the development of therapies aimed at modulating the immune response and reducing inflammation.

Granulocyte Colony-Stimulating Factor (G-CSF) is a type of growth factor that specifically stimulates the production and survival of granulocytes, a type of white blood cell crucial for fighting off infections. G-CSF works by promoting the proliferation and differentiation of hematopoietic stem cells into mature granulocytes, primarily neutrophils, in the bone marrow.

Recombinant forms of G-CSF are used clinically as a medication to boost white blood cell production in patients undergoing chemotherapy or radiation therapy for cancer, those with congenital neutropenia, and those who have had a bone marrow transplant. By increasing the number of circulating neutrophils, G-CSF helps reduce the risk of severe infections during periods of intense immune suppression.

Examples of recombinant G-CSF medications include filgrastim (Neupogen), pegfilgrastim (Neulasta), and lipegfilgrastim (Lonquex).

Reperfusion injury is a complex pathophysiological process that occurs when blood flow is restored to previously ischemic tissues, leading to further tissue damage. This phenomenon can occur in various clinical settings such as myocardial infarction (heart attack), stroke, or peripheral artery disease after an intervention aimed at restoring perfusion.

The restoration of blood flow leads to the generation of reactive oxygen species (ROS) and inflammatory mediators, which can cause oxidative stress, cellular damage, and activation of the immune system. This results in a cascade of events that may lead to microvascular dysfunction, capillary leakage, and tissue edema, further exacerbating the injury.

Reperfusion injury is an important consideration in the management of ischemic events, as interventions aimed at restoring blood flow must be carefully balanced with potential harm from reperfusion injury. Strategies to mitigate reperfusion injury include ischemic preconditioning (exposing the tissue to short periods of ischemia before a prolonged ischemic event), ischemic postconditioning (applying brief periods of ischemia and reperfusion after restoring blood flow), remote ischemic preconditioning (ischemia applied to a distant organ or tissue to protect the target organ), and pharmacological interventions that scavenge ROS, reduce inflammation, or improve microvascular function.

A pancreatectomy is a surgical procedure in which all or part of the pancreas is removed. There are several types of pancreatectomies, including:

* **Total pancreatectomy:** Removal of the entire pancreas, as well as the spleen and nearby lymph nodes. This type of pancreatectomy is usually done for patients with cancer that has spread throughout the pancreas or for those who have had multiple surgeries to remove pancreatic tumors.
* **Distal pancreatectomy:** Removal of the body and tail of the pancreas, as well as nearby lymph nodes. This type of pancreatectomy is often done for patients with tumors in the body or tail of the pancreas.
* **Partial (or segmental) pancreatectomy:** Removal of a portion of the head or body of the pancreas, as well as nearby lymph nodes. This type of pancreatectomy is often done for patients with tumors in the head or body of the pancreas that can be removed without removing the entire organ.
* **Pylorus-preserving pancreaticoduodenectomy (PPPD):** A type of surgery used to treat tumors in the head of the pancreas, as well as other conditions such as chronic pancreatitis. In this procedure, the head of the pancreas, duodenum, gallbladder, and bile duct are removed, but the stomach and lower portion of the esophagus (pylorus) are left in place.

After a pancreatectomy, patients may experience problems with digestion and blood sugar regulation, as the pancreas plays an important role in these functions. Patients may need to take enzyme supplements to help with digestion and may require insulin therapy to manage their blood sugar levels.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

An allograft is a type of transplant in which tissue or an organ is transferred from one individual to another, within the same species. The donor and recipient are genetically different, so the recipient's immune system may recognize the donated tissue or organ as foreign and mount an immune response against it. To minimize the risk of rejection, recipients typically receive immunosuppressive drugs to dampen their immune response.

Allografts can be used in a variety of medical contexts, including reconstructive surgery, orthopedic surgery, and organ transplantation. Examples of allografts include heart valves, tendons, ligaments, corneas, skin, and whole organs such as kidneys, livers, and hearts.

It's worth noting that allografts are distinguished from autografts, which involve transplanting tissue or an organ from one part of the body to another in the same individual, and xenografts, which involve transplanting tissue or organs between different species.

"Flushing" is a medical term that refers to a sudden, temporary reddening of the skin, often accompanied by feelings of warmth. This occurs when the blood vessels beneath the skin dilate or expand, allowing more blood to flow through them. Flushing can be caused by various factors such as emotional stress, alcohol consumption, spicy foods, certain medications, or medical conditions like carcinoid syndrome or menopause. It is generally harmless but can sometimes indicate an underlying issue that requires medical attention.

Cryopreservation is a medical procedure that involves the preservation of cells, tissues, or organs by cooling them to very low temperatures, typically below -150°C. This is usually achieved using liquid nitrogen. The low temperature slows down or stops biological activity, including chemical reactions and cellular metabolism, which helps to prevent damage and decay.

The cells, tissues, or organs that are being cryopreserved must be treated with a cryoprotectant solution before cooling to prevent the formation of ice crystals, which can cause significant damage. Once cooled, the samples are stored in specialized containers or tanks until they are needed for use.

Cryopreservation is commonly used in assisted reproductive technologies, such as the preservation of sperm, eggs, and embryos for fertility treatments. It is also used in research, including the storage of cell lines and stem cells, and in clinical settings, such as the preservation of skin grafts and corneas for transplantation.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

A reoperation is a surgical procedure that is performed again on a patient who has already undergone a previous operation for the same or related condition. Reoperations may be required due to various reasons, such as inadequate initial treatment, disease recurrence, infection, or complications from the first surgery. The nature and complexity of a reoperation can vary widely depending on the specific circumstances, but it often carries higher risks and potential complications compared to the original operation.

Diabetes Mellitus is a chronic metabolic disorder characterized by elevated levels of glucose in the blood (hyperglycemia) due to absolute or relative deficiency in insulin secretion and/or insulin action. There are two main types: Type 1 diabetes, which results from the autoimmune destruction of pancreatic beta cells leading to insulin deficiency, and Type 2 diabetes, which is associated with insulin resistance and relative insulin deficiency.

Type 1 diabetes typically presents in childhood or young adulthood, while Type 2 diabetes tends to occur later in life, often in association with obesity and physical inactivity. Both types of diabetes can lead to long-term complications such as damage to the eyes, kidneys, nerves, and cardiovascular system if left untreated or not well controlled.

The diagnosis of diabetes is usually made based on fasting plasma glucose levels, oral glucose tolerance tests, or hemoglobin A1c (HbA1c) levels. Treatment typically involves lifestyle modifications such as diet and exercise, along with medications to lower blood glucose levels and manage associated conditions.

Green Fluorescent Protein (GFP) is not a medical term per se, but a scientific term used in the field of molecular biology. GFP is a protein that exhibits bright green fluorescence when exposed to light, particularly blue or ultraviolet light. It was originally discovered in the jellyfish Aequorea victoria.

In medical and biological research, scientists often use recombinant DNA technology to introduce the gene for GFP into other organisms, including bacteria, plants, and animals, including humans. This allows them to track the expression and localization of specific genes or proteins of interest in living cells, tissues, or even whole organisms.

The ability to visualize specific cellular structures or processes in real-time has proven invaluable for a wide range of research areas, from studying the development and function of organs and organ systems to understanding the mechanisms of diseases and the effects of therapeutic interventions.

Organ culture techniques refer to the methods used to maintain or grow intact organs or pieces of organs under controlled conditions in vitro, while preserving their structural and functional characteristics. These techniques are widely used in biomedical research to study organ physiology, pathophysiology, drug development, and toxicity testing.

Organ culture can be performed using a variety of methods, including:

1. Static organ culture: In this method, the organs or tissue pieces are placed on a porous support in a culture dish and maintained in a nutrient-rich medium. The medium is replaced periodically to ensure adequate nutrition and removal of waste products.
2. Perfusion organ culture: This method involves perfusing the organ with nutrient-rich media, allowing for better distribution of nutrients and oxygen throughout the tissue. This technique is particularly useful for studying larger organs such as the liver or kidney.
3. Microfluidic organ culture: In this approach, microfluidic devices are used to create a controlled microenvironment for organ cultures. These devices allow for precise control over the flow of nutrients and waste products, as well as the application of mechanical forces.

Organ culture techniques can be used to study various aspects of organ function, including metabolism, secretion, and response to drugs or toxins. Additionally, these methods can be used to generate three-dimensional tissue models that better recapitulate the structure and function of intact organs compared to traditional two-dimensional cell cultures.

The hepatic artery is a branch of the celiac trunk or abdominal aorta that supplies oxygenated blood to the liver. It typically divides into two main branches, the right and left hepatic arteries, which further divide into smaller vessels to supply different regions of the liver. The hepatic artery also gives off branches to supply other organs such as the gallbladder, pancreas, and duodenum.

It's worth noting that there is significant variability in the anatomy of the hepatic artery, with some individuals having additional branches or variations in the origin of the vessel. This variability can have implications for surgical procedures involving the liver and surrounding organs.

I'm sorry for any confusion, but "siblings" is not a medical term. It is a term used in genealogy and sociology to refer to the brothers and sisters that someone has. Sibling relationships can have medical implications, such as when inherited genetic disorders are present in a family, but the term "siblings" itself does not have a specific medical definition.

Raffinose is a complex carbohydrate, specifically an oligosaccharide, that is composed of three sugars: galactose, fructose, and glucose. It is a non-reducing sugar, which means it does not undergo oxidation reactions like reducing sugars do.

Raffinose is found in various plants, including beans, cabbage, brussels sprouts, broccoli, and whole grains. It is a member of the class of carbohydrates known as alpha-galactosides.

In humans, raffinose cannot be digested because we lack the enzyme alpha-galactosidase, which is necessary to break down the bond between galactose and glucose in raffinose. As a result, it passes through the small intestine intact and enters the large intestine, where it is fermented by gut bacteria. This fermentation process can lead to the production of gases such as methane and hydrogen, which can cause digestive discomfort, bloating, and flatulence in some individuals.

It's worth noting that raffinose has been studied for its potential prebiotic properties, as it can promote the growth of beneficial gut bacteria. However, excessive consumption may lead to digestive issues in sensitive individuals.

A radiation chimera is not a widely used or recognized medical term. However, in the field of genetics and radiation biology, a "chimera" refers to an individual that contains cells with different genetic backgrounds. A radiation chimera, therefore, could refer to an organism that has become a chimera as a result of exposure to radiation, which can cause mutations and changes in the genetic makeup of cells.

Ionizing radiation, such as that used in cancer treatments or nuclear accidents, can cause DNA damage and mutations in cells. If an organism is exposed to radiation and some of its cells undergo mutations while others do not, this could result in a chimera with genetically distinct populations of cells.

However, it's important to note that the term "radiation chimera" is not commonly used in medical literature or clinical settings. If you encounter this term in a different context, I would recommend seeking clarification from the source to ensure a proper understanding.

Pancreatic polypeptide (PP) is a hormone that is produced and released by the pancreas, specifically by the F cells located in the islets of Langerhans. It is a small protein consisting of 36 amino acids, and it plays a role in regulating digestive functions, particularly by inhibiting pancreatic enzyme secretion and gastric acid secretion.

PP is released into the bloodstream in response to food intake, especially when nutrients such as proteins and fats are present in the stomach. It acts on the brain to produce a feeling of fullness or satiety, which helps to regulate appetite and eating behavior. Additionally, PP has been shown to have effects on glucose metabolism, insulin secretion, and energy balance.

In recent years, there has been growing interest in the potential therapeutic uses of PP for a variety of conditions, including obesity, diabetes, and gastrointestinal disorders. However, more research is needed to fully understand its mechanisms of action and clinical applications.

Interferon-gamma (IFN-γ) is a soluble cytokine that is primarily produced by the activation of natural killer (NK) cells and T lymphocytes, especially CD4+ Th1 cells and CD8+ cytotoxic T cells. It plays a crucial role in the regulation of the immune response against viral and intracellular bacterial infections, as well as tumor cells. IFN-γ has several functions, including activating macrophages to enhance their microbicidal activity, increasing the presentation of major histocompatibility complex (MHC) class I and II molecules on antigen-presenting cells, stimulating the proliferation and differentiation of T cells and NK cells, and inducing the production of other cytokines and chemokines. Additionally, IFN-γ has direct antiproliferative effects on certain types of tumor cells and can enhance the cytotoxic activity of immune cells against infected or malignant cells.

Histiocytes are a type of immune cell that are part of the mononuclear phagocyte system. They originate from monocytes, which are derived from hematopoietic stem cells in the bone marrow. Histiocytes play an important role in the immune system by engulfing and destroying foreign substances, such as bacteria and viruses, as well as removing dead cells and other debris from the body. They can be found in various tissues throughout the body, including the skin, lymph nodes, spleen, and liver.

Histiocytes include several different types of cells, such as macrophages, dendritic cells, and Langerhans cells. These cells have different functions but all play a role in the immune response. For example, macrophages are involved in inflammation and tissue repair, while dendritic cells are important for presenting antigens to T cells and initiating an immune response.

Abnormal accumulations or dysfunction of histiocytes can lead to various diseases, such as histiocytosis, which is a group of disorders characterized by the abnormal proliferation and accumulation of histiocytes in various tissues.

Hyperglycemia is a medical term that refers to an abnormally high level of glucose (sugar) in the blood. Fasting hyperglycemia is defined as a fasting blood glucose level greater than or equal to 126 mg/dL (milligrams per deciliter) on two separate occasions. Alternatively, a random blood glucose level greater than or equal to 200 mg/dL in combination with symptoms of hyperglycemia (such as increased thirst, frequent urination, blurred vision, and fatigue) can also indicate hyperglycemia.

Hyperglycemia is often associated with diabetes mellitus, a chronic metabolic disorder characterized by high blood glucose levels due to insulin resistance or insufficient insulin production. However, hyperglycemia can also occur in other conditions such as stress, surgery, infection, certain medications, and hormonal imbalances.

Prolonged or untreated hyperglycemia can lead to serious complications such as diabetic ketoacidosis (DKA), hyperosmolar hyperglycemic state (HHS), and long-term damage to various organs such as the eyes, kidneys, nerves, and blood vessels. Therefore, it is essential to monitor blood glucose levels regularly and maintain them within normal ranges through proper diet, exercise, medication, and lifestyle modifications.

Severe Combined Immunodeficiency (SCID) is a group of rare genetic disorders characterized by deficient or absent immune responses. It results from mutations in different genes involved in the development and function of T lymphocytes, B lymphocytes, or both, leading to a severe impairment in cell-mediated and humoral immunity.

Infants with SCID are extremely vulnerable to infections, which can be life-threatening. Common symptoms include chronic diarrhea, failure to thrive, recurrent pneumonia, and persistent candidiasis (thrush). If left untreated, it can lead to severe disability or death within the first two years of life. Treatment typically involves bone marrow transplantation or gene therapy to restore immune function.

Oxazolone is not a medical condition or diagnosis, but rather a chemical compound. It is commonly used in research and scientific studies as an experimental contact sensitizer to induce allergic contact dermatitis in animal models. Here's the general definition:

Oxazolone (C8H7NO3): An organic compound that belongs to the class of heterocyclic compounds known as oxazoles, which contain a benzene fused to a five-membered ring containing one oxygen atom and one nitrogen atom. It is used in research as an allergen to induce contact hypersensitivity reactions in skin sensitization studies.

Confocal microscopy is a powerful imaging technique used in medical and biological research to obtain high-resolution, contrast-rich images of thick samples. This super-resolution technology provides detailed visualization of cellular structures and processes at various depths within a specimen.

In confocal microscopy, a laser beam focused through a pinhole illuminates a small spot within the sample. The emitted fluorescence or reflected light from this spot is then collected by a detector, passing through a second pinhole that ensures only light from the focal plane reaches the detector. This process eliminates out-of-focus light, resulting in sharp images with improved contrast compared to conventional widefield microscopy.

By scanning the laser beam across the sample in a raster pattern and collecting fluorescence at each point, confocal microscopy generates optical sections of the specimen. These sections can be combined to create three-dimensional reconstructions, allowing researchers to study cellular architecture and interactions within complex tissues.

Confocal microscopy has numerous applications in medical research, including studying protein localization, tracking intracellular dynamics, analyzing cell morphology, and investigating disease mechanisms at the cellular level. Additionally, it is widely used in clinical settings for diagnostic purposes, such as analyzing skin lesions or detecting pathogens in patient samples.

An immunocompromised host refers to an individual who has a weakened or impaired immune system, making them more susceptible to infections and decreased ability to fight off pathogens. This condition can be congenital (present at birth) or acquired (developed during one's lifetime).

Acquired immunocompromised states may result from various factors such as medical treatments (e.g., chemotherapy, radiation therapy, immunosuppressive drugs), infections (e.g., HIV/AIDS), chronic diseases (e.g., diabetes, malnutrition, liver disease), or aging.

Immunocompromised hosts are at a higher risk for developing severe and life-threatening infections due to their reduced immune response. Therefore, they require special consideration when it comes to prevention, diagnosis, and treatment of infectious diseases.

The cornea is the clear, dome-shaped surface at the front of the eye. It plays a crucial role in focusing vision. The cornea protects the eye from harmful particles and microorganisms, and it also serves as a barrier against UV light. Its transparency allows light to pass through and get focused onto the retina. The cornea does not contain blood vessels, so it relies on tears and the fluid inside the eye (aqueous humor) for nutrition and oxygen. Any damage or disease that affects its clarity and shape can significantly impact vision and potentially lead to blindness if left untreated.

An "injection, intradermal" refers to a type of injection where a small quantity of a substance is introduced into the layer of skin between the epidermis and dermis, using a thin gauge needle. This technique is often used for diagnostic or research purposes, such as conducting allergy tests or administering immunizations in a way that stimulates a strong immune response. The injection site typically produces a small, raised bump (wheal) that disappears within a few hours. It's important to note that intradermal injections should be performed by trained medical professionals to minimize the risk of complications.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

Coculture techniques refer to a type of experimental setup in which two or more different types of cells or organisms are grown and studied together in a shared culture medium. This method allows researchers to examine the interactions between different cell types or species under controlled conditions, and to study how these interactions may influence various biological processes such as growth, gene expression, metabolism, and signal transduction.

Coculture techniques can be used to investigate a wide range of biological phenomena, including the effects of host-microbe interactions on human health and disease, the impact of different cell types on tissue development and homeostasis, and the role of microbial communities in shaping ecosystems. These techniques can also be used to test the efficacy and safety of new drugs or therapies by examining their effects on cells grown in coculture with other relevant cell types.

There are several different ways to establish cocultures, depending on the specific research question and experimental goals. Some common methods include:

1. Mixed cultures: In this approach, two or more cell types are simply mixed together in a culture dish or flask and allowed to grow and interact freely.
2. Cell-layer cultures: Here, one cell type is grown on a porous membrane or other support structure, while the second cell type is grown on top of it, forming a layered coculture.
3. Conditioned media cultures: In this case, one cell type is grown to confluence and its culture medium is collected and then used to grow a second cell type. This allows the second cell type to be exposed to any factors secreted by the first cell type into the medium.
4. Microfluidic cocultures: These involve growing cells in microfabricated channels or chambers, which allow for precise control over the spatial arrangement and flow of nutrients, waste products, and signaling molecules between different cell types.

Overall, coculture techniques provide a powerful tool for studying complex biological systems and gaining insights into the mechanisms that underlie various physiological and pathological processes.

The hepatic veins are blood vessels that carry oxygen-depleted blood from the liver back to the heart. There are typically three major hepatic veins - right, middle, and left - that originate from the posterior aspect of the liver and drain into the inferior vena cava just below the diaphragm. These veins are responsible for returning the majority of the blood flow from the gastrointestinal tract and spleen to the heart. It's important to note that the hepatic veins do not have valves, which can make them susceptible to a condition called Budd-Chiari syndrome, where blood clots form in the veins and obstruct the flow of blood from the liver.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Autoimmunity is a medical condition in which the body's immune system mistakenly attacks and destroys healthy tissues within the body. In normal function, the immune system recognizes and fights off foreign substances such as bacteria, viruses, and toxins. However, when autoimmunity occurs, the immune system identifies self-molecules or tissues as foreign and produces an immune response against them.

This misguided response can lead to chronic inflammation, tissue damage, and impaired organ function. Autoimmune diseases can affect various parts of the body, including the joints, skin, glands, muscles, and blood vessels. Some common examples of autoimmune diseases are rheumatoid arthritis, lupus, multiple sclerosis, type 1 diabetes, Hashimoto's thyroiditis, and Graves' disease.

The exact cause of autoimmunity is not fully understood, but it is believed to involve a combination of genetic, environmental, and lifestyle factors that trigger an abnormal immune response in susceptible individuals. Treatment for autoimmune diseases typically involves managing symptoms, reducing inflammation, and suppressing the immune system's overactive response using medications such as corticosteroids, immunosuppressants, and biologics.

Leukocyte transfusion, also known as white blood cell (WBC) transfusion, involves the intravenous administration of leukocytes (white blood cells) from a donor to a recipient. This procedure is typically used in patients with severe immunodeficiency or those undergoing bone marrow transplantation, where they are unable to produce sufficient white blood cells to fight off infections.

Leukocyte transfusions can help boost the recipient's immune system and provide them with temporary protection against infections. However, this procedure carries some risks, including febrile non-hemolytic transfusion reactions, allergic reactions, transmission of infectious diseases, and the potential for transfusion-associated graft-versus-host disease (TA-GVHD). Therefore, leukocyte transfusions are usually reserved for specific clinical situations where the benefits outweigh the risks.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

Juvenile xanthogranuloma (JXG) is a rare, benign type of histiocytic tumor that typically presents in infancy or early childhood. It is characterized by the proliferation of lipid-laden macrophages called xanthoma cells, along with Touton giant cells and other inflammatory cells. JXG usually appears as a single or multiple, firm, yellowish to reddish-brown papules or nodules on the skin. While most cases of JXG are self-limited and resolve without treatment, some may involve extracutaneous sites such as the eyes, mouth, bones, and internal organs, which can lead to complications. The exact cause of JXG remains unknown, but it is not considered a hereditary condition.

Diabetes Mellitus, Type 2 is a metabolic disorder characterized by high blood glucose (or sugar) levels resulting from the body's inability to produce sufficient amounts of insulin or effectively use the insulin it produces. This form of diabetes usually develops gradually over several years and is often associated with older age, obesity, physical inactivity, family history of diabetes, and certain ethnicities.

In Type 2 diabetes, the body's cells become resistant to insulin, meaning they don't respond properly to the hormone. As a result, the pancreas produces more insulin to help glucose enter the cells. Over time, the pancreas can't keep up with the increased demand, leading to high blood glucose levels and diabetes.

Type 2 diabetes is managed through lifestyle modifications such as weight loss, regular exercise, and a healthy diet. Medications, including insulin therapy, may also be necessary to control blood glucose levels and prevent long-term complications associated with the disease, such as heart disease, nerve damage, kidney damage, and vision loss.

Mesenchymal Stromal Cells (MSCs) are a type of adult stem cells found in various tissues, including bone marrow, adipose tissue, and umbilical cord blood. They have the ability to differentiate into multiple cell types, such as osteoblasts, chondrocytes, and adipocytes, under specific conditions. MSCs also possess immunomodulatory properties, making them a promising tool in regenerative medicine and therapeutic strategies for various diseases, including autoimmune disorders and tissue injuries. It is important to note that the term "Mesenchymal Stem Cells" has been replaced by "Mesenchymal Stromal Cells" in the scientific community to better reflect their biological characteristics and potential functions.

Risk assessment in the medical context refers to the process of identifying, evaluating, and prioritizing risks to patients, healthcare workers, or the community related to healthcare delivery. It involves determining the likelihood and potential impact of adverse events or hazards, such as infectious diseases, medication errors, or medical devices failures, and implementing measures to mitigate or manage those risks. The goal of risk assessment is to promote safe and high-quality care by identifying areas for improvement and taking action to minimize harm.

Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) is a type of cytokine, which is a small signaling protein involved in immune response and hematopoiesis (the formation of blood cells). GM-CSF's specific role is to stimulate the production, proliferation, and activation of granulocytes (a type of white blood cell that fights against infection) and macrophages (large white blood cells that eat foreign substances, bacteria, and dead or dying cells).

In medical terms, GM-CSF is often used in therapeutic settings to boost the production of white blood cells in patients undergoing chemotherapy or radiation treatment for cancer. This can help to reduce the risk of infection during these treatments. It can also be used to promote the growth and differentiation of stem cells in bone marrow transplant procedures.

Bone marrow purging is a procedure that involves the removal of cancerous or damaged cells from bone marrow before it is transplanted into a patient. This process is often used in the treatment of blood cancers such as leukemia and lymphoma, as well as other diseases that affect the bone marrow.

The purging process typically involves collecting bone marrow from the patient or a donor, then treating it with chemicals or medications to eliminate any cancerous or damaged cells. The purged bone marrow is then transplanted back into the patient's body, where it can help to produce healthy new blood cells.

There are several methods that can be used for bone marrow purging, including physical separation techniques, chemical treatments, and immunological approaches using antibodies or other immune system components. The choice of method depends on several factors, including the type and stage of the disease being treated, as well as the patient's individual medical history and condition.

It is important to note that bone marrow purging is a complex procedure that carries some risks and potential complications, such as damage to healthy cells, delayed recovery, and increased risk of infection. As with any medical treatment, it should be carefully evaluated and discussed with a healthcare provider to determine whether it is appropriate for a given patient's situation.

Alloxan is a chemical compound that is primarily used in laboratory research. Its medical definition is:

A toxic, crystalline substance, C6H4O6, derived from uric acid, and used experimentally to produce diabetes in animals by destroying their insulin-producing cells (beta cells) in the pancreas. Alloxan monohydrate is a white crystalline powder that is soluble in water and alcohol. It is used as a reagent in analytical chemistry and in photography.

In scientific research, alloxan is often used to induce diabetes in laboratory animals (like rats and mice) in order to study the disease and potential treatments. The compound is toxic to the insulin-producing beta cells in the pancreas, leading to a decrease in insulin production and an increase in blood glucose levels, similar to what occurs in type 1 diabetes in humans. However, it's important to note that alloxan-induced diabetes does not perfectly mimic the human form of the disease, and results from such studies may not always translate directly to human treatments.

CD86 is a type of protein found on the surface of certain immune cells called antigen-presenting cells (APCs), such as dendritic cells, macrophages, and B cells. These proteins are known as co-stimulatory molecules and play an important role in activating T cells, a type of white blood cell that is crucial for adaptive immunity.

When APCs encounter a pathogen or foreign substance, they engulf it, break it down into smaller peptides, and display these peptides on their surface in conjunction with another protein called the major histocompatibility complex (MHC) class II molecule. This presentation of antigenic peptides to T cells is not sufficient to activate them fully. Instead, APCs must also provide a co-stimulatory signal through interactions between co-stimulatory molecules like CD86 and receptors on the surface of T cells, such as CD28.

CD86 binds to its receptor CD28 on T cells, providing a critical second signal that promotes T cell activation, proliferation, and differentiation into effector cells. This interaction is essential for the development of an effective immune response against pathogens or foreign substances. In addition to its role in activating T cells, CD86 also helps regulate immune tolerance by contributing to the suppression of self-reactive T cells that could otherwise attack the body's own tissues and cause autoimmune diseases.

Overall, CD86 is an important player in the regulation of the immune response, helping to ensure that T cells are activated appropriately in response to pathogens or foreign substances while also contributing to the maintenance of self-tolerance.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Warm ischemia, also known as warm injury or warm hypoxia, refers to the damage that occurs to tissues when there is an inadequate blood supply at body temperature. This can happen during surgical procedures, trauma, or other medical conditions that restrict blood flow to a specific area of the body. The lack of oxygen and nutrients, combined with the buildup of waste products, can cause cells to become damaged or die, leading to tissue dysfunction or failure.

The term "warm" is used to distinguish this type of ischemia from cold ischemia, which occurs when tissues are cooled and blood flow is restricted. Cold ischemia is often used in organ transplantation to preserve the organ until it can be transplanted. Warm ischemia is generally more damaging to tissues than cold ischemia because the metabolic demands of the cells are not being met, leading to a more rapid onset of cellular damage.

The severity and duration of warm ischemia can affect the extent of tissue damage and the likelihood of recovery. In some cases, warm ischemia may be reversible if blood flow is restored quickly enough, but in other cases it may lead to permanent tissue damage or loss of function. Treatment for warm ischemia typically involves restoring blood flow to the affected area as soon as possible, along with supportive care to manage any complications that may arise.

Carmustine is a chemotherapy drug used to treat various types of cancer, including brain tumors, multiple myeloma, and Hodgkin's lymphoma. It belongs to a class of drugs called alkylating agents, which work by damaging the DNA in cancer cells, preventing them from dividing and growing.

Carmustine is available as an injectable solution that is administered intravenously (into a vein) or as implantable wafers that are placed directly into the brain during surgery. The drug can cause side effects such as nausea, vomiting, hair loss, and low blood cell counts, among others. It may also increase the risk of certain infections and bleeding complications.

As with all chemotherapy drugs, carmustine can have serious and potentially life-threatening side effects, and it should only be administered under the close supervision of a qualified healthcare professional. Patients receiving carmustine treatment should be closely monitored for signs of toxicity and other adverse reactions.

A chronic disease is a long-term medical condition that often progresses slowly over a period of years and requires ongoing management and care. These diseases are typically not fully curable, but symptoms can be managed to improve quality of life. Common chronic diseases include heart disease, stroke, cancer, diabetes, arthritis, and COPD (chronic obstructive pulmonary disease). They are often associated with advanced age, although they can also affect children and younger adults. Chronic diseases can have significant impacts on individuals' physical, emotional, and social well-being, as well as on healthcare systems and society at large.

Skin diseases, also known as dermatological conditions, refer to any medical condition that affects the skin, which is the largest organ of the human body. These diseases can affect the skin's function, appearance, or overall health. They can be caused by various factors, including genetics, infections, allergies, environmental factors, and aging.

Skin diseases can present in many different forms, such as rashes, blisters, sores, discolorations, growths, or changes in texture. Some common examples of skin diseases include acne, eczema, psoriasis, dermatitis, fungal infections, viral infections, bacterial infections, and skin cancer.

The symptoms and severity of skin diseases can vary widely depending on the specific condition and individual factors. Some skin diseases are mild and can be treated with over-the-counter medications or topical creams, while others may require more intensive treatments such as prescription medications, light therapy, or even surgery.

It is important to seek medical attention if you experience any unusual or persistent changes in your skin, as some skin diseases can be serious or indicative of other underlying health conditions. A dermatologist is a medical doctor who specializes in the diagnosis and treatment of skin diseases.

The Major Histocompatibility Complex (MHC) is a group of cell surface proteins in vertebrates that play a central role in the adaptive immune system. They are responsible for presenting peptide antigens to T-cells, which helps the immune system distinguish between self and non-self. The MHC is divided into two classes:

1. MHC Class I: These proteins present endogenous (intracellular) peptides to CD8+ T-cells (cytotoxic T-cells). The MHC class I molecule consists of a heavy chain and a light chain, together with an antigenic peptide.

2. MHC Class II: These proteins present exogenous (extracellular) peptides to CD4+ T-cells (helper T-cells). The MHC class II molecule is composed of two heavy chains and two light chains, together with an antigenic peptide.

MHC genes are highly polymorphic, meaning there are many different alleles within a population. This diversity allows for better recognition and presentation of various pathogens, leading to a more robust immune response. The term "histocompatibility" refers to the compatibility between donor and recipient MHC molecules in tissue transplantation. Incompatible MHC molecules can lead to rejection of the transplanted tissue due to an activated immune response against the foreign MHC antigens.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Glucokinase is an enzyme that plays a crucial role in regulating glucose metabolism. It is primarily found in the liver, pancreas, and brain. In the pancreas, glucokinase helps to trigger the release of insulin in response to rising blood glucose levels. In the liver, it plays a key role in controlling glucose storage and production.

Glucokinase has a unique property among hexokinases (enzymes that phosphorylate six-carbon sugars) in that it is not inhibited by its product, glucose-6-phosphate. This allows it to continue functioning even when glucose levels are high, making it an important regulator of glucose metabolism.

Defects in the gene that codes for glucokinase can lead to several types of inherited diabetes and other metabolic disorders.

Picryl Chloride, also known as 2,4,6-Trinitrophenyl Chloride, is not a medical term. It is a chemical compound with the formula C6H2Cl3O6. It is a yellow crystalline solid that is used in organic synthesis and as a reagent for detecting nucleophiles.

Picryl Chloride is highly reactive and can cause severe burns and eye damage. It is also an explosive compound, and should be handled with care. It is not typically used in medical contexts, but may come up in discussions of chemical safety or laboratory procedures.

Cytomegalovirus (CMV) is a type of herpesvirus that can cause infection in humans. It is characterized by the enlargement of infected cells (cytomegaly) and is typically transmitted through close contact with an infected person, such as through saliva, urine, breast milk, or sexual contact.

CMV infection can also be acquired through organ transplantation, blood transfusions, or during pregnancy from mother to fetus. While many people infected with CMV experience no symptoms, it can cause serious complications in individuals with weakened immune systems, such as those undergoing cancer treatment or those who have HIV/AIDS.

In newborns, congenital CMV infection can lead to hearing loss, vision problems, and developmental delays. Pregnant women who become infected with CMV for the first time during pregnancy are at higher risk of transmitting the virus to their unborn child. There is no cure for CMV, but antiviral medications can help manage symptoms and reduce the risk of complications in severe cases.

Leukemia, myeloid is a type of cancer that originates in the bone marrow, where blood cells are produced. Myeloid leukemia affects the myeloid cells, which include red blood cells, platelets, and most types of white blood cells. In this condition, the bone marrow produces abnormal myeloid cells that do not mature properly and accumulate in the bone marrow and blood. These abnormal cells hinder the production of normal blood cells, leading to various symptoms such as anemia, fatigue, increased risk of infections, and easy bruising or bleeding.

There are several types of myeloid leukemias, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). AML progresses rapidly and requires immediate treatment, while CML tends to progress more slowly. The exact causes of myeloid leukemia are not fully understood, but risk factors include exposure to radiation or certain chemicals, smoking, genetic disorders, and a history of chemotherapy or other cancer treatments.

Regulatory T-lymphocytes (Tregs), also known as suppressor T cells, are a subpopulation of T-cells that play a critical role in maintaining immune tolerance and preventing autoimmune diseases. They function to suppress the activation and proliferation of other immune cells, thereby regulating the immune response and preventing it from attacking the body's own tissues.

Tregs constitutively express the surface markers CD4 and CD25, as well as the transcription factor Foxp3, which is essential for their development and function. They can be further divided into subsets based on their expression of other markers, such as CD127 and CD45RA.

Tregs are critical for maintaining self-tolerance by suppressing the activation of self-reactive T cells that have escaped negative selection in the thymus. They also play a role in regulating immune responses to foreign antigens, such as those encountered during infection or cancer, and can contribute to the immunosuppressive microenvironment found in tumors.

Dysregulation of Tregs has been implicated in various autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and multiple sclerosis, as well as in cancer and infectious diseases. Therefore, understanding the mechanisms that regulate Treg function is an important area of research with potential therapeutic implications.

CD40 ligand (CD40L or CD154) is a type II transmembrane protein and a member of the tumor necrosis factor (TNF) superfamily. It is primarily expressed on activated CD4+ T cells, but can also be found on other immune cells such as activated B cells, macrophages, and dendritic cells.

CD40 ligand binds to its receptor, CD40, which is mainly expressed on the surface of antigen-presenting cells (APCs) such as B cells, dendritic cells, and macrophages. The interaction between CD40L and CD40 plays a crucial role in the activation and regulation of the immune response.

CD40L-CD40 signaling is essential for T cell-dependent B cell activation, antibody production, and class switching. It also contributes to the activation and maturation of dendritic cells, promoting their ability to stimulate T cell responses. Dysregulation of CD40L-CD40 signaling has been implicated in various autoimmune diseases, transplant rejection, and cancer.

Opportunistic infections (OIs) are infections that occur more frequently or are more severe in individuals with weakened immune systems, often due to a underlying condition such as HIV/AIDS, cancer, or organ transplantation. These infections are caused by microorganisms that do not normally cause disease in people with healthy immune function, but can take advantage of an opportunity to infect and cause damage when the body's defense mechanisms are compromised. Examples of opportunistic infections include Pneumocystis pneumonia, tuberculosis, candidiasis (thrush), and cytomegalovirus infection. Preventive measures, such as antimicrobial medications and vaccinations, play a crucial role in reducing the risk of opportunistic infections in individuals with weakened immune systems.

Kidney disease, also known as nephropathy or renal disease, refers to any functional or structural damage to the kidneys that impairs their ability to filter blood, regulate electrolytes, produce hormones, and maintain fluid balance. This damage can result from a wide range of causes, including diabetes, hypertension, glomerulonephritis, polycystic kidney disease, lupus, infections, drugs, toxins, and congenital or inherited disorders.

Depending on the severity and progression of the kidney damage, kidney diseases can be classified into two main categories: acute kidney injury (AKI) and chronic kidney disease (CKD). AKI is a sudden and often reversible loss of kidney function that occurs over hours to days, while CKD is a progressive and irreversible decline in kidney function that develops over months or years.

Symptoms of kidney diseases may include edema, proteinuria, hematuria, hypertension, electrolyte imbalances, metabolic acidosis, anemia, and decreased urine output. Treatment options depend on the underlying cause and severity of the disease and may include medications, dietary modifications, dialysis, or kidney transplantation.

CD80 (also known as B7-1) is a cell surface protein that functions as a costimulatory molecule in the immune system. It is primarily expressed on antigen presenting cells such as dendritic cells, macrophages, and B cells. CD80 binds to the CD28 receptor on T cells, providing a critical second signal necessary for T cell activation and proliferation. This interaction plays a crucial role in the initiation of an effective immune response against pathogens and tumors.

CD80 can also interact with another receptor called CTLA-4 (cytotoxic T lymphocyte antigen 4), which is expressed on activated T cells. The binding of CD80 to CTLA-4 delivers a negative signal that helps regulate the immune response and prevent overactivation, contributing to the maintenance of self-tolerance and preventing autoimmunity.

In summary, CD80 is an important antigen involved in the regulation of the adaptive immune response by modulating T cell activation and proliferation through its interactions with CD28 and CTLA-4 receptors.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

Blood grouping, also known as blood typing, is the process of determining a person's ABO and Rh (Rhesus) blood type. The ABO blood group system includes four main blood types: A, B, AB, and O, based on the presence or absence of antigens A and B on the surface of red blood cells. The Rh blood group system is another important classification system that determines whether the Rh factor (a protein also found on the surface of red blood cells) is present or absent.

Knowing a person's blood type is crucial in transfusion medicine to ensure compatibility between donor and recipient blood. If a patient receives an incompatible blood type, it can trigger an immune response leading to serious complications such as hemolysis (destruction of red blood cells), kidney failure, or even death.

Crossmatching is a laboratory test performed before a blood transfusion to determine the compatibility between the donor's and recipient's blood. It involves mixing a small sample of the donor's red blood cells with the recipient's serum (the liquid portion of the blood containing antibodies) and observing for any agglutination (clumping) or hemolysis. If there is no reaction, the blood is considered compatible, and the transfusion can proceed.

In summary, blood grouping and crossmatching are essential tests in transfusion medicine to ensure compatibility between donor and recipient blood and prevent adverse reactions that could harm the patient's health.

Hodgkin disease, also known as Hodgkin lymphoma, is a type of cancer that originates in the white blood cells called lymphocytes. It typically affects the lymphatic system, which is a network of vessels and glands spread throughout the body. The disease is characterized by the presence of a specific type of abnormal cell, known as a Reed-Sternberg cell, within the affected lymph nodes.

The symptoms of Hodgkin disease may include painless swelling of the lymph nodes in the neck, armpits, or groin; fever; night sweats; weight loss; and fatigue. The exact cause of Hodgkin disease is unknown, but it is thought to involve a combination of genetic, environmental, and infectious factors.

Hodgkin disease is typically treated with a combination of chemotherapy, radiation therapy, and/or immunotherapy, depending on the stage and extent of the disease. With appropriate treatment, the prognosis for Hodgkin disease is generally very good, with a high cure rate. However, long-term side effects of treatment may include an increased risk of secondary cancers and other health problems.

Sirolimus is a medication that belongs to a class of drugs called immunosuppressants. It is also known as rapamycin. Sirolimus works by inhibiting the mammalian target of rapamycin (mTOR), which is a protein that plays a key role in cell growth and division.

Sirolimus is primarily used to prevent rejection of transplanted organs, such as kidneys, livers, and hearts. It works by suppressing the activity of the immune system, which can help to reduce the risk of the body rejecting the transplanted organ. Sirolimus is often used in combination with other immunosuppressive drugs, such as corticosteroids and calcineurin inhibitors.

Sirolimus is also being studied for its potential therapeutic benefits in a variety of other conditions, including cancer, tuberous sclerosis complex, and lymphangioleiomyomatosis. However, more research is needed to fully understand the safety and efficacy of sirolimus in these contexts.

It's important to note that sirolimus can have significant side effects, including increased risk of infections, mouth sores, high blood pressure, and kidney damage. Therefore, it should only be used under the close supervision of a healthcare provider.

The thymus gland is an essential organ of the immune system, located in the upper chest, behind the sternum and surrounding the heart. It's primarily active until puberty and begins to shrink in size and activity thereafter. The main function of the thymus gland is the production and maturation of T-lymphocytes (T-cells), which are crucial for cell-mediated immunity, helping to protect the body from infection and cancer.

The thymus gland provides a protected environment where immune cells called pre-T cells develop into mature T cells. During this process, they learn to recognize and respond appropriately to foreign substances while remaining tolerant to self-tissues, which is crucial for preventing autoimmune diseases.

Additionally, the thymus gland produces hormones like thymosin that regulate immune cell activities and contribute to the overall immune response.

Death is the cessation of all biological functions that sustain a living organism. It is characterized by the loss of brainstem reflexes, unresponsiveness, and apnea (no breathing). In medical terms, death can be defined as:

1. Cardiopulmonary Death: The irreversible cessation of circulatory and respiratory functions.
2. Brain Death: The irreversible loss of all brain function, including the brainstem. This is often used as a definition of death when performing organ donation.

It's important to note that the exact definition of death can vary somewhat based on cultural, religious, and legal perspectives.

Cytarabine is a chemotherapeutic agent used in the treatment of various types of cancer, including leukemias and lymphomas. Its chemical name is cytosine arabinoside, and it works by interfering with the DNA synthesis of cancer cells, which ultimately leads to their death.

Cytarabine is often used in combination with other chemotherapy drugs and may be administered through various routes, such as intravenous (IV) or subcutaneous injection, or orally. The specific dosage and duration of treatment will depend on the type and stage of cancer being treated, as well as the patient's overall health status.

Like all chemotherapy drugs, cytarabine can cause a range of side effects, including nausea, vomiting, diarrhea, hair loss, and an increased risk of infection. It may also cause more serious side effects, such as damage to the liver, kidneys, or nervous system, and it is important for patients to be closely monitored during treatment to minimize these risks.

It's important to note that medical treatments should only be administered under the supervision of a qualified healthcare professional, and this information should not be used as a substitute for medical advice.

According to the medical definition, ultraviolet (UV) rays are invisible radiations that fall in the range of the electromagnetic spectrum between 100-400 nanometers. UV rays are further divided into three categories: UVA (320-400 nm), UVB (280-320 nm), and UVC (100-280 nm).

UV rays have various sources, including the sun and artificial sources like tanning beds. Prolonged exposure to UV rays can cause damage to the skin, leading to premature aging, eye damage, and an increased risk of skin cancer. UVA rays penetrate deeper into the skin and are associated with skin aging, while UVB rays primarily affect the outer layer of the skin and are linked to sunburns and skin cancer. UVC rays are the most harmful but fortunately, they are absorbed by the Earth's atmosphere and do not reach the surface.

Healthcare professionals recommend limiting exposure to UV rays, wearing protective clothing, using broad-spectrum sunscreen with an SPF of at least 30, and avoiding tanning beds to reduce the risk of UV-related health problems.

Tissue survival, in the context of medical and surgical sciences, refers to the ability of tissues to maintain their structural and functional integrity after being subjected to various stressors such as injury, surgery, ischemia (restriction in blood supply), or disease. The maintenance of tissue survival is crucial for ensuring proper healing, reducing the risk of complications, and preserving organ function.

Factors that contribute to tissue survival include adequate blood flow, sufficient oxygen and nutrient supply, removal of waste products, maintenance of a healthy cellular environment (pH, temperature, etc.), and minimal exposure to harmful substances or damaging agents. In some cases, therapeutic interventions such as hypothermia, pharmacological treatments, or tissue engineering strategies may be employed to enhance tissue survival in challenging clinical scenarios.

The amnion is the innermost fetal membrane in mammals, forming a sac that contains and protects the developing embryo and later the fetus within the uterus. It is one of the extraembryonic membranes that are derived from the outer cell mass of the blastocyst during early embryonic development. The amnion is filled with fluid (amniotic fluid) that allows for the freedom of movement and protection of the developing fetus.

The primary function of the amnion is to provide a protective environment for the growing fetus, allowing for expansion and preventing physical damage from outside forces. Additionally, the amniotic fluid serves as a medium for the exchange of waste products and nutrients between the fetal membranes and the placenta. The amnion also contributes to the formation of the umbilical cord and plays a role in the initiation of labor during childbirth.

Preoperative care refers to the series of procedures, interventions, and preparations that are conducted before a surgical operation. The primary goal of preoperative care is to ensure the patient's well-being, optimize their physical condition, reduce potential risks, and prepare them mentally and emotionally for the upcoming surgery.

Preoperative care typically includes:

1. Preoperative assessment: A thorough evaluation of the patient's overall health status, including medical history, physical examination, laboratory tests, and diagnostic imaging, to identify any potential risk factors or comorbidities that may impact the surgical procedure and postoperative recovery.
2. Informed consent: The process of ensuring the patient understands the nature of the surgery, its purpose, associated risks, benefits, and alternative treatment options. The patient signs a consent form indicating they have been informed and voluntarily agree to undergo the surgery.
3. Preoperative instructions: Guidelines provided to the patient regarding their diet, medication use, and other activities in the days leading up to the surgery. These instructions may include fasting guidelines, discontinuing certain medications, or arranging for transportation after the procedure.
4. Anesthesia consultation: A meeting with the anesthesiologist to discuss the type of anesthesia that will be used during the surgery and address any concerns related to anesthesia risks, side effects, or postoperative pain management.
5. Preparation of the surgical site: Cleaning and shaving the area where the incision will be made, as well as administering appropriate antimicrobial agents to minimize the risk of infection.
6. Medical optimization: Addressing any underlying medical conditions or correcting abnormalities that may negatively impact the surgical outcome. This may involve adjusting medications, treating infections, or managing chronic diseases such as diabetes.
7. Emotional and psychological support: Providing counseling, reassurance, and education to help alleviate anxiety, fear, or emotional distress related to the surgery.
8. Preoperative holding area: The patient is transferred to a designated area near the operating room where they are prepared for surgery by changing into a gown, having intravenous (IV) lines inserted, and receiving monitoring equipment.

By following these preoperative care guidelines, healthcare professionals aim to ensure that patients undergo safe and successful surgical procedures with optimal outcomes.

Liver function tests (LFTs) are a group of blood tests that are used to assess the functioning and health of the liver. These tests measure the levels of various enzymes, proteins, and waste products that are produced or metabolized by the liver. Some common LFTs include:

1. Alanine aminotransferase (ALT): An enzyme found primarily in the liver, ALT is released into the bloodstream in response to liver cell damage. Elevated levels of ALT may indicate liver injury or disease.
2. Aspartate aminotransferase (AST): Another enzyme found in various tissues, including the liver, heart, and muscles. Like ALT, AST is released into the bloodstream following tissue damage. High AST levels can be a sign of liver damage or other medical conditions.
3. Alkaline phosphatase (ALP): An enzyme found in several organs, including the liver, bile ducts, and bones. Elevated ALP levels may indicate a blockage in the bile ducts, liver disease, or bone disorders.
4. Gamma-glutamyl transferase (GGT): An enzyme found mainly in the liver, pancreas, and biliary system. Increased GGT levels can suggest liver disease, alcohol consumption, or the use of certain medications.
5. Bilirubin: A yellowish pigment produced when hemoglobin from red blood cells is broken down. Bilirubin is processed by the liver and excreted through bile. High bilirubin levels can indicate liver dysfunction, bile duct obstruction, or certain types of anemia.
6. Albumin: A protein produced by the liver that helps maintain fluid balance in the body and transports various substances in the blood. Low albumin levels may suggest liver damage, malnutrition, or kidney disease.
7. Total protein: A measure of all proteins present in the blood, including albumin and other types of proteins produced by the liver. Decreased total protein levels can indicate liver dysfunction or other medical conditions.

These tests are often ordered together as part of a routine health checkup or when evaluating symptoms related to liver function or disease. The results should be interpreted in conjunction with clinical findings, medical history, and other diagnostic tests.

Disease progression is the worsening or advancement of a medical condition over time. It refers to the natural course of a disease, including its development, the severity of symptoms and complications, and the impact on the patient's overall health and quality of life. Understanding disease progression is important for developing appropriate treatment plans, monitoring response to therapy, and predicting outcomes.

The rate of disease progression can vary widely depending on the type of medical condition, individual patient factors, and the effectiveness of treatment. Some diseases may progress rapidly over a short period of time, while others may progress more slowly over many years. In some cases, disease progression may be slowed or even halted with appropriate medical interventions, while in other cases, the progression may be inevitable and irreversible.

In clinical practice, healthcare providers closely monitor disease progression through regular assessments, imaging studies, and laboratory tests. This information is used to guide treatment decisions and adjust care plans as needed to optimize patient outcomes and improve quality of life.

Homeodomain proteins are a group of transcription factors that play crucial roles in the development and differentiation of cells in animals and plants. They are characterized by the presence of a highly conserved DNA-binding domain called the homeodomain, which is typically about 60 amino acids long. The homeodomain consists of three helices, with the third helix responsible for recognizing and binding to specific DNA sequences.

Homeodomain proteins are involved in regulating gene expression during embryonic development, tissue maintenance, and organismal growth. They can act as activators or repressors of transcription, depending on the context and the presence of cofactors. Mutations in homeodomain proteins have been associated with various human diseases, including cancer, congenital abnormalities, and neurological disorders.

Some examples of homeodomain proteins include PAX6, which is essential for eye development, HOX genes, which are involved in body patterning, and NANOG, which plays a role in maintaining pluripotency in stem cells.

Proportional hazards models are a type of statistical analysis used in medical research to investigate the relationship between covariates (predictor variables) and survival times. The most common application of proportional hazards models is in the Cox regression model, which is named after its developer, Sir David Cox.

In a proportional hazards model, the hazard rate or risk of an event occurring at a given time is assumed to be proportional to the hazard rate of a reference group, after adjusting for the covariates. This means that the ratio of the hazard rates between any two individuals remains constant over time, regardless of their survival times.

Mathematically, the hazard function h(t) at time t for an individual with a set of covariates X can be expressed as:

h(t|X) = h0(t) \* exp(β1X1 + β2X2 + ... + βpXp)

where h0(t) is the baseline hazard function, X1, X2, ..., Xp are the covariates, and β1, β2, ..., βp are the regression coefficients that represent the effect of each covariate on the hazard rate.

The assumption of proportionality is crucial in the interpretation of the results from a Cox regression model. If the assumption is violated, then the estimated regression coefficients may be biased and misleading. Therefore, it is important to test for the proportional hazards assumption before interpreting the results of a Cox regression analysis.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

Pancreatic neoplasms refer to abnormal growths in the pancreas that can be benign or malignant. The pancreas is a gland located behind the stomach that produces hormones and digestive enzymes. Pancreatic neoplasms can interfere with the normal functioning of the pancreas, leading to various health complications.

Benign pancreatic neoplasms are non-cancerous growths that do not spread to other parts of the body. They are usually removed through surgery to prevent any potential complications, such as blocking the bile duct or causing pain.

Malignant pancreatic neoplasms, also known as pancreatic cancer, are cancerous growths that can invade and destroy surrounding tissues and organs. They can also spread (metastasize) to other parts of the body, such as the liver, lungs, or bones. Pancreatic cancer is often aggressive and difficult to treat, with a poor prognosis.

There are several types of pancreatic neoplasms, including adenocarcinomas, neuroendocrine tumors, solid pseudopapillary neoplasms, and cystic neoplasms. The specific type of neoplasm is determined through various diagnostic tests, such as imaging studies, biopsies, and blood tests. Treatment options depend on the type, stage, and location of the neoplasm, as well as the patient's overall health and preferences.

Viral activation, also known as viral reactivation or virus reactivation, refers to the process in which a latent or dormant virus becomes active and starts to replicate within a host cell. This can occur when the immune system is weakened or compromised, allowing the virus to evade the body's natural defenses and cause disease.

In some cases, viral activation can be triggered by certain environmental factors, such as stress, exposure to UV light, or infection with another virus. Once activated, the virus can cause symptoms similar to those seen during the initial infection, or it may lead to new symptoms depending on the specific virus and the host's immune response.

Examples of viruses that can remain dormant in the body and be reactivated include herpes simplex virus (HSV), varicella-zoster virus (VZV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV). It is important to note that not all viruses can be reactivated, and some may remain dormant in the body indefinitely without causing any harm.

Directed tissue donation is the process by which a person designates a specific individual as the recipient of their donated tissues, such as corneas, heart valves, or skin, after their death. This allows the donor to make a direct and meaningful impact on the life of someone they know or are related to who may be in need of a tissue transplant. It is important to note that the final determination of whether the tissues are suitable for transplantation will be made by medical professionals at the time of donation, taking into account various factors such as the donor's medical history and cause of death. Directed tissue donation can provide comfort and solace to both the donor and their loved ones, knowing that they have been able to help someone in need even after their passing.

Creatinine is a waste product that's produced by your muscles and removed from your body by your kidneys. Creatinine is a breakdown product of creatine, a compound found in meat and fish, as well as in the muscles of vertebrates, including humans.

In healthy individuals, the kidneys filter out most of the creatinine and eliminate it through urine. However, when the kidneys are not functioning properly, creatinine levels in the blood can rise. Therefore, measuring the amount of creatinine in the blood or urine is a common way to test how well the kidneys are working. High creatinine levels in the blood may indicate kidney damage or kidney disease.

A feasibility study is a preliminary investigation or analysis conducted to determine the viability of a proposed project, program, or product. In the medical field, feasibility studies are often conducted before implementing new treatments, procedures, equipment, or facilities. These studies help to assess the practicality and effectiveness of the proposed intervention, as well as its potential benefits and risks.

Feasibility studies in healthcare typically involve several steps:

1. Problem identification: Clearly define the problem that the proposed project, program, or product aims to address.
2. Objectives setting: Establish specific, measurable, achievable, relevant, and time-bound (SMART) objectives for the study.
3. Literature review: Conduct a thorough review of existing research and best practices related to the proposed intervention.
4. Methodology development: Design a methodology for data collection and analysis that will help answer the research questions and achieve the study's objectives.
5. Resource assessment: Evaluate the availability and adequacy of resources, including personnel, time, and finances, required to carry out the proposed intervention.
6. Risk assessment: Identify potential risks and challenges associated with the implementation of the proposed intervention and develop strategies to mitigate them.
7. Cost-benefit analysis: Estimate the costs and benefits of the proposed intervention, including direct and indirect costs, as well as short-term and long-term benefits.
8. Stakeholder engagement: Engage relevant stakeholders, such as patients, healthcare providers, administrators, and policymakers, to gather their input and support for the proposed intervention.
9. Decision-making: Based on the findings of the feasibility study, make an informed decision about whether or not to proceed with the proposed project, program, or product.

Feasibility studies are essential in healthcare as they help ensure that resources are allocated efficiently and effectively, and that interventions are evidence-based, safe, and beneficial for patients.

Lymphoma is a type of cancer that originates from the white blood cells called lymphocytes, which are part of the immune system. These cells are found in various parts of the body such as the lymph nodes, spleen, bone marrow, and other organs. Lymphoma can be classified into two main types: Hodgkin lymphoma (HL) and non-Hodgkin lymphoma (NHL).

HL is characterized by the presence of a specific type of abnormal lymphocyte called Reed-Sternberg cells, while NHL includes a diverse group of lymphomas that lack these cells. The symptoms of lymphoma may include swollen lymph nodes, fever, night sweats, weight loss, and fatigue.

The exact cause of lymphoma is not known, but it is believed to result from genetic mutations in the lymphocytes that lead to uncontrolled cell growth and division. Exposure to certain viruses, chemicals, and radiation may increase the risk of developing lymphoma. Treatment options for lymphoma depend on various factors such as the type and stage of the disease, age, and overall health of the patient. Common treatments include chemotherapy, radiation therapy, immunotherapy, and stem cell transplantation.

Blood cells are the formed elements in the blood, including red blood cells (erythrocytes), white blood cells (leukocytes), and platelets (thrombocytes). These cells are produced in the bone marrow and play crucial roles in the body's functions. Red blood cells are responsible for carrying oxygen to tissues and carbon dioxide away from them, while white blood cells are part of the immune system and help defend against infection and disease. Platelets are cell fragments that are essential for normal blood clotting.

Etoposide is a chemotherapy medication used to treat various types of cancer, including lung cancer, testicular cancer, and certain types of leukemia. It works by inhibiting the activity of an enzyme called topoisomerase II, which is involved in DNA replication and transcription. By doing so, etoposide can interfere with the growth and multiplication of cancer cells.

Etoposide is often administered intravenously in a hospital or clinic setting, although it may also be given orally in some cases. The medication can cause a range of side effects, including nausea, vomiting, hair loss, and an increased risk of infection. It can also have more serious side effects, such as bone marrow suppression, which can lead to anemia, bleeding, and a weakened immune system.

Like all chemotherapy drugs, etoposide is not without risks and should only be used under the close supervision of a qualified healthcare provider. It is important for patients to discuss the potential benefits and risks of this medication with their doctor before starting treatment.

Immunoenzyme techniques are a group of laboratory methods used in immunology and clinical chemistry that combine the specificity of antibody-antigen reactions with the sensitivity and amplification capabilities of enzyme reactions. These techniques are primarily used for the detection, quantitation, or identification of various analytes (such as proteins, hormones, drugs, viruses, or bacteria) in biological samples.

In immunoenzyme techniques, an enzyme is linked to an antibody or antigen, creating a conjugate. This conjugate then interacts with the target analyte in the sample, forming an immune complex. The presence and amount of this immune complex can be visualized or measured by detecting the enzymatic activity associated with it.

There are several types of immunoenzyme techniques, including:

1. Enzyme-linked Immunosorbent Assay (ELISA): A widely used method for detecting and quantifying various analytes in a sample. In ELISA, an enzyme is attached to either the capture antibody or the detection antibody. After the immune complex formation, a substrate is added that reacts with the enzyme, producing a colored product that can be measured spectrophotometrically.
2. Immunoblotting (Western blot): A method used for detecting specific proteins in a complex mixture, such as a protein extract from cells or tissues. In this technique, proteins are separated by gel electrophoresis and transferred to a membrane, where they are probed with an enzyme-conjugated antibody directed against the target protein.
3. Immunohistochemistry (IHC): A method used for detecting specific antigens in tissue sections or cells. In IHC, an enzyme-conjugated primary or secondary antibody is applied to the sample, and the presence of the antigen is visualized using a chromogenic substrate that produces a colored product at the site of the antigen-antibody interaction.
4. Immunofluorescence (IF): A method used for detecting specific antigens in cells or tissues by employing fluorophore-conjugated antibodies. The presence of the antigen is visualized using a fluorescence microscope.
5. Enzyme-linked immunosorbent assay (ELISA): A method used for detecting and quantifying specific antigens or antibodies in liquid samples, such as serum or culture supernatants. In ELISA, an enzyme-conjugated detection antibody is added after the immune complex formation, and a substrate is added that reacts with the enzyme to produce a colored product that can be measured spectrophotometrically.

These techniques are widely used in research and diagnostic laboratories for various applications, including protein characterization, disease diagnosis, and monitoring treatment responses.

A mucous membrane is a type of moist, protective lining that covers various body surfaces inside the body, including the respiratory, gastrointestinal, and urogenital tracts, as well as the inner surface of the eyelids and the nasal cavity. These membranes are composed of epithelial cells that produce mucus, a slippery secretion that helps trap particles, microorganisms, and other foreign substances, preventing them from entering the body or causing damage to tissues. The mucous membrane functions as a barrier against infection and irritation while also facilitating the exchange of gases, nutrients, and waste products between the body and its environment.

Biliary tract diseases refer to a group of medical conditions that affect the biliary system, which includes the gallbladder, bile ducts, and liver. Bile is a digestive juice produced by the liver, stored in the gallbladder, and released into the small intestine through the bile ducts to help digest fats.

Biliary tract diseases can cause various symptoms such as abdominal pain, jaundice, fever, nausea, vomiting, and changes in stool color. Some of the common biliary tract diseases include:

1. Gallstones: Small, hard deposits that form in the gallbladder or bile ducts made up of cholesterol or bilirubin.
2. Cholecystitis: Inflammation of the gallbladder, often caused by gallstones.
3. Cholangitis: Infection or inflammation of the bile ducts.
4. Biliary dyskinesia: A motility disorder that affects the contraction and relaxation of the muscles in the biliary system.
5. Primary sclerosing cholangitis: A chronic autoimmune disease that causes scarring and narrowing of the bile ducts.
6. Biliary tract cancer: Rare cancers that affect the gallbladder, bile ducts, or liver.

Treatment for biliary tract diseases varies depending on the specific condition and severity but may include medications, surgery, or a combination of both.

Dermatitis is a general term that describes inflammation of the skin. It is often characterized by redness, swelling, itching, and tenderness. There are many different types of dermatitis, including atopic dermatitis (eczema), contact dermatitis, seborrheic dermatitis, and nummular dermatitis.

Atopic dermatitis is a chronic skin condition that often affects people with a family history of allergies, such as asthma or hay fever. It typically causes dry, scaly patches on the skin that can be extremely itchy.

Contact dermatitis occurs when the skin comes into contact with an irritant or allergen, such as poison ivy or certain chemicals. This type of dermatitis can cause redness, swelling, and blistering.

Seborrheic dermatitis is a common condition that causes a red, itchy rash, often on the scalp, face, or other areas of the body where oil glands are located. It is thought to be related to an overproduction of oil by the skin's sebaceous glands.

Nummular dermatitis is a type of eczema that causes round, coin-shaped patches of dry, scaly skin. It is more common in older adults and often occurs during the winter months.

Treatment for dermatitis depends on the underlying cause and severity of the condition. In some cases, over-the-counter creams or lotions may be sufficient to relieve symptoms. Prescription medications, such as corticosteroids or immunosuppressants, may be necessary in more severe cases. Avoiding triggers and irritants can also help prevent flare-ups of dermatitis.

Hepatitis C is a liver infection caused by the hepatitis C virus (HCV). It's primarily spread through contact with contaminated blood, often through sharing needles or other equipment to inject drugs. For some people, hepatitis C is a short-term illness but for most — about 75-85% — it becomes a long-term, chronic infection that can lead to serious health problems like liver damage, liver failure, and even liver cancer. The virus can infect and inflame the liver, causing symptoms like jaundice (yellowing of the skin and eyes), abdominal pain, fatigue, and dark urine. Many people with hepatitis C don't have any symptoms, so they might not know they have the infection until they experience complications. There are effective treatments available for hepatitis C, including antiviral medications that can cure the infection in most people. Regular testing is important to diagnose and treat hepatitis C early, before it causes serious health problems.

A "mutant strain of mice" in a medical context refers to genetically engineered mice that have specific genetic mutations introduced into their DNA. These mutations can be designed to mimic certain human diseases or conditions, allowing researchers to study the underlying biological mechanisms and test potential therapies in a controlled laboratory setting.

Mutant strains of mice are created through various techniques, including embryonic stem cell manipulation, gene editing technologies such as CRISPR-Cas9, and radiation-induced mutagenesis. These methods allow scientists to introduce specific genetic changes into the mouse genome, resulting in mice that exhibit altered physiological or behavioral traits.

These strains of mice are widely used in biomedical research because their short lifespan, small size, and high reproductive rate make them an ideal model organism for studying human diseases. Additionally, the mouse genome has been well-characterized, and many genetic tools and resources are available to researchers working with these animals.

Examples of mutant strains of mice include those that carry mutations in genes associated with cancer, neurodegenerative disorders, metabolic diseases, and immunological conditions. These mice provide valuable insights into the pathophysiology of human diseases and help advance our understanding of potential therapeutic interventions.

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that plays a crucial role in the modulation of immune responses. It is produced by various cell types, including T cells, macrophages, and dendritic cells. IL-10 inhibits the production of pro-inflammatory cytokines, such as TNF-α, IL-1, IL-6, IL-8, and IL-12, and downregulates the expression of costimulatory molecules on antigen-presenting cells. This results in the suppression of T cell activation and effector functions, which ultimately helps to limit tissue damage during inflammation and promote tissue repair. Dysregulation of IL-10 has been implicated in various pathological conditions, including chronic infections, autoimmune diseases, and cancer.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Fluorescein-5-isothiocyanate (FITC) is not a medical term per se, but a chemical compound commonly used in biomedical research and clinical diagnostics. Therefore, I will provide a general definition of this term:

Fluorescein-5-isothiocyanate (FITC) is a fluorescent dye with an absorption maximum at approximately 492-495 nm and an emission maximum at around 518-525 nm. It is widely used as a labeling reagent for various biological molecules, such as antibodies, proteins, and nucleic acids, to study their structure, function, and interactions in techniques like flow cytometry, immunofluorescence microscopy, and western blotting. The isothiocyanate group (-N=C=S) in the FITC molecule reacts with primary amines (-NH2) present in biological molecules to form a stable thiourea bond, enabling specific labeling of target molecules for detection and analysis.

Renal dialysis is a medical procedure that is used to artificially remove waste products, toxins, and excess fluids from the blood when the kidneys are no longer able to perform these functions effectively. This process is also known as hemodialysis.

During renal dialysis, the patient's blood is circulated through a special machine called a dialyzer or an artificial kidney, which contains a semi-permeable membrane that filters out waste products and excess fluids from the blood. The cleaned blood is then returned to the patient's body.

Renal dialysis is typically recommended for patients with advanced kidney disease or kidney failure, such as those with end-stage renal disease (ESRD). It is a life-sustaining treatment that helps to maintain the balance of fluids and electrolytes in the body, prevent the buildup of waste products and toxins, and control blood pressure.

There are two main types of renal dialysis: hemodialysis and peritoneal dialysis. Hemodialysis is the most common type and involves using a dialyzer to filter the blood outside the body. Peritoneal dialysis, on the other hand, involves placing a catheter in the abdomen and using the lining of the abdomen (peritoneum) as a natural filter to remove waste products and excess fluids from the body.

Overall, renal dialysis is an essential treatment option for patients with kidney failure, helping them to maintain their quality of life and prolong their survival.

A registry in the context of medicine is a collection or database of standardized information about individuals who share a certain condition or attribute, such as a disease, treatment, exposure, or demographic group. These registries are used for various purposes, including:

* Monitoring and tracking the natural history of diseases and conditions
* Evaluating the safety and effectiveness of medical treatments and interventions
* Conducting research and generating hypotheses for further study
* Providing information to patients, clinicians, and researchers
* Informing public health policy and decision-making

Registries can be established for a wide range of purposes, including disease-specific registries (such as cancer or diabetes registries), procedure-specific registries (such as joint replacement or cardiac surgery registries), and population-based registries (such as birth defects or cancer registries). Data collected in registries may include demographic information, clinical data, laboratory results, treatment details, and outcomes.

Registries can be maintained by a variety of organizations, including hospitals, clinics, academic medical centers, professional societies, government agencies, and industry. Participation in registries is often voluntary, although some registries may require informed consent from participants. Data collected in registries are typically de-identified to protect the privacy of individuals.

Histochemistry is the branch of pathology that deals with the microscopic localization of cellular or tissue components using specific chemical reactions. It involves the application of chemical techniques to identify and locate specific biomolecules within tissues, cells, and subcellular structures. This is achieved through the use of various staining methods that react with specific antigens or enzymes in the sample, allowing for their visualization under a microscope. Histochemistry is widely used in diagnostic pathology to identify different types of tissues, cells, and structures, as well as in research to study cellular and molecular processes in health and disease.

Combination drug therapy is a treatment approach that involves the use of multiple medications with different mechanisms of action to achieve better therapeutic outcomes. This approach is often used in the management of complex medical conditions such as cancer, HIV/AIDS, and cardiovascular diseases. The goal of combination drug therapy is to improve efficacy, reduce the risk of drug resistance, decrease the likelihood of adverse effects, and enhance the overall quality of life for patients.

In combining drugs, healthcare providers aim to target various pathways involved in the disease process, which may help to:

1. Increase the effectiveness of treatment by attacking the disease from multiple angles.
2. Decrease the dosage of individual medications, reducing the risk and severity of side effects.
3. Slow down or prevent the development of drug resistance, a common problem in chronic diseases like HIV/AIDS and cancer.
4. Improve patient compliance by simplifying dosing schedules and reducing pill burden.

Examples of combination drug therapy include:

1. Antiretroviral therapy (ART) for HIV treatment, which typically involves three or more drugs from different classes to suppress viral replication and prevent the development of drug resistance.
2. Chemotherapy regimens for cancer treatment, where multiple cytotoxic agents are used to target various stages of the cell cycle and reduce the likelihood of tumor cells developing resistance.
3. Cardiovascular disease management, which may involve combining medications such as angiotensin-converting enzyme (ACE) inhibitors, beta-blockers, diuretics, and statins to control blood pressure, heart rate, fluid balance, and cholesterol levels.
4. Treatment of tuberculosis, which often involves a combination of several antibiotics to target different aspects of the bacterial life cycle and prevent the development of drug-resistant strains.

When prescribing combination drug therapy, healthcare providers must carefully consider factors such as potential drug interactions, dosing schedules, adverse effects, and contraindications to ensure safe and effective treatment. Regular monitoring of patients is essential to assess treatment response, manage side effects, and adjust the treatment plan as needed.

Boschero AC, Negreiros de Paiva CE (1977). "Transplantation of islets of Langerhans in diabetic rats". Acta Physiol Lat Am. 27 ...
Scharp DW, Murphy JJ, Newton WT, Ballinger WF, Lacy PE (January 1975). "Transplantation of islets of Langerhans in diabetic ... Islet transplantation is the transplantation of isolated islets from a donor pancreas into another person. It is a treatment ... The goal of islet transplantation is to infuse enough islets to control the blood glucose level removing the need for insulin ... and the limited supply of islets for transplantation. Current immunosuppressive regimens are capable of preventing islet ...
2003). "Inflammatory mediators expressed in human islets of Langerhans: implications for islet transplantation". Biochem. ...
Islet cell Transplantation Moving the beta (islet) cells from a donor pancreas and putting them into a person whose pancreas ... Islets of Langerhans Groups of cells in the pancreas. Some of them make and secrete hormones that help the body break down and ... Beta cell transplantation See: Islet cell transplantation. Biosynthetic human insulin A man-made insulin that is chemically ... Insulin a hormone produced by the beta cells in the Islet of Langerhans' beta cells. It is a very small protein and has effects ...
Insulin originates from beta cells located in the islets of Langerhans. Since each islet contains up to 2000 beta cells and ... Pulsatile insulin delivery to the portal vein or islet cell transplantation to the liver of diabetic patients are therefore ... The islets of Langerhans. Md. Shahidul Islam. Dordrecht: Springer. 2010. ISBN 978-90-481-3271-3. OCLC 663096203. Insulin ... within an islet of Langerhans the oscillations become synchronized by electrical coupling between closely located beta cells ...
... with enough islet recovery from the original tissue, for safe and effective islet transplantation in humans. Because Ficoll- ... Ficoll was used in an attempt to separate islets of Langerhans from enzyme (collagenase) digested human pancreatic tissue. The ... theory was that separated islets could then be used for transplantation into patients with type 1 diabetes. In practice, using ... At one time, fairly early in the research for diabetes treatment by transplantation, ...
Islets of Langerhans (pancreas islet cells) (deceased-donor and living-donor) Bone marrow or adult stem cell (living-donor and ... Thyroid transplantation became the model for a whole new therapeutic strategy: organ transplantation. After the example of the ... Kidney Transplantation, Bioengineering, and Regeneration: Kidney Transplantation in the Regenerative Medicine Era, edited by ... "Transplantation: Catalan pioneers". Retrieved 10 December 2022. Roy Calne. Essay History of transplantation. Lancet 2006; 368: ...
"Three-yr follow-up of a type 1 diabetes mellitus patient with an islet xenotransplant". Clinical Transplantation. 21 (3): 352- ... "Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study". European Journal of ...
... s have been successful for transplanting a number of cells including islets of Langerhans for diabetes treatment ... April 1994). "Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation". Lancet. 343 (8903): ... Current status of artificial devices and hepatocyte transplantation". Transplantation. 87 (4): 457-466. doi:10.1097/TP. ... This principle has been used to remove blood group antibodies from plasma for bone marrow transplantation and for the treatment ...
... islets of langerhans transplantation MeSH E04.936.225.687 - stem cell transplantation MeSH E04.936.225.687.155 - bone marrow ... islets of langerhans transplantation MeSH E04.270.694 - parathyroidectomy MeSH E04.270.856 - thyroidectomy MeSH E04.292.413 - ... heart transplantation MeSH E04.936.450.475.450 - heart-lung transplantation MeSH E04.936.450.485 - kidney transplantation MeSH ... lung transplantation MeSH E04.936.450.495.450 - heart-lung transplantation MeSH E04.936.450.650 - pancreas transplantation MeSH ...
In 2008 started the only currently active program of islet transplantation in Germany. This treatment is a great benefit for ... and one of the coordinators of the Paul-Langerhans-Institute Dresden. Since 2012, he has been scientific secretary of the DFG ... stem cell research and advances in islet cell transplantation as a therapy for diabetes. This is why, presently, Dresden is the ... DFG TRansregio 127 Transplantation of human islets without immunosuppression CV Bornstein (Articles with ISNI identifiers, ...
"Xenotransplantation of porcine neonatal islets of Langerhans and Sertoli cells: a 4-year study". European Journal of ... Upon xenogenic transplantation, Sertoli cells have been shown to regain the ability to proliferate. Recently (2016), ... By treating spontaneously diabetic and obese mice with the transplantation of microencapsulated Sertoli cells in subcutaneous ... Korbutt GS, Elliott JF, Rajotte RV (February 1997). "Cotransplantation of allogeneic islets with allogeneic testicular cell ...
... islet cells are obtained from the patient, whereas in the allogeneic pancreatic islet cell transplantation islet cells were ... Schmidt observed inflammation caused by lymphocytic infiltration in the islets of Langerhans in the periphery of islets (peri- ... Due to the islets of Langerhans being small clusters of cells in the pancreas, it is difficult to study and diagnose insulitis ... Insulitis is an inflammation of the islets of Langerhans, a collection of endocrine tissue located in the pancreas that helps ...
Insulin independence after islet transplantation into type I diabetic patient. Diabetes 1990; 39: 515-518. "Pancreatic Islet ... That work resulted in a better understanding of how beta cells in the pancreatic islets of Langerhans produced and exported ... He is often credited as the originator of islet transplantation. Lacy was born in Trinway, Ohio in February, 1924. He was ... Ballinger WF II, Lacy PE: Transplantation of intact pancreatic islets in rats. Surgery 1972; 72: 175-186. Ballinger WF II, Lacy ...
Langerhans islet beta-cells, cardiomyocytes and neurons. Drug screen are performed on miniaturized cell culture in multiwell- ... Source material can be normal healthy cells from another donor (heterologous transplantation) or genetically corrected from the ... cell replacement and transplantation following acute injuries and reconstructive surgery. These applications are limited to the ... "Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets". Science. 292 (5520): ...
... while leaving the islets of Langerhans intact. He reasoned that a relatively pure extract could be made from the islets once ... or by islet cell transplantation to the liver. The blood insulin level can be measured in international units, such as µIU/mL ... Beta cells in the islets of Langerhans release insulin in two phases. The first-phase release is rapidly triggered in response ... The function of the "little heaps of cells", later known as the islets of Langerhans, initially remained unknown, but Édouard ...
II MHC gene products are expressed at higher levels or de novo on the insulin-producing beta cells of the islets of Langerhans ... At Harvard, he served as head of the Inflammation, Immunity and Transplantation Focus Group at the Schepens Eye Research ... Enhanced MHC class I heavy-chain gene expression in pancreatic islets". Diabetes. 37 (10): 1411-8. doi:10.2337/diabetes.37.10. ...
the T cell did not encounter in the thymus (such as, tissue-specific molecules like those in the islets of Langerhans, brain, ... Braza, F; Soulillou JP; Brouard S. (Sep 2012). "Gene expression signature in transplantation tolerance". Clin Chim Acta. 413 ( ... Immune recognition of non-self-antigens typically complicates transplantation and engrafting of foreign tissue from an organism ... which could be rescued by transplantation of CD4+ T cells. A more specific depletion and reconstitution experiment established ...
Selawry HP, Cameron DF (1993). "Sertoli cell-enriched fractions in successful islet cell transplantation". Cell Transplantation ... islets of Langerhans), resulting in increased graft survival. Molecules released by the Sertoli cells are predicted to protect ... ISBN 978-0-12-515401-7. Setchel BP (1990). "The testis and tissue transplantation: historical aspects". Journal of Reproductive ... Korbutt GS, Elliott JF, Rajotte RV (1997). "Cotransplantation of allogeneic islets with allogeneic testicular cell aggregates ...
The pancreas contains the islets of Langerhans, which are responsible for making insulin, a hormone that helps regulate blood ... October 2005). "Simultaneous liver and pancreas transplantation in patients with cystic fibrosis". Transplantation Proceedings ... Damage to the pancreas can lead to loss of the islet cells, leading to a type of diabetes unique to those with the disease. ... Lung transplantation may be an option if lung function continues to worsen. Pancreatic enzyme replacement and fat-soluble ...
... islet cell - islet cell cancer - islet of Langerhans cell - isoflavone - isointense - isolated hepatic perfusion - isolated ... syngeneic bone marrow transplantation - syngeneic stem cell transplantation - synovial membrane - synovial sarcoma - synthetic ... allogeneic bone marrow transplantation - allogeneic stem cell transplantation - allogenic - allopurinol - Allovectin-7 - aloe- ... autologous bone marrow transplantation - autologous lymphocyte - autologous stem cell transplantation - autologous tumor cell ...
Paul Langerhans: Islets of Langerhans, Langerhans cells Max von Laue: Discoveries regarding the diffraction of X-rays in ... Pioneer of skin transplantation and cosmetic surgery. Ernst Dickmanns: Developer of the first driverless car. Otto Diels: Diels ...
Insulin is released into the blood by beta cells (β-cells), found in the islets of Langerhans in the pancreas, in response to ... "Pancreas Transplantation". American Diabetes Association. Archived from the original on 13 April 2014. Retrieved 9 April 2014. ... However, islet autoimmunity and multiple antibodies can be a strong predictor of the onset of type 1 diabetes. Type 2 diabetes- ... The disease is characterized by loss of the insulin-producing beta cells of the pancreatic islets, leading to severe insulin ...
An experimental procedure to treat type 1 diabetes is pancreas transplantation or isolated transplantation of islet cells to ... also called islets of Langerhans) that are distributed throughout the pancreas. Pancreatic islets contain alpha cells, beta ... more numerous and found throughout the islet. Enterochromaffin cells are also scattered throughout the islets. Islets are ... The pancreatic islets form as the endocrine cells migrate from the duct system to form small clusters around capillaries. This ...
... polypeptide receptor List of terms associated with diabetes Guangxitoxin Alpha cell Pancreatic development Islets of Langerhans ... "Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived ... Beta cells make up 50-70% of the cells in human islets. In patients with Type 1 diabetes, beta-cell mass and function are ... Cilia deletion can lead to islet dysfunction and type 2 diabetes. Beta cells are the only site of insulin synthesis in mammals ...
July 2000). "Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free ... have been dedicated towards the development of bioartificial pancreas involving the immobilization of islets of Langerhans ... "Considerations for successful transplantation of encapsulated pancreatic islets". Diabetologia. 45 (2): 159-73. doi:10.1007/ ... The use of microencapsulation would protect the islet cells from immune rejection as well as allow the use of animal cells or ...
A global online survey was administered to 69 islet transplantation programs, covering 84 centers and 5 networks. The survey ... A Worldwide Survey of Activities and Practices in Clinical Islet of Langerhans Transplantation Thierry Berney 1 , Axel Andres 1 ... A Worldwide Survey of Activities and Practices in Clinical Islet of Langerhans Transplantation Thierry Berney et al. Transpl ... Islet allotransplant activity of 94 institutions/networks performing or having performed islet transplantation (2000-2020). (A) ...
Transplantation in Diabetic Cases. Futurist writer Harlan Ellison® has a web page dedicated to him called Islets of Langerhans ... The Islets of Langerhans In Futurist Literature. "Adrift Just Off the Islets of Langerhans: Latitude 38° 54 N, Longitude 77° ... Transplantation of the Islets of Langerhans is a simpler procedure, accomplished with a large-bore hypodermic needle. That ... NIDDK reports that the Islets of Langerhans may be successfully transplanted. In clinical trials, a massive number of islets ...
Boschero AC, Negreiros de Paiva CE (1977). "Transplantation of islets of Langerhans in diabetic rats". Acta Physiol Lat Am. 27 ...
However, islet transplantation is associated with several challenges including function-loss associated with dispersion and ... Transplantation of pancreatic islets or stem cell derived insulin secreting cells is an attractive treatment strategy for ... Islets of Langerhans Transplantation / methods* * Islets of Langerhans* / blood supply * Islets of Langerhans* / cytology ... 3D Printed Vascularized Device for Subcutaneous Transplantation of Human Islets Biotechnol J. 2017 Sep;12(9). doi: 10.1002/biot ...
... either directly through pancreatic/islet transplantation, indirectly through artificial pancreas/beta cells, or via a rebirth ... of islet function by reprogramming the body to create a new and expanded islet cell mass protected from further assault by ... The central rationale to curing diabetes revolves around replacing the function of pancreatic islets, ... and whereas the prospect of islet neogenesis was once considered to be heretical, it is now quite fashionable amongst the ...
Islets of Langerhans Transplantation. Islets of Langerhans Publication Types: Lecture. Webcast Rights: This is a work of the ...
Islets of Langerhans Transplantation; Islets of Langerhans/cytology*; Islets of Langerhans/immunology*; Lymphocyte Activation; ... Abstract: Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges ... Title: Immune-evasive human islet-like organoids ameliorate diabetes.. Authors: Yoshihara, Eiji; OConnor, Carolyn; Gasser, ... The generation of glucose-responsive islet-like organoids that are able to avoid immune detection provides a promising ...
Healthy islets are taken from a donated pancreas and placed in a recipient. ... Overview of islet transplantation, an experimental treatment for type 1 diabetes. ... What are islets?. Pancreatic islets, also called islets of Langerhans, are groups of cells in your pancreas. The pancreas is an ... In the type of islet transplantation used to treat type 1 diabetes, also called islet allo-transplantation, doctors take islets ...
6. [Transplantation of islets of Langerhans in man].. Morel PH; Bühler L; Marini M; Deng S; Mage R; Mentha G; Rohner A. Helv ... 7. [Islet of Langerhans transplantation in humans].. Morel P; Bühler L; Marini M; Deng S; Mage R; Mentha G; Rohner A. Schweiz ... Autologous islet transplantation to prevent diabetes after pancreatic resection.. Wahoff DC; Papalois BE; Najarian JS; Kendall ... 2. [Long-term follow-up of 9 islets of Langerhans autografts after resection of the pancreas].. Fournier B; Andereggen E; ...
islets of langerhans transplantation (21) * insulin (15) * transplantation (14) * tissue transplants (11) ... Caspase Inhibitor Therapy Enhances Marginal Mass Islet Graft Survival and Preserves Long-Term Function in Islet Transplantation ... The Caspase Selective Inhibitor EP1013 Augments Human Islet Graft Function and Longevity in Marginal Mass Islet Transplantation ... Islet Transplantation Outcomes from a Large Single Center BRAULIO A. MARFIL-GARZA, ANNA LAM, DAVID BIGAM, PETER SENIOR, A.M. ...
... metabolic abnormalities of DM are due to cellular destruction of the insulin-secreting beta cells in the islets of Langerhans. ... Table 1. Pancreas Transplantation in the United States* Pancreas Alone Kidney-Pancreas ... Pancreas Transplantation. Patricia A. Cowan, PhD; Mona N. Wicks, PhD; Teresa C. Rutland, MSN, FNP; Judith Ammons, MSN, FNP; ... Beta cell destruction is marked by the appearance of IgG islet cell antibodies. Attack of the beta cells leads to infiltration ...
Inflammatory mediators expressed in human islets of Langerhans: implications for islet transplantation. Biochem Biophys Res ... Smeets S, Staels W, Stange G et al (2021) Insulitis and lymphoid structures in the islets of Langerhans of a 66-year-old ... In the affected regions, 20-80% of islets showed insulitis (Fig. 3). Islet architecture remained normal, with the presence of ... procured within the Nordic Network for Clinical Islet Transplantation, were included in the study. Biopsies were formalin-fixed ...
The main aim of the laboratory is to develop methods of isolation and transplantation of the islets of Langerhans as the ... If the isolation is successful, the islets of Langerhans can be used for transplantation. ... Laboratory for the Islets of Langerhans (LIL). This laboratory forms part of the Experimental Medicine Centre and closely ... The Laboratory for the Islets of Langerhans is prepared to process every suitable pancreas from deceased donors that satisfies ...
... islet transplantation) exist, if the islets of Langerhans are attacked due to autoimmune diseases.. The 5-year-old Ted Ryder ... And there are the so-called islets of Langerhans, first described by the pathologist Paul Langerhans. In the microscope you can ... When we have eaten food rich in carbohydrates, the pancreas releases insulin from the islets of Langerhans (islets of hormone- ... This is where these islets of Langerhans are important. In cases of insulin deficiency, i.e. type 1 diabetes, even ...
... patients have the option of clinical islet transplantation. This involves placing donor islets in... ... Type I diabetes is an autoimmune disease in which the bodys own insulin-producing cells, located in the islets of Langerhans, ...
... patients have the option of clinical islet transplantation. This involves placing donor islets in... ... Type I diabetes is an autoimmune disease in which the bodys own insulin-producing cells, located in the islets of Langerhans, ...
HUMAN PANCREATIC ISLET CELL RESOURCES (ICRS) RFA-RR-01-002. NCRR ... relating to islet cell isolation and islet cell transplantation ... "islets of Langerhans" of the pancreas. While injection of exogenous insulin has long been the standard treatment for patients ... investigators in the transplantation of islet cells. If the applicant has had no prior experience with islet transplantation, ... monitoring of potential islet cell transplantation recipients; and d) inpatient or outpatient costs related to islet cell ...
106 islet equivalents). To maintain their functionality, β-cells should be manufactured as 3D constructs, known as spheroids. ... based on a standard islet of Langerhans diameter of 150 µm and standard procedures for the transplantation of whole pancreatic ... Edmonton protocol for islet transplantation requires 0.5-1 × 106 islet equivalents). To maintain their functionality, β-cells ... Islets of Langerhans from deceased donors show a high functionality, but there is a shortage of donor material, the adult β- ...
Transplanted pancreatic islet cells release a unique biomarker that signals the early stages of tissue rejection. The finding ... A mouse pancreatic islet near a blood vessel; insulin in red, nuclei in blue.Jakob Suckale, Solimena lab, Paul Langerhans ... Pancreatic islet transplantation is performed in certain patients whose blood glucose levels are especially difficult to ... The scientists next analyzed blood samples from 5 people with type 1 diabetes who were enrolled in an islet transplantation ...
HUMAN PANCREATIC ISLET CELL RESOURCES (ICRS) RFA-RR-01-002. NCRR ... relating to islet cell isolation and islet cell transplantation ... "islets of Langerhans" of the pancreas. While injection of exogenous insulin has long been the standard treatment for patients ... investigators in the transplantation of islet cells. If the applicant has had no prior experience with islet transplantation, ... monitoring of potential islet cell transplantation recipients; and d) inpatient or outpatient costs related to islet cell ...
Insulin is produced by specialized cells of the pancreas called islets of Langerhans. Insulin regulates blood sugar levels. ...
EPITA is established to provide a forum for those working in the field of pancreas and islet of Langerhans transplantation or ... Young Professionals in Transplantation. The Young Professionals in Transplantation (YPT) is the Network for Junior Transplant ... EKITA is the Organ Expert Section of ESOT on kidney transplantation in Europe, providing a forum for kidney transplantation ... Transplantation trials from ClinicalTrials.gov. *Testing Preliminary Effectiveness of a CHW Training Program to Support African ...
The collaboration between KTH and Karolinska Institutet enables micro-organs-namely pancreatic islets or islets of Langerhans- ... "This is also of great translational importance, as transplantation of Langerhans islands to the anterior chamber of the eye in ... She says the design makes it possible to position mini-organs such as organoids and islets of Langerhans without limiting the ... for our continued work to develop an integrated microsystem for studying the function and survival of the islets of Langerhans ...
EPITA is established to provide a forum for those working in the field of pancreas and islet of Langerhans transplantation or ... Young Professionals in Transplantation. The Young Professionals in Transplantation (YPT) is the Network for Junior Transplant ... EKITA is the Organ Expert Section of ESOT on kidney transplantation in Europe, providing a forum for kidney transplantation ... Transplantation trials from ClinicalTrials.gov. *A Analgesic Study of Adductor Canal &IPACK Block With Liposomal Bupivacaine in ...
Grafting, Islets of Langerhans Islands of Langerhans Transplantation Islands of Pancreas Transplantation Islet Transplantation ... Transplantation, Islet Transplantation, Islets of Langerhans Transplantation, Pancreatic Islets NLM Classification #. WK 800. ... Transplantation [E04.936] * Cell Transplantation [E04.936.225] * Islets of Langerhans Transplantation [E04.936.225.375] ... Cell Transplantation [E02.095.147.500] * Islets of Langerhans Transplantation [E02.095.147.500.250] * Stem Cell Transplantation ...
Grafting, Islets of Langerhans Islands of Langerhans Transplantation Islands of Pancreas Transplantation Islet Transplantation ... Transplantation, Islet Transplantation, Islets of Langerhans Transplantation, Pancreatic Islets NLM Classification #. WK 800. ... Transplantation [E04.936] * Cell Transplantation [E04.936.225] * Islets of Langerhans Transplantation [E04.936.225.375] ... Cell Transplantation [E02.095.147.500] * Islets of Langerhans Transplantation [E02.095.147.500.250] * Stem Cell Transplantation ...
Pancreatic Islets Transplantation -- See Islets of Langerhans Transplantation The transference of pancreatic islets within an ... Depending on the types of ISLET CELLS present in the tumors, various hormones can be secreted: GLUCAGON from PANCREATIC ALPHA ...
Islets of Langerhans Transplantation 85% * Biological Products 32% * Standard of Care 32% ... for The "Islets for US" Collaborative, Apr 2021, In: American Journal of Transplantation. 21, 4, p. 1365-1375 11 p.. Research ... on behalf of the TRANSFORM Investigators, Sep 1 2019, In: Transplantation. 103, 9, p. 1953-1963 11 p.. Research output: ... COVID-19 Vaccination Status and Operative Outcomes after Kidney Transplantation. Kushner, B. S., Doyle, M. B., Khan, A. S., Lin ...
  • Islet perifusion systems can be used to monitor the highly dynamic insulin release of pancreatic islets in glucose-stimulated insulin secretion (GSIS) assays. (frontiersin.org)
  • Here, we present a new generation of the microfluidic hanging-drop-based islet perifusion platform that was developed to study the alterations in insulin secretion dynamics from single pancreatic islet microtissues at high temporal resolution. (frontiersin.org)
  • The presented device will be a valuable tool in islet and diabetes research for studying dynamic insulin secretion from individual pancreatic islets. (frontiersin.org)
  • Studying this highly dynamic process of glucose-stimulated insulin secretion (GSIS) of pancreatic islets can give insights into the insulin release mechanisms of healthy and diabetic islets. (frontiersin.org)
  • Despite these technological advances, reports on applications of microfluidic perifusion systems for studying islets secretion are still few. (frontiersin.org)
  • Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. (upmc.com)
  • Diabetic patients see the pancreatic islet transplantation (IT) as an idealized form of cure of the disease, and put great expectations in this treatment. (bvsalud.org)
  • Islet cell transplants are a promising experimental treatment for difficult to control type 1 diabetes. (medicalnewstoday.com)
  • Islet cell transplants involve the transfer of insulin-producing cells from a donor that may be able to replace the destroyed cells. (medicalnewstoday.com)
  • Research suggests that islet cell transplants may be a more promising option due to their lower surgical risk and lower toxicity from immunosuppressants, and may provide better glycemic control. (medicalnewstoday.com)
  • In 1992, the HUGs developed one of only ten laboratories in the world capable of performing these pancreatic islet transplants in diabetic patients. (biocellultravital.com)
  • "In addition, the Swiss Law on transplants authorizes this type of transplantation from pig donors ", says the professor. (biocellultravital.com)
  • The discovery could represent an important step forward in making islet cell transplants a viable treatment option for patients with diabetes, they said. (dukehealth.org)
  • While islet cell transplants have had some success, the chemical process employed to isolate the cells is labor intensive and can take as many as three to four human pancreases to provide the approximately one million islet cells needed to obtain enough viable cells for a transplant. (dukehealth.org)
  • Hormones produced in the pancreatic islets are secreted directly into the blood flow by (at least) five types of cells. (wikipedia.org)
  • Islet allotransplantation could potentially replace pancreas transplantation for the treatment of Type 1 diabetics. (upmc.com)
  • Whole pancreas transplantation is a successful approach to treat T1DM. (touchendocrinology.com)
  • Pancreas Transplantation Pancreas transplantation is the removal of a healthy pancreas from a recently deceased person or rarely a part of a pancreas from a living person and its transfer into person with severe diabetes. (msdmanuals.com)
  • The success of islet transplantation in humans is limited, with no more than 20% of patients achieving complete normalization of glucose metabolism. (upmc.com)
  • Geneva has been prepared for years for the transplantation of cells of porcine origin into humans for the treatment of diabetes and liver failure. (biocellultravital.com)
  • Islet transplantation offers the potential to improve glycemic control in a subgroup of patients with type 1 diabetes mellitus who are disabled by refractory hypoglycemia. (emmes.com)
  • Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV: Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. (upmc.com)
  • 3] Porcine islet cells of Langerhans have been injected into patients with type 1 diabetes mellitus. (medscape.com)
  • They developed the buttonhole technique for anastomosis of donor and recipient vessels in kidney transplantation to prevent thrombus formation. (medscape.com)
  • Other issues that are particular to the bioartificial endocrine pancreas involve the number of islets to be transplanted, the rapid response of insulin release to variations of blood glucose levels, the limited supply of allogeneic islets from deceased donors and the implantation site. (eurekaselect.com)
  • Stegall MD, Lafferty KJ, Kam I, Gill RG: Evidence of recurrent autoimmunity in human allogeneic islet transplantation. (upmc.com)
  • Where transplantation from another allogeneic host occurs, unless the transplant is matched with the host or the host is immunocompromised, the transplant may be attacked and destroyed by the immune system. (justia.com)
  • Because the beta cells in the pancreatic islets are selectively destroyed by an autoimmune process in type 1 diabetes , clinicians and researchers are actively pursuing islet transplantation as a means of restoring physiological beta cell function, which would offer an alternative to a complete pancreas transplant or artificial pancreas . (wikipedia.org)
  • Islet cell transplant: Can it help treat type 1 diabetes? (medicalnewstoday.com)
  • What is an islet cell transplant? (medicalnewstoday.com)
  • An islet cell transplant is a medical procedure that involves the transfer of healthy beta cells from a donor. (medicalnewstoday.com)
  • During the transplant, the individual will take immunosuppressants to help prevent their immune system from rejecting the transplanted islet cells. (medicalnewstoday.com)
  • Individuals who undergo a successful islet cell transplant may experience normal insulin production. (medicalnewstoday.com)
  • While an islet cell transplant involves the transfer of cells from a donor pancreas, a pancreas transplant involves a person receiving a whole, healthy donor pancreas. (medicalnewstoday.com)
  • The Young Professionals in Transplantation (YPT) is the Network for Junior Transplant professionals of ESOT, representing all young transplant clinicians and scientists who are beginning a career in transplantation and organ donation. (esot.org)
  • AIMS: To analyze the mortality profile of patients on the liver transplant waiting list correlated to MELD score at the moment of transplantation. (bvsalud.org)
  • RESULTS: Our model showed that the best MELD score for patients on the liver transplant waiting list associated to better results after liver transplantation was 26. (bvsalud.org)
  • Availability of a reliable procedure to pre-store islets would diminish the labor and make it possible to pool islets taken from human pancreatic donors to do a transplant, the researchers said. (dukehealth.org)
  • Whether human or pig islets are used as an eventual treatment for human diabetes, however, a key will be a reliable way to preserve them until needed for transplant, the researchers say. (dukehealth.org)
  • So when I recently signed up to a Diabetes Wellness Day and found out that one of the speakers was the recipient of a Pancreatic Islet Cell Transplant procedure and she was coming along to tell her story, the 12 year old inside of me started to surface, albeit cautiously and with a hint of scepticism. (blogspot.com)
  • After the complications continued to worsen and the hospitalisations became more frequent, Rae was eventually told she would be a suitable candidate for a pancreatic islet transplant therapy trial taking place at Churchill Hospital in Oxford. (blogspot.com)
  • and about 75% of people who receive an islet cell transplant no longer need insulin 1 year after transplantation and may not need it for many more years. (msdmanuals.com)
  • Induction of experimental diabetes mellitus is indeed, the first step in the process of purification of pancreatic Langerhans islet cells of normal rats for transplantation under the testis subcutaneous of experimentally induced diabetic rats. (scialert.net)
  • Islet transplantation (IT) remains a promising therapy for diabetes mellitus but current results justify its clinical use only with a small subset of type 1 diabetics. (hindawi.com)
  • We enrolled 36 subjects with type 1 diabetes mellitus, who underwent islet transplantation at nine international sites. (emmes.com)
  • Islet transplantation with the use of the Edmonton protocol can successfully restore long-term endogenous insulin production and glycemic stability in subjects with type 1 diabetes mellitus and unstable control, but insulin independence is usually not sustainable. (emmes.com)
  • Islet autotransplantation can be used to prevent diabetes mellitus following a major pancreatectomy. (upmc.com)
  • They support the design of clinical studies looking at the effect of liraglutide in clinical islet transplantation. (unige.ch)
  • Instead of continuous insulin injections, patients have the option of clinical islet transplantation. (maastrichtuniversity.nl)
  • In clinical practice tissue evaluation is not used for the diagnosis of islet rejection. (upmc.com)
  • Federlin KF, Jahr H, Bretzel RG: Islet transplantation as treatment of type 1 diabetes: from experimental beginnings to clinical application. (upmc.com)
  • In this article, we will provide an overview of clinical islet transplantation (IT) and its advances in the last few years. (touchendocrinology.com)
  • Clinical Transplantation. (houstonmethodist.org)
  • The weight gain of the studied rats - which is also an important clinical indicator of healthy test subjects - showed that the AdoShell Islets were performing as expected. (desang.net)
  • The mission of ECTORS is to provide a forum for discussing and stimulating novel developments in the fields of cellular therapies in organ transplantation, organ regeneration and generation of new organs from stem cells and biomaterials. (esot.org)
  • Through a multidisciplinary approach, the congress will feature the latest research and innovation from most prominent scientists and physicians in the field of organ transplantation. (esot.org)
  • The ESOT Congress serves as a premier platform for researchers from across the globe to present their organ transplantation research. (esot.org)
  • The scientific programme has been developed based on five key domains that encompass the most relevant topics in organ transplantation. (esot.org)
  • As a result, the list of indications for solid-organ transplantation has expanded considerably, placing increasing pressure on an already limited supply of donor organs. (medscape.com)
  • The first successful organ transplantation was performed by John Merrill and Joseph Murray at the Peter Bent Brigham Hospital, between two identical twins, in 1954. (medscape.com)
  • According to the most current report from the United Network for Organ Sharing (UNOS), more than 107,241 Americans were waiting for organ transplantation as of May 2010. (medscape.com)
  • Additionally, organs from animal sources could be transplanted into patients currently excluded from the human organ transplantation list. (medscape.com)
  • Alexis Carrel is known as the founding father of experimental organ transplantation because of his pioneering work with vascular techniques. (medscape.com)
  • :928 Each islet is separated from the surrounding pancreatic tissue by a thin fibrous connective tissue capsule which is continuous with the fibrous connective tissue that is interwoven throughout the rest of the pancreas. (wikipedia.org)
  • In this article, we discuss how the islet cell transplantation procedure works and why it may be a future treatment option for type 1 diabetes. (medicalnewstoday.com)
  • Intraportal islet transplantation (IT) is not widely utilized as a treatment for type 1 diabetes. (hindawi.com)
  • 2 Type 1 diabetes (T1DM), which is caused mainly by an autoimmunemediated destruction of beta cells within the islet of Langerhans, accounts for 5-10 % of the total cases of diabetes worldwide. (touchendocrinology.com)
  • Background: Islet transplantation is a viable treatment alternative for a select group of patients with type 1 diabetes. (elsevierpure.com)
  • Biopsy of pancreas tissue of diabetic and normal rats showed that the Langerhans islet beta cells of diabetic rats have been clearly degenerated. (scialert.net)
  • The current study aimed to investigate the effect of mesenchymal stem cells (MSCs) transplantation as a new strategy for treatment of diabetes in Streptozotacin (STZ) induced diabetic male albino rats. (alliedacademies.org)
  • In this Chapter, we describe our experience in producing microcapsules made of barium alginate, and their application pre-clinically in diabetic rodents and pigs before moving to the clinic in a first-in-man trial with encapsulated human islets. (eurekaselect.com)
  • Islet allograft survival was investigated in streptozotocin-induced diabetic recipient BALB/c (H-2d) mice transplanted with 400 islets from RIP.B7-H4 (H-2b) mice under the kidney capsule. (johnshopkins.edu)
  • Adocia has announced the establishment of a first proof of concept for its' AdoShell Islets implant by achieving glycaemic control without insulin injections or immunosuppression in diabetic rats, following a 132-day study. (desang.net)
  • After implantation in diabetic animals, the islets encapsulated in AdoShell secreted insulin in response to blood glucose levels. (desang.net)
  • AdoShell Islets will be further evaluated in diabetic pigs at the end of 2022. (desang.net)
  • Further studies on islets taken from pigs are ongoing, and if they continue to show success, PVP will be used as the cryopreservation agent of choice for the pig islet research in diabetic baboons. (dukehealth.org)
  • Typically, a person will receive at least 10,000 islet equivalents per kilogram of body weight from two donor pancreases. (medicalnewstoday.com)
  • The device protected the encapsulated islets from acute hypoxia and kept them functional. (nih.gov)
  • In contrast, dispersed single islet cells are very resistant to hypoxia but cannot function properly since they require cell-to-cell interactions. (eurekaselect.com)
  • Continuous PO(2) measurements were made in a static incubation system to assess the role of hypoxia in islet destruction. (ox.ac.uk)
  • Transplantation of pancreatic islets or stem cell derived insulin secreting cells is an attractive treatment strategy for diabetes. (nih.gov)
  • employing enzymes like DNase and trypsine, so the islet cells were changed into single cells and these cells were assayed by flow cytometry. (scialert.net)
  • Encapsulation of pancreatic islet cells allows for transplantation in the absence of immunosuppression. (scialert.net)
  • Transplanting islet cells can fix brittle diabetes. (cellr4.org)
  • To overcome these limitations, here we present a novel 3D printed and functionalized encapsulation system for subcutaneous engraftment of islets or islet like cells. (nih.gov)
  • T cells and macrophages play a major role in the rejection of xenografted islets. (unige.ch)
  • The pancreatic islets or islets of Langerhans are the regions of the pancreas that contain its endocrine (hormone-producing) cells, discovered in 1869 by German pathological anatomist Paul Langerhans . (wikipedia.org)
  • Islets can influence each other through paracrine and autocrine communication, and beta cells are coupled electrically to six to seven other beta cells, but not to other cell types. (wikipedia.org)
  • A pancreatic islet, showing beta cells. (wikipedia.org)
  • It has turned out that the behavior of cells in intact islets differs significantly from the behavior of dispersed cells. (wikipedia.org)
  • The beta cells of the pancreatic islets secrete insulin , and so play a significant role in diabetes . (wikipedia.org)
  • The focus of Dr. Baker's research is to understand how islet-reactive CD4 T cells are activated in the context of T1D. (cuanschutz.edu)
  • A major focus has been understanding the role of intra-islet communication and functional sub-populations of cells in islet function, and how disruption to intra-islet communication mechanisms and changes in sub-populations occur in diabetes and may contribute to islet decline. (cuanschutz.edu)
  • It involves the transplantation of pancreatic islet cells to help improve blood glucose levels. (medicalnewstoday.com)
  • What are islet cells? (medicalnewstoday.com)
  • Its endocrine function involves a group of cells known as the islets of Langerhans , or islet cells . (medicalnewstoday.com)
  • One of the most studied islet cell types is beta cells, which secrete insulin in response to a high concentration of glucose in the blood. (medicalnewstoday.com)
  • They slowly transfer the donated islet cells through the catheter. (medicalnewstoday.com)
  • The islet cells then become lodged in the blood vessels of the liver. (medicalnewstoday.com)
  • since most of the total transplanted islet volume is accounted for by large islets, most of the intraportal islet cells are likely to be anoxic and not fully functional. (hindawi.com)
  • Type I diabetes is an autoimmune disease in which the body's own insulin-producing cells, located in the islets of Langerhans, are destroyed by the body itself. (maastrichtuniversity.nl)
  • The islets are composed of different endocrine cell types, of which pancreatic beta-cells are the most common ones. (frontiersin.org)
  • The successful treatment of diabetes is how to regenerate pancreatic islets β-cells. (alliedacademies.org)
  • This can be accomplished by the transplantation of insulin-producing cells that are located in the pancreatic islets of Langerhans (islets). (eurekaselect.com)
  • In contrast to monocellular preparations used in other applications, islets are well organized cell cluster comprising 1500-3000 cells. (eurekaselect.com)
  • Oxygen has to travel a relatively long distance to reach the cells located in the center of encapsulated islets. (eurekaselect.com)
  • Thus, oxygen supply to encapsulated islet cells is crucial. (eurekaselect.com)
  • Xenotransplantation (i.e. porcine islets) or in vitro expansion of cultured beta-cells could in theory represent the solution for the problem of limited pool of islet tissue for transplantation. (upmc.com)
  • To overcome the need for major surgery and its associated risks, transplantation of islet cells isolated from human cadaveric pancreata has been developed as an alternative therapeutic approach. (touchendocrinology.com)
  • The field of the subject invention is the use of major histocompatibility complex antigen lacking cells and organs which may serve as universal donors in cellular and organ therapies including transplantation and to produce chimeric non-human mammals. (justia.com)
  • In other cases, where certain cells are lacking, such as islets of Langerhans in the case of diabetes, or cells which secrete dopamine in the case of Parkinson's disease, or bone marrow cells in various hematopoietic diseases, or muscle cells in muscle wasting disease, or retinal epithelial cells in visual disorders, it would be desirable to be able to provide cells which could fulfill the desired function. (justia.com)
  • In this study, we investigated whether the endogenous expression of B7-H4 in β cells from B7-H4 transgenic mice enhances islet allograft survival. (johnshopkins.edu)
  • Another possibility is the transplantation of Islets of Langerhans, groups of cells housed in the pancreas that secrete insulin. (biocellultravital.com)
  • An experience in the grafting of pancreatic islets in diabetics, an expertise in xenotransplantation, the ability to encapsulate porcine cells and access to pigs without viruses or bacteria. (biocellultravital.com)
  • BIRMINGHAM, Ala. -- Researchers at Duke University Medical Center have shown that a novel chemical permits greater amount of insulin-producing islet cells to survive freezing intact. (dukehealth.org)
  • Insulin, a hormone produced and secreted by the specialized pancreas cells called islets of Langerhans, converts sugars, starches and other foods into the energy needed for bodily function. (dukehealth.org)
  • As an alternative, the Duke team is investigating the possibility of using islets taken from pigs, which would provide an almost unlimited source of such cells. (dukehealth.org)
  • A dynamic islet perifusion system was used to assess the effect of islets on blood cells and coagulation factors. (ox.ac.uk)
  • Pancreatic Islet Cell Transplantation is the process of removing healthy cells (known as the Islets of Langerhans believe it or not! (blogspot.com)
  • Overview of Transplantation Transplantation is the removal of living, functioning cells, tissues, or organs from the body and then their transfer back into the same body or into a different body. (msdmanuals.com)
  • Islet cells may be separated from the pancreas of a deceased donor. (msdmanuals.com)
  • The islet cells are then transplanted by injecting them into a vein that goes to the liver. (msdmanuals.com)
  • After the pancreas is removed, doctors can sometimes harvest the islet cells from the person's own pancreas. (msdmanuals.com)
  • These islet cells can then be transplanted back into the person's body (autologous transplantation). (msdmanuals.com)
  • This is the largest meeting in Europe where experts in the field of pancreas and islet transplantation can get together to share knowledge, experiences and outcomes. (esot.org)
  • Should pancreatectomy with islet cell autotransplantation in patients with chronic alcoholic pancreatitis be abandoned? (elsevierpure.com)
  • All centers undertaking total pancreatectomy for benign conditions should examine the possibility of islet autotransplantation, since even a background level of glucose responsiveness is likely to facilitate postoperative management considerably in this difficult group of patients. (ox.ac.uk)
  • Despite being a major breakthrough, the EP often required donor islets isolated from 2-4 pancreata. (hindawi.com)
  • Taking into account these insufficient results and the great difference between the number of human donors (one hundred per year) and the number of potential beneficiaries (thousands), a third way has been developed: the transplantation of porcine pancreatic islets. (biocellultravital.com)
  • For years, the HUGs collaborated with a team from the École Polytechnique Fédérale de Lausanne (EPFL) to encapsulate porcine pancreatic islets. (biocellultravital.com)
  • In experimental studies sophisticated methods for the detection of islet rejection have included the demonstration in serum of elevated levels of endogenous islet proteins and daily sequential intravenous glucose tolerance tests. (upmc.com)
  • Novel approach toward early diagnosis of islet allograft rejection. (upmc.com)
  • BACKGROUND: Allograft rejection is one of the main obstacles for islet transplantation. (johnshopkins.edu)
  • Since then, new drugs have emerged, limiting rejection of pancreatic islets. (biocellultravital.com)
  • BACKGROUND: Mouse islets transplanted under the renal subcapsular space of cynomolgus monkeys are subject to a form of hyperacute rejection, the mechanism of which is unclear. (ox.ac.uk)
  • [2] [3] The pancreatic islets are arranged in density routes throughout the human pancreas, and are important in the metabolism of glucose . (wikipedia.org)
  • The islets of Langerhans consist of different cell types , with many being responsible for the production and release of hormones that regulate glucose levels. (medicalnewstoday.com)
  • Upon glucose stimulation, reproducible biphasic insulin release was simultaneously observed from all islets in the system. (frontiersin.org)
  • Langerhans islets are micro-organs in the pancreas, which secrete hormones that help maintain glucose homeostasis in the human body. (frontiersin.org)
  • Gray DW: Islet transplantation and glucose regulation. (upmc.com)
  • Cretin N, Caulfield A, Fournier B, Buhler L, Becker C, Philippe J, Morel P: Insulin independence and normalization of oral glucose tolerance test after islet cell allotransplantation. (upmc.com)
  • A review of pancreatic islet autotransplantation. (ox.ac.uk)
  • PVP is a novel cryoprotectant that appears to maintain islet cell integrity and function during cryopreservation," said Hesham El-Shewy, Ph.D., a post-doctoral fellow at Duke who presented the results of the Duke study today (April 5, 2003) during the 13th annual scientific sessions of the Society of Black Academic Surgeons. (dukehealth.org)
  • Oxygen levels remained constant at a level adequate to maintain islet viability in separate experiments. (ox.ac.uk)
  • The same reasons apply to the use of organs for transplantation including but not limited to the heart, lung, liver and kidney. (justia.com)
  • Background: Multivisceral transplantation of pelvic organs would be a potential treatment for severe pelvic floor dysfunction with fecal and urinary incontinence, extensive perineal trauma, or congenital disorders. (bvsalud.org)
  • Here, we describe the microsurgical technique of multivisceral transplantation of pelvic organs, including the pelvic floor, in rats. (bvsalud.org)
  • [ 8 ] Shortage of organs for transplantations prolongs patients' waiting time and increases the mortality and morbidity rates during the waiting time. (medscape.com)
  • Damage to organs during transplantation occurs in 2 phases: the warm ischemic phase and the cold ischemic phase. (medscape.com)
  • Xenotransplantation involves the transplantation of nonhuman tissues or organs into human recipients. (medscape.com)
  • In light of the lack of supply of human organs for transplantation, several alternatives have been investigated and debated. (medscape.com)
  • Finally, most patients perceive xenotransplantation as an acceptable bridge to transplantation of human organs in life-threatening situations. (medscape.com)
  • Islets were prepared from pancreases of deceased donors and were transplanted within 2 hours after purification, without culture. (emmes.com)
  • a) relatively small beta cell mass available after islet purification, b) autoimmune and alloimmune islet cell destruction, c) current use of diabetogenic immunosuppressants. (upmc.com)
  • The process of pancreas dispersion and islet purification should probably be performed in specialist centers with a good understanding of the problems outlined above. (ox.ac.uk)
  • In vivo, we analyzed the effect of macrophage depletion on concordant and discordant islet xenograft survival to assess in which combination this strategy can be used as therapeutic tool. (unige.ch)
  • We also demonstrated that human islet engraftment is improved in C57Bl/6-RAG(-/-) mice treated with liraglutide 200 microg/kg sc twice daily (P ≤ 0.05), suggesting that liraglutide should be continued after transplantation. (unige.ch)
  • Thus isolation of a sufficient number of islets for transplantation from the pancreas remains challenging because of the lack of methods enabling reproducible isolation. (elsevierpure.com)
  • Methods: Islets were isolated from 38 consecutive deceased donors using the semi-automated Ricordi method of islet isolation, and purified on a COBE 2991 cell processor using Ficoll-based continuous density gradients. (elsevierpure.com)
  • Adocia's results are remarkable, having successfully performed the first islet transplantation without the use of immunosuppressants in immunocompetent animals. (desang.net)
  • However, reliable technological methods and platforms to characterize islets as well as relevant and reproducible islet model systems are scarce. (frontiersin.org)
  • METHODS: Coagulation was assessed using thromboelastography on citrated/recalcified human blood samples with freshly isolated C57/Bl6 mouse islets. (ox.ac.uk)
  • EDTCO aims to support health care professionals to provide clinically effective programmes on organ and tissue donation, procurement and transplantation. (esot.org)
  • Experimental islet transplantation started more than 3 decades ago with the discovery that islets of Langerhans could be separated from the pancreatic tissue with collagenase. (upmc.com)
  • Pancreas The pancreas is an organ that contains two types of glandular tissue: Pancreatic acini Islets of Langerhans (See also Overview of the Digestive System. (msdmanuals.com)
  • The motivation for using animal sources for organ or tissue transplantation is driven by supply and demand. (medscape.com)
  • An active basic science community and an efficient translation of innovation into the clinic are crucial for the future of transplantation medicine. (esot.org)
  • Its membership represents the expertise on liver and intestinal transplantation in Europe. (esot.org)
  • In conclusion: treatment with MSC.s transplantation as a cell-therapy could restore pancreatic β-cell function and improved liver and kidney functions in diabetes as a new strategy for diabetes treatment. (alliedacademies.org)
  • This article discusses the pathophysiology and techniques of organ preservation and describes various preservation solutions currently used for kidney , liver , pancreas , small-bowel , lung , and heart transplantation . (medscape.com)
  • Of the 36 subjects, 16 (44%) met the primary end point, 10 (28%) had partial function, and 10 (28%) had complete graft loss 1 year after the final transplantation. (emmes.com)
  • The morphological aspects of allo- and autoimmune islet graft destruction are well known through experimental studies. (upmc.com)
  • Six orthotopic and three heterotopic recipients survived up to 2â h after transplantation. (bvsalud.org)
  • This in vitro model has features which appear to correlate with the islet destruction seen in vivo and could be a useful model for the study of the mechanisms underlying the rapid destruction of xenogeneic islets in primate recipients. (ox.ac.uk)
  • Surface treated encapsulation systems were implanted with growth factor enriched platelet gel, which helped to create a vascularized environment before loading human islets. (nih.gov)
  • The culture of human islets is associated with approximately 10-20% islet loss, occasionally preventing transplantation. (unige.ch)
  • In this study, the effect of liraglutide, a long-acting human glucagon-like peptide 1 analogue, on cultured human islets was examined. (unige.ch)
  • Overall, these data demonstrate the beneficial effect of liraglutide on cultured human islets, preserving islet mass. (unige.ch)
  • There are about 1 million islets distributed throughout the pancreas of a healthy adult human, each of which measures an average of about 0.2 mm in diameter. (wikipedia.org)
  • Cytotoxicity was evaluated using (51)Cr labelled islets incubated with human blood and islet destruction was also evaluated using a histological grading system. (ox.ac.uk)
  • RESULTS: Mouse islets incubated in human blood induced accelerated coagulation and rapid consumption of platelets within 15 min. (ox.ac.uk)
  • Within 1 h of incubation, 52% of mouse islets exposed to xenogeneic human blood showed features of severe damage with necrosis when compared with islets incubated in syngeneic blood. (ox.ac.uk)
  • CONCLUSION: Mouse islets induce rapid activation of the clotting cascade and platelet consumption in vitro when exposed to human blood, which correlated with histological evidence of significant destruction demonstrable within 1 h of exposure to human or non-human primate blood. (ox.ac.uk)
  • Transplantation was done in rats after 2-4 weeks induction of diabetes. (scialert.net)
  • Streptozotocin-induced diabetes in rats was completely reversed by transplantation of syngeneic fetal pancreases placed beneath the kidney capsule. (diabetesjournals.org)
  • Discussion: This method, using a simple test gradient, is a significant process improvement that can improve islet recovery without loss of viability or purity and increase the number of islet products suitable for transplantation. (elsevierpure.com)