Positional isomer of CYCLOPHOSPHAMIDE which is active as an alkylating agent and an immunosuppressive agent.
A sulfhydryl compound used to prevent urothelial toxicity by inactivating metabolites from ANTINEOPLASTIC AGENTS, such as IFOSFAMIDE or CYCLOPHOSPHAMIDE.
A class of drugs that differs from other alkylating agents used clinically in that they are monofunctional and thus unable to cross-link cellular macromolecules. Among their common properties are a requirement for metabolic activation to intermediates with antitumor efficacy and the presence in their chemical structures of N-methyl groups, that after metabolism, can covalently modify cellular DNA. The precise mechanisms by which each of these drugs acts to kill tumor cells are not completely understood. (From AMA, Drug Evaluations Annual, 1994, p2026)
A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle.
A connective tissue neoplasm formed by proliferation of mesodermal cells; it is usually highly malignant.
The use of two or more chemicals simultaneously or sequentially in the drug therapy of neoplasms. The drugs need not be in the same dosage form.
An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle.
Neoplasms of whatever cell type or origin, occurring in the extraskeletal connective tissue framework of the body including the organs of locomotion and their various component structures, such as nerves, blood vessels, lymphatics, etc.
Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN.
An organoplatinum compound that possesses antineoplastic activity.
Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience.
A therapeutic approach, involving chemotherapy, radiation therapy, or surgery, after initial regimens have failed to lead to improvement in a patient's condition. Salvage therapy is most often used for neoplastic diseases.
A malignant neoplasm of the germinal tissue of the GONADS; MEDIASTINUM; or pineal region. Germinomas are uniform in appearance, consisting of large, round cells with vesicular nuclei and clear or finely granular eosinophilic-staining cytoplasm. (Stedman, 265th ed; from DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, pp1642-3)
A malignant tumor of the bone which always arises in the medullary tissue, occurring more often in cylindrical bones. The tumor occurs usually before the age of 20, about twice as frequently in males as in females.
Tumors or cancer located in bone tissue or specific BONES.
The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used.
A compound formed when iodoacetic acid reacts with sulfhydryl groups in proteins. It has been used as an anti-infective nasal spray with mucolytic and expectorant action.
The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it.
An antitumor alkaloid isolated from VINCA ROSEA. (Merck, 11th ed.)
A glycoprotein of MW 25 kDa containing internal disulfide bonds. It induces the survival, proliferation, and differentiation of neutrophilic granulocyte precursor cells and functionally activates mature blood neutrophils. Among the family of colony-stimulating factors, G-CSF is the most potent inducer of terminal differentiation to granulocytes and macrophages of leukemic myeloid cell lines.
Tumors or cancer of the TESTIS. Germ cell tumors (GERMINOMA) of the testis constitute 95% of all testicular neoplasms.
A group of nitrogen mustard compounds which are substituted with a phosphoramide group or its derivatives. They are usually cytotoxic and used as antineoplastic agents.
A sarcoma originating in bone-forming cells, affecting the ends of long bones. It is the most common and most malignant of sarcomas of the bones, and occurs chiefly among 10- to 25-year-old youths. (From Stedman, 25th ed)
Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer.
A hereditary or acquired form of generalized dysfunction of the PROXIMAL KIDNEY TUBULE without primary involvement of the KIDNEY GLOMERULUS. It is usually characterized by the tubular wasting of nutrients and salts (GLUCOSE; AMINO ACIDS; PHOSPHATES; and BICARBONATES) resulting in HYPOKALEMIA; ACIDOSIS; HYPERCALCIURIA; and PROTEINURIA.
A group of malignant tumors of the nervous system that feature primitive cells with elements of neuronal and/or glial differentiation. Use of this term is limited by some authors to central nervous system tumors and others include neoplasms of similar origin which arise extracranially (i.e., NEUROECTODERMAL TUMORS, PRIMITIVE, PERIPHERAL). This term is also occasionally used as a synonym for MEDULLOBLASTOMA. In general, these tumors arise in the first decade of life and tend to be highly malignant. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, p2059)
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A cyclodecane isolated from the bark of the Pacific yew tree, TAXUS BREVIFOLIA. It stabilizes MICROTUBULES in their polymerized form leading to cell death.
A sedative and mild hypnotic with potentially toxic effects.
Synthetic or natural substances which are given to prevent a disease or disorder or are used in the process of treating a disease or injury due to a poisonous agent.
Tumors or cancer of the LUNG.
Period after successful treatment in which there is no appearance of the symptoms or effects of the disease.
A colorless, flammable liquid used in the manufacture of acetic acid, perfumes, and flavors. It is also an intermediate in the metabolism of alcohol. It has a general narcotic action and also causes irritation of mucous membranes. Large doses may cause death from respiratory paralysis.
A class of statistical procedures for estimating the survival function (function of time, starting with a population 100% well at a given time and providing the percentage of the population still well at later times). The survival analysis is then used for making inferences about the effects of treatments, prognostic factors, exposures, and other covariates on the function.
The proportion of survivors in a group, e.g., of patients, studied and followed over a period, or the proportion of persons in a specified group alive at the beginning of a time interval who survive to the end of the interval. It is often studied using life table methods.
Neoplasms composed of primordial GERM CELLS of embryonic GONADS or of elements of the germ layers of the EMBRYO, MAMMALIAN. The concept does not refer to neoplasms located in the gonads or present in an embryo or FETUS.
An anaplastic, highly malignant, and usually bronchogenic carcinoma composed of small ovoid cells with scanty neoplasm. It is characterized by a dominant, deeply basophilic nucleus, and absent or indistinct nucleoli. (From Stedman, 25th ed; Holland et al., Cancer Medicine, 3d ed, p1286-7)
Therapeutic act or process that initiates a response to a complete or partial remission level.
Antitumor alkaloid isolated from Vinca rosea. (Merck, 11th ed.)
Persons who perform certain functions under the supervision of the pharmacist.
A malignant neoplasm that contains elements of carcinoma and sarcoma so extensively intermixed as to indicate neoplasia of epithelial and mesenchymal tissue. (Stedman, 25th ed)
Any process by which toxicity, metabolism, absorption, elimination, preferred route of administration, safe dosage range, etc., for a drug or group of drugs is determined through clinical assessment in humans or veterinary animals.
**Mercaptoethanol, also known as β-mercaptoethanol or BME, is an organosulfur compound with the formula HOCH2CH2SH, functionally serving as a reducing agent and a sulfhydryl group protector in biochemical and molecular biology applications.**
A major cytochrome P-450 enzyme which is inducible by PHENOBARBITAL in both the LIVER and SMALL INTESTINE. It is active in the metabolism of compounds like pentoxyresorufin, TESTOSTERONE, and ANDROSTENEDIONE. This enzyme, encoded by CYP2B1 gene, also mediates the activation of CYCLOPHOSPHAMIDE and IFOSFAMIDE to MUTAGENS.
An anthracycline which is the 4'-epi-isomer of doxorubicin. The compound exerts its antitumor effects by interference with the synthesis and function of DNA.
A malignant solid tumor arising from mesenchymal tissues which normally differentiate to form striated muscle. It can occur in a wide variety of sites. It is divided into four distinct types: pleomorphic, predominantly in male adults; alveolar (RHABDOMYOSARCOMA, ALVEOLAR), mainly in adolescents and young adults; embryonal (RHABDOMYOSARCOMA, EMBRYONAL), predominantly in infants and children; and botryoidal, also in young children. It is one of the most frequently occurring soft tissue sarcomas and the most common in children under 15. (From Dorland, 27th ed; Holland et al., Cancer Medicine, 3d ed, p2186; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, pp1647-9)
Disorders of the blood and blood forming tissues.
A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug.
The relationship between the dose of an administered drug and the response of the organism to the drug.
A complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2. It inhibits DNA metabolism and is used as an antineoplastic, especially for solid tumors.
An antineoplastic antibiotic produced by Streptomyces caespitosus. It is one of the bi- or tri-functional ALKYLATING AGENTS causing cross-linking of DNA and inhibition of DNA synthesis.
Leukopenia is a condition characterized by an abnormally low white blood cell count (less than 4,000 cells per microliter of blood) in peripheral blood, increasing the risk of infection due to decreased immune defense.

In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. (1/786)

The widely used anticancer prodrug cyclophosphamide (CPA) is activated in liver by a 4-hydroxylation reaction primarily catalyzed by cytochrome P-4502B and P-4502C enzymes. An alternative metabolic pathway involves CPA N-dechloroethylation to yield chloroacetaldehyde (CA), a P-4503A-catalyzed deactivation/neurotoxication reaction. The in vivo modulation of these alternative, competing pathways of P-450 metabolism was investigated in pharmacokinetic studies carried out in the rat model. Peak plasma concentrations (Cmax) for 4-OH-CPA and CA were increased by 3- to 4-fold, and apparent plasma half-lives of both metabolites were correspondingly shortened in rats pretreated with phenobarbital (PB), an inducer of P-4502B and P-4503A enzymes. However, PB had no net impact on the extent of drug activation or its partitioning between these alternative metabolic pathways, as judged from AUC values (area-under-the-plasma concentration x time curve) for 4-OH-CPA and CA. The P-4503A inhibitor troleandomycin (TAO) decreased plasma Cmax and AUC of CA (80-85% decrease) without changing the Cmax or AUC of 4-OH-CPA in uninduced rats. In PB-induced rats, TAO decreased AUCCA by 73%, whereas it increased AUC4-OH-CPA by 93%. TAO thus selectively suppresses CPA N-dechloroethylation, thereby increasing the availability of drug for P-450 activation via 4-hydroxylation. By contrast, dexamethasone, a P-4503A inducer and antiemetic widely used in patients with cancer, stimulated large, undesirable increases in the Cmax and AUC of CA (8- and 4-fold, respectively) while reducing the AUC of the 4-hydroxylation pathway by approximately 60%. Tumor excision/in vitro colony formation and tumor growth delay assays using an in vivo 9L gliosarcoma solid tumor model revealed that TAO suppression of CPA N-dechloroethylation could be achieved without compromising the antitumor effect of CPA. The combination of PB with TAO did not, however, enhance the antitumor activity of CPA, despite the approximately 2-fold increase in AUC4-OH-CPA, suggesting that other PB-inducible activities, such as aldehyde dehydrogenase, may counter this increase through enhanced deactivation of the 4-hydroxy metabolite. Together, these studies demonstrate that the P-4503A inhibitor TAO can be used to effectively modulate CPA metabolism and pharmacokinetics in vivo in a manner that decreases the formation of toxic metabolites that do not contribute to antitumor activity.  (+info)

Follicular large cell lymphoma: an aggressive lymphoma that often presents with favorable prognostic features. (2/786)

It is debated whether follicular large cell lymphoma (FLCL) has a clinical behavior that is distinct from indolent follicular lymphomas, and whether there is a subset of patients who can be potentially cured. We report here our experience with 100 FLCL patients treated at our institution since 1984 with three successive programs. We evaluated the predictive value of pretreatment clinical features, including two risk models, the Tumor Score System and the International Prognostic Index (IPI). With a median follow-up of 67 months, the 5-year survival is 72% and the failure-free survival (FFS) is 67%, with a possible plateau in the FFS curve, particularly for patients with stage I-III disease. Features associated with shorter survival included age >/=60, elevated lactic dehydrogenase (LDH) or beta-2-microglobulin (beta2M), advanced stage, and bone marrow involvement. Stage III patients had significantly better survival than stage IV patients (P <.05). By the IPI and Tumor Score System, 80% of the patients were in the lower risk groups; both systems stratified patients into prognostic groups. Patients with FLCL have clinical features and response to treatment similar to that reported for diffuse large cell lymphoma. Prognostic risk systems for aggressive lymphomas are useful for FLCL. A meaningful fraction of patients may possibly be cured when treated as aggressive lymphomas.  (+info)

Ifosfamide/etoposide alternating with high-dose methotrexate: evaluation of a chemotherapy regimen for poor-risk osteosarcoma. (3/786)

Fifteen patients with relapsed osteosarcoma were treated with an intensive combination chemotherapy schedule. Ifosfamide 2.5 g m(-2) daily and etoposide 150 mg m(-2) daily coincidentally for 3 days and high-dose methotrexate 8 g m(-2) (with folinic acid rescue) on days 10-14 in a planned 21 -day cycle. Feasibility, toxicity and response to this alternative combination for the treatment of relapsed osteosarcoma was assessed. There were 98 evaluable cycles for toxicity and tolerability. The majority of cycles were well tolerated. Haematological toxicity of grade 3/4 (common toxicity criteria) was seen in all courses. Renal tubular loss of electrolytes, particularly magnesium, occurred in 71% of cycles. Thirteen per cent of cycles were repeated within 21 days and 61% within 28 days. In the thirteen patients evaluable for response, a partial response rate of 31% was seen after two cycles. However, patients with stable disease continued on therapy, and an overall consequent response rate of 62% was observed. Four patients were alive with no evidence of disease at 8-74 months. Three are alive with disease (at 8-19 months). There were six deaths, all disease related. This regimen exhibits an encouraging response rate in a group of children with poor prognosis disease, with a tolerable toxicity profile.  (+info)

Combined treatment modality for intracranial germinomas: results of a multicentre SFOP experience. Societe Francaise d'Oncologie Pediatrique. (4/786)

Conventional therapy for intracranial germinomas is craniospinal irradiation. In 1990, the Societe Francaise d'Oncologie Pediatrique initiated a study combining chemotherapy (alternating courses of etoposide-carboplatin and etoposide-ifosfamide for a recommended total of four courses) with 40 Gy local irradiation for patients with localized germinomas. Metastatic patients were allocated to receive low-dose craniospinal radiotherapy. Fifty-seven patients were enrolled between 1990 and 1996. Forty-seven had biopsy-proven germinoma. Biopsy was not performed in ten patients (four had diagnostic tumour markers and in six the neurosurgeon felt biopsy was contraindicated). Fifty-one patients had localized disease, and six leptomeningeal dissemination. Seven patients had bifocal tumour. All but one patient received at least four courses of chemotherapy. Toxicity was mainly haematological. Patients with diabetus insipidus (n = 25) commonly developed electrolyte disturbances during chemotherapy. No patient developed tumour progression during chemotherapy. Fifty patients received local radiotherapy with a median dose of 40 Gy to the initial tumour volume. Six metastatic patients, and one patient with localized disease who stopped chemotherapy due to severe toxicity, received craniospinal radiotherapy. The median follow-up for the group was 42 months. Four patients relapsed 9, 10, 38 and 57 months after diagnosis. Three achieved second complete remission following salvage treatment with chemotherapy alone or chemo-radiotherapy. The estimated 3-year survival probability is 98% (CI: 86.6-99.7%) and the estimated 3-year event-free survival is 96.4% (CI: 86.2-99.1%). This study shows that excellent survival rates can be achieved by combining chemotherapy and local radiotherapy in patients with non-metastatic intracranial germinomas.  (+info)

Ifosfamide and etoposide-based chemotherapy as salvage and mobilizing regimens for poor prognosis lymphoma. (5/786)

We treated 40 patients with poor prognosis lymphomas. Patients with non-Hodgkin's lymphoma (NHL, n = 14) received MINE chemotherapy (mesna, ifosfamide 1330 mg/m2 and etoposide 65 mg/m2 by i.v. infusions on days 1-3, mitoxantrone 8 mg/m2 i.v. on day 1), and those with Hodgkin's disease (HD, n = 26) received VIM chemotherapy (mesna, ifosfamide 1200 mg/m2 by i.v. infusion on days 1-5, etoposide 90 mg/m2 by i.v. infusion on days 1, 3 and 5, and methotrexate 30 mg/m2 i.v. on days 1 and 5). Chemotherapy was followed by G-CSF (10 or 16 microg/kg in two divided doses daily) to mobilize PBSC. We performed 134 aphereses (median three leukaphereses per patient) starting on either day 13 (median; VIM) or day 12 (median; MINE). The median yield was 9.9x10(6) CD34+ cells/kg and 53.2x10(4) CFU-GM/kg for VIM, and 13.5x10(6) CD34+ cells/kg and 53.4x10(4) CFU-GM/kg for MINE. Except for predictable myelosuppression, no serious toxicity was seen. Response rate using MINE was 63% (18% CR, 45% PR) and using VIM 50% (17% CR, 33% PR). We conclude that VIM and MINE are effective and well-tolerated salvage regimens in patients with lymphomas and, followed by G-CSF, they also exhibit good capacity to mobilize stem cells in a predictable time interval.  (+info)

Ifosfamide in combination with paclitaxel or doxorubicin: regimens which effectively mobilize peripheral blood progenitor cells while demonstrating anti-tumor activity in patients with metastatic breast cancer. (6/786)

For patients with metastatic breast cancer (MBC) who undergo high-dose therapy with autologous peripheral blood progenitor cell (PBPC) transplantation, an important prerequisite is a mobilization regimen that efficiently mobilizes PBPCs while producing an effective anti-tumor effect. We prospectively evaluated ifosfamide-based chemotherapy for mobilization efficiency, toxicity and disease response in 37 patients. Patients received two cycles of the ifosfamide-based regimen; ifosfamide (5 g/m2 with conventional-dose cycle and 6 g/m2 with mobilization cycle) with either 50 mg/m2 doxorubicin (if limited prior anthracycline and/or progression more than 12 months after an anthracycline-based regimen) or 175 mg/m2 paclitaxel. For the mobilization cycle, all patients received additional G-CSF (10 microg/kg SC, daily) commencing 24 h after completion of chemotherapy. The target yield was >6x10(6) CD34+ cells/kg, sufficient to support the subsequent three cycles of high-dose therapy. The mobilization therapy was well tolerated and the peak days for peripheral blood (PB) CD34+ cells were days 10-13 with no significant differences in the PB CD34+ cells mobilization kinetics between the ifosfamide-doxorubicin vs. ifosfamide-paclitaxel regimens. The median PBPC CD34+ cell content ranged from 2.9 to 4.0x10(6)/kg per day during days 9-14. After a median of 3 (range 1-5) collection days, the median total CD34+ cell, CFU-GM and MNC for all 44 individual sets of collections was 9.2x10(6)/kg (range 0.16-54.9), 37x10(4)/kg (range 5.7-247) and 7.3x10(8)/kg (range 2.1-26.1), respectively. The PBPC target yield was achieved in 35 of the 37 patients. The overall response rate for the 31 evaluable patients was 68% with 10% having progressive disease. Thirty-three patients have subsequently received high-dose therapy consisting of three planned cycles of high-dose ifosfamide, thiotepa and paclitaxel with each cycle supported with PBPCs. Rapid neutrophil and platelet recovery has been observed. Ifosfamide with G-CSF in combination with doxorubicin or paclitaxel achieves effective mobilization of PBPC and anti-tumor activity with minimal toxicity.  (+info)

Measurement of DNA cross-linking in patients on ifosfamide therapy using the single cell gel electrophoresis (comet) assay. (7/786)

The single cell gel electrophoresis comet assay has become established as a sensitive technique for measuring DNA strand breaks. The technique has been modified to allow the sensitive detection and quantitation of DNA interstrand cross-linking at the single cell level. Cells are irradiated immediately before analysis to deliver a fixed level of random strand breakage. After embedding of cells in agarose and lysis, the presence of cross-links retards the electrophoretic mobility of the alkaline denatured cellular DNA. Cross-links are, therefore, quantitated as the decrease in the comet tail moment compared with irradiated controls. Using this method, a linear response of cross-linking versus dose of chlorambucil over a wide dose range was demonstrated in human lymphocytes after drug treatment ex vivo. The method was also sensitive enough to determine cross-linking in clinical samples after chemotherapy. For example, crosslinking was observed in the lymphocytes of patients receiving ifosfamide (3 g/m2/day) as a continuous infusion for 3-5 days or as a 3-h infusion daily for 3 days. Cross-links were detected in all patients within 3 h, with no evidence of DNA single strand break formation. In patients receiving continuous infusion, a plateau of cross-linking was reached by 24 h. In the patients receiving ifosfamide over 3 h, a clear decrease in the peak level of cross-linking was observed before subsequent infusions.  (+info)

Role of CYP2B6 and CYP3A4 in the in vitro N-dechloroethylation of (R)- and (S)-ifosfamide in human liver microsomes. (8/786)

The central nervous system toxicity of ifosfamide (IFF), a chiral antineoplastic agent, is thought to be dependent on its N-dechloroethylation by hepatic cytochrome P-450 (CYP) enzymes. The purpose of this study was to identify the human CYPs responsible for IFF-N-dechloroethylation and their corresponding regio- and enantioselectivities. IFF exists in two enantiomeric forms, (R) - and (S)-IFF, which can be dechloroethylated at either the N2 or N3 positions, producing the corresponding (R,S)-2-dechloroethyl-IFF [(R, S)-2-DCE-IFF] and (R,S)-3-dechloroethyl-IFF [(R,S)-3-DCE-IFF]. The results of the present study suggest that the production of (R)-2-DCE-IFF and (S)-3-DCE-IFF from (R)-IFF is catalyzed by different CYPs as is the production of (S)-2-DCE-IFF and (R)-3-DCE-IFF from (S)-IFF. In vitro studies with a bank of human liver microsomes revealed that the sample-to-sample variation in the production of (S)-3-DCE-IFF from (R)-IFF and (S)-2-DCE-IFF from (S)-IFF was highly correlated with the levels of (S)-mephenytoin N-demethylation (CYP2B6), whereas (R)-2-DCE-IFF production from (R)-IFF and (R)-3-DCE-IFF production from (S)-IFF were both correlated with the activity of testosterone 6beta-hydroxylation (CYP3A4/5). Experiments with cDNA-expressed P-450 and antibody and chemical inhibition studies supported the conclusion that the formation of (S)-3-DCE-IFF and (S)-2-DCE-IFF is catalyzed primarily by CYP2B6, whereas (R)-2-DCE-IFF and (R)-3-DCE-IFF are primarily the result of CYP3A4/5 activity.  (+info)

Ifosfamide is an alkylating agent, which is a type of chemotherapy medication. It works by interfering with the DNA of cancer cells, preventing them from dividing and growing. Ifosfamide is used to treat various types of cancers, such as testicular cancer, small cell lung cancer, ovarian cancer, cervical cancer, and certain types of sarcomas.

The medical definition of Ifosfamide is:

Ifosfamide is a synthetic antineoplastic agent, an oxazaphosphorine derivative, with the chemical formula C6H15Cl2N2O2P. It is used in the treatment of various malignancies, including germ cell tumors, sarcomas, lymphomas, and testicular cancer. The drug is administered intravenously and exerts its cytotoxic effects through the alkylation and cross-linking of DNA, leading to the inhibition of DNA replication and transcription. Ifosfamide can cause significant myelosuppression and has been associated with urotoxicity, neurotoxicity, and secondary malignancies. Therefore, it is essential to monitor patients closely during treatment and manage any adverse effects promptly.

Mesna is a medication used in the prevention and treatment of hemorrhagic cystitis (inflammation and bleeding of the bladder) caused by certain chemotherapy drugs, specifically ifosfamide and cyclophosphamide. Mesna works by neutralizing the toxic metabolites of these chemotherapy agents, which can cause bladder irritation and damage.

Mesna is administered intravenously (into a vein) along with ifosfamide or cyclophosphamide, and it may also be given as a separate infusion after the chemotherapy treatment. The dosage and timing of Mesna administration are determined by the healthcare provider based on the patient's weight, kidney function, and the dose of chemotherapy received.

It is important to note that Mesna does not have any direct anticancer effects and is used solely to manage the side effects of chemotherapy.

Antineoplastic agents, alkylating, are a class of chemotherapeutic drugs that work by alkylating (adding alkyl groups) to DNA, which can lead to the death or dysfunction of cancer cells. These agents can form cross-links between strands of DNA, preventing DNA replication and transcription, ultimately leading to cell cycle arrest and apoptosis (programmed cell death). Examples of alkylating agents include cyclophosphamide, melphalan, and cisplatin. While these drugs are designed to target rapidly dividing cancer cells, they can also affect normal cells that divide quickly, such as those in the bone marrow and digestive tract, leading to side effects like anemia, neutropenia, thrombocytopenia, and nausea/vomiting.

Etoposide is a chemotherapy medication used to treat various types of cancer, including lung cancer, testicular cancer, and certain types of leukemia. It works by inhibiting the activity of an enzyme called topoisomerase II, which is involved in DNA replication and transcription. By doing so, etoposide can interfere with the growth and multiplication of cancer cells.

Etoposide is often administered intravenously in a hospital or clinic setting, although it may also be given orally in some cases. The medication can cause a range of side effects, including nausea, vomiting, hair loss, and an increased risk of infection. It can also have more serious side effects, such as bone marrow suppression, which can lead to anemia, bleeding, and a weakened immune system.

Like all chemotherapy drugs, etoposide is not without risks and should only be used under the close supervision of a qualified healthcare provider. It is important for patients to discuss the potential benefits and risks of this medication with their doctor before starting treatment.

Sarcoma is a type of cancer that develops from certain types of connective tissue (such as muscle, fat, fibrous tissue, blood vessels, or nerves) found throughout the body. It can occur in any part of the body, but it most commonly occurs in the arms, legs, chest, and abdomen.

Sarcomas are classified into two main groups: bone sarcomas and soft tissue sarcomas. Bone sarcomas develop in the bones, while soft tissue sarcomas develop in the soft tissues of the body, such as muscles, tendons, ligaments, fat, blood vessels, and nerves.

Sarcomas can be further classified into many subtypes based on their specific characteristics, such as the type of tissue they originate from, their genetic makeup, and their appearance under a microscope. The different subtypes of sarcoma have varying symptoms, prognoses, and treatment options.

Overall, sarcomas are relatively rare cancers, accounting for less than 1% of all cancer diagnoses in the United States each year. However, they can be aggressive and may require intensive treatment, such as surgery, radiation therapy, and chemotherapy.

Antineoplastic combined chemotherapy protocols refer to a treatment plan for cancer that involves the use of more than one antineoplastic (chemotherapy) drug given in a specific sequence and schedule. The combination of drugs is used because they may work better together to destroy cancer cells compared to using a single agent alone. This approach can also help to reduce the likelihood of cancer cells becoming resistant to the treatment.

The choice of drugs, dose, duration, and frequency are determined by various factors such as the type and stage of cancer, patient's overall health, and potential side effects. Combination chemotherapy protocols can be used in various settings, including as a primary treatment, adjuvant therapy (given after surgery or radiation to kill any remaining cancer cells), neoadjuvant therapy (given before surgery or radiation to shrink the tumor), or palliative care (to alleviate symptoms and prolong survival).

It is important to note that while combined chemotherapy protocols can be effective in treating certain types of cancer, they can also cause significant side effects, including nausea, vomiting, hair loss, fatigue, and an increased risk of infection. Therefore, patients undergoing such treatment should be closely monitored and managed by a healthcare team experienced in administering chemotherapy.

Cisplatin is a chemotherapeutic agent used to treat various types of cancers, including testicular, ovarian, bladder, head and neck, lung, and cervical cancers. It is an inorganic platinum compound that contains a central platinum atom surrounded by two chloride atoms and two ammonia molecules in a cis configuration.

Cisplatin works by forming crosslinks between DNA strands, which disrupts the structure of DNA and prevents cancer cells from replicating. This ultimately leads to cell death and slows down or stops the growth of tumors. However, cisplatin can also cause damage to normal cells, leading to side effects such as nausea, vomiting, hearing loss, and kidney damage. Therefore, it is essential to monitor patients closely during treatment and manage any adverse effects promptly.

Soft tissue neoplasms refer to abnormal growths or tumors that develop in the soft tissues of the body. Soft tissues include muscles, tendons, ligaments, fascia, nerves, blood vessels, fat, and synovial membranes (the thin layer of cells that line joints and tendons). Neoplasms can be benign (non-cancerous) or malignant (cancerous), and their behavior and potential for spread depend on the specific type of neoplasm.

Benign soft tissue neoplasms are typically slow-growing, well-circumscribed, and rarely spread to other parts of the body. They can often be removed surgically with a low risk of recurrence. Examples of benign soft tissue neoplasms include lipomas (fat tumors), schwannomas (nerve sheath tumors), and hemangiomas (blood vessel tumors).

Malignant soft tissue neoplasms, on the other hand, can grow rapidly, invade surrounding tissues, and may metastasize (spread) to distant parts of the body. They are often more difficult to treat than benign neoplasms and require a multidisciplinary approach, including surgery, radiation therapy, and chemotherapy. Examples of malignant soft tissue neoplasms include sarcomas, such as rhabdomyosarcoma (arising from skeletal muscle), leiomyosarcoma (arising from smooth muscle), and angiosarcoma (arising from blood vessels).

It is important to note that soft tissue neoplasms can occur in any part of the body, and their diagnosis and treatment require a thorough evaluation by a healthcare professional with expertise in this area.

Doxorubicin is a type of chemotherapy medication known as an anthracycline. It works by interfering with the DNA in cancer cells, which prevents them from growing and multiplying. Doxorubicin is used to treat a wide variety of cancers, including leukemia, lymphoma, breast cancer, lung cancer, ovarian cancer, and many others. It may be given alone or in combination with other chemotherapy drugs.

Doxorubicin is usually administered through a vein (intravenously) and can cause side effects such as nausea, vomiting, hair loss, mouth sores, and increased risk of infection. It can also cause damage to the heart muscle, which can lead to heart failure in some cases. For this reason, doctors may monitor patients' heart function closely while they are receiving doxorubicin treatment.

It is important for patients to discuss the potential risks and benefits of doxorubicin therapy with their healthcare provider before starting treatment.

Carboplatin is a chemotherapeutic agent used to treat various types of cancers, including ovarian, lung, and head and neck cancer. It is a platinum-containing compound that works by forming crosslinks in DNA, which leads to the death of rapidly dividing cells, such as cancer cells. Carboplatin is often used in combination with other chemotherapy drugs and is administered intravenously.

The medical definition of Carboplatin is:

"A platinum-containing antineoplastic agent that forms crosslinks with DNA, inducing cell cycle arrest and apoptosis. It is used to treat a variety of cancers, including ovarian, lung, and head and neck cancer."

A "Drug Administration Schedule" refers to the plan for when and how a medication should be given to a patient. It includes details such as the dose, frequency (how often it should be taken), route (how it should be administered, such as orally, intravenously, etc.), and duration (how long it should be taken) of the medication. This schedule is often created and prescribed by healthcare professionals, such as doctors or pharmacists, to ensure that the medication is taken safely and effectively. It may also include instructions for missed doses or changes in the dosage.

Salvage therapy, in the context of medical oncology, refers to the use of treatments that are typically considered less desirable or more aggressive, often due to greater side effects or lower efficacy, when standard treatment options have failed. These therapies are used to attempt to salvage a response or delay disease progression in patients with refractory or relapsed cancers.

In other words, salvage therapy is a last-resort treatment approach for patients who have not responded to first-line or subsequent lines of therapy. It may involve the use of different drug combinations, higher doses of chemotherapy, immunotherapy, targeted therapy, or radiation therapy. The goal of salvage therapy is to extend survival, improve quality of life, or achieve disease stabilization in patients with limited treatment options.

A germinoma is a type of tumor that develops in the brain or the spine, primarily in the pituitary gland or pineal gland. It is a rare form of primary central nervous system (CNS) cancer and is classified as a type of germ cell tumor. These tumors arise from cells that normally develop into sperm or eggs, which can migrate to unusual locations during embryonic development.

Germinomas are highly sensitive to radiation therapy and chemotherapy, making them generally treatable and curable with appropriate medical intervention. Symptoms of a germinoma may include headaches, nausea, vomiting, visual disturbances, hormonal imbalances, and neurological deficits, depending on the location and size of the tumor. Diagnosis typically involves imaging studies like MRI or CT scans, followed by a biopsy to confirm the presence of malignant cells.

Ewing sarcoma is a type of cancer that originates in bones or the soft tissues surrounding them, such as muscles and tendons. It primarily affects children and adolescents, although it can occur in adults as well. The disease is characterized by small, round tumor cells that typically grow quickly and are prone to metastasize (spread) to other parts of the body, most commonly the lungs, bones, and bone marrow.

Ewing sarcoma is caused by a genetic abnormality, specifically a chromosomal translocation that results in the fusion of two genes, EWSR1 and FLI1. This gene fusion leads to the formation of an abnormal protein that disrupts normal cell growth and division processes, ultimately resulting in cancer.

Symptoms of Ewing sarcoma can vary depending on the location and size of the tumor but may include pain or swelling in the affected area, fever, fatigue, and weight loss. Diagnosis typically involves imaging studies such as X-rays, CT scans, or MRI scans to locate the tumor, followed by a biopsy to confirm the presence of cancer cells. Treatment may involve surgery, radiation therapy, chemotherapy, or a combination of these approaches, depending on the stage and location of the disease.

Bone neoplasms are abnormal growths or tumors that develop in the bone. They can be benign (non-cancerous) or malignant (cancerous). Benign bone neoplasms do not spread to other parts of the body and are rarely a threat to life, although they may cause problems if they grow large enough to press on surrounding tissues or cause fractures. Malignant bone neoplasms, on the other hand, can invade and destroy nearby tissue and may spread (metastasize) to other parts of the body.

There are many different types of bone neoplasms, including:

1. Osteochondroma - a benign tumor that develops from cartilage and bone
2. Enchondroma - a benign tumor that forms in the cartilage that lines the inside of the bones
3. Chondrosarcoma - a malignant tumor that develops from cartilage
4. Osteosarcoma - a malignant tumor that develops from bone cells
5. Ewing sarcoma - a malignant tumor that develops in the bones or soft tissues around the bones
6. Giant cell tumor of bone - a benign or occasionally malignant tumor that develops from bone tissue
7. Fibrosarcoma - a malignant tumor that develops from fibrous tissue in the bone

The symptoms of bone neoplasms vary depending on the type, size, and location of the tumor. They may include pain, swelling, stiffness, fractures, or limited mobility. Treatment options depend on the type and stage of the tumor but may include surgery, radiation therapy, chemotherapy, or a combination of these treatments.

Combined modality therapy (CMT) is a medical treatment approach that utilizes more than one method or type of therapy simultaneously or in close succession, with the goal of enhancing the overall effectiveness of the treatment. In the context of cancer care, CMT often refers to the combination of two or more primary treatment modalities, such as surgery, radiation therapy, and systemic therapies (chemotherapy, immunotherapy, targeted therapy, etc.).

The rationale behind using combined modality therapy is that each treatment method can target cancer cells in different ways, potentially increasing the likelihood of eliminating all cancer cells and reducing the risk of recurrence. The specific combination and sequence of treatments will depend on various factors, including the type and stage of cancer, patient's overall health, and individual preferences.

For example, a common CMT approach for locally advanced rectal cancer may involve preoperative (neoadjuvant) chemoradiation therapy, followed by surgery to remove the tumor, and then postoperative (adjuvant) chemotherapy. This combined approach allows for the reduction of the tumor size before surgery, increases the likelihood of complete tumor removal, and targets any remaining microscopic cancer cells with systemic chemotherapy.

It is essential to consult with a multidisciplinary team of healthcare professionals to determine the most appropriate CMT plan for each individual patient, considering both the potential benefits and risks associated with each treatment method.

Carbocisteine is a medication that belongs to a class of drugs known as mucolytic agents. It works by breaking down and thinning mucus in the airways, making it easier to cough up and clear the airways. This can help to relieve symptoms of respiratory conditions such as chronic bronchitis, bronchiectasis, and cystic fibrosis.

The chemical name for carbocisteine is S-carboxymethylcysteine. It is available in various forms, including tablets, capsules, and syrup, and is typically taken by mouth several times a day. As with any medication, it's important to follow the dosage instructions provided by your healthcare provider and to be aware of potential side effects and interactions with other medications.

Intravenous (IV) infusion is a medical procedure in which liquids, such as medications, nutrients, or fluids, are delivered directly into a patient's vein through a needle or a catheter. This route of administration allows for rapid absorption and distribution of the infused substance throughout the body. IV infusions can be used for various purposes, including resuscitation, hydration, nutrition support, medication delivery, and blood product transfusion. The rate and volume of the infusion are carefully controlled to ensure patient safety and efficacy of treatment.

Vincristine is an antineoplastic agent, specifically a vinca alkaloid. It is derived from the Madagascar periwinkle plant (Catharanthus roseus). Vincristine binds to tubulin, a protein found in microtubules, and inhibits their polymerization, which results in disruption of mitotic spindles leading to cell cycle arrest and apoptosis (programmed cell death). It is used in the treatment of various types of cancer including leukemias, lymphomas, and solid tumors. Common side effects include peripheral neuropathy, constipation, and alopecia.

Granulocyte Colony-Stimulating Factor (G-CSF) is a type of growth factor that specifically stimulates the production and survival of granulocytes, a type of white blood cell crucial for fighting off infections. G-CSF works by promoting the proliferation and differentiation of hematopoietic stem cells into mature granulocytes, primarily neutrophils, in the bone marrow.

Recombinant forms of G-CSF are used clinically as a medication to boost white blood cell production in patients undergoing chemotherapy or radiation therapy for cancer, those with congenital neutropenia, and those who have had a bone marrow transplant. By increasing the number of circulating neutrophils, G-CSF helps reduce the risk of severe infections during periods of intense immune suppression.

Examples of recombinant G-CSF medications include filgrastim (Neupogen), pegfilgrastim (Neulasta), and lipegfilgrastim (Lonquex).

Testicular neoplasms are abnormal growths or tumors in the testicle that can be benign (non-cancerous) or malignant (cancerous). They are a type of genitourinary cancer, which affects the reproductive and urinary systems. Testicular neoplasms can occur in men of any age but are most commonly found in young adults between the ages of 15 and 40.

Testicular neoplasms can be classified into two main categories: germ cell tumors and non-germ cell tumors. Germ cell tumors, which arise from the cells that give rise to sperm, are further divided into seminomas and non-seminomas. Seminomas are typically slow-growing and have a good prognosis, while non-seminomas tend to grow more quickly and can spread to other parts of the body.

Non-germ cell tumors are less common than germ cell tumors and include Leydig cell tumors, Sertoli cell tumors, and lymphomas. These tumors can have a variety of clinical behaviors, ranging from benign to malignant.

Testicular neoplasms often present as a painless mass or swelling in the testicle. Other symptoms may include a feeling of heaviness or discomfort in the scrotum, a dull ache in the lower abdomen or groin, and breast enlargement (gynecomastia).

Diagnosis typically involves a physical examination, imaging studies such as ultrasound or CT scan, and blood tests to detect tumor markers. Treatment options depend on the type and stage of the neoplasm but may include surgery, radiation therapy, chemotherapy, or a combination of these modalities. Regular self-examinations of the testicles are recommended for early detection and improved outcomes.

Phosphoramide mustards are a class of alkylating agents used in chemotherapy. They work by forming covalent bonds with DNA, causing cross-linking of the DNA strands and preventing DNA replication and transcription. This results in cytotoxicity and ultimately cell death. The most common phosphoramide mustard is mechlorethamine, which is used in the treatment of Hodgkin's lymphoma, non-Hodgkin's lymphoma, and various types of leukemia. Other examples include cyclophosphamide and ifosfamide, which are used to treat a wide range of cancers including breast, ovarian, and lung cancer. These agents are known for their potent antineoplastic activity, but they also have a narrow therapeutic index and can cause significant side effects, such as myelosuppression, nausea, vomiting, and hair loss.

Osteosarcoma is defined as a type of cancerous tumor that arises from the cells that form bones (osteoblasts). It's the most common primary bone cancer, and it typically develops in the long bones of the body, such as the arms or legs, near the growth plates. Osteosarcoma can metastasize (spread) to other parts of the body, including the lungs, making it a highly malignant form of cancer. Symptoms may include bone pain, swelling, and fractures. Treatment usually involves a combination of surgery, chemotherapy, and/or radiation therapy.

Cyclophosphamide is an alkylating agent, which is a type of chemotherapy medication. It works by interfering with the DNA of cancer cells, preventing them from dividing and growing. This helps to stop the spread of cancer in the body. Cyclophosphamide is used to treat various types of cancer, including lymphoma, leukemia, multiple myeloma, and breast cancer. It can be given orally as a tablet or intravenously as an injection.

Cyclophosphamide can also have immunosuppressive effects, which means it can suppress the activity of the immune system. This makes it useful in treating certain autoimmune diseases, such as rheumatoid arthritis and lupus. However, this immunosuppression can also increase the risk of infections and other side effects.

Like all chemotherapy medications, cyclophosphamide can cause a range of side effects, including nausea, vomiting, hair loss, fatigue, and increased susceptibility to infections. It is important for patients receiving cyclophosphamide to be closely monitored by their healthcare team to manage these side effects and ensure the medication is working effectively.

Fanconi syndrome is a medical condition that affects the proximal tubules of the kidneys. These tubules are responsible for reabsorbing various substances, such as glucose, amino acids, and electrolytes, back into the bloodstream after they have been filtered through the kidneys.

In Fanconi syndrome, there is a defect in the reabsorption process, causing these substances to be lost in the urine instead. This can lead to a variety of symptoms, including:

* Polyuria (excessive urination)
* Polydipsia (excessive thirst)
* Dehydration
* Metabolic acidosis (an imbalance of acid and base in the body)
* Hypokalemia (low potassium levels)
* Hypophosphatemia (low phosphate levels)
* Vitamin D deficiency
* Rickets (softening and weakening of bones in children) or osteomalacia (softening of bones in adults)

Fanconi syndrome can be caused by a variety of underlying conditions, including genetic disorders, kidney diseases, drug toxicity, and heavy metal poisoning. Treatment typically involves addressing the underlying cause, as well as managing symptoms such as electrolyte imbalances and acid-base disturbances.

Neuroectodermal tumors, primitive (PNETs) are a group of highly malignant and aggressive neoplasms that arise from neuroectodermal cells, which are the precursors to the nervous system during embryonic development. These tumors can occur anywhere in the body but are most commonly found in the central nervous system, particularly in the brain and spinal cord.

PNETs are characterized by small, round, blue cells that have a high degree of cellularity and mitotic activity. They are composed of undifferentiated or poorly differentiated cells that can differentiate along various neural lineages, including neuronal, glial, and epithelial. This feature makes their diagnosis challenging, as they can resemble other small round blue cell tumors, such as lymphomas, rhabdomyosarcomas, and Ewing sarcoma.

Immunohistochemical staining and molecular genetic testing are often required to confirm the diagnosis of PNETs. These tests typically reveal the expression of neural markers, such as NSE, Synaptophysin, and CD99, and the presence of specific chromosomal abnormalities, such as the EWS-FLI1 fusion gene in Ewing sarcoma.

PNETs are aggressive tumors with a poor prognosis, and their treatment typically involves a multimodal approach that includes surgery, radiation therapy, and chemotherapy. Despite these treatments, the five-year survival rate for patients with PNETs is less than 30%.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Paclitaxel is a chemotherapeutic agent derived from the bark of the Pacific yew tree (Taxus brevifolia). It is an antimicrotubule agent that promotes the assembly and stabilization of microtubules, thereby interfering with the normal dynamic reorganization of the microtubule network that is essential for cell division.

Paclitaxel is used in the treatment of various types of cancer including ovarian, breast, lung, and pancreatic cancers. It works by inhibiting the disassembly of microtubules, which prevents the separation of chromosomes during mitosis, leading to cell cycle arrest and apoptosis (programmed cell death).

Common side effects of paclitaxel include neutropenia (low white blood cell count), anemia (low red blood cell count), alopecia (hair loss), peripheral neuropathy (nerve damage causing numbness or tingling in the hands and feet), myalgias (muscle pain), arthralgias (joint pain), and hypersensitivity reactions.

I apologize, but I am not able to provide a medical definition for "Bromisovalum" because it is not a recognized or validated medication or substance in the field of medicine. It is possible that there may be a spelling error or typo in the term you provided. If you have more information about what you are looking for, I will do my best to help you find the correct information.

In the context of medicine and toxicology, protective agents are substances that provide protection against harmful or damaging effects of other substances. They can work in several ways, such as:

1. Binding to toxic substances: Protective agents can bind to toxic substances, rendering them inactive or less active, and preventing them from causing harm. For example, activated charcoal is sometimes used in the emergency treatment of certain types of poisoning because it can bind to certain toxins in the stomach and intestines and prevent their absorption into the body.
2. Increasing elimination: Protective agents can increase the elimination of toxic substances from the body, for example by promoting urinary or biliary excretion.
3. Reducing oxidative stress: Antioxidants are a type of protective agent that can reduce oxidative stress caused by free radicals and reactive oxygen species (ROS). These agents can protect cells and tissues from damage caused by oxidation.
4. Supporting organ function: Protective agents can support the function of organs that have been damaged by toxic substances, for example by improving blood flow or reducing inflammation.

Examples of protective agents include chelating agents, antidotes, free radical scavengers, and anti-inflammatory drugs.

Lung neoplasms refer to abnormal growths or tumors in the lung tissue. These tumors can be benign (non-cancerous) or malignant (cancerous). Malignant lung neoplasms are further classified into two main types: small cell lung carcinoma and non-small cell lung carcinoma. Lung neoplasms can cause symptoms such as cough, chest pain, shortness of breath, and weight loss. They are often caused by smoking or exposure to secondhand smoke, but can also occur due to genetic factors, radiation exposure, and other environmental carcinogens. Early detection and treatment of lung neoplasms is crucial for improving outcomes and survival rates.

Disease-free survival (DFS) is a term used in medical research and clinical practice, particularly in the field of oncology. It refers to the length of time after primary treatment for a cancer during which no evidence of the disease can be found. This means that the patient shows no signs or symptoms of the cancer, and any imaging studies or other tests do not reveal any tumors or other indications of the disease.

DFS is often used as an important endpoint in clinical trials to evaluate the effectiveness of different treatments for cancer. By measuring the length of time until the cancer recurs or a new cancer develops, researchers can get a better sense of how well a particular treatment is working and whether it is improving patient outcomes.

It's important to note that DFS is not the same as overall survival (OS), which refers to the length of time from primary treatment until death from any cause. While DFS can provide valuable information about the effectiveness of cancer treatments, it does not necessarily reflect the impact of those treatments on patients' overall survival.

Acetaldehyde is a colorless, volatile, and flammable liquid with a pungent odor. It is the simplest aldehyde, with the formula CH3CHO. Acetaldehyde is an important intermediate in the metabolism of alcohol and is produced by the oxidation of ethanol by alcohol dehydrogenase. It is also a naturally occurring compound that is found in small amounts in various foods and beverages, such as fruits, vegetables, and coffee.

Acetaldehyde is a toxic substance that can cause a range of adverse health effects, including irritation of the eyes, nose, and throat, nausea, vomiting, and headaches. It has been classified as a probable human carcinogen by the International Agency for Research on Cancer (IARC). Long-term exposure to acetaldehyde has been linked to an increased risk of certain types of cancer, including cancers of the oral cavity, esophagus, and liver.

Survival analysis is a branch of statistics that deals with the analysis of time to event data. It is used to estimate the time it takes for a certain event of interest to occur, such as death, disease recurrence, or treatment failure. The event of interest is called the "failure" event, and survival analysis estimates the probability of not experiencing the failure event until a certain point in time, also known as the "survival" probability.

Survival analysis can provide important information about the effectiveness of treatments, the prognosis of patients, and the identification of risk factors associated with the event of interest. It can handle censored data, which is common in medical research where some participants may drop out or be lost to follow-up before the event of interest occurs.

Survival analysis typically involves estimating the survival function, which describes the probability of surviving beyond a certain time point, as well as hazard functions, which describe the instantaneous rate of failure at a given time point. Other important concepts in survival analysis include median survival times, restricted mean survival times, and various statistical tests to compare survival curves between groups.

Medical survival rate is a statistical measure used to determine the percentage of patients who are still alive for a specific period of time after their diagnosis or treatment for a certain condition or disease. It is often expressed as a five-year survival rate, which refers to the proportion of people who are alive five years after their diagnosis. Survival rates can be affected by many factors, including the stage of the disease at diagnosis, the patient's age and overall health, the effectiveness of treatment, and other health conditions that the patient may have. It is important to note that survival rates are statistical estimates and do not necessarily predict an individual patient's prognosis.

Neoplasms, germ cell and embryonal are types of tumors that originate from the abnormal growth of cells. Here's a brief medical definition for each:

1. Neoplasms: Neoplasms refer to abnormal tissue growths or masses, which can be benign (non-cancerous) or malignant (cancerous). They result from uncontrolled cell division and may invade surrounding tissues or spread to other parts of the body through a process called metastasis.
2. Germ Cell Tumors: These are rare tumors that develop from the germ cells, which give rise to sperm and eggs in the reproductive organs (ovaries and testes). They can be benign or malignant and may occur in both children and adults. Germ cell tumors can also arise outside of the reproductive organs, a condition known as extragonadal germ cell tumors.
3. Embryonal Tumors: These are a type of malignant neoplasm that primarily affects infants and young children. They develop from embryonic cells, which are immature cells present during fetal development. Embryonal tumors can occur in various organs, including the brain (medulloblastomas), nervous system (primitive neuroectodermal tumors or PNETs), and other areas like the kidneys and liver.

It is essential to note that these conditions require professional medical evaluation and treatment by healthcare professionals with expertise in oncology and related fields.

Carcinoma, small cell is a type of lung cancer that typically starts in the bronchi (the airways that lead to the lungs). It is called "small cell" because the cancer cells are small and appear round or oval in shape. This type of lung cancer is also sometimes referred to as "oat cell carcinoma" due to the distinctive appearance of the cells, which can resemble oats when viewed under a microscope.

Small cell carcinoma is a particularly aggressive form of lung cancer that tends to spread quickly to other parts of the body. It is strongly associated with smoking and is less common than non-small cell lung cancer (NSCLC), which accounts for about 85% of all lung cancers.

Like other types of lung cancer, small cell carcinoma may not cause any symptoms in its early stages. However, as the tumor grows and spreads, it can cause a variety of symptoms, including coughing, chest pain, shortness of breath, hoarseness, and weight loss. Treatment for small cell carcinoma typically involves a combination of chemotherapy, radiation therapy, and sometimes surgery.

Remission induction is a treatment approach in medicine, particularly in the field of oncology and hematology. It refers to the initial phase of therapy aimed at reducing or eliminating the signs and symptoms of active disease, such as cancer or autoimmune disorders. The primary goal of remission induction is to achieve a complete response (disappearance of all detectable signs of the disease) or a partial response (a decrease in the measurable extent of the disease). This phase of treatment is often intensive and may involve the use of multiple drugs or therapies, including chemotherapy, immunotherapy, or targeted therapy. After remission induction, patients may receive additional treatments to maintain the remission and prevent relapse, known as consolidation or maintenance therapy.

Vinblastine is an alkaloid derived from the Madagascar periwinkle plant (Catharanthus roseus) and is primarily used in cancer chemotherapy. It is classified as a vinca alkaloid, along with vincristine, vinorelbine, and others.

Medically, vinblastine is an antimicrotubule agent that binds to tubulin, a protein involved in the formation of microtubules during cell division. By binding to tubulin, vinblastine prevents the assembly of microtubules, which are essential for mitosis (cell division). This leads to the inhibition of cell division and ultimately results in the death of rapidly dividing cells, such as cancer cells.

Vinblastine is used to treat various types of cancers, including Hodgkin's lymphoma, non-Hodgkin's lymphoma, testicular cancer, breast cancer, and others. It is often administered intravenously in a healthcare setting and may be given as part of a combination chemotherapy regimen with other anticancer drugs.

As with any medication, vinblastine can have side effects, including bone marrow suppression (leading to an increased risk of infection, anemia, and bleeding), neurotoxicity (resulting in peripheral neuropathy, constipation, and jaw pain), nausea, vomiting, hair loss, and mouth sores. Regular monitoring by a healthcare professional is necessary during vinblastine treatment to manage side effects and ensure the safe and effective use of this medication.

A pharmacy assistant or aide, also known as a "pharmacy technician," is a healthcare professional who works under the supervision of a licensed pharmacist. They assist in various tasks such as preparing and mixing medications, counting pills, labeling bottles, answering phone calls, and performing administrative duties. However, they are not responsible for providing medical advice or counseling to patients about their medications. It's important to note that the specific responsibilities of a pharmacy assistant or aide may vary depending on the laws and regulations in their location.

Carcinosarcoma is a rare and aggressive type of cancer that occurs when malignant epithelial cells (carcinoma) coexist with malignant mesenchymal cells (sarcoma) in the same tumor. This mixed malignancy can arise in various organs, but it is most commonly found in the female reproductive tract, particularly in the uterus and ovaries.

In a carcinosarcoma, the epithelial component typically forms glands or nests, while the mesenchymal component can differentiate into various tissue types such as bone, cartilage, muscle, or fat. The presence of both malignant components in the same tumor makes carcinosarcomas particularly aggressive and challenging to treat.

Carcinosarcomas are also known by other names, including sarcomatoid carcinoma, spindle cell carcinoma, or pseudosarcoma. The prognosis for patients with carcinosarcoma is generally poor due to its high propensity for local recurrence and distant metastasis. Treatment usually involves a combination of surgery, radiation therapy, and chemotherapy.

"Drug evaluation" is a medical term that refers to the systematic process of assessing the pharmacological, therapeutic, and safety profile of a drug or medication. This process typically involves several stages, including preclinical testing in the laboratory, clinical trials in human subjects, and post-marketing surveillance.

The goal of drug evaluation is to determine the efficacy, safety, and optimal dosage range of a drug, as well as any potential interactions with other medications or medical conditions. The evaluation process also includes an assessment of the drug's pharmacokinetics, or how it is absorbed, distributed, metabolized, and eliminated by the body.

The findings from drug evaluations are used to inform regulatory decisions about whether a drug should be approved for use in clinical practice, as well as to provide guidance to healthcare providers about how to use the drug safely and effectively.

Mercaptoethanol, also known as β-mercaptoethanol or BME, is not a medical term itself but is commonly used in laboratories including medical research. It is a reducing agent and a powerful antioxidant with the chemical formula HOCH2CH2SH.

Medical Definition:
Mercaptoethanol (β-mercaptoethanol) is a colorless liquid with an unpleasant odor, used as a reducing agent in biochemical research and laboratory experiments. It functions by breaking disulfide bonds between cysteine residues in proteins, allowing them to unfold and denature. This property makes it useful for various applications such as protein purification, enzyme assays, and cell culture.

However, it is important to note that Mercaptoethanol has a high toxicity level and should be handled with caution in the laboratory setting.

Cytochrome P-450 CYP2B1 is a specific isoform of the cytochrome P-450 enzyme system, which is involved in the metabolism of drugs and other xenobiotics in the liver. This particular isoenzyme is primarily found in rats and is responsible for the metabolism of a variety of substrates, including certain drugs, steroids, and environmental toxins.

The cytochrome P-450 system is a group of enzymes located in the endoplasmic reticulum of cells, particularly in the liver. These enzymes play a crucial role in the metabolism of various substances, including drugs, hormones, and toxins. They work by catalyzing oxidation-reduction reactions that convert lipophilic compounds into more hydrophilic ones, which can then be excreted from the body.

CYP2B1 is one of many isoforms of cytochrome P-450, and it has a preference for certain types of substrates. It is involved in the metabolism of drugs such as cyclophosphamide, ifosfamide, and methadone, as well as steroids like progesterone and environmental toxins like pentachlorophenol.

It's important to note that while CYP2B1 is an essential enzyme in rats, its human counterpart, CYP2B6, plays a similar role in drug metabolism in humans. Understanding the function and regulation of these enzymes can help in predicting drug interactions, designing new drugs, and tailoring therapies to individual patients based on their genetic makeup.

Epirubicin is an anthracycline antibiotic used in cancer chemotherapy. It works by interfering with the DNA in cancer cells and preventing them from dividing and growing. Epirubicin is often used to treat breast cancer, lung cancer, stomach cancer, and ovarian cancer.

Like other anthracyclines, epirubicin can cause side effects such as hair loss, nausea and vomiting, mouth sores, and increased risk of infection due to damage to the bone marrow. It can also cause heart problems, including congestive heart failure, especially when given in high doses or when combined with other chemotherapy drugs that can also harm the heart.

Epirubicin is usually given by injection into a vein (intravenously) and is typically administered in cycles, with breaks between treatment periods to allow the body to recover from any side effects. The dose and schedule of epirubicin may vary depending on the type and stage of cancer being treated, as well as other factors such as the patient's overall health and any other medical conditions they may have.

Rhabdomyosarcoma is a type of cancer that develops in the body's soft tissues, specifically in the muscle cells. It is a rare and aggressive form of sarcoma, which is a broader category of cancers that affect the connective tissues such as muscles, tendons, cartilages, bones, blood vessels, and fatty tissues.

Rhabdomyosarcomas can occur in various parts of the body, including the head, neck, arms, legs, trunk, and genitourinary system. They are more common in children than adults, with most cases diagnosed before the age of 18. The exact cause of rhabdomyosarcoma is not known, but genetic factors and exposure to radiation or certain chemicals may increase the risk.

There are several subtypes of rhabdomyosarcoma, including embryonal, alveolar, pleomorphic, and spindle cell/sclerosing. The type and stage of the cancer determine the treatment options, which may include surgery, radiation therapy, chemotherapy, or a combination of these approaches. Early diagnosis and prompt treatment are crucial for improving the prognosis and long-term survival rates.

Hematologic diseases, also known as hematological disorders, refer to a group of conditions that affect the production, function, or destruction of blood cells or blood-related components, such as plasma. These diseases can affect erythrocytes (red blood cells), leukocytes (white blood cells), and platelets (thrombocytes), as well as clotting factors and hemoglobin.

Hematologic diseases can be broadly categorized into three main types:

1. Anemia: A condition characterized by a decrease in the total red blood cell count, hemoglobin, or hematocrit, leading to insufficient oxygen transport to tissues and organs. Examples include iron deficiency anemia, sickle cell anemia, and aplastic anemia.
2. Leukemia and other disorders of white blood cells: These conditions involve the abnormal production or function of leukocytes, which can lead to impaired immunity and increased susceptibility to infections. Examples include leukemias (acute lymphoblastic leukemia, chronic myeloid leukemia), lymphomas, and myelodysplastic syndromes.
3. Platelet and clotting disorders: These diseases affect the production or function of platelets and clotting factors, leading to abnormal bleeding or clotting tendencies. Examples include hemophilia, von Willebrand disease, thrombocytopenia, and disseminated intravascular coagulation (DIC).

Hematologic diseases can have various causes, including genetic defects, infections, autoimmune processes, environmental factors, or malignancies. Proper diagnosis and management of these conditions often require the expertise of hematologists, who specialize in diagnosing and treating disorders related to blood and its components.

A prodrug is a pharmacologically inactive substance that, once administered, is metabolized into a drug that is active. Prodrugs are designed to improve the bioavailability or delivery of a drug, to minimize adverse effects, or to target the drug to specific sites in the body. The conversion of a prodrug to its active form typically occurs through enzymatic reactions in the liver or other tissues.

Prodrugs can offer several advantages over traditional drugs, including:

* Improved absorption: Some drugs have poor bioavailability due to their chemical properties, which make them difficult to absorb from the gastrointestinal tract. Prodrugs can be designed with improved absorption characteristics, allowing for more efficient delivery of the active drug to the body.
* Reduced toxicity: By masking the active drug's chemical structure, prodrugs can reduce its interactions with sensitive tissues and organs, thereby minimizing adverse effects.
* Targeted delivery: Prodrugs can be designed to selectively release the active drug in specific areas of the body, such as tumors or sites of infection, allowing for more precise and effective therapy.

Examples of prodrugs include:

* Aspirin (acetylsalicylic acid), which is metabolized to salicylic acid in the liver.
* Enalapril, an angiotensin-converting enzyme (ACE) inhibitor used to treat hypertension and heart failure, which is metabolized to enalaprilat in the liver.
* Codeine, an opioid analgesic, which is metabolized to morphine in the liver by the enzyme CYP2D6.

It's important to note that not all prodrugs are successful, and some may even have unintended consequences. For example, if a patient has a genetic variation that affects the activity of the enzyme responsible for converting the prodrug to its active form, the drug may not be effective or may produce adverse effects. Therefore, it's essential to consider individual genetic factors when prescribing prodrugs.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Bleomycin is a type of chemotherapeutic agent used to treat various types of cancer, including squamous cell carcinoma, testicular cancer, and lymphomas. It works by causing DNA damage in rapidly dividing cells, which can inhibit the growth and proliferation of cancer cells.

Bleomycin is an antibiotic derived from Streptomyces verticillus and is often administered intravenously or intramuscularly. While it can be effective in treating certain types of cancer, it can also have serious side effects, including lung toxicity, which can lead to pulmonary fibrosis and respiratory failure. Therefore, bleomycin should only be used under the close supervision of a healthcare professional who is experienced in administering chemotherapy drugs.

Mitomycin is an antineoplastic antibiotic derived from Streptomyces caespitosus. It is primarily used in cancer chemotherapy, particularly in the treatment of various carcinomas including gastrointestinal tract malignancies and breast cancer. Mitomycin works by forming cross-links in DNA, thereby inhibiting its replication and transcription, which ultimately leads to cell death.

In addition to its systemic use, mitomycin is also used topically in ophthalmology for the treatment of certain eye conditions such as glaucoma and various ocular surface disorders. The topical application of mitomycin can help reduce scarring and fibrosis by inhibiting the proliferation of fibroblasts.

It's important to note that mitomycin has a narrow therapeutic index, meaning there is only a small range between an effective dose and a toxic one. Therefore, its use should be closely monitored to minimize side effects, which can include myelosuppression, mucositis, alopecia, and potential secondary malignancies.

Leukopenia is a medical term used to describe an abnormally low white blood cell (WBC) count in the blood. White blood cells are crucial components of the body's immune system, helping to fight infections and diseases. A normal WBC count ranges from 4,500 to 11,000 cells per microliter (μL) of blood in most laboratories. Leukopenia is typically diagnosed when the WBC count falls below 4,500 cells/μL.

There are several types of white blood cells, including neutrophils, lymphocytes, monocytes, eosinophils, and basophils. Neutropenia, a specific type of leukopenia, refers to an abnormally low neutrophil count (less than 1,500 cells/μL). Neutropenia increases the risk of bacterial and fungal infections since neutrophils play a significant role in combating these types of pathogens.

Leukopenia can result from various factors, such as viral infections, certain medications (like chemotherapy or radiation therapy), bone marrow disorders, autoimmune diseases, or congenital conditions affecting white blood cell production. It is essential to identify the underlying cause of leukopenia to provide appropriate treatment and prevent complications.

No FAQ available that match "ifosfamide"

No images available that match "ifosfamide"