Venoms produced by FISHES, including SHARKS and sting rays, usually delivered by spines. They contain various substances, including very labile toxins that affect the HEART specifically and all MUSCLES generally.
A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized.
Venoms obtained from Apis mellifera (honey bee) and related species. They contain various enzymes, polypeptide toxins, and other substances, some of which are allergenic or immunogenic or both. These venoms were formerly used in rheumatism to stimulate the pituitary-adrenal system.
Poisonous animal secretions forming fluid mixtures of many different enzymes, toxins, and other substances. These substances are produced in specialized glands and secreted through specialized delivery systems (nematocysts, spines, fangs, etc.) for disabling prey or predator.
Venoms from snakes of the genus Naja (family Elapidae). They contain many specific proteins that have cytotoxic, hemolytic, neurotoxic, and other properties. Like other elapid venoms, they are rich in enzymes. They include cobramines and cobralysins.
Venoms from SNAKES of the viperid family. They tend to be less toxic than elapid or hydrophid venoms and act mainly on the vascular system, interfering with coagulation and capillary membrane integrity and are highly cytotoxic. They contain large amounts of several enzymes, other factors, and some toxins.
Venoms produced by the wasp (Vespid) family of stinging insects, including hornets; the venoms contain enzymes, biogenic amines, histamine releasing factors, kinins, toxic polypeptides, etc., and are similar to bee venoms.
Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized.
Venoms of arthropods of the order Araneida of the ARACHNIDA. The venoms usually contain several protein fractions, including ENZYMES, hemolytic, neurolytic, and other TOXINS, BIOLOGICAL.
Diseases of freshwater, marine, hatchery or aquarium fish. This term includes diseases of both teleosts (true fish) and elasmobranchs (sharks, rays and skates).
Venoms from animals of the order Scorpionida of the class Arachnida. They contain neuro- and hemotoxins, enzymes, and various other factors that may release acetylcholine and catecholamines from nerve endings. Of the several protein toxins that have been characterized, most are immunogenic.
Venoms from animals of the phylum Arthropoda. Those most investigated are from scorpions and spiders of the class Arachnidae and from ant, bee, and wasp families of the Insecta order Hymenoptera. The venoms contain protein toxins, enzymes, and other bioactive substances and may be lethal to man.
Oils high in unsaturated fats extracted from the bodies of fish or fish parts, especially the LIVER. Those from the liver are usually high in VITAMIN A. The oils are used as DIETARY SUPPLEMENTS. They are also used in soaps and detergents and as protective coatings.
A genus of poisonous snakes of the VIPERIDAE family. About 50 species are known and all are found in tropical America and southern South America. Bothrops atrox is the fer-de-lance and B. jararaca is the jararaca. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p336)
Antisera used to counteract poisoning by animal VENOMS, especially SNAKE VENOMS.
Venoms from the superfamily Formicoidea, Ants. They may contain protein factors and toxins, histamine, enzymes, and alkaloids and are often allergenic or immunogenic.
A family of extremely venomous snakes, comprising coral snakes, cobras, mambas, kraits, and sea snakes. They are widely distributed, being found in the southern United States, South America, Africa, southern Asia, Australia, and the Pacific Islands. The elapids include three subfamilies: Elapinae, Hydrophiinae, and Lauticaudinae. Like the viperids, they have venom fangs in the front part of the upper jaw. The mambas of Africa are the most dangerous of all snakes by virtue of their size, speed, and highly toxic venom. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p329-33)
Venoms from mollusks, including CONUS and OCTOPUS species. The venoms contain proteins, enzymes, choline derivatives, slow-reacting substances, and several characterized polypeptide toxins that affect the nervous system. Mollusk venoms include cephalotoxin, venerupin, maculotoxin, surugatoxin, conotoxins, and murexine.
Food products manufactured from fish (e.g., FISH FLOUR, fish meal).
Limbless REPTILES of the suborder Serpentes.
Proteins obtained from species of fish (FISHES).
Arthropods of the order Scorpiones, of which 1500 to 2000 species have been described. The most common live in tropical or subtropical areas. They are nocturnal and feed principally on insects and other arthropods. They are large arachnids but do not attack man spontaneously. They have a venomous sting. Their medical significance varies considerably and is dependent on their habits and venom potency rather than on their size. At most, the sting is equivalent to that of a hornet but certain species possess a highly toxic venom potentially fatal to humans. (From Dorland, 27th ed; Smith, Insects and Other Arthropods of Medical Importance, 1973, p417; Barnes, Invertebrate Zoology, 5th ed, p503)
A genus of venomous snakes of the subfamily Crotalinae. Twelve species of this genus are found in North and Central America and Asia. Agkistrodon contortrix is the copperhead, A. piscivorus, the cottonmouth. The former is named for its russet or orange-brown color, the latter for the white interior of its mouth. (Goin, Goin, and Zug, Introduction to Herpetology, 3d ed, p336; Moore, Poisonous Snakes of the World, 1980, p75)

Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. (1/64)

Species right across the evolutionary scale from insects to mammals use peptides as part of their host-defense system to counter microbial infection. The primary structures of a large number of these host-defense peptides have been determined. While there is no primary structure homology, the peptides are characterized by a preponderance of cationic and hydrophobic amino acids. The secondary structures of many of the host-defense peptides have been determined by a variety of techniques. The acyclic peptides tend to adopt helical conformation, especially in media of low dielectric constant, whereas peptides with more than one disulfide bridge adopt beta-structures. Detailed investigations have indicated that a majority of these host-defense peptides exert their action by permeabilizing microbial membranes. In this review, we discuss structural and charge requirements for the interaction of endogenous antimicrobial peptides and short peptides that have been derived from them, with membranes.  (+info)

Trachynilysin mediates SNARE-dependent release of catecholamines from chromaffin cells via external and stored Ca2+. (2/64)

Trachynilysin, a 159 kDa dimeric protein purified from stonefish (Synanceia trachynis) venom, dramatically increases spontaneous quantal transmitter release at the frog neuromuscular junction, depleting small clear synaptic vesicles, whilst not affecting large dense core vesicles. The basis of this insensitivity of large dense core vesicles exocytosis was examined using a fluorimetric assay to determine whether the toxin could elicit catecholamine release from bovine chromaffin cells. Unlike the case of the motor nerve endings, nanomolar concentrations of trachynilysin evoked sustained Soluble N-ethylmaleimide-sensitive fusion protein Attachment Protein REceptor-dependent exocytosis of large dense core vesicles, but only in the presence of extracellular Ca2+. However, this response to trachynilysin does not rely on Ca2+ influx through voltage-activated Ca2+ channels because the secretion was only slightly affected by blockers of L, N and P/Q types. Instead, trachynilysin elicited a localized increase in intracellular fluorescence monitored with fluo-3/AM, that precisely co-localized with the increase of fluorescence resulting from caffeine-induced release of Ca2+ from intracellular stores. Moreover, depletion of the latter stores inhibited trachynilysin-induced exocytosis. Thus, the observed requirement of external Ca2+ for stimulation of large dense core vesicles exocytosis from chromaffin cells implicates plasma membrane channels that signal efflux of Ca2+ from intracellular stores. This study also suggests that the bases of exocytosis of large dense core vesicles from motor nerve terminals and neuroendocrine cells are distinct.  (+info)

Involvement of extracellular signal-regulated kinase (ERK) in pardaxin-induced dopamine release from PC12 cells. (3/64)

Pardaxin (PX), an ionophore-peptide neurotoxin isolated from the fish Pardachirus marmoratus, induces neurotransmitter release from neuronal preparations by both calcium-dependent and calcium-independent mechanisms. The aim of the present study was to investigate the role of extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) in pardaxin-induced dopamine (DA) release. The experiments were performed on variants of the PC12 cell line, an established cellular model for investigating DA release. Time course experiments indicated that PX, at nontoxic concentrations, stimulated ERK1 and ERK2 within 5 to 15 min, measured with a dual phospho-ERK antibody. PX stimulation of ERK activity was calcium (Ca(2+))-dependent and followed by ERK translocation to the nucleus. This effect was temporally related to PX-induced exocytosis, and measured by [(3)H]dopamine release as well as by a vesicle fusion-based enzyme-linked immunosorbent assay. Blocking ERK activity with the specific mitogen-activated protein kinase kinase inhibitors PD98059 (50 microM for 45 min) and UO126 (30 microM for 30 min) inhibited PX-induced exocytosis in the presence but not in the absence of extracellular Ca(2+). These results suggest the essential role of ERKs in PX-induced DA release under physiological conditions and support the hypothesis that ERKs are involved in regulating exocytosis.  (+info)

Skeletal muscle necrosis and regeneration after injection of Thalassophryne nattereri (niquim) fish venom in mice. (4/64)

Stings by Thalassophryne nattereri are responsible for envenomation of fishermen in north-eastern Brazil. Its venom induces prominent local tissue damage, characterized by pain, oedema and necrosis. The pathogenesis of acute muscle damage induced by T. nattereri venom was studied in mice. Intramuscular injection induced myonecrosis within the first hours. Some muscle cells presented a hypercontracted morphology, but most necrotic fibres were not hypercontracted, being instead characterized by a disorganization of myofibrils, with Z line loss, mitochondrial swelling and sarcolemmal disruption. In addition, thrombosis was observed histologically in venules and veins, together with vascular congestion and stasis, evidenced by intravital microscopy. Venom induced a rapid increment in serum creatine kinase (CK) levels, concomitant with a reduction in gastrocnemius muscle CK activity, whereas no increments in muscle lactic acid were detected. A rapid cytolytic effect was induced by the venom on C2C12 murine myoblasts in culture. The inflammatory reaction in affected muscle was characterized by oedema and scarce cellular infiltrate of polymorphonuclear leucocytes and macrophages, with a consequent delay in the removal of necrotic material. Skeletal muscle regeneration was partially impaired, as evidenced by the presence of regenerating fibres of variable size and by the increase of fibrotic tissue in endomysium and perimysium. It is suggested that T. nattereri venom affects muscle fibres by a direct cytotoxic effect, and that the vascular alterations described preclude a successful regenerative process.  (+info)

Insertion and pore formation driven by adsorption of proteins onto lipid bilayer membrane-water interfaces. (5/64)

We describe the binding of proteins to lipid bilayers in the case for which binding can occur either by adsorption to the lipid bilayer membrane-water interface or by direct insertion into the bilayer itself. We examine in particular the case when the insertion and pore formation are driven by the adsorption process using scaled particle theory. The adsorbed proteins form a two-dimensional "surface gas" at the lipid bilayer membrane-water interface that exerts a lateral pressure on the lipid bilayer membrane. Under conditions of strong intrinsic binding and a high degree of interfacial converge, this pressure can become high enough to overcome the energy barrier for protein insertion. Under these conditions, a subtle equilibrium exists between the adsorbed and inserted proteins. We propose that this provides a control mechanism for reversible insertion and pore formation of proteins such as melittin and magainin. Next, we discuss experimental data for the binding isotherms of cytochrome c to charged lipid membranes in the light of our theory and predict that cytochrome c inserts into charged lipid bilayers at low ionic strength. This prediction is supported by titration calorimetry results that are reported here. We were furthermore able to describe the observed binding isotherms of the pore-forming peptides endotoxin (alpha 5-helix) and of pardaxin to zwitterionic vesicles from our theory by assuming adsorption/insertion equilibrium.  (+info)

Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. (6/64)

The mechanisms generating giant miniature excitatory postsynaptic currents (mEPSCs) were investigated at the hippocampal mossy fiber (MF) to CA3 pyramidal cell synapse in vitro. These giant mEPSCs have peak amplitudes as large as 1,700 pA (13.6 nS) with a mean maximal mEPSC amplitude of 366 +/- 20 pA (mean +/- SD; 5 nS; n = 25 cells). This is compared with maximal mEPSC amplitudes of <100 pA typically observed at other cortical synapses. We tested the hypothesis that giant mEPSCs are due to synchronized release of multiple vesicles across the release sites of single MF boutons by directly inducing vesicular release using secretagogues. If giant mEPSCs result from simultaneous multivesicular release, then secretagogues should increase the frequency of small mEPSCs selectively. We found that hypertonic sucrose and spermine increased the frequency of both small and giant mEPSCs. The peptide toxin secretagogues alpha-latrotoxin and pardaxin failed to increase the frequency of giant mEPSCs, but the possible lack of tissue penetration of the toxins make these results equivocal. Because a multiquantal release mechanism is likely to be mediated by a spontaneous increase in presynaptic calcium concentration, a monoquantal mechanism is further supported by results that giant mEPSCs were not affected by manipulations of extracellular or intracellular calcium concentrations. In addition, reducing the temperature of the bath to 15 degrees C failed to desynchronize the rising phases of giant mEPSCs. Together these data suggest that the giant mEPSCs are generated via a monovesicular mechanism. Three-dimensional analysis through serial electron microscopy of the MF boutons revealed large clear vesicles (50 to 160 nm diam) docked presynaptically at the MF synapse in sufficient numbers to account for the amplitude and frequency of giant mEPSCs recorded electrophysiologically. It is concluded that release of the contents of a single large clear vesicle generates giant mEPSCs at the MF to CA3 pyramidal cell synapse.  (+info)

Pardaxin stimulation of phospholipases A2 and their involvement in exocytosis in PC-12 cells. (7/64)

Pardaxin (PX) is a voltage-dependent ionophore that stimulates catecholamine exocytosis from PC-12 pheochromocytoma cells both in the presence and absence of extracellular calcium. Using a battery of phospholipase A(2) inhibitors we show that PX stimulation of phospholipase A(2) (PLA(2)) enzymes is coupled with induction of exocytosis. We investigated the relationship between PX-induced PLA(2) activity and neurotransmitter release by measuring the levels of arachidonic acid (AA), prostaglandin E(2) (PGE(2)), and dopamine release. In the presence of extracellular calcium, the cytosolic PLA(2) inhibitor arachidonyl trifluoromethyl ketone (AACOCF(3)) inhibited by 100, 70, and 73%, respectively, the release of AA, PGE(2), and dopamine induced by PX. The mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor 2'-amino-3'-methoxyflavone (PD98059) reduced by 100 and 82%, respectively, the release of AA and PGE(2) induced by PX. In the absence of extracellular calcium, the calcium-independent PLA(2) (iPLA(2)) inhibitors methyl arachidonyl fluorophosphonate, AACOCF(3), and bromoenol lactone (BEL) inhibited by 80 to 90% PX stimulation of AA release, by 65 to 85% PX stimulation of PGE(2) release, and by 80 to 90% PX-induced dopamine release. Using vesicle fusion-based enzyme-linked immunosorbent assay we found similar levels of inhibition of PX-induced exocytosis by these inhibitors. Also, PX induced the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes, an effect that was augmented by N-methylmaleimide. This complex formation was completely inhibited by BEL. Botulinum toxins type C1 and F significantly inhibited the release of AA, PGE(2), and dopamine induced by PX. Our data suggest that PX stimulates exocytosis by activating cystolic PLA(2) and iPLA(2), leading to the generation of AA and eicosanoids, which, in turn, stimulate vesicle competence for fusion and neurotransmitter release.  (+info)

Membrane composition determines pardaxin's mechanism of lipid bilayer disruption. (8/64)

Pardaxin is a membrane-lysing peptide originally isolated from the fish Pardachirus marmoratus. The effect of the carboxy-amide of pardaxin (P1a) on bilayers of varying composition was studied using (15)N and (31)P solid-state NMR of mechanically aligned samples and differential scanning calorimetry (DSC). (15)N NMR spectroscopy of [(15)N-Leu(19)]P1a found that the orientation of the peptide's C-terminal helix depends on membrane composition. It is located on the surface of lipid bilayers composed of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and is inserted in lipid bilayers composed of 1,2-dimyristoyl-phosphatidylcholine (DMPC). The former suggests a carpet mechanism for bilayer disruption whereas the latter is consistent with a barrel-stave mechanism. The (31)P chemical shift NMR spectra showed that the peptide significantly disrupts lipid bilayers composed solely of zwitterionic lipids, particularly bilayers composed of POPC, in agreement with a carpet mechanism. P1a caused the formation of an isotropic phase in 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) lipid bilayers. This, combined with DSC data that found P1a reduced the fluid lamellar-to-inverted hexagonal phase transition temperature at very low concentrations (1:50,000), is interpreted as the formation of a cubic phase and not micellization of the membrane. Experiments exploring the effect of P1a on lipid bilayers composed of 4:1 POPC:cholesterol, 4:1 POPE:cholesterol, 3:1 POPC:1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), and 3:1 POPE:POPG were also conducted, and the presence of anionic lipids or cholesterol was found to reduce the peptide's ability to disrupt bilayers. Considered together, these data demonstrate that the mechanism of P1a is dependent on membrane composition.  (+info)

Fish venoms are toxic substances produced by some species of fish, primarily found in their spines, fins, or skin. These venoms are used for defense against predators and can cause painful injuries to humans who come into contact with them. The venomous fishes belong to various taxonomic groups, including catfishes (order Siluriformes), stingrays (superorder Batoidea), scorpionfishes (family Scorpaenidae), weevers (family Trachinidae), and stonefishes (family Synanceiidae).

The composition of fish venoms varies among species, but they typically contain a mixture of proteins, enzymes, and small molecules that can induce local and systemic effects. Local reactions usually involve pain, swelling, and redness at the site of the injury, while systemic symptoms may include nausea, vomiting, difficulty breathing, paralysis, or even death in severe cases.

Immediate medical attention is required for fish venom injuries to manage pain, prevent infection, and treat potential systemic effects. Treatment usually involves removing any remaining venomous spines or fragments, immersing the wound in hot water (>45°C/113°F) to denature the proteins in the venom, and administering appropriate analgesics, antibiotics, and supportive care as needed.

I believe there may be a misunderstanding in your question. The term "fishes" is not typically used in a medical context. "Fish" or "fishes" refers to any aquatic organism belonging to the taxonomic class Actinopterygii (bony fish), Chondrichthyes (sharks and rays), or Agnatha (jawless fish).

However, if you are referring to a condition related to fish or consuming fish, there is a medical issue called scombroid fish poisoning. It's a foodborne illness caused by eating spoiled or improperly stored fish from the Scombridae family, which includes tuna, mackerel, and bonito, among others. The bacteria present in these fish can produce histamine, which can cause symptoms like skin flushing, headache, diarrhea, and itchy rash. But again, this is not related to the term "fishes" itself but rather a condition associated with consuming certain types of fish.

Crotalid venoms are the toxic secretions produced by the members of the Crotalinae subfamily, also known as pit vipers. This group includes rattlesnakes, cottonmouths (or water moccasins), and copperheads, which are native to the Americas, as well as Old World vipers found in Asia and Europe, such as gaboon vipers and saw-scaled vipers.

Crotalid venoms are complex mixtures of various bioactive molecules, including enzymes, proteins, peptides, and other low molecular weight components. They typically contain a variety of pharmacologically active components, such as hemotoxic and neurotoxic agents, which can cause extensive local tissue damage, coagulopathy, cardiovascular dysfunction, and neuromuscular disorders in the victim.

The composition of crotalid venoms can vary significantly between different species and even among individual specimens within the same species. This variability is influenced by factors such as geographic location, age, sex, diet, and environmental conditions. As a result, the clinical manifestations of crotalid envenomation can be highly variable, ranging from mild local reactions to severe systemic effects that may require intensive medical treatment and supportive care.

Crotalid venoms have been the subject of extensive research in recent years due to their potential therapeutic applications. For example, certain components of crotalid venoms have shown promise as drugs for treating various medical conditions, such as cardiovascular diseases, pain, and inflammation. However, further studies are needed to fully understand the mechanisms of action of these venom components and to develop safe and effective therapies based on them.

Bee venom is a poisonous substance that a honeybee (Apis mellifera) injects into the skin of a person or animal when it stings. It's produced in the venom gland and stored in the venom sac of the bee. Bee venom is a complex mixture of proteins, peptides, and other compounds. The main active components of bee venom include melittin, apamin, and phospholipase A2.

Melittin is a toxic peptide that causes pain, redness, and swelling at the site of the sting. It also has hemolytic (red blood cell-destroying) properties. Apamin is a neurotoxin that can affect the nervous system and cause neurological symptoms in severe cases. Phospholipase A2 is an enzyme that can damage cell membranes and contribute to the inflammatory response.

Bee venom has been used in traditional medicine for centuries, particularly in China and other parts of Asia. It's believed to have anti-inflammatory, analgesic (pain-relieving), and immunomodulatory effects. Some studies suggest that bee venom may have therapeutic potential for a variety of medical conditions, including rheumatoid arthritis, multiple sclerosis, and chronic pain. However, more research is needed to confirm these findings and to determine the safety and efficacy of bee venom therapy.

It's important to note that bee stings can cause severe allergic reactions (anaphylaxis) in some people, which can be life-threatening. If you experience symptoms such as difficulty breathing, rapid heartbeat, or hives after being stung by a bee, seek medical attention immediately.

Venom is a complex mixture of toxic compounds produced by certain animals, such as snakes, spiders, scorpions, and marine creatures like cone snails and stonefish. These toxic substances are specifically designed to cause damage to the tissues or interfere with the normal physiological processes of other organisms, which can lead to harmful or even lethal effects.

Venoms typically contain a variety of components, including enzymes, peptides, proteins, and small molecules, each with specific functions that contribute to the overall toxicity of the mixture. Some of these components may cause localized damage, such as tissue necrosis or inflammation, while others can have systemic effects, impacting various organs and bodily functions.

The study of venoms, known as toxinology, has important implications for understanding the evolution of animal behavior, developing new therapeutics, and advancing medical treatments for envenomation (the process of being poisoned by venom). Additionally, venoms have been used in traditional medicine for centuries, and ongoing research continues to uncover novel compounds with potential applications in modern pharmacology.

Cobra venoms are a type of snake venom that is produced by cobras, which are members of the genus Naja in the family Elapidae. These venoms are complex mixtures of proteins and other molecules that have evolved to help the snake immobilize and digest its prey.

Cobra venoms typically contain a variety of toxic components, including neurotoxins, hemotoxins, and cytotoxins. Neurotoxins target the nervous system and can cause paralysis and respiratory failure. Hemotoxins damage blood vessels and tissues, leading to internal bleeding and organ damage. Cytotoxins destroy cells and can cause tissue necrosis.

The specific composition of cobra venoms can vary widely between different species of cobras, as well as between individual snakes of the same species. Some cobras have venoms that are primarily neurotoxic, while others have venoms that are more hemotoxic or cytotoxic. The potency and effects of cobra venoms can also be influenced by factors such as the age and size of the snake, as well as the temperature and pH of the environment.

Cobra bites can be extremely dangerous and even fatal to humans, depending on the species of cobra, the amount of venom injected, and the location of the bite. Immediate medical attention is required in the event of a cobra bite, including the administration of antivenom therapy to neutralize the effects of the venom.

"Viper venoms" refer to the toxic secretions produced by members of the Viperidae family of snakes, which include pit vipers (such as rattlesnakes, copperheads, and cottonmouths) and true vipers (like adders, vipers, and gaboon vipers). These venoms are complex mixtures of proteins, enzymes, and other bioactive molecules that can cause a wide range of symptoms in prey or predators, including local tissue damage, pain, swelling, bleeding, and potentially life-threatening systemic effects such as coagulopathy, cardiovascular shock, and respiratory failure.

The composition of viper venoms varies widely between different species and even among individuals within the same species. However, many viper venoms contain a variety of enzymes (such as phospholipases A2, metalloproteinases, and serine proteases) that can cause tissue damage and disrupt vital physiological processes in the victim. Additionally, some viper venoms contain neurotoxins that can affect the nervous system and cause paralysis or other neurological symptoms.

Understanding the composition and mechanisms of action of viper venoms is important for developing effective treatments for venomous snakebites, as well as for gaining insights into the evolution and ecology of these fascinating and diverse creatures.

Wasp venoms are complex mixtures of bioactive molecules produced by wasps (Hymenoptera: Vespidae) to defend themselves and paralyze prey. The main components include:

1. Phospholipases A2 (PLA2): Enzymes that can cause pain, inflammation, and damage to cell membranes.
2. Hyaluronidase: An enzyme that helps spread the venom by breaking down connective tissues.
3. Proteases: Enzymes that break down proteins and contribute to tissue damage and inflammation.
4. Antigen 5: A major allergen that can cause severe allergic reactions (anaphylaxis) in sensitive individuals.
5. Mastoparan: A peptide that induces histamine release, leading to localized inflammation and pain.
6. Neurotoxins: Some wasp venoms contain neurotoxins that can cause paralysis or neurological symptoms.

The composition of wasp venoms may vary among species, and individual sensitivity to the components can result in different reactions ranging from localized pain, swelling, and redness to systemic allergic responses.

Elapid venoms are the toxic secretions produced by elapid snakes, a family of venomous snakes that includes cobras, mambas, kraits, and coral snakes. These venoms are primarily composed of neurotoxins, which can cause paralysis and respiratory failure in prey or predators.

Elapid venoms work by targeting the nervous system, disrupting communication between the brain and muscles. This results in muscle weakness, paralysis, and eventually respiratory failure if left untreated. Some elapid venoms also contain hemotoxins, which can cause tissue damage, bleeding, and other systemic effects.

The severity of envenomation by an elapid snake depends on several factors, including the species of snake, the amount of venom injected, the location of the bite, and the size and health of the victim. Prompt medical treatment is essential in cases of elapid envenomation, as the effects of the venom can progress rapidly and lead to serious complications or death if left untreated.

Spider venoms are complex mixtures of bioactive compounds produced by the specialized glands of spiders. These venoms are primarily used for prey immobilization and defense. They contain a variety of molecules such as neurotoxins, proteases, peptides, and other biologically active substances. Different spider species have unique venom compositions, which can cause different reactions when they bite or come into contact with humans or other animals. Some spider venoms can cause mild symptoms like pain and swelling, while others can lead to more severe reactions such as tissue necrosis or even death in extreme cases.

"Fish diseases" is a broad term that refers to various health conditions and infections affecting fish populations in aquaculture, ornamental fish tanks, or wild aquatic environments. These diseases can be caused by bacteria, viruses, fungi, parasites, or environmental factors such as water quality, temperature, and stress.

Some common examples of fish diseases include:

1. Bacterial diseases: Examples include furunculosis (caused by Aeromonas salmonicida), columnaris disease (caused by Flavobacterium columnare), and enteric septicemia of catfish (caused by Edwardsiella ictaluri).

2. Viral diseases: Examples include infectious pancreatic necrosis virus (IPNV) in salmonids, viral hemorrhagic septicemia virus (VHSV), and koi herpesvirus (KHV).

3. Fungal diseases: Examples include saprolegniasis (caused by Saprolegnia spp.) and cotton wool disease (caused by Aphanomyces spp.).

4. Parasitic diseases: Examples include ichthyophthirius multifiliis (Ich), costia, trichodina, and various worm infestations such as anchor worms (Lernaea spp.) and tapeworms (Diphyllobothrium spp.).

5. Environmental diseases: These are caused by poor water quality, temperature stress, or other environmental factors that weaken the fish's immune system and make them more susceptible to infections. Examples include osmoregulatory disorders, ammonia toxicity, and low dissolved oxygen levels.

It is essential to diagnose and treat fish diseases promptly to prevent their spread among fish populations and maintain healthy aquatic ecosystems. Preventative measures such as proper sanitation, water quality management, biosecurity practices, and vaccination can help reduce the risk of fish diseases in both farmed and ornamental fish settings.

Scorpion venoms are complex mixtures of neurotoxins, enzymes, and other bioactive molecules that are produced by the venom glands of scorpions. These venoms are primarily used for prey immobilization and defense. The neurotoxins found in scorpion venoms can cause a variety of symptoms in humans, including pain, swelling, numbness, and in severe cases, respiratory failure and death.

Scorpion venoms are being studied for their potential medical applications, such as in the development of new pain medications and insecticides. Additionally, some components of scorpion venom have been found to have antimicrobial properties and may be useful in the development of new antibiotics.

Arthropod venoms are toxic secretions produced by the venom glands of various arthropods, such as spiders, scorpions, insects, and marine invertebrates. These venoms typically contain a complex mixture of bioactive molecules, including peptides, proteins, enzymes, and small molecules, which can cause a range of symptoms and effects in humans and other animals.

The specific composition of arthropod venoms varies widely depending on the species and can be tailored to serve various functions, such as prey immobilization, defense, or predation. Some arthropod venoms contain neurotoxins that can disrupt nerve function and cause paralysis, while others may contain cytotoxins that damage tissues or hemotoxins that affect the blood and cardiovascular system.

Arthropod venoms have been studied for their potential therapeutic applications, as some of their bioactive components have shown promise in treating various medical conditions, including pain, inflammation, and neurological disorders. However, it is important to note that arthropod venoms can also cause severe allergic reactions and other adverse effects in susceptible individuals, making it essential to exercise caution when handling or coming into contact with venomous arthropods.

Fish oils are a type of fat or lipid derived from the tissues of oily fish. They are a rich source of omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These fatty acids have been associated with various health benefits such as reducing inflammation, decreasing the risk of heart disease, improving brain function, and promoting eye health. Fish oils can be consumed through diet or taken as a dietary supplement in the form of capsules or liquid. It is important to note that while fish oils have potential health benefits, they should not replace a balanced diet and medical advice should be sought before starting any supplementation.

"Bothrops" is a genus of venomous snakes commonly known as lancehead vipers, found primarily in Central and South America. The name "Bothrops" comes from the Greek words "bothros," meaning pit, and "ops," meaning face, referring to the deep pits on the sides of their heads that help them detect heat and locate prey. These snakes are known for their aggressive behavior and potent venom, which can cause severe pain, swelling, tissue damage, and potentially life-threatening systemic effects if left untreated.

The genus "Bothrops" includes over 30 species of pit vipers, many of which are considered medically important due to their ability to inflict serious envenomations in humans. Some notable examples include Bothrops asper (the terciopelo or fer-de-lance), Bothrops atrox (the common lancehead), and Bothrops jararaca (the jararaca).

If you encounter a snake of this genus, it is essential to seek medical attention immediately if bitten, as the venom can cause significant harm if not treated promptly.

Antivenins, also known as antivenoms, are medications created specifically to counteract venomous bites or stings from various creatures such as snakes, spiders, scorpions, and marine animals. They contain antibodies that bind to and neutralize the toxic proteins present in venom. Antivenins are usually made by immunizing large animals (like horses) with small amounts of venom over time, which prompts the animal's immune system to produce antibodies against the venom. The antibody-rich serum is then collected from the immunized animal and purified for use as an antivenin.

When administered to a victim who has been envenomated, antivenins work by binding to the venom molecules, preventing them from causing further damage to the body's tissues and organs. This helps minimize the severity of symptoms and can save lives in life-threatening situations. It is essential to seek immediate medical attention if bitten or stung by a venomous creature, as antivenins should be administered as soon as possible for optimal effectiveness.

Ant venoms are toxic secretions produced by various species of ants as a defense mechanism against predators and to incapacitate their prey. The composition of ant venoms varies among different species, but they typically contain a mixture of alkaloids, peptides, and proteins that can cause a range of symptoms in humans, from mild irritation and pain to severe allergic reactions.

The venom of some ant species, such as the fire ants (Solenopsis spp.), contains alkaloids that can cause painful pustules and itching, while the venom of other species, like the bulldog ants (Myrmecia spp.), contains proteins that can induce severe allergic reactions and even anaphylactic shock in sensitive individuals.

Understanding the composition and effects of ant venoms is important for developing effective treatments for ant stings and for studying their potential therapeutic applications, such as using ant venom components in pain management or as leads for new drug development.

Elapidae is a family of venomous snakes, also known as elapids. This family includes many well-known species such as cobras, mambas, death adders, and sea snakes. Elapids are characterized by their fixed fangs, which are located at the front of the upper jaw and deliver venom through a hollow canal. The venom of these snakes is typically neurotoxic, causing paralysis and respiratory failure in prey or attackers.

Elapids are found throughout the world, with the greatest diversity occurring in tropical regions. They vary widely in size, from small species like the death adders that measure only a few inches long, to large species like the king cobra, which can reach lengths of up to 18 feet (5.5 meters).

Elapids are generally shy and avoid confrontations with humans whenever possible. However, they will defend themselves aggressively if threatened or cornered. Bites from elapid snakes can be medically significant and may require antivenom treatment.

Mollusk venoms are toxic substances produced by certain species of mollusks, a group of marine animals that includes snails, slugs, clams, octopuses, and squids. These venoms are primarily used for defense against predators or for hunting prey. They can contain a variety of bioactive molecules, such as proteins, peptides, and neurotoxins, which can cause a range of effects on the victim's body, from mild irritation to paralysis and death.

One well-known example of a mollusk venom is that of the cone snail, which uses its venom to capture prey. The venom of some cone snails contains compounds called conotoxins, which are highly selective for specific ion channels in the nervous system and can cause paralysis or death in their victims. These conotoxins have been studied for their potential therapeutic applications, such as pain relief and treatment for neurological disorders.

It's important to note that while some mollusk venoms can be dangerous or even deadly to humans, most species of mollusks are not harmful to people. However, it's always a good idea to exercise caution when handling any marine animals, as even non-venomous species can cause injury with their sharp shells or other structures.

Medical definitions of "fish products" generally refer to any food or supplement that is derived from fish or aquatic animals. This can include:

1. Fresh, frozen, or canned fish such as salmon, tuna, cod, and sardines.
2. Fish oils, which are often used as dietary supplements for their omega-3 fatty acid content.
3. Processed fish products like surimi (imitation crab meat), fish sticks, and fish sauce.

It's important to note that the nutritional content and potential health benefits or risks of fish products can vary widely depending on the specific type of fish, how it was caught or farmed, and how it was processed and prepared.

I'm sorry for any confusion, but "snakes" is not a medical term. It refers to a group of legless reptiles that can be found on every continent except Antarctica. If you have any questions about snakes in a different context, please provide more information and I'll do my best to help!

"Fish proteins" are not a recognized medical term or concept. However, fish is a source of protein that is often consumed in the human diet and has been studied in various medical and nutritional contexts. According to the USDA FoodData Central database, a 100-gram serving of cooked Atlantic salmon contains approximately 25 grams of protein.

Proteins from fish, like other animal proteins, are complete proteins, meaning they contain all nine essential amino acids that cannot be synthesized by the human body and must be obtained through the diet. Fish proteins have been studied for their potential health benefits, including their role in muscle growth and repair, immune function, and cardiovascular health.

It's worth noting that some people may have allergies to fish or seafood, which can cause a range of symptoms from mild skin irritation to severe anaphylaxis. If you suspect you have a fish allergy, it's important to consult with a healthcare professional for proper diagnosis and management.

I believe there may be some confusion in your question as "scorpions" are not a medical term, but instead refer to a type of arachnid. If you're asking about a medical condition that might involve scorpions, then perhaps you're referring to "scorpion stings."

Scorpion stings occur when a scorpion uses its venomous stinger to inject venom into another animal or human. The effects of a scorpion sting can vary greatly depending on the species of scorpion and the amount of venom injected, but generally, they can cause localized pain, swelling, and redness at the site of the sting. In more severe cases, symptoms such as numbness, difficulty breathing, muscle twitching, or convulsions may occur. Some species of scorpions have venom that can be life-threatening to humans, especially in children, the elderly, and those with compromised immune systems.

If you are looking for information on a specific medical condition or term, please provide more details so I can give you a more accurate answer.

'Agkistrodon' is a genus of venomous snakes commonly known as pit vipers, found predominantly in North America and parts of Asia. This genus includes several species, among them the copperhead (A. contortrix), cottonmouth or water moccasin (A. piscivorus), and the cantil (A. bilineatus). These snakes are characterized by their triangular heads, heat-sensing pits between the eyes and nostrils, and elliptical pupils. They deliver venom through hollow fangs and can cause significant harm to humans if they bite.

It is important to note that 'Agkistrodon' species are often misidentified due to their similarities with other pit vipers. Accurate identification of a snakebite victim is crucial for proper medical treatment, so seeking professional help from herpetologists or medical professionals is highly recommended in such situations.

Scientists have discovered a chemically unique venom in small tropical fish known as fang blennies. ... But fang blenny venom is totally different. They are only one of two fish species that inject venom via biting, like a snake ... "Its venom is chemically unique. The fish injects other fish with opioid peptides that act like heroin or morphine, inhibiting ... This Tiny Fish Uses Giant Fangs to Inject Heroin-Like Venom Into Would-Be Predators. Nature31 March 2017. By Signe Dean ...
Ideal for tuna, trevally and other saltwater fishing. See deal. ... Wilson Venom V-Swim Lure for sale in 120-150mm sizes. ... Buying the Wilson Venom V-Swim Lure. The Wilson Venom V-Swim Lure is available for purchase here at the fishing tackle shop. We ... The Wilson Venom V-Swim Lure is an ideal fishing lure for a range of pelagic and demersal fish species such as tuna, mackerel, ... Where can the Wilson Venom V-Swim Lure be used?. The Wilson Venom V-Swim Lure is perfect for anglers who fish offshore. With ...
Worming is a tried and true tactic for catching a variety of fish. Weve got you covered with our extensive selection of all ... Worms Fishing Lures. Worming is a tried and true tactic for catching a variety of fish. Weve got you covered with our ...
Salt injected along with venoms grab makes this lizard one of the best available. ... Venoms 6 Salt Swamp Lizards features life like scale patterns and has a tail action that drives Bass crazy. ... Venoms 6" Salt Swamp Lizards features life like scale patterns and has a tail action that drives Bass crazy. Salt injected ... along with venoms grab makes this lizard one of the best available. ...
Fishing World is Australias premier and longest established fishing magazine and has become known as the "sport fishing bible ... Of course, the Venom Ocean Gladiator series is built on the high modulus Venom blank, a blank that provides incredible ... THE team at Venom Rods has designed a series of rods to take on the biggest predators in the ocean - the Ocean Gladiator series ... weight of the outfit and can concentrate on using the strength in the Venom blank to dictate terms to the most stubborn of fish ...
Venom - The formidable Venom range of fishing rods, created and distributed by Wilson Fishing ... Home » Venom Venom Rods were developed to be the best of the best, giving anglers back the advantage over any fish! From trout ... The ultimate in lure casting rods in the Venom range, the Crank Bait series comes in spin and baitcast to suit all fishing ... Award winning and built for serious anglers and serious fish, the Venom game series leaves no stone unturned in the search for ...
... or grab and go.ULTIMATE FISHABILITY.The RVR is absolutely LOADED with features that aim to give you a distinct fishing ... Kayak Fishing at its roots, is about access.With the NEW RVR119, You can get to those hard to reach waters. We designed the RVR ...
These are most commonly used to replace dull or worn out stinger hooks on hair jigs that have caught many fish. ... Venom Stinger Hooks are available in a 5 pack. These work great as replacement stinger hooks on all types of jigs. ... Venom Stinger Hooks are available in a 5 pack. These work great as replacement stinger hooks on all types of jigs. These are ... Its Fishing Season and our team is made up of all anglers and hunters, so we are operating on our Fall Hours! ...
Marvel Spider-Man Venom (76187). A detailed replica to build and displayFans of Venom and the Spider-Man movies will relish a ... Fans of Venom and the Spider-Man movies will relish a rewarding building experience as they recreate the authentic features of ... This collectible Venom display model provides stress-relieving escapism as the fascinating recreation emerges from the 565 LEGO ... LEGO® 76187 Venom is backordered - well let you know as soon as its back in stock! ...
Decrease quantity for Jelly Fish Venom Essence Cream, 25gm Increase quantity for Jelly Fish Venom Essence Cream, 25gm ... Jelly Fish Venom Essence Cream, 25gm. Jelly Fish Venom Essence Cream, 25gm ...
Even though the Venom from the two movies was essentially the... ... Watching the trailer for Venom hit me with a certain déjà vu. ... crawling and plastering itself across the various surfaces presented in this major motion picture reminded me of the Venom from ... Lets move onto what made Venom such a good movie. The first and foremost thing was all the scenes where Eddie turns into Venom ... intending to force Venom into an unconscious state. Venom, a symbiote that consists of no pores, is unaffected by the gas. ...
The Venom Death Grip Extra Wide Gap Hooks are great for texas rigging with all sorts of soft plastics. These work great with ... The Venom Death Grip Extra Wide Gap Hooks are great for texas rigging with all sorts of soft plastics. These work great with ... Its Fishing Season and our team is made up of all anglers and hunters, so we are operating on our Fall Hours! ... ":"Venom Death Grip EWG Hook - 6PK - 1\/0","public_title":"1\/0","options":["1\/0"],"price":349,"weight":82,"compare_at_price": ...
Introducing our extraordinary competition-grade Betta fish in a mesmerizing light gold color. With their perfect shape and ... Can a Betta fish live with other fish? When it comes to keeping Betta fish with other community fish, there are no guarantees ... Can a Betta fish live in a vase? Many people believe that Betta fish do not need a lot of space, but this is actually a ... What do Betta fish eat and how often should I feed it? Its essential to maintain a balanced diet for your Betta fish, as they ...
"Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms". Journal of Heredity. ... Venom is found in some 200 cartilaginous fishes, including stingrays, sharks, and chimaeras; the catfishes (about 1000 venomous ... Venoms are often complex mixtures of toxins of differing types. Toxins from venom are used to treat a wide range of medical ... Snake venom may have originated with duplication of genes that had been expressed in the salivary glands of ancestors. Venom is ...
Cnidarians appeared to have more diverse venoms than amphibians and fish; about the same diversity as insects, gastropods, and ... The appearance and diversification of venoms seems to be repeatable but simultaneously limited in scope. It may be that venoms ... venom, and compares the diversity and evolution of cnidarian venom to other venomous animals (e.g., snakes and arachnids). The ... In summary, if venoms evolved after the Fall, then they appear to have done so many times independently. However, the types of ...
venom is a New Member at Pet Forums , Dogs, Cats, Fish & Aquarium, Horses, Birds and Mice - Auspet ... Home Members , venom , * Daphnia - Live Aquarium Foods Grow your baby fish like a PRO. Live Daphnia are great live feed for ... Australian Blackworms - Live Fish Food Grow your baby fish like a PRO. Live Australian Blackworms, Live Vinegar Eels. Visit us ... Grow your baby fish like a PRO Microworms are a great live feed for your Fish or Shrimp Fry, easy to culture and considerably ...
XZOGA BLACK MAMBA Venom Spinning Rod Saltwater Freshwater Fishing Japan NEW 2022 When it comes to new XZoga rods, which belong ... One could say that the Venom version of the XZoga Black Mamba series was made to fit perfectly in the fishing styles of the ... The new Black Mamba Venom rods are aggressive in nature, which can cover more than one fishing style, possess great strength in ... sockettrollingjapandrivefabricstainlesssteelblackpackwhitespinningcastingfishingstonesaltwatertraygameheavy-dutypatchboatmetal ...
Venom Hot Rods 4 Venom Hot Rods 4". Venom Lures: Hot Rods. Venoms hot rods are not only unique but they might become your ... Venom Hot Rods 4". Venom Lures: Hot Rods. Venoms hot rods are not only unique but they might become your favorite bait. the ... Fishing Reels * Baitcaster Reels * 13 Fishing Baitcasters * 13 Fishing Concept Baitcaster Reels ... Fishing Reels * Baitcaster Reels * 13 Fishing Baitcasters * 13 Fishing Concept Baitcaster Reels ...
Bonafide RS117 Sit-On-Top Fishing Kayak - Venom. Call for Price Quick view. ... Bonafide SS107 Sit-On-Top Fishing Kayak - Venom. Call for Price Quick view. ... Bonafide SS127 Sit-On-Top Fishing Kayak - Venom. Call for Price Quick view. ... Bonafide RS117 Sit-On-Top Fishing Kayak - Top Gun Grey. Call for Price Quick view. ...
Poisonous fishes--Venom--Toxicology. Pontoon bridges--Cables. Porcupine River (Yukon and Alaska) ...
EXP FISHING (M) SDN BHD is a fishing equipment & accessories supplier that exist in this fishing industry for many years. As a ... reputable and reliable fishing specialist, we are committed to providing quality fishing lures and reasonable pricing to all of ... BUY 1 FREE 1** EXP Venom Soft Rubber For Snakehead Fishing Lure Umpan Casting Haruan Toman Katak Tiruan Umpan Palsu Penang, KL ... BUY 1 FREE 1** EXP Venom Soft Rubber For Snakehead Fishing Lure Umpan casting haruan toman katak tiruan umpan palsu ...
This tiny coral reef fish disables its predators by getting them high on heroin-like venom 30 Mar, 2017. in Science ... Venom from sea snails could hold key to future painkillers 30 Mar, 2022. in Science ...
These fishes are very good at hiding in their surroundings. The fins of these prickly ... These fishes are very good at hiding in their surroundings. The fins of these prickly ... or scorpion fish. The family also includes zebrafish and lionfish. ... or scorpion fish. The family also includes zebrafish and lionfish. ...
See also: Venom in fish evolved 18 times. and. "Spectacular" convergence between ancient mammal and dinosaur ...
Their venom is more adapted to stun fish, their primary source of prey. (Learn more about the animals.) ... Although sea snake venom is highly toxic, the animals have small mouths and they rarely bite people. If they do, they dont ... usually inject much venom in such "defensive bites," says Lillywhite. ...
Hot-water immersion may limit the effects of venom from spiny fish. Many injured people require medical treatment for pain ... Animals use venom for defense or to subdue prey, and they deliver these toxic substances by biting or stinging. Venom often ... Fish. Certain types of fish (e.g., lionfish, stingrays, stonefish) possess sharp venomous spines that can injure humans. ... Hemotoxic venom interferes with blood clotting, which can cause abnormal bleeding. Myotoxic venom effects cause extensive ...
Big congrats to Venom Pro Staff Members Patrick Henry and Allex Conner for taking 3rd place in the Lake Erie Bass Challenge ... Venom Lures Fishing News ... Venom Lures Fishing Lure Products. *SOFT PLASTICS. *TERMINAL ... Shoutout and congratulations to Venom Pro Staff Member. Shoutout and congratulations to Venom Pro Staff Member Caleb Moore and ... Big congrats to Venom Pro Staff Members Patrick Henry and Allex Conner for taking 3rd place in the Lake Erie Bass Challenge ...
Venom INFERNO Tungsten Spoons glow like nothing else available on the market. The patent pending design features a Tungsten ... Venom Outdoors , Venom Floats. $3.99. Sizes B SIZE: For small to medium sized jigs. Recommended for Pan Fish and small Walleye ... venom-outdoors-inferno-spoons-venom-outdoors-2_800x.jpg?v=1550001527 alt=Venom Outdoors , Inferno Spoons - - Venom Outdoors ... venom-outdoors-inferno-spoons-venom-outdoors-2_800x.jpg?v=1550001527 alt=Venom Outdoors , Inferno Spoons - - Venom Outdoors ...
Venomous fish have evolved many ways to inflict pain Fish venom shows great diversity and is being studied to treat pain, ... Fishes worldwide harbor 283 times the number of Anisakis worms as fishes in the 1970s. Whether thats a sign of environmental ... Fish beware: Bottlenosed dolphins may be able to pick up your heartbeat By Saima S. Iqbal. November 30, 2023. ... Parasitic worm populations are skyrocketing in some fish species used in sushi ...
The changing venom of a stingray. Stingray venom changes as the fish mature ... Among venoms, not just from snakes. Researchers investigate the action and possible uses of toxins ... Caecilians are venomous animals, capable of injecting venom into their prey, say researchers from the Butantan Institute ...

No FAQ available that match "fish venoms"

No images available that match "fish venoms"