A rare, metallic element designated by the symbol, Ga, atomic number 31, and atomic weight 69.72.
Unstable isotopes of gallium that decay or disintegrate emitting radiation. Ga atoms with atomic weights 63-68, 70 and 72-76 are radioactive gallium isotopes.
Isotopes that exhibit radioactivity and undergo radioactive decay. (From Grant & Hackh's Chemical Dictionary, 5th ed & McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Unstable isotopes of zinc that decay or disintegrate emitting radiation. Zn atoms with atomic weights 60-63, 65, 69, 71, and 72 are radioactive zinc isotopes.
Stable gallium atoms that have the same atomic number as the element gallium, but differ in atomic weight. Ga-71 is a stable gallium isotope.
Method for assessing flow through a system by injection of a known quantity of radionuclide into the system and monitoring its concentration over time at a specific point in the system. (From Dorland, 28th ed)
Unstable isotopes of strontium that decay or disintegrate spontaneously emitting radiation. Sr 80-83, 85, and 89-95 are radioactive strontium isotopes.
The production of an image obtained by cameras that detect the radioactive emissions of an injected radionuclide as it has distributed differentially throughout tissues in the body. The image obtained from a moving detector is called a scan, while the image obtained from a stationary camera device is called a scintiphotograph.
Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes.
Unstable isotopes of krypton that decay or disintegrate emitting radiation. Kr atoms with atomic weights 74-77, 79, 81, 85, and 87-94 are radioactive krypton isotopes.
Unstable isotopes of iron that decay or disintegrate emitting radiation. Fe atoms with atomic weights 52, 53, 55, and 59-61 are radioactive iron isotopes.
Unstable isotopes of indium that decay or disintegrate emitting radiation. In atoms with atomic weights 106-112, 113m, 114, and 116-124 are radioactive indium isotopes.
Unstable isotopes of sodium that decay or disintegrate emitting radiation. Na atoms with atomic weights 20-22 and 24-26 are radioactive sodium isotopes.
The spontaneous transformation of a nuclide into one or more different nuclides, accompanied by either the emission of particles from the nucleus, nuclear capture or ejection of orbital electrons, or fission. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Unstable isotopes of barium that decay or disintegrate emitting radiation. Ba atoms with atomic weights 126-129, 131, 133, and 139-143 are radioactive barium isotopes.
The first artificially produced element and a radioactive fission product of URANIUM. Technetium has the atomic symbol Tc, atomic number 43, and atomic weight 98.91. All technetium isotopes are radioactive. Technetium 99m (m=metastable) which is the decay product of Molybdenum 99, has a half-life of about 6 hours and is used diagnostically as a radioactive imaging agent. Technetium 99 which is a decay product of technetium 99m, has a half-life of 210,000 years.
Unstable isotopes of yttrium that decay or disintegrate emitting radiation. Y atoms with atomic weights 82-88 and 90-96 are radioactive yttrium isotopes.
Unstable isotopes of tin that decay or disintegrate emitting radiation. Sn atoms with atomic weights 108-111, 113, 120-121, 123 and 125-128 are tin radioisotopes.
Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes.
Unstable isotopes of copper that decay or disintegrate emitting radiation. Cu atoms with atomic weights 58-62, 64, and 66-68 are radioactive copper isotopes.
Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes.
A class of compounds of the type R-M, where a C atom is joined directly to any other element except H, C, N, O, F, Cl, Br, I, or At. (Grant & Hackh's Chemical Dictionary, 5th ed)
High energy POSITRONS or ELECTRONS ejected from a disintegrating atomic nucleus.
"Citrates, in a medical context, are compounds containing citric acid, often used in medical solutions for their chelating properties and as a part of certain types of nutritional support."
Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms.
Keto-pyrans.
Unstable isotopes of mercury that decay or disintegrate emitting radiation. Hg atoms with atomic weights 185-195, 197, 203, 205, and 206 are radioactive mercury isotopes.
A gamma-emitting radionuclide imaging agent used for the diagnosis of diseases in many tissues, particularly in the gastrointestinal system, liver, and spleen.
Stable cesium atoms that have the same atomic number as the element cesium, but differ in atomic weight. Cs-133 is a naturally occurring isotope.
Unstable isotopes of cerium that decay or disintegrate emitting radiation. Ce atoms with atomic weights 132-135, 137, 139, and 141-148 are radioactive cerium isotopes.
Stable cobalt atoms that have the same atomic number as the element cobalt, but differ in atomic weight. Co-59 is a stable cobalt isotope.
Hafnium. A metal element of atomic number 72 and atomic weight 178.49, symbol Hf. (From Dorland, 28th ed)
Compounds that are used in medicine as sources of radiation for radiotherapy and for diagnostic purposes. They have numerous uses in research and industry. (Martindale, The Extra Pharmacopoeia, 30th ed, p1161)
A metallic element, atomic number 49, atomic weight 114.82, symbol In. It is named from its blue line in the spectrum. (From Dorland, 28th ed)
Unstable isotopes of gold that decay or disintegrate emitting radiation. Au 185-196, 198-201, and 203 are radioactive gold isotopes.
Unstable isotopes of lead that decay or disintegrate emitting radiation. Pb atoms with atomic weights 194-203, 205, and 209-214 are radioactive lead isotopes.
Any diagnostic evaluation using radioactive (unstable) isotopes. This diagnosis includes many nuclear medicine procedures as well as radioimmunoassay tests.
Stable zinc atoms that have the same atomic number as the element zinc, but differ in atomic weight. Zn-66-68, and 70 are stable zinc isotopes.
Unstable isotopes of sulfur that decay or disintegrate spontaneously emitting radiation. S 29-31, 35, 37, and 38 are radioactive sulfur isotopes.
An antiseptic with mild fungistatic, bacteriostatic, anthelmintic, and amebicidal action. It is also used as a reagent and metal chelator, as a carrier for radio-indium for diagnostic purposes, and its halogenated derivatives are used in addition as topical anti-infective agents and oral antiamebics.
Unstable isotopes of cadmium that decay or disintegrate emitting radiation. Cd atoms with atomic weights 103-105, 107, 109, 115, and 117-119 are radioactive cadmium isotopes.
Astatine. A radioactive halogen with the atomic symbol At, atomic number 85, and atomic weight 210. Its isotopes range in mass number from 200 to 219 and all have an extremely short half-life. Astatine may be of use in the treatment of hyperthyroidism.
Radiotherapy where cytotoxic radionuclides are linked to antibodies in order to deliver toxins directly to tumor targets. Therapy with targeted radiation rather than antibody-targeted toxins (IMMUNOTOXINS) has the advantage that adjacent tumor cells, which lack the appropriate antigenic determinants, can be destroyed by radiation cross-fire. Radioimmunotherapy is sometimes called targeted radiotherapy, but this latter term can also refer to radionuclides linked to non-immune molecules (see RADIOTHERAPY).
Lutetium. An element of the rare earth family of metals. It has the atomic symbol Lu, atomic number 71, and atomic weight 175.
Membrane glycoproteins found in high concentrations on iron-utilizing cells. They specifically bind iron-bearing transferrin, are endocytosed with its ligand and then returned to the cell surface where transferrin without its iron is released.

Segmental colonic transit after oral 67Ga-citrate in healthy subjects and those with chronic idiopathic constipation. (1/554)

Measurement of segmental colonic transit is important in the assessment of patients with severe constipation. 111In-diethylenetriamine pentaacetic acid (DTPA) has been established as the tracer of choice for these studies, but it is expensive and not readily available. 67Ga-citrate is an inexpensive tracer and when given orally is not absorbed from the bowel. It was compared with 111In-DTPA in colonic transit studies in nonconstipated control subjects and then in patients with idiopathic constipation. METHODS: Studies were performed after oral administration of 3 MBq (81 microCi) 67Ga-citrate or 4 MBq (108 microCi) 111In-DTPA in solution. Serial abdominal images were performed up to 96 h postinjection, and computer data were generated from geometric mean images of segmental retention of tracer, mean activity profiles and a colonic tracer half-clearance time. RESULTS: There were no differences in segmental retention of either tracer or in mean activity profiles between control subjects and constipated patients. Results in constipated subjects were significantly different from those in controls. The mean half-clearance times of tracer for control subjects were 28.8 h for 67Ga-citrate and 29.9 h for 111In-DTPA in control subjects and 75.0 h for 67Ga-citrate and 70.8 h for 111In-DTPA in constipated patients. CONCLUSION: Oral 67Ga-citrate can be used as a safe alternative to 111In-DTPA for accurate measurement of segmental colonic transit.  (+info)

Gallium-67 scintigraphy and intraabdominal sepsis. Clinical experience in 140 patients with suspected intraabdominal abscess. (2/554)

In 140 patients with suspected intraabdominal abscess, studies were made using gallium-67 citrate and technetium-99m labeled radiopharmaceuticals. Gallium-67 scintigrams correctly localized 52 of 56 intraabdominal abscesses confirmed at surgical operation or necropsy. In an additional 20 patients in whom findings on scintigrams were abnormal, there were clinically established infections. Sixty-one patients in whom findings on scintigrams were normal were conservatively managed and discharged from the hospital; none proved to have an abscess. Four false-negative and three false-positive studies were recorded. Gallium-67 scintigraphy is a useful noninvasive diagnostic adjunct that should be employed early in the evaluation of patients with suspected intraabdominal sepsis.  (+info)

Probable lymphocytic hypophysitis diagnosed by short-term serial computed tomography and gallium-67 scintigraphy--case report. (3/554)

A 61-year-old female presented with headache, malaise, and left oculomotor nerve paralysis. Computed tomography (CT) demonstrated a diffuse pituitary mass and enlarged pituitary stalk with homogeneous contrast enhancement. Her symptoms gradually resolved without treatment. Gallium-67 scintigraphy showed abnormal uptake in the pituitary lesion. Serial CT every 2 weeks after admission showed homogeneous contrast enhancement and shrinking of the pituitary mass to a normal size 12 weeks after the onset. The final diagnosis was lymphocytic adenohypophysitis without biopsy. Recurrence has not been observed for 8 years after discharge. The patient did not need hormone replacement therapy. Histological examination is not always necessary to diagnose probable lymphocytic adenohypophysitis with the characteristic feature of rapid onset, abnormal gallium-67 uptake in the lesion, and resolution of symptoms in the acute stage with shrinking of the lesion on neuroimaging.  (+info)

Myositis ossificans demonstrated by positive gallium-67 and technetium-99m-HMDP bone imaging but negative technetium-99m-MIBI imaging. (4/554)

Gallium-67-citrate and 99mTc-diphosphate bone imaging agents are localized in myositis ossificans, a tumor-like benign soft-tissue mass that makes it impossible to differentiate between malignant tumor and the infection/inflammatory process. We present such a myositis ossificans patient whose bone and 67Ga-citrate imagings showed increased uptake in the left thigh and two foci of the right gluteal region leading to inconclusive results. Technetium-99m-MIBI imaging showed the absence of substantial uptake in these regions. ACT scan confirmed myositis ossificans. The lack of 99mTc-MIBI uptake in myositis ossificans means that 99mTc-MIBI imaging may be useful in the differential diagnosis.  (+info)

Radiation exposure from gallium-67-citrate patients. (5/554)

OBJECTIVE: Serial monitoring of patients was performed to determine the radiation exposure contributed by patients injected with 67Ga-citrate to their surroundings. Radiology and nursing staff distance exposure estimates were made for various patient care tasks and imaging tests. METHODS: Fifteen adult patients were surveyed early (mean 4.3 min) and 11 of the 15 were surveyed at 3 d (mean 68.8 h) postinjection. The standard adult lymphoma imaging activity of 333-407 MBq (9-11 mCi) resulted in a range of 3.7-8.1 MBq/kg (0.1-0.22 mCi/kg). Dose rate measurements were made in the anterior, posterior, and left and right lateral projections at the level of the umbilicus, at distances of patient's surface and at 30.5 cm and 100 cm with a calibrated ion chamber. Time of contact-routine task analyses also were obtained for nursing and radiology personnel. Using a radiation survey-derived biexponential pharmacokinetic relationship, radiation exposures were determined for hospital personnel and family members at various times after injection. RESULTS: Based on the study population survey results, the mean instantaneous exposures (microSv/h) for an administered activity of 370 MBq (10 mCi) 67Ga-citrate were determined. The task analyses revealed the maximum patient contact time for any procedure performed at a distance equal to, or less than, 30.5 cm was 30 min. CONCLUSION: The quantitation of radiation exposure scenarios from 67Ga-citrate patients has determined that no special precautions are necessary for medical personnel when performing routine tasks associated with these patients.  (+info)

Paraganglioma in the frontal skull base--case report. (6/554)

A 56-year-old female presented with a paraganglioma in the left anterior cranial fossa who manifesting as persistent headache. Computed tomography and magnetic resonance imaging showed a solid, enhanced tumor with a cystic component located medially. The tumor was attached to the left frontal base and the sphenoid ridge. Angiography demonstrated a hypervascular tumor fed mainly by the left middle meningeal artery at the left sphenoid ridge. The preoperative diagnosis was meningioma of the left frontal base. The tumor was totally resected via a left frontotemporal craniotomy. Histological examination revealed the characteristic cellular arrangement of paraganglioma generally designated as the "Zellbaren pattern" on light microscopy. Only 10 patients with supratentorial paraganglioma have been reported, seven located in the parasellar area. The origin of the present tumor may have been the paraganglionic cells which strayed along the middle meningeal artery at differentiation.  (+info)

Enhanced uptake of [11C]TPMP in canine brain tumor: a PET study. (7/554)

In vitro studies have demonstrated the membrane potential-dependent enhanced uptake of phosphonium salts, including [3H]triphenylmethylphosphonium (TPMP), into mitochondria of carcinoma and glioma-derived tumor cells, suggesting the potential use of phosphonium salts as tracers for tumor imaging. This study characterizes the in vivo uptake of [11C]TPMP in canine brain glioma using PET. METHODS: Dynamic paired PET studies of [11C]TPMP followed by [68Ga]ethylenediaminetetraacetic acid (EDTA) were performed 4 d before and 9 d after tumor cell inoculation. Graphical analysis was used to evaluate [11C]TPMP retention in tumor tissue. Distribution of tracer uptake was compared with tumor histological sections. RESULTS: [11C]TPMP exhibited enhanced uptake and prolonged retention in tumor cells. Patlak plot was linear over the 20- to 95-min postinjection period (r = 0.97 +/- 0.1). [68Ga]EDTA exhibited a gradual washout from the tumor tissue. The tumor-to-normal brain uptake ratio at 55 to 95 min postinjection was 47.5 for [11C]TPMP and 8.1 for [68Ga]EDTA. Qualitative comparison with histological sections indicated that [11C]TPMP enhanced uptake was restricted to the tumor area. CONCLUSION: The enhanced uptake and prolonged retention in tumor suggest [11C]TPMP as a promising means for imaging of gliomas in dogs. The need for studies in humans is indicated.  (+info)

Reduced size of liquefaction necrosis of mitral annular calcification in chronic renal failure by using low calcium concentration hemodialysis. (8/554)

A report is presented of a liquefaction necrosis of mitral annular calcification in a patient with chronic renal failure and secondary hyperparathyroidism who had been managed by hemodialysis for 11 years. The mass was echogenic with an echo-lucent area inside, high density on computed tomography and low intensity on magnetic resonance imaging. The uptake of gallium-67 (67Ga)-citrate and the bone agent technetium-99m-methylene diphosphate (99mTc-MDP) was seen in the mass. These findings were compatible with liquefaction necrosis of the mitral annular calcification. After treatment with low calcium concentration hemodialysis, the size of the mass reduced with disappearance of the echo-lucent area on the echocardiography and there was no uptake of 67Ga-citrate or 99mTc-MDP. Liquefaction necrosis might be the early and reversible form of mitral annular calcification. When a tumorlike echogenic mass at the base of mitral leaflets is seen in patients with predisposing factors for mitral annular calcification, consider the possibility of this specific form of mitral annular calcification in order to avoid any unnecessary surgical intervention.  (+info)

Gallium is not a medical term, but it's a chemical element with the symbol Ga and atomic number 31. It is a soft, silvery-blue metal that melts at a temperature just above room temperature. In medicine, gallium compounds such as gallium nitrate and gallium citrate are used as radiopharmaceuticals for diagnostic purposes in nuclear medicine imaging studies, particularly in the detection of inflammation, infection, and some types of cancer.

For example, Gallium-67 is a radioactive isotope that can be injected into the body to produce images of various diseases such as abscesses, osteomyelitis (bone infection), and tumors using a gamma camera. The way gallium distributes in the body can provide valuable information about the presence and extent of disease.

Therefore, while gallium is not a medical term itself, it has important medical applications as a diagnostic tool in nuclear medicine.

Gallium radioisotopes refer to specific types of gallium atoms that have unstable nuclei and emit radiation as they decay towards a more stable state. These isotopes are commonly used in medical imaging, such as in gallium scans, to help diagnose conditions like inflammation, infection, or cancer.

Gallium-67 (^67^Ga) is one of the most commonly used radioisotopes for medical purposes. It has a half-life of about 3.26 days and decays by emitting gamma rays. When administered to a patient, gallium-67 binds to transferrin, a protein that carries iron in the blood, and is taken up by cells with increased metabolic activity, such as cancer cells or immune cells responding to infection or inflammation. The distribution of gallium-67 in the body can then be visualized using a gamma camera, providing valuable diagnostic information.

Radioisotopes, also known as radioactive isotopes or radionuclides, are variants of chemical elements that have unstable nuclei and emit radiation in the form of alpha particles, beta particles, gamma rays, or conversion electrons. These isotopes are formed when an element's nucleus undergoes natural or artificial radioactive decay.

Radioisotopes can be produced through various processes, including nuclear fission, nuclear fusion, and particle bombardment in a cyclotron or other types of particle accelerators. They have a wide range of applications in medicine, industry, agriculture, research, and energy production. In the medical field, radioisotopes are used for diagnostic imaging, radiation therapy, and in the labeling of molecules for research purposes.

It is important to note that handling and using radioisotopes requires proper training, safety measures, and regulatory compliance due to their ionizing radiation properties, which can pose potential health risks if not handled correctly.

Zinc radioisotopes are unstable isotopes or variants of the element zinc that undergo radioactive decay, emitting radiation in the process. These isotopes have a different number of neutrons than the stable isotope of zinc (zinc-64), which contributes to their instability and tendency to decay.

Examples of zinc radioisotopes include zinc-65, zinc-70, and zinc-72. These isotopes are often used in medical research and diagnostic procedures due to their ability to emit gamma rays or positrons, which can be detected using specialized equipment.

Zinc radioisotopes may be used as tracers to study the metabolism and distribution of zinc in the body, or as therapeutic agents to deliver targeted radiation therapy to cancer cells. However, it is important to note that the use of radioisotopes carries potential risks, including exposure to ionizing radiation and the potential for damage to healthy tissues.

Gallium isotopes are different forms of the element gallium that have the same number of protons in their nucleus (which defines the element) but a different number of neutrons. This results in a slight difference in atomic mass.

For example, the most stable and abundant gallium isotope is Gallium-69, which has 31 protons and 38 neutrons in its nucleus, giving it an atomic mass of 68.925 g/mol. However, there are also other less common isotopes such as Gallium-67, which has 31 protons and 36 neutrons, giving it an atomic mass of 66.928 g/mol.

In medical context, Gallium-67 is used as a radioactive tracer in diagnostic imaging to help identify certain types of infection, inflammation, or cancer. The gallium-67 is injected into the patient's body and accumulates in areas with increased blood flow, such as sites of infection or tumors. A special camera then detects the gamma rays emitted by the radioactive gallium and creates images that can help doctors diagnose and monitor various medical conditions.

The Radioisotope Dilution Technique is a method used in nuclear medicine to measure the volume and flow rate of a particular fluid in the body. It involves introducing a known amount of a radioactive isotope, or radioisotope, into the fluid, such as blood. The isotope mixes with the fluid, and samples are then taken from the fluid at various time points.

By measuring the concentration of the radioisotope in each sample, it is possible to calculate the total volume of the fluid based on the amount of the isotope introduced and the dilution factor. The flow rate can also be calculated by measuring the concentration of the isotope over time and using the formula:

Flow rate = Volume/Time

This technique is commonly used in medical research and clinical settings to measure cardiac output, cerebral blood flow, and renal function, among other applications. It is a safe and reliable method that has been widely used for many years. However, it does require the use of radioactive materials and specialized equipment, so it should only be performed by trained medical professionals in appropriate facilities.

Strontium radioisotopes are radioactive isotopes of the element strontium. Strontium is an alkaline earth metal that is found in nature and has several isotopes, some of which are stable and some of which are radioactive. The radioactive isotopes of strontium, also known as strontium radionuclides, decay and emit radiation in the form of beta particles.

Strontium-89 (^89Sr) and strontium-90 (^90Sr) are two common radioisotopes of strontium that are used in medical applications. Strontium-89 is a pure beta emitter with a half-life of 50.5 days, which makes it useful for the treatment of bone pain associated with metastatic cancer. When administered, strontium-89 is taken up by bones and irradiates the bone tissue, reducing pain and improving quality of life in some patients.

Strontium-90, on the other hand, has a longer half-life of 28.8 years and emits more powerful beta particles than strontium-89. It is used as a component in radioactive waste and in some nuclear weapons, but it is not used in medical applications due to its long half-life and high radiation dose.

It's important to note that exposure to strontium radioisotopes can be harmful to human health, especially if ingested or inhaled. Therefore, handling and disposal of strontium radioisotopes require special precautions and regulations.

Radionuclide imaging, also known as nuclear medicine, is a medical imaging technique that uses small amounts of radioactive material, called radionuclides or radiopharmaceuticals, to diagnose and treat various diseases and conditions. The radionuclides are introduced into the body through injection, inhalation, or ingestion and accumulate in specific organs or tissues. A special camera then detects the gamma rays emitted by these radionuclides and converts them into images that provide information about the structure and function of the organ or tissue being studied.

Radionuclide imaging can be used to evaluate a wide range of medical conditions, including heart disease, cancer, neurological disorders, gastrointestinal disorders, and bone diseases. The technique is non-invasive and generally safe, with minimal exposure to radiation. However, it should only be performed by qualified healthcare professionals in accordance with established guidelines and regulations.

Iodine radioisotopes are radioactive isotopes of the element iodine, which decays and emits radiation in the form of gamma rays. Some commonly used iodine radioisotopes include I-123, I-125, I-131. These radioisotopes have various medical applications such as in diagnostic imaging, therapy for thyroid disorders, and cancer treatment.

For example, I-131 is commonly used to treat hyperthyroidism and differentiated thyroid cancer due to its ability to destroy thyroid tissue. On the other hand, I-123 is often used in nuclear medicine scans of the thyroid gland because it emits gamma rays that can be detected by a gamma camera, allowing for detailed images of the gland's structure and function.

It is important to note that handling and administering radioisotopes require specialized training and safety precautions due to their radiation-emitting properties.

Krypton is a noble gas with the symbol Kr and atomic number 36. It exists in various radioisotopes, which are unstable isotopes of krypton that undergo radioactive decay. A few examples include:

1. Krypton-81: This radioisotope has a half-life of about 2.1 x 10^5 years and decays via electron capture to rubidium-81. It is produced naturally in the atmosphere by cosmic rays.
2. Krypton-83: With a half-life of approximately 85.7 days, this radioisotope decays via beta decay to bromine-83. It can be used in medical imaging for lung ventilation studies.
3. Krypton-85: This radioisotope has a half-life of about 10.7 years and decays via beta decay to rubidium-85. It is produced as a byproduct of nuclear fission and can be found in trace amounts in the atmosphere.
4. Krypton-87: With a half-life of approximately 76.3 minutes, this radioisotope decays via beta decay to rubidium-87. It is not found naturally on Earth but can be produced artificially.

It's important to note that while krypton radioisotopes have medical applications, they are also associated with potential health risks due to their radioactivity. Proper handling and safety precautions must be taken when working with these substances.

"Iron radioisotopes" refer to specific forms of the element iron that have unstable nuclei and emit radiation. These isotopes are often used in medical imaging and treatment procedures due to their ability to be detected by specialized equipment. Common iron radioisotopes include Iron-52, Iron-55, Iron-59, and Iron-60. They can be used as tracers to study the distribution, metabolism, or excretion of iron in the body, or for targeted radiation therapy in conditions such as cancer.

Indium radioisotopes refer to specific types of radioactive indium atoms, which are unstable and emit radiation as they decay. Indium is a chemical element with the symbol In and atomic number 49. Its radioisotopes are often used in medical imaging and therapy due to their unique properties.

For instance, one commonly used indium radioisotope is Indium-111 (^111In), which has a half-life of approximately 2.8 days. It emits gamma rays, making it useful for diagnostic imaging techniques such as single-photon emission computed tomography (SPECT). In clinical applications, indium-111 is often attached to specific molecules or antibodies that target particular cells or tissues in the body, allowing medical professionals to monitor biological processes and identify diseases like cancer.

Another example is Indium-113m (^113mIn), which has a half-life of about 99 minutes. It emits low-energy gamma rays and is used as a source for in vivo counting, typically in the form of indium chloride (InCl3) solution. This radioisotope can be used to measure blood flow, ventilation, and other physiological parameters.

It's important to note that handling and using radioisotopes require proper training and safety measures due to their ionizing radiation properties.

Sodium radioisotopes are unstable forms of sodium, an element naturally occurring in the human body, that emit radiation as they decay over time. These isotopes can be used for medical purposes such as imaging and treatment of various diseases. Commonly used sodium radioisotopes include Sodium-22 (^22Na) and Sodium-24 (^24Na).

It's important to note that the use of radioisotopes in medicine should be under the supervision of trained medical professionals, as improper handling or exposure can pose health risks.

Radioactivity is not typically considered within the realm of medical definitions, but since it does have medical applications and implications, here is a brief explanation:

Radioactivity is a natural property of certain elements (referred to as radioisotopes) that emit particles or electromagnetic waves due to changes in their atomic nuclei. This process can occur spontaneously without any external influence, leading to the emission of alpha particles, beta particles, gamma rays, or neutrons. These emissions can penetrate various materials and ionize atoms along their path, which can cause damage to living tissues.

In a medical context, radioactivity is used in both diagnostic and therapeutic settings:

1. Diagnostic applications include imaging techniques such as positron emission tomography (PET) scans and single-photon emission computed tomography (SPECT), where radioisotopes are introduced into the body to visualize organ function or detect diseases like cancer.
2. Therapeutic uses involve targeting radioisotopes directly at cancer cells, either through external beam radiation therapy or internal radiotherapy, such as brachytherapy, where a radioactive source is placed near or within the tumor.

While radioactivity has significant medical benefits, it also poses risks due to ionizing radiation exposure. Proper handling and safety measures are essential when working with radioactive materials to minimize potential harm.

Barium radioisotopes are radioactive forms of the element barium, which are used in medical imaging procedures to help diagnose various conditions. The radioisotopes emit gamma rays that can be detected by external devices, allowing doctors to visualize the inside of the body. Barium sulfate is often used as a contrast agent in X-rays and CT scans, but when combined with a radioisotope such as barium-133, barium-198, or barium-207, it can provide more detailed images of specific organs or systems.

For example, barium sulfate mixed with barium-133 may be used in a lung scan to help diagnose pulmonary embolism or other respiratory conditions. Barium-207 is sometimes used in bone scans to detect fractures, tumors, or infections.

It's important to note that the use of radioisotopes carries some risks, including exposure to radiation and potential allergic reactions to the barium compound. However, these risks are generally considered low compared to the benefits of accurate diagnosis and effective treatment.

Technetium is not a medical term itself, but it is a chemical element with the symbol Tc and atomic number 43. However, in the field of nuclear medicine, which is a branch of medicine that uses small amounts of radioactive material to diagnose or treat diseases, Technetium-99m (a radioisotope of technetium) is commonly used for various diagnostic procedures.

Technetium-99m is a metastable nuclear isomer of technetium-99, and it emits gamma rays that can be detected outside the body to create images of internal organs or tissues. It has a short half-life of about 6 hours, which makes it ideal for diagnostic imaging since it decays quickly and reduces the patient's exposure to radiation.

Technetium-99m is used in a variety of medical procedures, such as bone scans, lung scans, heart scans, liver-spleen scans, brain scans, and kidney scans, among others. It can be attached to different pharmaceuticals or molecules that target specific organs or tissues, allowing healthcare professionals to assess their function or identify any abnormalities.

Yttrium radioisotopes are radioactive isotopes or variants of the element Yttrium, which is a rare earth metal. These radioisotopes are artificially produced and have unstable nuclei that emit radiation in the form of gamma rays or high-speed particles. Examples of yttrium radioisotopes include Yttrium-90 and Yttrium-86, which are used in medical applications such as radiotherapy for cancer treatment and molecular imaging for diagnostic purposes.

Yttrium-90 is a pure beta emitter with a half-life of 64.1 hours, making it useful for targeted radionuclide therapy. It can be used to treat liver tumors, leukemia, and lymphoma by attaching it to monoclonal antibodies or other targeting agents that selectively bind to cancer cells.

Yttrium-86 is a positron emitter with a half-life of 14.7 hours, making it useful for positron emission tomography (PET) imaging. It can be used to label radiopharmaceuticals and track their distribution in the body, providing information on the location and extent of disease.

It is important to note that handling and use of radioisotopes require specialized training and equipment due to their potential radiation hazards.

Tin radioisotopes refer to specific variants of the element tin that have unstable nuclei and emit radiation as they decay towards a more stable state. These isotopes are often produced in nuclear reactors or particle accelerators and can be used in a variety of medical applications, such as:

1. Medical Imaging: Tin-117m, for example, is used as a radiopharmaceutical in medical imaging studies to help diagnose various conditions, including bone disorders and liver diseases.
2. Radiation Therapy: Tin-125 can be used in the treatment of certain types of cancer, such as prostate cancer, through brachytherapy - a type of radiation therapy that involves placing a radioactive source directly into or near the tumor.
3. Radioisotope Production: Tin-106 is used as a parent isotope in the production of other medical radioisotopes, such as iodine-125 and gallium-67.

It's important to note that handling and using radioisotopes requires specialized training and equipment due to their potential radiation hazards.

Carbon radioisotopes are radioactive isotopes of carbon, which is an naturally occurring chemical element with the atomic number 6. The most common and stable isotope of carbon is carbon-12 (^12C), but there are also several radioactive isotopes, including carbon-11 (^11C), carbon-14 (^14C), and carbon-13 (^13C). These radioisotopes have different numbers of neutrons in their nuclei, which makes them unstable and causes them to emit radiation.

Carbon-11 has a half-life of about 20 minutes and is used in medical imaging techniques such as positron emission tomography (PET) scans. It is produced by bombarding nitrogen-14 with protons in a cyclotron.

Carbon-14, also known as radiocarbon, has a half-life of about 5730 years and is used in archaeology and geology to date organic materials. It is produced naturally in the atmosphere by cosmic rays.

Carbon-13 is stable and has a natural abundance of about 1.1% in carbon. It is not radioactive, but it can be used as a tracer in medical research and in the study of metabolic processes.

Copper radioisotopes are radioactive isotopes or variants of the chemical element copper. These isotopes have an unstable nucleus and emit radiation as they decay over time. Copper has several radioisotopes, including copper-64, copper-67, and copper-60, among others. These radioisotopes are used in various medical applications such as diagnostic imaging, therapy, and research. For example, copper-64 is used in positron emission tomography (PET) scans to help diagnose diseases like cancer, while copper-67 is used in targeted radionuclide therapy for cancer treatment. The use of radioisotopes in medicine requires careful handling and regulation due to their radiation hazards.

Phosphorus radioisotopes are radioactive isotopes or variants of the element phosphorus that emit radiation. Phosphorus has several radioisotopes, with the most common ones being phosphorus-32 (^32P) and phosphorus-33 (^33P). These radioisotopes are used in various medical applications such as cancer treatment and diagnostic procedures.

Phosphorus-32 has a half-life of approximately 14.3 days and emits beta particles, making it useful for treating certain types of cancer, such as leukemia and lymphoma. It can also be used in brachytherapy, a type of radiation therapy that involves placing a radioactive source close to the tumor.

Phosphorus-33 has a shorter half-life of approximately 25.4 days and emits both beta particles and gamma rays. This makes it useful for diagnostic procedures, such as positron emission tomography (PET) scans, where the gamma rays can be detected and used to create images of the body's internal structures.

It is important to note that handling and using radioisotopes requires specialized training and equipment to ensure safety and prevent radiation exposure.

Organometallic compounds are a type of chemical compound that contain at least one metal-carbon bond. This means that the metal is directly attached to carbon atom(s) from an organic molecule. These compounds can be synthesized through various methods, and they have found widespread use in industrial and medicinal applications, including catalysis, polymerization, and pharmaceuticals.

It's worth noting that while organometallic compounds contain metal-carbon bonds, not all compounds with metal-carbon bonds are considered organometallic. For example, in classical inorganic chemistry, simple salts of metal carbonyls (M(CO)n) are not typically classified as organometallic, but rather as metal carbonyl complexes. The distinction between these classes of compounds can sometimes be subtle and is a matter of ongoing debate among chemists.

Beta particles, also known as beta rays, are a type of ionizing radiation that consist of high-energy electrons or positrons emitted from the nucleus of certain radioactive isotopes during their decay process. When a neutron in the nucleus decays into a proton, it results in an excess energy state and one electron is ejected from the atom at high speed. This ejected electron is referred to as a beta particle.

Beta particles can have both positive and negative charges, depending on the type of decay process. Negative beta particles (β−) are equivalent to electrons, while positive beta particles (β+) are equivalent to positrons. They possess kinetic energy that varies in range, with higher energies associated with greater penetrating power.

Beta particles can cause ionization and excitation of atoms and molecules they encounter, leading to chemical reactions and potential damage to living tissues. Therefore, appropriate safety measures must be taken when handling materials that emit beta radiation.

Citrates are the salts or esters of citric acid, a weak organic acid that is naturally found in many fruits and vegetables. In a medical context, citrates are often used as a buffering agent in intravenous fluids to help maintain the pH balance of blood and other bodily fluids. They are also used in various medical tests and treatments, such as in urine alkalinization and as an anticoagulant in kidney dialysis solutions. Additionally, citrate is a component of some dietary supplements and medications.

Isotope labeling is a scientific technique used in the field of medicine, particularly in molecular biology, chemistry, and pharmacology. It involves replacing one or more atoms in a molecule with a radioactive or stable isotope of the same element. This modified molecule can then be traced and analyzed to study its structure, function, metabolism, or interaction with other molecules within biological systems.

Radioisotope labeling uses unstable radioactive isotopes that emit radiation, allowing for detection and quantification of the labeled molecule using various imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT). This approach is particularly useful in tracking the distribution and metabolism of drugs, hormones, or other biomolecules in living organisms.

Stable isotope labeling, on the other hand, employs non-radioactive isotopes that do not emit radiation. These isotopes have different atomic masses compared to their natural counterparts and can be detected using mass spectrometry. Stable isotope labeling is often used in metabolic studies, protein turnover analysis, or for identifying the origin of specific molecules within complex biological samples.

In summary, isotope labeling is a versatile tool in medical research that enables researchers to investigate various aspects of molecular behavior and interactions within biological systems.

I believe there might be a misunderstanding in your question. "Pyrones" is not a medical term, but rather a chemical term used to describe a class of organic compounds known as lactones with a characteristic eight-membered ring. These compounds are found in various natural sources such as plants and fungi, and some have been studied for their potential biological activities.

However, if you meant "pyrexia" instead of "pyrones," then I can provide the medical definition:

Pyrexia is a term used to describe an abnormally elevated body temperature, also known as fever. In adults, a core body temperature of 100.4°F (38°C) or higher is generally considered indicative of pyrexia. Fever is often a response to an infection or inflammation in the body and can be part of the immune system's effort to combat pathogens.

Mercury radioisotopes refer to specific variants of the element mercury that have unstable nuclei and emit radiation as they decay towards a more stable state. These isotopes are often produced in nuclear reactors or particle accelerators for various medical, industrial, and research applications. In the medical field, mercury-203 (^203Hg) and mercury-207 (^207Hg) are used as gamma emitters in diagnostic procedures and therapeutic treatments. However, due to environmental and health concerns associated with mercury, its use in medical applications has significantly decreased over time.

Technetium Tc 99m Sulfur Colloid is a radioactive tracer used in medical imaging procedures, specifically in nuclear medicine. It is composed of tiny particles of sulfur colloid that are labeled with the radioisotope Technetium-99m. This compound is typically injected into the patient's body, where it accumulates in certain organs or tissues, depending on the specific medical test being conducted.

The radioactive emissions from Technetium Tc 99m Sulfur Colloid are then detected by a gamma camera, which produces images that can help doctors diagnose various medical conditions, such as liver disease, inflammation, or tumors. The half-life of Technetium-99m is approximately six hours, which means that its radioactivity decreases rapidly and is eliminated from the body within a few days.

Cesium is a chemical element with the atomic number 55 and the symbol Cs. There are several isotopes of cesium, which are variants of the element that have different numbers of neutrons in their nuclei. The most stable and naturally occurring cesium isotope is cesium-133, which has 78 neutrons and a half-life of more than 3 x 10^20 years (effectively stable).

However, there are also radioactive isotopes of cesium, including cesium-134 and cesium-137. Cesium-134 has a half-life of about 2 years, while cesium-137 has a half-life of about 30 years. These isotopes are produced naturally in trace amounts by the decay of uranium and thorium in the Earth's crust, but they can also be produced artificially in nuclear reactors and nuclear weapons tests.

Cesium isotopes are commonly used in medical research and industrial applications. For example, cesium-137 is used as a radiation source in cancer therapy and industrial radiography. However, exposure to high levels of radioactive cesium can be harmful to human health, causing symptoms such as nausea, vomiting, diarrhea, and potentially more serious effects such as damage to the central nervous system and an increased risk of cancer.

Cerium is a naturally occurring element found in the Earth's crust, and it has several radioisotopes, which are radioactive isotopes or forms of cerium. These isotopes have unstable nuclei that emit radiation as they decay into more stable forms. Here are some examples of cerium radioisotopes:

* Cerium-134: This radioisotope has a half-life of about 3.12 days, which means that half of its atoms will decay into other elements in this time period. It decays by emitting beta particles and gamma rays.
* Cerium-137: This is a long-lived radioisotope with a half-life of about 2.5 years. It decays by emitting beta particles and gamma rays, and it can be used in medical imaging and cancer treatment. However, if released into the environment, it can pose a radiation hazard to humans and other organisms.
* Cerium-141: This radioisotope has a half-life of about 32.5 days, and it decays by emitting beta particles and gamma rays. It is produced in nuclear reactors and can be used for research purposes.
* Cerium-144: This radioisotope has a half-life of about 284 days, and it decays by emitting beta particles and gamma rays. It is produced in nuclear reactors and can be used for research purposes.

It's important to note that handling and working with radioisotopes requires proper training and protective measures to ensure safety and prevent radiation exposure.

Cobalt isotopes are variants of the chemical element Cobalt (Co) that have different numbers of neutrons in their atomic nuclei. This results in the different isotopes having slightly different masses and varying levels of stability.

The most naturally occurring stable cobalt isotope is Co-59, which contains 27 neutrons in its nucleus. However, there are also several radioactive isotopes of cobalt, including Co-60, which is a commonly used medical and industrial radioisotope.

Co-60 has 30 neutrons in its nucleus and undergoes beta decay, emitting gamma rays and becoming Nickel-60. It has a half-life of approximately 5.27 years, making it useful for a variety of applications, including cancer treatment, industrial radiography, and sterilization of medical equipment.

Other radioactive isotopes of cobalt include Co-57, which has a half-life of 271.8 days and is used in medical imaging, and Co-56, which has a half-life of just 77.2 seconds and is used in research.

I'm sorry for any confusion, but Hafnium is not a medical term. It is a chemical element with the symbol Hf and atomic number 72. Hafnium is a lustrous, silvery, tetravalent transition metal that chemically resembles zirconium and is found in zirconium minerals.

It has no relevance to medical terminology or healthcare. If you have any questions related to medical definitions or health-related topics, I'd be happy to try to help with those instead!

Radiopharmaceuticals are defined as pharmaceutical preparations that contain radioactive isotopes and are used for diagnosis or therapy in nuclear medicine. These compounds are designed to interact specifically with certain biological targets, such as cells, tissues, or organs, and emit radiation that can be detected and measured to provide diagnostic information or used to destroy abnormal cells or tissue in therapeutic applications.

The radioactive isotopes used in radiopharmaceuticals have carefully controlled half-lives, which determine how long they remain radioactive and how long the pharmaceutical preparation remains effective. The choice of radioisotope depends on the intended use of the radiopharmaceutical, as well as factors such as its energy, range of emission, and chemical properties.

Radiopharmaceuticals are used in a wide range of medical applications, including imaging, cancer therapy, and treatment of other diseases and conditions. Examples of radiopharmaceuticals include technetium-99m for imaging the heart, lungs, and bones; iodine-131 for treating thyroid cancer; and samarium-153 for palliative treatment of bone metastases.

The use of radiopharmaceuticals requires specialized training and expertise in nuclear medicine, as well as strict adherence to safety protocols to minimize radiation exposure to patients and healthcare workers.

Indium is not a medical term, but it is a chemical element with the symbol In and atomic number 49. It is a soft, silvery-white, post-transition metal that is rarely found in its pure form in nature. It is primarily used in the production of electronics, such as flat panel displays, and in nuclear medicine as a radiation source for medical imaging.

In nuclear medicine, indium-111 is used in the labeling of white blood cells to diagnose and locate abscesses, inflammation, and infection. The indium-111 labeled white blood cells are injected into the patient's body, and then a gamma camera is used to track their movement and identify areas of infection or inflammation.

Therefore, while indium itself is not a medical term, it does have important medical applications in diagnostic imaging.

Gold radioisotopes are unstable forms of gold that emit radiation as they decay into more stable elements. They are not typically used for medical purposes, but there have been some experimental uses in the treatment of cancer. For example, Gold-198 is a radioisotope that has been used in the brachytherapy (internal radiation therapy) of certain types of tumors. It releases high-energy gamma rays and is often used as a sealed source for the treatment of cancer.

It's important to note that the use of radioisotopes in medicine, including gold radioisotopes, should only be performed under the supervision of trained medical professionals and radiation safety experts due to the potential risks associated with radiation exposure.

Lead radioisotopes refer to specific types of radioactive isotopes (or radionuclides) of the element lead. These isotopes have unstable nuclei and emit radiation as they decay over time, changing into different elements in the process. Examples of lead radioisotopes include lead-210, lead-212, and lead-214. These isotopes are often found in the decay chains of heavier radioactive elements such as uranium and thorium, and they have various applications in fields like nuclear medicine, research, and industrial radiography. However, exposure to high levels of radiation from lead radioisotopes can pose significant health risks, including damage to DNA and increased risk of cancer.

Diagnostic techniques using radioisotopes, also known as nuclear medicine, are medical diagnostic procedures that use small amounts of radioactive material, called radioisotopes or radionuclides, to diagnose and monitor various diseases and conditions. The radioisotopes are introduced into the body through different routes (such as injection, inhalation, or ingestion) and accumulate in specific organs or tissues.

The gamma rays or photons emitted by these radioisotopes are then detected by specialized imaging devices, such as gamma cameras or PET scanners, which generate images that provide information about the structure and function of the organ or tissue being examined. This information helps healthcare professionals to make accurate diagnoses, monitor disease progression, assess treatment response, and plan appropriate therapies.

Common diagnostic techniques using radioisotopes include:

1. Radionuclide imaging (also known as scintigraphy): A gamma camera is used to produce images of specific organs or tissues after the administration of a radioisotope. Examples include bone scans, lung scans, heart scans, and brain scans.
2. Positron emission tomography (PET) scans: A PET scanner detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide, such as fluorodeoxyglucose (FDG), which is often used in oncology to assess metabolic activity and identify cancerous lesions.
3. Single-photon emission computed tomography (SPECT): A specialized gamma camera rotates around the patient, acquiring multiple images from different angles that are then reconstructed into a 3D image, providing detailed information about organ function and structure.

Diagnostic techniques using radioisotopes offer several advantages, including high sensitivity, non-invasiveness, and the ability to assess both anatomical and functional aspects of organs and tissues. However, they also involve exposure to ionizing radiation, so their use should be balanced against potential risks and benefits, and alternative diagnostic methods should be considered when appropriate.

Zinc isotopes refer to variants of the chemical element zinc, each with a different number of neutrons in their atomic nucleus. Zinc has five stable isotopes: zinc-64, zinc-66, zinc-67, zinc-68, and zinc-70. These isotopes have naturally occurring abundances that vary, with zinc-64 being the most abundant at approximately 48.6%.

Additionally, there are also several radioactive isotopes of zinc, including zinc-65, zinc-71, and zinc-72, among others. These isotopes have unstable nuclei that decay over time, emitting radiation in the process. They are not found naturally on Earth and must be produced artificially through nuclear reactions.

Medical Definition: Zinc isotopes refer to variants of the chemical element zinc with different numbers of neutrons in their atomic nucleus, including stable isotopes such as zinc-64, zinc-66, zinc-67, zinc-68, and zinc-70, and radioactive isotopes such as zinc-65, zinc-71, and zinc-72.

Sulfur radioisotopes are unstable forms of the element sulfur that emit radiation as they decay into more stable forms. These isotopes can be used in medical imaging and treatment, such as in the detection and treatment of certain cancers. Common sulfur radioisotopes used in medicine include sulfur-35 and sulfur-32. Sulfur-35 is used in research and diagnostic applications, while sulfur-32 is used in brachytherapy, a type of internal radiation therapy. It's important to note that handling and usage of radioisotopes should be done by trained professionals due to the potential radiation hazards they pose.

I'm sorry for any confusion, but "Oxyquinoline" does not have a specific medical definition as it is not a widely recognized medical term or a medication used in human healthcare. Oxyquinoline is an organic compound that contains a quinoline ring substituted with an alcohol group (hydroxyl) at position 8. It has been used in the past as a disinfectant and antiseptic, but it's not common in modern medical practice.

If you have any questions about medical terminology or concepts, please provide more context so I can offer a more accurate and helpful response.

Cadmium radioisotopes are unstable forms of the heavy metal cadmium that emit radiation as they decay into more stable elements. These isotopes can be created through various nuclear reactions, such as bombarding a cadmium atom with a high-energy particle. Some common cadmium radioisotopes include cadmium-109, cadmium-113, and cadmium-115.

These radioisotopes have a wide range of applications in medicine, particularly in diagnostic imaging and radiation therapy. For example, cadmium-109 is used as a gamma ray source for medical imaging, while cadmium-115 has been studied as a potential therapeutic agent for cancer treatment.

However, exposure to cadmium radioisotopes can also be hazardous to human health, as they can cause damage to tissues and organs through ionizing radiation. Therefore, handling and disposal of these materials must be done with care and in accordance with established safety protocols.

Astatine is a naturally occurring, radioactive, semi-metallic chemical element with the symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, and the heaviest of the halogens. Astatine is not found free in nature, but is always found in combination with other elements, such as uranium and thorium.

Astatine is a highly reactive element that exists in several allotropic forms and is characterized by its metallic appearance and chemical properties similar to those of iodine. It has a short half-life, ranging from a few hours to a few days, depending on the isotope, and emits alpha, beta, and gamma radiation.

Due to its rarity, radioactivity, and short half-life, astatine has limited practical applications. However, it has been studied for potential use in medical imaging and cancer therapy due to its ability to selectively accumulate in tumors.

Radioimmunotherapy (RIT) is a medical treatment that combines the specificity of antibodies and the therapeutic effects of radiation to target and destroy cancer cells. It involves the use of radioactive isotopes, which are attached to monoclonal antibodies, that recognize and bind to antigens expressed on the surface of cancer cells. Once bound, the radioactivity emitted from the isotope irradiates the cancer cells, causing damage to their DNA and leading to cell death. This targeted approach helps minimize radiation exposure to healthy tissues and reduces side effects compared to conventional radiotherapy techniques. RIT has been used in the treatment of various hematological malignancies, such as non-Hodgkin lymphoma, and is being investigated for solid tumors as well.

Lutetium is a chemical element with the symbol Lu and atomic number 71. It is a rare earth metal that belongs to the lanthanide series. In its pure form, lutetium is a silvery-white metal that is solid at room temperature.

Medically, lutetium is used in the form of radioactive isotopes for diagnostic and therapeutic purposes. For example, lutetium-177 (^177Lu) is a radiopharmaceutical agent that can be used to treat certain types of cancer, such as neuroendocrine tumors. The radioactivity of ^177Lu can be harnessed to destroy cancer cells while minimizing damage to healthy tissue.

It's important to note that the use of lutetium in medical treatments should only be performed under the supervision of trained medical professionals, and with appropriate safety measures in place to protect patients and healthcare workers from radiation exposure.

Transferrin receptors are membrane-bound proteins found on the surface of many cell types, including red and white blood cells, as well as various tissues such as the liver, brain, and placenta. These receptors play a crucial role in iron homeostasis by regulating the uptake of transferrin, an iron-binding protein, into the cells.

Transferrin binds to two ferric ions (Fe3+) in the bloodstream, forming a complex known as holo-transferrin. This complex then interacts with the transferrin receptors on the cell surface, leading to endocytosis of the transferrin-receptor complex into the cell. Once inside the cell, the acidic environment within the endosome causes the release of iron ions from the transferrin molecule, which can then be transported into the cytoplasm for use in various metabolic processes.

After releasing the iron, the apo-transferrin (iron-free transferrin) is recycled back to the cell surface and released back into the bloodstream, where it can bind to more ferric ions and repeat the cycle. This process helps maintain appropriate iron levels within the body and ensures that cells have access to the iron they need for essential functions such as DNA synthesis, energy production, and oxygen transport.

In summary, transferrin receptors are membrane-bound proteins responsible for recognizing and facilitating the uptake of transferrin-bound iron into cells, playing a critical role in maintaining iron homeostasis within the body.

Natural gallium (31Ga) consists of a mixture of two stable isotopes: gallium-69 and gallium-71. Twenty-nine radioisotopes are ... Among them, the most commercially important radioisotopes are gallium-67 and gallium-68. Gallium-67 (half-life 3.3 days) is a ... It is the longest-lived radioisotope of gallium. The shorter-lived gallium-68 (half-life 68 minutes) is a positron-emitting ... It is a radiopharmaceutical used in gallium scans (alternatively, the shorter-lived gallium-68 may be used). This gamma- ...
Some radioisotopes (for example gallium-67, gallium-68, and radioiodine) are used directly as soluble ionic salts, without ... The term radioisotope, which in its general sense refers to any radioactive isotope (radionuclide), has historically been used ... This use relies on the chemical and biological properties of the radioisotope itself, to localize it within the body. See ... The International Nonproprietary Name (INN) gives the base drug name, followed by the radioisotope (as mass number, no space, ...
On occasion, the radioisotope is a simple soluble dissolved ion, such as an isotope of gallium(III). Most of the time, though, ... SPECT is more widely available, because the radioisotope used is longer-lasting and far less expensive in SPECT, and the gamma ... In the nuclear power sector, the SPECT technique can be applied to image radioisotope distributions in irradiated nuclear fuels ... The technique needs delivery of a gamma-emitting radioisotope (a radionuclide) into the patient, normally through injection ...
In SPECT imaging, the patient is injected with a radioisotope, most commonly Thallium 201TI, Technetium 99mTC, Iodine 123I, and ... Gallium 67Ga. The radioactive gamma rays are emitted through the body as the natural decaying process of these isotopes takes ... Scintigraphy ("scint") is a form of diagnostic test wherein radioisotopes are taken internally, for example, intravenously or ...
... gallium-68, and radioiodine isotopes). These uses rely on the chemical and biological properties of the radioisotope itself, to ... The decay of radioisotopes may limit the shelf life of a reagent, requiring its replacement and thus increasing expenses. ... It has the highest emission energy (1.7 MeV) of all common research radioisotopes. This is a major advantage in experiments for ... Replacing an atom with its own radioisotope is an intrinsic label that does not alter the structure of the molecule. ...
At least 27 radioisotopes have also been synthesized ranging in atomic mass from 58 to 89. The most stable of these is 68Ge, ... See gallium-68 generator for notes on the source of this isotope, and its medical use.) The least stable known germanium ... While most of germanium's radioisotopes decay by beta decay, 61Ge and 65Ge can also decay by β+-delayed proton emission. 84Ge ...
Examples are gallium scans, indium white blood cell scans, iobenguane scan (MIBG) and octreotide scans. The MIBG scan detects ... Certain tests, such as the Schilling test and urea breath test, use radioisotopes but are not used to produce a specific image ... where radioisotopes attached to drugs that travel to a specific organ or tissue (radiopharmaceuticals) are taken internally and ...
... a synthetic radioisotope of germanium, in gallium-68 generators. Neutrino detection: Gallium is used for neutrino detection. ... gallium-69 and gallium-71. Gallium-69 is more abundant: it makes up about 60.1% of natural gallium, while gallium-71 makes up ... gallium nitrate). Aqueous solutions of gallium(III) salts contain the hydrated gallium ion, [Ga(H 2O) 6]3+ .: 1033 Gallium(III ... Gallium-67 and gallium-68 (half-life 67.7 min) are both used in nuclear medicine. Gallium is found primarily in the +3 ...
With the proton bombardment following radioisotopes are produced in three separate target rooms: Indium-111, gallium-67, ... These radioisotopes and radiopharmaceuticals produced from those radioisotopes are used for the diagnosis and therapy of ... By producing radioisotopes and radiopharmaceuticals, the facility conducts research work in the fields of medicine, industry, ... With the cyclotron, four beamlines can be generated, three beamlines for radioisotope production and one for research and ...
... chromium radioisotopes MeSH D01.496.239.354 - cobalt radioisotopes MeSH D01.496.360.400 - gallium radioisotopes MeSH D01.496. ... copper radioisotopes MeSH D01.496.749.340 - fluorine radioisotopes MeSH D01.496.749.360 - gallium radioisotopes MeSH D01.496. ... iron radioisotopes MeSH D01.496.749.540 - krypton radioisotopes MeSH D01.496.749.560 - lead radioisotopes MeSH D01.496.749.590 ... xenon radioisotopes MeSH D01.496.749.960 - yttrium radioisotopes MeSH D01.496.749.980 - zinc radioisotopes MeSH D01.496.807.800 ...
Gallium-68 is useful as a positron source for Positron emission tomography. Cobalt(III): 57Cobalt(III) is used with the ... 99mTc is the most commonly used radioisotope agent for imaging purposes. It has a short half-life, emits only gamma ray photons ... Metal complexes can be used either for radioisotope imaging (from their emitted radiation) or as contrast agents, for example, ... and thus is particularly suitable as an imaging radioisotope. Gadolinium(III), Iron(III), Manganese(II): For MRI imaging ...
65 Zn, which has a half-life of 243.66 days, is the least active radioisotope, followed by 72 Zn with a half-life of 46.5 hours ... which produces an isotope of gallium. n 30Zn → n 31Ga + e− + ν e Zinc has an electron configuration of [Ar]3d104s2 and is a ... n 30Zn + e− → n 29Cu The most common decay mode of a radioisotope of zinc with mass number higher than 66 is beta decay (β−), ... The most common decay mode of a radioisotope of zinc with a mass number lower than 66 is electron capture. The decay product ...
Lawrence on the cyclotron in the radiation laboratory and was the discoverer of the radioisotope gallium-67, which is still in ...
The parent isotope germanium-68 is the longest-lived (271 days) of the radioisotopes of germanium. It has been produced by ... A germanium-68/gallium-68 generator is a device used to extract the positron-emitting isotope 68Ga of gallium from a source of ... Gallium-67 citrate salt imaging is useful for imaging old or sterile abscesses. Gallium-68 is useful in direct tumor imaging, ... from gallium-69 (the most common of two stable isotopes of gallium). This reaction is: 69Ga(p,2n)68Ge. A Russian source ...
Gallium, indium, and arsenic; and copper, iridium, and platinum are used in LEDs (the latter three in organic LEDs). Niche uses ... heavy metals are also employed as spallation targets for the production of neutrons or radioisotopes such as astatine (using ... Gallium, germanium (a metalloid), indium, and most lanthanides can stimulate metabolism, and titanium promotes growth in plants ... The semiconductors cadmium telluride and gallium arsenide are used to make solar panels. Hafnium oxide, an insulator, is used ...
Gallium may be a better choice for spleen study because gallium does not normally accumulate in the spleen. Radiology Nuclear ... tagged with the radioisotope Indium-111, and then injected intravenously into the patient. The tagged leukocytes subsequently ... Both the gallium scan and indium-111 white blood cell imaging may be used to image fever of unknown origin (elevated ... In imaging of infections, the gallium scan has a sensitivity advantage over the indium white blood cell scan in imaging ...
The radioisotope thallium-201 (as the soluble chloride TlCl) is used in small amounts as an agent in a nuclear medicine scan, ... The +3 state resembles that of the other elements in group 13 (boron, aluminium, gallium, indium). However, the +1 state, which ... The most useful radioisotope, 201Tl (half-life 73 hours), decays by electron capture, emitting X-rays (~70-80 keV), and photons ... 204Tl is the most stable radioisotope, with a half-life of 3.78 years. It is made by the neutron activation of stable thallium ...
In biological contexts, use of radioisotope tracers are sometimes called radioisotope feeding experiments. Radioisotopes of ... The most widely used is 67Ga for gallium scans. 67Ga is used because, like 99mTc, it is a gamma-ray emitter and various ligands ... 99mTc is a very versatile radioisotope, and is the most commonly used radioisotope tracer in medicine. It is easy to produce in ... The commonly used radioisotopes have short half lives and so do not occur in nature in large amounts. They are produced by ...
There is a section for each radioisotope with a table of radiopharmaceuticals using that radioisotope. The sections are ordered ... 68Ga is a positron emitter, with a 68-minute half-life, produced by elution from germanium-68 in a gallium-68 generator or by ... Some radioisotopes are used in ionic or inert form without attachment to a pharmaceutical; these are also included. ... making it more useful as a therapeutic isotope for brachytherapy implant of radioisotope capsules for local treatment of ...
Like gallium, indium is able to wet glass. Like both, indium has a low melting point, 156.60 °C (313.88 °F); higher than its ... of which the stable isotope is less abundant in nature than the long-lived primordial radioisotopes. The stablest artificial ... Indium has a melting point higher than sodium and gallium, but lower than lithium and tin. Chemically, indium is similar to ... The boiling point is 2072 °C (3762 °F), higher than that of thallium, but lower than gallium, conversely to the general trend ...
Consequently, the radioisotope service found homes in several established specialties - commonly in radiology due to an ... Examples of uncommon but valuable procedures are octreotide (pentetreotide) or NETSPOT (gallium 68) imaging for somatostatin ... Initial introduction of radioisotopes into medicine required individuals to acquire of a considerable background information ... Positron emission tomography takes advantage of these back-to-back gamma rays to localize the distribution of the radioisotopes ...
... -137 is a radioisotope commonly used as a gamma-emitter in industrial applications. Its advantages include a half-life ... It forms well-defined intermetallic compounds with antimony, gallium, indium, and thorium, which are photosensitive. It mixes ... and gallium (30 °C [86 °F]); bromine is also liquid at room temperature (melting at −7.2 °C [19.0 °F]), but it is a halogen and ... and the radioisotopes present a significant health and environmental hazard. Of all elements that are solid at room temperature ...
The δ phase plutonium-gallium and plutonium-aluminium alloys are produced by adding plutonium(III) fluoride to molten gallium ... It is therefore used in radioisotope thermoelectric generators and radioisotope heater units such as those in the Cassini, ... Plutonium-gallium is used for stabilizing the δ phase of plutonium, avoiding the α-phase and α-δ related issues. Its main use ... Gallium, aluminium, americium, scandium and cerium can stabilize the δ phase of plutonium for room temperature. Silicon, indium ...
Gallium ammonium chloride is used for the leads in transistors. A major application of gallium is in LED lighting. The pure ... Some radioisotopes have important roles in scientific research; a few are used in the production of goods for commercial use or ... Indium and gallium can stimulate metabolism; gallium is credited with the ability to bind itself to iron proteins. Thallium is ... Gallium can form compounds with the oxidation states +1, +2 and +3. Indium is like gallium, but its +1 compounds are more ...
Examples are whole body PET scans or PET/CT scans, gallium scans, indium white blood cell scans, MIBG and octreotide scans. ... The most commonly used radioisotope in PET, 18F, is not produced in a nuclear reactor, but rather in a circular accelerator ... The most commonly used intravenous radionuclides are technetium-99m, iodine-123, iodine-131, thallium-201, gallium-67, fluorine ...
The gallium antimonide (GaSb) PV cell, invented in 1989, is the basis of most PV cells in modern TPV systems. GaSb is a III-V ... A TPV radioisotope converter with 20% efficiency was demonstrated that uses a tungsten emitter heated to 1350 K, with tandem ... Indium gallium arsenide (InGaAs) is a compound III-V semiconductor. It can be applied in two ways for use in TPVs. When lattice ... The radiative limit for efficiency of the GaSb cell in this setup is 52%. Indium gallium arsenide antimonide (InGaAsSb) is a ...
The crystals, such as gadolinium gallium garnet and yttrium gallium garnet, are grown by melting pre-sintered charges of mixed ... The radioisotope iridium-192 is one of the two most important sources of energy for use in industrial γ-radiography for non- ... At least 37 radioisotopes have also been synthesized, ranging in mass number from 164 to 202. 192Ir, which falls between the ... A radioisotope of iridium, 192 Ir, is dangerous, like other radioactive isotopes. The only reported injuries related to iridium ...
578-583 Tanaka, A. (2004). "Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide". Toxicology and ... As of 2003, at least 33 radioisotopes have also been synthesized, ranging in atomic mass from 60 to 92. The most stable of ... Gallium arsenide is an important semiconductor material, used in integrated circuits. Circuits made from GaAs are much faster ( ... It is also a component of the III-V compound semiconductor gallium arsenide. Arsenic and its compounds, especially the trioxide ...
... gallium garnet (GGG, Gd3Ga5O12) was used for imitation diamonds and for computer bubble memory. As a free ion, ... and one radioisotope, 152Gd, with the isotope 158Gd being the most abundant (24.8% natural abundance). The predicted double ... Thirty-three radioisotopes of gadolinium have been observed, with the most stable being 152Gd (naturally occurring), with a ... to ensure that nuclear-medicine imaging systems operate correctly and produce useful images of radioisotope distribution inside ...
The most stable radioisotopes are 107Pd with a half-life of 6.5 million years (found in nature), 103Pd with 17 days, and 100Pd ... Such compounds are known as palladides, such as gallium palladide. Palladides with the stoichiometry RPd3 exist where R is ... Eighteen other radioisotopes have been characterized with atomic weights ranging from 90.94948(64) u (91Pd) to 122.93426(64) u ...

No FAQ available that match "gallium radioisotopes"

No images available that match "gallium radioisotopes"