The process of germ cell development from the primordial GERM CELLS to the mature haploid GAMETES: ova in the female (OOGENESIS) or sperm in the male (SPERMATOGENESIS).
The process of germ cell development in plants, from the primordial PLANT GERM CELLS to the mature haploid PLANT GAMETES.
The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA.
The reproductive cells in multicellular organisms at various stages during GAMETOGENESIS.
The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM).
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.
The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS.
The variable phenotypic expression of a GENE depending on whether it is of paternal or maternal origin, which is a function of the DNA METHYLATION pattern. Imprinted regions are observed to be more methylated and less transcriptionally active. (Segen, Dictionary of Modern Medicine, 1992)
The fertilizing element of plants that contains the male GAMETOPHYTES.
Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS.
The total process by which organisms produce offspring. (Stedman, 25th ed)
The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE.
Xanthurenic acid and its salts, formed as byproducts during the metabolism of tryptophan, are collectively referred to as xanthurenates, which can accumulate in conditions like hyperphenylalaninemia and may contribute to oxidative stress and cellular damage.
The gamete-producing glands, OVARY or TESTIS.
The element in plants that contains the female GAMETOPHYTES.
The active production and accumulation of VITELLINS (egg yolk proteins) in the non-mammalian OOCYTES from circulating precursors, VITELLOGENINS. Vitellogenesis usually begins after the first MEIOSIS and is regulated by estrogenic hormones.
A plant genus of the family RANUNCULACEAE. Members contain hellebrin (BUFANOLIDES). The extract is the basis of Boicil preparation used to treat rheumatism.
Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility.
The prophase of the first division of MEIOSIS (in which homologous CHROMOSOME SEGREGATION occurs). It is divided into five stages: leptonema, zygonema, PACHYNEMA, diplonema, and diakinesis.
Reproductive bodies produced by fungi.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.
The capacity to conceive or to induce conception. It may refer to either the male or female.
Animals and plants which have, as their normal mode of reproduction, both male and female sex organs in the same individual.
Morphological and physiological development of EMBRYOS.
The protein components that constitute the common core of small nuclear ribonucleoprotein particles. These proteins are commonly referred as Sm nuclear antigens due to their antigenic nature.
Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments.
Euploid male germ cells of an early stage of SPERMATOGENESIS, derived from prespermatogonia. With the onset of puberty, spermatogonia at the basement membrane of the seminiferous tubule proliferate by mitotic then meiotic divisions and give rise to the haploid SPERMATOCYTES.
Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor.
In gonochoristic organisms, congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. Effects from exposure to abnormal levels of GONADAL HORMONES in the maternal environment, or disruption of the function of those hormones by ENDOCRINE DISRUPTORS are included.
A cyclin A subtype primarily found in male GERM CELLS. It may play a role in the passage of SPERMATOCYTES into meiosis I.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A protein-tyrosine kinase receptor that is specific for STEM CELL FACTOR. This interaction is crucial for the development of hematopoietic, gonadal, and pigment stem cells. Genetic mutations that disrupt the expression of PROTO-ONCOGENE PROTEINS C-KIT are associated with PIEBALDISM, while overexpression or constitutive activation of the c-kit protein-tyrosine kinase is associated with tumorigenesis.
The inability of the male to effect FERTILIZATION of an OVUM after a specified period of unprotected intercourse. Male sterility is permanent infertility.
An enzyme that catalyzes the transfer of a methyl group from S-ADENOSYLMETHIONINE to the 5-position of CYTOSINE residues in DNA.
The chromosomal constitution of cells, in which each type of CHROMOSOME is represented once. Symbol: N.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Inability to reproduce after a specified period of unprotected intercourse. Reproductive sterility is permanent infertility.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
The continuous sequence of changes undergone by living organisms during the post-embryonic developmental process, such as metamorphosis in insects and amphibians. This includes the developmental stages of apicomplexans such as the malarial parasite, PLASMODIUM FALCIPARUM.
The process in developing sex- or gender-specific tissue, organ, or function after SEX DETERMINATION PROCESSES have set the sex of the GONADS. Major areas of sex differentiation occur in the reproductive tract (GENITALIA) and the brain.
The fertilized OVUM resulting from the fusion of a male and a female gamete.
A genus GREEN ALGAE in the order VOLVOCIDA. It consists of solitary biflagellated organisms common in fresh water and damp soil.

Heat shock protein expression during gametogenesis and embryogenesis. (1/279)

When cells are subjected to various stress factors, they increase the production of a group of proteins called heat shock proteins (hsp). Heat shock proteins are highly conserved proteins present in organisms ranging from bacteria to man. Heat shock proteins enable cells to survive adverse environmental conditions by preventing protein denaturation. Thus the physiological and pathological potential of hsps is enormous and has been studied widely over the past two decades. The presence or absence of hsps influences almost every aspect of reproduction. They are among the first proteins produced during mammalian embryo development. In this report, the production of hsps in gametogenesis and early embryo development is described. It has been suggested that prolonged and asymptomatic infections trigger immunity to microbial hsp epitopes that are also expressed in man. This may be relevant for human reproduction, since many couples with fertility problems have had a previous genital tract infection. Antibodies to bacterial and human hsps are present at high titers in sera of many patients undergoing in vitro fertilization. In a mouse embryo culture model, these antibodies impaired the mouse embryo development at unique developmental stages. The gross morphology of these embryos resembled cells undergoing apoptosis. The TUNEL (terminal deoxynucleotidyl transferase-mediated X-dUTP nick end labeling) staining pattern, which is a common marker of apoptosis, revealed that embryos cultured in the presence of hsp antibodies stained TUNEL-positive more often than unexposed embryos. These data extend preexisting findings showing the detrimental effect of immune sensitization to hsps on embryo development.  (+info)

Increased instability of human CTG repeat tracts on yeast artificial chromosomes during gametogenesis. (2/279)

Expansion of trinucleotide repeat tracts has been shown to be associated with numerous human diseases. The mechanism and timing of the expansion events are poorly understood, however. We show that CTG repeats, associated with the human DMPK gene and implanted in two homologous yeast artificial chromosomes (YACs), are very unstable. The instability is 6 to 10 times more pronounced in meiosis than during mitotic division. The influence of meiosis on instability is 4.4 times greater when the second YAC with a repeat tract is not present. Most of the changes we observed in trinucleotide repeat tracts are large contractions of 21 to 50 repeats. The orientation of the insert with the repeats has no effect on the frequency and distribution of the contractions. In our experiments, expansions were found almost exclusively during gametogenesis. Genetic analysis of segregating markers among meiotic progeny excluded unequal crossover as the mechanism for instability. These unique patterns have novel implications for possible mechanisms of repeat instability.  (+info)

The role of apoptosis in normal and abnormal embryonic development. (3/279)

Programmed cell death or apoptosis is a widespread biological phenomenon. Apoptosis is characterized by typical cell features such as membrane blebbing, chromatin condensation, and DNA fragmentation. It involves a number of membrane receptors (e.g., Fas, TNFR) and a cascade of signal transduction steps resulting in the activation of a number of cysteine proteases known as caspases. Disordered apoptosis may lead to carcinogenesis and participates in the pathogenesis of Alzheimer disease, Parkinson disease, or AIDS. Programmed cell death plays an important role in the processes of gamete maturation as well as in embryo development, contributing to the appropriate formation of various organs and structures. Apoptosis is one of the mechanisms of action of various cytotoxic agents and teratogens. Teratogen-induced excessive death of embryonic cells is undoubtedly one of the most important events preceding the occurrence of structural abnormalities, regardless of their nature. Therefore understanding the mechanisms involved in physiological as well as in disturbed or dysregulated apoptosis may lead to the development of new methods of preventive treatment of various developmental abnormalities. The present review summarizes data on the mechanisms of programmed cell death and concentrates on apoptosis involved in normal or disturbed gametogenesis and in normal and abnormal embryonic development.  (+info)

EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. (4/279)

BACKGROUND: Cell-fate determination requires that cells choose between alternative developmental pathways. For example, germ cells in the nematode worm Caenorhabditis elegans choose between mitotic and meiotic division, and between oogenesis and spermatogenesis. Germ-line mitosis depends on a somatic signal that is mediated by a Notch-type signaling pathway. The ego-1 gene was originally identified on the basis of genetic interactions with the receptor in this pathway and was also shown to be required for oogenesis. Here, we provide more insight into the role of ego-1 in germ-line development. RESULTS: We have determined the ego-1 gene structure and the molecular basis of ego-1 alleles. Putative ego-1 null mutants had multiple, previously unreported defects in germ-line development. The ego-1 transcript was found predominantly in the germ line. The predicted EGO-1 protein was found to be related to the tomato RNA-directed RNA polymerase (RdRP) and to Neurospora crassa QDE-1, two proteins implicated in post-transcriptional gene silencing (PTGS). For a number of germ-line-expressed genes, ego-1 mutants were resistant to a form of PTGS called RNA interference. CONCLUSIONS: The ego-1 gene is the first example of a gene encoding an RdRP-related protein with an essential developmental function. The ego-1 gene is also required for a robust response to RNA interference by certain genes. Hence, a protein required for germ-line development in C. elegans may be a component of the RNA interference/PTGS machinery.  (+info)

Sexual stage-specific expression of a third calcium-dependent protein kinase from Plasmodium falciparum. (5/279)

A third calcium-dependent protein kinase (CDPK) gene has been isolated from the human malaria parasite Plasmodium falciparum by vectorette technology. The gene consists of five exons and four introns. The open reading frame resulting from removal of the four introns encodes a protein of 562 amino acid residues with a predicted molecular mass of 65.3 kDa. The encoded protein, termed PfCDPK3, consists of four distinct domains characteristic of a member of the CDPK family and displays the highest homology (46% identity and 69% similarity) to PfCDPK2, the second CDPK of P. falciparum. The N-terminal variable domain is rich in serine/threonine and lysine and contains multiple consensus phosphorylation sites for a range of protein kinases. The catalytic domain possesses all conserved motifs of the protein kinase family except for the highly conserved glutamic acid residue in subdomain VIII, which is replaced by a glutamine residue. The sequence of the junction domain comprising 31 amino acid residues is less conserved. The calmodulin-like regulatory domain contains four EF-hand calcium-binding motifs, each consisting of a loop of 12 amino acid residues which is flanked by two alpha-helices. Southern blotting of genomic DNA digests showed that the Pfcdpk3 gene is present as a single copy per haploid genome. A 2900 nucleotide transcript of this gene is expressed specifically in the sexual erythrocytic stage, indicating that PfCDPK3 is involved in sexual stage-specific events. It is proposed that PfCDPK3 may serve as a link between calcium and gametogenesis of P. falciparum.  (+info)

Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. (6/279)

A novel peptide, scorpine, was isolated from the venom of the scorpion Pandinus imperator, with anti-bacterial activity and a potent inhibitory effect on the ookinete (ED(50) 0.7 microM) and gamete (ED(50) 10 microM) stages of Plasmodium berghei development. It has 75 amino acids, three disulfide bridges with a molecular mass of 8350 Da. Scorpine has a unique amino acid sequence, similar only to some cecropins in its N-terminal segment and to some defensins in its C-terminal region. Its gene was cloned from a cDNA library.  (+info)

Regulated targeting of a protein kinase into an intact flagellum. An aurora/Ipl1p-like protein kinase translocates from the cell body into the flagella during gamete activation in chlamydomonas. (7/279)

In the green alga Chlamydomonas reinhardtii flagellar adhesion between gametes of opposite mating types leads to rapid cellular changes, events collectively termed gamete activation, that prepare the gametes for cell-cell fusion. As is true for gametes of most organisms, the cellular and molecular mechanisms that underlie gamete activation are poorly understood. Here we report on the regulated movement of a newly identified protein kinase, Chlamydomonas aurora/Ipl1p-like protein kinase (CALK), from the cell body to the flagella during gamete activation. CALK encodes a protein of 769 amino acids and is the newest member of the aurora/Ipl1p protein kinase family. Immunoblotting with an anti-CALK antibody showed that CALK was present as a 78/80-kDa doublet in vegetative cells and unactivated gametes of both mating types and was localized primarily in cell bodies. In cells undergoing fertilization, the 78-kDa CALK was rapidly targeted to the flagella, and within 5 min after mixing gametes of opposite mating types, the level of CALK in the flagella began to approach levels normally found in the cell body. Protein synthesis was not required for targeting, indicating that the translocated CALK and the cellular molecules required for its movement are present in unactivated gametes. CALK was also translocated to the flagella during flagellar adhesion of nonfusing mutant gametes, demonstrating that cell fusion was not required for movement. Finally, the requirement for flagellar adhesion could be bypassed; incubation of cells of a single mating type in dibutyryl cAMP led to CALK translocation to flagella in gametes but not vegetative cells. These experiments document a new event in gamete activation in Chlamydomonas and reveal the existence of a mechanism for regulated translocation of molecules into an intact flagellum.  (+info)

H19 and Igf2 monoallelic expression is regulated in two distinct ways by a shared cis acting regulatory region upstream of H19. (8/279)

H19 and Igf2 are expressed in a monoallelic fashion from the maternal and paternal chromosomes, respectively. A region upstream of H19 has been shown to regulate such imprinted expression of both genes in cis. We have taken advantage of a loxP/cre recombinase-based strategy to delete this region in mice in a conditional manner to determine the temporal requirement of the upstream region in initiating and maintaining the imprinted expression of H19 and Igf2. Analysis of allele-specific expression of H19 and Igf2 and DNA methylation at the H19 promoter demonstrates that this region controls the monoallelic expression of the two genes in different ways, suggesting that it harbors two functionally distinct regulatory elements. Continued presence of the region is required to silence maternal Igf2 in accordance with its proposed role as an insulator. However, it does not have a direct role in keeping the paternal H19 promoter silenced. Instead, on the paternal chromosome, the upstream element mediates epigenetic modifications of the H19 promoter region during development, leading to transcriptional silencing of H19. Thereafter, its presence is redundant for preventing transcription. Presently, this temporal requirement of the silencing element appears to be a unique cis activity in the mammalian system. However, it is likely that other cis-acting elements, positive and negative, have the ability to effect stable changes in the chromatin structure and are not constantly required to give signals to the transcriptional machinery.  (+info)

Gametogenesis is the biological process by which haploid gametes, or sex cells (sperm and egg cells), are produced through the meiotic division of diploid germ cells. In females, this process is called oogenesis, where an oogonium (diploid germ cell) undergoes mitosis to form an oocyte (immature egg cell). The oocyte then undergoes meiosis I to form a secondary oocyte and a polar body. After fertilization by a sperm cell, the secondary oocyte completes meiosis II to form a mature ovum or egg cell.

In males, this process is called spermatogenesis, where a spermatogonium (diploid germ cell) undergoes mitosis to form primary spermatocytes. Each primary spermatocyte then undergoes meiosis I to form two secondary spermatocytes, which subsequently undergo meiosis II to form four haploid spermatids. The spermatids then differentiate into spermatozoa or sperm cells through a process called spermiogenesis.

Gametogenesis is essential for sexual reproduction and genetic diversity, as it involves the random segregation of chromosomes during meiosis and the recombination of genetic material between homologous chromosomes.

Gametogenesis in plants refers to the process of formation and development of gametes or sex cells (male: sperm and female: egg) through meiotic cell division. This process occurs within specialized reproductive organs called anthers (in male gametophyte) and ovules (in female gametophyte).

In the case of male gametogenesis, also known as microsporogenesis, diploid microspore mother cells undergo meiosis to produce haploid microspores. These microspores further develop into mature pollen grains through a process called pollen grain development or maturation.

Female gametogenesis, also known as megasporogenesis, involves the formation of megaspore mother cells within the ovule sac. The megaspore mother cell undergoes meiosis to produce four haploid megaspores. Only one of these megaspores survives and develops into a multicellular female gametophyte, also known as an embryo sac. This embryo sac contains several cells, including the egg cell, two synergids, three antipodal cells, and two polar nuclei.

These male and female gametes are involved in fertilization to form a zygote, which eventually develops into a new plant through the process of embryogenesis.

Spermatogenesis is the process by which sperm cells, or spermatozoa, are produced in male organisms. It occurs in the seminiferous tubules of the testes and involves several stages:

1. Spermatocytogenesis: This is the initial stage where diploid spermatogonial stem cells divide mitotically to produce more spermatogonia, some of which will differentiate into primary spermatocytes.
2. Meiosis: The primary spermatocytes undergo meiotic division to form haploid secondary spermatocytes, which then divide again to form haploid spermatids. This process results in the reduction of chromosome number from 46 (diploid) to 23 (haploid).
3. Spermiogenesis: The spermatids differentiate into spermatozoa, undergoing morphological changes such as the formation of a head and tail. During this stage, most of the cytoplasm is discarded, resulting in highly compacted and streamlined sperm cells.
4. Spermation: The final stage where mature sperm are released from the seminiferous tubules into the epididymis for further maturation and storage.

The entire process takes approximately 72-74 days in humans, with continuous production throughout adulthood.

Germ cells are the reproductive cells, also known as sex cells, that combine to form offspring in sexual reproduction. In females, germ cells are called ova or egg cells, and in males, they are called spermatozoa or sperm cells. These cells are unique because they carry half the genetic material necessary for creating new life. They are produced through a process called meiosis, which reduces their chromosome number by half, ensuring that when two germ cells combine during fertilization, the normal diploid number of chromosomes is restored.

Oogenesis is the biological process of formation and maturation of female gametes, or ova or egg cells, in the ovary. It begins during fetal development and continues throughout a woman's reproductive years. The process involves the division and differentiation of a germ cell (oogonium) into an immature ovum (oocyte), which then undergoes meiotic division to form a mature ovum capable of being fertilized by sperm.

The main steps in oogenesis include:

1. Multiplication phase: The oogonia divide mitotically to increase their number.
2. Growth phase: One of the oogonia becomes primary oocyte and starts to grow, accumulating nutrients and organelles required for future development.
3. First meiotic division: The primary oocyte undergoes an incomplete first meiotic division, resulting in two haploid cells - a secondary oocyte and a smaller cell called the first polar body. This division is arrested in prophase I until puberty.
4. Second meiotic division: At ovulation or just before fertilization, the secondary oocyte completes the second meiotic division, producing another small cell, the second polar body, and a mature ovum (egg) with 23 chromosomes.
5. Fertilization: The mature ovum can be fertilized by a sperm, restoring the normal diploid number of chromosomes in the resulting zygote.

Oogenesis is a complex and highly regulated process that involves various hormonal signals and cellular interactions to ensure proper development and maturation of female gametes for successful reproduction.

Meiosis is a type of cell division that results in the formation of four daughter cells, each with half the number of chromosomes as the parent cell. It is a key process in sexual reproduction, where it generates gametes or sex cells (sperm and eggs).

The process of meiosis involves one round of DNA replication followed by two successive nuclear divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes pair, form chiasma and exchange genetic material through crossing over, then separate from each other. In meiosis II, sister chromatids separate, leading to the formation of four haploid cells. This process ensures genetic diversity in offspring by shuffling and recombining genetic information during the formation of gametes.

The testis, also known as the testicle, is a male reproductive organ that is part of the endocrine system. It is located in the scrotum, outside of the abdominal cavity. The main function of the testis is to produce sperm and testosterone, the primary male sex hormone.

The testis is composed of many tiny tubules called seminiferous tubules, where sperm are produced. These tubules are surrounded by a network of blood vessels, nerves, and supportive tissues. The sperm then travel through a series of ducts to the epididymis, where they mature and become capable of fertilization.

Testosterone is produced in the Leydig cells, which are located in the interstitial tissue between the seminiferous tubules. Testosterone plays a crucial role in the development and maintenance of male secondary sexual characteristics, such as facial hair, deep voice, and muscle mass. It also supports sperm production and sexual function.

Abnormalities in testicular function can lead to infertility, hormonal imbalances, and other health problems. Regular self-examinations and medical check-ups are recommended for early detection and treatment of any potential issues.

Genomic imprinting is a epigenetic process that leads to the differential expression of genes depending on their parental origin. It involves the methylation of certain CpG sites in the DNA, which results in the silencing of one of the two copies of a gene, either the maternal or paternal allele. This means that only one copy of the gene is active and expressed, while the other is silent.

This phenomenon is critical for normal development and growth, and it plays a role in the regulation of genes involved in growth and behavior. Genomic imprinting is also associated with certain genetic disorders, such as Prader-Willi and Angelman syndromes, which occur when there are errors in the imprinting process that lead to the absence or abnormal expression of certain genes.

It's important to note that genomic imprinting is a complex and highly regulated process that is not yet fully understood. Research in this area continues to provide new insights into the mechanisms underlying gene regulation and their impact on human health and disease.

Pollen, in a medical context, refers to the fine powder-like substance produced by the male reproductive organ of seed plants. It contains microscopic grains known as pollen grains, which are transported by various means such as wind, water, or insects to the female reproductive organ of the same or another plant species for fertilization.

Pollen can cause allergic reactions in some individuals, particularly during the spring and summer months when plants release large amounts of pollen into the air. These allergies, also known as hay fever or seasonal allergic rhinitis, can result in symptoms such as sneezing, runny nose, congestion, itchy eyes, and coughing.

It is important to note that while all pollen has the potential to cause allergic reactions, certain types of plants, such as ragweed, grasses, and trees, are more likely to trigger symptoms in sensitive individuals.

Spermatocytes are a type of cell that is involved in the process of spermatogenesis, which is the formation of sperm in the testes. Specifically, spermatocytes are the cells that undergo meiosis, a special type of cell division that results in the production of four haploid daughter cells, each containing half the number of chromosomes as the parent cell.

There are two types of spermatocytes: primary and secondary. Primary spermatocytes are diploid cells that contain 46 chromosomes (23 pairs). During meiosis I, these cells undergo a process called crossing over, in which genetic material is exchanged between homologous chromosomes. After crossing over, the primary spermatocytes divide into two secondary spermatocytes, each containing 23 chromosomes (but still with 23 pairs).

Secondary spermatocytes then undergo meiosis II, which results in the formation of four haploid spermatids. Each spermatid contains 23 single chromosomes and will eventually develop into a mature sperm cell through a process called spermiogenesis.

It's worth noting that spermatocytes are only found in males, as they are specific to the male reproductive system.

Reproduction, in the context of biology and medicine, refers to the process by which organisms produce offspring. It is a complex process that involves the creation, development, and growth of new individuals from parent organisms. In sexual reproduction, this process typically involves the combination of genetic material from two parents through the fusion of gametes (sex cells) such as sperm and egg cells. This results in the formation of a zygote, which then develops into a new individual with a unique genetic makeup.

In contrast, asexual reproduction does not involve the fusion of gametes and can occur through various mechanisms such as budding, fragmentation, or parthenogenesis. Asexual reproduction results in offspring that are genetically identical to the parent organism.

Reproduction is a fundamental process that ensures the survival and continuation of species over time. It is also an area of active research in fields such as reproductive medicine, where scientists and clinicians work to understand and address issues related to human fertility, contraception, and genetic disorders.

An ovary is a part of the female reproductive system in which ova or eggs are produced through the process of oogenesis. They are a pair of solid, almond-shaped structures located one on each side of the uterus within the pelvic cavity. Each ovary measures about 3 to 5 centimeters in length and weighs around 14 grams.

The ovaries have two main functions: endocrine (hormonal) function and reproductive function. They produce and release eggs (ovulation) responsible for potential fertilization and development of an embryo/fetus during pregnancy. Additionally, they are essential in the production of female sex hormones, primarily estrogen and progesterone, which regulate menstrual cycles, sexual development, and reproduction.

During each menstrual cycle, a mature egg is released from one of the ovaries into the fallopian tube, where it may be fertilized by sperm. If not fertilized, the egg, along with the uterine lining, will be shed, leading to menstruation.

I'm sorry for any confusion, but "xanthurenates" is not a recognized term in medicine or physiology. It seems that you might be referring to "xanthurenic acid," which is a metabolic byproduct produced during the breakdown of the amino acid tryptophan. An accumulation of xanthurenic acid can occur due to certain genetic disorders, such as Hartnup disease or defects in the coenzyme Q10 synthesis pathway. However, without more context, it's difficult for me to provide a precise definition related to your specific question. If you could provide additional information, I would be happy to help further!

Gonads are the reproductive organs that produce gametes (sex cells) and sex hormones. In males, the gonads are the testes, which produce sperm and testosterone. In females, the gonads are the ovaries, which produce eggs and estrogen and progesterone. The development, function, and regulation of the gonads are crucial for reproductive health and fertility.

An ovule is the structure in female plants (including gymnosperms and angiosperms) that contains the female gametophyte and gives rise to the seed after fertilization. It consists of a protective outer layer called the integument, enclosing a small mass of tissue called the nucellus, within which is located the embryo sac or female germ unit.

The embryo sac contains the egg cell (oocyte), two synergids that assist in fertilization, and three antipodal cells at the opposite end. Upon fertilization of the egg cell by a male gamete from pollen, the zygote forms, which develops into an embryo within the ovule. The other male gamete fuses with the central cell (containing two polar nuclei) to form the endosperm, which serves as nutritive tissue for the developing embryo.

Once mature, the ovule transforms into a seed, enclosed by a seed coat formed from the integuments. The seed contains the developed embryo and stored food reserves (endosperm) that support its initial growth after germination.

Vitellogenesis is the process of producing and accumulating yolk proteins in the oocytes (immature ovum or egg cell) of females in preparation for fertilization and embryonic development. This process is primarily seen in oviparous animals, such as birds, fish, and insects, where the yolk serves as a source of nutrients for the developing embryo.

The yolk proteins are synthesized mainly in the liver under the control of estrogen hormones and are then transported to the oocytes through the bloodstream. Once inside the oocytes, these proteins are taken up by a process called pinocytosis, where they are enclosed in vesicles and fuse with lysosomes to form yolk granules. The accumulation of these yolk granules provides the developing embryo with essential nutrients such as lipids, carbohydrates, and proteins.

In addition to its role in reproduction, vitellogenesis has been used as a biomarker for environmental estrogen exposure in non-target organisms, as the production of yolk proteins can be induced by estrogenic compounds found in pollutants such as pesticides and industrial chemicals.

'Helleborus' is a genus of herbaceous flowering plants in the family Ranunculaceae, also known as Hellebores or Christmas Roses. While these plants have been used in traditional medicine, it's important to note that many parts of Helleborus species are toxic and can cause serious health issues if ingested or handled improperly.

The use of Helleborus in modern medicine is limited due to its toxicity. However, some compounds derived from these plants have shown potential medicinal properties, such as anti-inflammatory, analgesic, and cardiovascular effects. More research is needed to determine their safety and efficacy before they can be used clinically.

In a medical context, referring to 'Helleborus' would typically involve discussing its toxicity, potential medicinal applications, or possible side effects from accidental ingestion or misuse.

Spermatozoa are the male reproductive cells, or gametes, that are produced in the testes. They are microscopic, flagellated (tail-equipped) cells that are highly specialized for fertilization. A spermatozoon consists of a head, neck, and tail. The head contains the genetic material within the nucleus, covered by a cap-like structure called the acrosome which contains enzymes to help the sperm penetrate the female's egg (ovum). The long, thin tail propels the sperm forward through fluid, such as semen, enabling its journey towards the egg for fertilization.

Meiotic Prophase I is a stage in the meiotic division of cellular reproduction that results in the formation of gametes or sex cells (sperm and egg). It is the first of five stages in Meiosis I, which is a type of cell division that reduces the chromosome number by half.

During Meiotic Prophase I, homologous chromosomes pair and form tetrads (four-stranded structures), which then undergo genetic recombination or crossing over, resulting in new combinations of alleles on the chromatids of each homologous chromosome. This stage can be further divided into several substages: leptonema, zygonema, pachynema, diplonema, and diakinesis. These substages are characterized by distinct changes in chromosome structure and behavior, including the condensation and movement of the chromosomes, as well as the formation and dissolution of the synaptonemal complex, a protein structure that holds the homologous chromosomes together during crossing over.

Overall, Meiotic Prophase I is a critical stage in meiosis that ensures genetic diversity in offspring by shuffling the genetic material between homologous chromosomes and creating new combinations of alleles.

Fungal spores are defined as the reproductive units of fungi that are produced by specialized structures called hyphae. These spores are typically single-celled and can exist in various shapes such as round, oval, or ellipsoidal. They are highly resistant to extreme environmental conditions like heat, cold, and dryness, which allows them to survive for long periods until they find a suitable environment to germinate and grow into a new fungal organism. Fungal spores can be found in the air, water, soil, and on various surfaces, making them easily dispersible and capable of causing infections in humans, animals, and plants.

An oocyte, also known as an egg cell or female gamete, is a large specialized cell found in the ovary of female organisms. It contains half the number of chromosomes as a normal diploid cell, as it is the product of meiotic division. Oocytes are surrounded by follicle cells and are responsible for the production of female offspring upon fertilization with sperm. The term "oocyte" specifically refers to the immature egg cell before it reaches full maturity and is ready for fertilization, at which point it is referred to as an ovum or egg.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

'Arabidopsis' is a genus of small flowering plants that are part of the mustard family (Brassicaceae). The most commonly studied species within this genus is 'Arabidopsis thaliana', which is often used as a model organism in plant biology and genetics research. This plant is native to Eurasia and Africa, and it has a small genome that has been fully sequenced. It is known for its short life cycle, self-fertilization, and ease of growth, making it an ideal subject for studying various aspects of plant biology, including development, metabolism, and response to environmental stresses.

Fertility is the natural ability to conceive or to cause conception of offspring. In humans, it is the capacity of a woman and a man to reproduce through sexual reproduction. For women, fertility usually takes place during their reproductive years, which is from adolescence until menopause. A woman's fertility depends on various factors including her age, overall health, and the health of her reproductive system.

For men, fertility can be affected by a variety of factors such as age, genetics, general health, sexual function, and environmental factors that may affect sperm production or quality. Factors that can negatively impact male fertility include exposure to certain chemicals, radiation, smoking, alcohol consumption, drug use, and sexually transmitted infections (STIs).

Infertility is a common medical condition affecting about 10-15% of couples trying to conceive. Infertility can be primary or secondary. Primary infertility refers to the inability to conceive after one year of unprotected sexual intercourse, while secondary infertility refers to the inability to conceive following a previous pregnancy.

Infertility can be treated with various medical and surgical interventions depending on the underlying cause. These may include medications to stimulate ovulation, intrauterine insemination (IUI), in vitro fertilization (IVF), or surgery to correct anatomical abnormalities.

A hermaphroditic organism is one that has both male and female reproductive structures in the same individual. This means that the organism has both ovaries and testes, or their equivalents, and can produce both sperm and eggs. Hermaphroditism is most commonly found in plants, but it also occurs in some animals, including certain species of snails, slugs, worms, and fish.

It's important to note that true hermaphroditism is different from intersex conditions, which refer to individuals who may have physical or genetic features that do not fit typical binary notions of male or female bodies. Intersex people may have physical characteristics that are not typically associated with male or female anatomy, or they may have chromosomal variations that do not fit the typical pattern of XX (female) or XY (male).

In medical terminology, hermaphroditism is sometimes referred to as "true hermaphroditism" to distinguish it from intersex conditions. However, the term "hermaphrodite" has fallen out of favor in modern medical and social contexts because it is often considered stigmatizing and misleading. Instead, many professionals prefer to use terms like "intersex" or "disorders of sex development" (DSD) to describe individuals with atypical sexual anatomy or chromosomal patterns.

Embryonic development is the series of growth and developmental stages that occur during the formation and early growth of the embryo. In humans, this stage begins at fertilization (when the sperm and egg cell combine) and continues until the end of the 8th week of pregnancy. During this time, the fertilized egg (now called a zygote) divides and forms a blastocyst, which then implants into the uterus. The cells in the blastocyst begin to differentiate and form the three germ layers: the ectoderm, mesoderm, and endoderm. These germ layers will eventually give rise to all of the different tissues and organs in the body.

Embryonic development is a complex and highly regulated process that involves the coordinated interaction of genetic and environmental factors. It is characterized by rapid cell division, migration, and differentiation, as well as programmed cell death (apoptosis) and tissue remodeling. Abnormalities in embryonic development can lead to birth defects or other developmental disorders.

It's important to note that the term "embryo" is used to describe the developing organism from fertilization until the end of the 8th week of pregnancy in humans, after which it is called a fetus.

SnRNP (small nuclear ribonucleoprotein) core proteins are a group of proteins that are associated with small nuclear RNAs (snRNAs) to form small nuclear ribonucleoprotein particles. These particles play crucial roles in various aspects of RNA processing, such as splicing, 3' end formation, and degradation.

The snRNP core proteins include seven Sm proteins (B, D1, D2, D3, E, F, and G) that form a heptameric ring-like structure called the Sm core, which binds to a conserved sequence motif in the snRNAs called the Sm site. In addition to the Sm proteins, there are also other core proteins such as Sm like (L) proteins and various other protein factors that associate with specific snRNP particles.

Together, these snRNP core proteins help to stabilize the snRNA, facilitate its assembly into functional ribonucleoprotein complexes, and participate in the recognition and processing of target RNAs during post-transcriptional regulation.

Arabidopsis proteins refer to the proteins that are encoded by the genes in the Arabidopsis thaliana plant, which is a model organism commonly used in plant biology research. This small flowering plant has a compact genome and a short life cycle, making it an ideal subject for studying various biological processes in plants.

Arabidopsis proteins play crucial roles in many cellular functions, such as metabolism, signaling, regulation of gene expression, response to environmental stresses, and developmental processes. Research on Arabidopsis proteins has contributed significantly to our understanding of plant biology and has provided valuable insights into the molecular mechanisms underlying various agronomic traits.

Some examples of Arabidopsis proteins include transcription factors, kinases, phosphatases, receptors, enzymes, and structural proteins. These proteins can be studied using a variety of techniques, such as biochemical assays, protein-protein interaction studies, and genetic approaches, to understand their functions and regulatory mechanisms in plants.

Spermatogonia are a type of diploid germ cells found in the seminiferous tubules of the testis. They are the stem cells responsible for sperm production (spermatogenesis) in males. There are two types of spermatogonia: A-dark (Ad) and A-pale (Ap). The Ad spermatogonia function as reserve stem cells, while the Ap spermatogonia serve as the progenitor cells that divide to produce type B spermatogonia. Type B spermatogonia then differentiate into primary spermatocytes, which undergo meiosis to form haploid spermatozoa.

DNA methylation is a process by which methyl groups (-CH3) are added to the cytosine ring of DNA molecules, often at the 5' position of cytospine phosphate-deoxyguanosine (CpG) dinucleotides. This modification is catalyzed by DNA methyltransferase enzymes and results in the formation of 5-methylcytosine.

DNA methylation plays a crucial role in the regulation of gene expression, genomic imprinting, X chromosome inactivation, and suppression of transposable elements. Abnormal DNA methylation patterns have been associated with various diseases, including cancer, where tumor suppressor genes are often silenced by promoter methylation.

In summary, DNA methylation is a fundamental epigenetic modification that influences gene expression and genome stability, and its dysregulation has important implications for human health and disease.

Disorders of Sex Development (DSD) are a group of conditions that occur when there is a difference in the development and assignment of sex characteristics. These differences may be apparent at birth, at puberty, or later in life. DSD can affect chromosomes, gonads, genitals, or secondary sexual characteristics, and can result from genetic mutations or environmental factors during fetal development.

DSDs were previously referred to as "intersex" conditions, but the term "Disorders of Sex Development" is now preferred in medical settings because it is more descriptive and less stigmatizing. DSDs are not errors or abnormalities, but rather variations in human development that require sensitive and individualized care.

The diagnosis and management of DSD can be complex and may involve a team of healthcare providers, including endocrinologists, urologists, gynecologists, psychologists, and genetic counselors. Treatment options depend on the specific type of DSD and may include hormone therapy, surgery, or other interventions to support physical and emotional well-being.

Cyclin A1 is a type of cyclin protein that regulates the cell cycle, particularly during the S and G2 phases. It forms a complex with and acts as a regulatory subunit of cyclin-dependent kinase 2 (CDK2), helping to control the transition from the G1 phase to the S phase and from the S phase to the G2 phase. Cyclin A1 is expressed in various tissues, including ovary, testis, bone marrow, and lymphoid cells. Overexpression or dysregulation of cyclin A1 has been implicated in several types of cancer, making it a potential target for cancer therapy.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Proto-oncogene proteins c-kit, also known as CD117 or stem cell factor receptor, are transmembrane receptor tyrosine kinases that play crucial roles in various biological processes, including cell survival, proliferation, differentiation, and migration. They are encoded by the c-KIT gene located on human chromosome 4q12.

These proteins consist of an extracellular ligand-binding domain, a transmembrane domain, and an intracellular tyrosine kinase domain. The binding of their ligand, stem cell factor (SCF), leads to receptor dimerization, autophosphorylation, and activation of several downstream signaling pathways such as PI3K/AKT, MAPK/ERK, and JAK/STAT.

Abnormal activation or mutation of c-kit proto-oncogene proteins has been implicated in the development and progression of various malignancies, including gastrointestinal stromal tumors (GISTs), acute myeloid leukemia (AML), mast cell diseases, and melanoma. Targeted therapies against c-kit, such as imatinib mesylate (Gleevec), have shown promising results in the treatment of these malignancies.

Male infertility is a condition characterized by the inability to cause pregnancy in a fertile female. It is typically defined as the failure to achieve a pregnancy after 12 months or more of regular unprotected sexual intercourse.

The causes of male infertility can be varied and include issues with sperm production, such as low sperm count or poor sperm quality, problems with sperm delivery, such as obstructions in the reproductive tract, or hormonal imbalances that affect sperm production. Other factors that may contribute to male infertility include genetic disorders, environmental exposures, lifestyle choices, and certain medical conditions or treatments.

It is important to note that male infertility can often be treated or managed with medical interventions, such as medication, surgery, or assisted reproductive technologies (ART). A healthcare provider can help diagnose the underlying cause of male infertility and recommend appropriate treatment options.

Haploidy is a term used in genetics to describe the condition of having half the normal number of chromosomes in a cell or an organism. In humans, for example, a haploid cell contains 23 chromosomes, whereas a diploid cell has 46 chromosomes.

Haploid cells are typically produced through a process called meiosis, which is a type of cell division that occurs in the reproductive organs of sexually reproducing organisms. During meiosis, a diploid cell undergoes two rounds of division to produce four haploid cells, each containing only one set of chromosomes.

In humans, haploid cells are found in the sperm and egg cells, which fuse together during fertilization to create a diploid zygote with 46 chromosomes. Haploidy is important for maintaining the correct number of chromosomes in future generations and preventing genetic abnormalities that can result from having too many or too few chromosomes.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Infertility is a reproductive health disorder defined as the failure to achieve a clinical pregnancy after 12 months or more of regular, unprotected sexual intercourse or due to an impairment of a person's capacity to reproduce either as an individual or with their partner. It can be caused by various factors in both men and women, including hormonal imbalances, structural abnormalities, genetic issues, infections, age, lifestyle factors, and others. Infertility can have significant emotional and psychological impacts on individuals and couples experiencing it, and medical intervention may be necessary to help them conceive.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

'Life cycle stages' is a term used in the context of public health and medicine to describe the different stages that an organism goes through during its lifetime. This concept is particularly important in the field of epidemiology, where understanding the life cycle stages of infectious agents (such as bacteria, viruses, parasites) can help inform strategies for disease prevention and control.

The life cycle stages of an infectious agent may include various forms such as spores, cysts, trophozoites, schizonts, or vectors, among others, depending on the specific organism. Each stage may have different characteristics, such as resistance to environmental factors, susceptibility to drugs, and ability to transmit infection.

For example, the life cycle stages of the malaria parasite include sporozoites (the infective form transmitted by mosquitoes), merozoites (the form that infects red blood cells), trophozoites (the feeding stage inside red blood cells), schizonts (the replicating stage inside red blood cells), and gametocytes (the sexual stage that can be taken up by mosquitoes to continue the life cycle).

Understanding the life cycle stages of an infectious agent is critical for developing effective interventions, such as vaccines, drugs, or other control measures. For example, targeting a specific life cycle stage with a drug may prevent transmission or reduce the severity of disease. Similarly, designing a vaccine to elicit immunity against a particular life cycle stage may provide protection against infection or disease.

"Sex differentiation" is a term used in the field of medicine, specifically in reproductive endocrinology and genetics. It refers to the biological development of sexual characteristics that distinguish males from females. This process is regulated by hormones and genetic factors.

There are two main stages of sex differentiation: genetic sex determination and gonadal sex differentiation. Genetic sex determination occurs at fertilization, where the combination of X and Y chromosomes determines the sex of the individual (typically, XX = female and XY = male). Gonadal sex differentiation then takes place during fetal development, where the genetic sex signals the development of either ovaries or testes.

Once the gonads are formed, they produce hormones that drive further sexual differentiation, leading to the development of internal reproductive structures (such as the uterus and fallopian tubes in females, and the vas deferens and seminal vesicles in males) and external genitalia.

It's important to note that while sex differentiation is typically categorized as male or female, there are individuals who may have variations in their sexual development, leading to intersex conditions. These variations can occur at any stage of the sex differentiation process and can result in a range of physical characteristics that do not fit neatly into male or female categories.

A zygote is the initial cell formed when a sperm fertilizes an egg, also known as an oocyte. This occurs in the process of human reproduction and marks the beginning of a new genetic identity, containing 46 chromosomes - 23 from the sperm and 23 from the egg. The zygote starts the journey of cell division and growth, eventually developing into a blastocyst, then an embryo, and finally a fetus over the course of pregnancy.

Chlamydomonas is a genus of single-celled, green algae that are widely found in freshwater and marine environments. These microorganisms are characterized by their oval or spherical shape, and each cell contains a single, large chloroplast used for photosynthesis. They also have two flagella, which are hair-like structures that enable them to move through their aquatic habitats. Chlamydomonas species are often used in scientific research due to their simple cell structure and ease of cultivation in the lab.

In vitro gametogenesis (IVG)-the generation of eggs and sperm from pluripotent stem cells in a culture dish. Currently feasible ... Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to ... Meiosis is a central feature of gametogenesis, but the adaptive function of meiosis is currently a matter of debate. A key ... The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as ...
"Human Emryology, Embryogenesis". Module 3, Gametogenesis. Retrieved 6 April 2012. "Genetics, Meiosis and Gaetogenesis". www. ...
Baarends WM, Roest HP, Grootegoed JA (May 1999). "The ubiquitin system in gametogenesis". Molecular and Cellular Endocrinology ...
During the mitotic and meiotic cell divisions of mammalian gametogenesis, DNA repair is effective at removing DNA damages. ... Baarends WM, van der Laan R, Grootegoed JA (2001). "DNA repair mechanisms and gametogenesis". Reproduction. 121 (1): 31-9. doi: ...
These processes are outlined in the article gametogenesis. During gametogenesis in mammals many genes encoding proteins that ... "DNA repair mechanisms and gametogenesis". Reproduction. 121 (1): 31-9. doi:10.1530/reprod/121.1.31. PMID 11226027. (Webarchive ...
"Gametogenesis from Pluripotent Stem Cells". Cell Stem Cell. 19 (6): 721-735. doi:10.1016/j.stem.2016.05.001. PMID 27257761. ...
Gametogenesis in females takes 9 months. Females spawn (release eggs) successively during the breeding season. In Japan it may ...
Sexual reproduction in Trichonympha occurs in three distinct phases: gametogenesis, fertilization and meiosis. Gametogenesis ... Cleveland LR (September 1949). "Hormone-induced sexual cycles of flagellates; gametogenesis, fertilization, and meiosis in ...
Morphological aspects of gametogenesis and ontogenesis". Marine Biology Research. 6 (5): 421-436. doi:10.1080/17451000903428488 ...
ISBN 0-8053-7171-0. Manandhar Gf; Schatten H; Sutovsky P (2005). "Centrosome reduction during gametogenesis and its ...
Gametogenesis, egg release, embryonic development, and gastrulation". Scientia Marina. 65 (2): 139-149. doi:10.3989/scimar. ...
In females, gametogenesis is known as oogenesis; this occurs in the ovarian follicles of the ovaries. This process does not ... Gametes are produced within the gonads through a process known as gametogenesis. This occurs when certain types of germ cells ...
Manandhar G, Schatten H, Sutovsky P (January 2005). "Centrosome reduction during gametogenesis and its significance". Biol. ... Bibliography Manandhar G, Schatten H and Sutovsky P (2005). Centrosome reduction during gametogenesis and its significance. ... to the common process of gametogenesis, which, in the female human, begins with the processes of folliculogenesis, ...
Muñoz, M.; Casadevall, M.; Bonet, S. (2002). "Gametogenesis of Helicolenus dactylopterus dactylopterus (Teleostei, Scorpaenidae ...
Usually one entire genome of the parental species is excluded prior to meiosis during gametogenesis, such that only one ( ... This means that during gametogenesis, they discard the genome of one of the parental species and produce gametes of the other ... "Gametogenesis of intergroup hybrids of hemiclonal frogs". Genetical Research. 89 (1): 39-45. doi:10.1017/S0016672307008610. ...
"Coral Gametogenesis Collapse under Artificial Light Pollution". Current Biology. 31 (2): 413-419.e3. doi:10.1016/j.cub.2020.10. ...
Prior to gametogenesis the vegetative cells of the gametophyte contained a number of large vesicles. Several changes occur ... An eyespot develops in the chloroplast which had retained its star-shape throughout gametogenesis. The internal walls of the ... with electron microscope observations on sporogenesis and gametogenesis". British Phycological Journal. 21 (4): 371-386. doi: ... following the onset of gametogenesis. In the cytoplasm, smooth endoplasmic reticulum (ER) became noticeable and the number of ...
Gametogenesis, fertilization, and one-division meiosis in saccinobaculus". Journal of Morphology. 86 (1): 215-227. doi:10.1002/ ...
Ragghianti M, Bucci S, Marracci S, Casola C, Mancino G, Hotz H, Guex GD, Plötner J, Uzzell T (February 2007). "Gametogenesis of ... Hybridogenesis implies that during gametogenesis hybrids (of RL genotype) exclude one parental genome (L or R) and produce ...
Gametogenesis may be indirectly affected by coral bleaching. Additionally, the stress that acidification puts on coral can ...
... has also been shown to induce gametogenesis of Plasmodium falciparum, the parasite that causes malaria. It is ... Garcia, GE; Wirtz, RA; Barr, JR; Woolfitt, A; Rosenberg, R (May 15, 1998). "Xanthurenic acid induces gametogenesis in ...
Prakash, N., Foreman, D.B. & Griffiths, S.J. (1984). Floral morphology and gametogenesis in Golbulimima belgraveana ( ...
In C. meridionalis gametogenesis occurs continuously throughout the year. C. meridionalis larvae are present in the water ...
Spakulová M, Králová I, Cutillas C (March 1994). "Studies on the karyotype and gametogenesis in Trichuris muris". Journal of ...
Gametogenesis is the formation of gametes, or reproductive cells. Spermatogenesis is the production of sperm cells in the ...
Intercellular junctions Gametogenesis Spectrin Cyclin Telfer, W. H. 1975. Development and physiology of the oocyte-nurse cell ... Fusomes were previously thought to be specific to insect gametogenesis. Fusome-like structures have been identified in Xenopus ...
These gonadotropic hormones lead to sexual maturation and gametogenesis. Disrupting GPR54 signaling can cause hypogonadotrophic ...
Li, L; Han-Xing Liang; Hua Peng; Li-Gong Lei (2003). "Sporogenesis and gametogenesis in Sladenia and their systematic ...
Bignold, Leon P; Coghlan Brian L D, Jersmann Hubertus P A (July 2006). "Hansemann, Boveri, chromosomes and the gametogenesis- ...
DNMT3L is expressed during gametogenesis when genomic imprinting takes place. The loss of DNMT3L leads to bi-allelic expression ...
In vitro gametogenesis (IVG)-the generation of eggs and sperm from pluripotent stem cells in a culture dish. Currently feasible ... Gametogenesis is a biological process by which diploid or haploid precursor cells undergo cell division and differentiation to ... Meiosis is a central feature of gametogenesis, but the adaptive function of meiosis is currently a matter of debate. A key ... The existence of a multicellular, haploid phase in the life cycle between meiosis and gametogenesis is also referred to as ...
2) Students will be asked to suggest what happens in gametogenesis. (3 mins). (3) Teacher will write suggestions on board and ... DEVELOPMENT (1) Teacher will describe the process of gametogenesis and use pause reflection to clarify concepts (5 mins). (2) ...
"Gametogenesis, Plant" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH (Medical ... This graph shows the total number of publications written about "Gametogenesis, Plant" by people in Harvard Catalyst Profiles ... Below are the most recent publications written about "Gametogenesis, Plant" by people in Profiles. ... Below are MeSH descriptors whose meaning is more general than "Gametogenesis, Plant". ...
ROB STEIN, BYLINE: Its called in vitro gametogenesis, or IVG. Think IVF 2.0, but instead of mixing natural sperm and eggs in a ...
BAS , Data , Explore polar data , Our publications , Gametogenesis and gonad mass cycles in the common circumpolar Antarctic ... Gametogenesis and gonad mass cycles in the common circumpolar Antarctic echinoid Sterechinus neumayeri. Polar conditions (low ...
... is an additional example of an XXYY zygote derived from a consecutive meiotic non-disjunction during paternal gametogenesis. ...
In Vivo July 2021, 35 (4) 1921-1927; DOI: https://doi.org/10.21873/invivo.12458 ...
Gametogenesis - questions and answers. If you have a question about this topic, please click on the New Question button. If ... gametogenesis. Gametogenesis - questions and answers. If you have a question about this topic, please click on the New ...
Gametogenesis. .sd-social-icon .sd-content ul li a.sd-button>span { margin-left: 0; } Report There was a problem reporting this ...
जी दोस्तों आज हम इस लेख के माध्यम से Gametogenesis जिसमे युग्मक जनन (Gametogenesis) का वर्गीकरण में शुक्राणु की संरचना, अण्डाणु ... युग्मकजनन (Gametogenesis). युग्मकजनन (Gametogenesis) एक जटिल प्रक्रम है, इसमें अर्द्धसूत्री तथा समसूत्री विभाजन द्वारा अगुणित ... Tags Gametogenesis, युग्मक जनन परिभाषा वर्ग एवीज और मैमेलिया वर्ग (CLASS -Aves and Mammalia) ... इसके अंतर्गत युग्मकजनन (Gametogenesis) से लेकर शिशु या लारवा बनने तक की सभी अवस्थाओं का अध्ययन किया जाता है, ...
... gametogenesis definition class 10, gametogenesis definition in hindi, gametogenesis definition in plants, gametogenesis meaning ... युग्मकजनन (Gametogenesis) - जनदों (Gonads) की जननिक उपकला से युग्मकों के निर्माण की प्रक्रिया युग्मकजनन कहलाती है । इसके ...
Gametogenesis High Impact List of Articles PPts Journals 411 ... Gametogenesis. Gametogenesis is defined as there are used to ... Related Journal of Gametogenesis. Reproductive Immunology: Open Access, Rheumatology:Current Research, Pediatrics &, ... Gametogenesis, Early Embryo Development and Stem Cell Derivation, Brazilian Journal of Oceanography, Journal of Biological ...
2) Students will be asked to suggest what happens in gametogenesis. (3 mins). (3) Teacher will write suggestions on board and ... DEVELOPMENT (1) Teacher will describe the process of gametogenesis and use pause reflection to clarify concepts (5 mins). (2) ...
Calcium homeostasis exerts a profound role in determining the quality of gametogenesis, the resultant efficacy of fertilisation ... The role of calcium signaling in gametogenesis and early embryogenesis.pdf (62.36Kb) ...
fish biologycodfisheries managementspawningfish reproductionclimate changetemperaturegametogenesis ... 139649 - From gametogenesis to spawning- how climate driven warming affects teleost. .pdf (. 2.03 MB. ) ... From gametogenesis to spawning: how climate-driven warming affects teleost reproductive biology. ...
3 Reproductive System, Gametogenesis.pdf. 4 Fertilization and Formation of germ layers.pdf. LANGMAN EMBRYOLOGY -RELEVANT ... 2 Gametogenesis.pdf. 3 First Week of development, ovulation to implantation.pdf. ...
Transcriptional Framework of Male Gametogenesis in the Liverwort Marchantia polymorpha L.. Title. Transcriptional Framework of ...
To study the stages of gametogenesis in mammalian testis and ovary ... you are here->home->Biology->Class 12->Stages of gametogenesis in mammalian testis and ovary ...
bag-of-marbles: A Drosophila gene required to initiate both male and female gametogenesis. Genes & development. 1990 Dec;4(12 B ... Dive into the research topics of bag-of-marbles: A Drosophila gene required to initiate both male and female gametogenesis. ... bag-of-marbles: A Drosophila gene required to initiate both male and female gametogenesis. / McKearin, Dennis M.; Spradling, ... McKearin, DM & Spradling, AC 1990, bag-of-marbles: A Drosophila gene required to initiate both male and female gametogenesis ...
Dive into the research topics of Symbiodiniaceae conduct under natural bleaching stress during advanced gametogenesis stages ... Symbiodiniaceae conduct under natural bleaching stress during advanced gametogenesis stages of a mesophotic coral. ...
... molecular mechanisms underlying scleractinian gametogenesis *Yi-Ling Chiu ...
Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis.. Berchowitz, Luke E; Kabachinski, Greg; ... Message-specific translational control is required for gametogenesis. In yeast, the RNA-binding protein Rim4 mediates ... our findings show that cells can utilize amyloid-like protein aggregates to function as central regulators of gametogenesis. ...
A NEW METHOD FOR CONSTRUCTING LINKAGE MAPS FOR ORGANISMS WITH ACHIASMATIC GAMETOGENESIS-(Peer Reviewed Journal) Wu, J., Zhu, J ... Constructing linkage maps with achiasmatic gametogenesis. Acta Genetica Sinica. 32:608-615.. ...
CGF1 and CGF2 redundantly mediate female gametogenesis, likely by securing local energy supply. Indeed, mutations of both genes ... in female gametogenesis, and in embryogenesis likely by mediating chloroplast integrity and development. ... Reduced fertility of the cgf1;cgf2 double mutants is due to compromised female gametogenesis or embryogenesis. a-g A ... CGF1 and CGF2 redundantly mediate female gametogenesis, likely by securing local energy supply. Indeed, mutations of both genes ...
SksC, a fertilization-related protein kinase in chlamydomonas, is expressed throughout the cell cycle and gametogenesis, and a ... SksC, a fertilization-related protein kinase in chlamydomonas, is expressed throughout the cell cycle and gametogenesis, and a ... SksC, a fertilization-related protein kinase in chlamydomonas, is expressed throughout the cell cycle and gametogenesis, and a ... T1 - SksC, a fertilization-related protein kinase in chlamydomonas, is expressed throughout the cell cycle and gametogenesis, ...
The application of this microarray to the study of mollusk gametogenesis should provide a better understanding of the key ... analysis of the data revealed 2,482 genes differentially expressed during the course of males and/or females gametogenesis. The ... Gametogenesis in the Pacific oyster Crassostrea gigas: a microarrays-based analysis identifies sex and stage specific genes.. ... The application of this microarray to the study of mollusk gametogenesis should provide a better understanding of the key ...
Kruger A, Schleyer MH, Benayahu Y (1998) Reproduction in Anthelia glauca (Octocorallia: Xeniidae). I. Gametogenesis and larval ... Slattery M, Hines GA, Starmer J, Paul VJ (1999) Chemical signals in gametogenesis, spawning, and larval settlement and defense ...
Saitou M, Miyauchi H . Gametogenesis from pluripotent stem cells. Cell Stem Cell 2016; 18:721-735. ... with capacity for gametogenesis, thus offering a robust system for the investigation of key features of mouse germ cell ...
5. Review the steps of gametogenesis for spermatogenesis and oogenesis.. Know all the hormonal controls governing these ...

No FAQ available that match "gametogenesis"

No images available that match "gametogenesis"