The simplest of all peptides. It functions as a gamma-glutamyl acceptor.
A 25-kDa peptidase produced by Staphylococcus simulans which cleaves a glycine-glcyine bond unique to an inter-peptide cross-bridge of the STAPHYLOCOCCUS AUREUS cell wall. EC 3.4.24.75.
Peptides composed of two amino acid units.
A naturally occurring dipeptide neuropeptide found in muscles.
An enzyme, sometimes called GGT, with a key role in the synthesis and degradation of GLUTATHIONE; (GSH, a tripeptide that protects cells from many toxins). It catalyzes the transfer of the gamma-glutamyl moiety to an acceptor amino acid.
The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum.
EXOPEPTIDASES that specifically act on dipeptides. EC 3.4.13.
Uptake of substances through the lining of the INTESTINES.
An essential amino acid that is required for the production of HISTAMINE.
A republic in southern Africa, south of DEMOCRATIC REPUBLIC OF THE CONGO and TANZANIA, and north of ZIMBABWE. Its capital is Lusaka. It was formerly called Northern Rhodesia.
A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter.

Buffer effects on electric signals of light-excited bacteriorhodopsin. (1/55)

Buffers change the electric signals of light-excited bacteriorhodopsin molecules in purple membrane if their concentration and the pH of the low-salt solution are properly selected. "Positive" buffers produce a positive component, and "negative" buffers a negative component in addition to the signals due to proton pumping. Measurement of the buffer effects in the presence of glycyl-glycine or bis-tris propane revealed an increase of approximately 2 and a change of sign and a decrease to approximately -0.5 in the translocated charge in these cases, respectively. These factors do not depend on temperature. The Arrhenius parameters established from the evaluation of the kinetics indicate activation enthalpies of 35-40 kJ/mol and negative activation entropies for the additional signals. These values agree with those found by surface-bound pH-sensitive probes in the search of the timing of proton release and uptake. The electric signals were also measured in the case of D(2)O solutions with similar results, except for the increased lifetimes. We offer a unified explanation for the data obtained with surface-bound probes and electric signals based on the clusters at extracellular and cytoplasmic sites of bacteriorhodopsin participating in proton release and uptake.  (+info)

Determination of the mechanism and kinetic constants for hog kidney gamma-glutamyltransferase. (2/55)

The initial-velocity kinetics of hog kidney gamma-glutamyltransferase were studied. Glutamate gamma-(4-nitroanilide) and its 3-carboxy derivative, glutamate gamma-(3-carboxy-4-nitroanilide), served as gamma-glutamyl donors, and glycylglycine as an acceptor. Reaction products were identified by paper chromatography and amino acid analysis. Inhibited Ping Pong mechanisms and a comprehensive initial- velocity expression were developed which account for the observed simultaneous gamma-glutamyl transfer and autotransfer, competitive inhibition by glycylglycine, and non-competitive inhibition by the carboxy donor. The validity of the proposed Ping Pong mechanisms are supported by enzyme-velocity data obtained with constant ratios of acceptor to donor concentrations. Kinetic constants were determined by a non-linear regression analysis. With glutamate gamma-(4-nitroanilide) as the donor, Michaelis constants for the donor, acceptor and donor-acting-as-acceptor are 1.87, 24.9, and 2.08 mM respectively. With glutamate gamma-(3-carboxy-4-nitroanilide) as the donor, these Michaelis constants are 1.63, 16.6, and 12.3 mM. Glyclyglycine competitive inhibition constants with the parent donor and its carboxy derivative are 275 and 205 mM respectively; the non-competitive inhibition constant of the carboxy donor is 34 mM.  (+info)

Functional expression of novel peptide transporter in renal basolateral membranes. (3/55)

We examined the peptide transport activity in renal basolateral membranes. [(14)C]glycylsarcosine (Gly-Sar) uptake in rat renal cortical slices was saturable and inhibited by excess dipeptide and aminocephalosporin cefadroxil. When several renal cell lines were screened for the basolateral peptide transport activity, Madin-Darby canine kidney (MDCK) cells were demonstrated to have the greatest transport activity. [(14)C]Gly-Sar uptake across the basolateral membranes of MDCK cells was inhibited by di- and tripeptide and decreased with decreases in extracellular pH from 7.4 to 5.0. The Michaelis-Menten constant value of [(14)C]Gly-Sar uptake across the basolateral membranes of MDCK cells was 71 microM. The basolateral peptide transporter in MDCK cells showed several different [(14)C]Gly-Sar transport characteristics in growth dependence, pH profile, substrate affinity, and sensitivities to chemical modifiers from those of the apical H(+)-peptide cotransporter of MDCK cells. The findings of the present investigation indicated that the peptide transporter was expressed in the renal basolateral membranes. In addition, from the functional characteristics, the renal basolateral peptide transporter was suggested to be distinguishable from known peptide transporters, i.e., H(+)-peptide cotransporters (PEPT1 and PEPT2) and the intestinal basolateral peptide transporter.  (+info)

In vitro permeation of beta-lactam antibiotics across rat jejunum and its correlation with oral bioavailability in humans. (4/55)

AIMS: To investigate the correlation between in vitro permeation of 11 beta-lactam antibiotics across rat jejunum and their oral bioavailability in humans. METHODS: The absorptive and secretory permeation across rat jejunum was evaluated and apparent permeability coefficients (P(app)) were determined. RESULTS: A steep, sigmoid-type curve was obtained for the relationship between P(app) in the absorptive permeation and human oral bioavailability. When the ratios of P(app) in the absorptive direction to P(app) in the secretory direction were plotted against human oral bioavailability, a much improved correlation was obtained (r = 0.98, P < 0.001). The addition of glycylglycine to both mucosal and serosal media modified the permeation of ceftibuten and cephalexin from the absorptive to the secretory direction. CONCLUSIONS: For 11 beta-lactam antibiotics rat intestinal permeation correlated well with human oral bioavailability, especially when corrected for secretory transport.  (+info)

Intestinal absorption in normal Indian and English people. (5/55)

The absorption of glycine, glycylglycine, water, and electrolytes was studied by intestinal perfusion in normal Indian and English people. Compared with the English people the Indians showed impaired absorption of all four substances. In the Indians the absorption of glycine and glycylglycine was impaired to the same extent, so that the kinetic advantage of glycylglycine as compared with glycine was preserved. The reduced absorption in the Indians may be the functional counterpart of the minor morphological changes seen in the jejunal mucosa of people living in southern India.  (+info)

Theanine, gamma-glutamylethylamide, is metabolized by renal phosphate-independent glutaminase. (6/55)

The distribution of theanine-degrading activity in Wistar rats was examined and this activity was detected only in the kidney. Judging from polyacrylamide gel electrophoresis, theanine-degrading enzyme from rat kidney was purified almost to homogeneity. Theanine-degrading activity was co-purified with glutaminase activity, and the relative activity for theanine was about 85% of that for L-glutamine throughout purification. Substrate specificity of purified enzyme preparation coincided well with the data of phosphate-independent glutaminase [EC 3.5.1.2], which had been previously reported. It was very curious that gamma-glutamyl methyl and ethyl esters were more effectively hydrolyzed than theanine and L-glutamine, in view of relative activity and K(m) value. It was suggested that gamma-glutamyl moiety in theanine molecule was transferred to form gamma-glutamylglycylglycine with relative ease in the presence of glycylglycine. On the other hand, purified phosphate-dependent glutaminase did not show theanine-degrading activity at all. Thus, it was concluded that theanine was hydrolyzed by phosphate-independent glutaminase in kidney and suggested that, as for the metabolic fate of theanine, its glutamyl moiety might be transferred by means of gamma-glutamyl transpeptidase reaction to other peptides in vivo.  (+info)

Developmental changes in the activity of membrane-bound gamma-glutamyl transpeptidase and in the sialylation of synaptosomal membranes from the chick embryonic brain. (7/55)

gamma-Glutamyl transpeptidase (GGT) is a membrane-bound sialoglycoprotein. The developmental changes in GGT activity and in sialic acid content were determined in a crude synaptosomal membrane fraction from the cerebral hemispheres of the chick embryo between days 11 and 19 of incubation. The GGT activity increased almost eightfold during the examined developmental period, while sialic acid content rose significantly only between days 11 and 15. Cortical administered on day 13 significantly increased GGT activity. On the other hand, the content of membrane bound sialic acid was not substantially affected. The value of the GGT apparent Michaelis constant (Kmapp) for gamma-glutamyl-p-nitroanilide in the presence of 20 mmol.l-1 glycylglycine was 1.5 mmol.l-1 and cortisol did not influence it. However, Vmax was increased by this hormone. The affinity of GGT to concanavalin A (ConA) did not change during development. Neither the administration of cortisol nor neuroaminidase treatment had any effect on the interaction of GGT with ConA. Desialylation of crude synaptosomal fraction did not change GGT activity. The results presented here suggest no developmental nor functional relationship between the activity of GGT and the level of sialylation in synaptosomal membranes from the cerebral hemispheres of the chick embryo.  (+info)

Elimination of water from the carboxyl group of GlyGlyH+. (8/55)

The elimination of water from the carboxyl group of protonated diglycine has been investigated by density functional theory calculations. The resulting structure is identical to the b(2) ion formed in the mass spectrometric fragmentation of protonated peptides (therefore named "b2" in this study). The most stable geometry of the fragment ion ("b2") is an O-protonated diketopiperazine. However, its formation is kinetically disfavored as it requires a free energy of 58.2 kcal/mol. The experimentally observed N-protonated oxazolone is 3.0 kcal/mol less stable. The lowest energy pathway for the formation of the "b2" ion requires a free energy of 37.5 kcal/mol and involves the proton transfer from the amide oxygen of protonated diglycine to the hydroxyl oxygen. Fragmentation initiated by proton transfer from the terminal nitrogen has also a comparable free energy of activation (39.4 kcal/mol). Proton transfer initiating the fragmentation, from the highly basic terminal nitrogen or amide oxygen to the less basic hydroxyl oxygen is feasible at energies reached in usual mass spectrometric experiments. Amide N-protonated diglycine structures are precursors of mainly y(1) ions rather than "b2" ions. In the lowest energy fragmentation channels, proton transfer to the hydroxylic oxygen, bond breaking and formation of an oxazolone ring occur concertedly but asynchronously. Proton transfer to hydroxyl oxygen and cleavage of the corresponding C-O bond take place at the early stages of the fragmentation step, while ring closure to form an oxazolone geometry occurs at the later stages of the transition. The experimentally observed low kinetic energy release is expected to be due to the existence of a strongly hydrogen bonded protonated oxazolone-water complex in the exit channel. Whereas the threshold energy for "b2" ion formation (37.1 kcal/mol) is lower than for the y(1) ion (38.4 kcal/mol), the former requires a tight transition state with an activation entropy, DeltaS++ = -1.2 cal/mol.K and the latter has a loose transition state with DeltaS++ = +8.8 cal/mol.K. This leads to y(1) being the major fragment ion over a wide energy range.  (+info)

Glycylglycine is not a medical condition or term, but rather it is a chemical compound. It is a dipeptide, which means it is composed of two amino acids linked together. Specifically, glycylglycine consists of two glycine molecules joined by an amide bond (also known as a peptide bond) between the carboxyl group of one glycine and the amino group of the other glycine.

Glycylglycine is often used in laboratory research as a buffer, a substance that helps maintain a stable pH level in a solution. It has a relatively simple structure and is not naturally found in significant amounts in living organisms.

Lysostaphin is not a disease or condition, but rather a bacteriolytic enzyme produced by certain strains of Staphylococcus species. It is an endopeptidase that specifically targets and cleaves the pentaglycine cross-bridge in the cell wall peptidoglycan of Staphylococcus aureus, leading to bacterial lysis and death. Lysostaphin has been studied for its potential therapeutic use in treating Staphylococcus aureus infections, including those caused by methicillin-resistant Staphylococcus aureus (MRSA) strains.

A dipeptide is a type of molecule that is formed by the condensation of two amino acids. In this process, the carboxyl group (-COOH) of one amino acid combines with the amino group (-NH2) of another amino acid, releasing a water molecule and forming a peptide bond.

The resulting molecule contains two amino acids joined together by a single peptide bond, which is a type of covalent bond that forms between the carboxyl group of one amino acid and the amino group of another. Dipeptides are relatively simple molecules compared to larger polypeptides or proteins, which can contain hundreds or even thousands of amino acids linked together by multiple peptide bonds.

Dipeptides have a variety of biological functions in the body, including serving as building blocks for larger proteins and playing important roles in various physiological processes. Some dipeptides also have potential therapeutic uses, such as in the treatment of hypertension or muscle wasting disorders.

Carnosine is a dipeptide molecule composed of the amino acids histidine and alanine, which is naturally found in high concentrations in certain tissues of the body, particularly in muscle and brain tissue. It acts as an antioxidant, helping to protect cells from damage caused by free radicals and other oxidative stressors. Carnosine also has anti-glycation properties, meaning it helps prevent the formation of advanced glycation end products (AGEs) that can contribute to aging and age-related diseases. Additionally, carnosine has been shown to have potential benefits in neuroprotection, cardioprotection, and anti-inflammation. It is being studied for its potential therapeutic uses in various health conditions, including diabetes, cataracts, Alzheimer's disease, and other neurological disorders.

Gamma-glutamyltransferase (GGT), also known as gamma-glutamyl transpeptidase, is an enzyme found in many tissues, including the liver, bile ducts, and pancreas. GGT is involved in the metabolism of certain amino acids and plays a role in the detoxification of various substances in the body.

GGT is often measured as a part of a panel of tests used to evaluate liver function. Elevated levels of GGT in the blood may indicate liver disease or injury, bile duct obstruction, or alcohol consumption. However, it's important to note that several other factors can also affect GGT levels, so abnormal results should be interpreted in conjunction with other clinical findings and diagnostic tests.

The jejunum is the middle section of the small intestine, located between the duodenum and the ileum. It is responsible for the majority of nutrient absorption that occurs in the small intestine, particularly carbohydrates, proteins, and some fats. The jejunum is characterized by its smooth muscle structure, which allows it to contract and mix food with digestive enzymes and absorb nutrients through its extensive network of finger-like projections called villi.

The jejunum is also lined with microvilli, which further increase the surface area available for absorption. Additionally, the jejunum contains numerous lymphatic vessels called lacteals, which help to absorb fats and fat-soluble vitamins into the bloodstream. Overall, the jejunum plays a critical role in the digestion and absorption of nutrients from food.

Dipeptidases are a group of enzymes that break down dipeptides, which are composed of two amino acids joined by a peptide bond. These enzymes catalyze the hydrolysis of dipeptides into individual amino acids, helping to facilitate their absorption and utilization in the body. Dipeptidases can be found on the brush border membrane of the small intestine, as well as in various tissues and organs, such as the kidneys, liver, and pancreas. They play a crucial role in protein metabolism and maintaining amino acid homeostasis within the body.

Intestinal absorption refers to the process by which the small intestine absorbs water, nutrients, and electrolytes from food into the bloodstream. This is a critical part of the digestive process, allowing the body to utilize the nutrients it needs and eliminate waste products. The inner wall of the small intestine contains tiny finger-like projections called villi, which increase the surface area for absorption. Nutrients are absorbed into the bloodstream through the walls of the capillaries in these villi, and then transported to other parts of the body for use or storage.

Histidine is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C6H9N3O2. Histidine plays a crucial role in several physiological processes, including:

1. Protein synthesis: As an essential amino acid, histidine is required for the production of proteins, which are vital components of various tissues and organs in the body.

2. Hemoglobin synthesis: Histidine is a key component of hemoglobin, the protein in red blood cells responsible for carrying oxygen throughout the body. The imidazole side chain of histidine acts as a proton acceptor/donor, facilitating the release and uptake of oxygen by hemoglobin.

3. Acid-base balance: Histidine is involved in maintaining acid-base homeostasis through its role in the biosynthesis of histamine, which is a critical mediator of inflammatory responses and allergies. The decarboxylation of histidine results in the formation of histamine, which can increase vascular permeability and modulate immune responses.

4. Metal ion binding: Histidine has a high affinity for metal ions such as zinc, copper, and iron. This property allows histidine to participate in various enzymatic reactions and maintain the structural integrity of proteins.

5. Antioxidant defense: Histidine-containing dipeptides, like carnosine and anserine, have been shown to exhibit antioxidant properties by scavenging reactive oxygen species (ROS) and chelating metal ions. These compounds may contribute to the protection of proteins and DNA from oxidative damage.

Dietary sources of histidine include meat, poultry, fish, dairy products, and wheat germ. Histidine deficiency is rare but can lead to growth retardation, anemia, and impaired immune function.

I'm sorry for any confusion, but "Zambia" is not a medical term. It is the name of a country located in southern Africa, known officially as the Republic of Zambia. If you have any questions related to medical terminology or health-related topics, I would be happy to help with those!

Glycine is a simple amino acid that plays a crucial role in the body. According to the medical definition, glycine is an essential component for the synthesis of proteins, peptides, and other biologically important compounds. It is also involved in various metabolic processes, such as the production of creatine, which supports muscle function, and the regulation of neurotransmitters, affecting nerve impulse transmission and brain function. Glycine can be found as a free form in the body and is also present in many dietary proteins.

No FAQ available that match "glycylglycine"

No images available that match "glycylglycine"