Genome: The genetic complement of an organism, including all of its GENES, as represented in its DNA, or in some cases, its RNA.Genome, Bacterial: The genetic complement of a BACTERIA as represented in its DNA.Genome, Viral: The complete genetic complement contained in a DNA or RNA molecule in a virus.Genome, Plant: The genetic complement of a plant (PLANTS) as represented in its DNA.Genome, Human: The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs.Genome, Mitochondrial: The genetic complement of MITOCHONDRIA as represented in their DNA.Genome, Fungal: The complete gene complement contained in a set of chromosomes in a fungus.Genome Size: The amount of DNA (or RNA) in one copy of a genome.Sequence Analysis, DNA: A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.Genome, Archaeal: The genetic complement of an archaeal organism (ARCHAEA) as represented in its DNA.Phylogeny: The relationships of groups of organisms as reflected by their genetic makeup.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Genome, Insect: The genetic complement of an insect (INSECTS) as represented in its DNA.Evolution, Molecular: The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.Genome, Protozoan: The complete genetic complement contained in a set of CHROMOSOMES in a protozoan.Genomics: The systematic study of the complete DNA sequences (GENOME) of organisms.Genome, Chloroplast: The genetic complement of CHLOROPLASTS as represented in their DNA.Chromosome Mapping: Any method used for determining the location of and relative distances between genes on a chromosome.Genome, Helminth: The genetic complement of a helminth (HELMINTHS) as represented in its DNA.Open Reading Frames: A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR).Genome, Plastid: The genetic complement of PLASTIDS as represented in their DNA.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Synteny: The presence of two or more genetic loci on the same chromosome. Extensions of this original definition refer to the similarity in content and organization between chromosomes, of different species for example.Human Genome Project: A coordinated effort of researchers to map (CHROMOSOME MAPPING) and sequence (SEQUENCE ANALYSIS, DNA) the human GENOME.DNA, Viral: Deoxyribonucleic acid that makes up the genetic material of viruses.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Gene Order: The sequential location of genes on a chromosome.Computational Biology: A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets.Genetic Variation: Genotypic differences observed among individuals in a population.Models, Genetic: Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Databases, Genetic: Databases devoted to knowledge about specific genes and gene products.Recombination, Genetic: Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.Species Specificity: The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.Multigene Family: A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)Chromosomes, Artificial, Bacterial: DNA constructs that are composed of, at least, a REPLICATION ORIGIN, for successful replication, propagation to and maintenance as an extra chromosome in bacteria. In addition, they can carry large amounts (about 200 kilobases) of other sequence for a variety of bioengineering purposes.Gene Duplication: Processes occurring in various organisms by which new genes are copied. Gene duplication may result in a MULTIGENE FAMILY; supergenes or PSEUDOGENES.Repetitive Sequences, Nucleic Acid: Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES).RNA, Viral: Ribonucleic acid that makes up the genetic material of viruses.Genes, Viral: The functional hereditary units of VIRUSES.Software: Sequential operating programs and data which instruct the functioning of a digital computer.Molecular Sequence Annotation: The addition of descriptive information about the function or structure of a molecular sequence to its MOLECULAR SEQUENCE DATA record.DNA Transposable Elements: Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.Base Composition: The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid.DNA, Mitochondrial: Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins.Sequence Homology, Nucleic Acid: The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Contig Mapping: Overlapping of cloned or sequenced DNA to construct a continuous region of a gene, chromosome or genome.DNA, Bacterial: Deoxyribonucleic acid that makes up the genetic material of bacteria.Conserved Sequence: A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.DNA, Plant: Deoxyribonucleic acid that makes up the genetic material of plants.Viral Proteins: Proteins found in any species of virus.Gene Transfer, Horizontal: The naturally occurring transmission of genetic information between organisms, related or unrelated, circumventing parent-to-offspring transmission. Horizontal gene transfer may occur via a variety of naturally occurring processes such as GENETIC CONJUGATION; GENETIC TRANSDUCTION; and TRANSFECTION. It may result in a change of the recipient organism's genetic composition (TRANSFORMATION, GENETIC).Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.Retroelements: Elements that are transcribed into RNA, reverse-transcribed into DNA and then inserted into a new site in the genome. Long terminal repeats (LTRs) similar to those from retroviruses are contained in retrotransposons and retrovirus-like elements. Retroposons, such as LONG INTERSPERSED NUCLEOTIDE ELEMENTS and SHORT INTERSPERSED NUCLEOTIDE ELEMENTS do not contain LTRs.Nucleic Acid Hybridization: Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)Databases, Nucleic Acid: Databases containing information about NUCLEIC ACIDS such as BASE SEQUENCE; SNPS; NUCLEIC ACID CONFORMATION; and other properties. Information about the DNA fragments kept in a GENE LIBRARY or GENOMIC LIBRARY is often maintained in DNA databases.Chromosomes, Plant: Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of PLANTS.Expressed Sequence Tags: Partial cDNA (DNA, COMPLEMENTARY) sequences that are unique to the cDNAs from which they were derived.High-Throughput Nucleotide Sequencing: Techniques of nucleotide sequence analysis that increase the range, complexity, sensitivity, and accuracy of results by greatly increasing the scale of operations and thus the number of nucleotides, and the number of copies of each nucleotide sequenced. The sequencing may be done by analysis of the synthesis or ligation products, hybridization to preexisting sequences, etc.Pseudogenes: Genes bearing close resemblance to known genes at different loci, but rendered non-functional by additions or deletions in structure that prevent normal transcription or translation. When lacking introns and containing a poly-A segment near the downstream end (as a result of reverse copying from processed nuclear RNA into double-stranded DNA), they are called processed genes.Physical Chromosome Mapping: Mapping of the linear order of genes on a chromosome with units indicating their distances by using methods other than genetic recombination. These methods include nucleotide sequencing, overlapping deletions in polytene chromosomes, and electron micrography of heteroduplex DNA. (From King & Stansfield, A Dictionary of Genetics, 5th ed)Polymerase Chain Reaction: In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.Algorithms: A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task.Biological Evolution: The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics.Virus Replication: The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.Genomic Instability: An increased tendency of the GENOME to acquire MUTATIONS when various processes involved in maintaining and replicating the genome are dysfunctional.Genes, Bacterial: The functional hereditary units of BACTERIA.Polyploidy: The chromosomal constitution of a cell containing multiples of the normal number of CHROMOSOMES; includes triploidy (symbol: 3N), tetraploidy (symbol: 4N), etc.Genetic Markers: A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).Gene Expression Profiling: The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Genes, Plant: The functional hereditary units of PLANTS.Genome, Microbial: The genetic complement of a microorganism as represented in its DNA or in some microorganisms its RNA.Plasmids: Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.Internet: A loose confederation of computer communication networks around the world. The networks that make up the Internet are connected through several backbone networks. The Internet grew out of the US Government ARPAnet project and was designed to facilitate information exchange.Genome Components: The parts of a GENOME sequence that are involved with the different functions or properties of genomes as a whole as opposed to those of individual GENES.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Sequence Homology: The degree of similarity between sequences. Studies of AMINO ACID SEQUENCE HOMOLOGY and NUCLEIC ACID SEQUENCE HOMOLOGY provide useful information about the genetic relatedness of genes, gene products, and species.Oryza sativa: Annual cereal grass of the family POACEAE and its edible starchy grain, rice, which is the staple food of roughly one-half of the world's population.Chromosomes: In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Bacterial Proteins: Proteins found in any species of bacterium.DNA, Intergenic: Any of the DNA in between gene-coding DNA, including untranslated regions, 5' and 3' flanking regions, INTRONS, non-functional pseudogenes, and non-functional repetitive sequences. This DNA may or may not encode regulatory functions.Gene Rearrangement: The ordered rearrangement of gene regions by DNA recombination such as that which occurs normally during development.Nucleic Acid Conformation: The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.Polymorphism, Single Nucleotide: A single nucleotide variation in a genetic sequence that occurs at appreciable frequency in the population.Chromosomes, Bacterial: Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell.Oligonucleotide Array Sequence Analysis: Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING.DNA Replication: The process by which a DNA molecule is duplicated.Mutagenesis, Insertional: Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation.DNA Restriction Enzymes: Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.Cluster Analysis: A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both.Genetic Linkage: The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME.Gene Library: A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences.Gene Dosage: The number of copies of a given gene present in the cell of an organism. An increase in gene dosage (by GENE DUPLICATION for example) can result in higher levels of gene product formation. GENE DOSAGE COMPENSATION mechanisms result in adjustments to the level GENE EXPRESSION when there are changes or differences in gene dosage.Codon: A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE).DNA Primers: Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.Bacteriophages: Viruses whose hosts are bacterial cells.Phenotype: The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.Restriction Mapping: Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.Genotype: The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.Selection, Genetic: Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population.Genes: A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.Introns: Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes.Terminal Repeat Sequences: Nucleotide sequences repeated on both the 5' and 3' ends of a sequence under consideration. For example, the hallmarks of a transposon are that it is flanked by inverted repeats on each end and the inverted repeats are flanked by direct repeats. The Delta element of Ty retrotransposons and LTRs (long terminal repeats) are examples of this concept.User-Computer Interface: The portion of an interactive computer program that issues messages to and receives commands from a user.Prophages: Genomes of temperate BACTERIOPHAGES integrated into the DNA of their bacterial host cell. The prophages can be duplicated for many cell generations until some stimulus induces its activation and virulence.Blotting, Southern: A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.INDEL Mutation: A mutation named with the blend of insertion and deletion. It refers to a length difference between two ALLELES where it is unknowable if the difference was originally caused by a SEQUENCE INSERTION or by a SEQUENCE DELETION. If the number of nucleotides in the insertion/deletion is not divisible by three, and it occurs in a protein coding region, it is also a FRAMESHIFT MUTATION.Microsatellite Repeats: A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs).Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Genes, Mitochondrial: Genes that are located on the MITOCHONDRIAL DNA. Mitochondrial inheritance is often referred to as maternal inheritance but should be differentiated from maternal inheritance that is transmitted chromosomally.DNA, Chloroplast: Deoxyribonucleic acid that makes up the genetic material of CHLOROPLASTS.Gene Deletion: A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.Genomic Library: A form of GENE LIBRARY containing the complete DNA sequences present in the genome of a given organism. It contrasts with a cDNA library which contains only sequences utilized in protein coding (lacking introns).Comparative Genomic Hybridization: A method for comparing two sets of chromosomal DNA by analyzing differences in the copy number and location of specific sequences. It is used to look for large sequence changes such as deletions, duplications, amplifications, or translocations.Arabidopsis: A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.RNA, Transfer: The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains.Vertebrates: Animals having a vertebral column, members of the phylum Chordata, subphylum Craniata comprising mammals, birds, reptiles, amphibians, and fishes.Prokaryotic Cells: Cells lacking a nuclear membrane so that the nuclear material is either scattered in the cytoplasm or collected in a nucleoid region.Symbiosis: The relationship between two different species of organisms that are interdependent; each gains benefits from the other or a relationship between different species where both of the organisms in question benefit from the presence of the other.Sequence Analysis, RNA: A multistage process that includes cloning, physical mapping, subcloning, sequencing, and information analysis of an RNA SEQUENCE.Promoter Regions, Genetic: DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.Interspersed Repetitive Sequences: Copies of transposable elements interspersed throughout the genome, some of which are still active and often referred to as "jumping genes". There are two classes of interspersed repetitive elements. Class I elements (or RETROELEMENTS - such as retrotransposons, retroviruses, LONG INTERSPERSED NUCLEOTIDE ELEMENTS and SHORT INTERSPERSED NUCLEOTIDE ELEMENTS) transpose via reverse transcription of an RNA intermediate. Class II elements (or DNA TRANSPOSABLE ELEMENTS - such as transposons, Tn elements, insertion sequence elements and mobile gene cassettes of bacterial integrons) transpose directly from one site in the DNA to another.RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Plants: Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.Saccharomyces cerevisiae: A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.Virulence: The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS.Inverted Repeat Sequences: Copies of nucleic acid sequence that are arranged in opposing orientation. They may lie adjacent to each other (tandem) or be separated by some sequence that is not part of the repeat (hyphenated). They may be true palindromic repeats, i.e. read the same backwards as forward, or complementary which reads as the base complement in the opposite orientation. Complementary inverted repeats have the potential to form hairpin loop or stem-loop structures which results in cruciform structures (such as CRUCIFORM DNA) when the complementary inverted repeats occur in double stranded regions.RNA Viruses: Viruses whose genetic material is RNA.Plastids: Self-replicating cytoplasmic organelles of plant and algal cells that contain pigments and may synthesize and accumulate various substances. PLASTID GENOMES are used in phylogenetic studies.Virus Integration: Insertion of viral DNA into host-cell DNA. This includes integration of phage DNA into bacterial DNA; (LYSOGENY); to form a PROPHAGE or integration of retroviral DNA into cellular DNA to form a PROVIRUS.Bacteria: One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.Genes, Archaeal: The functional genetic units of ARCHAEA.Sorghum: A plant genus of the family POACEAE. The grain is used for FOOD and for ANIMAL FEED. This should not be confused with KAFFIR LIME or with KEFIR milk product.Gene Expression Regulation, Bacterial: Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.Gene Expression Regulation, Viral: Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.DNA, Circular: Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992)Genetic Loci: Specific regions that are mapped within a GENOME. Genetic loci are usually identified with a shorthand notation that indicates the chromosome number and the position of a specific band along the P or Q arm of the chromosome where they are found. For example the locus 6p21 is found within band 21 of the P-arm of CHROMOSOME 6. Many well known genetic loci are also known by common names that are associated with a genetic function or HEREDITARY DISEASE.Chromosomes, Human: Very long DNA molecules and associated proteins, HISTONES, and non-histone chromosomal proteins (CHROMOSOMAL PROTEINS, NON-HISTONE). Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary information of the individual.Short Interspersed Nucleotide Elements: Highly repeated sequences, 100-300 bases long, which contain RNA polymerase III promoters. The primate Alu (ALU ELEMENTS) and the rodent B1 SINEs are derived from 7SL RNA, the RNA component of the signal recognition particle. Most other SINEs are derived from tRNAs including the MIRs (mammalian-wide interspersed repeats).Genetic Vectors: DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition.Genetic Engineering: Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc.Segmental Duplications, Genomic: Low-copy (2-50) repetitive DNA elements that are highly homologous and range in size from 1000 to 400,000 base pairs.DNA, Complementary: Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.Polymorphism, Genetic: The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level.Drosophila melanogaster: A species of fruit fly much used in genetics because of the large size of its chromosomes.Eukaryotic Cells: Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane.Metabolic Networks and Pathways: Complex sets of enzymatic reactions connected to each other via their product and substrate metabolites.GC Rich Sequence: A nucleic acid sequence that contains an above average number of GUANINE and CYTOSINE bases.Mammals: Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young.Cell Nucleus: Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Long Interspersed Nucleotide Elements: Highly repeated sequences, 6K-8K base pairs in length, which contain RNA polymerase II promoters. They also have an open reading frame that is related to the reverse transcriptase of retroviruses but they do not contain LTRs (long terminal repeats). Copies of the LINE 1 (L1) family form about 15% of the human genome. The jockey elements of Drosophila are LINEs.Transcriptome: The pattern of GENE EXPRESSION at the level of genetic transcription in a specific organism or under specific circumstances in specific cells.Hybridization, Genetic: The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid.Alleles: Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.Pan troglodytes: The common chimpanzee, a species of the genus Pan, family HOMINIDAE. It lives in Africa, primarily in the tropical rainforests. There are a number of recognized subspecies.Eukaryota: One of the three domains of life (the others being BACTERIA and ARCHAEA), also called Eukarya. These are organisms whose cells are enclosed in membranes and possess a nucleus. They comprise almost all multicellular and many unicellular organisms, and are traditionally divided into groups (sometimes called kingdoms) including ANIMALS; PLANTS; FUNGI; and various algae and other taxa that were previously part of the old kingdom Protista.Archaea: One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA.Quantitative Trait Loci: Genetic loci associated with a QUANTITATIVE TRAIT.Genes, Duplicate: Two identical genes showing the same phenotypic action but localized in different regions of a chromosome or on different chromosomes. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)Angiosperms: Members of the group of vascular plants which bear flowers. They are differentiated from GYMNOSPERMS by their production of seeds within a closed chamber (OVARY, PLANT). The Angiosperms division is composed of two classes, the monocotyledons (Liliopsida) and dicotyledons (Magnoliopsida). Angiosperms represent approximately 80% of all known living plants.Sequence Deletion: Deletion of sequences of nucleic acids from the genetic material of an individual.Capsid: The outer protein protective shell of a virus, which protects the viral nucleic acid.Tetraodontiformes: A small order of primarily marine fish containing 340 species. Most have a rotund or box-like shape. TETRODOTOXIN is found in their liver and ovaries.DNA Copy Number Variations: Stretches of genomic DNA that exist in different multiples between individuals. Many copy number variations have been associated with susceptibility or resistance to disease.Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.Diploidy: The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X.Mutation Rate: The number of mutations that occur in a specific sequence, GENE, or GENOME over a specified period of time such as years, CELL DIVISIONS, or generations.Defective Viruses: Viruses which lack a complete genome so that they cannot completely replicate or cannot form a protein coat. Some are host-dependent defectives, meaning they can replicate only in cell systems which provide the particular genetic function which they lack. Others, called SATELLITE VIRUSES, are able to replicate only when their genetic defect is complemented by a helper virus.Chromosome Inversion: An aberration in which a chromosomal segment is deleted and reinserted in the same place but turned 180 degrees from its original orientation, so that the gene sequence for the segment is reversed with respect to that of the rest of the chromosome.Untranslated Regions: The parts of the messenger RNA sequence that do not code for product, i.e. the 5' UNTRANSLATED REGIONS and 3' UNTRANSLATED REGIONS.Crosses, Genetic: Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Likelihood Functions: Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters.Tandem Repeat Sequences: Copies of DNA sequences which lie adjacent to each other in the same orientation (direct tandem repeats) or in the opposite direction to each other (INVERTED TANDEM REPEATS).Proteome: The protein complement of an organism coded for by its genome.Genomic Islands: Distinct units in some bacterial, bacteriophage or plasmid GENOMES that are types of MOBILE GENETIC ELEMENTS. Encoded in them are a variety of fitness conferring genes, such as VIRULENCE FACTORS (in "pathogenicity islands or islets"), ANTIBIOTIC RESISTANCE genes, or genes required for SYMBIOSIS (in "symbiosis islands or islets"). They range in size from 10 - 500 kilobases, and their GC CONTENT and CODON usage differ from the rest of the genome. They typically contain an INTEGRASE gene, although in some cases this gene has been deleted resulting in "anchored genomic islands".Exons: The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.DNA, Fungal: Deoxyribonucleic acid that makes up the genetic material of fungi.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.DNA Repair: The reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule which contained damaged regions. The major repair mechanisms are excision repair, in which defective regions in one strand are excised and resynthesized using the complementary base pairing information in the intact strand; photoreactivation repair, in which the lethal and mutagenic effects of ultraviolet light are eliminated; and post-replication repair, in which the primary lesions are not repaired, but the gaps in one daughter duplex are filled in by incorporation of portions of the other (undamaged) daughter duplex. Excision repair and post-replication repair are sometimes referred to as "dark repair" because they do not require light.Plant Diseases: Diseases of plants.Plant Proteins: Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.Zea mays: A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER.RNA: A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)Genetic Techniques: Chromosomal, biochemical, intracellular, and other methods used in the study of genetics.5' Untranslated Regions: The sequence at the 5' end of the messenger RNA that does not code for product. This sequence contains the ribosome binding site and other transcription and translation regulating sequences.Alu Elements: The Alu sequence family (named for the restriction endonuclease cleavage enzyme Alu I) is the most highly repeated interspersed repeat element in humans (over a million copies). It is derived from the 7SL RNA component of the SIGNAL RECOGNITION PARTICLE and contains an RNA polymerase III promoter. Transposition of this element into coding and regulatory regions of genes is responsible for many heritable diseases.Chromatin: The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.DNA, Algal: Deoxyribonucleic acid that makes up the genetic material of algae.Genes, Overlapping: Genes whose nucleotide sequences overlap to some degree. The overlapped sequences may involve structural or regulatory genes of eukaryotic or prokaryotic cells.Chromosomes, Mammalian: Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of MAMMALS.Endogenous Retroviruses: Retroviruses that have integrated into the germline (PROVIRUSES) that have lost infectious capability but retained the capability to transpose.Genome-Wide Association Study: An analysis comparing the allele frequencies of all available (or a whole GENOME representative set of) polymorphic markers in unrelated patients with a specific symptom or disease condition, and those of healthy controls to identify markers associated with a specific disease or condition.Computer Graphics: The process of pictorial communication, between human and computers, in which the computer input and output have the form of charts, drawings, or other appropriate pictorial representation.Siphoviridae: A family of BACTERIOPHAGES and ARCHAEAL VIRUSES which are characterized by long, non-contractile tails.DNA Methylation: Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor.Gene Expression: The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.

*  Omics! Omics!: 2006
For the Genome X Prize, the basic goal is to sequence 100 diploid human genomes in 10 days for $1 million.. A recent GenomeWeb ... Prior to the human genome sequence this was a long & difficult process, and sometimes in the end not all the ambiguity could be ... Human Genome Sciences has announced positive results for its Lymphostat B drug in lupus. I won't go into detail on their ... First off, what exactly does it mean to sequence 100 human genomes in 1 week for $1 million? Do you have to actually assemble ...
*  Human Genome Sciences Announces Pricing of Public Offering of Co... ( ROCKVILLE Md. July 28 /- Human...)
July 28 /- Human Genome Scienc... ...(Logo: a href ...,Human,Genome, ... Human Genome Sciences Announces Pricing of Public Offering of Common Stock. ... ...ROCKVILLE Md. July 28 /- Human Genome Scienc ... HGS, Human Genome Sciences, ABthrax, Albuferon, BENLYSTA, LymphoStat-B, and ZALBIN are trademarks of Human Genome Sciences, Inc ... Human Genome Sciences Invites Investors to Listen to Webcast of Presentation at Thomas Weisel Partners Conference. 7. Human ...
*  African and Asian genome sequences: the last of the single human genome papers? - Genetic Future
African and Asian genome sequences: the last of the single human genome papers?. Posted by Daniel MacArthur on November 5, 2008 ... "single human genome" papers, which started in a sense with the anonymised, pooled and fragmented human reference sequences ... But nonetheless, the age of the one-genome paper is fast drawing to a close. Human genetics now moves into a phase of new ... 2008). Accurate whole human genome sequencing using reversible terminator chemistry Nature, 456 (7218), 53-59 DOI: 10.1038/ ...
*  Human Genome Epidemiology, 2nd Edition - Muin Khoury; Sara Bedrosian; Marta Gwinn; Julian Higgins; John Ioannidis; Julian...
... applications and evaluation of human genome information in improving health and preventing disease. Since that time, advances ... in human genomics have continued to occur at a breathtaking pace. ... The first edition of Human Genome Epidemiology, published in ... PART I: Fundamentals of human genome epidemiology revisited 1. Human genome epidemiology: The road map revisited. Muin J. ... You are here: Home Page , Medicine & Health , Public Health & Epidemiology , Epidemiology , Human Genome Epidemiology, 2nd ...
*  Unlocking the Chemistry of Life | Caltech
In just the span of an average lifetime, science has made leaps and bounds in our understanding of the human genome and its ... However, the 20,000 genes of the human genome are more than DNA; they also encode proteins to carry out the countless functions ... Scientists can easily sequence an entire genome in just a day or two, but sequencing a proteome-all of the proteins encoded by ... In order to understand the role each of these proteins plays in human health-and what goes wrong when disease occurs-biologists ...
*  Chromatin Structure and Human Genome Evolution
... of the human genome, but relatively little is known about the spatial organisation of the genome ... Genome Research 17: 1286-1295. Gilbert N, Boyle S, Fiegler H et al. (2004) Chromatin architecture of the human genome: gene‐ ... of the human genome, but relatively little is known about the spatial organisation of the genome. This is a major gap in our ... Chromatin Structure and Human Genome Evolution. Emily V Chambers, University of Edinburgh, Edinburgh, Scotland Colin AM Semple ...
*  Thales Y. Papagiannakopoulos
Genome sequencing studies have identified a large collection of genetic alterations that occur in human cancers. However, the ... Development of novel in vivo genome engineering approaches for cancer research Cancer develops from mutations and copy number ... Our lab is pioneering the use of GEMMs of lung cancer in combination with in vivo CRISPR/Cas9 genome engineering approaches to ... Using a combination of a Kras-driven genetically engineered mouse model and somatic CRISPR/Cas9 genome-engineering approaches ...
*  Stock:Human Genome Sciences (HGSI)
Human Genome Sciences, Inc. (NYSE: HGSI) is a freshly minted commercial biotech company, with the approval of its flagship drug ... Investors betting big on Human Genome's Benlysta. Retrieved from "" ... Human Genome Sciences, Inc. (NYSE: HGSI) is a freshly minted commercial biotech company, with the approval of its flagship drug ... Human Genome Sciences, Inc. ([[NYSE]]: HGSI)''' is a freshly minted commercial biotech company, with the approval of its ...
*  A step toward the $1,000 personal genome using readily available lab equipment ( The theoretical price of having one's p...)
1000 human genome requires a significa...The new technique calls for replicating thousands of DNA fragments att...,A,step, ... toward,the,$1,000,personal,genome,using,readily,available,lab,equipment,biological,biology news articles,biology news today, ... The theoretical price of having one's personal genome sequenced just f...The sharp drop is due to a new DNA sequencing ... The Church lab is a member of the genome sequencing technology development project of the NIH-National Human Genome Research ...
*  Plus it
Among the 518 kinases identified in the human genome are many exciting targets for cancer drug discovery (22). Molecular ... Contributions of human tumor xenografts to anticancer drug development. Cancer Res 2006;66:3351-4. ... Sequential dependent enhancement of caspase activation and apoptosis by flavopiridol on paclitaxel-treated human gastric and ... They induce cell cycle arrest in vitro and in human xenograft growth arrest in a spectrum of models. In addition to cytostasis ...
*  Patterns of somatic mutation in human cancer genomes.
The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations ... Patterns of somatic mutation in human cancer genomes.. Greenman C., Stephens P., Smith R., Dalgliesh G.L., Hunter C., Bignell G ... Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger ... of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial ...
*  DNA - Human Genome | ENCOGNITIVE.COM
Human Genome. The human genome is the genome of Homo sapiens, which is composed of 24 distinct pairs of chromosomes (22 ... Mitochondrial genome. The human mitochondrial genome, while usually not included when referring to the "human genome", is of ... The human genome is much more gene-sparse than was initially predicted at the outset of the Human Genome Project, with only ... The chimpanzee genome is 95% identical to the human genome. On average, a typical human protein-coding gene differs from its ...
*  GlaxoSmithKline PLC (NYSE:GSK), (HGSI) - GlaxoSmithKline in Talks with Human Genome Sciences -Sources | Benzinga
... is reportedly in discussions this weekend with Human Genome Sciences (NASDAQ: HGSI) to increase its previous offer, according ... GlaxoSmithKline in Talks with Human Genome Sciences -Sources. Charles Gross , Benzinga Staff Writer {{following ? "Following ... Human Genome had previously rejected GSK's $13/share bid. There was heavy volume in the October 16 HGSI call on Friday just ... GlaxoSmithKline (NYSE: GSK) is reportedly in discussions this weekend with Human Genome Sciences (NASDAQ: HGSI) to increase its ...
*  Cancer genome sequencing - Wikipedia
With cancer genomes, this is usually done by aligning the reads to the human reference genome. Since even non-cancerous cells ... The Cancer Genome Project CGAP The Cancer Genome Atlas Cancer Genome Project Cancer Genome Project International Cancer Genome ... By comparison, the original draft of the human genome had approximately 65-fold coverage. A major goal of cancer genome ... and the National Human Genome Research Institute (NHGRI). Combined with these efforts, the International Cancer Genome ...
*  National Human Genome Research Institute (NHGRI)
The National Human Genome Research Institute conducts genetic and genomic research, funds genetic and genomic research and ... The National Human Genome Research Institute (NHGRI) has appointed Carolyn Hutter, Ph.D. the director of the Division of Genome ... The National Human Genome Research Institute today launched a new round of strategic planning that will establish a 2020 vision ... The National Human Genome Research Institute conducts genetic and genomic research, funds genetic and genomic research and ...
*  Learning About Klinefelter Syndrome - National Human Genome Research Institute (NHGRI)
Humans have 46 chromosomes, which contain all of a person's genes and DNA. Two of these chromosomes, the sex chromosomes, ... From the National Institute of Child Health & Human Development.. *Klinefelter Syndrome []. From the National ...
*  Human genome - Wikipedia
6 Genomic variation in humans *6.1 Human reference genome. *6.2 Measuring human genetic variation *6.2.1 Mapping human genomic ... Mapping human genomic variation[edit]. Whereas a genome sequence lists the order of every DNA base in a genome, a genome map ... Main articles: Human genetic variation and Human genetic clustering. Human reference genome[edit]. With the exception of ... Completeness of the human genome sequence[edit]. Although the human genome has been completely sequenced for all practical ...
*  Human Genome Count Rising | WIRED
The race to finish mapping the human genome could get even hotter. ... Scientists claim humans may actually have double the number of genes than previously thought. ... Human Genome Count Rising. Human beings may have twice as many genes as previously thought, researchers at a biotechnology ... Incyte is one of several companies hoping to make money on its maps of the human genome - the collection of all human genetic ...
*  Human Genome Project Results | HowStuffWorks
Human Genome Project results have told us that we have far fewer genes than expected. What other Human Genome Project results ... Now that the Human Genome Project is over, it's time for scientists to examine the information produced and pursue related ... For more inform-ation about the Human Genome Project and other related topics like epigenetics, please visit the links on the ... Along with changing how we think about genes, the Human Genome Project spawned lots of other projects. For example, in 2002, ...
*  Human Genome up on analyst report - MarketWatch
NEW YORK (CBS.MW) -- Shares of Human Genome Sciences rose 15 percent Thursday, buoyed by a vote of confidence from a Wall ...
*  Caltech and the Human Genome Project | Caltech
The Human Genome Project is unique among scientific projects for having set aside, from the beginning, research support for ... They shared a vision of the future in which knowledge of every gene that composes the human genome would be available to any ... PASADENA- Two of the key inventions that made possible the monumental task of sequencing the human genome came from the ... Coupled with some recent advances, the method remained the core for the just-completed phase of sequencing the human genome. ...
*  US National Human Genome Research Institute
The National Human Genome Research Institute led the US contribution to the sequencing of the human genome. Following the ... completion of the Human Genome Project, NHGRI has moved into areas of genetic and genomic research aimed at improving human ...
*  Human genome quiz › Science Quizzes (ABC Science)
It's ten years since scientists sequenced the human genome, the first step in answering some of the questions about what makes ... Human genome quiz. It's ten years since scientists sequenced the human genome, the first step in answering some of the ... 1. The human genome is:. a) All of our genes. b) All of our DNA. c) All of the DNA and RNA in our cells. d) Responsible for all ... Scientists have unravelled some of the mysteries of the human genome. (Source: iStockphoto) ...
*  The Human Genome Project (Stanford Encyclopedia of Philosophy)
Brief History of the Human Genome Project. *2. Philosophy and the Human Genome Project *2.1 Conceptual Foundations of the Human ... International Human Genome Sequencing Consortium, 2001, "Initial Sequencing and Analysis of the Human Genome," Nature 409 (15 ... Kevles, Daniel J., 1994, "Eugenics and the Human Genome Project: Is the Past Prologue?" in Justice and the Human Genome Project ... National Human Genome Research Institute, 2003, "International Consortium Completes Human Genome Project" (14 April); [ ...
*  Lee CS[Author] - PubMed - NCBI
Human Genome. *Mouse Genome. *Influenza Virus. *Primer-BLAST. *Sequence Read Archive. *. NCBI Information. ...

List of sequenced eukaryotic genomesGlobal microbial identifier: The genomic epidemiological database for global identification of microorganisms or global microbial identifier (GMI) is a platform for storing whole genome sequencing (WGS) data of microorganisms, for the identification of relevant genes and for the comparison of genomes to detect and track-and-trace infectious disease outbreaks and emerging pathogens. The database holds two types of information: 1) genomic information of microorganisms, linked to, 2) metadata of those microorganism such as epidemiological details.NADH-QDNA sequencer: A DNA sequencer is a scientific instrument used to automate the DNA sequencing process. Given a sample of DNA, a DNA sequencer is used to determine the order of the four bases: G (guanine), C (cytosine), A (adenine) and T (thymine).Branching order of bacterial phyla (Gupta, 2001): There are several models of the Branching order of bacterial phyla, one of these was proposed in 2001 by Gupta based on conserved indels or protein, termed "protein signatures", an alternative approach to molecular phylogeny. Some problematic exceptions and conflicts are present to these conserved indels, however, they are in agreement with several groupings of classes and phyla.Symmetry element: A symmetry element is a point of reference about which symmetry operations can take place. In particular, symmetry elements can be centers of inversion, axes of rotation and mirror planes.Molecular evolution: Molecular evolution is a change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics to explain patterns in these changes.PlasmoDB: PlasmoDB is a biological database for the genus Plasmodium. The database is a member of the EuPathDB project.Ontario Genomics Institute: The Ontario Genomics Institute (OGI) is a not-for-profit organization that manages cutting-edge genomics research projects and platforms.The Ontario Genomics Institute OGI also helps scientists find paths to the marketplace for their discoveries and the products to which they lead, and it works through diverse outreach and educational activities to raise awareness and facilitate informed public dialogue about genomics and its social impacts.Chromosome regionsOpen reading frame: In molecular genetics, an open reading frame (ORF) is the part of a reading frame that has the potential to code for a protein or peptide. An ORF is a continuous stretch of codons that do not contain a stop codon (usually UAA, UAG or UGA).CS-BLASTCancer Genome Project: The Cancer Genome Project, based at the Wellcome Trust Sanger Institute, aims to identify sequence variants/mutations critical in the development of human cancers. Like The Cancer Genome Atlas project within the United States, the Cancer Genome Project represents an effort in the War on Cancer to improve cancer diagnosis, treatment, and prevention through a better understanding of the molecular basis of this disease.Coles PhillipsPSI Protein Classifier: PSI Protein Classifier is a program generalizing the results of both successive and independent iterations of the PSI-BLAST program. PSI Protein Classifier determines belonging of the found by PSI-BLAST proteins to the known families.Genetic variation: right|thumbProtein primary structure: The primary structure of a peptide or protein is the linear sequence of its amino acid structural units, and partly comprises its overall biomolecular structure. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end.Extracellular: In cell biology, molecular biology and related fields, the word extracellular (or sometimes extracellular space) means "outside the cell". This space is usually taken to be outside the plasma membranes, and occupied by fluid.Recombination (cosmology): In cosmology, recombination refers to the epoch at which charged electrons and protons first became bound to form electrically neutral hydrogen atoms.Note that the term recombination is a misnomer, considering that it represents the first time that electrically neutral hydrogen formed.ParaHox: The ParaHox gene cluster is an array of homeobox genes (involved in morphogenesis, the regulation of patterns of anatomical development) from the Gsx, Xlox (Pdx) and Cdx gene families.Gene duplication: Gene duplication (or chromosomal duplication or gene amplification) is a major mechanism through which new genetic material is generated during molecular evolution. It can be defined as any duplication of a region of DNA that contains a gene.Direct repeat: Direct repeats are a type of genetic sequence that consists of two or more repeats of a specific sequence.Mac OS X Server 1.0Composite transposon: A composite transposon is similar in function to simple transposons and Insertion Sequence (IS) elements in that it has protein coding DNA segments flanked by inverted, repeated sequences that can be recognized by transposase enzymes. A composite transposon, however, is flanked by two separate IS elements which may or may not be exact replicas.Haplogroup L0 (mtDNA)Silent mutation: Silent mutations are mutations in DNA that do not significantly alter the phenotype of the organism in which they occur. Silent mutations can occur in non-coding regions (outside of genes or within introns), or they may occur within exons.Ligation-independent cloning: Ligation-independent cloning (LIC) is a form of molecular cloning that is able to be performed without the use of restriction endonucleases or DNA ligase. This allows genes that have restriction sites to be cloned without worry of chopping up the insert.Horizontal gene transfer in evolutionEukaryotic transcription: Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of RNA replica. Gene transcription occurs in both eukaryotic and prokaryotic cells.Ty5 retrotransposon: The Ty5 is a type of retrotransposon native to the Saccharomyces cerevisiae organism.Sequence clustering: In bioinformatics, sequence clustering algorithms attempt to group biological sequences that are somehow related. The sequences can be either of genomic, "transcriptomic" (ESTs) or protein origin.Massive parallel sequencing: Massive parallel sequencing or massively parallel sequencing is any of several high-throughput approaches to DNA sequencing using the concept of massively parallel processing; it is also called next-generation sequencing (NGS) or second-generation sequencing. Some of these technologies emerged in 1994-1998 and became commercially available since 2005.Thermal cyclerClonal Selection Algorithm: In artificial immune systems, Clonal selection algorithms are a class of algorithms inspired by the clonal selection theory of acquired immunity that explains how B and T lymphocytes improve their response to antigens over time called affinity maturation. These algorithms focus on the Darwinian attributes of the theory where selection is inspired by the affinity of antigen-antibody interactions, reproduction is inspired by cell division, and variation is inspired by somatic hypermutation.PaleopolyploidyDNA condensation: DNA condensation refers to the process of compacting DNA molecules in vitro or in vivo. Mechanistic details of DNA packing are essential for its functioning in the process of gene regulation in living systems.Gene signature: A gene signature is a group of genes in a cell whose combined expression patternItadani H, Mizuarai S, Kotani H. Can systems biology understand pathway activation?Adjustable spannerTriparental mating: Triparental mating is a form of Bacterial conjugation where a conjugative plasmid present in one bacterial strain assists the transfer of a mobilizable plasmid present in a second bacterial strain into a third bacterial strain. Plasmids are introduced into bacteria for such purposes as transformation, cloning, or transposon mutagenesis.Internet organizations: This is a list of Internet organizations, or organizations that play or played a key role in the evolution of the Internet by developing recommendations, standards, and technology; deploying infrastructure and services; and addressing other major issues.Weedy rice: Weedy rice, also known as red rice, is a variety of rice (Oryza) that produces far fewer grains per plant than cultivated rice and is therefore considered a pest. The name "weedy rice" is used for all types and variations of rice which show some characteristic features of cultivated rice and grow as weeds in commercial rice fields.Premature chromosome condensation: Premature chromosome condensation (PCC) occurs in eukaryotic organisms when mitotic cells fuse with interphase cells. Chromatin, a substance that contains genetic material such as DNA, is normally found in a loose bundle inside a cell's nucleus.Ferric uptake regulator family: In molecular biology, the ferric uptake regulator (FUR) family of proteins includes metal ion uptake regulator proteins. These are responsible for controlling the intracellular concentration of iron in many bacteria.Intergenic region: An Intergenic region (IGR) is a stretch of DNA sequences located between genes. Intergenic regions are a subset of Noncoding DNA.Chromothripsis: Chromothripsis is the phenomenon by which up to thousands of clustered chromosomal rearrangements occur in a single event in localised and confined genomic regions in one or a few chromosomes, and is known to be involved in both cancer and congenital diseases. It occurs through one massive genomic rearrangement during a single catastrophic event in the cell's history.Nucleic acid structure: Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar.WGAViewer: WGAViewer is a bioinformatics software tool which is designed to visualize, annotate, and help interpret the results generated from a genome wide association study (GWAS). Alongside the P values of association, WGAViewer allows a researcher to visualize and consider other supporting evidence, such as the genomic context of the SNP, linkage disequilibrium (LD) with ungenotyped SNPs, gene expression database, and the evidence from other GWAS projects, when determining the potential importance of an individual SNP.Circular bacterial chromosome: A circular bacterial chromosome is a bacterial chromosome in the form of a molecule of circular DNA. Unlike the linear DNA of most eukaryotes, typical bacterial chromosomes are circular.Cellular microarray: A cellular microarray is a laboratory tool that allows for the multiplex interrogation of living cells on the surface of a solid support. The support, sometimes called a "chip", is spotted with varying materials, such as antibodies, proteins, or lipids, which can interact with the cells, leading to their capture on specific spots.DNA re-replication: DNA re-replication (or simply rereplication) is an undesirable and possibly fatal occurrence in eukaryotic cells in which the genome is replicated more than once per cell cycle. Rereplication is believed to lead to genomic instability and has been implicated in the pathologies of a variety of human cancers.Signature-tagged mutagenesis: Signature-tagged mutagenesis (STM) is a genetic technique used to study gene function. Recent advances in genome sequencing have allowed us to catalogue a large variety of organisms' genomes, but the function of the genes they contain is still largely unknown.Restriction fragment: A restriction fragment is a DNA fragment resulting from the cutting of a DNA strand by a restriction enzyme (restriction endonucleases), a process called restriction. Each restriction enzyme is highly specific, recognising a particular short DNA sequence, or restriction site, and cutting both DNA strands at specific points within this site.Genetic linkage: Genetic linkage is the tendency of alleles that are located close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction. Genes whose loci are nearer to each other are less likely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be genetically linked.Library (biology): In molecular biology, a library is a collection of DNA fragments that is stored and propagated in a population of micro-organisms through the process of molecular cloning. There are different types of DNA libraries, including cDNA libraries (formed from reverse-transcribed RNA), genomic libraries (formed from genomic DNA) and randomized mutant libraries (formed by de novo gene synthesis where alternative nucleotides or codons are incorporated).Copy number analysis: Copy number analysis usually refers to the process of analyzing data produced by a test for DNA copy number variation in patient's sample. Such analysis helps detect chromosomal copy number variation that may cause or may increase risks of various critical disorders.Codon Adaptation Index: The Codon Adaptation Index (CAI) is the most widespread technique for analyzing Codon usage bias. As opposed to other measures of codon usage bias, such as the 'effective number of codons' (Nc), which measure deviation from a uniform bias (null hypothesis), CAI measures the deviation of a given protein coding gene sequence with respect to a reference set of genes.CTXφ Bacteriophage: The CTXφ bacteriophage is a filamentous bacteriophage that contains the genetic material needed by the Vibrio cholerae bacterium for the production of cholera toxin, or CT. CTXφ is a positive virus with single-stranded DNA (ssDNA).

(1/8470) Analysis of genomic integrity and p53-dependent G1 checkpoint in telomerase-induced extended-life-span human fibroblasts.

Life span determination in normal human cells may be regulated by nucleoprotein structures called telomeres, the physical ends of eukaryotic chromosomes. Telomeres have been shown to be essential for chromosome stability and function and to shorten with each cell division in normal human cells in culture and with age in vivo. Reversal of telomere shortening by the forced expression of telomerase in normal cells has been shown to elongate telomeres and extend the replicative life span (H. Vaziri and S. Benchimol, Curr. Biol. 8:279-282, 1998; A. G. Bodnar et al., Science 279:349-352, 1998). Extension of the life span as a consequence of the functional inactivation of p53 is frequently associated with loss of genomic stability. Analysis of telomerase-induced extended-life-span fibroblast (TIELF) cells by G banding and spectral karyotyping indicated that forced extension of the life span by telomerase led to the transient formation of aberrant structures, which were subsequently resolved in higher passages. However, the p53-dependent G1 checkpoint was intact as assessed by functional activation of p53 protein in response to ionizing radiation and subsequent p53-mediated induction of p21(Waf1/Cip1/Sdi1). TIELF cells were not tumorigenic and had a normal DNA strand break rejoining activity and normal radiosensitivity in response to ionizing radiation.  (+info)

(2/8470) An effective approach for analyzing "prefinished" genomic sequence data.

Ongoing efforts to sequence the human genome are already generating large amounts of data, with substantial increases anticipated over the next few years. In most cases, a shotgun sequencing strategy is being used, which rapidly yields most of the primary sequence in incompletely assembled sequence contigs ("prefinished" sequence) and more slowly produces the final, completely assembled sequence ("finished" sequence). Thus, in general, prefinished sequence is produced in excess of finished sequence, and this trend is certain to continue and even accelerate over the next few years. Even at a prefinished stage, genomic sequence represents a rich source of important biological information that is of great interest to many investigators. However, analyzing such data is a challenging and daunting task, both because of its sheer volume and because it can change on a day-by-day basis. To facilitate the discovery and characterization of genes and other important elements within prefinished sequence, we have developed an analytical strategy and system that uses readily available software tools in new combinations. Implementation of this strategy for the analysis of prefinished sequence data from human chromosome 7 has demonstrated that this is a convenient, inexpensive, and extensible solution to the problem of analyzing the large amounts of preliminary data being produced by large-scale sequencing efforts. Our approach is accessible to any investigator who wishes to assimilate additional information about particular sequence data en route to developing richer annotations of a finished sequence.  (+info)

(3/8470) High polymorphism level of genomic sequences flanking insertion sites of human endogenous retroviral long terminal repeats.

The polymorphism at the multitude of loci adjacent to human endogenous retrovirus long terminal repeats (LTRs) was analyzed by a technique for whole genome differential display based on the PCR suppression effect that provides selective amplification and display of genomic sequences flanking interspersed repeated elements. This strategy is simple, target-specific, requires a small amount of DNA and provides reproducible and highly informative data. The average frequency of polymorphism observed in the vicinity of the LTR insertion sites was found to be about 12%. The high incidence of polymorphism within the LTR flanks together with the frequent location of LTRs near genes makes the LTR loci a useful source of polymorphic markers for gene mapping.  (+info)

(4/8470) Search for retroviral related DNA polymorphisms using RAPD PCR in schizophrenia.

Random amplification of polymorphic DNA (RAPD) is widely used to detect polymorphisms in many organisms. Individual (or strain) specific amplified bands are generated with single or pairs of primers in PCR reactions and can serve as genetic markers. We have used this method to generate a large number of reproducible bands with single primers, random and retroviral related, on 92 human DNA samples. Theoretically, RAPD PCR presents a logical approach for assessing variability among individuals. We used ten retroviral related primers (12, 20 and 22 bp) and eight random primers (10 bp) to assess individual differences in the context of testing the retroviral hypothesis for schizophrenia. Three pairs of discordant monozygotic twins, four pairs of discordant full sibs and 53 schizophrenic individuals with 25 of their unrelated matched controls were analyzed. Ten of these primers resulted in a total of approx. 850 amplified bands (65-110 bands per primer). Almost all of these bands were identical among each individual analyzed. However, the results are inconclusive with respect to the retroviral hypothesis for schizophrenia. The general lack of RAPD polymorphism in this study may argue for mechanisms other than rearrangements such as inversions, associated with the evolution of the human genome.  (+info)

(5/8470) Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand.

Among members of the tumor necrosis factor receptor (TNFR) superfamily, 4-1BB, CD27, and glucocorticoid-induced tumor necrosis factor receptor family-related gene (GITR) share a striking homology in the cytoplasmic domain. Here we report the identification of a new member, activation-inducible TNFR family member (AITR), which belongs to this subfamily, and its ligand. The receptor is expressed in lymph node and peripheral blood leukocytes, and its expression is up-regulated in human peripheral mononuclear cells mainly after stimulation with anti-CD3/CD28 monoclonal antibodies or phorbol 12-myristate 13-acetate/ionomycin. AITR associates with TRAF1 (TNF receptor-associated factor 1), TRAF2, and TRAF3, and induces nuclear factor (NF)-kappaB activation via TRAF2. The ligand for AITR (AITRL) was found to be an undescribed member of the TNF family, which is expressed in endothelial cells. Thus, AITR and AITRL seem to be important for interactions between activated T lymphocytes and endothelial cells.  (+info)

(6/8470) A previously undescribed intron and extensive 5' upstream sequence, but not Phox2a-mediated transactivation, are necessary for high level cell type-specific expression of the human norepinephrine transporter gene.

The synaptic action of norepinephrine is terminated by NaCl-dependent uptake into presynaptic noradrenergic nerve endings, mediated by the norepinephrine transporter (NET). NET is expressed only in neuronal tissues that synthesize and secrete norepinephrine and in most cases is co-expressed with the norepinephrine-synthetic enzyme dopamine beta-hydroxylase (DBH). To understand the molecular mechanisms regulating human NET (hNET) gene expression, we isolated and characterized an hNET genomic clone encompassing approximately 9. 5 kilobase pairs of the 5' upstream promoter region. Here we demonstrate that the hNET gene contains an as-yet-unidentified intron of 476 base pairs within the 5'-untranslated region. Furthermore, both primer extension and 5'-rapid amplification of cDNA ends analyses identified multiple transcription start sites from mRNAs expressed only in NET-expressing cell lines. The start sites clustered in two subdomains, each preceded by a TATA-like sequence motif. As expected for mature mRNAs, transcripts from most of these sites each contained an additional G residue at the 5' position. Together, the data strongly support the authenticity of these sites as the transcriptional start sites of hNET. We assembled hNET-chloramphenicol acetyltransferase reporter constructs containing different lengths of hNET 5' sequence in the presence or the absence of the first intron. Transient transfection assays indicated that the combination of the 5' upstream sequence and the first intron supported the highest level of noradrenergic cell-specific transcription. Forced expression of the paired-like homeodomain transcription factor Phox2a did not affect hNET promoter activity in NET-negative cell lines, in marked contrast to its effect on a DBH-chloramphenicol acetyltransferase reporter construct. Together with our previous studies suggesting a critical role of Phox2a for noradrenergic-specific expression of the DBH gene, these data support a model in which distinct, or partially distinct, molecular mechanisms regulate cell-specific expression of the NET and DBH genes.  (+info)

(7/8470) The ancestry of a sample of sequences subject to recombination.

In this article we discuss the ancestry of sequences sampled from the coalescent with recombination with constant population size 2N. We have studied a number of variables based on simulations of sample histories, and some analytical results are derived. Consider the leftmost nucleotide in the sequences. We show that the number of nucleotides sharing a most recent common ancestor (MRCA) with the leftmost nucleotide is approximately log(1 + 4N Lr)/4Nr when two sequences are compared, where L denotes sequence length in nucleotides, and r the recombination rate between any two neighboring nucleotides per generation. For larger samples, the number of nucleotides sharing MRCA with the leftmost nucleotide decreases and becomes almost independent of 4N Lr. Further, we show that a segment of the sequences sharing a MRCA consists in mean of 3/8Nr nucleotides, when two sequences are compared, and that this decreases toward 1/4Nr nucleotides when the whole population is sampled. A measure of the correlation between the genealogies of two nucleotides on two sequences is introduced. We show analytically that even when the nucleotides are separated by a large genetic distance, but share MRCA, the genealogies will show only little correlation. This is surprising, because the time until the two nucleotides shared MRCA is reciprocal to the genetic distance. Using simulations, the mean time until all positions in the sample have found a MRCA increases logarithmically with increasing sequence length and is considerably lower than a theoretically predicted upper bound. On the basis of simulations, it turns out that important properties of the coalescent with recombinations of the whole population are reflected in the properties of a sample of low size.  (+info)

(8/8470) Structural characterization of the gene for human histidine-rich glycoprotein, reinvestigation of the 5'-terminal region of cDNA and a search for the liver specific promoter in the gene.

Genomic DNA libraries were screened for the human histidine-rich glycoprotein (HRG) gene and a sequence of 15,499 nucleotides was determined. The gene is composed of 7 exons and 6 introns, and all the exon-intron boundaries match the consensus GT/AG sequence for donor and acceptor splice sites. Each of cystatin-like domains I and II of HRG is encoded by three exons, exons I to III and exons IV to VI, respectively, like those of other members of the cystatin superfamily. The entire C-terminal half of the molecule is encoded by the largest exon, VII. The first 103 nucleotides of the cDNA sequence reported for human HRG [Koide, T., Foster, D., Yoshitake, S. , and Davie, E.W. (1986) Biochemistry 25, 2220-2225] could not be found in the determined gene sequence. A homology search of this sequence against a database showed the complete matching to a part of the yeast mitochondrial DNA encoding 21S ribosomal RNA. Rapid amplification of cDNA 5' ends (5'-RACE) analysis revealed that the cDNA has multiple 5'-ends and that a possible starting point is nucleotide 104 of the reported cDNA sequence. These results suggest that the first 103 nucleotides of the cDNA sequence reported for human HRG originated from yeast mitochondrial DNA and were incidentally incorporated into the HRG cDNA in the process of the construction of a cDNA library. Various fragments obtained on restriction endonuclease digestion of the 5'-noncoding region of the HRG gene were ligated to the chloramphenicol acetyltransferase (CAT) gene and then transfected into HepG2 and 293 cells to analyze the promoter activity. The sequence between -262 and -21 from the putative translation initiation site supported the expression of CAT in HepG2 cells but not in 293 cells, suggesting that this segment promotes the liver-specific transcription of the human HRG gene.  (+info)

  • genes
  • Human genomes include both protein-coding DNA genes and noncoding DNA . (
  • There are an estimated 19,000-20,000 human protein-coding genes. (
  • The estimate of the number of human genes has been repeatedly revised down from initial predictions of 100,000 or more as genome sequence quality and gene finding methods have improved, and could continue to drop further. (
  • Human beings may have twice as many genes as previously thought, researchers at a biotechnology company said Tuesday - a suggestion that would have big implications for scientists racing to map all the genes. (
  • None of us would be shocked if it turned out there were 150,000 human genes,' said Dr. Francis Collins, head of the National Human Genome Research Institute . (
  • Some researchers are now looking at the 99 or so percent of DNA that aren't genes, wondering if these previously neglected chunks of the genome have significant roles to play. (
  • The HGP and subsequent research efforts have changed the consensus view of genes and noncoding DNA, casting them as part of an increasingly complex image of genes, DNA and other components of the genome. (
  • Along with changing how we think about genes, the Human Genome Project spawned lots of other projects. (
  • David Baltimore, president of Caltech and a Nobel laureate for his work on the genes of viruses, was a highly influential supporter of the Human Genome Project at its inception. (
  • The Human Genome Project is unique among scientific projects for having set aside, from the beginning, research support for studies of the ethical, legal, and social implications of the new knowledge of human genes that would result. (
  • downplayed the concerns of scientist critics by emphasizing that there was not one but many genome projects, that these were not on the scale of the Manhattan or Apollo projects, that no agency was committed to massive sequencing, and that the study of other organisms was needed to understand human genes. (
  • Dr. Francis S. Collins, director of the National Institutes of Health, is noted for his landmark discoveries of disease genes and his visionary leadership of the Human Genome Project, a complex multidisciplinary scientific enterprise directed at mapping and sequencing human DNA. (
  • Nowadays, the most accurate and efficient approach for building gene maps involves sequencing a genome--or part of a genome--and then using various computer programs to analyze the sequence and identify genes within the sequence. (
  • and third, identifying and characterizing genes associated with human disease. (
  • The Human Genome Project (HGP) was an international scientific research project with the goal of determining the sequence of nucleotide base pairs that make up human DNA, and of identifying and mapping all of the genes of the human genome from both a physical and a functional standpoint. (
  • The scientific community has used the HGDP data to study human migration, mutation rates, relationships between different populations, genes involved in height, and selective pressure. (
  • it is becoming clear that these associations are population-dependent and that understanding human diversity will be a major step toward increasing the power to find genes associated with disease. (
  • Identifying specific regions of the human genome that show evidence of adaptive evolution helps us find functionally significant genes, including genes important for human health, such as those associated with diseases. (
  • The first complete genome is sequenced - a tiny bacterium-infecting virus called Phi X 174, with just 11 genes, and a little over 5000 base pairs. (
  • gene
  • They shared a vision of the future in which knowledge of every gene that composes the human genome would be available to any scientist in the world at the click of a computer key. (
  • Just as the Human Genome Project accelerated gene identification, this initiative promises to speed discoveries on gene function and lead to the development of new therapies for human disease. (
  • There are various methods that have been used over the years to deduce gene maps of genomes. (
  • Table 1 (above) summarizes the physical organization and gene content of the human reference genome, with links to the original analysis, as published in the Ensembl database at the European Bioinformatics Institute (EBI) and Wellcome Trust Sanger Institute. (
  • In addition to the gene content shown in this table, a large number of non-expressed functional sequences have been identified throughout the human genome (see below). (
  • For example, in September 2000, the company reported that it had found a way to treat large, painful sores that often plague elderly patients, using a protein spray called repifermin, made by a human gene called keratinocyte growth factor-2. (
  • The HUGO Gene Nomenclature Committee (HGNC), sometimes referred to as "HUGO", is one of HUGO's most active committees and aims to assign a unique gene name and symbol to each human gene. (
  • sequences
  • Protein -coding sequences account for only a very small fraction of the genome (approximately 1.5%), and the rest is associated with non-coding RNA molecules, regulatory DNA sequences , LINEs , SINEs , introns , and sequences for which as yet no function has been determined. (
  • 1988
  • HUGO was established in late April 1988 at the first meeting dedicated to genome mapping at Cold Spring Harbor. (
  • October 1, 1988 - The Office for Human Genome Research is created within the Office of the Director, National Institutes of Health (NIH). (
  • genomics
  • The National Human Genome Research Institute today launched a new round of strategic planning that will establish a 2020 vision for genomics research aimed at accelerating scientific and medical breakthroughs. (
  • In developing the strategic plan, the institute will engage experts and diverse public communities to identify paradigm-shifting areas of genomics that will expand the field into new frontiers and enable novel applications to human health and disease. (
  • Dr. Alan Guttmacher is the former acting director of the National Human Genome Research Institute, helping oversee the institute's efforts in advancing genome research, integrating the benefits of genome research into healthcare, and exploring the ethical, legal and social implications of human genomics. (
  • Zebrafish Genome Webpage 'Institute of Genomics and Integrative Biology' (IGIB) Decoding the Genome Mystery Indian Express, July 5, 2009. (
  • 1997
  • Koonin, who is Caltech's provost, was chair of the JASON study of 1997, which noted to the scientific community that quality standards could be relaxed so that a "rough draft" of the human genome could be made years earlier and still be of great utility. (
  • humans
  • While there are significant differences among the genomes of human individuals (on the order of 0.1%), these are considerably smaller than the differences between humans and their closest living relatives, the chimpanzees (approximately 4% ) and bonobos . (
  • Humans have an incredibly complex and intricate genome that has been shaped and modified over time by evolution. (
  • research
  • At that time, David Galas was Director of the renamed "Office of Biological and Environmental Research" in the U.S. Department of Energy's Office of Science and James Watson headed the NIH Genome Program. (
  • To gain a full assessment of human development, scientists must engage in diversity research. (
  • Also, NIH and the Department of Energy (DOE) sign a memorandum of understanding to "coordinate research and technical activities related to the human genome. (
  • November 17, 2009 - NIH Appoints Eric D. Green, M.D., Ph.D. to be Director of The National Human Genome Research Institute. (
  • Wylie Burke, M.D., Ph.D., $4.7 million This center is focused on equitable distribution and use of translational genome research in underserved and marginalized communities. (
  • Chinese National Human Genome Center (国家人类基因组北方研究中心), Beijing (CHGB), was established as one of the national-level genome research center approved by the Ministry of Science & Technology. (
  • CHGB promotes the commercialization of research products and initiate genome industry in China. (
  • His research interests include family law, especially law relating to children, law regarding the human genome, and judiciary law. (
  • insights
  • Quantifying adaptive evolution in the human genome gives insights into our own evolutionary history and helps to resolve this neutralist-selectionist debate. (
  • genetics
  • What set GDB apart from other biological databases was its use of leaders in human genetics to act as curators for the data. (
  • It is the result of many years of work by Luigi Cavalli-Sforza, one of the most cited scientists in the world, who has published extensively in the use of genetics to understand human migration and evolution. (
  • Leroy Hood
  • Sinsheimer's, Dulbecco's, and DeLisi's idea found supporters among a number of prominent molecular biologists and human geneticists-for example, Walter Bodmer, Walter Gilbert, Leroy Hood, Victor McKusick, and James D. Watson. (
  • vast
  • Many different studies have attempted to quantify the amount of adaptive evolution in the human genome, the vast majority using the comparative approaches outlined above. (
  • SNPs
  • But despite these SNPs, human beings only differ from one another by about 0.1 percent, enough to ensure that no two human beings are genetically identical, even, sometimes, identical twins. (
  • It is estimated that there are at least 10 million SNPs within the human population but there are also many other types of genetic variants and they occur at dramatically different scales. (
  • draft
  • A more complete draft was published in 2003, and genome "finishing" work continued for more than a decade. (
  • approaches
  • The other methods for detecting adaptive evolution use genome wide approaches, often to look for evidence of selective sweeps. (
  • beings
  • Its article 11 begins with the statement, "Practices which are contrary to human dignity, such as reproductive cloning of human beings, shall not be permitted. (
  • antibody
  • Belimumab (trade name Benlysta, previously known as LymphoStat-B) is a human monoclonal antibody that inhibits B-cell activating factor (BAFF), also known as B-lymphocyte stimulator (BLyS). (
  • Belimumab is a human antibody that binds to BAFF, preventing BAFF from binding to B cells. (