The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus.
Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres.
Lens-shaped structure on the inner aspect of the INTERNAL CAPSULE. The SUBTHALAMIC NUCLEUS and pathways traversing this region are concerned with the integration of somatic motor function.
Therapy for MOVEMENT DISORDERS, especially PARKINSON DISEASE, that applies electricity via stereotactic implantation of ELECTRODES in specific areas of the BRAIN such as the THALAMUS. The electrodes are attached to a neurostimulator placed subcutaneously.
The largest and most lateral of the BASAL GANGLIA lying between the lateral medullary lamina of the GLOBUS PALLIDUS and the EXTERNAL CAPSULE. It is part of the neostriatum and forms part of the LENTIFORM NUCLEUS along with the GLOBUS PALLIDUS.
An attitude or posture due to the co-contraction of agonists and antagonist muscles in one region of the body. It most often affects the large axial muscles of the trunk and limb girdles. Conditions which feature persistent or recurrent episodes of dystonia as a primary manifestation of disease are referred to as DYSTONIC DISORDERS. (Adams et al., Principles of Neurology, 6th ed, p77)
A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75)
The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis.
Elongated gray mass of the neostriatum located adjacent to the lateral ventricle of the brain.
A group of disorders which feature impaired motor control characterized by bradykinesia, MUSCLE RIGIDITY; TREMOR; and postural instability. Parkinsonian diseases are generally divided into primary parkinsonism (see PARKINSON DISEASE), secondary parkinsonism (see PARKINSON DISEASE, SECONDARY) and inherited forms. These conditions are associated with dysfunction of dopaminergic or closely related motor integration neuronal pathways in the BASAL GANGLIA.
Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE.
Neural tracts connecting one part of the nervous system with another.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Slow or diminished movement of body musculature. It may be associated with BASAL GANGLIA DISEASES; MENTAL DISORDERS; prolonged inactivity due to illness; and other conditions.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain.
Techniques used mostly during brain surgery which use a system of three-dimensional coordinates to locate the site to be operated on.
Acquired and inherited conditions that feature DYSTONIA as a primary manifestation of disease. These disorders are generally divided into generalized dystonias (e.g., dystonia musculorum deformans) and focal dystonias (e.g., writer's cramp). They are also classified by patterns of inheritance and by age of onset.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
Manganese poisoning is associated with chronic inhalation of manganese particles by individuals who work with manganese ore. Clinical features include CONFUSION; HALLUCINATIONS; and an extrapyramidal syndrome (PARKINSON DISEASE, SECONDARY) that includes rigidity; DYSTONIA; retropulsion; and TREMOR. (Adams, Principles of Neurology, 6th ed, p1213)
Producing a lesion in the posteroventral portion of the medial GLOBUS PALLIDUS to treat PARKINSON DISEASE and other extrapyramidal disorders. The placement of the lesion is aided by STEREOTACTIC TECHNIQUES and imaging procedures.
A rare autosomal recessive degenerative disorder which usually presents in late childhood or adolescence. Clinical manifestations include progressive MUSCLE SPASTICITY; hyperreflexia; MUSCLE RIGIDITY; DYSTONIA; DYSARTHRIA; and intellectual deterioration which progresses to severe dementia over several years. (From Adams et al., Principles of Neurology, 6th ed, p972; Davis & Robertson, Textbook of Neuropathology, 2nd ed, pp972-929)
A portion of the nucleus of ansa lenticularis located medial to the posterior limb of the internal capsule, along the course of the ansa lenticularis and the inferior thalamic peduncle or as a separate nucleus within the internal capsule adjacent to the medial GLOBUS PALLIDUS (NeuroNames, http://rprcsgi.rprc. washington.edu/neuronames/ (September 28, 1998)). In non-primates, the entopeduncular nucleus is analogous to both the medial globus pallidus and the entopeduncular nucleus of human.
The most common inhibitory neurotransmitter in the central nervous system.
Surgically placed electric conductors through which ELECTRIC STIMULATION is delivered to or electrical activity is recorded from a specific point inside the body.
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli.
Several groups of nuclei in the thalamus that serve as the major relay centers for sensory impulses in the brain.
Drugs that bind to and activate dopamine receptors.
A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula.
Syndromes which feature DYSKINESIAS as a cardinal manifestation of the disease process. Included in this category are degenerative, hereditary, post-infectious, medication-induced, post-inflammatory, and post-traumatic conditions.
A large group of nuclei lying between the internal medullary lamina and the INTERNAL CAPSULE. It includes the ventral anterior, ventral lateral, and ventral posterior nuclei.
A neurotransmitter analogue that depletes noradrenergic stores in nerve endings and induces a reduction of dopamine levels in the brain. Its mechanism of action is related to the production of cytolytic free-radicals.
Compounds that suppress or block the plasma membrane transport of GAMMA-AMINOBUTYRIC ACID by GABA PLASMA MEMBRANE TRANSPORT PROTEINS.
A dopaminergic neurotoxic compound which produces irreversible clinical, chemical, and pathological alterations that mimic those found in Parkinson disease.
Abnormal movements, including HYPERKINESIS; HYPOKINESIA; TREMOR; and DYSTONIA, associated with the use of certain medications or drugs. Muscles of the face, trunk, neck, and extremities are most commonly affected. Tardive dyskinesia refers to abnormal hyperkinetic movements of the muscles of the face, tongue, and neck associated with the use of neuroleptic agents (see ANTIPSYCHOTIC AGENTS). (Adams et al., Principles of Neurology, 6th ed, p1199)
Abnormal involuntary movements which primarily affect the extremities, trunk, or jaw that occur as a manifestation of an underlying disease process. Conditions which feature recurrent or persistent episodes of dyskinesia as a primary manifestation of disease may be referred to as dyskinesia syndromes (see MOVEMENT DISORDERS). Dyskinesias are also a relatively common manifestation of BASAL GANGLIA DISEASES.
A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES.
Conditions which feature clinical manifestations resembling primary Parkinson disease that are caused by a known or suspected condition. Examples include parkinsonism caused by vascular injury, drugs, trauma, toxin exposure, neoplasms, infections and degenerative or hereditary conditions. Clinical features may include bradykinesia, rigidity, parkinsonian gait, and masked facies. In general, tremor is less prominent in secondary parkinsonism than in the primary form. (From Joynt, Clinical Neurology, 1998, Ch38, pp39-42)
A transition zone in the anterior part of the diencephalon interposed between the thalamus, hypothalamus, and tegmentum of the mesencephalon. Components of the subthalamus include the SUBTHALAMIC NUCLEUS, zona incerta, nucleus of field H, and the nucleus of ansa lenticularis. The latter contains the ENTOPEDUNCULAR NUCLEUS.
The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system.
Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process.
The phylogenetically newer part of the CORPUS STRIATUM consisting of the CAUDATE NUCLEUS and PUTAMEN. It is often called simply the striatum.
Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed)
A genus of short-tailed OPOSSUMS in the family Didelphidae found in South American, chiefly Brazil. They are opossums least well-adapted to arboreal life.
Brain disorders resulting from inborn metabolic errors, primarily from enzymatic defects which lead to substrate accumulation, product reduction, or increase in toxic metabolites through alternate pathways. The majority of these conditions are familial, however spontaneous mutation may also occur in utero.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A condition caused by the neurotoxin MPTP which causes selective destruction of nigrostriatal dopaminergic neurons. Clinical features include irreversible parkinsonian signs including rigidity and bradykinesia (PARKINSON DISEASE, SECONDARY). MPTP toxicity is also used as an animal model for the study of PARKINSON DISEASE. (Adams et al., Principles of Neurology, 6th ed, p1072; Neurology 1986 Feb;36(2):250-8)
Conditions in which the LIVER functions fall below the normal ranges. Severe hepatic insufficiency may cause LIVER FAILURE or DEATH. Treatment may include LIVER TRANSPLANTATION.
Uncrossed tracts of motor nerves from the brain to the anterior horns of the spinal cord, involved in reflexes, locomotion, complex movements, and postural control.
One of the three major families of endogenous opioid peptides. The enkephalins are pentapeptides that are widespread in the central and peripheral nervous systems and in the adrenal medulla.
A group of compounds that are derivatives of methoxybenzene and contain the general formula R-C7H7O.
One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action.
Toxic asphyxiation due to the displacement of oxygen from oxyhemoglobin by carbon monoxide.
Application of electric current in treatment without the generation of perceptible heat. It includes electric stimulation of nerves or muscles, passage of current into the body, or use of interrupted current of low intensity to raise the threshold of the skin to pain.
Agents used in the treatment of Parkinson's disease. The most commonly used drugs act on the dopaminergic system in the striatum and basal ganglia or are centrally acting muscarinic antagonists.
A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans.
Use of electric potential or currents to elicit biological responses.
A symptom, not a disease, of a twisted neck. In most instances, the head is tipped toward one side and the chin rotated toward the other. The involuntary muscle contractions in the neck region of patients with torticollis can be due to congenital defects, trauma, inflammation, tumors, and neurological or other factors.
Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures.
Any drugs that are used for their effects on dopamine receptors, on the life cycle of dopamine, or on the survival of dopaminergic neurons.
A small protuberance at the dorsal, posterior corner of the wall of the THIRD VENTRICLE, adjacent to the dorsal THALAMUS and PINEAL BODY. It contains the habenular nuclei and is a major part of the epithalamus.
A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use.
The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed)
Diseases of the BASAL GANGLIA including the PUTAMEN; GLOBUS PALLIDUS; claustrum; AMYGDALA; and CAUDATE NUCLEUS. DYSKINESIAS (most notably involuntary movements and alterations of the rate of movement) represent the primary clinical manifestations of these disorders. Common etiologies include CEREBROVASCULAR DISORDERS; NEURODEGENERATIVE DISEASES; and CRANIOCEREBRAL TRAUMA.
The function of opposing or restraining the excitation of neurons or their target excitable cells.
A calcium-binding protein that mediates calcium HOMEOSTASIS in KIDNEYS, BRAIN, and other tissues. It is found in well-defined populations of NEURONS and is involved in CALCIUM SIGNALING and NEURONAL PLASTICITY. It is regulated in some tissues by VITAMIN D.
A dopamine D2/D3 receptor agonist.
Drugs that bind to but do not activate GABA RECEPTORS, thereby blocking the actions of endogenous GAMMA-AMINOBUTYRIC ACID and GABA RECEPTOR AGONISTS.
One of the endogenous pentapeptides with morphine-like activity. It differs from LEU-ENKEPHALIN by the amino acid METHIONINE in position 5. Its first four amino acid sequence is identical to the tetrapeptide sequence at the N-terminal of BETA-ENDORPHIN.
Relatively invariant mode of behavior elicited or determined by a particular situation; may be verbal, postural, or expressive.
Lack of emotion or emotional expression; a disorder of motivation that persists over time.
The anterior subdivision of the embryonic PROSENCEPHALON or the corresponding part of the adult prosencephalon that includes the cerebrum and associated structures.
A subset of GABA RECEPTORS that signal through their interaction with HETEROTRIMERIC G-PROTEINS.
A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES.
An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors.
An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use.
A substituted benzamide that has antipsychotic properties. It is a dopamine D2 receptor (see RECEPTORS, DOPAMINE D2) antagonist.
Inorganic or organic derivatives of phosphinic acid, H2PO(OH). They include phosphinates and phosphinic acid esters.
The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
Continuous involuntary sustained muscle contraction which is often a manifestation of BASAL GANGLIA DISEASES. When an affected muscle is passively stretched, the degree of resistance remains constant regardless of the rate at which the muscle is stretched. This feature helps to distinguish rigidity from MUSCLE SPASTICITY. (From Adams et al., Principles of Neurology, 6th ed, p73)
The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES.
Compounds with BENZENE fused to AZEPINES.

Effects of stimulants of abuse on extrapyramidal and limbic neuropeptide Y systems. (1/671)

Neuropeptide Y (NPY), an apparent neuromodulating neuropeptide, has been linked to dopamine systems and dopamine-related psychotic disorders. Because of this association, we determined and compared the effects of psychotomimetic drugs on extrapyramidal and limbic NPY systems. We observed that phencyclidine, methamphetamine (METH), (+)methylenedioxymethamphetamine (MDMA), and cocaine, but not (-)MDMA, similarly reduced the striatal content of NPY-like immunoreactivity from 54% (phencyclidine) to 74% [(+) MDMA] of control. The effects of METH on NPY levels in the nucleus accumbens, caudate nucleus, globus pallidus, and substantia nigra were characterized in greater detail. We observed that METH decreased NPY levels in specific regions of the nucleus accumbens and the caudate, but had no effect on NPY in the globus pallidus or the substantia nigra. The dopamine D1 receptor antagonist SCH-23390 blocked these effects of METH, suggesting that NPY levels throughout the nucleus accumbens and the caudate are regulated through D1 pathways. The D2 receptor antagonist eticlopride did not appear to alter the METH effect, but this was difficult to determine because eticlopride decreased NPY levels by itself. A single dose of METH was sufficient to lower NPY levels, in some, but not all, regions examined. The effects on NPY levels after multiple METH administrations were substantially greater and persisted up to 48 h after treatment; this suggests that synthesis of this neuropeptide may be suppressed even after the drug is gone. These findings suggest that NPY systems may contribute to the D1 receptor-mediated effects of the psychostimulants.  (+info)

Functional integrity of mitochondrial genomes in human platelets and autopsied brain tissues from elderly patients with Alzheimer's disease. (2/671)

To determine whether pathogenic mutations in mtDNA are involved in phenotypic expression of Alzheimer's disease (AD), the transfer of mtDNA from elderly patients with AD into mtDNA-less (rho0) HeLa cells was carried out by fusion of platelets or synaptosomal fractions of autopsied brain tissues with rho0 HeLa cells. The results showed that mtDNA in postmortem brain tissue survives for a long time without degradation and could be rescued in rho0 HeLa cells. Next, the cybrid clones repopulated with exogenously imported mtDNA from patients with AD were used for examination of respiratory enzyme activity and transfer of mtDNA with the pathogenic mutations that induce mitochondrial dysfunction. The presence of the mutated mtDNA was restricted to brain tissues and their cybrid clones that formed with synaptosomes as mtDNA donors, whereas no cybrid clones that isolated with platelets as mtDNA donors had detectable mutated mtDNA. However, biochemical analyses showed that all cybrid clones with mtDNA imported from platelets or brain tissues of patients with AD restored mitochondrial respiration activity to almost the same levels as those of cybrid clones with mtDNA from age-matched normal controls, suggesting functional integrity of mtDNA in both platelets and brain tissues of elderly patients with AD. These observations warrant the reassessment of the conventional concept that the accumulation of pathogenic mutations in mtDNA throughout the aging process is responsible for the decrease of mitochondrial respiration capacity with age and with the development of age-associated neurodegenerative diseases.  (+info)

The effects of posteroventral pallidotomy on the preparation and execution of voluntary hand and arm movements in Parkinson's disease. (3/671)

We studied the effect of posteroventral pallidotomy on movement preparation and execution in 27 parkinsonian patients using various motor tasks. Patients were evaluated after overnight withdrawal of medication before and 3 months after unilateral pallidotomy. Surgery had no effect on initiation time in unwarned simple and choice reaction time tasks, whereas movement time measured during the same tasks was improved for the contralesional hand. Movement times also improved for isometric and isotonic ballistic movements. In contrast, repetitive, distal and fine movements measured in finger-tapping and pegboard tasks were not improved after pallidotomy. Preparatory processes were investigated using both behavioural and electrophysiological measures. A precued choice reaction time task suggested an enhancement of motor preparation for the contralesional hand. Similarly, movement-related cortical potentials showed an increase in the slope of the late component (NS2) when the patients performed joystick movements with the contralesional hand. However, no significant change was found for the early component (NS1) or when the patient moved the ipsilesional hand. The amplitude of the long-latency stretch reflex of the contralesional hand decreased after surgery. In summary, the data suggest that pallidotomy improved mainly the later stages of movement preparation and the execution of proximal movements with the contralesional limb. These results provide detailed quantitative data on the impact of posteroventral pallidotomy on previously described measures of upper limb akinesia in Parkinson's disease.  (+info)

Cognitive outcome after unilateral pallidal stimulation in Parkinson's disease. (4/671)

OBJECTIVES: Chronic high frequency electrostimulation of the globus pallidus internus mimics pallidotomy and improves clinical symptoms in Parkinson's disease. The aim of this study was to investigate the cognitive consequences of unilateral deep brain stimulation. METHODS: Twenty non-demented patients with Parkinson's disease (age range 38-70 years) were neuropsychologically assessed 2 months before and 3 months after unilateral pallidal stimulation. The cognitive assessment included measures of memory, spatial behaviour, and executive and psychomotor function. In addition to group analysis of cognitive change, a cognitive impairment index (CII) was calculated for each individual patient representing the percentage of cognitive measures that fell more than 1 SD below the mean of a corresponding normative sample. RESULTS: Neurological assessment with the Hoehn and Yahr scale and the unified Parkinson's disease rating scale disclosed a significant postoperative reduction in average clinical Parkinson's disease symptomatology (p<0.001). Repeated measures multivariate analysis of variance (using right/left side of stimulation as a between subjects factor) showed no significant postoperative change in cognitive performance for the total patient group (main effect of operation). The side of stimulation did not show a significant differential effect on cognitive performance (main effect of lateralisation). There was no significant operation by lateralisation interaction effect. Although the patients experienced significant motor symptom relief after pallidal stimulation, they remained mildly depressed after surgery. Analysis of the individual CII changes showed a postoperative cognitive decline in 30% of the patients. These patients were significantly older and took higher preoperative doses of levodopa than patients showing no change or a postoperative cognitive improvement. CONCLUSIONS: Left or right pallidal stimulation for the relief of motor symptoms in Parkinson's disease seems relatively safe, although older patients and patients needing high preoperative doses of levodopa seem to be more vulnerable for cognitive decline after deep brain stimulation.  (+info)

Relationship of lesion location to clinical outcome following microelectrode-guided pallidotomy for Parkinson's disease. (5/671)

The purpose of this study was to examine the relationship between lesion location and clinical outcome following globus pallidus internus (GPi) pallidotomy for advanced Parkinson's disease. Thirty-three patients were prospectively studied with extensive neurological examinations before and at 6 and 12 months following microelectrode-guided pallidotomy. Lesion location was characterized using volumetric MRI. The position of lesions within the posteroventral region of the GPi was measured, from anteromedial to posterolateral along an axis parallel to the internal capsule. To relate lesion position to clinical outcome, hierarchical multiple regression analysis was used. The variance in outcome measures that was related to preoperative scores and lesion volume was first calculated, and then the remaining variance attributable to lesion location was determined. Lesion location along the anteromedial-to-posterolateral axis within the GPi influenced the variance in total score on the Unified Parkinson's Disease Rating Scale in the postoperative 'off' period, and in 'on' period dyskinesia scores. Within the posteroventral GPi, anteromedial lesions were associated with greater improvement in 'off' period contralateral rigidity and 'on' period dyskinesia, whereas more centrally located lesions correlated with better postoperative scores of contralateral akinesia and postural instability/gait disturbance. Improvement in contralateral tremor was weakly related to lesion location, being greater with posterolateral lesions. We conclude that improvement in specific motor signs in Parkinson's disease following pallidotomy is related to lesion position within the posteroventral GPi. These findings are consistent with the known segregated but parallel organization of specific motor circuits in the basal ganglia, and may explain the variability in clinical outcome after pallidotomy and therefore have important therapeutic implications.  (+info)

Reassessment of unilateral pallidotomy in Parkinson's disease. A 2-year follow-up study. (6/671)

Unilateral pallidotomy has gained popularity in treating the motor symptoms of Parkinson's disease. We present the results of a 2-year post-pallidotomy follow-up study. Using the Unified Parkinson's Disease Rating Scale (UPDRS), the Goetz dyskinesia scale and the Purdue Pegboard Test (PPBT), we evaluated 20 patients at regular intervals both off and on medications for 2 years post-pallidotomy. There were no significant changes in the dosages of antiparkinsonian medications from 3 months pre-pallidotomy to 2 years post-pallidotomy. On the side contralateral to the operation, the improvements were preserved in 'on'-state dyskinesia (83% reduction from pre-pallidotomy to 2 years post-pallidotomy, P < 0.001) and 'off'-state tremor (90% reduction from pre-pallidotomy to 2 years post-pallidotomy, P = 0.005). There were no statistically significant differences between pre-pallidotomy scores and those at 2 years post-pallidotomy in ipsilateral dyskinesia, axial dyskinesia, 'off'- or 'on'-state PPBT, 'off'-state Activities of Daily Living (ADL) and 'off'-state gait and postural stability. After 2 years, the 'on'-state ADL scores worsened by 75%, compared with pre-pallidotomy (P = 0.005). We conclude that 2 years after pallidotomy, the improvements in dyskinesia and tremor on the side contralateral to pallidotomy are preserved, while the initial improvements in most other deficits disappear, either because of progression of pathology or loss of the early efficacy achieved by surgery.  (+info)

Thalamocortical axons are influenced by chemorepellent and chemoattractant activities localized to decision points along their path. (7/671)

Thalamocortical axons (TCAs), which originate in dorsal thalamus, project ventrally in diencephalon and then dorsolaterally in ventral telencephalon to their target, the neocortex. To elucidate potentially key decision points in TCA pathfinding and hence the possible localization of guidance cues, we used DiI-tracing to describe the initial trajectory of TCAs in mice. DiI-labeled TCAs extend ventrally on the lateral surface of ventral thalamus. Rather than continuing this trajectory onto the lateral surface of the hypothalamus, TCAs make a sharp lateral turn into ventral telencephalon. This behavior suggests that the hypothalamus is repulsive and the ventral telencephalon attractive for TCAs. In support of this hypothesis, we find that axon outgrowth from explants of dorsal thalamus is biased away from hypothalamus and toward ventral telencephalon when cocultured at a distance in collagen gels. The in vivo DiI analysis also reveals a broad cluster of retrogradely labeled neurons in the medial part of ventral telencephalon positioned within or adjacent to the thalamocortical pathway prior to or at the time TCAs are extending through it. The axons of these neurons extend into or through dorsal thalamus and appear to be coincident with the oppositely extending TCAs. These findings suggest that multiple cues guide TCAs along their pathway from dorsal thalamus to neocortex: TCAs may fasciculate on the axons of ventral telencephalic neurons as they extend through ventral thalamus and the medial part of ventral telencephalon, and chemorepellent and chemoattractant activities expressed by hypothalamus and ventral telencephalon, respectively, may cooperate to promote the turning of TCAs away from hypothalamus and into ventral telencephalon.  (+info)

Magnetization transfer contrast of various regions of the brain in liver cirrhosis. (8/671)

BACKGROUND AND PURPOSE: T1-weighted MR images show high signal intensity in the pallidum of many patients with liver cirrhosis. The purpose of this study was to evaluate quantitative changes in MR signals in patients with liver cirrhosis by using the magnetization transfer technique. METHODS: Magnetization transfer ratios were measured in seven different regions of the brain in 37 patients with liver cirrhosis and in 37 healthy volunteers. RESULTS: The magnetization transfer ratios in patients with liver cirrhosis were significantly lower than those in control subjects in the globus pallidus, putamen, thalamus, corona radiata, and subcortical white matter. CONCLUSION: Abnormal magnetization transfer ratios may be found in otherwise normal-appearing cerebral regions.  (+info)

The Globus Pallidus is a structure in the brain that is part of the basal ganglia, a group of nuclei associated with movement control and other functions. It has two main subdivisions: the external (GPe) and internal (GPi) segments. The GPe receives input from the striatum and sends inhibitory projections to the subthalamic nucleus, while the GPi sends inhibitory projections to the thalamus, which in turn projects to the cerebral cortex. These connections allow for the regulation of motor activity, with abnormal functioning of the Globus Pallidus being implicated in various movement disorders such as Parkinson's disease and Huntington's disease.

The basal ganglia are a group of interconnected nuclei, or clusters of neurons, located in the base of the brain. They play a crucial role in regulating motor function, cognition, and emotion. The main components of the basal ganglia include the striatum (made up of the caudate nucleus, putamen, and ventral striatum), globus pallidus (divided into external and internal segments), subthalamic nucleus, and substantia nigra (with its pars compacta and pars reticulata).

The basal ganglia receive input from various regions of the cerebral cortex and other brain areas. They process this information and send output back to the thalamus and cortex, helping to modulate and coordinate movement. The basal ganglia also contribute to higher cognitive functions such as learning, decision-making, and habit formation. Dysfunction in the basal ganglia can lead to neurological disorders like Parkinson's disease, Huntington's disease, and dystonia.

The subthalamic nucleus (STN) is a small, lens-shaped structure located in the basal ganglia of the brain. It plays a crucial role in motor control and has been identified as a key target for deep brain stimulation surgery in the treatment of Parkinson's disease and other movement disorders.

The STN is involved in the regulation of movement, balance, and posture, and helps to filter and coordinate signals that are sent from the cerebral cortex to the thalamus and then on to the motor neurons in the brainstem and spinal cord. In Parkinson's disease, abnormal activity in the STN can contribute to symptoms such as tremors, rigidity, and difficulty initiating movements.

Deep brain stimulation of the STN involves implanting electrodes into the nucleus and delivering electrical impulses that help to regulate its activity. This can lead to significant improvements in motor function and quality of life for some people with Parkinson's disease.

Deep brain stimulation (DBS) is a surgical procedure that involves the implantation of a medical device called a neurostimulator, which sends electrical impulses to specific targets in the brain. The impulses help to regulate abnormal brain activity, and can be used to treat a variety of neurological conditions, including Parkinson's disease, essential tremor, dystonia, and obsessive-compulsive disorder.

During the procedure, electrodes are implanted into the brain and connected to the neurostimulator, which is typically implanted in the chest. The neurostimulator can be programmed to deliver electrical impulses at varying frequencies, amplitudes, and pulse widths, depending on the specific needs of the patient.

DBS is generally considered a safe and effective treatment option for many patients with neurological conditions, although it does carry some risks, such as infection, bleeding, and hardware complications. It is typically reserved for patients who have not responded well to other forms of treatment, or who experience significant side effects from medication.

The putamen is a round, egg-shaped structure that is a part of the basal ganglia, located in the forebrain. It is situated laterally to the globus pallidus and medially to the internal capsule. The putamen plays a crucial role in regulating movement and is involved in various functions such as learning, motivation, and habit formation.

It receives input from the cerebral cortex via the corticostriatal pathway and sends output to the globus pallidus and substantia nigra pars reticulata, which are also part of the basal ganglia circuitry. The putamen is heavily innervated by dopaminergic neurons from the substantia nigra pars compacta, and degeneration of these neurons in Parkinson's disease leads to a significant reduction in dopamine levels in the putamen, resulting in motor dysfunction.

Dystonia is a neurological movement disorder characterized by involuntary muscle contractions, leading to repetitive or twisting movements. These movements can be painful and may affect one part of the body (focal dystonia) or multiple parts (generalized dystonia). The exact cause of dystonia varies, with some cases being inherited and others resulting from damage to the brain. Treatment options include medications, botulinum toxin injections, and deep brain stimulation surgery.

Parkinson's disease is a progressive neurodegenerative disorder that affects movement. It is characterized by the death of dopamine-producing cells in the brain, specifically in an area called the substantia nigra. The loss of these cells leads to a decrease in dopamine levels, which results in the motor symptoms associated with Parkinson's disease. These symptoms can include tremors at rest, stiffness or rigidity of the limbs and trunk, bradykinesia (slowness of movement), and postural instability (impaired balance and coordination). In addition to these motor symptoms, non-motor symptoms such as cognitive impairment, depression, anxiety, and sleep disturbances are also common in people with Parkinson's disease. The exact cause of Parkinson's disease is unknown, but it is thought to be a combination of genetic and environmental factors. There is currently no cure for Parkinson's disease, but medications and therapies can help manage the symptoms and improve quality of life.

The Substantia Nigra is a region in the midbrain that plays a crucial role in movement control and reward processing. It is composed of two parts: the pars compacta and the pars reticulata. The pars compacta contains dopamine-producing neurons, whose loss or degeneration is associated with Parkinson's disease, leading to motor symptoms such as tremors, rigidity, and bradykinesia.

In summary, Substantia Nigra is a brain structure that contains dopamine-producing cells and is involved in movement control and reward processing. Its dysfunction or degeneration can lead to neurological disorders like Parkinson's disease.

The caudate nucleus is a part of the brain located within the basal ganglia, a group of structures that are important for movement control and cognition. It has a distinctive C-shaped appearance and plays a role in various functions such as learning, memory, emotion, and motivation. The caudate nucleus receives inputs from several areas of the cerebral cortex and sends outputs to other basal ganglia structures, contributing to the regulation of motor behavior and higher cognitive processes.

Parkinsonian disorders are a group of neurological conditions characterized by motor symptoms such as bradykinesia (slowness of movement), rigidity, resting tremor, and postural instability. These symptoms are caused by the degeneration of dopamine-producing neurons in the brain, particularly in the substantia nigra pars compacta.

The most common Parkinsonian disorder is Parkinson's disease (PD), which is a progressive neurodegenerative disorder. However, there are also several other secondary Parkinsonian disorders, including:

1. Drug-induced parkinsonism: This is caused by the use of certain medications, such as antipsychotics and metoclopramide.
2. Vascular parkinsonism: This is caused by small vessel disease in the brain, which can lead to similar symptoms as PD.
3. Dementia with Lewy bodies (DLB): This is a type of dementia that shares some features with PD, such as the presence of alpha-synuclein protein clumps called Lewy bodies.
4. Progressive supranuclear palsy (PSP): This is a rare brain disorder that affects movement, gait, and eye movements.
5. Multiple system atrophy (MSA): This is a progressive neurodegenerative disorder that affects multiple systems in the body, including the autonomic nervous system, motor system, and cerebellum.
6. Corticobasal degeneration (CBD): This is a rare neurological disorder that affects both movement and cognition.

It's important to note that while these disorders share some symptoms with PD, they have different underlying causes and may require different treatments.

The corpus striatum is a part of the brain that plays a crucial role in movement, learning, and cognition. It consists of two structures called the caudate nucleus and the putamen, which are surrounded by the external and internal segments of the globus pallidus. Together, these structures form the basal ganglia, a group of interconnected neurons that help regulate voluntary movement.

The corpus striatum receives input from various parts of the brain, including the cerebral cortex, thalamus, and other brainstem nuclei. It processes this information and sends output to the globus pallidus and substantia nigra, which then project to the thalamus and back to the cerebral cortex. This feedback loop helps coordinate and fine-tune movements, allowing for smooth and coordinated actions.

Damage to the corpus striatum can result in movement disorders such as Parkinson's disease, Huntington's disease, and dystonia. These conditions are characterized by abnormal involuntary movements, muscle stiffness, and difficulty initiating or controlling voluntary movements.

Neural pathways, also known as nerve tracts or fasciculi, refer to the highly organized and specialized routes through which nerve impulses travel within the nervous system. These pathways are formed by groups of neurons (nerve cells) that are connected in a series, creating a continuous communication network for electrical signals to transmit information between different regions of the brain, spinal cord, and peripheral nerves.

Neural pathways can be classified into two main types: sensory (afferent) and motor (efferent). Sensory neural pathways carry sensory information from various receptors in the body (such as those for touch, temperature, pain, and vision) to the brain for processing. Motor neural pathways, on the other hand, transmit signals from the brain to the muscles and glands, controlling movements and other effector functions.

The formation of these neural pathways is crucial for normal nervous system function, as it enables efficient communication between different parts of the body and allows for complex behaviors, cognitive processes, and adaptive responses to internal and external stimuli.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Hypokinesia is a term used in medicine to describe decreased or reduced mobility and amplitude of movements. It can be seen in various medical conditions, most notably in Parkinson's disease. In this condition, hypokinesia manifests as bradykinesia (slowness of movement), akinesia (absence of movement), or both. Hypokinesia can also affect facial expressions, leading to a mask-like appearance. Other causes of hypokinesia include certain medications, stroke, and other neurological disorders.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

The thalamus is a large, paired structure in the brain that serves as a relay station for sensory and motor signals to the cerebral cortex. It is located in the dorsal part of the diencephalon and is made up of two symmetrical halves, each connected to the corresponding cerebral hemisphere.

The thalamus receives inputs from almost all senses, except for the olfactory system, and processes them before sending them to specific areas in the cortex. It also plays a role in regulating consciousness, sleep, and alertness. Additionally, the thalamus is involved in motor control by relaying information between the cerebellum and the motor cortex.

The thalamus is divided into several nuclei, each with distinct connections and functions. Some of these nuclei are involved in sensory processing, while others are involved in motor function or regulation of emotions and cognition. Overall, the thalamus plays a critical role in integrating information from various brain regions and modulating cognitive and emotional processes.

Stereotaxic techniques are minimally invasive surgical procedures used in neuroscience and neurology that allow for precise targeting and manipulation of structures within the brain. These methods use a stereotactic frame, which is attached to the skull and provides a three-dimensional coordinate system to guide the placement of instruments such as electrodes, cannulas, or radiation sources. The main goal is to reach specific brain areas with high precision and accuracy, minimizing damage to surrounding tissues. Stereotaxic techniques are widely used in research, diagnosis, and treatment of various neurological disorders, including movement disorders, pain management, epilepsy, and psychiatric conditions.

Dystonic disorders are a group of neurological conditions characterized by sustained or intermittent muscle contractions that result in involuntary, repetitive, and often twisting movements and abnormal postures. These movements can affect any part of the body, including the face, neck, limbs, and trunk. Dystonic disorders can be primary, meaning they are caused by genetic mutations or idiopathic causes, or secondary, resulting from brain injury, infection, or other underlying medical conditions.

The most common form of dystonia is cervical dystonia (spasmodic torticollis), which affects the muscles of the neck and results in abnormal head positioning. Other forms of dystonia include blepharospasm (involuntary eyelid spasms), oromandibular dystonia (affecting the muscles of the jaw, face, and tongue), and generalized dystonia (affecting multiple parts of the body).

Dystonic disorders can significantly impact a person's quality of life, causing pain, discomfort, and social isolation. Treatment options include oral medications, botulinum toxin injections, and deep brain stimulation surgery in severe cases.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

Manganese poisoning, also known as manganism, is a condition that results from excessive exposure to manganese. Manganese is an essential nutrient, but at high levels, it can become toxic to the body. The symptoms of manganese poisoning can be similar to those of Parkinson's disease and may include tremors, difficulty walking, and mood changes. In severe cases, manganese poisoning can lead to irreversible neurological damage. Exposure to manganese can occur through inhalation, ingestion, or skin contact, and is often associated with occupational exposure in industries such as welding, mining, and manufacturing of batteries and fertilizers.

Pallidotomy is a surgical procedure that involves the lesioning or removal of a specific part of the brain called the globus pallidus, which is located within the basal ganglia. This procedure is typically performed to alleviate symptoms associated with movement disorders such as Parkinson's disease and dystonia. By selectively damaging or removing the overactive neurons in the globus pallidus, pallidotomy can help restore balance to the neural circuits that control movement, thereby reducing tremors, rigidity, and other motor symptoms.

It is important to note that pallidotomy is an invasive procedure with potential risks and complications, including infection, bleeding, and cognitive or emotional side effects. As a result, it is typically reserved for patients who have not responded well to more conservative treatments such as medication. In recent years, deep brain stimulation (DBS) has emerged as an alternative surgical treatment that can achieve similar therapeutic benefits with fewer risks and greater reversibility.

Pantothenate Kinase-Associated Neurodegeneration (PKAN) is a rare inherited neurological disorder, specifically classified as a type of neurodegeneration with brain iron accumulation (NBIA). PKAN is caused by mutations in the PANK2 gene, which provides instructions for making an enzyme called pantothenate kinase 2. This enzyme plays a crucial role in the production of coenzyme A, a vital component in many important chemical reactions within cells.

The primary feature of PKAN is the abnormal accumulation of iron in specific areas of the brain, particularly the basal ganglia, which leads to progressive neurodegeneration. The disease typically manifests in early childhood, although late-onset forms have also been reported. Symptoms include:

1. Dystonia (involuntary muscle contractions causing slow repetitive movements or abnormal postures)
2. Parkinsonism (tremors, rigidity, and difficulty with movement initiation and coordination)
3. Retinitis pigmentosa (eye disease characterized by night blindness and progressive vision loss)
4. Speech and swallowing difficulties
5. Progressive dementia
6. Behavioral changes

The presence of iron in the brain can be observed on MRI scans, creating a characteristic "eye-of-the-tiger" sign, which is diagnostic for PKAN. Currently, there are limited treatment options available to manage symptoms and slow disease progression. Researchers continue to investigate potential therapies targeting the underlying genetic defects and iron accumulation in the brain.

The entopeduncular nucleus (EP) is a small, compact collection of neurons located in the ventral region of the diencephalon, specifically within the posterior intralaminar complex of the thalamus. It is present in various mammals, including humans. The EP nucleus receives inputs from the basal ganglia and projects to the brainstem and other thalamic nuclei.

In rodents, the entopeduncular nucleus is also known as the globus pallidus internus (GPi). However, in primates, including humans, the GPi is a separate structure located near the EP nucleus. Both structures are part of the basal ganglia circuitry and play essential roles in motor control, procedural learning, and habit formation.

The entopeduncular nucleus has been implicated in several neurological conditions, such as Parkinson's disease, Huntington's disease, and dystonia. Deep brain stimulation (DBS) of the EP nucleus or GPi is an effective treatment for reducing motor symptoms associated with these disorders.

Gamma-Aminobutyric Acid (GABA) is a major inhibitory neurotransmitter in the mammalian central nervous system. It plays a crucial role in regulating neuronal excitability and preventing excessive neuronal firing, which helps to maintain neural homeostasis and reduce the risk of seizures. GABA functions by binding to specific receptors (GABA-A, GABA-B, and GABA-C) on the postsynaptic membrane, leading to hyperpolarization of the neuronal membrane and reduced neurotransmitter release from presynaptic terminals.

In addition to its role in the central nervous system, GABA has also been identified as a neurotransmitter in the peripheral nervous system, where it is involved in regulating various physiological processes such as muscle relaxation, hormone secretion, and immune function.

GABA can be synthesized in neurons from glutamate, an excitatory neurotransmitter, through the action of the enzyme glutamic acid decarboxylase (GAD). Once synthesized, GABA is stored in synaptic vesicles and released into the synapse upon neuronal activation. After release, GABA can be taken up by surrounding glial cells or degraded by the enzyme GABA transaminase (GABA-T) into succinic semialdehyde, which is further metabolized to form succinate and enter the Krebs cycle for energy production.

Dysregulation of GABAergic neurotransmission has been implicated in various neurological and psychiatric disorders, including epilepsy, anxiety, depression, and sleep disturbances. Therefore, modulating GABAergic signaling through pharmacological interventions or other therapeutic approaches may offer potential benefits for the treatment of these conditions.

Implanted electrodes are medical devices that are surgically placed inside the body to interface directly with nerves, neurons, or other electrically excitable tissue for various therapeutic purposes. These electrodes can be used to stimulate or record electrical activity from specific areas of the body, depending on their design and application.

There are several types of implanted electrodes, including:

1. Deep Brain Stimulation (DBS) electrodes: These are placed deep within the brain to treat movement disorders such as Parkinson's disease, essential tremor, and dystonia. DBS electrodes deliver electrical impulses that modulate abnormal neural activity in targeted brain regions.
2. Spinal Cord Stimulation (SCS) electrodes: These are implanted along the spinal cord to treat chronic pain syndromes. SCS electrodes emit low-level electrical pulses that interfere with pain signals traveling to the brain, providing relief for patients.
3. Cochlear Implant electrodes: These are surgically inserted into the cochlea of the inner ear to restore hearing in individuals with severe to profound hearing loss. The electrodes stimulate the auditory nerve directly, bypassing damaged hair cells within the cochlea.
4. Retinal Implant electrodes: These are implanted in the retina to treat certain forms of blindness caused by degenerative eye diseases like retinitis pigmentosa. The electrodes convert visual information from a camera into electrical signals, which stimulate remaining retinal cells and transmit the information to the brain via the optic nerve.
5. Sacral Nerve Stimulation (SNS) electrodes: These are placed near the sacral nerves in the lower back to treat urinary or fecal incontinence and overactive bladder syndrome. SNS electrodes deliver electrical impulses that regulate the function of the affected muscles and nerves.
6. Vagus Nerve Stimulation (VNS) electrodes: These are wrapped around the vagus nerve in the neck to treat epilepsy and depression. VNS electrodes provide intermittent electrical stimulation to the vagus nerve, which has connections to various regions of the brain involved in these conditions.

Overall, implanted electrodes serve as a crucial component in many neuromodulation therapies, offering an effective treatment option for numerous neurological and sensory disorders.

An action potential is a brief electrical signal that travels along the membrane of a nerve cell (neuron) or muscle cell. It is initiated by a rapid, localized change in the permeability of the cell membrane to specific ions, such as sodium and potassium, resulting in a rapid influx of sodium ions and a subsequent efflux of potassium ions. This ion movement causes a brief reversal of the electrical potential across the membrane, which is known as depolarization. The action potential then propagates along the cell membrane as a wave, allowing the electrical signal to be transmitted over long distances within the body. Action potentials play a crucial role in the communication and functioning of the nervous system and muscle tissue.

Thalamic nuclei refer to specific groupings of neurons within the thalamus, a key relay station in the brain that receives sensory information from various parts of the body and transmits it to the cerebral cortex for processing. The thalamus is divided into several distinct nuclei, each with its own unique functions and connections. These nuclei can be broadly categorized into three groups:

1. Sensory relay nuclei: These nuclei receive sensory information from different modalities such as vision, audition, touch, and taste, and project this information to specific areas of the cerebral cortex for further processing. Examples include the lateral geniculate nucleus (vision), medial geniculate nucleus (audition), and ventral posterior nucleus (touch and taste).
2. Association nuclei: These nuclei are involved in higher-order cognitive functions, such as attention, memory, and executive control. They receive inputs from various cortical areas and project back to those same areas, forming closed loops that facilitate information processing and integration. Examples include the mediodorsal nucleus and pulvinar.
3. Motor relay nuclei: These nuclei are involved in motor control and coordination. They receive inputs from the cerebral cortex and basal ganglia and project to the brainstem and spinal cord, helping to regulate movement and posture. Examples include the ventral anterior and ventral lateral nuclei.

Overall, thalamic nuclei play a crucial role in integrating sensory, motor, and cognitive information, allowing for adaptive behavior and conscious experience.

Dopamine agonists are a class of medications that mimic the action of dopamine, a neurotransmitter in the brain that regulates movement, emotion, motivation, and reinforcement of rewarding behaviors. These medications bind to dopamine receptors in the brain and activate them, leading to an increase in dopaminergic activity.

Dopamine agonists are used primarily to treat Parkinson's disease, a neurological disorder characterized by motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and postural instability. By increasing dopaminergic activity in the brain, dopamine agonists can help alleviate some of these symptoms.

Examples of dopamine agonists include:

1. Pramipexole (Mirapex)
2. Ropinirole (Requip)
3. Rotigotine (Neupro)
4. Apomorphine (Apokyn)

Dopamine agonists may also be used off-label to treat other conditions, such as restless legs syndrome or certain types of dopamine-responsive dystonia. However, these medications can have significant side effects, including nausea, dizziness, orthostatic hypotension, compulsive behaviors (such as gambling, shopping, or sexual addiction), and hallucinations. Therefore, they should be used with caution and under the close supervision of a healthcare provider.

"Macaca fascicularis" is the scientific name for the crab-eating macaque, also known as the long-tailed macaque. It's a species of monkey that is native to Southeast Asia. They are called "crab-eating" macaques because they are known to eat crabs and other crustaceans. These monkeys are omnivorous and their diet also includes fruits, seeds, insects, and occasionally smaller vertebrates.

Crab-eating macaques are highly adaptable and can be found in a wide range of habitats, including forests, grasslands, and wetlands. They are also known to live in close proximity to human settlements and are often considered pests due to their tendency to raid crops and steal food from humans.

These monkeys are social animals and live in large groups called troops. They have a complex social structure with a clear hierarchy and dominant males. Crab-eating macaques are also known for their intelligence and problem-solving abilities.

In medical research, crab-eating macaques are often used as animal models due to their close genetic relationship to humans. They are used in studies related to infectious diseases, neuroscience, and reproductive biology, among others.

Movement disorders are a group of neurological conditions that affect the control and coordination of voluntary movements. These disorders can result from damage to or dysfunction of the cerebellum, basal ganglia, or other parts of the brain that regulate movement. Symptoms may include tremors, rigidity, bradykinesia (slowness of movement), akathisia (restlessness and inability to remain still), dystonia (sustained muscle contractions leading to abnormal postures), chorea (rapid, unpredictable movements), tics, and gait disturbances. Examples of movement disorders include Parkinson's disease, Huntington's disease, Tourette syndrome, and dystonic disorders.

The ventral thalamic nuclei are a group of nuclei located in the ventral part of the thalamus, a region of the diencephalon in the brain. These nuclei play a crucial role in sensory and motor functions, as well as cognitive processes such as attention and memory. They include several subnuclei, such as the ventral anterior (VA), ventral lateral (VL), ventral medial (VM), and ventral posterior (VP) nuclei.

The ventral anterior and ventral lateral nuclei are involved in motor control and receive inputs from the basal ganglia, cerebellum, and cortex. They project to the premotor and motor areas of the cortex, contributing to the planning, initiation, and execution of movements.

The ventral medial nucleus is associated with emotional processing and receives inputs from the limbic system, including the amygdala and hippocampus. It projects to the prefrontal cortex and cingulate gyrus, contributing to the regulation of emotions and motivation.

The ventral posterior nuclei are involved in sensory processing, particularly for tactile and proprioceptive information. They receive inputs from the spinal cord and brainstem and project to the primary somatosensory cortex, where they contribute to the perception of touch, pressure, temperature, and body position.

Overall, the ventral thalamic nuclei are an essential component of the neural circuits involved in sensory, motor, and cognitive functions, and their dysfunction has been implicated in various neurological and psychiatric disorders.

Oxidopamine is not a recognized medical term or a medication commonly used in clinical practice. However, it is a chemical compound that is often used in scientific research, particularly in the field of neuroscience.

Oxidopamine is a synthetic catecholamine that can be selectively taken up by dopaminergic neurons and subsequently undergo oxidation, leading to the production of reactive oxygen species. This property makes it a useful tool for studying the effects of oxidative stress on dopaminergic neurons in models of Parkinson's disease and other neurological disorders.

In summary, while not a medical definition per se, oxidopamine is a chemical compound used in research to study the effects of oxidative stress on dopaminergic neurons.

GABA (gamma-aminobutyric acid) uptake inhibitors are a class of drugs or compounds that block the reuptake of GABA, an inhibitory neurotransmitter in the brain, into the presynaptic neuron. By blocking the reuptake, GABA uptake inhibitors increase the concentration of GABA in the synaptic cleft, which can enhance its inhibitory effects on neural activity. These drugs are sometimes used in the treatment of various neurological and psychiatric conditions, such as anxiety disorders, epilepsy, and spasticity. Examples of GABA uptake inhibitors include tiagabine and vigabatrin.

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a chemical compound that can cause permanent parkinsonian symptoms. It is not a medication or a treatment, but rather a toxin that can damage the dopamine-producing neurons in the brain, leading to symptoms similar to those seen in Parkinson's disease.

MPTP itself is not harmful, but it is metabolized in the body into a toxic compound called MPP+, which accumulates in and damages dopaminergic neurons. MPTP was discovered in the 1980s when a group of drug users in California developed parkinsonian symptoms after injecting a heroin-like substance contaminated with MPTP.

Since then, MPTP has been used as a research tool to study Parkinson's disease and develop new treatments. However, it is not used clinically and should be handled with caution due to its toxicity.

Drug-induced dyskinesia is a movement disorder that is characterized by involuntary muscle movements or abnormal posturing of the body. It is a side effect that can occur from the long-term use or high doses of certain medications, particularly those used to treat Parkinson's disease and psychosis.

The symptoms of drug-induced dyskinesia can vary in severity and may include rapid, involuntary movements of the limbs, face, or tongue; twisting or writhing movements; and abnormal posturing of the arms, legs, or trunk. These symptoms can be distressing and negatively impact a person's quality of life.

The exact mechanism by which certain medications cause dyskinesia is not fully understood, but it is thought to involve changes in the levels of dopamine, a neurotransmitter that plays a key role in regulating movement. In some cases, adjusting the dose or switching to a different medication may help alleviate the symptoms of drug-induced dyskinesia. However, in severe cases, additional treatments such as deep brain stimulation or botulinum toxin injections may be necessary.

Dyskinesias are a type of movement disorder characterized by involuntary, erratic, and often repetitive muscle movements. These movements can affect any part of the body and can include twisting, writhing, or jerking motions, as well as slow, writhing contortions. Dyskinesias can be caused by a variety of factors, including certain medications (such as those used to treat Parkinson's disease), brain injury, stroke, infection, or exposure to toxins. They can also be a side effect of some medical treatments, such as radiation therapy or chemotherapy.

Dyskinesias can have a significant impact on a person's daily life, making it difficult for them to perform routine tasks and affecting their overall quality of life. Treatment for dyskinesias depends on the underlying cause and may include medication adjustments, surgery, or physical therapy. In some cases, dyskinesias may be managed with the use of assistive devices or by modifying the person's environment to make it easier for them to move around.

Dopamine D2 receptor is a type of metabotropic G protein-coupled receptor that binds to the neurotransmitter dopamine. It is one of five subtypes of dopamine receptors (D1-D5) and is encoded by the gene DRD2. The activation of D2 receptors leads to a decrease in the activity of adenylyl cyclase, which results in reduced levels of cAMP and modulation of ion channels.

D2 receptors are widely distributed throughout the central nervous system (CNS) and play important roles in various physiological functions, including motor control, reward processing, emotion regulation, and cognition. They are also involved in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, drug addiction, and Tourette syndrome.

D2 receptors have two main subtypes: D2 short (D2S) and D2 long (D2L). The D2S subtype is primarily located in the presynaptic terminals and functions as an autoreceptor that regulates dopamine release, while the D2L subtype is mainly found in the postsynaptic neurons and modulates intracellular signaling pathways.

Antipsychotic drugs, which are used to treat schizophrenia and other psychiatric disorders, work by blocking D2 receptors. However, excessive blockade of these receptors can lead to side effects such as extrapyramidal symptoms (EPS), tardive dyskinesia, and hyperprolactinemia. Therefore, the development of drugs that selectively target specific subtypes of dopamine receptors is an active area of research in the field of neuropsychopharmacology.

Secondary Parkinson's disease, also known as acquired or symptomatic Parkinsonism, is a clinical syndrome characterized by the signs and symptoms of classic Parkinson's disease (tremor at rest, rigidity, bradykinesia, and postural instability) but caused by a known secondary cause. These causes can include various conditions such as brain injuries, infections, drugs or toxins, metabolic disorders, and vascular damage. The underlying pathology of secondary Parkinson's disease is different from that of classic Parkinson's disease, which is primarily due to the degeneration of dopamine-producing neurons in a specific area of the brain called the substantia nigra pars compacta.

The subthalamus is a region in the brain that is located deep beneath the thalamus and above the midbrain. It is a part of the basal ganglia, which are a group of structures involved in the control of movement. The subthalamus contains several different types of neurons, including glutamatergic and GABAergic neurons, and plays a role in regulating movement, reward, and motivation. It is also thought to be involved in the pathophysiology of certain neurological disorders such as Parkinson's disease.

The subthalamic nucleus (STN) is a specific structure within the subthalamus that has been the target of deep brain stimulation surgery for the treatment of movement disorders like Parkinson's disease and dystonia. The STN is responsible for regulating the activity of other structures in the basal ganglia, and its overactivity can lead to symptoms such as tremors, rigidity, and difficulty initiating movements. By implanting electrodes in the STN and delivering electrical impulses, deep brain stimulation can help to regulate the activity of the STN and alleviate some of these symptoms.

Levodopa, also known as L-dopa, is a medication used primarily in the treatment of Parkinson's disease. It is a direct precursor to the neurotransmitter dopamine and works by being converted into dopamine in the brain, helping to restore the balance between dopamine and other neurotransmitters. This helps alleviate symptoms such as stiffness, tremors, spasms, and poor muscle control. Levodopa is often combined with carbidopa (a peripheral decarboxylase inhibitor) to prevent the conversion of levodopa to dopamine outside of the brain, reducing side effects like nausea and vomiting.

Parvalbumins are a group of calcium-binding proteins that are primarily found in muscle and nerve tissues. They belong to the EF-hand superfamily, which is characterized by a specific structure containing helix-loop-helix motifs that bind calcium ions. Parvalbumins have a high affinity for calcium and play an essential role in regulating intracellular calcium concentrations during muscle contraction and nerve impulse transmission.

In muscle tissue, parvalbumins are found in fast-twitch fibers and help to facilitate rapid relaxation after muscle contraction by binding calcium ions and removing them from the cytoplasm. In nerve tissue, parvalbumins are expressed in inhibitory interneurons and modulate neuronal excitability by regulating intracellular calcium concentrations during synaptic transmission.

Parvalbumins have also been identified as potential allergens in certain foods, such as fish and shellfish, and may cause allergic reactions in sensitive individuals.

The neostriatum is a component of the basal ganglia, a group of subcortical nuclei in the brain that are involved in motor control, procedural learning, and other cognitive functions. It is composed primarily of two types of neurons: medium spiny neurons and aspiny interneurons. The neostriatum receives input from various regions of the cerebral cortex and projects to other parts of the basal ganglia, forming an important part of the cortico-basal ganglia-thalamo-cortical loop.

In medical terminology, the neostriatum is often used interchangeably with the term "striatum," although some sources reserve the term "neostriatum" for the caudate nucleus and putamen specifically, while using "striatum" to refer to the entire structure including the ventral striatum (also known as the nucleus accumbens).

Damage to the neostriatum has been implicated in various neurological conditions, such as Huntington's disease and Parkinson's disease.

A microelectrode is a small electrode with dimensions ranging from several micrometers to a few tens of micrometers in diameter. They are used in various biomedical applications, such as neurophysiological studies, neuromodulation, and brain-computer interfaces. In these applications, microelectrodes serve to record electrical activity from individual or small groups of neurons or deliver electrical stimuli to specific neural structures with high spatial resolution.

Microelectrodes can be fabricated using various materials, including metals (e.g., tungsten, stainless steel, platinum), metal alloys, carbon fibers, and semiconductor materials like silicon. The design of microelectrodes may vary depending on the specific application, with some common types being sharpened metal wires, glass-insulated metal microwires, and silicon-based probes with multiple recording sites.

The development and use of microelectrodes have significantly contributed to our understanding of neural function in health and disease, enabling researchers and clinicians to investigate the underlying mechanisms of neurological disorders and develop novel therapies for conditions such as Parkinson's disease, epilepsy, and hearing loss.

I'm sorry for any confusion, but "Monodelphis" is not a medical term. It is actually the genus name for a group of small opossums, also known as mouse opossums, which are marsupial mammals found in Central and South America. They are often used in biomedical research due to their small size and rapid reproduction.

Metabolic brain diseases are a group of disorders caused by genetic defects that affect the body's metabolism and result in abnormal accumulation of harmful substances in the brain. These conditions are present at birth (inborn) or develop during infancy or early childhood. Examples of metabolic brain diseases that are present at birth include:

1. Phenylketonuria (PKU): A disorder caused by a deficiency of the enzyme phenylalanine hydroxylase, which leads to an accumulation of phenylalanine in the brain and can cause intellectual disability, seizures, and behavioral problems if left untreated.
2. Maple syrup urine disease (MSUD): A disorder caused by a deficiency of the enzyme branched-chain ketoacid dehydrogenase, which leads to an accumulation of branched-chain amino acids in the body and can cause intellectual disability, seizures, and metabolic crisis if left untreated.
3. Urea cycle disorders: A group of disorders caused by defects in enzymes that help remove ammonia from the body. Accumulation of ammonia in the blood can lead to brain damage, coma, or death if not treated promptly.
4. Organic acidemias: A group of disorders caused by defects in enzymes that help break down certain amino acids and other organic compounds. These conditions can cause metabolic acidosis, seizures, and developmental delays if left untreated.

Early diagnosis and treatment of these conditions are crucial to prevent irreversible brain damage and other complications. Treatment typically involves dietary restrictions, supplements, and medications to manage the underlying metabolic imbalance. In some cases, enzyme replacement therapy or liver transplantation may be necessary.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Methyl-phenyl-tetrahydropyridine (MPTP) poisoning is a rare neurological disorder that occurs due to the accidental exposure or intentional intake of MPTP, a chemical compound that can cause permanent parkinsonian symptoms. MPTP is metabolized into MPP+, which selectively destroys dopaminergic neurons in the substantia nigra pars compacta region of the brain, leading to Parkinson's disease-like features such as rigidity, bradykinesia, resting tremors, and postural instability. MPTP poisoning can be a model for understanding Parkinson's disease pathophysiology and developing potential treatments.

Hepatic insufficiency, also known as liver insufficiency, refers to the reduced ability of the liver to perform its vital functions due to damage or disease. The liver plays a crucial role in metabolism, detoxification, synthesis, storage, and secretion. When it becomes insufficient, it can lead to various complications such as:

1. Impaired metabolism of carbohydrates, fats, and proteins
2. Buildup of toxic substances in the blood due to reduced detoxification capacity
3. Decreased synthesis of essential proteins, including clotting factors
4. Reduced glycogen storage and impaired glucose regulation
5. Fluid accumulation in the abdomen (ascites) and legs (edema) due to decreased production of albumin and increased pressure in the portal vein
6. Impaired immune function, making the individual more susceptible to infections
7. Hormonal imbalances leading to various symptoms such as changes in appetite, weight loss, and sexual dysfunction

Hepatic insufficiency can range from mild to severe, and if left untreated, it may progress to liver failure, a life-threatening condition requiring immediate medical attention.

Extrapyramidal tracts are a part of the motor system that lies outside of the pyramidal tracts, which are responsible for controlling voluntary movements. These extrapyramidal tracts consist of several different pathways in the brain and spinal cord that work together to regulate and coordinate involuntary movements, muscle tone, and posture.

The extrapyramidal system includes structures such as the basal ganglia, cerebellum, and brainstem, and it helps to modulate and fine-tune motor activity. Disorders of the extrapyramidal tracts can result in a variety of symptoms, including rigidity, tremors, involuntary movements, and difficulty with coordination and balance.

Some common conditions that affect the extrapyramidal system include Parkinson's disease, Huntington's disease, and drug-induced movement disorders. Treatment for these conditions may involve medications that target specific components of the extrapyramidal system to help alleviate symptoms and improve function.

Enkephalins are naturally occurring opioid peptides that bind to opiate receptors in the brain and other organs, producing pain-relieving and other effects. They are derived from the precursor protein proenkephalin and consist of two main types: Leu-enkephalin and Met-enkephalin. Enkephalins play a role in pain modulation, stress response, mood regulation, and addictive behaviors. They are also involved in the body's reward system and have been implicated in various physiological processes such as respiration, gastrointestinal motility, and hormone release.

Anisoles are organic compounds that consist of a phenyl ring (a benzene ring with a hydroxyl group replaced by a hydrogen atom) attached to a methoxy group (-O-CH3). The molecular formula for anisole is C6H5OCH3. Anisoles are aromatic ethers and can be found in various natural sources, including anise plants and some essential oils. They have a wide range of applications, including as solvents, flavoring agents, and intermediates in the synthesis of other chemicals.

Dopamine is a type of neurotransmitter, which is a chemical messenger that transmits signals in the brain and nervous system. It plays several important roles in the body, including:

* Regulation of movement and coordination
* Modulation of mood and motivation
* Control of the reward and pleasure centers of the brain
* Regulation of muscle tone
* Involvement in memory and attention

Dopamine is produced in several areas of the brain, including the substantia nigra and the ventral tegmental area. It is released by neurons (nerve cells) and binds to specific receptors on other neurons, where it can either excite or inhibit their activity.

Abnormalities in dopamine signaling have been implicated in several neurological and psychiatric conditions, including Parkinson's disease, schizophrenia, and addiction.

Carbon monoxide (CO) poisoning is a medical condition that occurs when carbon monoxide gas is inhaled, leading to the accumulation of this toxic gas in the bloodstream. Carbon monoxide is a colorless, odorless, and tasteless gas produced by the incomplete combustion of fossil fuels such as natural gas, propane, oil, wood, or coal.

When carbon monoxide is inhaled, it binds to hemoglobin, the protein in red blood cells responsible for carrying oxygen throughout the body. This binding forms carboxyhemoglobin (COHb), which reduces the oxygen-carrying capacity of the blood and leads to hypoxia, or insufficient oxygen supply to the body's tissues and organs.

The symptoms of carbon monoxide poisoning can vary depending on the level of exposure and the duration of exposure. Mild to moderate CO poisoning may cause symptoms such as headache, dizziness, weakness, nausea, vomiting, chest pain, and confusion. Severe CO poisoning can lead to loss of consciousness, seizures, heart failure, respiratory failure, and even death.

Carbon monoxide poisoning is a medical emergency that requires immediate treatment. Treatment typically involves administering high-flow oxygen therapy to help eliminate carbon monoxide from the body and prevent further damage to tissues and organs. In some cases, hyperbaric oxygen therapy may be used to accelerate the elimination of CO from the body.

Prevention is key in avoiding carbon monoxide poisoning. It is essential to ensure that all fuel-burning appliances are properly maintained and ventilated, and that carbon monoxide detectors are installed and functioning correctly in homes and other enclosed spaces.

Electric stimulation therapy, also known as neuromuscular electrical stimulation (NMES) or electromyostimulation, is a therapeutic treatment that uses electrical impulses to stimulate muscles and nerves. The electrical signals are delivered through electrodes placed on the skin near the target muscle group or nerve.

The therapy can be used for various purposes, including:

1. Pain management: Electric stimulation can help reduce pain by stimulating the release of endorphins, which are natural painkillers produced by the body. It can also help block the transmission of pain signals to the brain.
2. Muscle rehabilitation: NMES can be used to prevent muscle atrophy and maintain muscle tone in individuals who are unable to move their muscles due to injury or illness, such as spinal cord injuries or stroke.
3. Improving circulation: Electric stimulation can help improve blood flow and reduce swelling by contracting the muscles and promoting the movement of fluids in the body.
4. Wound healing: NMES can be used to promote wound healing by increasing blood flow, reducing swelling, and improving muscle function around the wound site.
5. Muscle strengthening: Electric stimulation can be used to strengthen muscles by causing them to contract and relax repeatedly, which can help improve muscle strength and endurance.

It is important to note that electric stimulation therapy should only be administered under the guidance of a trained healthcare professional, as improper use can cause harm or discomfort.

Antiparkinson agents are a class of medications used to treat the symptoms of Parkinson's disease and related disorders. These agents work by increasing the levels or activity of dopamine, a neurotransmitter in the brain that is responsible for regulating movement and coordination.

There are several types of antiparkinson agents, including:

1. Levodopa: This is the most effective treatment for Parkinson's disease. It is converted to dopamine in the brain and helps to replace the missing dopamine in people with Parkinson's.
2. Dopamine agonists: These medications mimic the effects of dopamine in the brain and can be used alone or in combination with levodopa. Examples include pramipexole, ropinirole, and rotigotine.
3. Monoamine oxidase B (MAO-B) inhibitors: These medications block the breakdown of dopamine in the brain and can help to increase its levels. Examples include selegiline and rasagiline.
4. Catechol-O-methyltransferase (COMT) inhibitors: These medications block the breakdown of levodopa in the body, allowing it to reach the brain in higher concentrations. Examples include entacapone and tolcapone.
5. Anticholinergic agents: These medications block the action of acetylcholine, another neurotransmitter that can contribute to tremors and muscle stiffness in Parkinson's disease. Examples include trihexyphenidyl and benztropine.

It is important to note that antiparkinson agents can have side effects, and their use should be carefully monitored by a healthcare professional. The choice of medication will depend on the individual patient's symptoms, age, overall health, and other factors.

"Macaca mulatta" is the scientific name for the Rhesus macaque, a species of monkey that is native to South, Central, and Southeast Asia. They are often used in biomedical research due to their genetic similarity to humans.

Electric stimulation, also known as electrical nerve stimulation or neuromuscular electrical stimulation, is a therapeutic treatment that uses low-voltage electrical currents to stimulate nerves and muscles. It is often used to help manage pain, promote healing, and improve muscle strength and mobility. The electrical impulses can be delivered through electrodes placed on the skin or directly implanted into the body.

In a medical context, electric stimulation may be used for various purposes such as:

1. Pain management: Electric stimulation can help to block pain signals from reaching the brain and promote the release of endorphins, which are natural painkillers produced by the body.
2. Muscle rehabilitation: Electric stimulation can help to strengthen muscles that have become weak due to injury, illness, or surgery. It can also help to prevent muscle atrophy and improve range of motion.
3. Wound healing: Electric stimulation can promote tissue growth and help to speed up the healing process in wounds, ulcers, and other types of injuries.
4. Urinary incontinence: Electric stimulation can be used to strengthen the muscles that control urination and reduce symptoms of urinary incontinence.
5. Migraine prevention: Electric stimulation can be used as a preventive treatment for migraines by applying electrical impulses to specific nerves in the head and neck.

It is important to note that electric stimulation should only be administered under the guidance of a qualified healthcare professional, as improper use can cause harm or discomfort.

Torticollis, also known as wry neck, is a condition where the neck muscles contract and cause the head to turn to one side. There are different types of torticollis including congenital (present at birth), acquired (develops after birth), and spasmodic (neurological).

Congenital torticollis can be caused by a tight or shortened sternocleidomastoid muscle in the neck, which can occur due to positioning in the womb or abnormal blood vessels in the muscle. Acquired torticollis can result from injury, infection, or tumors in the neck. Spasmodic torticollis is a neurological disorder that causes involuntary contractions of the neck muscles and can be caused by a variety of factors including genetics, environmental toxins, or head trauma.

Symptoms of torticollis may include difficulty turning the head, tilting the chin upwards or downwards, pain or discomfort in the neck, and a limited range of motion. Treatment for torticollis depends on the underlying cause and can include physical therapy, stretching exercises, medication, or surgery.

Brain mapping is a broad term that refers to the techniques used to understand the structure and function of the brain. It involves creating maps of the various cognitive, emotional, and behavioral processes in the brain by correlating these processes with physical locations or activities within the nervous system. Brain mapping can be accomplished through a variety of methods, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET) scans, electroencephalography (EEG), and others. These techniques allow researchers to observe which areas of the brain are active during different tasks or thoughts, helping to shed light on how the brain processes information and contributes to our experiences and behaviors. Brain mapping is an important area of research in neuroscience, with potential applications in the diagnosis and treatment of neurological and psychiatric disorders.

Dopamine agents are medications that act on dopamine receptors in the brain. Dopamine is a neurotransmitter, a chemical messenger that transmits signals in the brain and other areas of the body. It plays important roles in many functions, including movement, motivation, emotion, and cognition.

Dopamine agents can be classified into several categories based on their mechanism of action:

1. Dopamine agonists: These medications bind to dopamine receptors and mimic the effects of dopamine. They are used to treat conditions such as Parkinson's disease, restless legs syndrome, and certain types of dopamine-responsive dystonia. Examples include pramipexole, ropinirole, and rotigotine.
2. Dopamine precursors: These medications provide the building blocks for the body to produce dopamine. Levodopa is a commonly used dopamine precursor that is converted to dopamine in the brain. It is often used in combination with carbidopa, which helps to prevent levodopa from being broken down before it reaches the brain.
3. Dopamine antagonists: These medications block the action of dopamine at its receptors. They are used to treat conditions such as schizophrenia and certain types of nausea and vomiting. Examples include haloperidol, risperidone, and metoclopramide.
4. Dopamine reuptake inhibitors: These medications increase the amount of dopamine available in the synapse (the space between two neurons) by preventing its reuptake into the presynaptic neuron. They are used to treat conditions such as attention deficit hyperactivity disorder (ADHD) and depression. Examples include bupropion and nomifensine.
5. Dopamine release inhibitors: These medications prevent the release of dopamine from presynaptic neurons. They are used to treat conditions such as Tourette's syndrome and certain types of chronic pain. Examples include tetrabenazine and deutetrabenazine.

It is important to note that dopamine agents can have significant side effects, including addiction, movement disorders, and psychiatric symptoms. Therefore, they should be used under the close supervision of a healthcare provider.

The habenula is a small, paired nucleus located in the epithalamus region of the brain. It plays a crucial role in the modulation of various functions such as mood, reward, and motivation. The habenula can be further divided into two subregions: the medial and lateral habenula.

The medial habenula is involved in the regulation of emotional behaviors, including responses to stress and anxiety. It receives inputs from several brain regions associated with emotion, such as the amygdala and hippocampus, and projects to the interpeduncular nucleus (IPN) in the midbrain.

The lateral habenula is primarily involved in processing aversive stimuli and modulating dopaminergic reward pathways. It receives inputs from various regions associated with motivation, learning, and memory, such as the prefrontal cortex, basal ganglia, and thalamus. The lateral habenula then projects to the midbrain's dopamine-producing neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), which are critical components of the brain's reward system.

Dysfunction of the habenula has been implicated in several neurological and psychiatric disorders, including depression, anxiety, addiction, and schizophrenia.

Apomorphine is a non-selective dopamine receptor agonist, which means that it activates dopamine receptors in the brain. It has a high affinity for D1 and D2 dopamine receptors and is used medically to treat Parkinson's disease, particularly in cases of severe or intractable motor fluctuations.

Apomorphine can be administered subcutaneously (under the skin) as a solution or as a sublingual (under the tongue) film. It works by stimulating dopamine receptors in the brain, which helps to reduce the symptoms of Parkinson's disease such as stiffness, tremors, and difficulty with movement.

In addition to its use in Parkinson's disease, apomorphine has also been investigated for its potential therapeutic benefits in other neurological disorders, including alcohol use disorder and drug addiction. However, more research is needed to establish its safety and efficacy in these conditions.

Autoradiography is a medical imaging technique used to visualize and localize the distribution of radioactively labeled compounds within tissues or organisms. In this process, the subject is first exposed to a radioactive tracer that binds to specific molecules or structures of interest. The tissue is then placed in close contact with a radiation-sensitive film or detector, such as X-ray film or an imaging plate.

As the radioactive atoms decay, they emit particles (such as beta particles) that interact with the film or detector, causing chemical changes and leaving behind a visible image of the distribution of the labeled compound. The resulting autoradiogram provides information about the location, quantity, and sometimes even the identity of the molecules or structures that have taken up the radioactive tracer.

Autoradiography has been widely used in various fields of biology and medical research, including pharmacology, neuroscience, genetics, and cell biology, to study processes such as protein-DNA interactions, gene expression, drug metabolism, and neuronal connectivity. However, due to the use of radioactive materials and potential hazards associated with them, this technique has been gradually replaced by non-radioactive alternatives like fluorescence in situ hybridization (FISH) or immunofluorescence techniques.

Basal ganglia diseases are a group of neurological disorders that affect the function of the basal ganglia, which are clusters of nerve cells located deep within the brain. The basal ganglia play a crucial role in controlling movement and coordination. When they are damaged or degenerate, it can result in various motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and difficulty with balance and walking.

Some examples of basal ganglia diseases include:

1. Parkinson's disease - a progressive disorder that affects movement due to the death of dopamine-producing cells in the basal ganglia.
2. Huntington's disease - an inherited neurodegenerative disorder that causes uncontrolled movements, emotional problems, and cognitive decline.
3. Dystonia - a movement disorder characterized by sustained or intermittent muscle contractions that cause twisting and repetitive movements or abnormal postures.
4. Wilson's disease - a rare genetic disorder that causes excessive copper accumulation in the liver and brain, leading to neurological and psychiatric symptoms.
5. Progressive supranuclear palsy (PSP) - a rare brain disorder that affects movement, gait, and balance, as well as speech and swallowing.
6. Corticobasal degeneration (CBD) - a rare neurological disorder characterized by progressive loss of nerve cells in the cerebral cortex and basal ganglia, leading to stiffness, rigidity, and difficulty with movement and coordination.

Treatment for basal ganglia diseases varies depending on the specific diagnosis and symptoms but may include medication, surgery, physical therapy, or a combination of these approaches.

Neural inhibition is a process in the nervous system that decreases or prevents the activity of neurons (nerve cells) in order to regulate and control communication within the nervous system. It is a fundamental mechanism that allows for the balance of excitation and inhibition necessary for normal neural function. Inhibitory neurotransmitters, such as GABA (gamma-aminobutyric acid) and glycine, are released from the presynaptic neuron and bind to receptors on the postsynaptic neuron, reducing its likelihood of firing an action potential. This results in a decrease in neural activity and can have various effects depending on the specific neurons and brain regions involved. Neural inhibition is crucial for many functions including motor control, sensory processing, attention, memory, and emotional regulation.

Calbindin 1 is a calcium-binding protein that belongs to the family of EF-hand proteins. It is also known as calbindin D-28k, due to its molecular weight of approximately 28 kilodaltons. This protein is widely distributed in various tissues and organisms but is particularly abundant in the nervous system, where it plays crucial roles in calcium homeostasis, neuroprotection, and signal transduction.

In neurons, calbindin 1 is primarily located in the cytoplasm and dendrites, with lower concentrations found in the axons and nerve terminals. It helps regulate intracellular calcium levels by binding to calcium ions (Ca2+) with high affinity and capacity, thereby preventing rapid fluctuations in Ca2+ concentration that could trigger cellular damage or dysfunction.

Calbindin 1 has been implicated in several neuronal processes, including neurotransmitter release, synaptic plasticity, and neuronal excitability. Additionally, it is believed to provide neuroprotection against various insults, such as oxidative stress, glutamate excitotoxicity, and calcium overload, which are associated with neurological disorders like Alzheimer's disease, Parkinson's disease, and epilepsy.

In summary, calbindin 1 is a calcium-binding protein that plays essential roles in maintaining calcium homeostasis, neuroprotection, and neuronal signaling within the nervous system.

Quinpirole is not a medical condition or disease, but rather a synthetic compound used in research and medicine. It's a selective agonist for the D2 and D3 dopamine receptors, which means it binds to and activates these receptors, mimicking the effects of dopamine, a neurotransmitter involved in various physiological processes such as movement, motivation, reward, and cognition.

Quinpirole is used primarily in preclinical research to study the role of dopamine receptors in different neurological conditions, including Parkinson's disease, schizophrenia, drug addiction, and others. It helps researchers understand how dopamine systems work and contributes to the development of new therapeutic strategies for these disorders.

It is important to note that quinpirole is not used as a medication in humans or animals but rather as a research tool in laboratory settings.

GABA (gamma-aminobutyric acid) antagonists are substances that block the action of GABA, which is the primary inhibitory neurotransmitter in the central nervous system. GABA plays a crucial role in regulating neuronal excitability and reducing the transmission of nerve impulses.

GABA antagonists work by binding to the GABA receptors without activating them, thereby preventing the normal function of GABA and increasing neuronal activity. These agents can cause excitation of the nervous system, leading to various effects depending on the specific type of GABA receptor they target.

GABA antagonists are used in medical treatments for certain conditions, such as sleep disorders, depression, and cognitive enhancement. However, they can also have adverse effects, including anxiety, agitation, seizures, and even neurotoxicity at high doses. Examples of GABA antagonists include picrotoxin, bicuculline, and flumazenil.

Enkephalins are naturally occurring opioid peptides in the body that bind to opiate receptors and help reduce pain and produce a sense of well-being. There are two major types of enkephalins: Leu-enkephalin and Met-enkephalin, which differ by only one amino acid at the N-terminus.

Methionine-enkephalin (Met-enkephalin) is a type of enkephalin that contains methionine as its N-terminal amino acid. Its chemical formula is Tyr-Gly-Gly-Phe-Met, and it is derived from the precursor protein proenkephalin. Met-enkephalin has a shorter half-life than Leu-enkephalin due to its susceptibility to enzymatic degradation by aminopeptidases.

Met-enkephalin plays an essential role in pain modulation, reward processing, and addiction. It is also involved in various physiological functions, including respiration, cardiovascular regulation, and gastrointestinal motility. Dysregulation of enkephalins has been implicated in several pathological conditions, such as chronic pain, drug addiction, and neurodegenerative disorders.

Stereotyped behavior, in the context of medicine and psychology, refers to repetitive, rigid, and invariant patterns of behavior or movements that are purposeless and often non-functional. These behaviors are not goal-directed or spontaneous and typically do not change in response to environmental changes or social interactions.

Stereotypies can include a wide range of motor behaviors such as hand flapping, rocking, head banging, body spinning, self-biting, or complex sequences of movements. They are often seen in individuals with developmental disabilities, intellectual disabilities, autism spectrum disorder, and some mental health conditions.

Stereotyped behaviors can also be a result of substance abuse, neurological disorders, or brain injuries. In some cases, these behaviors may serve as a self-soothing mechanism or a way to cope with stress, anxiety, or boredom. However, they can also interfere with daily functioning and social interactions, and in severe cases, may cause physical harm to the individual.

Apathy is a lack of feeling, emotion, interest, or concern about something. In medical terms, it's often described as a loss of motivation or a decreased level of enthusiasm or concern for activities or events that one would normally care about. Apathy can be a symptom of various medical and neurological conditions, such as depression, dementia, traumatic brain injury, or Parkinson's disease. It can also be a side effect of certain medications. If severe or persistent, it can significantly impact a person's quality of life and ability to function in daily activities.

The telencephalon is the most anterior (front) region of the embryonic brain, which eventually develops into the largest portion of the adult human brain, including the cerebral cortex, basal ganglia, and olfactory bulbs. It is derived from the prosencephalon (forebrain) during embryonic development and is responsible for higher cognitive functions such as thinking, perception, and language. The telencephalon can be further divided into two hemispheres, each containing regions associated with different functions.

GABA-B receptors are a type of G protein-coupled receptor that is activated by the neurotransmitter gamma-aminobutyric acid (GABA). These receptors are found throughout the central nervous system and play a role in regulating neuronal excitability. When GABA binds to GABA-B receptors, it causes a decrease in the release of excitatory neurotransmitters and an increase in the release of inhibitory neurotransmitters, which results in a overall inhibitory effect on neuronal activity. GABA-B receptors are involved in a variety of physiological processes, including the regulation of muscle tone, cardiovascular function, and pain perception. They have also been implicated in the pathophysiology of several neurological and psychiatric disorders, such as epilepsy, anxiety, and addiction.

Dopamine D1 receptors are a type of G protein-coupled receptor that bind to the neurotransmitter dopamine. They are classified as D1-like receptors, along with D5 receptors, and are activated by dopamine through a stimulatory G protein (Gs).

D1 receptors are widely expressed in the central nervous system, including the striatum, prefrontal cortex, hippocampus, and amygdala. They play important roles in various physiological functions, such as movement control, motivation, reward processing, working memory, and cognition.

Activation of D1 receptors leads to increased levels of intracellular cyclic adenosine monophosphate (cAMP) and activation of protein kinase A (PKA), which in turn modulate the activity of various downstream signaling pathways. Dysregulation of dopamine D1 receptor function has been implicated in several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder (ADHD), and drug addiction.

Bicuculline is a pharmacological agent that acts as a competitive antagonist at GABA-A receptors, which are inhibitory neurotransmitter receptors in the central nervous system. By blocking the action of GABA (gamma-aminobutyric acid) at these receptors, bicuculline can increase neuronal excitability and cause convulsions. It is used in research to study the role of GABAergic neurotransmission in various physiological processes and neurological disorders.

Reserpine is an alkaloid derived from the Rauwolfia serpentina plant, which has been used in traditional medicine for its sedative and hypotensive effects. In modern medicine, reserpine is primarily used to treat hypertension (high blood pressure) due to its ability to lower both systolic and diastolic blood pressure.

Reserpine works by depleting catecholamines, including norepinephrine, epinephrine, and dopamine, from nerve terminals in the sympathetic nervous system. This leads to a decrease in peripheral vascular resistance and heart rate, ultimately resulting in reduced blood pressure.

Reserpine is available in various forms, such as tablets or capsules, and is typically administered orally. Common side effects include nasal congestion, dizziness, sedation, and gastrointestinal disturbances like diarrhea and nausea. Long-term use of reserpine may also lead to depression in some individuals. Due to its potential for causing depression, other antihypertensive medications are often preferred over reserpine when possible.

Raclopride is not a medical condition but a drug that belongs to the class of dopamine receptor antagonists. It's primarily used in research and diagnostic settings as a radioligand in positron emission tomography (PET) scans to visualize and measure the distribution and availability of dopamine D2 and D3 receptors in the brain.

In simpler terms, Raclopride is a compound that can be labeled with a radioactive isotope and then introduced into the body to track the interaction between the radioligand and specific receptors (in this case, dopamine D2 and D3 receptors) in the brain. This information can help researchers and clinicians better understand neurochemical processes and disorders related to dopamine dysfunction, such as Parkinson's disease, schizophrenia, and drug addiction.

It is important to note that Raclopride is not used as a therapeutic agent in clinical practice due to its short half-life and the potential for side effects associated with dopamine receptor blockade.

I'm sorry for any confusion, but "Phosphinic Acids" is not a recognized medical term. Phosphinic acids are chemical compounds that contain a phosphorus atom bonded to two organic groups and one hydroxyl group, making them a subclass of organophosphorus compounds. They are widely used in the production of various chemicals, but they do not have specific relevance to medical definitions or terminology. If you have any questions related to medicine or health, I'd be happy to try to help answer those!

Electrophysiology is a branch of medicine that deals with the electrical activities of the body, particularly the heart. In a medical context, electrophysiology studies (EPS) are performed to assess abnormal heart rhythms (arrhythmias) and to evaluate the effectiveness of certain treatments, such as medication or pacemakers.

During an EPS, electrode catheters are inserted into the heart through blood vessels in the groin or neck. These catheters can record the electrical activity of the heart and stimulate it to help identify the source of the arrhythmia. The information gathered during the study can help doctors determine the best course of treatment for each patient.

In addition to cardiac electrophysiology, there are also other subspecialties within electrophysiology, such as neuromuscular electrophysiology, which deals with the electrical activity of the nervous system and muscles.

Muscle rigidity is a term used to describe an increased resistance to passive movement or muscle tone that is present at rest, which cannot be overcome by the person. It is a common finding in various neurological conditions such as Parkinson's disease, stiff-person syndrome, and tetanus. In these conditions, muscle rigidity can result from hyperexcitability of the stretch reflex arc or abnormalities in the basal ganglia circuitry.

Muscle rigidity should be distinguished from spasticity, which is a velocity-dependent increase in muscle tone that occurs during voluntary movement or passive stretching. Spasticity is often seen in upper motor neuron lesions such as stroke or spinal cord injury.

It's important to note that the assessment of muscle rigidity requires a careful physical examination and may need to be evaluated in conjunction with other signs and symptoms to determine an underlying cause.

Synaptic transmission is the process by which a neuron communicates with another cell, such as another neuron or a muscle cell, across a junction called a synapse. It involves the release of neurotransmitters from the presynaptic terminal of the neuron, which then cross the synaptic cleft and bind to receptors on the postsynaptic cell, leading to changes in the electrical or chemical properties of the target cell. This process is critical for the transmission of signals within the nervous system and for controlling various physiological functions in the body.

Benzazepines are a class of heterocyclic compounds that contain a benzene fused to a diazepine ring. In the context of pharmaceuticals, benzazepines refer to a group of drugs with various therapeutic uses, such as antipsychotics and antidepressants. Some examples of benzazepine-derived drugs include clozapine, olanzapine, and loxoprofen. These drugs have complex mechanisms of action, often involving multiple receptor systems in the brain.

These are the internal globus pallidus (GPi) and the external globus pallidus (GPe); both are composed of closed nuclei ... Wikimedia Commons has media related to Globus pallidus. Stained brain slice images which include the "Globus pallidus" at the ... The globus pallidus (GP), also known as paleostriatum or dorsal pallidum, is a subcortical structure of the brain. It consists ... The globus pallidus is a structure in the brain involved in the regulation of voluntary movement. It is part of the basal ...
The external globus pallidus (GPe or lateral globus pallidus) combines with the internal globus pallidus (GPi) to form the ... The external globus pallidus is the segment of the globus pallidus that is relatively further (lateral) from the midline of the ... globus pallidus, an anatomical subset of the basal ganglia. Globus pallidus means "pale globe" in Latin, indicating its ... As the pathway from the striatum to the medial globus pallidus is monosynaptic (containing one synapse), it is called the ...
The internal globus pallidus (GPi or medial globus pallidus; in rodents its homologue is known as the entopeduncular nucleus) ... and the external globus pallidus (GPe) make up the globus pallidus. The GPi is one of the output nuclei of the basal ganglia ( ... The internal globus pallidus contains GABAergic neurons, which allow for its inhibitory function. As the GPi, along with the ... The internal globus pallidus is the target of deep brain stimulation (DBS) for these diseases. Deep brain stimulation sends ...
Like those of the globus pallidus, the neurons in pars reticulata are mainly GABAergic.[citation needed] The main input to the ... The (SNpr) and the internal globus pallidus (GPi) are separated by the internal capsule. The pars reticulata bears a strong ... "Organization of the Globus Pallidus". Handbook of Basal Ganglia Structure and Function, Second Edition. Handbook of Behavioral ... a projection from striatal medium spiny cells to the external part of the globus pallidus; a GABAergic projection from the ...
Globus pallidus: Regulation of voluntary movement. The primary means of treating auditory hallucinations is antipsychotic ...
Kv3.1 channels are prominently expressed in brain (cerebellum > globus pallidus, subthalamic nucleus, substantia nigra > ...
... most DBS surgeries in routine practice target either the globus pallidus internus or the Subthalamic nucleus. DBS of the globus ... Diamond A, Shahed J, Azher S, Dat-Vuong K, Jankovic J (May 2006). "Globus pallidus deep brain stimulation in dystonia". ... These are the globus pallidus internus, thalamus, subthalamic nucleus and the pedunculopontine nucleus. However, ... Lee, John Y.K.; Deogaonkar, Milind; Rezai, Ali (July 2007). "Deep brain stimulation of globus pallidus internus for dystonia". ...
The globus pallidus contains two parts: the globus pallidus pars externa (GPe) and the globus pallidus pars interna (GPi). Both ... activity in direct pathways to interior globus pallidus decreases and activity in indirect pathways to external globus pallidus ... The other nuclei of the basal ganglia (caudate nucleus and globus pallidus) can be seen as well. Putamen Putamen Putamen along ... The putamen, together with the globus pallidus, makes up the lentiform nucleus. The putamen is the outermost portion of the ...
Chen L, Yung KK, Yung WH (September 2006). "Neurotensin selectively facilitates glutamatergic transmission in globus pallidus ...
The hippocampus and thalamus have been shown to be reduced in volume; and the volume of the globus pallidus is increased. ...
... globus pallidus external, and subthalamic nucleus, activates the globus pallidus internal threshold and inhibits the thalamus ... In the indirect pathway, the basal ganglia send GABA to the globus pallidus which then sends it to the subthalamic nucleus, ... Posteroventral pallidotomy (PVP) is a specific kind of DBS that destroys a small part of the globus pallidus by scarring the ... Horak, FB; Anderson, ME (August 1984). "Influence of globus pallidus on arm movements in monkeys. I. Effects of kainic acid- ...
... globus pallidus and nucleus accumbens; as well as the septal nuclei), cerebellum (deep cerebellar nuclei - the dentate nuclei, ...
Its main afferent fibres are from the globus pallidus. The efferent fibres from this nucleus pass into the premotor cortex for ...
The internal globus pallidus (GPi) or medial globus pallidus is only found in the primate brain and so is a younger portion of ... The external globus pallidus (GPe) or lateral globus pallidus, is flat, curved and extended in depth and width. The branching ... the lateral pallidum (external segment of the globus pallidus. While striatopallidal and the pallido-subthalamic connections ... there are two pallidal subdivisions called the external globus pallidus (GPe) and internal globus pallidus (GPi). Also in ...
The lentiform nucleus is made up of the larger putamen, and the smaller globus pallidus. Strictly speaking the globus pallidus ... This projection comprises successively the external globus pallidus (GPe), the internal globus pallidus (GPi), the pars ... In addition to the ventral pallidum, the internal globus pallidus and the substantia nigra-VTA, the ventral striatum sends ... the ventral pallidum, which, in fact, has characteristics of both the external and internal globus pallidus in its afferent and ...
"Anhedonia After a Selective Bilateral Lesion of the Globus Pallidus". American Journal of Psychiatry. 163 (5): 786-788. doi: ...
Below the putamen sits the globus pallidus, with which it connects. These structures bounding the lateral ventricles form a ... The thalamus primarily communicates with the structures bounding the lateral ventricles via the globus pallidus, and the ...
These GABAergic neurons project to the external (lateral) globus pallidus and internal (medial) globus pallidus as well as the ... The pallidum consists of a large structure called the globus pallidus ("pale globe") together with a smaller ventral extension ... The name globus pallidus was attributed by Déjerine to Burdach (1822). For this, the Vogts proposed the simpler "pallidum". The ... the globus pallidus, the ventral pallidum, the substantia nigra, and the subthalamic nucleus. Each of these components has ...
... internal globus pallidus, ventral pallidum, and diagonal band of Broca. As a whole, this complexly interconnected region is ... Reward information to the lateral habenula comes from the internal part of the globus pallidus. The outputs of the lateral ... Hong S, Hikosaka O (November 2008). "The globus pallidus sends reward-related signals to the lateral habenula". Neuron. 60 (4 ... and the internal segment of the globus pallidus (bringing input from other basal ganglia structures). Neurons in the lateral ...
"Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction". NeuroReport. 19 (7): 751-5. doi:10.1097/WNR. ...
Strub, RL (1989). "Frontal Lobe Syndrome in a Patient with Bilateral Globus Pallidus Lesions". Archives of Neurology. 46 (9): ...
The main body of the nucleus basalis lies inferior to the anterior commissure and the globus pallidus, and lateral to the ... NBM in relation to the globus pallidus and putamen - very low magnification. NBM - very high magnification. Micrograph of ... neurons belonging to the nucleus basalis can be found in nearby locations such as the internal laminae of the globus pallidus ...
It is most significantly expressed in the globus pallidus of the brain. PHACTR1 is an actin and protein phosphatase 1 (PP1) ...
"Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus". Lancet. 355 (9222): 2220-2221. doi: ...
"Effects of lesions of the substantia Innominata/ventral pallidum, globus pallidus and medial septum on rat's performance in ... only globus pallidus did not discriminate between new and familiar objects. These lesions damage the ventral (what) pathway of ... the level of discrimination was significantly lower in the electrolytic lesions of globus pallidus (part of the basal ganglia) ... in rats compared to the Substantia- Innominata/Ventral Pallidum which was in turn worse compared to Control and Medial Septum/ ...
... together with the globus pallidus, makes up the lenticular nucleus. The important aspect of this interaction is that the globus ... Excitation of the globus pallidus interior (GPi) by the subthalamus facilitates movement suppression. When non-motor cerebral ... Deficit appears to be localized in the putamen and globus pallidus resulting in a reduction in the muscle force produced at the ... The main components of the basal ganglia are the striatum, the globus pallidus, the substantia nigra, and the subthalamic ...
Foncke EM, Schuurman PR, Speelman JD (January 2006). "Suicide after deep brain stimulation of the internal globus pallidus for ...
These are the globus pallidus interna, thalamus, subthalamic nucleus, and pedunculopontine nucleus. DBS of the globus pallidus ... For example, pallidotomy involves surgical destruction of the globus pallidus to control dyskinesia. Four areas of the brain ... globus pallidus, or subthalamic nucleus. DBS involves the implantation of a medical device called a neurostimulator, which ...
... they send inhibitory signals to the globus pallidus externus, reducing the activity in that nucleus. The globus pallidus ... In a resting individual, a specific region of the globus pallidus, known as the internus, and a portion of the substantia nigra ... The indirect pathway passes through the caudate, putamen, and globus pallidus, which are parts of the basal ganglia. It ... Subthalamic nucleus cells can then send more activating signals to some parts of the globus pallidus internus and substantia ...
"Metabotropic glutamate receptor 2 modulates excitatory synaptic transmission in the rat globus pallidus". Neuropharmacology. 49 ...
These are the internal globus pallidus (GPi) and the external globus pallidus (GPe); both are composed of closed nuclei ... Wikimedia Commons has media related to Globus pallidus. Stained brain slice images which include the "Globus pallidus" at the ... The globus pallidus (GP), also known as paleostriatum or dorsal pallidum, is a subcortical structure of the brain. It consists ... The globus pallidus is a structure in the brain involved in the regulation of voluntary movement. It is part of the basal ...
... the globus pallidus is known as the paleostriatum, and the caudate nucleus and putamen are together known as the neostriatum, ... the globus pallidus, and (4) the amygdala. Phylogenetically, the amygdala is the oldest of the basal ganglia and is often ... Other articles where globus pallidus is discussed: human nervous system: Basal ganglia: …(2) the putamen, (3) ... 2) the putamen, (3) the globus pallidus, and (4) the amygdala. Phylogenetically, the amygdala is the oldest of the basal ...
... who underwent bilateral implantation of stimulating electrodes in the internal pallidum. At 3-month follow-up, the total Unifie ... Bilateral high-frequency stimulation of the internal globus pallidus in advanced Parkinsons disease Ann Neurol. 1998 Dec;44(6 ... Chronic bilateral high-frequency stimulation of the internal pallidum seems to be a neurologically safe and highly effective ... who underwent bilateral implantation of stimulating electrodes in the internal pallidum. At 3-month follow-up, the total ...
... neurons and two types of external globus pallidus (GP) neuron inappropriately synchronise their firing in time with slow (∼1 Hz ... Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations. ... In Parkinsonism, subthalamic nucleus (STN) neurons and two types of external globus pallidus (GP) neuron inappropriately ... Action Potentials, Algorithms, Animals, Computer Simulation, Disease Models, Animal, Dopamine, Globus Pallidus, Male, Models, ...
"Globus pallidus externa" should be "globus pallidus externus" in order to maintain gender consistency in all Latin adjectives. ... Its called the globus pallidus externa (GPE). The video takes us inside the 3D landscape of the GPE, zooming in on the many ... The Amazing Brain: Zooming Through the Globus Pallidus Externa. Posted on August 6th, 2019. by Dr. Francis Collins ... Tags: brain, BRAIN Initiative, epoxy, globus pallidus externa, GPE, interneuron, interneurons, neuron, Parkinsons disease, ...
Neural Oscillatory Characteristics of Feedback Associated Activity in Globus Pallidus Interna Choubdar H., Mahdavi M., Rostami ...
... the globus pallidus is thought to be especially important to movement. ... Globus pallidus - one of the nuclei included in the basal ganglia, ... Globus pallidus - definition. one of the nuclei included in the basal ganglia, the globus pallidus is thought to be especially ... In this coronal brain section, the globus pallidus is the dark purple colored region. The adjacent light purple region is the ...
globus pallidus. MRI uses nonionizing electromagnetic radiation to diagnose and monitor disease. A major component of MRI is ... Do Gadolinium-Based Contrast Agents Affect 18F-FDG PET/CT Uptake in the Dentate Nucleus and the Globus Pallidus? A Pilot Study ... Do Gadolinium-Based Contrast Agents Affect 18F-FDG PET/CT Uptake in the Dentate Nucleus and the Globus Pallidus? A Pilot Study ... Do Gadolinium-Based Contrast Agents Affect 18F-FDG PET/CT Uptake in the Dentate Nucleus and the Globus Pallidus? A Pilot Study ...
... Tools for illuminating brain function make their own light. Optogenetics has taken neuroscience by storm in ...
Globus Pallidus & Thalami Brain Injury. The Role of Birth Asphyxia in Globus Pallidus & Thalami Brain Injury. A common cause of ... Globus pallidus injury is also associated with dyskinetic or athetoid cerebral palsy. The globus pallidus appears as a single ... When kernicterus occurs, there is often bilateral globus pallidus injury, which means that both parts of the globus pallidus ... The globus pallidus is a major component of the basal ganglia and is involved in the regulation of voluntary movement. Many ...
A surgical procedure in which lesions are produced in the globus pallidus region of the brain in an effort to lessen ... See also: Deep brain stimulation, Pallidotomy, Thalamotomy, Gene therapy, Subthalamic nucleus, Globus pallidus ... performed procedures include surgical lesion of the subthalamic nucleus and of the internal segment of the globus pallidus, a ...
A surgical procedure in which lesions are produced in the globus pallidus region of the brain in an effort to lessen ... See also: Deep brain stimulation, Pallidotomy, Thalamotomy, Gene therapy, Subthalamic nucleus, Globus pallidus ... performed procedures include surgical lesion of the subthalamic nucleus and of the internal segment of the globus pallidus, a ...
... neurons and two types of external globus pallidus (GP) neuron inappropriately synchronise their firing in time with slow (∼1 Hz ... Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations ... In Parkinsonism, subthalamic nucleus (STN) neurons and two types of external globus pallidus (GP) neuron inappropriately ... Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations ...
COVID-19-White matter and globus pallidum lesions. Demyelination or small-vessel vasculitis?. View ORCID ProfileGilles Brun, ... Note the restricted diffusion with hyperintensity on FLAIR images within the globus pallidum bilaterally (black arrows). On a ... and the prominent involvement of the pallidum are unusual for ADEM. Besides demyelination, the associated punctiform lesions ... A CT scan of the brain demonstrated hypodense lesions involving supratentorial white matter and pallidum bilaterally. Initially ...
External globus pallidus input to the dorsal striatum regulates habitual seeking behavior in male mice *Matthew Baker ... The indirect pathway involves a striatal projection of dopamine D2 receptor-expressing medium spiny neurons to the pallidum. ...
A trial involving investigating safety and efficacy of unilateral FUSA of the globus pallidus internus in PD patients. ... Trial of Globus Pallidus Focused Ultrasound Ablation in Parkinsons Disease. N Engl J Med. 2023 Feb 23;388(8):683-693. doi: ... Research Paper of the Month: Trial of Globus Pallidus Focused Ultrasound Ablation in Parkinsons Disease was last modified: May ... Research Paper of the Month: Trial of Globus Pallidus Focused Ultrasound Ablation in Parkinsons Disease. March 13, 2023 ...
Globus Pallidus: Regional Anatomy, Functions/Dysfunctions and Role in Behavioral Disorders. $82.00. Select options ...
We report a case of a patient with dystonia who underwent bilateral globus pallidus interna electrode and impulse generator ( ... Differences in globus pallidus neuronal firing rates and patterns relate to different disease biology in children with dystonia ... Delayed cerebritis after bilateral stereotactic implantation of globus pallidus interna electrodes for treatment of dystonia.. ... We report a case of a patient with dystonia who underwent bilateral globus pallidus interna electrode and impulse generator ( ...
... presumed to be within or bridging the globus pallidus externus. We conclude that untreated and treated Parkinsons disease and ... from the caudal and rostral contact pairs of macroelectrodes implanted into the pallidum of patients for the treatment of ... Here we test the hypothesis that there are distinct temporal patterns of synchronized neuronal activity in the pallidum that ... dystonia are characterized by different spatiotemporal patterns of activity in the human pallidum. ...
Globus pallidus deep brain stimulation; Subthalamic deep brain stimulation; Thalamic deep brain stimulation; DBS; Brain ...
Putamen, globus pallidus. Rigidity. Putaminal (not nigral) damage. Limb and gait ataxia ...
2006). Stimulation of CB1 receptors in the internal and external globus pallidus (GPi, GPe) leads to decreased GABA uptake and ...
D, TUNEL staining was increased in the globus pallidus; however, the adjacent white matter tracts of the internal capsule (IC) ... 6B), pronounced subcortical injury localized to the caudate nucleus, caudate neuroepithelium, putamen, globus pallidus (Fig. 7D ... globus pallidus; IC, internal capsule; ICx, intermediate cortical zone; LV, lateral ventricle; Pir, piriform cortex; Pu, ...
Globus Pallidus / physiopathology * Globus Pallidus / surgery * Humans * Male * Multicenter Studies as Topic ...
Neural Oscillatory Characteristics of Feedback Associated Activity in Globus Pallidus Interna Choubdar H., Mahdavi M., Rostami ...
Asynaptic feature and heterogeneous distribution of the cholinergic innervation of the globus pallidus in primates.. ... p,The internal (GPi) and external (GPe) segments of the primate globus pallidus receive a significant cholinergic (ACh) ...
Bilateral Globus pallidus interna Deep Brain Stimulation in Cranio-Cervical Dystonia (Meige syndrome) patient in Hong Kong. C. ... Bilateral Globus pallidus interna Deep Brain Stimulation in Cranio-Cervical Dystonia (Meige syndrome) patient in Hong Kong [ ... Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is a treatment option for dystonia. The mean improvement of ... www.mdsabstracts.org/abstract/bilateral-globus-pallidus-interna-deep-brain-stimulation-in-cranio-cervical-dystonia-meige- ...
The external globus pallidus (GPe) is an essential component of the basal ganglia, a group of subcortical nuclei that are ... regulator Lmo3 is required for the development of medial ganglionic eminence derived neurons in the external globus pallidus. ...
Str, Striatum; GPe, external globus pallidus; GPi, internal globus pallidus; SNr, substantia nigra pars reticulata. Scale bar, ... It mainly projects to the external segment of the globus pallidus, which, in turn, projects to the subthalamic nucleus. Many ... It mainly projects to the substantia nigra pars reticulata and the internal segment of the globus pallidus. The indirect ... the globus pallidus (internal and external segments), the subthalamic nucleus, and the substantia nigra (pars reticulata and ...
The impact of stimulation induced short-term synaptic plasticity on fring patterns in the globus pallidus of the rat. In: ... The impact of stimulation induced short-term synaptic plasticity on fring patterns in the globus pallidus of the rat. Frontiers ... The impact of stimulation induced short-term synaptic plasticity on fring patterns in the globus pallidus of the rat. / ... title = "The impact of stimulation induced short-term synaptic plasticity on fring patterns in the globus pallidus of the rat", ...

No FAQ available that match "globus pallidus"

No images available that match "globus pallidus"