A vascular anomaly due to proliferation of BLOOD VESSELS that forms a tumor-like mass. The common types involve CAPILLARIES and VEINS. It can occur anywhere in the body but is most frequently noticed in the SKIN and SUBCUTANEOUS TISSUE. (from Stedman, 27th ed, 2000)
A vascular anomaly that is a collection of tortuous BLOOD VESSELS and connective tissue. This tumor-like mass with the large vascular space is filled with blood and usually appears as a strawberry-like lesion in the subcutaneous areas of the face, extremities, or other regions of the body including the central nervous system.
A dull red, firm, dome-shaped hemangioma, sharply demarcated from surrounding skin, usually located on the head and neck, which grows rapidly and generally undergoes regression and involution without scarring. It is caused by proliferation of immature capillary vessels in active stroma, and is usually present at birth or occurs within the first two or three months of life. (Dorland, 27th ed)
The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges.
A benign neoplasm of pneumocytes, cells of the PULMONARY ALVEOLI. Originally considered to be vascular in origin, it is now classified as an epithelial tumor with several elements, including solid cellular areas, papillary structure, sclerotic regions, and dilated blood-filled spaces resembling HEMANGIOMA.
Diseases of any component of the brain (including the cerebral hemispheres, diencephalon, brain stem, and cerebellum) or the spinal cord.
Benign and malignant neoplastic processes that arise from or secondarily involve the brain, spinal cord, or meninges.
A vascular anomaly composed of a collection of large, thin walled tortuous VEINS that can occur in any part of the central nervous system but lack intervening nervous tissue. Familial occurrence is common and has been associated with a number of genes mapped to 7q, 7p and 3q. Clinical features include SEIZURES; HEADACHE; STROKE; and progressive neurological deficit.
The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed)
A disorder of the skin, the oral mucosa, and the gingiva, that usually presents as a solitary polypoid capillary hemangioma often resulting from trauma. It is manifested as an inflammatory response with similar characteristics to those of a granuloma.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Pathogenic infections of the brain, spinal cord, and meninges. DNA VIRUS INFECTIONS; RNA VIRUS INFECTIONS; BACTERIAL INFECTIONS; MYCOPLASMA INFECTIONS; SPIROCHAETALES INFECTIONS; fungal infections; PROTOZOAN INFECTIONS; HELMINTHIASIS; and PRION DISEASES may involve the central nervous system as a primary or secondary process.
A neoplasm derived from blood vessels, characterized by numerous prominent endothelial cells that occur singly, in aggregates, and as the lining of congeries of vascular tubes or channels. Hemangioendotheliomas are relatively rare and are of intermediate malignancy (between benign hemangiomas and conventional angiosarcomas). They affect men and women about equally and rarely develop in childhood. (From Stedman, 25th ed; Holland et al., Cancer Medicine, 3d ed, p1866)
The nervous system outside of the brain and spinal cord. The peripheral nervous system has autonomic and somatic divisions. The autonomic nervous system includes the enteric, parasympathetic, and sympathetic subdivisions. The somatic nervous system includes the cranial and spinal nerves and their ganglia and the peripheral sensory receptors.
Neoplasms located in the vasculature system, such as ARTERIES and VEINS. They are differentiated from neoplasms of vascular tissue (NEOPLASMS, VASCULAR TISSUE), such as ANGIOFIBROMA or HEMANGIOMA.
Viral infections of the brain, spinal cord, meninges, or perimeningeal spaces.
Neoplasms of the bony part of the skull.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Inflammation of blood vessels within the central nervous system. Primary vasculitis is usually caused by autoimmune or idiopathic factors, while secondary vasculitis is caused by existing disease process. Clinical manifestations are highly variable but include HEADACHE; SEIZURES; behavioral alterations; INTRACRANIAL HEMORRHAGES; TRANSIENT ISCHEMIC ATTACK; and BRAIN INFARCTION. (From Adams et al., Principles of Neurology, 6th ed, pp856-61)
Facial neoplasms are abnormal growths or tumors that develop in the facial region, which can be benign or malignant, originating from various cell types including epithelial, glandular, connective tissue, and neural crest cells.
Spinal neoplasms are abnormal growths or tumors that develop within the spinal column, which can be benign or malignant, and originate from cells within the spinal structure or spread to the spine from other parts of the body (metastatic).
A class of drugs producing both physiological and psychological effects through a variety of mechanisms. They can be divided into "specific" agents, e.g., affecting an identifiable molecular mechanism unique to target cells bearing receptors for that agent, and "nonspecific" agents, those producing effects on different target cells and acting by diverse molecular mechanisms. Those with nonspecific mechanisms are generally further classed according to whether they produce behavioral depression or stimulation. Those with specific mechanisms are classed by locus of action or specific therapeutic use. (From Gilman AG, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p252)
A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
A rare malignant neoplasm characterized by rapidly proliferating, extensively infiltrating, anaplastic cells derived from blood vessels and lining irregular blood-filled or lumpy spaces. (Stedman, 25th ed)
MYCOSES of the brain, spinal cord, and meninges which may result in ENCEPHALITIS; MENINGITIS, FUNGAL; MYELITIS; BRAIN ABSCESS; and EPIDURAL ABSCESS. Certain types of fungi may produce disease in immunologically normal hosts, while others are classified as opportunistic pathogens, causing illness primarily in immunocompromised individuals (e.g., ACQUIRED IMMUNODEFICIENCY SYNDROME).
Neoplasms composed of vascular tissue. This concept does not refer to neoplasms located in blood vessels.
Two ganglionated neural plexuses in the gut wall which form one of the three major divisions of the autonomic nervous system. The enteric nervous system innervates the gastrointestinal tract, the pancreas, and the gallbladder. It contains sensory neurons, interneurons, and motor neurons. Thus the circuitry can autonomously sense the tension and the chemical environment in the gut and regulate blood vessel tone, motility, secretions, and fluid transport. The system is itself governed by the central nervous system and receives both parasympathetic and sympathetic innervation. (From Kandel, Schwartz, and Jessel, Principles of Neural Science, 3d ed, p766)
Disappearance of a neoplasm or neoplastic state without the intervention of therapy.
Characteristic properties and processes of the NERVOUS SYSTEM as a whole or with reference to the peripheral or the CENTRAL NERVOUS SYSTEM.
The ENTERIC NERVOUS SYSTEM; PARASYMPATHETIC NERVOUS SYSTEM; and SYMPATHETIC NERVOUS SYSTEM taken together. Generally speaking, the autonomic nervous system regulates the internal environment during both peaceful activity and physical or emotional stress. Autonomic activity is controlled and integrated by the CENTRAL NERVOUS SYSTEM, especially the HYPOTHALAMUS and the SOLITARY NUCLEUS, which receive information relayed from VISCERAL AFFERENTS.
Diseases of the central and peripheral nervous system. This includes disorders of the brain, spinal cord, cranial nerves, peripheral nerves, nerve roots, autonomic nervous system, neuromuscular junction, and muscle.
The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear.
Bacterial infections of the brain, spinal cord, and meninges, including infections involving the perimeningeal spaces.
Neoplasms located in the space between the vertebral PERIOSTEUM and DURA MATER surrounding the SPINAL CORD. Tumors in this location are most often metastatic in origin and may cause neurologic deficits by mass effect on the spinal cord or nerve roots or by interfering with blood supply to the spinal cord.
Tumors or cancer of the LIVER.
The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system.
The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem.
Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Solitary or multiple benign cutaneous nodules comprised of immature and mature vascular structures intermingled with endothelial cells and a varied infiltrate of eosinophils, histiocytes, lymphocytes, and mast cells.
A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury.
Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain.
Tuberculosis of the brain, spinal cord, or meninges (TUBERCULOSIS, MENINGEAL), most often caused by MYCOBACTERIUM TUBERCULOSIS and rarely by MYCOBACTERIUM BOVIS. The infection may be limited to the nervous system or coexist in other organs (e.g., TUBERCULOSIS, PULMONARY). The organism tends to seed the meninges causing a diffuse meningitis and leads to the formation of TUBERCULOMA, which may occur within the brain, spinal cord, or perimeningeal spaces. Tuberculous involvement of the vertebral column (TUBERCULOSIS, SPINAL) may result in nerve root or spinal cord compression. (From Adams et al., Principles of Neurology, 6th ed, pp717-20)
Benign and malignant neoplastic processes arising from or involving components of the central, peripheral, and autonomic nervous systems, cranial nerves, and meninges. Included in this category are primary and metastatic nervous system neoplasms.
'Nerve tissue proteins' are specialized proteins found within the nervous system's biological tissue, including neurofilaments, neuronal cytoskeletal proteins, and neural cell adhesion molecules, which facilitate structural support, intracellular communication, and synaptic connectivity essential for proper neurological function.
Diseases characterized by loss or dysfunction of myelin in the central or peripheral nervous system.
An experimental animal model for central nervous system demyelinating disease. Inoculation with a white matter emulsion combined with FREUND'S ADJUVANT, myelin basic protein, or purified central myelin triggers a T cell-mediated immune response directed towards central myelin. The pathologic features are similar to MULTIPLE SCLEROSIS, including perivascular and periventricular foci of inflammation and demyelination. Subpial demyelination underlying meningeal infiltrations also occurs, which is also a feature of ENCEPHALOMYELITIS, ACUTE DISSEMINATED. Passive immunization with T-cells from an afflicted animal to a normal animal also induces this condition. (From Immunol Res 1998;17(1-2):217-27; Raine CS, Textbook of Neuropathology, 2nd ed, p604-5)
Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body.
A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system.
Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM.
Neoplasms of the bony orbit and contents except the eyeball.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The co-occurrence of pregnancy and NEOPLASMS. The neoplastic disease may precede or follow FERTILIZATION.
A non-inherited congenital condition with vascular and neurological abnormalities. It is characterized by facial vascular nevi (PORT-WINE STAIN), and capillary angiomatosis of intracranial membranes (MENINGES; CHOROID). Neurological features include EPILEPSY; cognitive deficits; GLAUCOMA; and visual defects.
A watery fluid that is continuously produced in the CHOROID PLEXUS and circulates around the surface of the BRAIN; SPINAL CORD; and in the CEREBRAL VENTRICLES.
Tumors or cancer located in muscle tissue or specific muscles. They are differentiated from NEOPLASMS, MUSCLE TISSUE which are neoplasms composed of skeletal, cardiac, or smooth muscle tissue, such as MYOSARCOMA or LEIOMYOMA.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.
An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903)
Benign and malignant neoplasms which occur within the substance of the spinal cord (intramedullary neoplasms) or in the space between the dura and spinal cord (intradural extramedullary neoplasms). The majority of intramedullary spinal tumors are primary CNS neoplasms including ASTROCYTOMA; EPENDYMOMA; and LIPOMA. Intramedullary neoplasms are often associated with SYRINGOMYELIA. The most frequent histologic types of intradural-extramedullary tumors are MENINGIOMA and NEUROFIBROMA.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A general term indicating inflammation of the BRAIN and SPINAL CORD, often used to indicate an infectious process, but also applicable to a variety of autoimmune and toxic-metabolic conditions. There is significant overlap regarding the usage of this term and ENCEPHALITIS in the literature.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A condition with multiple tumor-like lesions caused either by congenital or developmental malformations of BLOOD VESSELS, or reactive vascular proliferations, such as in bacillary angiomatosis. Angiomatosis is considered non-neoplastic.
Tumors or cancer of the SPLEEN.
A group of disorders characterized by ectodermal-based malformations and neoplastic growths in the skin, nervous system, and other organs.
The bone that forms the frontal aspect of the skull. Its flat part forms the forehead, articulating inferiorly with the NASAL BONE and the CHEEK BONE on each side of the face.
The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling.
Inflammation of the BRAIN due to infection, autoimmune processes, toxins, and other conditions. Viral infections (see ENCEPHALITIS, VIRAL) are a relatively frequent cause of this condition.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Elements of limited time intervals, contributing to particular results or situations.
Inflammation of brain parenchymal tissue as a result of viral infection. Encephalitis may occur as primary or secondary manifestation of TOGAVIRIDAE INFECTIONS; HERPESVIRIDAE INFECTIONS; ADENOVIRIDAE INFECTIONS; FLAVIVIRIDAE INFECTIONS; BUNYAVIRIDAE INFECTIONS; PICORNAVIRIDAE INFECTIONS; PARAMYXOVIRIDAE INFECTIONS; ORTHOMYXOVIRIDAE INFECTIONS; RETROVIRIDAE INFECTIONS; and ARENAVIRIDAE INFECTIONS.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
A group of transmissible viral diseases of chickens and turkeys. Liver tumors are found in most forms, but tumors can be found elsewhere.
An inflammatory process involving the brain (ENCEPHALITIS) and meninges (MENINGITIS), most often produced by pathogenic organisms which invade the central nervous system, and occasionally by toxins, autoimmune disorders, and other conditions.
A group of twelve VERTEBRAE connected to the ribs that support the upper trunk region.
Tumors of the choroid; most common intraocular tumors are malignant melanomas of the choroid. These usually occur after puberty and increase in incidence with advancing age. Most malignant melanomas of the uveal tract develop from benign melanomas (nevi).
A tumor of medium-to-large veins, composed of plump-to-spindled endothelial cells that bulge into vascular spaces in a tombstone-like fashion. These tumors are thought to have "borderline" aggression, where one-third develop local recurrences, but only rarely metastasize. It is unclear whether the epithelioid hemangioendothelioma is truly neoplastic or an exuberant tissue reaction, nor is it clear if this is equivalent to Kimura's disease (see ANGIOLYMPHOID HYPERPLASIA WITH EOSINOPHILIA). (Segen, Dictionary of Modern Medicine, 1992)
A surgical procedure that entails removing all (laminectomy) or part (laminotomy) of selected vertebral lamina to relieve pressure on the SPINAL CORD and/or SPINAL NERVE ROOTS. Vertebral lamina is the thin flattened posterior wall of vertebral arch that forms the vertebral foramen through which pass the spinal cord and nerve roots.
A dull or sharp painful sensation associated with the outer or inner structures of the eyeball, having different causes.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states.
Tumors in any part of the heart. They include primary cardiac tumors and metastatic tumors to the heart. Their interference with normal cardiac functions can cause a wide variety of symptoms including HEART FAILURE; CARDIAC ARRHYTHMIAS; or EMBOLISM.
Traumatic injuries to the brain, cranial nerves, spinal cord, autonomic nervous system, or neuromuscular system, including iatrogenic injuries induced by surgical procedures.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The black, tarry, foul-smelling FECES that contain degraded blood.
MYELIN-specific proteins that play a structural or regulatory role in the genesis and maintenance of the lamellar MYELIN SHEATH structure.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A benign tumor composed, wholly or in part, of cells with the morphologic characteristics of HISTIOCYTES and with various fibroblastic components. Fibrous histiocytomas can occur anywhere in the body. When they occur in the skin, they are called dermatofibromas or sclerosing hemangiomas. (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 5th ed, p1747)
Tumors or cancer of the SKIN.
The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium.
An infant during the first month after birth.

Cavernous sinus hemangioma treated with gamma knife radiosurgery: usefulness of SPECT for diagnosis--case report. (1/125)

A 79-year-old female presented with cavernous sinus hemangioma manifesting as double vision due to right oculomotor and trochlear nerve pareses. Computed tomography and magnetic resonance imaging revealed bony erosion and a right cavernous sinus tumor with "tail sign" after contrast medium administration. Thallium-201 (201Tl) single photon emission computed tomography (SPECT) showed low uptake within the tumor, and technetium-99m-human serum albumin-diethylenetriaminepenta-acetic acid SPECT disclosed high uptake within the tumor. 201Tl SPECT usually shows very high uptake in meningiomas and malignant tumors, so the tumor was considered to be an unrelated benign tumor. The patient underwent partial resection of the tumor. Histological examination of the specimen confirmed cavernous hemangioma. The oculomotor nerve paresis partially improved. Gamma knife radiosurgery was carried out 4 months after the operation. The tumor markedly shrank with full recovery of extraocular movement 6 months after radiosurgery. SPECT is useful for distinguishing cavernous sinus hemangiomas from other cavernous tumors. Radiosurgery should be performed after partial resection or biopsy for cavernous sinus hemangiomas and may be the initial treatment for patients with small cavernous sinus hemangioma if the diagnosis can be established based on neuroimaging.  (+info)

Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. (2/125)

Cerebral cavernous malformation (CCM) is a common autosomal dominant disorder characterized by venous sinusoids that predispose to intracranial hemorrhage. CCM is genetically heterogeneous, with loci at 7q, 7p and 3q. Mutations in KRIT1 account for all cases linked to 7q (CCM1), but the pathogenesis of CCM is not understood. Krev Interaction Trapped 1 (krit1) was originally identified through its interaction with the Ras-family GTPase krev1/rap1a in a two-hybrid screen, inferring a role in GTPase signaling cascades. We demonstrated additional 5'-coding exons for krit1, extending the N-terminus by 207 amino acids compared to the previously reported protein. Remarkably, by two-hybrid analysis and co-immunoprecipitation, full-length krit1 fails to interact with krev1/rap1a but shows strong interaction with integrin cytoplasmic domain-associated protein-1 (icap1). Icap1 binds to a NPXY motif in the cytoplasmic domain of beta1 integrin and participates in beta1-mediated cell adhesion and migration. The novel N-terminus of krit1 contains a NPXY motif that it is required for icap1 interaction. Like beta1 integrin, krit1 interacts with the 200 amino acid isoform of icap1 (icap1alpha), but not a 150 amino acid form that results from alternative splicing (icap1beta). In a competition assay, induced expression of krit1 diminishes the interaction between icap1alpha and beta1 integrin. Taken together, these data suggest that beta1 integrin and krit1 compete for the same site on icap1alpha, perhaps constituting a regulatory mechanism. Loss-of-function KRIT1 mutations, as observed in CCM1, would shift the balance with predicted consequences for endothelial cell performance during integrin beta1-dependent angiogenesis.  (+info)

Cavernous haemangioma in the interpeduncular cistern: case report and review of literature. (3/125)

A rare case of a cavernous haemangioma in the interpeduncular cistern is reported. The patient, forty-five year old male presented with excruciating left sided trigeminal neuralgia and diplopia for the past one year. Examination revealed left third and fifth nerve paresis. Magnetic resonance imaging showed a well-defined, lobulated tumour in the interpeduncular cistern. The tumour was totally excised through a subtemporal route. Histology of the tumour revealed a cavernous haemangioma. Extracerebral location for a cavernous haemangioma is rare. An interpeduncular cavernous haemangioma has never been reported earlier in literature. The clinical and radiological features are discussed and relevant literature is briefly reviewed.  (+info)

Radiation-induced cavernous hemangiomas of the brain: a late effect predominantly in children. (4/125)

INTRODUCTION: The induction of cavernomas as a consequence of brain irradiation was first suspected in 1994 and has been controversial since that time. METHODS: Between 1986 and 2000, 189 cerebral cavernomas were diagnosed in the Neurosurgical Department of the University of Heidelberg; of those patients, 5 had received prior radiation therapy. The ages of these 5 patients were compared with those of the 184 others with naturally occuring cavernomas. In an examination of 40 patients with cavernomas occurring after radiation (the 5 mentioned above, plus 35 from the literature) the age distribution was investigated, and a possible relationship between radiation dosage and latency interval to diagnosis of cavernoma was examined. RESULTS: Almost one in four of the patients under 15 years of age diagnosed with a cerebral cavernoma in the Neurosurgical Department of the University of Heidelberg had received prior radiation. In 40 patients with cavernomas and prior radiation (5 from Heidelberg, 35 from the literature), there was a clear accumulation in the age group of 10-19 years (50%). Most of those patients had received radiation in the first 10 years of life. The accumulation of cavernomas after radiation in childhood could not be explained by a greater frequency of radiation exposure in children compared to adults. In children up to 10 years of age at the time of radiation therapy, a dose of 3000 cGy and higher was followed by a shorter latency interval to incidence of cavernoma (P = 0.0018). In patients older than 10 years at the time of radiation, postradiation cavernomas only occurred when dosage was 3000 cGy or greater. CONCLUSION: These results indicate a correlation between radiation and cavernoma, particularly in children under 10 years of age at the time of radiation therapy. In adults, cavernomas after radiation rarely occur, and then only after higher radiation dosages (3000 cGy or more).  (+info)

Anterior transpetrosal approach for pontine cavernous angioma--case report. (5/125)

A 58-year-old male patient presented with headache and unsteady gait. Magnetic resonance imaging revealed hemorrhage from a pontine cavernous angioma. The patient experienced stepwise aggravation of symptoms due to repeated hemorrhages. We decided to surgically remove the pontine cavernous angioma through an anterior transpetrosal approach, since the angioma and hematoma were located near the ventrolateral surface of the pons. The brain stem was incised at a site caudal to the trigeminal nerve and the hematoma and angioma were totally removed. No additional neurological deficits were observed following surgery. Brain stem cavernous angiomas are usually removed via a trans-fourth ventricle or lateral suboccipital approach. However, these approaches may not be appropriate if the angioma is located ventrally to the pons. We propose that the anterior transpetrosal approach is the method of choice for ventrally located pontine cavernous angioma.  (+info)

Cognitive dysfunction after isolated brain stem insult. An underdiagnosed cause of long term morbidity. (6/125)

Cognitive dysfunction adversely influences long term outcome after cerebral insult, but the potential for brain stem lesions to produce cognitive as well as physical impairments is not widely recognised. This report describes a series of seven consecutive patients referred to a neurological rehabilitation unit with lesions limited to brain stem structures, all of whom were shown to exhibit deficits in at least one domain of cognition. The practical importance of recognising cognitive dysfunction in this group of patients, and the theoretical significance of the disruption of specific cognitive domains by lesions to distributed neural circuits, are discussed.  (+info)

Krit1/cerebral cavernous malformation 1 mRNA is preferentially expressed in neurons and epithelial cells in embryo and adult. (7/125)

Cavernous malformations are capillaro-venous lesions mostly located within the central nervous system (CCM/OMIM#116860) and occasionally within the skin and/or retina. They occur as a sporadic or hereditary condition. Three CCM loci have been mapped, and the sole gene identified so far, CCM1, has been shown to encode KRIT1, a protein of unknown function. In an attempt to get some insight on the relationship between KRIT1 mutations and CCM lesions, we investigated Krit1 mRNA expression during mouse development from E7.5 to E20.5 and in adult tissues, of both mouse and human origin. A ubiquitous Krit1 mRNA expression was detected from E7.5 up to E9.5. Then, it became progressively restricted from E10.5 to E12.5, to become detectable later essentially in the nervous system and various epithelia. Strong labelling was observed in neurons in the brain, cerebellum, spinal cord, retina and dorsal root ganglia. In epithelia, Krit1 mRNA expression was detected in differentiating epidermal, digestive, respiratory, uterine and urinary epithelia. A similar pattern of expression persisted in mouse and man adult nervous system and epithelia. Unexpectedly, in vascular tissues, expression of Krit1 was detected only in large blood vessels of the embryo.  (+info)

Intracranial extra-axial cavernous (HEM) angiomas: tumors or vascular malformations? (8/125)

INTRODUCTION: Extra-axial cavernous hemangiomas or angiomas [(hem)angiomas] are relatively rare lesions. They usually arise in relation to the dura mater intracranially or at the spinal level. Most of these lesions have been described in the middle cranial fossa at level of the cavernous sinus. Controversy still exists regarding the exact nature of these extra-axial cavernous angiomas: vascular tumor versus vascular malformation similar to intra-axial cavernomas. It has been suggested that they could represent an adult form of the hemangioma of infancy. Extra-axial cavernous (hem)angiomas often mimic meningiomas and their clinical behavior and imaging appearance are quite different than those of intra-axial cavernous angiomas. SUBJECTS AND METHODS: Five patients ranging in age from 24 to 63 years with a histologically proven dural cavernous angioma were retrospectively included. The lesions were located at level of the cavernous sinus (4 cases) and falx. CT and MR scans were performed in all cases and angiography in three patients. Four patients underwent surgery and a biopsy was performed in one case. One lesion was embolized before biopsy. Histology was available in all patients. RESULTS: In the operated patients, the lesion was totally resected in 2 cases and partially in the other 2. No postsurgical complication was noted. Histology revealed a vascular malformation composed of large vascular channels lined by flat endothelium and separated by fibroconnective tissue stroma. The pathological diagnosis was cavernous angioma. CONCLUSION: On the basis of the analysis of the literature and of our cases, intra-cranial extra-cerebral so-called cavernous (hem)angiomas present findings suggesting that they are vascular malformative lesions, analogous to the intra-axial cavernous angioma. A relationship with the hemangiomas of infancy seems unlikely. Correct terms for extra-cerebral cavernous (hem)angiomas are cavernoma, cavernous angioma, or venous vascular malformation of cavernous type . The term hemangioma should be avoided and reserved for the common vascular tumor of infancy.  (+info)

A hemangioma is a benign (noncancerous) vascular tumor or growth that originates from blood vessels. It is characterized by an overgrowth of endothelial cells, which line the interior surface of blood vessels. Hemangiomas can occur in various parts of the body, but they are most commonly found on the skin and mucous membranes.

Hemangiomas can be classified into two main types:

1. Capillary hemangioma (also known as strawberry hemangioma): This type is more common and typically appears during the first few weeks of life. It grows rapidly for several months before gradually involuting (or shrinking) on its own, usually within the first 5 years of life. Capillary hemangiomas can be superficial, appearing as a bright red, raised lesion on the skin, or deep, forming a bluish, compressible mass beneath the skin.

2. Cavernous hemangioma: This type is less common and typically appears during infancy or early childhood. It consists of large, dilated blood vessels and can occur in various organs, including the skin, liver, brain, and gastrointestinal tract. Cavernous hemangiomas on the skin appear as a rubbery, bluish mass that does not typically involute like capillary hemangiomas.

Most hemangiomas do not require treatment, especially if they are small and not causing any significant problems. However, in cases where hemangiomas interfere with vital functions, impair vision or hearing, or become infected, various treatments may be considered, such as medication (e.g., corticosteroids, propranolol), laser therapy, surgical excision, or embolization.

A cavernous hemangioma is a type of benign vascular tumor that is made up of large, dilated blood vessels. It is characterized by the presence of large, "cavernous" spaces or sacs filled with blood. These lesions can occur in various parts of the body, but when they occur in the skin or mucous membranes, they appear as well-circumscribed rubbery masses that are compressible and blanchable (turn pale when pressed).

Cavernous hemangiomas are most commonly found on the face and neck, but they can also occur in other parts of the body such as the liver. They typically grow slowly during infancy or early childhood and then stabilize or even regress spontaneously over time. However, if they are located in critical areas such as the airway or near vital organs, they may require treatment to prevent complications.

Histologically, cavernous hemangiomas are composed of large, irregularly shaped vascular spaces lined by a single layer of endothelial cells and surrounded by fibrous tissue. Treatment options for cavernous hemangiomas include observation, compression therapy, laser therapy, surgical excision, or embolization.

A capillary hemangioma is a benign (non-cancerous) vascular tumor that is made up of an overgrowth of small blood vessels called capillaries. These lesions are quite common and usually appear during the first few weeks or months of life, although they can also develop later in childhood or even in adulthood.

Capillary hemangiomas typically appear as a bright red, raised, and rubbery lesion on the skin. They may be small and localized, or they can grow and spread to cover a larger area of the body. In some cases, capillary hemangiomas may also form on internal organs such as the liver, brain, or gastrointestinal tract.

While capillary hemangiomas are generally harmless, they can cause cosmetic concerns if they appear on the face or other visible areas of the body. In some cases, these lesions may also interfere with vision, hearing, or other bodily functions if they grow too large or are located in sensitive areas.

Most capillary hemangiomas will eventually shrink and disappear on their own over time, typically within the first few years of life. However, in some cases, medical treatment may be necessary to help speed up this process or to address any complications that arise. Treatment options for capillary hemangiomas may include medications such as corticosteroids or beta-blockers, laser therapy, or surgical removal.

The Central Nervous System (CNS) is the part of the nervous system that consists of the brain and spinal cord. It is called the "central" system because it receives information from, and sends information to, the rest of the body through peripheral nerves, which make up the Peripheral Nervous System (PNS).

The CNS is responsible for processing sensory information, controlling motor functions, and regulating various autonomic processes like heart rate, respiration, and digestion. The brain, as the command center of the CNS, interprets sensory stimuli, formulates thoughts, and initiates actions. The spinal cord serves as a conduit for nerve impulses traveling to and from the brain and the rest of the body.

The CNS is protected by several structures, including the skull (which houses the brain) and the vertebral column (which surrounds and protects the spinal cord). Despite these protective measures, the CNS remains vulnerable to injury and disease, which can have severe consequences due to its crucial role in controlling essential bodily functions.

Pulmonary sclerosing hemangioma is a rare, benign lung tumor of uncertain origin. It is also known as sclerosing pneumocytoma. This tumor primarily affects adults, with women being more commonly affected than men. The typical symptoms include cough, chest pain, and sometimes blood-streaked sputum. However, many cases are asymptomatic and discovered incidentally on chest imaging.

On histopathology, pulmonary sclerosing hemangioma is characterized by the presence of two types of cells: surface cells (similar to type II pneumocytes) and round cells (similar to mesenchymal cells). The tumor shows a variety of architectural patterns including solid areas, papillary structures, and hemorrhagic cavities.

The treatment of choice is surgical resection. Despite its benign nature, there have been reports of recurrence after incomplete resection. However, the prognosis after complete resection is excellent.

Central nervous system (CNS) diseases refer to medical conditions that primarily affect the brain and spinal cord. The CNS is responsible for controlling various functions in the body, including movement, sensation, cognition, and behavior. Therefore, diseases of the CNS can have significant impacts on a person's quality of life and overall health.

There are many different types of CNS diseases, including:

1. Infectious diseases: These are caused by viruses, bacteria, fungi, or parasites that infect the brain or spinal cord. Examples include meningitis, encephalitis, and polio.
2. Neurodegenerative diseases: These are characterized by progressive loss of nerve cells in the brain or spinal cord. Examples include Alzheimer's disease, Parkinson's disease, and Huntington's disease.
3. Structural diseases: These involve damage to the physical structure of the brain or spinal cord, such as from trauma, tumors, or stroke.
4. Functional diseases: These affect the function of the nervous system without obvious structural damage, such as multiple sclerosis and epilepsy.
5. Genetic disorders: Some CNS diseases are caused by genetic mutations, such as spinal muscular atrophy and Friedreich's ataxia.

Symptoms of CNS diseases can vary widely depending on the specific condition and the area of the brain or spinal cord that is affected. They may include muscle weakness, paralysis, seizures, loss of sensation, difficulty with coordination and balance, confusion, memory loss, changes in behavior or mood, and pain. Treatment for CNS diseases depends on the specific condition and may involve medications, surgery, rehabilitation therapy, or a combination of these approaches.

Central nervous system (CNS) neoplasms refer to a group of abnormal growths or tumors that develop within the brain or spinal cord. These tumors can be benign or malignant, and their growth can compress or disrupt the normal functioning of surrounding brain or spinal cord tissue.

Benign CNS neoplasms are slow-growing and rarely spread to other parts of the body. However, they can still cause significant problems if they grow large enough to put pressure on vital structures within the brain or spinal cord. Malignant CNS neoplasms, on the other hand, are aggressive tumors that can invade and destroy surrounding tissue. They may also spread to other parts of the CNS or, rarely, to other organs in the body.

CNS neoplasms can arise from various types of cells within the brain or spinal cord, including nerve cells, glial cells (which provide support and insulation for nerve cells), and supportive tissues such as blood vessels. The specific type of CNS neoplasm is often used to help guide treatment decisions and determine prognosis.

Symptoms of CNS neoplasms can vary widely depending on the location and size of the tumor, but may include headaches, seizures, weakness or paralysis, vision or hearing changes, balance problems, memory loss, and changes in behavior or personality. Treatment options for CNS neoplasms may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

A cavernous hemangioma in the central nervous system (CNS) refers to a type of benign vascular tumor that is made up of dilated and thin-walled blood vessels. These tumors are called "cavernous" because they are filled with blood-filled sacs or "caverns."

When these hemangiomas occur in the CNS, which includes the brain and spinal cord, they can cause various neurological symptoms depending on their size and location. Small hemangiomas may not cause any symptoms at all, while larger ones can cause seizures, headaches, weakness, or sensory changes.

Cavernous hemangiomas in the CNS are typically congenital, meaning that they are present at birth. However, they may not become symptomatic until later in life. Treatment options for cavernous hemangiomas in the CNS include observation, surgery, or radiation therapy, depending on the size, location, and symptoms caused by the tumor.

The nervous system is a complex, highly organized network of specialized cells called neurons and glial cells that communicate with each other via electrical and chemical signals to coordinate various functions and activities in the body. It consists of two main parts: the central nervous system (CNS), including the brain and spinal cord, and the peripheral nervous system (PNS), which includes all the nerves and ganglia outside the CNS.

The primary function of the nervous system is to receive, process, and integrate information from both internal and external environments and then respond by generating appropriate motor outputs or behaviors. This involves sensing various stimuli through specialized receptors, transmitting this information through afferent neurons to the CNS for processing, integrating this information with other inputs and memories, making decisions based on this processed information, and finally executing responses through efferent neurons that control effector organs such as muscles and glands.

The nervous system can be further divided into subsystems based on their functions, including the somatic nervous system, which controls voluntary movements and reflexes; the autonomic nervous system, which regulates involuntary physiological processes like heart rate, digestion, and respiration; and the enteric nervous system, which is a specialized subset of the autonomic nervous system that controls gut functions. Overall, the nervous system plays a critical role in maintaining homeostasis, regulating behavior, and enabling cognition and consciousness.

A pyogenic granuloma is not precisely a "granuloma" in the strict medical definition, which refers to a specific type of tissue reaction characterized by chronic inflammation and the formation of granulation tissue. Instead, a pyogenic granuloma is a benign vascular tumor that occurs most frequently on the skin or mucous membranes.

Pyogenic granulomas are typically characterized by their rapid growth, bright red to dark red color, and friable texture. They can bleed easily, especially when traumatized. Histologically, they consist of a mass of small blood vessels, surrounded by loose connective tissue and inflammatory cells.

The term "pyogenic" is somewhat misleading because these lesions are not actually associated with pus or infection, although they can become secondarily infected. The name may have originated from the initial mistaken belief that these lesions were caused by a bacterial infection.

Pyogenic granulomas can occur at any age but are most common in children and young adults. They can be caused by minor trauma, hormonal changes, or underlying medical conditions such as pregnancy or vasculitis. Treatment typically involves surgical excision, although other options such as laser surgery or cauterization may also be used.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Central nervous system (CNS) infections refer to infectious processes that affect the brain, spinal cord, and their surrounding membranes, known as meninges. These infections can be caused by various microorganisms, including bacteria, viruses, fungi, and parasites. Examples of CNS infections are:

1. Meningitis: Inflammation of the meninges, usually caused by bacterial or viral infections. Bacterial meningitis is a medical emergency that requires immediate treatment.
2. Encephalitis: Inflammation of the brain parenchyma, often caused by viral infections. Some viruses associated with encephalitis include herpes simplex virus, enteroviruses, and arboviruses.
3. Meningoencephalitis: A combined inflammation of both the brain and meninges, commonly seen in certain viral infections or when bacterial pathogens directly invade the brain.
4. Brain abscess: A localized collection of pus within the brain caused by a bacterial or fungal infection.
5. Spinal epidural abscess: An infection in the space surrounding the spinal cord, usually caused by bacteria.
6. Myelitis: Inflammation of the spinal cord, which can result from viral, bacterial, or fungal infections.
7. Rarely, parasitic infections like toxoplasmosis and cysticercosis can also affect the CNS.

Symptoms of CNS infections may include fever, headache, stiff neck, altered mental status, seizures, focal neurological deficits, or meningeal signs (e.g., Brudzinski's and Kernig's signs). The specific symptoms depend on the location and extent of the infection, as well as the causative organism. Prompt diagnosis and treatment are crucial to prevent long-term neurological complications or death.

Hemangioendothelioma is a rare type of vascular tumor, which means it arises from the endothelial cells that line the blood vessels. It can occur in various parts of the body, but it most commonly involves the soft tissues and bones. Hemangioendotheliomas are often classified as borderline malignant tumors because they can behave either indolently (like a benign tumor) or aggressively (like a malignant tumor), depending on their specific type and location.

There are several subtypes of hemangioendothelioma, including:

1. Epithelioid hemangioendothelioma: This subtype typically affects young adults and can involve various organs, such as the liver, lungs, or soft tissues. It tends to have a more indolent course but can metastasize in some cases.
2. Kaposiform hemangioendothelioma: This is an aggressive subtype that usually occurs in infants and children. It often involves the skin and soft tissues, causing local invasion and consumptive coagulopathy (Kasabach-Merritt phenomenon).
3. Retiform hemangioendothelioma: A rare and low-grade malignant tumor that typically affects the skin and subcutaneous tissue of adults. It has a favorable prognosis with a low risk of metastasis.
4. Papillary intralymphatic angioendothelioma (PILA): This is a rare, slow-growing tumor that usually occurs in the head and neck region of children and young adults. It has an excellent prognosis with no reported cases of metastasis or recurrence after complete surgical resection.

Treatment for hemangioendotheliomas typically involves surgical excision when possible. Other treatment options, such as radiation therapy, chemotherapy, or targeted therapies, may be considered depending on the tumor's location, size, and behavior. Regular follow-up is essential to monitor for potential recurrence or metastasis.

The Peripheral Nervous System (PNS) is that part of the nervous system which lies outside of the brain and spinal cord. It includes all the nerves and ganglia ( clusters of neurons) outside of the central nervous system (CNS). The PNS is divided into two components: the somatic nervous system and the autonomic nervous system.

The somatic nervous system is responsible for transmitting sensory information from the skin, muscles, and joints to the CNS, and for controlling voluntary movements of the skeletal muscles.

The autonomic nervous system, on the other hand, controls involuntary actions, such as heart rate, digestion, respiratory rate, salivation, perspiration, pupillary dilation, and sexual arousal. It is further divided into the sympathetic and parasympathetic systems, which generally have opposing effects and maintain homeostasis in the body.

Damage to the peripheral nervous system can result in various medical conditions such as neuropathies, neuritis, plexopathies, and radiculopathies, leading to symptoms like numbness, tingling, pain, weakness, or loss of reflexes in the affected area.

Vascular neoplasms are a type of tumor that develops from cells that line the blood vessels or lymphatic vessels. These tumors can be benign (non-cancerous) or malignant (cancerous). Benign vascular neoplasms, such as hemangiomas and lymphangiomas, are usually harmless and may not require treatment unless they cause symptoms or complications. Malignant vascular neoplasms, on the other hand, are known as angiosarcomas and can be aggressive, spreading to other parts of the body and potentially causing serious health problems.

Angiosarcomas can develop in any part of the body but are most commonly found in the skin, particularly in areas exposed to radiation or chronic lymph edema. They can also occur in the breast, liver, spleen, and heart. Treatment for vascular neoplasms depends on the type, location, size, and stage of the tumor, as well as the patient's overall health. Treatment options may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Central nervous system (CNS) viral diseases refer to medical conditions caused by the infection and replication of viruses within the brain or spinal cord. These viruses can cause a range of symptoms, depending on the specific virus and the location of the infection within the CNS. Some common examples of CNS viral diseases include:

1. Meningitis: This is an inflammation of the membranes surrounding the brain and spinal cord (meninges) caused by viruses such as enteroviruses, herpes simplex virus, or HIV. Symptoms may include fever, headache, stiff neck, and altered mental status.
2. Encephalitis: This is an inflammation of the brain parenchyma caused by viruses such as herpes simplex virus, West Nile virus, or rabies virus. Symptoms may include fever, headache, confusion, seizures, and focal neurologic deficits.
3. Poliomyelitis: This is a highly infectious disease caused by the poliovirus that can lead to paralysis of the muscles used for breathing, swallowing, and movement. It primarily affects children under 5 years old.
4. HIV-associated neurological disorders (HAND): HIV can cause various neurologic symptoms such as cognitive impairment, peripheral neuropathy, and myopathy.
5. Progressive multifocal leukoencephalopathy (PML): This is a rare but serious demyelinating disease of the CNS caused by the JC virus that primarily affects individuals with weakened immune systems, such as those with HIV/AIDS or those receiving immunosuppressive therapy.

Treatment for CNS viral diseases depends on the specific virus and may include antiviral medications, supportive care, and management of symptoms. Prevention measures such as vaccination, avoiding contact with infected individuals, and practicing good hygiene can help reduce the risk of these infections.

Skull neoplasms refer to abnormal growths or tumors that develop within the skull. These growths can be benign (non-cancerous) or malignant (cancerous). They can originate from various types of cells, such as bone cells, nerve cells, or soft tissues. Skull neoplasms can cause various symptoms depending on their size and location, including headaches, seizures, vision problems, hearing loss, and neurological deficits. Treatment options include surgery, radiation therapy, and chemotherapy. It is important to note that a neoplasm in the skull can also refer to metastatic cancer, which has spread from another part of the body to the skull.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Vasculitis, Central Nervous System (CNS), refers to a group of disorders characterized by inflammation of blood vessels within the brain and/or spinal cord. This inflammation can cause damage to the blood vessel walls, leading to narrowing, blocking or weakening of the vessels, and in some cases, formation of aneurysms or rupture of the vessels.

The causes of CNS vasculitis are varied and can include infections, autoimmune diseases, medications, and unknown factors. The symptoms of CNS vasculitis depend on the severity and location of the inflammation, and may include headache, seizures, stroke-like symptoms (such as weakness or numbness in the face, arms, or legs), cognitive changes, and in severe cases, coma.

Diagnosis of CNS vasculitis typically involves a combination of clinical evaluation, imaging studies (such as MRI or angiography), and laboratory tests (including blood tests and analysis of cerebrospinal fluid). Treatment may involve corticosteroids, immunosuppressive medications, and/or other therapies aimed at reducing inflammation and preventing further damage to the blood vessels.

Facial neoplasms refer to abnormal growths or tumors that develop in the tissues of the face. These growths can be benign (non-cancerous) or malignant (cancerous). Facial neoplasms can occur in any of the facial structures, including the skin, muscles, bones, nerves, and glands.

Benign facial neoplasms are typically slow-growing and do not spread to other parts of the body. Examples include papillomas, hemangiomas, and neurofibromas. While these tumors are usually harmless, they can cause cosmetic concerns or interfere with normal facial function.

Malignant facial neoplasms, on the other hand, can be aggressive and invasive. They can spread to other parts of the face, as well as to distant sites in the body. Common types of malignant facial neoplasms include basal cell carcinoma, squamous cell carcinoma, and melanoma.

Treatment for facial neoplasms depends on several factors, including the type, size, location, and stage of the tumor. Treatment options may include surgery, radiation therapy, chemotherapy, or a combination of these approaches. It is important to seek medical attention promptly if you notice any unusual growths or changes in the skin or tissues of your face.

Spinal neoplasms refer to abnormal growths or tumors found within the spinal column, which can be benign (non-cancerous) or malignant (cancerous). These tumors can originate in the spine itself, called primary spinal neoplasms, or they can spread to the spine from other parts of the body, known as secondary or metastatic spinal neoplasms. Spinal neoplasms can cause various symptoms, such as back pain, neurological deficits, and even paralysis, depending on their location and size. Early diagnosis and treatment are crucial to prevent or minimize long-term complications and improve the patient's prognosis.

Central nervous system (CNS) agents are drugs or substances that act on the central nervous system, which includes the brain and spinal cord. These agents can affect the CNS in various ways, depending on their specific mechanism of action. They may be used for therapeutic purposes, such as to treat medical conditions like pain, anxiety, seizures, or sleep disorders, or they may be abused for their psychoactive effects.

CNS agents can be broadly classified into several categories based on their primary site of action and the nature of their effects. Some common categories of CNS agents include:

1. Depressants: These drugs slow down the activity of the CNS, leading to sedative, hypnotic, or anxiolytic effects. Examples include benzodiazepines, barbiturates, and sleep aids like zolpidem.
2. Stimulants: These drugs increase the activity of the CNS, leading to alertness, energy, and improved concentration. Examples include amphetamines, methylphenidate, and caffeine.
3. Analgesics: These drugs are used to treat pain and can act on various parts of the nervous system, including the peripheral nerves, spinal cord, and brain. Examples include opioids (such as morphine and oxycodone), non-opioid analgesics (such as acetaminophen and ibuprofen), and adjuvant analgesics (such as antidepressants and anticonvulsants).
4. Antiepileptics: These drugs are used to treat seizure disorders and work by modulating the electrical activity of neurons in the brain. Examples include phenytoin, carbamazepine, valproic acid, and lamotrigine.
5. Antipsychotics: These drugs are used to treat psychosis, schizophrenia, and other mental health disorders by blocking dopamine receptors in the brain. Examples include haloperidol, risperidone, and clozapine.
6. Antidepressants: These drugs are used to treat depression and anxiety disorders by modulating neurotransmitter activity in the brain. Examples include selective serotonin reuptake inhibitors (SSRIs) like fluoxetine and sertraline, tricyclic antidepressants like amitriptyline, and monoamine oxidase inhibitors (MAOIs) like phenelzine.
7. Anxiolytics: These drugs are used to treat anxiety disorders and work by modulating the activity of the neurotransmitter gamma-aminobutyric acid (GABA) in the brain. Examples include benzodiazepines like diazepam and alprazolam, and non-benzodiazepine anxiolytics like buspirone.
8. Stimulants: These drugs are used to treat attention deficit hyperactivity disorder (ADHD) and narcolepsy by increasing the activity of dopamine and norepinephrine in the brain. Examples include methylphenidate, amphetamine salts, and modafinil.
9. Sedative-hypnotics: These drugs are used to treat insomnia and other sleep disorders by depressing the activity of the central nervous system. Examples include benzodiazepines like triazolam and zolpidem, and non-benzodiazepine sedative-hypnotics like eszopiclone and ramelteon.
10. Antipsychotics: These drugs are used to treat psychotic disorders like schizophrenia, bipolar disorder, and major depressive disorder by blocking the activity of dopamine in the brain. Examples include typical antipsychotics like haloperidol and chlorpromazine, and atypical antipsychotics like risperidone and aripiprazole.
11. Antidepressants: These drugs are used to treat depression and anxiety disorders by increasing the activity of serotonin, norepinephrine, or dopamine in the brain. Examples include selective serotonin reuptake inhibitors (SSRIs) like fluoxetine and sertraline, tricyclic antidepressants like amitriptyline, and monoamine oxidase inhibitors (MAOIs) like phenelzine.
12. Anticonvulsants: These drugs are used to treat seizure disorders like epilepsy, as well as chronic pain and bipolar disorder. They work by stabilizing the electrical activity of the brain. Examples include valproic acid, lamotrigine, and carbamazepine.
13. Anxiolytics: These drugs are used to treat anxiety disorders by reducing anxiety and promoting relaxation. Examples include benzodiazepines like diazepam and alprazolam, and non-benzodiazepine anxiolytics like buspirone.
14. Hypnotics: These drugs are used to treat insomnia and other sleep disorders by promoting sleep. Examples include benzodiazepines like triazolam and temazepam, and non-benzodiazepine hypnotics like zolpidem and eszopiclone.
15. Stimulants: These drugs are used to treat attention deficit hyperactivity disorder (ADHD) and narcolepsy by increasing alertness and focus. Examples include amphetamine salts, methylphenidate, and modafinil.
16. Antihistamines: These drugs are used to treat allergies and allergic reactions by blocking the activity of histamine, a chemical that is released during an allergic response. Examples include diphenhydramine, loratadine, and cetirizine.
17. Antipsychotics: These drugs are used to treat psychosis, schizophrenia, bipolar disorder, and other mental health conditions by reducing the symptoms of these conditions. Examples include risperidone, olanzapine, and quetiapine.
18. Antidepressants: These drugs are used to treat depression, anxiety disorders, and some chronic pain conditions by increasing the levels of certain neurotransmitters in the brain. Examples include selective serotonin reuptake inhibitors (SSRIs) like fluoxetine and sertraline, and tricyclic antidepressants like amitriptyline and imipramine.
19. Anticonvulsants: These drugs are used to treat seizure disorders and some chronic pain conditions by stabilizing the electrical activity of the brain. Examples include valproic acid, lamotrigine, and carbamazepine.
20. Muscle relaxants: These drugs are used to treat muscle spasms and pain by reducing muscle tension. Examples include cyclobenzaprine, methocarbamol, and baclofen.

The spinal cord is a major part of the nervous system, extending from the brainstem and continuing down to the lower back. It is a slender, tubular bundle of nerve fibers (axons) and support cells (glial cells) that carries signals between the brain and the rest of the body. The spinal cord primarily serves as a conduit for motor information, which travels from the brain to the muscles, and sensory information, which travels from the body to the brain. It also contains neurons that can independently process and respond to information within the spinal cord without direct input from the brain.

The spinal cord is protected by the bony vertebral column (spine) and is divided into 31 segments: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral, and 1 coccygeal. Each segment corresponds to a specific region of the body and gives rise to pairs of spinal nerves that exit through the intervertebral foramina at each level.

The spinal cord is responsible for several vital functions, including:

1. Reflexes: Simple reflex actions, such as the withdrawal reflex when touching a hot surface, are mediated by the spinal cord without involving the brain.
2. Muscle control: The spinal cord carries motor signals from the brain to the muscles, enabling voluntary movement and muscle tone regulation.
3. Sensory perception: The spinal cord transmits sensory information, such as touch, temperature, pain, and vibration, from the body to the brain for processing and awareness.
4. Autonomic functions: The sympathetic and parasympathetic divisions of the autonomic nervous system originate in the thoracolumbar and sacral regions of the spinal cord, respectively, controlling involuntary physiological responses like heart rate, blood pressure, digestion, and respiration.

Damage to the spinal cord can result in various degrees of paralysis or loss of sensation below the level of injury, depending on the severity and location of the damage.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Hemangiosarcoma is a type of cancer that arises from the cells that line the blood vessels (endothelial cells). It most commonly affects middle-aged to older dogs, but it can also occur in cats and other animals, as well as rarely in humans.

This cancer can develop in various parts of the body, including the skin, heart, spleen, liver, and lungs. Hemangiosarcomas of the skin tend to be more benign and have a better prognosis than those that arise internally.

Hemangiosarcomas are highly invasive and often metastasize (spread) to other organs, making them difficult to treat. The exact cause of hemangiosarcoma is not known, but exposure to certain chemicals, radiation, and viruses may increase the risk of developing this cancer. Treatment options typically include surgery, chemotherapy, and/or radiation therapy, depending on the location and stage of the tumor.

Central nervous system (CNS) fungal infections refer to invasive fungal diseases that affect the brain and/or spinal cord. These types of infections are relatively uncommon but can be serious and potentially life-threatening, especially in individuals with weakened immune systems due to conditions such as HIV/AIDS, cancer, or organ transplantation.

There are several types of fungi that can cause CNS infections, including:

1. Candida species: These are yeast-like fungi that can cause a range of infections, from superficial to systemic. When they invade the CNS, they can cause meningitis or brain abscesses.
2. Aspergillus species: These are mold-like fungi that can cause invasive aspergillosis, which can affect various organs, including the brain.
3. Cryptococcus neoformans: This is a yeast-like fungus that primarily affects people with weakened immune systems. It can cause meningitis or brain abscesses.
4. Coccidioides species: These are mold-like fungi that can cause coccidioidomycosis, also known as Valley Fever. While most infections are limited to the lungs, some people may develop disseminated disease, which can affect the CNS.
5. Histoplasma capsulatum: This is a mold-like fungus that causes histoplasmosis, which primarily affects the lungs but can disseminate and involve the CNS.

Symptoms of CNS fungal infections may include headache, fever, altered mental status, seizures, stiff neck, and focal neurologic deficits. Diagnosis typically involves a combination of clinical evaluation, imaging studies (such as MRI or CT), and laboratory tests (such as cerebrospinal fluid analysis or fungal cultures). Treatment usually involves long-term antifungal therapy, often with a combination of drugs, and may also include surgical intervention in some cases.

A neoplasm of vascular tissue is an abnormal growth or mass of cells in the blood vessels or lymphatic vessels. These growths can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms, such as hemangiomas and lymphangiomas, are typically not harmful and may not require treatment. However, they can cause symptoms if they grow large enough to press on nearby organs or tissues. Malignant neoplasms, such as angiosarcomas, are cancerous and can invade and destroy surrounding tissue, as well as spread (metastasize) to other parts of the body. Treatment for vascular tissue neoplasms depends on the type, size, location, and stage of the growth, and may include surgery, radiation therapy, chemotherapy, or a combination of these.

The enteric nervous system (ENS) is a part of the autonomic nervous system that directly controls the gastrointestinal tract, including the stomach, small intestine, colon, and rectum. It is sometimes referred to as the "second brain" because it can operate independently of the central nervous system (CNS).

The ENS contains around 500 million neurons that are organized into two main plexuses: the myenteric plexus, which lies between the longitudinal and circular muscle layers of the gut, and the submucosal plexus, which is located in the submucosa. These plexuses contain various types of neurons that are responsible for regulating gastrointestinal motility, secretion, and blood flow.

The ENS can communicate with the CNS through afferent nerve fibers that transmit information about the state of the gut to the brain, and efferent nerve fibers that carry signals from the brain back to the ENS. However, the ENS is also capable of functioning independently of the CNS, allowing it to regulate gastrointestinal functions in response to local stimuli such as food intake, inflammation, or infection.

Spontaneous neoplasm regression is a rare and somewhat controversial phenomenon in which a tumor or malignancy appears to decrease in size or disappear without any treatment or with treatment that is typically not expected to produce such an effect. This can occur through various mechanisms, including immune-mediated processes, apoptosis (programmed cell death), differentiation of cancer cells into normal cells, and angiogenesis inhibition (preventing the growth of new blood vessels that feed the tumor).

Spontaneous regression of neoplasms is not well understood and is considered unpredictable. It has been reported in various types of cancers, including neuroblastoma, melanoma, renal cell carcinoma, and others. However, it should be noted that spontaneous regression does not imply a cure, as the tumor may still recur or metastasize later on.

In summary, spontaneous neoplasm regression refers to the partial or complete disappearance of a malignancy without any specific treatment or with treatment that is not typically associated with such an effect.

'Nervous system physiological phenomena' refer to the functions, activities, and processes that occur within the nervous system in a healthy or normal state. This includes:

1. Neuronal Activity: The transmission of electrical signals (action potentials) along neurons, which allows for communication between different cells and parts of the nervous system.

2. Neurotransmission: The release and binding of neurotransmitters to receptors on neighboring cells, enabling the transfer of information across the synapse or junction between two neurons.

3. Sensory Processing: The conversion of external stimuli into electrical signals by sensory receptors, followed by the transmission and interpretation of these signals within the central nervous system (brain and spinal cord).

4. Motor Function: The generation and execution of motor commands, allowing for voluntary movement and control of muscles and glands.

5. Autonomic Function: The regulation of internal organs and glands through the sympathetic and parasympathetic divisions of the autonomic nervous system, maintaining homeostasis within the body.

6. Cognitive Processes: Higher brain functions such as perception, attention, memory, language, learning, and emotion, which are supported by complex neural networks and interactions.

7. Sleep-Wake Cycle: The regulation of sleep and wakefulness through interactions between the brainstem, thalamus, hypothalamus, and basal forebrain, ensuring proper rest and recovery.

8. Development and Plasticity: The growth, maturation, and adaptation of the nervous system throughout life, including processes such as neuronal migration, synaptogenesis, and neural plasticity.

9. Endocrine Regulation: The interaction between the nervous system and endocrine system, with the hypothalamus playing a key role in controlling hormone release and maintaining homeostasis.

10. Immune Function: The communication between the nervous system and immune system, allowing for the coordination of responses to infection, injury, or stress.

The Autonomic Nervous System (ANS) is a part of the peripheral nervous system that operates largely below the level of consciousness and controls visceral functions. It is divided into two main subdivisions: the sympathetic and parasympathetic nervous systems, which generally have opposing effects and maintain homeostasis in the body.

The Sympathetic Nervous System (SNS) prepares the body for stressful or emergency situations, often referred to as the "fight or flight" response. It increases heart rate, blood pressure, respiratory rate, and metabolic rate, while also decreasing digestive activity. This response helps the body respond quickly to perceived threats.

The Parasympathetic Nervous System (PNS), on the other hand, promotes the "rest and digest" state, allowing the body to conserve energy and restore itself after the stress response has subsided. It decreases heart rate, blood pressure, and respiratory rate, while increasing digestive activity and promoting relaxation.

These two systems work together to maintain balance in the body by adjusting various functions based on internal and external demands. Disorders of the Autonomic Nervous System can lead to a variety of symptoms, such as orthostatic hypotension, gastroparesis, and cardiac arrhythmias, among others.

Nervous system diseases, also known as neurological disorders, refer to a group of conditions that affect the nervous system, which includes the brain, spinal cord, nerves, and muscles. These diseases can affect various functions of the body, such as movement, sensation, cognition, and behavior. They can be caused by genetics, infections, injuries, degeneration, or tumors. Examples of nervous system diseases include Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, migraine, stroke, and neuroinfections like meningitis and encephalitis. The symptoms and severity of these disorders can vary widely, ranging from mild to severe and debilitating.

Neuroglia, also known as glial cells or simply glia, are non-neuronal cells that provide support and protection for neurons in the nervous system. They maintain homeostasis, form myelin sheaths around nerve fibers, and provide structural support. They also play a role in the immune response of the central nervous system. Some types of neuroglia include astrocytes, oligodendrocytes, microglia, and ependymal cells.

Central nervous system (CNS) bacterial infections refer to the invasion and infection of the brain or spinal cord by bacteria. This can lead to serious consequences as the CNS is highly sensitive to inflammation and infection. Examples of CNS bacterial infections include:

1. Meningitis: an infection of the meninges, the protective membranes covering the brain and spinal cord. It is often caused by bacteria such as Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae.

2. Encephalitis: an inflammation of the brain parenchyma, which can be caused by bacterial infections such as Listeria monocytogenes, Mycoplasma pneumoniae, or Bartonella henselae.

3. Brain abscess: a localized collection of pus within the brain tissue, usually resulting from direct spread of bacteria from a nearby infection, or from bacteremia (bacteria in the bloodstream). Common causes include Staphylococcus aureus, Streptococcus species, and anaerobic bacteria.

4. Spinal epidural abscess: an accumulation of pus in the epidural space surrounding the spinal cord, which can lead to compression of the spinal cord and result in serious neurological deficits. Common causative organisms include Staphylococcus aureus and other streptococci.

5. Subdural empyema: an infection in the potential space between the dura mater and the arachnoid membrane, usually caused by direct spread of bacteria from a nearby focus of infection or from bacteremia. Streptococcus species and anaerobic bacteria are common causes.

Treatment for CNS bacterial infections typically involves antibiotics, supportive care, and sometimes surgical intervention to drain abscesses or remove infected tissue. The prognosis depends on the specific infection, the patient's overall health, and how quickly treatment is initiated.

Epidural neoplasms refer to abnormal growths or tumors that develop in the epidural space, which is the area between the dura mater (the outermost protective covering of the spinal cord) and the vertebral column. These tumors can be either primary, originating directly from the cells in the epidural space, or secondary, resulting from the spread (metastasis) of cancerous cells from other parts of the body.

Epidural neoplasms can cause various symptoms due to the compression of the spinal cord and nerve roots. These symptoms may include localized back pain, radiating pain, sensory changes, motor weakness, and autonomic dysfunction. The diagnosis typically involves imaging studies such as MRI or CT scans, followed by a biopsy for histopathological examination to confirm the type and grade of the tumor. Treatment options depend on several factors, including the patient's overall health, the location and size of the tumor, and the type and extent of neurological deficits. Treatment may involve surgical resection, radiation therapy, chemotherapy, or a combination of these approaches.

Liver neoplasms refer to abnormal growths in the liver that can be benign or malignant. Benign liver neoplasms are non-cancerous tumors that do not spread to other parts of the body, while malignant liver neoplasms are cancerous tumors that can invade and destroy surrounding tissue and spread to other organs.

Liver neoplasms can be primary, meaning they originate in the liver, or secondary, meaning they have metastasized (spread) to the liver from another part of the body. Primary liver neoplasms can be further classified into different types based on their cell of origin and behavior, including hepatocellular carcinoma, cholangiocarcinoma, and hepatic hemangioma.

The diagnosis of liver neoplasms typically involves a combination of imaging studies, such as ultrasound, CT scan, or MRI, and biopsy to confirm the type and stage of the tumor. Treatment options depend on the type and extent of the neoplasm and may include surgery, radiation therapy, chemotherapy, or liver transplantation.

The sympathetic nervous system (SNS) is a part of the autonomic nervous system that operates largely below the level of consciousness, and it functions to produce appropriate physiological responses to perceived danger. It's often associated with the "fight or flight" response. The SNS uses nerve impulses to stimulate target organs, causing them to speed up (e.g., increased heart rate), prepare for action, or otherwise respond to stressful situations.

The sympathetic nervous system is activated due to stressful emotional or physical situations and it prepares the body for immediate actions. It dilates the pupils, increases heart rate and blood pressure, accelerates breathing, and slows down digestion. The primary neurotransmitter involved in this system is norepinephrine (also known as noradrenaline).

The myelin sheath is a multilayered, fatty substance that surrounds and insulates many nerve fibers in the nervous system. It is essential for the rapid transmission of electrical signals, or nerve impulses, along these nerve fibers, allowing for efficient communication between different parts of the body. The myelin sheath is produced by specialized cells called oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). Damage to the myelin sheath, as seen in conditions like multiple sclerosis, can significantly impair nerve function and result in various neurological symptoms.

The Blood-Brain Barrier (BBB) is a highly specialized, selective interface between the central nervous system (CNS) and the circulating blood. It is formed by unique endothelial cells that line the brain's capillaries, along with tight junctions, astrocytic foot processes, and pericytes, which together restrict the passage of substances from the bloodstream into the CNS. This barrier serves to protect the brain from harmful agents and maintain a stable environment for proper neural function. However, it also poses a challenge in delivering therapeutics to the CNS, as most large and hydrophilic molecules cannot cross the BBB.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Angiolymphoid hyperplasia with eosinophilia (ALHE) is a rare benign vascular lesion that typically presents as one or multiple papules or nodules, often on the head and neck region. The exact cause of ALHE is unknown, but it has been associated with chronic inflammation and immune dysfunction.

Histologically, ALHE is characterized by the proliferation of blood vessels and lymphoid tissue, with a prominent infiltration of eosinophils. The lesions may also contain other inflammatory cells such as plasma cells, histiocytes, and T-lymphocytes.

Clinically, ALHE presents as red to brownish papules or nodules that can be tender or pruritic (itchy). Lesions typically occur on the head and neck region, particularly around the ears, eyes, and nose. In some cases, lesions may also appear on the trunk, arms, or legs.

While ALHE is a benign condition, it can cause significant cosmetic concerns due to its location. Treatment options include surgical excision, laser therapy, and intralesional corticosteroid injections. Recurrence after treatment is not uncommon. It is important to note that while ALHE may resemble other more serious conditions such as cutaneous lymphoma or angiosarcoma, it has a much more favorable prognosis.

Astrocytes are a type of star-shaped glial cell found in the central nervous system (CNS), including the brain and spinal cord. They play crucial roles in supporting and maintaining the health and function of neurons, which are the primary cells responsible for transmitting information in the CNS.

Some of the essential functions of astrocytes include:

1. Supporting neuronal structure and function: Astrocytes provide structural support to neurons by ensheathing them and maintaining the integrity of the blood-brain barrier, which helps regulate the entry and exit of substances into the CNS.
2. Regulating neurotransmitter levels: Astrocytes help control the levels of neurotransmitters in the synaptic cleft (the space between two neurons) by taking up excess neurotransmitters and breaking them down, thus preventing excessive or prolonged activation of neuronal receptors.
3. Providing nutrients to neurons: Astrocytes help supply energy metabolites, such as lactate, to neurons, which are essential for their survival and function.
4. Modulating synaptic activity: Through the release of various signaling molecules, astrocytes can modulate synaptic strength and plasticity, contributing to learning and memory processes.
5. Participating in immune responses: Astrocytes can respond to CNS injuries or infections by releasing pro-inflammatory cytokines and chemokines, which help recruit immune cells to the site of injury or infection.
6. Promoting neuronal survival and repair: In response to injury or disease, astrocytes can become reactive and undergo morphological changes that aid in forming a glial scar, which helps contain damage and promote tissue repair. Additionally, they release growth factors and other molecules that support the survival and regeneration of injured neurons.

Dysfunction or damage to astrocytes has been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS).

Brain neoplasms, also known as brain tumors, are abnormal growths of cells within the brain. These growths can be benign (non-cancerous) or malignant (cancerous). Benign brain tumors typically grow slowly and do not spread to other parts of the body. However, they can still cause serious problems if they press on sensitive areas of the brain. Malignant brain tumors, on the other hand, are cancerous and can grow quickly, invading surrounding brain tissue and spreading to other parts of the brain or spinal cord.

Brain neoplasms can arise from various types of cells within the brain, including glial cells (which provide support and insulation for nerve cells), neurons (nerve cells that transmit signals in the brain), and meninges (the membranes that cover the brain and spinal cord). They can also result from the spread of cancer cells from other parts of the body, known as metastatic brain tumors.

Symptoms of brain neoplasms may vary depending on their size, location, and growth rate. Common symptoms include headaches, seizures, weakness or paralysis in the limbs, difficulty with balance and coordination, changes in speech or vision, confusion, memory loss, and changes in behavior or personality.

Treatment for brain neoplasms depends on several factors, including the type, size, location, and grade of the tumor, as well as the patient's age and overall health. Treatment options may include surgery, radiation therapy, chemotherapy, targeted therapy, or a combination of these approaches. Regular follow-up care is essential to monitor for recurrence and manage any long-term effects of treatment.

Central Nervous System (CNS) Tuberculosis is a specific form of tuberculosis (TB) that refers to the infection and inflammation caused by Mycobacterium tuberculosis in the brain or spinal cord. The two most common forms of CNS tuberculosis are tuberculous meningitis and tuberculomas.

1. Tuberculous Meningitis (TBM): This is the most frequent form of CNS TB, characterized by the inflammation of the membranes surrounding the brain and spinal cord (meninges). The infection can lead to the formation of caseous lesions (granulomas), which may obstruct cerebrospinal fluid (CSF) flow and result in increased intracranial pressure. Symptoms often include headache, fever, altered mental status, neck stiffness, vomiting, and focal neurological deficits.
2. Tuberculomas: These are localized granulomatous lesions formed by the immune response to M. tuberculosis in the brain parenchyma. They can cause various neurological symptoms depending on their size and location, such as seizures, focal deficits, or increased intracranial pressure.

CNS TB is a severe manifestation of tuberculosis that requires prompt diagnosis and treatment to prevent long-term neurological damage or even death. Diagnosis typically involves imaging studies (CT or MRI scans) and analysis of cerebrospinal fluid obtained through lumbar puncture. Treatment usually consists of a prolonged course of multiple antituberculous drugs, along with corticosteroids to manage inflammation and prevent complications.

Nervous system neoplasms are abnormal growths or tumors that occur within the nervous system, which includes the brain, spinal cord, and peripheral nerves. These tumors can be benign (non-cancerous) or malignant (cancerous), and their growth can compress or infiltrate surrounding tissues, leading to various neurological symptoms. The causes of nervous system neoplasms are not fully understood but may involve genetic factors, exposure to certain chemicals or radiation, and certain viral infections. Treatment options depend on the type, location, and size of the tumor and can include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Nerve tissue proteins are specialized proteins found in the nervous system that provide structural and functional support to nerve cells, also known as neurons. These proteins include:

1. Neurofilaments: These are type IV intermediate filaments that provide structural support to neurons and help maintain their shape and size. They are composed of three subunits - NFL (light), NFM (medium), and NFH (heavy).

2. Neuronal Cytoskeletal Proteins: These include tubulins, actins, and spectrins that provide structural support to the neuronal cytoskeleton and help maintain its integrity.

3. Neurotransmitter Receptors: These are specialized proteins located on the postsynaptic membrane of neurons that bind neurotransmitters released by presynaptic neurons, triggering a response in the target cell.

4. Ion Channels: These are transmembrane proteins that regulate the flow of ions across the neuronal membrane and play a crucial role in generating and transmitting electrical signals in neurons.

5. Signaling Proteins: These include enzymes, receptors, and adaptor proteins that mediate intracellular signaling pathways involved in neuronal development, differentiation, survival, and death.

6. Adhesion Proteins: These are cell surface proteins that mediate cell-cell and cell-matrix interactions, playing a crucial role in the formation and maintenance of neural circuits.

7. Extracellular Matrix Proteins: These include proteoglycans, laminins, and collagens that provide structural support to nerve tissue and regulate neuronal migration, differentiation, and survival.

Demyelinating diseases are a group of disorders that are characterized by damage to the myelin sheath, which is the protective covering surrounding nerve fibers in the brain, optic nerves, and spinal cord. Myelin is essential for the rapid transmission of nerve impulses, and its damage results in disrupted communication between the brain and other parts of the body.

The most common demyelinating disease is multiple sclerosis (MS), where the immune system mistakenly attacks the myelin sheath. Other demyelinating diseases include:

1. Acute Disseminated Encephalomyelitis (ADEM): An autoimmune disorder that typically follows a viral infection or vaccination, causing widespread inflammation and demyelination in the brain and spinal cord.
2. Neuromyelitis Optica (NMO) or Devic's Disease: A rare autoimmune disorder that primarily affects the optic nerves and spinal cord, leading to severe vision loss and motor disability.
3. Transverse Myelitis: Inflammation of the spinal cord causing damage to both sides of one level (segment) of the spinal cord, resulting in various neurological symptoms such as muscle weakness, numbness, or pain, depending on which part of the spinal cord is affected.
4. Guillain-Barré Syndrome: An autoimmune disorder that causes rapid-onset muscle weakness, often beginning in the legs and spreading to the upper body, including the face and breathing muscles. It occurs when the immune system attacks the peripheral nerves' myelin sheath.
5. Central Pontine Myelinolysis (CPM): A rare neurological disorder caused by rapid shifts in sodium levels in the blood, leading to damage to the myelin sheath in a specific area of the brainstem called the pons.

These diseases can result in various symptoms, such as muscle weakness, numbness, vision loss, difficulty with balance and coordination, and cognitive impairment, depending on the location and extent of the demyelination. Treatment typically focuses on managing symptoms, modifying the immune system's response, and promoting nerve regeneration and remyelination when possible.

Autoimmune encephalomyelitis (EAE) is a model of inflammatory demyelinating disease used in medical research to study the mechanisms of multiple sclerosis (MS) and develop new therapies. It is experimentally induced in laboratory animals, typically mice or rats, through immunization with myelin antigens or T-cell transfer. The resulting immune response leads to inflammation, demyelination, and neurological dysfunction in the central nervous system (CNS), mimicking certain aspects of MS.

EAE is a valuable tool for understanding the pathogenesis of MS and testing potential treatments. However, it is essential to recognize that EAE is an experimental model and may not fully recapitulate all features of human autoimmune encephalomyelitis.

An axon is a long, slender extension of a neuron (a type of nerve cell) that conducts electrical impulses (nerve impulses) away from the cell body to target cells, such as other neurons or muscle cells. Axons can vary in length from a few micrometers to over a meter long and are typically surrounded by a myelin sheath, which helps to insulate and protect the axon and allows for faster transmission of nerve impulses.

Axons play a critical role in the functioning of the nervous system, as they provide the means by which neurons communicate with one another and with other cells in the body. Damage to axons can result in serious neurological problems, such as those seen in spinal cord injuries or neurodegenerative diseases like multiple sclerosis.

Oligodendroglia are a type of neuroglial cell found in the central nervous system (CNS) of vertebrates, including humans. These cells play a crucial role in providing support and insulation to nerve fibers (axons) in the CNS, which includes the brain and spinal cord.

More specifically, oligodendroglia produce a fatty substance called myelin that wraps around axons, forming myelin sheaths. This myelination process helps to increase the speed of electrical impulse transmission (nerve impulses) along the axons, allowing for efficient communication between different neurons.

In addition to their role in myelination, oligodendroglia also contribute to the overall health and maintenance of the CNS by providing essential nutrients and supporting factors to neurons. Dysfunction or damage to oligodendroglia has been implicated in various neurological disorders, such as multiple sclerosis (MS), where demyelination of axons leads to impaired nerve function and neurodegeneration.

Brain diseases, also known as neurological disorders, refer to a wide range of conditions that affect the brain and nervous system. These diseases can be caused by various factors such as genetics, infections, injuries, degeneration, or structural abnormalities. They can affect different parts of the brain, leading to a variety of symptoms and complications.

Some examples of brain diseases include:

1. Alzheimer's disease - a progressive degenerative disorder that affects memory and cognitive function.
2. Parkinson's disease - a movement disorder characterized by tremors, stiffness, and difficulty with coordination and balance.
3. Multiple sclerosis - a chronic autoimmune disease that affects the nervous system and can cause a range of symptoms such as vision loss, muscle weakness, and cognitive impairment.
4. Epilepsy - a neurological disorder characterized by recurrent seizures.
5. Brain tumors - abnormal growths in the brain that can be benign or malignant.
6. Stroke - a sudden interruption of blood flow to the brain, which can cause paralysis, speech difficulties, and other neurological symptoms.
7. Meningitis - an infection of the membranes surrounding the brain and spinal cord.
8. Encephalitis - an inflammation of the brain that can be caused by viruses, bacteria, or autoimmune disorders.
9. Huntington's disease - a genetic disorder that affects muscle coordination, cognitive function, and mental health.
10. Migraine - a neurological condition characterized by severe headaches, often accompanied by nausea, vomiting, and sensitivity to light and sound.

Brain diseases can range from mild to severe and may be treatable or incurable. They can affect people of all ages and backgrounds, and early diagnosis and treatment are essential for improving outcomes and quality of life.

Orbital neoplasms refer to abnormal growths or tumors that develop in the orbit, which is the bony cavity that contains the eyeball, muscles, nerves, fat, and blood vessels. These neoplasms can be benign (non-cancerous) or malignant (cancerous), and they can arise from various types of cells within the orbit.

Orbital neoplasms can cause a variety of symptoms depending on their size, location, and rate of growth. Common symptoms include protrusion or displacement of the eyeball, double vision, limited eye movement, pain, swelling, and numbness in the face. In some cases, orbital neoplasms may not cause any noticeable symptoms, especially if they are small and slow-growing.

There are many different types of orbital neoplasms, including:

1. Optic nerve glioma: a rare tumor that arises from the optic nerve's supportive tissue.
2. Orbital meningioma: a tumor that originates from the membranes covering the brain and extends into the orbit.
3. Lacrimal gland tumors: benign or malignant growths that develop in the lacrimal gland, which produces tears.
4. Orbital lymphangioma: a non-cancerous tumor that arises from the lymphatic vessels in the orbit.
5. Rhabdomyosarcoma: a malignant tumor that develops from the skeletal muscle cells in the orbit.
6. Metastatic tumors: cancerous growths that spread to the orbit from other parts of the body, such as the breast, lung, or prostate.

The diagnosis and treatment of orbital neoplasms depend on several factors, including the type, size, location, and extent of the tumor. Imaging tests, such as CT scans and MRI, are often used to visualize the tumor and determine its extent. A biopsy may also be performed to confirm the diagnosis and determine the tumor's type and grade. Treatment options include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Neoplastic pregnancy complications refer to the abnormal growth of cells (neoplasia) that can occur during pregnancy. These growths can be benign or malignant and can arise from any type of tissue in the body. However, when they occur in pregnant women, they can pose unique challenges due to the potential effects on the developing fetus and the changes in the mother's body.

Some common neoplastic pregnancy complications include:

1. Gestational trophoblastic disease (GTD): This is a group of rare tumors that occur in the uterus during pregnancy. GTD can range from benign conditions like hydatidiform mole to malignant forms like choriocarcinoma.
2. Breast cancer: Pregnancy-associated breast cancer (PABC) is a type of breast cancer that occurs during pregnancy or within one year after delivery. It can be aggressive and challenging to diagnose due to the changes in the breast tissue during pregnancy.
3. Cervical cancer: Cervical cancer can occur during pregnancy, and its management depends on the stage of the disease and the gestational age. In some cases, treatment may need to be delayed until after delivery.
4. Lung cancer: Pregnancy does not increase the risk of lung cancer, but it can make diagnosis and treatment more challenging.
5. Melanoma: Melanoma is the most common malignant skin cancer during pregnancy. It can spread quickly and requires prompt treatment.

The management of neoplastic pregnancy complications depends on several factors, including the type and stage of the tumor, gestational age, and the patient's wishes. In some cases, surgery, chemotherapy, or radiation therapy may be necessary. However, these treatments can have potential risks to the developing fetus, so a multidisciplinary team of healthcare providers is often involved in the care of pregnant women with neoplastic complications.

Sturge-Weber syndrome is a rare neurocutaneous disorder characterized by the combination of a facial port-wine birthmark and neurological abnormalities. The facial birthmark, which is typically located on one side of the face, occurs due to the malformation of small blood vessels (capillaries) in the skin and eye.

Neurological features often include seizures that begin in infancy, muscle weakness or paralysis on one side of the body (hemiparesis), developmental delay, and intellectual disability. These neurological symptoms are caused by abnormal blood vessel formation in the brain (leptomeningeal angiomatosis) leading to increased pressure, reduced blood flow, and potential damage to the brain tissue.

Sturge-Weber syndrome can also affect the eyes, with glaucoma being a common occurrence due to increased pressure within the eye. Early diagnosis and appropriate management of this condition are crucial for improving the quality of life and reducing potential complications.

Cerebrospinal fluid (CSF) is a clear, colorless fluid that surrounds and protects the brain and spinal cord. It acts as a shock absorber for the central nervous system and provides nutrients to the brain while removing waste products. CSF is produced by specialized cells called ependymal cells in the choroid plexus of the ventricles (fluid-filled spaces) inside the brain. From there, it circulates through the ventricular system and around the outside of the brain and spinal cord before being absorbed back into the bloodstream. CSF analysis is an important diagnostic tool for various neurological conditions, including infections, inflammation, and cancer.

Muscle neoplasms are abnormal growths or tumors that develop in the muscle tissue. They can be benign (non-cancerous) or malignant (cancerous). Benign muscle neoplasms are typically slow-growing and do not spread to other parts of the body, while malignant muscle neoplasms, also known as soft tissue sarcomas, can grow quickly, invade nearby tissues, and metastasize (spread) to distant parts of the body.

Soft tissue sarcomas can arise from any of the muscles in the body, including the skeletal muscles (voluntary muscles that attach to bones and help with movement), smooth muscles (involuntary muscles found in the walls of blood vessels, digestive tract, and other organs), or cardiac muscle (the specialized muscle found in the heart).

There are many different types of soft tissue sarcomas, each with its own set of characteristics and prognosis. Treatment for muscle neoplasms typically involves a combination of surgery, radiation therapy, and chemotherapy, depending on the type, size, location, and stage of the tumor.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

In situ hybridization (ISH) is a molecular biology technique used to detect and localize specific nucleic acid sequences, such as DNA or RNA, within cells or tissues. This technique involves the use of a labeled probe that is complementary to the target nucleic acid sequence. The probe can be labeled with various types of markers, including radioisotopes, fluorescent dyes, or enzymes.

During the ISH procedure, the labeled probe is hybridized to the target nucleic acid sequence in situ, meaning that the hybridization occurs within the intact cells or tissues. After washing away unbound probe, the location of the labeled probe can be visualized using various methods depending on the type of label used.

In situ hybridization has a wide range of applications in both research and diagnostic settings, including the detection of gene expression patterns, identification of viral infections, and diagnosis of genetic disorders.

Multiple Sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS), which includes the brain, spinal cord, and optic nerves. In MS, the immune system mistakenly attacks the protective covering of nerve fibers, called myelin, leading to damage and scarring (sclerosis). This results in disrupted communication between the brain and the rest of the body, causing a variety of neurological symptoms that can vary widely from person to person.

The term "multiple" refers to the numerous areas of scarring that occur throughout the CNS in this condition. The progression, severity, and specific symptoms of MS are unpredictable and may include vision problems, muscle weakness, numbness or tingling, difficulty with balance and coordination, cognitive impairment, and mood changes. There is currently no cure for MS, but various treatments can help manage symptoms, modify the course of the disease, and improve quality of life for those affected.

Spinal cord neoplasms refer to abnormal growths or tumors within the spinal cord. These can be benign (non-cancerous) or malignant (cancerous). They originate from the cells within the spinal cord itself (primary tumors), or they may spread to the spinal cord from other parts of the body (metastatic tumors). Spinal cord neoplasms can cause various symptoms depending on their location and size, including back pain, neurological deficits, and even paralysis. Treatment options include surgery, radiation therapy, and chemotherapy.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Encephalomyelitis is a medical term that refers to inflammation of both the brain (encephalitis) and spinal cord (myelitis). This condition can be caused by various infectious agents, such as viruses, bacteria, fungi, or parasites, or it can be due to an autoimmune response where the body's own immune system attacks the nervous tissue.

The symptoms of encephalomyelitis can vary widely depending on the extent and location of the inflammation, but they may include fever, headache, stiff neck, seizures, muscle weakness, sensory changes, and difficulty with coordination or walking. In severe cases, encephalomyelitis can lead to permanent neurological damage or even death.

Treatment for encephalomyelitis typically involves addressing the underlying cause, such as administering antiviral medications for viral infections or immunosuppressive drugs for autoimmune reactions. Supportive care, such as pain management, physical therapy, and rehabilitation, may also be necessary to help manage symptoms and promote recovery.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Angiomatosis is a medical term that refers to a benign condition characterized by the proliferation of blood vessels in various tissues and organs. It is typically composed of small, tangled blood vessels called capillaries, which can form clusters or networks. The condition can affect skin, internal organs, bones, and other tissues.

Angiomatosis is often asymptomatic and may be discovered incidentally during medical imaging or surgical procedures. In some cases, it may cause symptoms such as pain, swelling, or bleeding, depending on the location and extent of the lesions.

While angiomatosis is generally a benign condition, in rare cases, it can be associated with malignant tumors or other medical conditions. Treatment options for angiomatosis depend on the size, location, and symptoms of the lesions and may include observation, medication, or surgical removal.

Splenic neoplasms refer to abnormal growths or tumors in the spleen, which can be benign (non-cancerous) or malignant (cancerous). These growths can arise from various cell types present within the spleen, including hematopoietic cells (red and white blood cells, platelets), stromal cells (supporting tissue), or lymphoid cells (part of the immune system).

There are several types of splenic neoplasms:

1. Hematologic malignancies: These are cancers that affect the blood and bone marrow, such as leukemias, lymphomas, and multiple myeloma. They often involve the spleen, causing enlargement (splenomegaly) and neoplastic infiltration of splenic tissue.
2. Primary splenic tumors: These are rare and include benign lesions like hemangiomas, lymphangiomas, and hamartomas, as well as malignant tumors such as angiosarcoma, littoral cell angiosarcoma, and primary splenic lymphoma.
3. Metastatic splenic tumors: These occur when cancer cells from other primary sites spread (metastasize) to the spleen. Common sources of metastasis include lung, breast, colon, and ovarian cancers, as well as melanomas and sarcomas.

Symptoms of splenic neoplasms may vary depending on the type and extent of the disease but often include abdominal pain or discomfort, fatigue, weight loss, and anemia. Diagnosis typically involves imaging studies (such as ultrasound, CT, or MRI scans) and sometimes requires a biopsy for confirmation. Treatment options depend on the type of neoplasm and may include surgery, chemotherapy, radiation therapy, targeted therapy, or immunotherapy.

Neurocutaneous syndromes are a group of rare, genetic disorders that primarily affect the nervous system and skin. These conditions are present at birth or develop in early childhood. They are characterized by the growth of benign tumors along nerve pathways (neurocutaneous) and various abnormalities of the skin, eyes, brain, spine, and other organs.

Some common examples of neurocutaneous syndromes include:

1. Neurofibromatosis type 1 (NF1): A condition characterized by multiple café-au-lait spots on the skin, freckling in the axillary and inguinal regions, and neurofibromas (benign tumors of the nerves).
2. Neurofibromatosis type 2 (NF2): A condition that primarily affects the auditory nerves and is characterized by bilateral acoustic neuromas (vestibular schwannomas), which can cause hearing loss, tinnitus, and balance problems.
3. Tuberous sclerosis complex (TSC): A condition characterized by benign tumors in various organs, including the brain, skin, heart, kidneys, and lungs. The skin manifestations include hypomelanotic macules, facial angiofibromas, and shagreen patches.
4. Sturge-Weber syndrome (SWS): A condition characterized by a port-wine birthmark on the face, which involves the trigeminal nerve distribution, and abnormal blood vessels in the brain, leading to seizures, developmental delays, and visual impairment.
5. Von Hippel-Lindau disease (VHL): A condition characterized by the growth of benign tumors in various organs, including the brain, spinal cord, kidneys, pancreas, and adrenal glands. The tumors can become malignant over time.
6. Ataxia-telangiectasia (A-T): A condition characterized by progressive ataxia (loss of coordination), oculocutaneous telangiectasias (dilated blood vessels in the skin and eyes), immune deficiency, and increased risk of cancer.

Early diagnosis and management of neurocutaneous disorders are essential to prevent complications and improve outcomes. Regular follow-up with a multidisciplinary team, including neurologists, dermatologists, ophthalmologists, geneticists, and other specialists, is necessary to monitor disease progression and provide appropriate interventions.

The frontal bone is the bone that forms the forehead and the upper part of the eye sockets (orbits) in the skull. It is a single, flat bone that has a prominent ridge in the middle called the superior sagittal sinus, which contains venous blood. The frontal bone articulates with several other bones, including the parietal bones at the sides and back, the nasal bones in the center of the face, and the zygomatic (cheek) bones at the lower sides of the orbits.

Microglia are a type of specialized immune cell found in the brain and spinal cord. They are part of the glial family, which provide support and protection to the neurons in the central nervous system (CNS). Microglia account for about 10-15% of all cells found in the CNS.

The primary role of microglia is to constantly survey their environment and eliminate any potentially harmful agents, such as pathogens, dead cells, or protein aggregates. They do this through a process called phagocytosis, where they engulf and digest foreign particles or cellular debris. In addition to their phagocytic function, microglia also release various cytokines, chemokines, and growth factors that help regulate the immune response in the CNS, promote neuronal survival, and contribute to synaptic plasticity.

Microglia can exist in different activation states depending on the nature of the stimuli they encounter. In a resting state, microglia have a small cell body with numerous branches that are constantly monitoring their surroundings. When activated by an injury, infection, or neurodegenerative process, microglia change their morphology and phenotype, retracting their processes and adopting an amoeboid shape to migrate towards the site of damage or inflammation. Based on the type of activation, microglia can release both pro-inflammatory and anti-inflammatory factors that contribute to either neuroprotection or neurotoxicity.

Dysregulation of microglial function has been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Amyotrophic Lateral Sclerosis (ALS). Therefore, understanding the role of microglia in health and disease is crucial for developing novel therapeutic strategies to treat these conditions.

Encephalitis is defined as inflammation of the brain parenchyma, which is often caused by viral infections but can also be due to bacterial, fungal, or parasitic infections, autoimmune disorders, or exposure to toxins. The infection or inflammation can cause various symptoms such as headache, fever, confusion, seizures, and altered consciousness, ranging from mild symptoms to severe cases that can lead to brain damage, long-term disabilities, or even death.

The diagnosis of encephalitis typically involves a combination of clinical evaluation, imaging studies (such as MRI or CT scans), and laboratory tests (such as cerebrospinal fluid analysis). Treatment may include antiviral medications, corticosteroids, immunoglobulins, and supportive care to manage symptoms and prevent complications.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Viral encephalitis is a medical condition characterized by inflammation of the brain caused by a viral infection. The infection can be caused by various types of viruses, such as herpes simplex virus, enteroviruses, arboviruses (transmitted through insect bites), or HIV.

The symptoms of viral encephalitis may include fever, headache, stiff neck, confusion, seizures, and altered level of consciousness. In severe cases, it can lead to brain damage, coma, or even death. The diagnosis is usually made based on clinical presentation, laboratory tests, and imaging studies such as MRI or CT scan. Treatment typically involves antiviral medications, supportive care, and management of complications.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Avian leukosis is a group of viral diseases that primarily affect chickens and other birds. It is caused by retroviruses known as avian leukosis viruses (ALVs) and leads to a variety of clinical signs, including immunosuppression, growth retardation, and the development of tumors in various organs. The disease can be transmitted both horizontally (through direct contact with infected birds or their secretions) and vertically (from infected hens to their offspring through the egg).

There are several subgroups of ALVs, each associated with specific types of tumors and clinical manifestations. For example:

1. ALV-J (Japanese strain): This subgroup is responsible for myelocytomatosis, a condition characterized by the proliferation of immature blood cells in the bone marrow, leading to anemia, leukopenia, and enlarged spleens and livers.
2. ALV-A, ALV-B, and ALV-C (American strains): These subgroups are associated with various types of lymphoid tumors, such as B-cell and T-cell lymphomas, which can affect the bursa of Fabricius, thymus, spleen, and other organs.
3. ALV-E (European strain): This subgroup is linked to erythroblastosis, a condition in which there is an excessive proliferation of red blood cell precursors, resulting in the formation of tumors in the bone marrow and other organs.

Avian leukosis poses significant economic challenges for the poultry industry due to its impact on growth, feed conversion efficiency, and mortality rates. Additionally, some countries have regulations in place to prevent the spread of avian leukosis viruses through the trade of infected birds or their products. Prevention measures include strict biosecurity protocols, vaccination programs, and rigorous screening and eradication strategies for infected flocks.

Meningoencephalitis is a medical term that refers to an inflammation of both the brain (encephalitis) and the membranes covering the brain and spinal cord (meninges), known as the meninges. It is often caused by an infection, such as bacterial or viral infections, that spreads to the meninges and brain. In some cases, it can also be caused by other factors like autoimmune disorders or certain medications.

The symptoms of meningoencephalitis may include fever, headache, stiff neck, confusion, seizures, and changes in mental status. If left untreated, this condition can lead to serious complications, such as brain damage, hearing loss, learning disabilities, or even death. Treatment typically involves antibiotics for bacterial infections or antiviral medications for viral infections, along with supportive care to manage symptoms and prevent complications.

The thoracic vertebrae are the 12 vertebrae in the thoracic region of the spine, which is the portion between the cervical and lumbar regions. These vertebrae are numbered T1 to T12, with T1 being closest to the skull and T12 connecting to the lumbar region.

The main function of the thoracic vertebrae is to provide stability and support for the chest region, including protection for the vital organs within, such as the heart and lungs. Each thoracic vertebra has costal facets on its sides, which articulate with the heads of the ribs, forming the costovertebral joints. This connection between the spine and the ribcage allows for a range of movements while maintaining stability.

The thoracic vertebrae have a unique structure compared to other regions of the spine. They are characterized by having long, narrow bodies, small bony processes, and prominent spinous processes that point downwards. This particular shape and orientation of the thoracic vertebrae contribute to their role in limiting excessive spinal movement and providing overall trunk stability.

Choroid neoplasms are abnormal growths that develop in the choroid, a layer of blood vessels that lies between the retina and the sclera (the white of the eye). These growths can be benign or malignant (cancerous). Benign choroid neoplasms include choroidal hemangiomas and choroidal osteomas. Malignant choroid neoplasms are typically choroidal melanomas, which are the most common primary eye tumors in adults. Other types of malignant choroid neoplasms include metastatic tumors that have spread to the eye from other parts of the body. Symptoms of choroid neoplasms can vary depending on the size and location of the growth, but may include blurred vision, floaters, or a dark spot in the visual field. Treatment options depend on the type, size, and location of the tumor, as well as the patient's overall health and personal preferences.

Epithelioid Hemangioendothelioma is a rare type of vascular tumor that can develop in various parts of the body, such as the liver, lungs, bones, and soft tissues. It is characterized by the abnormal growth of endothelial cells, which line the interior surface of blood vessels.

Epithelioid Hemangioendothelioma is classified as a borderline malignant tumor, meaning it has the potential to behave in a benign or malignant manner. The tumor typically grows slowly and may remain localized for an extended period, but it can also metastasize (spread) to other parts of the body.

The epithelioid variant of Hemangioendothelioma is named for its distinctive appearance under a microscope. The tumor cells are large and have an epithelial-like morphology, which means they resemble the cells that make up the outer layer of the skin and other organs.

Clinical presentation and management of Epithelioid Hemangioendothelioma depend on the location and extent of the tumor. Treatment options may include surgery, radiation therapy, chemotherapy, or a combination of these approaches. Regular follow-up is essential to monitor for any signs of recurrence or progression.

A laminectomy is a surgical procedure that involves the removal of the lamina, which is the back part of the vertebra that covers the spinal canal. This procedure is often performed to relieve pressure on the spinal cord or nerves caused by conditions such as herniated discs, spinal stenosis, or tumors. By removing the lamina, the surgeon can access the affected area and alleviate the compression on the spinal cord or nerves, thereby reducing pain, numbness, or weakness in the back, legs, or arms.

Laminectomy may be performed as a standalone procedure or in combination with other surgical techniques such as discectomy, foraminotomy, or spinal fusion. The specific approach and extent of the surgery will depend on the patient's individual condition and symptoms.

Eye pain is defined as discomfort or unpleasant sensations in the eye. It can be sharp, throbbing, stabbing, burning, or aching. The pain may occur in one or both eyes and can range from mild to severe. Eye pain can result from various causes, including infection, inflammation, injury, or irritation of the structures of the eye, such as the cornea, conjunctiva, sclera, or uvea. Other possible causes include migraines, optic neuritis, and glaucoma. It is essential to seek medical attention if experiencing sudden, severe, or persistent eye pain, as it can be a sign of a serious underlying condition that requires prompt treatment.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Brain chemistry refers to the chemical processes that occur within the brain, particularly those involving neurotransmitters, neuromodulators, and neuropeptides. These chemicals are responsible for transmitting signals between neurons (nerve cells) in the brain, allowing for various cognitive, emotional, and physical functions.

Neurotransmitters are chemical messengers that transmit signals across the synapse (the tiny gap between two neurons). Examples of neurotransmitters include dopamine, serotonin, norepinephrine, GABA (gamma-aminobutyric acid), and glutamate. Each neurotransmitter has a specific role in brain function, such as regulating mood, motivation, attention, memory, and movement.

Neuromodulators are chemicals that modify the effects of neurotransmitters on neurons. They can enhance or inhibit the transmission of signals between neurons, thereby modulating brain activity. Examples of neuromodulators include acetylcholine, histamine, and substance P.

Neuropeptides are small protein-like molecules that act as neurotransmitters or neuromodulators. They play a role in various physiological functions, such as pain perception, stress response, and reward processing. Examples of neuropeptides include endorphins, enkephalins, and oxytocin.

Abnormalities in brain chemistry can lead to various neurological and psychiatric conditions, such as depression, anxiety disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. Understanding brain chemistry is crucial for developing effective treatments for these conditions.

Heart neoplasms are abnormal growths or tumors that develop within the heart tissue. They can be benign (noncancerous) or malignant (cancerous). Benign tumors, such as myxomas and rhabdomyomas, are typically slower growing and less likely to spread, but they can still cause serious complications if they obstruct blood flow or damage heart valves. Malignant tumors, such as angiosarcomas and rhabdomyosarcomas, are fast-growing and have a higher risk of spreading to other parts of the body. Symptoms of heart neoplasms can include shortness of breath, chest pain, fatigue, and irregular heart rhythms. Treatment options depend on the type, size, and location of the tumor, and may include surgery, radiation therapy, or chemotherapy.

Nervous system trauma, also known as neurotrauma, refers to damage or injury to the nervous system, including the brain and spinal cord. This type of trauma can result from various causes, such as vehicular accidents, sports injuries, falls, violence, or penetrating traumas. Nervous system trauma can lead to temporary or permanent impairments in sensory, motor, or cognitive functions, depending on the severity and location of the injury.

Traumatic brain injury (TBI) is a common form of nervous system trauma that occurs when an external force causes brain dysfunction. TBIs can be classified as mild, moderate, or severe, based on factors such as loss of consciousness, memory loss, and neurological deficits. Mild TBIs, also known as concussions, may not cause long-term damage but still require medical attention to ensure proper healing and prevent further complications.

Spinal cord injuries (SCI) are another form of nervous system trauma that can have severe consequences. SCI occurs when the spinal cord is damaged due to a sudden, traumatic blow or cut, causing loss of motor function, sensation, or autonomic function below the level of injury. The severity and location of the injury determine the extent of impairment, which can range from partial to complete paralysis.

Immediate medical intervention is crucial in cases of nervous system trauma to minimize secondary damage, prevent complications, and optimize recovery outcomes. Treatment options may include surgery, medication, rehabilitation, or a combination of these approaches.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Melena is a medical term that refers to the passage of black, tarry stools. It's not a specific disease but rather a symptom caused by the presence of digested blood in the gastrointestinal tract. The dark color results from the breakdown of hemoglobin, the protein in red blood cells, by gut bacteria and stomach acids.

Melena stools are often associated with upper gastrointestinal bleeding, which can occur due to various reasons such as gastric ulcers, esophageal varices (dilated veins in the esophagus), Mallory-Weiss tears (tears in the lining of the esophagus or stomach), or tumors.

It is essential to differentiate melena from hematochezia, which refers to the passage of bright red blood in the stool, typically indicating lower gastrointestinal bleeding. A healthcare professional should evaluate any concerns related to changes in bowel movements, including the presence of melena or hematochezia.

Myelin proteins are proteins that are found in the myelin sheath, which is a fatty (lipid-rich) substance that surrounds and insulates nerve fibers (axons) in the nervous system. The myelin sheath enables the rapid transmission of electrical signals (nerve impulses) along the axons, allowing for efficient communication between different parts of the nervous system.

There are several types of myelin proteins, including:

1. Proteolipid protein (PLP): This is the most abundant protein in the myelin sheath and plays a crucial role in maintaining the structure and function of the myelin sheath.
2. Myelin basic protein (MBP): This protein is also found in the myelin sheath and helps to stabilize the compact structure of the myelin sheath.
3. Myelin-associated glycoprotein (MAG): This protein is involved in the adhesion of the myelin sheath to the axon and helps to maintain the integrity of the myelin sheath.
4. 2'3'-cyclic nucleotide 3' phosphodiesterase (CNP): This protein is found in oligodendrocytes, which are the cells that produce the myelin sheath in the central nervous system. CNP plays a role in maintaining the structure and function of the oligodendrocytes.

Damage to myelin proteins can lead to demyelination, which is a characteristic feature of several neurological disorders, including multiple sclerosis (MS), Guillain-Barré syndrome, and Charcot-Marie-Tooth disease.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Benign fibrous histiocytoma (BFH) is a common benign tumor of the skin and superficial soft tissues. It primarily affects middle-aged adults and is more prevalent in men than women. The exact cause of BFH is unknown, but it's thought to arise from dermal fibroblasts or histiocytes.

Medical Definition: Benign Fibrous Histiocytoma (BFH) is a benign, slowly growing, solitary cutaneous or subcutaneous nodular tumor predominantly composed of a mixture of fibroblastic and histiocytic-like cells. The tumor typically presents as a well-circumscribed, firm, dome-shaped papule or nodule, ranging in size from a few millimeters to several centimeters. Histologically, BFH is characterized by the proliferation of spindle-shaped fibroblasts and histiocytes arranged in a storiform pattern, along with variable amounts of collagen deposition, multinucleated giant cells, and hemosiderin deposits. The lesion usually has a pushing border with no invasion into the surrounding tissues. BFH generally follows a benign clinical course, with local recurrence being uncommon following complete surgical excision.

Skin neoplasms refer to abnormal growths or tumors in the skin that can be benign (non-cancerous) or malignant (cancerous). They result from uncontrolled multiplication of skin cells, which can form various types of lesions. These growths may appear as lumps, bumps, sores, patches, or discolored areas on the skin.

Benign skin neoplasms include conditions such as moles, warts, and seborrheic keratoses, while malignant skin neoplasms are primarily classified into melanoma, squamous cell carcinoma, and basal cell carcinoma. These three types of cancerous skin growths are collectively known as non-melanoma skin cancers (NMSCs). Melanoma is the most aggressive and dangerous form of skin cancer, while NMSCs tend to be less invasive but more common.

It's essential to monitor any changes in existing skin lesions or the appearance of new growths and consult a healthcare professional for proper evaluation and treatment if needed.

Peripheral nerves are nerve fibers that transmit signals between the central nervous system (CNS, consisting of the brain and spinal cord) and the rest of the body. These nerves convey motor, sensory, and autonomic information, enabling us to move, feel, and respond to changes in our environment. They form a complex network that extends from the CNS to muscles, glands, skin, and internal organs, allowing for coordinated responses and functions throughout the body. Damage or injury to peripheral nerves can result in various neurological symptoms, such as numbness, weakness, or pain, depending on the type and severity of the damage.

A newborn infant is a baby who is within the first 28 days of life. This period is also referred to as the neonatal period. Newborns require specialized care and attention due to their immature bodily systems and increased vulnerability to various health issues. They are closely monitored for signs of well-being, growth, and development during this critical time.

Cerebral cavernous malformation (CCM) is a cavernous hemangioma that arises in the central nervous system. It can be considered ... Clinical symptoms of central nervous system origin include recurrent headaches, focal neurological deficits, hemorrhagic stroke ... Many cavernous hemangiomas are detected "accidentally" during MRIs searching for other pathologies. These "incidentalomas" are ... Since CCMs are low flow lesions (they are hooked into the venous side of the circulatory system), they will be angiographically ...
Hemangioma, Cavernous, Central Nervous System * Humans * Male * Middle Aged * Neurosurgical Procedures / methods* ... Surgical strategies in treating brainstem cavernous malformations Neurosurgery. 2011 Mar;68(3):609-20; discussion 620-1. doi: ... Background: Optimal therapy of brainstem cavernous malformations (BSCMs) remains controversial because their biological ...
... low-flow vascular malformations of the central nervous system. They are acquired lesions, with approximately 80% of patients ... Hemangioma, Cavernous, Central Nervous System / diagnostic imaging * Hemangioma, Cavernous, Central Nervous System / pathology ... Cavernous malformations (CMs) are angiographically occult, low-flow vascular malformations of the central nervous system. They ... Hemangioma, Cavernous, Central Nervous System / complications * ... Hemangioma, Cavernous, Central Nervous System / therapy * ...
Central nervous system cavernous hemangioma, see Cerebral cavernous malformation. *Central neurofibromatosis, see ... Childhood ataxia with central nervous system hypomyelination, see Leukoencephalopathy with vanishing white matter ... Congenital central hypoventilation, see Congenital central hypoventilation syndrome. *Congenital central hypoventilation ... Chondrodysplasia with hemangioma, see Maffucci syndrome. *Chondrodysplasia with multiple dislocations, see CHST3-related ...
McCormick published an influential classification system in his 1966 paper, ... cavernous hemangiomas, or cavernomas and can occur anywhere in the central nervous system. Occurrence is usually sporadic, but ... Expression of angiogenic factors and structural proteins in central nervous system vascular malformations. Neurosurgery. 1996 ... Vascular Malformations of the Central Nervous System. Lippincott Williams and Wilkins; 1999. 229-230. ...
Hemangioma, Cavernous, Central Nervous System 1 0 HIV Infections 1 0 Intracranial Hemorrhages 1 0 ...
Central Nervous System Cavernous Hemangioma Medicine & Life Sciences 100% * Conservative Treatment Medicine & Life Sciences 56% ... Outcome after surgical or conservative management of cerebral cavernous malformations. In: Neurology. 2014 ; Vol. 83, No. 7. pp ... Outcome after surgical or conservative management of cerebral cavernous malformations. Neurology. 2014 Jul 3;83(7):582-589. doi ... Outcome after surgical or conservative management of cerebral cavernous malformations. Fiona Moultrie, Margaret A Horne, Colin ...
cavernous hemangioma. *central nervous system lymphoma. *concussion. *craniopharyngioma. *gliomas. *hemifacial spasm. * ... Primary Central Nervous System Lymphoma , Concussion , Neurofibromatosis , Pituitary Tumors , Skull Base Tumors ... "Ive devoted much of my research and career to answering difficult questions about nervous system tumors." ...
Hemangioma, Cavernous C14.907.934.385 C14.907.454.385. Hemangioma, Cavernous, Central Nervous System. C14.907.934.385.500 ... Central Nervous System Venous Angioma C14.240.850.875.124. Central Venous Pressure G9.330.553.400.114.732.336 G9.330.553.660. ... Lupus Vasculitis, Central Nervous System. C10.114.875.350 C10.114.875.850. C10.228.140.300.850.250 C10.228.140.300.850.750. ... Central Nervous System Vascular Malformations. C14.240.275 C14.240.850.875. C16.131.240.275 C16.131.240.850.875. ...
Hemangioma, Cavernous C14.907.934.385 C14.907.454.385. Hemangioma, Cavernous, Central Nervous System. C14.907.934.385.500 ... Central Nervous System Venous Angioma C14.240.850.875.124. Central Venous Pressure G9.330.553.400.114.732.336 G9.330.553.660. ... Lupus Vasculitis, Central Nervous System. C10.114.875.350 C10.114.875.850. C10.228.140.300.850.250 C10.228.140.300.850.750. ... Central Nervous System Vascular Malformations. C14.240.275 C14.240.850.875. C16.131.240.275 C16.131.240.850.875. ...
Hemangioma, Cavernous C14.907.934.385 C14.907.454.385. Hemangioma, Cavernous, Central Nervous System. C14.907.934.385.500 ... Central Nervous System Venous Angioma C14.240.850.875.124. Central Venous Pressure G9.330.553.400.114.732.336 G9.330.553.660. ... Lupus Vasculitis, Central Nervous System. C10.114.875.350 C10.114.875.850. C10.228.140.300.850.250 C10.228.140.300.850.750. ... Central Nervous System Vascular Malformations. C14.240.275 C14.240.850.875. C16.131.240.275 C16.131.240.850.875. ...
Hemangioma, Cavernous C14.907.934.385 C14.907.454.385. Hemangioma, Cavernous, Central Nervous System. C14.907.934.385.500 ... Central Nervous System Venous Angioma C14.240.850.875.124. Central Venous Pressure G9.330.553.400.114.732.336 G9.330.553.660. ... Lupus Vasculitis, Central Nervous System. C10.114.875.350 C10.114.875.850. C10.228.140.300.850.250 C10.228.140.300.850.750. ... Central Nervous System Vascular Malformations. C14.240.275 C14.240.850.875. C16.131.240.275 C16.131.240.850.875. ...
Hemangioma, Cavernous C14.907.934.385 C14.907.454.385. Hemangioma, Cavernous, Central Nervous System. C14.907.934.385.500 ... Central Nervous System Venous Angioma C14.240.850.875.124. Central Venous Pressure G9.330.553.400.114.732.336 G9.330.553.660. ... Lupus Vasculitis, Central Nervous System. C10.114.875.350 C10.114.875.850. C10.228.140.300.850.250 C10.228.140.300.850.750. ... Central Nervous System Vascular Malformations. C14.240.275 C14.240.850.875. C16.131.240.275 C16.131.240.850.875. ...
Hemangioma, Cavernous C14.907.934.385 C14.907.454.385. Hemangioma, Cavernous, Central Nervous System. C14.907.934.385.500 ... Central Nervous System Venous Angioma C14.240.850.875.124. Central Venous Pressure G9.330.553.400.114.732.336 G9.330.553.660. ... Lupus Vasculitis, Central Nervous System. C10.114.875.350 C10.114.875.850. C10.228.140.300.850.250 C10.228.140.300.850.750. ... Central Nervous System Vascular Malformations. C14.240.275 C14.240.850.875. C16.131.240.275 C16.131.240.850.875. ...
Hemangioma, Cavernous C14.907.934.385 C14.907.454.385. Hemangioma, Cavernous, Central Nervous System. C14.907.934.385.500 ... Central Nervous System Venous Angioma C14.240.850.875.124. Central Venous Pressure G9.330.553.400.114.732.336 G9.330.553.660. ... Lupus Vasculitis, Central Nervous System. C10.114.875.350 C10.114.875.850. C10.228.140.300.850.250 C10.228.140.300.850.750. ... Central Nervous System Vascular Malformations. C14.240.275 C14.240.850.875. C16.131.240.275 C16.131.240.850.875. ...
Hemangioma, Cavernous C14.907.934.385 C14.907.454.385. Hemangioma, Cavernous, Central Nervous System. C14.907.934.385.500 ... Central Nervous System Venous Angioma C14.240.850.875.124. Central Venous Pressure G9.330.553.400.114.732.336 G9.330.553.660. ... Lupus Vasculitis, Central Nervous System. C10.114.875.350 C10.114.875.850. C10.228.140.300.850.250 C10.228.140.300.850.750. ... Central Nervous System Vascular Malformations. C14.240.275 C14.240.850.875. C16.131.240.275 C16.131.240.850.875. ...
Hemangioma, Cavernous C14.907.934.385 C14.907.454.385. Hemangioma, Cavernous, Central Nervous System. C14.907.934.385.500 ... Central Nervous System Venous Angioma C14.240.850.875.124. Central Venous Pressure G9.330.553.400.114.732.336 G9.330.553.660. ... Lupus Vasculitis, Central Nervous System. C10.114.875.350 C10.114.875.850. C10.228.140.300.850.250 C10.228.140.300.850.750. ... Central Nervous System Vascular Malformations. C14.240.275 C14.240.850.875. C16.131.240.275 C16.131.240.850.875. ...
Hemangioma, Cavernous C14.907.934.385 C14.907.454.385. Hemangioma, Cavernous, Central Nervous System. C14.907.934.385.500 ... Central Nervous System Venous Angioma C14.240.850.875.124. Central Venous Pressure G9.330.553.400.114.732.336 G9.330.553.660. ... Lupus Vasculitis, Central Nervous System. C10.114.875.350 C10.114.875.850. C10.228.140.300.850.250 C10.228.140.300.850.750. ... Central Nervous System Vascular Malformations. C14.240.275 C14.240.850.875. C16.131.240.275 C16.131.240.850.875. ...
Hemangioma, Cavernous C14.907.934.385 C14.907.454.385. Hemangioma, Cavernous, Central Nervous System. C14.907.934.385.500 ... Central Nervous System Venous Angioma C14.240.850.875.124. Central Venous Pressure G9.330.553.400.114.732.336 G9.330.553.660. ... Lupus Vasculitis, Central Nervous System. C10.114.875.350 C10.114.875.850. C10.228.140.300.850.250 C10.228.140.300.850.750. ... Central Nervous System Vascular Malformations. C14.240.275 C14.240.850.875. C16.131.240.275 C16.131.240.850.875. ...
Central Nervous System Cavernous Hemangioma 100% * Gene Expression 25% * Endothelial Cells 15% ... The Cerebral Cavernous Malformation Pathway Controls Cardiac Development via Regulation of Endocardial MEKK3 Signaling and KLF ... Dive into the research topics of The Cerebral Cavernous Malformation Pathway Controls Cardiac Development via Regulation of ...
Central Nervous System Cavernous Hemangioma 100% * Hemorrhage 95% * Neurologic Manifestations 64% * Natural History 21% ... A motor association area in the depths of the central sulcus. Jensen, M. A., Huang, H., Valencia, G. O., Klassen, B. T., van ... Are there differences in clinical presentation, radiologic findings, and outcomes in female patients with cavernous ...
Cerebral Cavernous Malformations 3 100% * Zebrafish 50% * Amino Acids 34% * Central Nervous System Cavernous Hemangioma 25% ... analyses of human and zebrafish 18-amino acid in-frame deletion pave the way for domain mapping of the cerebral cavernous ...
McCormick published an influential classification system in his 1966 paper, ... Cavernous angiomas are also known as cavernous hemangiomas or cavernomas. They can occur anywhere in the central nervous system ... Expression of angiogenic factors and structural proteins in central nervous system vascular malformations. Neurosurgery. 1996 ... Vascular Malformations of the Central Nervous System. Lippincott Williams and Wilkins; 1999. 229-230. ...
... it can be accompanied by cavernous hemangiomas of the skin and central nervous system. In Russian scientific literature this ... which are characteristic of retinal cavernous hemangioma.. Asunto(s). Hamartoma , Hemangioma Cavernoso , Humanos , Retina , ... Cavernous hemangioma of the retina - a rarely occurring hamartoma that is predominantly found in the young age; ... The article presents two clinical cases of incidentally diagnosed cavernous hemangioma of the retina. Multimodal diagnostics ...
Hemangioma, Cavernous, Central Nervous System. *Microvascular Decompression Surgery. .single-neutral-profile-picture_svg__cls-1 ...
Central nervous system lesions affecting sensory pathways, including strokes, multiple sclerosis, and cavernous hemangiomas can ... Neuropathic itch occurs due to damage of neurons of the peripheral or central nervous system. Several entities, including ... may affect the somatosensory system and induce neuropathic itch. ... cause central itch. Neuropathic itch is a potent trigger of ...
Central Nervous System Vascular Malformations 100% * Pseudotumor Cerebri 99% * Cavernous Hemangioma 94% ... Childs Nervous System. 20, 8-9, p. 607-617 11 p.. Research output: Contribution to journal › Article › peer-review ... Multiple small cavernous angiomas of the brain with increased intracranial pressure. Tindall, R. S. A., Kirkpatrick, J. B. & ... Surgical outcomes using bioabsorbable plating systems in pediatric craniofacial surgery. Tharanon, W., Sinn, D. P., Craig Hobar ...
Hemangioma, Cavernous, Central Nervous System * Fluorescein * Brain Neoplasms Explore _. Similar People (60) ... PMC Citations indicate the number of times the publication was cited by articles in PubMed Central, and the Altmetric score ... Stereotactic radiosurgery for cerebral cavernous malformation: comparison of hemorrhage rates before and after stereotactic ...

No FAQ available that match "hemangioma cavernous central nervous system"