An enzyme that catalyzes the conversion of ATP, L-glutamate, and NH3 to ADP, orthophosphate, and L-glutamine. It also acts more slowly on 4-methylene-L-glutamate. (From Enzyme Nomenclature, 1992) EC 6.3.1.2.
A colorless alkaline gas. It is formed in the body during decomposition of organic materials during a large number of metabolically important reactions. Note that the aqueous form of ammonia is referred to as AMMONIUM HYDROXIDE.
Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure.
Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases.
A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.
An enzyme that catalyzes the conversion of linear RNA to a circular form by the transfer of the 5'-phosphate to the 3'-hydroxyl terminus. It also catalyzes the covalent joining of two polyribonucleotides in phosphodiester linkage. EC 6.5.1.3.
An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2.
Cell surface proteins that bind glutamate and act through G-proteins to influence second messenger systems. Several types of metabotropic glutamate receptors have been cloned. They differ in pharmacology, distribution, and mechanisms of action.
A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes.
Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD).
An enzyme that catalyzes the formation of 2 molecules of glutamate from glutamine plus alpha-ketoglutarate in the presence of NADPH. EC 1.4.1.13.
One of the FLAVORING AGENTS used to impart a meat-like flavor.
A family of POTASSIUM and SODIUM-dependent acidic amino acid transporters that demonstrate a high affinity for GLUTAMIC ACID and ASPARTIC ACID. Several variants of this system are found in neuronal tissue.
A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells.
A family of plasma membrane neurotransmitter transporter proteins that couple the uptake of GLUTAMATE with the import of SODIUM ions and PROTONS and the export of POTASSIUM ions. In the CENTRAL NERVOUS SYSTEM they regulate neurotransmission through synaptic reuptake of the excitatory neurotransmitter glutamate. Outside the central nervous system they function as signal mediators and regulators of glutamate metabolism.
A type I G protein-coupled receptor mostly expressed post-synaptic pyramidal cells of the cortex and CENTRAL NERVOUS SYSTEM.

The cytoskeletal network controls c-Jun expression and glucocorticoid receptor transcriptional activity in an antagonistic and cell-type-specific manner. (1/1138)

The physical and functional link between adhesion molecules and the cytoskeletal network suggests that the cytoskeleton might mediate the transduction of cell-to-cell contact signals, which often regulate growth and differentiation in an antagonistic manner. Depolymerization of the cytoskeleton in confluent cell cultures is reportedly sufficient to initiate DNA synthesis. Here we show that depolymerization of the cytoskeleton is also sufficient to repress differentiation-specific gene expression. Glutamine synthetase is a glia-specific differentiation marker gene whose expression in the retinal tissue is regulated by glucocorticoids and is ultimately dependent on glia-neuron cell contacts. Depolymerization of the actin or microtubule network in cells of the intact retina mimics the effects of cell separation, repressing glutamine synthetase induction by a mechanism that involves induction of c-Jun and inhibition of glucocorticoid receptor transcriptional activity. Depolymerization of the cytoskeleton activates JNK and p38 mitogen-activated protein kinase and induces c-Jun expression by a signaling pathway that depends on tyrosine kinase activity. Induction of c-Jun expression is restricted to Muller glial cells, the only cells in the tissue that express glutamine synthetase and maintain the ability to proliferate upon cell separation. Our results suggest that the cytoskeletal network might play a part in the transduction of cell contact signals to the nucleus.  (+info)

3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 catalyzes a Bamberger rearrangement. (2/1138)

3-Hydroxylaminophenol mutase from Ralstonia eutropha JMP134 is involved in the degradative pathway of 3-nitrophenol, in which it catalyzes the conversion of 3-hydroxylaminophenol to aminohydroquinone. To show that the reaction was really catalyzed by a single enzyme without the release of intermediates, the corresponding protein was purified to apparent homogeneity from an extract of cells grown on 3-nitrophenol as the nitrogen source and succinate as the carbon and energy source. 3-Hydroxylaminophenol mutase appears to be a relatively hydrophobic but soluble and colorless protein consisting of a single 62-kDa polypeptide. The pI was determined to be at pH 4.5. In a database search, the NH2-terminal amino acid sequence of the undigested protein and of two internal sequences of 3-hydroxylaminophenol mutase were found to be most similar to those of glutamine synthetases from different species. Hydroxylaminobenzene, 4-hydroxylaminotoluene, and 2-chloro-5-hydroxylaminophenol, but not 4-hydroxylaminobenzoate, can also serve as substrates for the enzyme. The enzyme requires no oxygen or added cofactors for its reaction, which suggests an enzymatic mechanism analogous to the acid-catalyzed Bamberger rearrangement.  (+info)

A silencer element in the regulatory region of glutamine synthetase controls cell type-specific repression of gene induction by glucocorticoids. (3/1138)

Glutamine synthetase is a key enzyme in the recycling of the neurotransmitter glutamate. Expression of this enzyme is regulated by glucocorticoids, which induce a high level of glutamine synthetase in neural but not in various non-neural tissues. This is despite the fact that non-neural cells express functional glucocorticoid receptor molecules capable of inducing other target genes. Sequencing and functional analysis of the upstream region of the glutamine synthetase gene identified, 5' to the glucocorticoid response element (GRE), a 21-base pair glutamine synthetase silencer element (GSSE), which showed considerable homology with the neural restrictive silencer element NRSE. The GSSE was able to markedly repress the induction of gene transcription by glucocorticoids in non-neural cells and in embryonic neural retina. The repressive activity of the GSSE could be conferred on a heterologous GRE promoter and was orientation- and position-independent with respect to the transcriptional start site, but appeared to depend on a location proximal to the GRE. Gel-shift assays revealed that non-neural cells and cells of early embryonic retina contain a high level of GSSE binding activity and that this level declines progressively with age. Our results suggest that the GSSE might be involved in the restriction of glutamine synthetase induction by glucocorticoids to differentiated neural tissues.  (+info)

Azorhizobium caulinodans PII and GlnK proteins control nitrogen fixation and ammonia assimilation. (4/1138)

We herein report that Azorhizobium caulinodans PII and GlnK are not necessary for glutamine synthetase (GS) adenylylation whereas both proteins are required for complete GS deadenylylation. The disruption of both glnB and glnK resulted in a high level of GS adenylylation under the condition of nitrogen fixation, leading to ammonium excretion in the free-living state. PII and GlnK also controlled nif gene expression because NifA activated nifH transcription and nitrogenase activity was derepressed in glnB glnK double mutants, but not in wild-type bacteria, grown in the presence of ammonia.  (+info)

trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis. (5/1138)

In Bacillus subtilis, CcpA-dependent carbon catabolite repression (CCR) mediated at several cis-acting carbon repression elements (cre) requires the seryl-phosphorylated form of both the HPr (ptsH) and Crh (crh) proteins. During growth in minimal medium, the ptsH1 mutation, which prevents seryl phosphorylation of HPr, partially relieves CCR of several genes regulated by CCR. Examination of the CCR of the histidine utilization (hut) enzymes in cells grown in minimal medium showed that neither the ptsH1 nor the crh mutation individually had any affect on hut CCR but that hut CCR was abolished in a ptsH1 crh double mutant. In contrast, the ptsH1 mutation completely relieved hut CCR in cells grown in Luria-Bertani medium. The ptsH1 crh double mutant exhibited several growth defects in glucose minimal medium, including reduced rates of growth and growth inhibition by high levels of glycerol or histidine. CCR is partially relieved in B. subtilis mutants which synthesize low levels of active glutamine synthetase (glnA). In addition, these glnA mutants grow more slowly than wild-type cells in glucose minimal medium. The defects in growth and CCR seen in these mutants are suppressed by mutational inactivation of TnrA, a global nitrogen regulatory protein. The inappropriate expression of TnrA-regulated genes in this class of glnA mutants may deplete intracellular pools of carbon metabolites and thereby result in the reduction of the growth rate and partial relief of CCR.  (+info)

An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets. (6/1138)

Mycobacterium tuberculosis and other pathogenic mycobacteria export abundant quantities of proteins into their extracellular milieu when growing either axenically or within phagosomes of host cells. One major extracellular protein, the enzyme glutamine synthetase, is of particular interest because of its link to pathogenicity. Pathogenic mycobacteria, but not nonpathogenic mycobacteria, export large amounts of this protein. Interestingly, export of the enzyme is associated with the presence of a poly-L-glutamate/glutamine structure in the mycobacterial cell wall. In this study, we investigated the influence of glutamine synthetase inhibitors on the growth of pathogenic and nonpathogenic mycobacteria and on the poly-L-glutamate/glutamine cell wall structure. The inhibitor L-methionine-S-sulfoximine rapidly inactivated purified M. tuberculosis glutamine synthetase, which was 100-fold more sensitive to this inhibitor than a representative mammalian glutamine synthetase. Added to cultures of pathogenic mycobacteria, L-methionine- S-sulfoximine rapidly inhibited extracellular glutamine synthetase in a concentration-dependent manner but had only a minimal effect on cellular glutamine synthetase, a finding consistent with failure of the drug to cross the mycobacterial cell wall. Remarkably, the inhibitor selectively blocked the growth of pathogenic mycobacteria, all of which release glutamine synthetase extracellularly, but had no effect on nonpathogenic mycobacteria or nonmycobacterial microorganisms, none of which release glutamine synthetase extracellularly. The inhibitor was also bacteriostatic for M. tuberculosis in human mononuclear phagocytes (THP-1 cells), the pathogen's primary host cells. Paralleling and perhaps underlying its bacteriostatic effect, the inhibitor markedly reduced the amount of poly-L-glutamate/glutamine cell wall structure in M. tuberculosis. Although it is possible that glutamine synthetase inhibitors interact with additional extracellular proteins or structures, our findings support the concept that extracellular proteins of M. tuberculosis and other pathogenic mycobacteria are worthy targets for new antibiotics. Such proteins constitute readily accessible targets of these relatively impermeable organisms, which are rapidly developing resistance to conventional antibiotics.  (+info)

Mutant strains (nit) of Salmonella typhimurium with a pleiotropic defect in nitrogen metabolism. (7/1138)

We have isolated mutant strains (nit) of Salmonella typhimurium that are defective in nitrogen metabolism. They have a reduced ability to use a variety of compounds including glutamate, proline, arginine, N-acetyl-glucosamine, alanine, and adenosine as sole nitrogen source. In addition, although they grow normally on high concentrations of ammonium chloride (greater than 1 mM) as nitrogen source, they grow substantially more slowly than wild type at low concentrations (less than 1 mM). We postulated that the inability of these strains to utilize low concentrations of ammonium chloride accounts for their poor growth on other nitrogen sources. The specific biochemical lesion in strains with a nit mutation is not known; however, mutant strains have no detectable alteration in the activities of glutamine synthetase, glutamate synthetase, or glutamate dehydrogenase, the enzymes known to be involved in assimilation of ammonia. A nit mutation is suppressed by second-site mutations in the structural gene for glutamine synthetase (glnA) that decrease glutamine synthetase activity.  (+info)

Carbon and ammonia metabolism of Spirillum lipoferum. (8/1138)

Intact cells and extracts from Spirillum lipoferum rapidly oxidized malate, succinate, lactate, and pyruvate. Glucose, galactose, fructose, acetate, and citrate did not increase the rate of O2 uptake by cells above the endogenous rate. Cells grown on NH+/4 oxidized the various substrates at about the same rate as did cells grown on N2. Added oxidized nicotinamide adenine dinucleotide generally enhanced O2 uptake by extracts supplied organic acids, whereas oxidized nicotinamide adenine dinucleotide phosphate had little effect. Nitrogenase synthesis repressed by growth of cells in the presence of NH+/4 was derepressed by methionine sulfoximine or methionine sulfone. The total glutamine synthetase activity from N2-grown cells was about eight times that from NH+/4-grown S. lipoferum; the response of glutamate dehydrogenase was the opposite. The total glutamate synthetase activity from N2-grown S. lipoferum was 1.4 to 2.6 times that from NH+/4-grown cells. The levels of poly-beta-hydroxybutyrate and beta-hydroxybutyrate dehydrogenase were elevated in cells grown on N2 as compared with those grown on NH+/4. Cell-free extracts capable of reducing C2H2 have been prepared; both Mg2+ and Mn2+ are required for good activity.  (+info)

Glutamate-ammonia ligase, also known as glutamine synthetase, is an enzyme that plays a crucial role in nitrogen metabolism. It catalyzes the formation of glutamine from glutamate and ammonia in the presence of ATP, resulting in the conversion of ammonia to a less toxic form. This reaction is essential for maintaining nitrogen balance in the body and for the synthesis of various amino acids, nucleotides, and other biomolecules. The enzyme is widely distributed in various tissues, including the brain, liver, and muscle, and its activity is tightly regulated through feedback inhibition by glutamine and other metabolites.

Ammonia is a colorless, pungent-smelling gas with the chemical formula NH3. It is a compound of nitrogen and hydrogen and is a basic compound, meaning it has a pH greater than 7. Ammonia is naturally found in the environment and is produced by the breakdown of organic matter, such as animal waste and decomposing plants. In the medical field, ammonia is most commonly discussed in relation to its role in human metabolism and its potential toxicity.

In the body, ammonia is produced as a byproduct of protein metabolism and is typically converted to urea in the liver and excreted in the urine. However, if the liver is not functioning properly or if there is an excess of protein in the diet, ammonia can accumulate in the blood and cause a condition called hyperammonemia. Hyperammonemia can lead to serious neurological symptoms, such as confusion, seizures, and coma, and is treated by lowering the level of ammonia in the blood through medications, dietary changes, and dialysis.

Glutamates are the salt or ester forms of glutamic acid, which is a naturally occurring amino acid and the most abundant excitatory neurotransmitter in the central nervous system. Glutamate plays a crucial role in various brain functions, such as learning, memory, and cognition. However, excessive levels of glutamate can lead to neuronal damage or death, contributing to several neurological disorders, including stroke, epilepsy, and neurodegenerative diseases like Alzheimer's and Parkinson's.

Glutamates are also commonly found in food as a natural flavor enhancer, often listed under the name monosodium glutamate (MSG). While MSG has been extensively studied, its safety remains a topic of debate, with some individuals reporting adverse reactions after consuming foods containing this additive.

Glutamate receptors are a type of neuroreceptor in the central nervous system that bind to the neurotransmitter glutamate. They play a crucial role in excitatory synaptic transmission, plasticity, and neuronal development. There are several types of glutamate receptors, including ionotropic and metabotropic receptors, which can be further divided into subclasses based on their pharmacological properties and molecular structure.

Ionotropic glutamate receptors, also known as iGluRs, are ligand-gated ion channels that directly mediate fast synaptic transmission. They include N-methyl-D-aspartate (NMDA) receptors, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and kainite receptors.

Metabotropic glutamate receptors, also known as mGluRs, are G protein-coupled receptors that modulate synaptic transmission through second messenger systems. They include eight subtypes (mGluR1-8) that are classified into three groups based on their sequence homology, pharmacological properties, and signal transduction mechanisms.

Glutamate receptors have been implicated in various physiological processes, including learning and memory, motor control, sensory perception, and emotional regulation. Dysfunction of glutamate receptors has also been associated with several neurological disorders, such as epilepsy, Alzheimer's disease, Parkinson's disease, and psychiatric conditions like schizophrenia and depression.

Glutamic acid is an alpha-amino acid, which is one of the 20 standard amino acids in the genetic code. The systematic name for this amino acid is (2S)-2-Aminopentanedioic acid. Its chemical formula is HO2CCH(NH2)CH2CH2CO2H.

Glutamic acid is a crucial excitatory neurotransmitter in the human brain, and it plays an essential role in learning and memory. It's also involved in the metabolism of sugars and amino acids, the synthesis of proteins, and the removal of waste nitrogen from the body.

Glutamic acid can be found in various foods such as meat, fish, beans, eggs, dairy products, and vegetables. In the human body, glutamic acid can be converted into gamma-aminobutyric acid (GABA), another important neurotransmitter that has a calming effect on the nervous system.

Glutamate Dehydrogenase (GLDH or GDH) is a mitochondrial enzyme that plays a crucial role in the metabolism of amino acids, particularly within liver and kidney tissues. It catalyzes the reversible oxidative deamination of glutamate to alpha-ketoglutarate, which links amino acid metabolism with the citric acid cycle and energy production. This enzyme is significant in clinical settings as its levels in blood serum can be used as a diagnostic marker for diseases that damage liver or kidney cells, since these cells release GLDH into the bloodstream upon damage.

Metabotropic glutamate receptors (mGluRs) are a type of G protein-coupled receptor (GPCR) that are activated by the neurotransmitter glutamate, which is the primary excitatory neurotransmitter in the central nervous system. There are eight different subtypes of mGluRs, labeled mGluR1 through mGluR8, which are classified into three groups (Group I, II, and III) based on their sequence homology, downstream signaling pathways, and pharmacological properties.

Group I mGluRs include mGluR1 and mGluR5, which are primarily located postsynaptically in the central nervous system. Activation of Group I mGluRs leads to increased intracellular calcium levels and activation of protein kinases, which can modulate synaptic transmission and plasticity.

Group II mGluRs include mGluR2 and mGluR3, which are primarily located presynaptically in the central nervous system. Activation of Group II mGluRs inhibits adenylyl cyclase activity and reduces neurotransmitter release.

Group III mGluRs include mGluR4, mGluR6, mGluR7, and mGluR8, which are also primarily located presynaptically in the central nervous system. Activation of Group III mGluRs inhibits adenylyl cyclase activity and voltage-gated calcium channels, reducing neurotransmitter release.

Overall, metabotropic glutamate receptors play important roles in modulating synaptic transmission and plasticity, and have been implicated in various neurological disorders, including epilepsy, pain, anxiety, depression, and neurodegenerative diseases.

Ubiquitin-protein ligases, also known as E3 ubiquitin ligases, are a group of enzymes that play a crucial role in the ubiquitination process. Ubiquitination is a post-translational modification where ubiquitin molecules are attached to specific target proteins, marking them for degradation by the proteasome or for other regulatory functions.

Ubiquitin-protein ligases catalyze the final step in this process by binding to both the ubiquitin protein and the target protein, facilitating the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to the target protein. There are several different types of ubiquitin-protein ligases, each with their own specificity for particular target proteins and regulatory functions.

Ubiquitin-protein ligases have been implicated in various cellular processes such as protein degradation, DNA repair, signal transduction, and regulation of the cell cycle. Dysregulation of ubiquitination has been associated with several diseases, including cancer, neurodegenerative disorders, and inflammatory responses. Therefore, understanding the function and regulation of ubiquitin-protein ligases is an important area of research in biology and medicine.

DNA ligases are enzymes that catalyze the formation of a phosphodiester bond between two compatible ends of DNA molecules, effectively joining or "ligating" them together. There are several types of DNA ligases found in nature, each with specific functions and preferences for the type of DNA ends they can seal.

The most well-known DNA ligase is DNA ligase I, which plays a crucial role in replicating and repairing DNA in eukaryotic cells. It seals nicks or gaps in double-stranded DNA during replication and participates in the final step of DNA excision repair by rejoining the repaired strand to the original strand.

DNA ligase IV, another important enzyme, is primarily involved in the repair of double-strand breaks through a process called non-homologous end joining (NHEJ). This pathway is essential for maintaining genome stability and preventing chromosomal abnormalities.

Bacterial DNA ligases, such as T4 DNA ligase, are often used in molecular biology techniques due to their ability to join various types of DNA ends with high efficiency. These enzymes have been instrumental in the development of recombinant DNA technology and gene cloning methods.

Glutamate synthase is an enzyme found in bacteria, plants, and some animals that plays a crucial role in the synthesis of the amino acid glutamate. There are two types of glutamate synthases: NADPH-dependent and NADH-dependent.

The NADPH-dependent glutamate synthase, also known as glutamine:2-oxoglutarate aminotransferase or GOGAT, catalyzes the following reversible reaction:

glutamine + 2-oxoglutarate -> 2 glutamate

This enzyme requires NADPH as a cofactor and is responsible for the conversion of glutamine and 2-oxoglutarate to two molecules of glutamate. This reaction is essential in the assimilation of ammonia into organic compounds, particularly in plants and some bacteria.

The NADH-dependent glutamate synthase, on the other hand, is found mainly in animals and catalyzes a different set of reactions that involve the conversion of L-glutamate to α-ketoglutarate and ammonia, with the concomitant reduction of NAD+ to NADH.

Both types of glutamate synthases are essential for maintaining the balance of nitrogen metabolism in living organisms.

Sodium glutamate, also known as monosodium glutamate (MSG), is the sodium salt of glutamic acid, which is a naturally occurring amino acid that is widely present in various foods. It is commonly used as a flavor enhancer in the food industry to intensify the savory or umami taste of certain dishes.

Medically speaking, sodium glutamate is generally considered safe for consumption in moderate amounts by the majority of the population. However, some individuals may experience adverse reactions after consuming foods containing MSG, a condition known as "MSG symptom complex." Symptoms can include headache, flushing, sweating, facial pressure or tightness, numbness, tingling or burning in the face, neck and other areas, rapid, fluttering heartbeats (heart palpitations), chest pain, nausea, and weakness.

It is important to note that these symptoms are usually mild and short-term, and not everyone who consumes MSG will experience them. If you suspect that you have an intolerance or sensitivity to MSG, it is best to consult with a healthcare professional for proper evaluation and guidance.

I am not aware of a medical definition for an "amino acid transport system X-AG" as it is not a widely recognized or established term in the field of medicine or biology. It is possible that you may have misspelled or mistyped the name, as there are several known amino acid transporters labeled with different letters and numbers (e.g., Systems A, ASC, L, y+L).

If you meant to inquire about a specific amino acid transport system or a particular research study related to it, please provide more context or clarify the term so I can give you an accurate and helpful response.

Glutamine is defined as a conditionally essential amino acid in humans, which means that it can be produced by the body under normal circumstances, but may become essential during certain conditions such as stress, illness, or injury. It is the most abundant free amino acid found in the blood and in the muscles of the body.

Glutamine plays a crucial role in various biological processes, including protein synthesis, energy production, and acid-base balance. It serves as an important fuel source for cells in the intestines, immune system, and skeletal muscles. Glutamine has also been shown to have potential benefits in wound healing, gut function, and immunity, particularly during times of physiological stress or illness.

In summary, glutamine is a vital amino acid that plays a critical role in maintaining the health and function of various tissues and organs in the body.

Glutamate plasma membrane transport proteins, also known as excitatory amino acid transporters (EAATs), are a type of membrane protein responsible for the uptake of glutamate from the extracellular space into neurons and glial cells in the central nervous system. These transporters play a crucial role in maintaining appropriate levels of glutamate, an important neurotransmitter, in the synaptic cleft to prevent excitotoxicity and ensure normal neurotransmission. There are five subtypes of EAATs (EAAT1-EAAT5) identified in mammals, each with distinct expression patterns and functions.

A metabotropic glutamate receptor 5 (mGluR5) is a type of G protein-coupled receptor that binds to the neurotransmitter glutamate, which is the primary excitatory neurotransmitter in the brain. When activated, mGluR5 receptors trigger a variety of intracellular signaling pathways that modulate synaptic transmission, neuronal excitability, and neural plasticity.

mGluR5 receptors are widely expressed throughout the central nervous system, where they play important roles in various physiological processes, including learning and memory, anxiety, addiction, and pain perception. Dysregulation of mGluR5 signaling has been implicated in several neurological and psychiatric disorders, such as fragile X syndrome, Parkinson's disease, schizophrenia, and drug addiction.

Pharmacological targeting of mGluR5 receptors has emerged as a promising therapeutic strategy for the treatment of these disorders. Positive allosteric modulators (PAMs) of mGluR5 have shown potential in preclinical studies for improving cognitive function and reducing negative symptoms in schizophrenia, while negative allosteric modulators (NAMs) have shown promise in preclinical models of fragile X syndrome, Parkinson's disease, and addiction.

L-glutamate:ammonia ligase (ADP-forming)] Thus, the two substrates of this enzyme are ATP and L-glutamate:ammonia ligase (ADP- ... In enzymology, a [glutamate-ammonia-ligase] adenylyltransferase (EC 2.7.7.42) is an enzyme that catalyzes the chemical reaction ... L-glutamate:ammonia ligase (ADP-forming)] adenylyltransferase. Other names in common use include glutamine-synthetase ... forming), whereas its two products are diphosphate and adenylyl-[L-glutamate:ammonia ligase (ADP-forming)]. This enzyme belongs ...
glutamate-ammonia ligase. IDA. ISO. SMPDB. RGD. PMID:4403443 PMID:28323. SMP:00072, RGD:2301548, RGD:2301547. NCBI chr13: ... glutamate-cysteine ligase, catalytic subunit. ISO. SMPDB. SMP:00072. NCBI chr 8:78,629,899...78,668,547 Ensembl chr 8: ... glutamate cysteine ligase, modifier subunit. ISO. SMPDB. SMP:00072. NCBI chr 2:210,347,482...210,367,537 Ensembl chr 2: ... glutamate decarboxylase 1. ISO. SMPDB. SMP:00072. NCBI chr 3:55,369,704...55,410,335 Ensembl chr 3:55,369,704...55,410,333 ...
... ligases (amide synthases). The systematic name of this enzyme class is 4-methylene-L-glutamate:ammonia ligase (AMP-forming). ... This enzyme belongs to the family of ligases, specifically those forming carbon-nitrogen bonds as acid-D-ammonia (or amine) ... In enzymology, a 4-methyleneglutamate-ammonia ligase (EC 6.3.1.7) is an enzyme that catalyzes the chemical reaction ATP + 4- ... 4-methylene-L-glutamate, and NH3, whereas its 3 products are AMP, diphosphate, and 4-methylene-L-glutamine. ...
Glutamate-Ammonia Ligase. *Glutamate Synthase. *Glutamate Dehydrogenase (NADP+). *Fungal Proteins. *Culture Media ... Alanine, glutamine, glutamate, arginine and ornithine.comprised over 80% of the total amino acid pool in the mycelium. Amino ... glutamate and glutamine were particularly accumulated. Of the amino acids that were initially accumulated in the mycelial mat, ...
glutamate--ammonia ligase. L-glutamine synthetase. Reaction catalysed. ATP + L-glutamate + NH4(+) <=> ADP + H(+) + L-glutamine ... Glutamine synthetase, which catalyzes the incorporation of ammonium into glutamate, is a key enzyme of nitrogen metabolism ...
Glutamate-Ammonia Ligase (MeSH) * Goldfish (MeSH) * Intestines (MeSH) * Kidney (MeSH) * Kinetics (MeSH) ... while increased GS activity may beneficially increase ammonia-detoxifying capacity in the intestine. ...
Glutamate-Ammonia Ligase/genetics, Glutamic Acid/genetics, Glutaminase/genetics, Glutamine/metabolism, HEK293 Cells, Humans, ... Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the ... Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the ... Considering the neurotoxicity of glutamate when present in excess, the strikingly high glutamate concentrations measured in the ...
Glutamate/aspartate transport protein. GLUL:. Glutamate-ammonia ligase. GLUT:. Glucose transporters. IGF:. Insulin like growth ... from the synaptic space of glutamate releasing neurons. Glutamate is taken up by astrocytes and rapidly converted to glutamine ... The SLC1A3 gene codes for a glutamate/aspartate transport protein [74] (GLAST). In the brain, this protein is responsible for ... Kanai Y, Hediger M: The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological ...
glutamate-ammonia ligase [Source:HGN.... GMNN. 51053. GMNN. geminin DNA replication inhibitor [S.... ...
Glutamate-Ammonia Ligase Medicine & Life Sciences 51% * Nerve Degeneration Medicine & Life Sciences 47% ... bound COMT and the neuronal marker enzyme glutamate decarboxylase. Similarly the increase in soluble COMT activity paralleled ... bound COMT and the neuronal marker enzyme glutamate decarboxylase. Similarly the increase in soluble COMT activity paralleled ... bound COMT and the neuronal marker enzyme glutamate decarboxylase. Similarly the increase in soluble COMT activity paralleled ...
keywords = "Animals, Blotting, Western, Glutamate-Ammonia Ligase, Humans, Male, Mice, Inbred C57BL, Protein Transport, ...
Glutamate--ammonia ligase. 119.53. 0.6126. 133. slr0804 Probable D-alanyl-D-alanine carboxypeptidase. 119.66. 0.6308. ...
Azospirillum brasilense; Expressed sequence tags; Genotype; Glutamate-Ammonia Ligase; Nitrate reductase; Nitrogen; Plant ...
glutamate-ammonia ligase. 1q31. CV:PGCnp. Expression. GO_Annotation. Network. PMID:cooccur. G2Cdb.humanNRC. G2Cdb.humanPSD. ...
glutamate--ammonia ligase; EC 6.3.1.2. 78%. 753.8. Confidence: high confidence medium confidence low confidence. transporter - ... 2 candidates for puuA: glutamate-putrescine ligase. Score. Gene. Description. Similar to. Id.. Cov.. Bits. Other hit. Other id. ... Glutamate--putrescine ligase (EC 6.3.1.11) (characterized). 97%. 100%. 898.3. lo. Shewana3_0300. glutamine synthetase (RefSeq) ...
glutamate-ammonia ligase 2.43313 SPAST spastin 2.42192 PCBP4 poly(rC) binding protein 4 2.40876 ... glutamate receptor, ionotropic, N-methyl D-aspartate-associated protein 1 (glutamate binding) -1.72233 ... ring finger and CHY zinc finger domain containing 1, E3 ubiquitin protein ligase 2.80298 ... F-box and WD repeat domain containing 7, E3 ubiquitin protein ligase 1.6388 ...
glutamate-ammonia ligase activity. IEP. Enrichment. MF. GO:0004486. methylenetetrahydrofolate dehydrogenase [NAD(P)+] activity ... ammonia ligase activity. IEP. Enrichment. MF. GO:0016645. oxidoreductase activity, acting on the CH-NH group of donors. IEP. ...
Glutamate-Ammonia Ligase 27% * Connexins 25% 3 Scopus citations View all 58 Research outputs ...
glutamate-ammonia ligase activity. IEP. Enrichment. MF. GO:0004620. phospholipase activity. IEP. Enrichment. ... ligase activity, forming carbon-nitrogen bonds. IEP. Enrichment. MF. GO:0016880. acid-ammonia (or amide) ligase activity. IEP. ... ubiquitin-like protein ligase binding. IEP. Enrichment. MF. GO:0045300. acyl-[acyl-carrier-protein] desaturase activity. IEP. ...
Glutamate-Ammonia Ligase 22% * Support for Physical Education as a Core Subject in Urban Elementary Schools. Castillo, J. C., ...
GLUTAMATE--AMMONIA LIGASE 1. 3ZXV_B P16009 --. ESCHERICHIA COLI. MYCOBACTERIUM TUBERCULOSIS. GLUTAMATE--AMMONIA LIGASE 1 ...
glutamate-ammonia ligase activity. GO:0003824. 3.4e-33. catalytic activity. KEGG pathway. dpe:Dper_GL13945. 3e-62. ...
Glutamate-Ammonia Ligase 100% * Glutamine 77% * Ovarian Neoplasms 67% * Cisplatin 66% * Glutamic Acid 19% ...
glutamate-ammonia ligase activity. IEP. Enrichment. MF. GO:0004555. alpha,alpha-trehalase activity. IEP. Enrichment. ...
glutamate-ammonia ligase activity. IEP. Neighborhood. MF. GO:0004601. peroxidase activity. IEP. Neighborhood. ... acid-ammonia (or amide) ligase activity. IEP. Neighborhood. MF. GO:0016899. oxidoreductase activity, acting on the CH-OH group ...
glutamate-ammonia ligase [Source.... GNLY. 10578. GNLY. granulysin [Source:HGNC Symbol;A.... ...
Glutamate-Ammonia Ligase 100% * Breast Neoplasms 41% * Neoplasms 23% * diphenidol 17% * ioversol 16% ...
Glutamate-Ammonia Ligase 100% * Gray Matter 75% * Spinal Cord Injuries 71% * White Matter 67% ... Glutamine-, glutamine synthetase-, glutamate dehydrogenase- and pyruvate carboxylase-immunoreactivities in the rat dorsal root ...

No FAQ available that match "glutamate ammonia ligase"

No images available that match "glutamate ammonia ligase"