A condition characterized by the presence of ENDOTOXINS in the blood. On lysis, the outer cell wall of gram-negative bacteria enters the systemic circulation and initiates a pathophysiologic cascade of pro-inflammatory mediators.
A condition produced by the presence of toxins or other harmful substances in the BLOOD.
Toxins closely associated with the living cytoplasm or cell wall of certain microorganisms, which do not readily diffuse into the culture medium, but are released upon lysis of the cells.
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
Sepsis associated with HYPOTENSION or hypoperfusion despite adequate fluid resuscitation. Perfusion abnormalities may include, but are not limited to LACTIC ACIDOSIS; OLIGURIA; or acute alteration in mental status.
Systemic inflammatory response syndrome with a proven or suspected infectious etiology. When sepsis is associated with organ dysfunction distant from the site of infection, it is called severe sepsis. When sepsis is accompanied by HYPOTENSION despite adequate fluid infusion, it is called SEPTIC SHOCK.
Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS.
Sensitive method for detection of bacterial endotoxins and endotoxin-like substances that depends on the in vitro gelation of Limulus amebocyte lysate (LAL), prepared from the circulating blood (amebocytes) of the horseshoe crab, by the endotoxin or related compound. Used for detection of endotoxin in body fluids and parenteral pharmaceuticals.
A CALCIUM-independent subtype of nitric oxide synthase that may play a role in immune function. It is an inducible enzyme whose expression is transcriptionally regulated by a variety of CYTOKINES.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
A 24-kDa HMGB protein that binds to and distorts the minor grove of DNA.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Specialized phagocytic cells of the MONONUCLEAR PHAGOCYTE SYSTEM found on the luminal surface of the hepatic sinusoids. They filter bacteria and small foreign proteins out of the blood, and dispose of worn out red blood cells.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
The passage of viable bacteria from the GASTROINTESTINAL TRACT to extra-intestinal sites, such as the mesenteric lymph node complex, liver, spleen, kidney, and blood. Factors that promote bacterial translocation include overgrowth with gram-negative enteric bacilli, impaired host immune defenses, and injury to the INTESTINAL MUCOSA resulting in increased intestinal permeability. Bacterial translocation from the lung to the circulation is also possible and sometimes accompanies MECHANICAL VENTILATION.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS.
An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Glycolipid-anchored membrane glycoproteins expressed on cells of the myelomonocyte lineage including monocytes, macrophages, and some granulocytes. They function as receptors for the complex of lipopolysaccharide (LPS) and LPS-binding protein.
The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot.

Apolipoprotein E knock-out mice are highly susceptible to endotoxemia and Klebsiella pneumoniae infection. (1/965)

Lipoproteins are able to neutralize bacterial lipopolysaccharide (LPS) and thereby inhibit the proinflammatory cytokine response. In a previous study, we demonstrated that hypercholesterolemic low density lipoprotein receptor knock-out (LDLr-/-) mice are protected against lethal endotoxemia and gram-negative infection. In the present study we investigated the susceptibility of apolipoprotein E knock-out mice (apoE-/-) to LPS and to Klebsiella pneumoniae. These mice have increased plasma lipoprotein concentrations in the very low density lipoprotein (VLDL)-sized fraction. Despite 8 -fold higher plasma cholesterol levels compared to controls, and in contrast to LDLr-/- mice, apoE-/- mice were significantly more susceptible to endotoxemia and to K. pneumoniae infection. Circulating TNFalpha concentrations after intravenously injected LPS were 4 - to 5-fold higher in apoE-/- mice, whereas IL-1alpha, IL-1beta, and IL-6 did not differ. This TNF response was not due to an increased cytokine production capacity of cells from apoE-/- mice, as ex vivo cytokine production in response to LPS did not differ between apoE-/- and control mice. The LPS-neutralizing capacity of apoE-/- plasma was significantly less than that of controls. Most likely, the absence of apoE itself in the knock-out mice explains the failure to neutralize LPS, despite the very high cholesterol concentrations.  (+info)

Mechanism of adipose tissue iNOS induction in endotoxemia. (2/965)

The aim of the present study was to investigate the mechanism of adipose tissue inducible nitric oxide synthase (iNOS) induction in endotoxemia. Systemic administration of the bacterial endotoxin lipopolysaccharide (LPS) to rats for +info)

Hypoxic contraction of small pulmonary arteries from normal and endotoxemic rats: fundamental role of NO. (3/965)

The present study was aimed at examining the role of nitric oxide (NO) in the hypoxic contraction of isolated small pulmonary arteries (SPA) in the rat. Animals were treated with either saline (sham experiments) or Escherichia coli lipolysaccharide [LPS, to obtain expression of the inducible NO synthase (iNOS) in the lung] and killed 4 h later. SPA (300- to 600-micrometer outer diameter) were mounted as rings in organ chambers for the recording of isometric tension, precontracted with PGF2alpha, and exposed to either severe (bath PO2 8 +/- 3 mmHg) or milder (21 +/- 3 mmHg) hypoxia. In SPA from sham-treated rats, contractions elicited by severe hypoxia were completely suppressed by either endothelium removal or preincubation with an NOS inhibitor [NG-nitro-L-arginine methyl ester (L-NAME), 10(-3) M]. In SPA from LPS-treated rats, contractions elicited by severe hypoxia occurred irrespective of the presence or absence of endothelium and were largely suppressed by L-NAME. The milder hypoxia elicited no increase in vascular tone. These results indicate an essential role of NO in the hypoxic contractions of precontracted rat SPA. The endothelium independence of HPV in arteries from LPS-treated animals appears related to the extraendothelial expression of iNOS. The severe degree of hypoxia required to elicit any contraction is consistent with a mechanism of reduced NO production caused by a limited availability of O2 as a substrate for NOS.  (+info)

Identification of copper/zinc superoxide dismutase as a novel nitric oxide-regulated gene in rat glomerular mesangial cells and kidneys of endotoxemic rats. (4/965)

To define the mechanism of nitric oxide (NO) action in the glomerulus, we attempted to identify genes that are regulated by NO in rat glomerular mesangial cells. We identified a Cu/Zn superoxide dismutase (SOD) that was strongly induced in these cells by treatment with S-nitroso-glutathione as a NO-donating agent. Bacterial lipopolysaccharide (LPS) acutely decreased Cu/Zn SOD mRNA levels. The LPS-mediated decrease in Cu/Zn SOD is reversed by endogenously produced NO, as LPS also induced a delayed strong iNOS expression in these cells in vitro, which is accompanied by increased Cu/Zn SOD expression. NO dependency of Cu/Zn SOD mRNA recovery could be demonstrated by inhibition of this process by L-NG-monomethylarginine, an inhibitor of NOS enzymatic activity. To demonstrate the in vivo relevance of our observations, we have chosen LPS-treated rats as a model for induction of a systemic inflammatory response. In these animals, we demonstrate a direct coupling of Cu/Zn SOD expression levels to the presence of NO, as Cu/Zn SOD mRNA levels declined during acute inflammation in the presence of a selective inhibitor of iNOS. We propose that the up-regulation of Cu/Zn SOD by endogenous NO may serve as an adaptive, protective mechanism to prevent the formation of toxic quantities of peroxynitrite in conditions associated with iNOS induction during endotoxic shock.  (+info)

Lipopolysaccharide induction of tissue factor expression in rabbits. (5/965)

Tissue factor (TF) is the major activator of the coagulation protease cascade and contributes to lethality in sepsis. Despite several studies analyzing TF expression in animal models of endotoxemia, there remains debate about the cell types that are induced to express TF in different tissues. In this study, we performed a detailed analysis of the induction of TF mRNA and protein expression in two rabbit models of endotoxemia to better understand the cell types that may contribute to local fibrin deposition and disseminated intravascular coagulation. Northern blot analysis demonstrated that lipopolysaccharide (LPS) increased TF expression in the brain, lung, and kidney. In situ hybridization showed that TF mRNA expression was increased in cells identified morphologically as epithelial cells in the lung and as astrocytes in the brain. In the kidney, in situ hybridization experiments and immunohistochemical analysis showed that TF mRNA and protein expression was increased in renal glomeruli and induced in tubular epithelium. Dual staining for TF and vWF failed to demonstrate TF expression in endothelial cells in LPS-treated animals. These results demonstrate that TF expression is induced in many different cell types in LPS-treated rabbits, which may contribute to local fibrin deposition and tissue injury during endotoxemia.  (+info)

Biphasic changes in left ventricular function during hyperdynamic endotoxemia. (6/965)

Cardiac contractility was studied in a clinically relevant conscious swine model simulating human hemodynamics during endotoxemia. The slope of the end-systolic pressure-volume relationship [end-systolic elastance (EES)] was used as a load-independent contractility index. Chronic instrumentation in 10 pigs included two pairs of endocardial ultrasonic crystals for measuring internal major and minor axial dimensions of the left ventricle, a micromanometer for left ventricular pressure measurement, and a thermodilution pulmonary artery catheter. After a 10-day recovery period, control measurements of cardiac hemodynamic function were obtained. The following week, Escherichia coli endotoxin (10 micrograms . kg-1. h-1) was administered intravenously for 24 h. EES increased 1 h after endotoxin infusion and decreased beyond 7 h. The later hemodynamic changes resembled human cardiovascular performance during endotoxemia more closely than the changes during the acute phase. EES decreased in the later phase. A similar biphasic response of EES has been reported during a tumor necrosis factor-alpha (TNF) challenge. Even though plasma TNF was highest at 1 h and declined thereafter in this study, no consistent relationship between TNF and EES was identified, and TNF levels did not correlate directly with the changes in EES.  (+info)

Neuropeptide Y restores appetite and alters concentrations of GH after central administration to endotoxic sheep. (7/965)

The objective of this study was to determine whether neuropeptide Y (NPY) and recombinant human interleukin-1 receptor antagonist (IL-1ra) would: first, increase food intake; secondly, decrease concentrations of GH; thirdly, reduce GHRH-induced release of GH; and fourthly, reduce changes to concentrations of IGF-I in plasma during experimental endotoxemia in sheep. Six treatments were given to six castrated male sheep in a 6x6 Latin square treatment order. Osmotic mini-pumps were implanted at 0 h and a jugular vein was cannulated. Each sheep was continuously infused with saline (0.9%) or lipopolysaccharide (LPS) (20 micrograms/kg per 24 h, s.c.) at 10 microliters/h for 72 h via the osmotic mini-pumps. Blood samples (3 ml) were collected at 15-min intervals from 24 to 33 h. At 26 h, one of three treatments (artificial cerebrospinal fluid, NPY or IL-1ra) was injected i.c.v. within 30 s (0.3 microgram/kg), then infused i.c.v. from 26 to 33 h (600 microliters/h) at 0.3 microgram/kg per h. GHRH was injected i.v. (0.075 microgram/kg) at 32 h after which blood samples were collected at 5, 10, 15, 30, 45 and 60 min. Feed intake was reduced up to 50% for 48 h in LPS-treated compared with non-LPS-treated sheep. NPY restored feed intake in LPS-treated sheep and induced hyperphagia in non-LPS-treated sheep from 24 to 48 h. In contrast, IL-1ra did not affect appetite. Injection of NPY increased concentrations of GH from 26 to 27 h, while IL-1ra had no effect. Infusion of NPY suppressed GHRH-induced release of GH. However, no treatment altered pulse secretion parameters of GH. Concentrations of IGF-I were 20% higher at 72 h in LPS-treated sheep given NPY than in sheep treated with LPS alone, and this may reflect increased appetite from 24 to 48 h. We concluded that reduced appetite during endotoxemia is due to down-regulation of an NPY-mediated mechanism. Furthermore, NPY stimulates release of GH in healthy sheep, does not reduce pulse secretion parameters of GH, but does suppress GHRH-induced release of GH in endotoxic sheep. Therefore, NPY may be an important neurotransmitter linking appetite with regulation of GH during endotoxemic and healthy states in sheep.  (+info)

Protease-activated receptor-2 involvement in hypotension in normal and endotoxemic rats in vivo. (8/965)

BACKGROUND: The protease-activated receptor-2 (PAR-2) is expressed by vascular endothelial cells and upregulated by lipopolysaccharide (LPS) in vitro. PAR-2 is activated by a tethered ligand created after proteolytic cleavage by trypsin or experimentally by a synthetic agonist peptide (PAR-2AP) corresponding to the new amino terminus of the tethered ligand. METHODS AND RESULTS: Intravenous administration of PAR-2AP (0.1, 0.3, and 1 mg/kg) to rats caused a dose-dependent hypotension. A scrambled peptide was without effect. A specific trypsin inhibitor, biotin-SGKR-chloromethylketone, inhibited trypsin-induced hypotension but not that stimulated by PAR-2AP. In animals treated with LPS 20 hours earlier, we found an increased sensitivity to trypsin and PAR-2AP in the hypotensive response. In particular, PAR-2AP caused hypotension at a low concentration of 30 ng/kg. Moreover, PAR-2 was immunolocalized to endothelial and smooth muscle cells in aorta and jugular vein in LPS-treated rats, and increased levels of PAR-2 mRNA were shown by reverse transcription-polymerase chain reaction analysis. CONCLUSIONS: Our findings suggest that PAR-2 is important in the regulation of blood pressure in vivo. A functional upregulation of PAR-2 by LPS was demonstrated by the activity of concentrations of PAR-2AP that were inactive in normal animals. We conclude that PAR-2 may play an important role in the hypotension associated with endotoxic shock and may represent a new therapeutic target.  (+info)

Endotoxemia is a medical condition characterized by the presence of endotoxins in the bloodstream. Endotoxins are toxic substances that are found in the cell walls of certain types of bacteria, particularly gram-negative bacteria. They are released into the circulation when the bacteria die or multiply, and can cause a variety of symptoms such as fever, inflammation, low blood pressure, and organ failure.

Endotoxemia is often seen in patients with severe bacterial infections, sepsis, or septic shock. It can also occur after certain medical procedures, such as surgery or dialysis, that may allow bacteria from the gut to enter the bloodstream. In some cases, endotoxemia may be a result of a condition called "leaky gut syndrome," in which the lining of the intestines becomes more permeable, allowing endotoxins and other harmful substances to pass into the bloodstream.

Endotoxemia can be diagnosed through various tests, including blood cultures, measurement of endotoxin levels in the blood, and assessment of inflammatory markers such as c-reactive protein (CRP) and procalcitonin (PCT). Treatment typically involves antibiotics to eliminate the underlying bacterial infection, as well as supportive care to manage symptoms and prevent complications.

Toxemia is an outdated and vague term that was used to describe the presence of toxic substances or toxins in the blood. It was often used in relation to certain medical conditions, most notably in pregnancy-related complications such as preeclampsia and eclampsia. In modern medicine, the term "toxemia" is rarely used due to its lack of specificity and the more precise terminology that has replaced it. It's crucial to note that this term should not be used in a medical context or setting.

Endotoxins are toxic substances that are associated with the cell walls of certain types of bacteria. They are released when the bacterial cells die or divide, and can cause a variety of harmful effects in humans and animals. Endotoxins are made up of lipopolysaccharides (LPS), which are complex molecules consisting of a lipid and a polysaccharide component.

Endotoxins are particularly associated with gram-negative bacteria, which have a distinctive cell wall structure that includes an outer membrane containing LPS. These toxins can cause fever, inflammation, and other symptoms when they enter the bloodstream or other tissues of the body. They are also known to play a role in the development of sepsis, a potentially life-threatening condition characterized by a severe immune response to infection.

Endotoxins are resistant to heat, acid, and many disinfectants, making them difficult to eliminate from contaminated environments. They can also be found in a variety of settings, including hospitals, industrial facilities, and agricultural operations, where they can pose a risk to human health.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

Septic shock is a serious condition that occurs as a complication of an infection that has spread throughout the body. It's characterized by a severe drop in blood pressure and abnormalities in cellular metabolism, which can lead to organ failure and death if not promptly treated.

In septic shock, the immune system overreacts to an infection, releasing an overwhelming amount of inflammatory chemicals into the bloodstream. This leads to widespread inflammation, blood vessel dilation, and leaky blood vessels, which can cause fluid to leak out of the blood vessels and into surrounding tissues. As a result, the heart may not be able to pump enough blood to vital organs, leading to organ failure.

Septic shock is often caused by bacterial infections, but it can also be caused by fungal or viral infections. It's most commonly seen in people with weakened immune systems, such as those who have recently undergone surgery, have chronic medical conditions, or are taking medications that suppress the immune system.

Prompt diagnosis and treatment of septic shock is critical to prevent long-term complications and improve outcomes. Treatment typically involves aggressive antibiotic therapy, intravenous fluids, vasopressors to maintain blood pressure, and supportive care in an intensive care unit (ICU).

Sepsis is a life-threatening condition that arises when the body's response to an infection injures its own tissues and organs. It is characterized by a whole-body inflammatory state (systemic inflammation) that can lead to blood clotting issues, tissue damage, and multiple organ failure.

Sepsis happens when an infection you already have triggers a chain reaction throughout your body. Infections that lead to sepsis most often start in the lungs, urinary tract, skin, or gastrointestinal tract.

Sepsis is a medical emergency. If you suspect sepsis, seek immediate medical attention. Early recognition and treatment of sepsis are crucial to improve outcomes. Treatment usually involves antibiotics, intravenous fluids, and may require oxygen, medication to raise blood pressure, and corticosteroids. In severe cases, surgery may be required to clear the infection.

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine, a type of small signaling protein involved in immune response and inflammation. It is primarily produced by activated macrophages, although other cell types such as T-cells, natural killer cells, and mast cells can also produce it.

TNF-α plays a crucial role in the body's defense against infection and tissue injury by mediating inflammatory responses, activating immune cells, and inducing apoptosis (programmed cell death) in certain types of cells. It does this by binding to its receptors, TNFR1 and TNFR2, which are found on the surface of many cell types.

In addition to its role in the immune response, TNF-α has been implicated in the pathogenesis of several diseases, including autoimmune disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, as well as cancer, where it can promote tumor growth and metastasis.

Therapeutic agents that target TNF-α, such as infliximab, adalimumab, and etanercept, have been developed to treat these conditions. However, these drugs can also increase the risk of infections and other side effects, so their use must be carefully monitored.

The Limulus test, also known as the Limulus amebocyte lysate (LAL) test, is a medical diagnostic assay used to detect the presence of bacterial endotoxins in various biological and medical samples. The test utilizes the blood cells (amebocytes) from the horseshoe crab (Limulus polyphemus) that can coagulate in response to endotoxins, which are found in the outer membrane of gram-negative bacteria.

The LAL test is widely used in the pharmaceutical industry to ensure that medical products, such as injectable drugs and implantable devices, are free from harmful levels of endotoxins. It can also be used in clinical settings to detect bacterial contamination in biological samples like blood, urine, or cerebrospinal fluid.

The test involves mixing the sample with LAL reagent and monitoring for the formation of a gel-like clot or changes in turbidity, which indicate the presence of endotoxins. The amount of endotoxin present can be quantified by comparing the reaction to a standard curve prepared using known concentrations of endotoxin.

The Limulus test is highly sensitive and specific for endotoxins, making it an essential tool in ensuring patient safety and preventing bacterial infections associated with medical procedures and treatments.

Nitric Oxide Synthase Type II (NOS2), also known as Inducible Nitric Oxide Synthase (iNOS), is an enzyme that catalyzes the production of nitric oxide (NO) from L-arginine. Unlike other isoforms of NOS, NOS2 is not constitutively expressed and its expression can be induced by various stimuli such as cytokines, lipopolysaccharides, and bacterial products. Once induced, NOS2 produces large amounts of NO, which plays a crucial role in the immune response against invading pathogens. However, excessive or prolonged production of NO by NOS2 has been implicated in various pathological conditions such as inflammation, septic shock, and neurodegenerative disorders.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

High Mobility Group Box 1 (HMGB1) protein is a non-histone chromosomal protein that is widely expressed in various cell types, including immune cells and nucleated cells. It plays a crucial role in the maintenance of nucleosome structure and stability, regulation of gene transcription, and DNA replication and repair. HMGB1 can be actively secreted by activated immune cells or passively released from necrotic or damaged cells. Once outside the cell, it functions as a damage-associated molecular pattern (DAMP) molecule that binds to various receptors, such as Toll-like receptors and the receptor for advanced glycation end products (RAGE), on immune cells, leading to the activation of inflammatory responses and the induction of innate and adaptive immunity. HMGB1 has been implicated in various physiological and pathological processes, including inflammation, infection, autoimmunity, cancer, and neurological disorders.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Nitric oxide (NO) is a molecule made up of one nitrogen atom and one oxygen atom. In the body, it is a crucial signaling molecule involved in various physiological processes such as vasodilation, immune response, neurotransmission, and inhibition of platelet aggregation. It is produced naturally by the enzyme nitric oxide synthase (NOS) from the amino acid L-arginine. Inhaled nitric oxide is used medically to treat pulmonary hypertension in newborns and adults, as it helps to relax and widen blood vessels, improving oxygenation and blood flow.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Kupffer cells are specialized macrophages that reside in the liver, particularly in the sinusoids of the liver's blood circulation system. They play a crucial role in the immune system by engulfing and destroying bacteria, microorganisms, and other particles that enter the liver via the portal vein. Kupffer cells also contribute to the clearance of damaged red blood cells, iron metabolism, and the regulation of inflammation in the liver. They are named after the German pathologist Karl Wilhelm von Kupffer who first described them in 1876.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Bacterial translocation is a medical condition that refers to the migration and establishment of bacteria from the gastrointestinal tract to normally sterile sites inside the body, such as the mesenteric lymph nodes, bloodstream, or other organs. This phenomenon is most commonly associated with impaired intestinal barrier function, which can occur in various clinical settings, including severe trauma, burns, sepsis, major surgery, and certain gastrointestinal diseases like inflammatory bowel disease (IBD) and liver cirrhosis.

The translocation of bacteria from the gut to other sites can lead to systemic inflammation, sepsis, and multiple organ dysfunction syndrome (MODS), which can be life-threatening in severe cases. The underlying mechanisms of bacterial translocation are complex and involve several factors, such as changes in gut microbiota, increased intestinal permeability, impaired immune function, and altered intestinal motility.

Preventing bacterial translocation is an important goal in the management of patients at risk for this condition, and strategies may include optimizing nutritional support, maintaining adequate fluid and electrolyte balance, using probiotics or antibiotics to modulate gut microbiota, and promoting intestinal barrier function through various pharmacological interventions.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Interleukin-6 (IL-6) is a cytokine, a type of protein that plays a crucial role in communication between cells, especially in the immune system. It is produced by various cells including T-cells, B-cells, fibroblasts, and endothelial cells in response to infection, injury, or inflammation.

IL-6 has diverse effects on different cell types. In the immune system, it stimulates the growth and differentiation of B-cells into plasma cells that produce antibodies. It also promotes the activation and survival of T-cells. Moreover, IL-6 plays a role in fever induction by acting on the hypothalamus to raise body temperature during an immune response.

In addition to its functions in the immune system, IL-6 has been implicated in various physiological processes such as hematopoiesis (the formation of blood cells), bone metabolism, and neural development. However, abnormal levels of IL-6 have also been associated with several diseases, including autoimmune disorders, chronic inflammation, and cancer.

Nitric Oxide Synthase (NOS) is a group of enzymes that catalyze the production of nitric oxide (NO) from L-arginine. There are three distinct isoforms of NOS, each with different expression patterns and functions:

1. Neuronal Nitric Oxide Synthase (nNOS or NOS1): This isoform is primarily expressed in the nervous system and plays a role in neurotransmission, synaptic plasticity, and learning and memory processes.
2. Inducible Nitric Oxide Synthase (iNOS or NOS2): This isoform is induced by various stimuli such as cytokines, lipopolysaccharides, and hypoxia in a variety of cells including immune cells, endothelial cells, and smooth muscle cells. iNOS produces large amounts of NO, which functions as a potent effector molecule in the immune response, particularly in the defense against microbial pathogens.
3. Endothelial Nitric Oxide Synthase (eNOS or NOS3): This isoform is constitutively expressed in endothelial cells and produces low levels of NO that play a crucial role in maintaining vascular homeostasis by regulating vasodilation, inhibiting platelet aggregation, and preventing smooth muscle cell proliferation.

Overall, NOS plays an essential role in various physiological processes, including neurotransmission, immune response, cardiovascular function, and respiratory regulation. Dysregulation of NOS activity has been implicated in several pathological conditions such as hypertension, atherosclerosis, neurodegenerative diseases, and inflammatory disorders.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

CD14 is a type of protein found on the surface of certain cells in the human body, including monocytes, macrophages, and some types of dendritic cells. These cells are part of the immune system and play a crucial role in detecting and responding to infections and other threats.

CD14 is not an antigen itself, but it can bind to certain types of antigens, such as lipopolysaccharides (LPS) found on the surface of gram-negative bacteria. When CD14 binds to an LPS molecule, it helps to activate the immune response and trigger the production of cytokines and other inflammatory mediators.

CD14 can also be found in soluble form in the bloodstream, where it can help to neutralize LPS and prevent it from causing damage to tissues and organs.

It's worth noting that while CD14 plays an important role in the immune response, it is not typically used as a target for vaccines or other immunotherapies. Instead, it is often studied as a marker of immune activation and inflammation in various diseases, including sepsis, atherosclerosis, and Alzheimer's disease.

Blood coagulation, also known as blood clotting, is a complex process that occurs in the body to prevent excessive bleeding when a blood vessel is damaged. This process involves several different proteins and chemical reactions that ultimately lead to the formation of a clot.

The coagulation cascade is initiated when blood comes into contact with tissue factor, which is exposed after damage to the blood vessel wall. This triggers a series of enzymatic reactions that activate clotting factors, leading to the formation of a fibrin clot. Fibrin is a protein that forms a mesh-like structure that traps platelets and red blood cells to form a stable clot.

Once the bleeding has stopped, the coagulation process is regulated and inhibited to prevent excessive clotting. The fibrinolytic system degrades the clot over time, allowing for the restoration of normal blood flow.

Abnormalities in the blood coagulation process can lead to bleeding disorders or thrombotic disorders such as deep vein thrombosis and pulmonary embolism.

Supportive care for severe cases is aimed at minimizing the effects of endotoxemia and preventing laminitis. This may include ... thought to be secondary to endotoxemia. Death may occur and is usually due to severe laminitis leading to founder. Horses may ... profuse watery non-fetid diarrhea endotoxemia, edema due to protein imbalances, abortion by pregnant mares, and acute laminitis ... polymyxin B or plasma for endotoxemia; supportive shoeing; low doses of intramuscular acepromazine; and pentoxifylline. While a ...
The presence of endotoxins in the blood is called endotoxemia. High level of endotoxemia can lead to septic shock, while lower ... Moreover, endotoxemia of intestinal origin, especially, at the host-pathogen interface, is considered to be an important factor ... Endotoxemia is associated with obesity, diet, cardiovascular diseases, and diabetes, while also host genetics might have an ... Gomes, Júnia Maria Geraldo; Costa, Jorge de Assis; Alfenas, Rita de Cássia Gonçalves (March 2017). "Metabolic endotoxemia and ...
"Proinflammatory effects of IL-10 during human endotoxemia". Journal of Immunology. 165 (5): 2783-9. doi:10.4049/jimmunol.165.5. ...
Van Lier, Dirk; Geven, Christopher; Leijte, Guus P.; Pickkers, Peter (April 2019). "Experimental human endotoxemia as a model ... "Comparison of different lots of endotoxin and evaluation on in vivo potency over time in the experimental human endotoxemia ...
Colic signs are referable to those seen with a strangulating lesion, such as moderate to severe abdominal pain, endotoxemia, ... Inflammation of the bowel may lead to increased permeability and subsequent endotoxemia. The underlying cause of inflammation ... Coolness of extremities can indicate decreased perfusion secondary to endotoxemia. Elevated respiratory rate can indicate pain ... endotoxemia, or significant dehydration. Pain levels are often used to determine the need for surgery (See Surgical ...
It is also used to control fevers and prevent endotoxemia. It is also used as a mild painkiller in smaller animals, generally ...
Other possible causes include peracute salmonellosis, clostridial enterocolitis, and endotoxemia. Clostridium difficile toxins ...
A clinical study showed that such preparations prevent endotoxemia in heart valve operations. Garlic can prevent colorectal ... "Effects of preoperatively selected gut decontamination on cardiopulmonary bypass-induced endotoxemia". Chinese Journal of ...
"Effects of hyperbaric oxygen treatment on horses with experimentally induced endotoxemia." American journal of veterinary ... and only minimal effects on horses with induced endotoxemia. HBOT is considered very safe, with few contraindications, although ... tetracyclines are sometimes given to prevent or treat laminitis associated with endotoxemia. High doses of tetracyclines, much ...
The decrease in butyrate production is associated with defects in intestinal permeability, which could lead to endotoxemia, ... It is found that endotoxemia has association with development of insulin resistance. In addition that butyrate production ...
"Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia". Proceedings of the National ... "Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis". Journal ...
Neutrophilic pericholangitis has a variety of causes including endotoxemia, Hodgkin's disease, among others. Cholangitis lenta ...
August 2008). "Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia". Proceedings ...
"Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia". Proc. Natl. Acad. Sci. U.S.A ...
October 1993). "MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia". Nature. 365 (6448): 756-9. Bibcode: ...
It is also used as an antipyretic and to reduce the effects of endotoxemia. Flunixin is labeled for no more than 5 days of ...
"Induction of heme oxygenase-1 during endotoxemia is downregulated by transforming growth factor-beta1". Circulation Research. ...
"Hemodynamic changes and systemic activation of coagulation and fibrinolysis during controlled endotoxemia in pigs". Thrombosis ...
"Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model". Journal of Immunology. 179 ( ...
In addition he investigated the influence of coagulatory inhibitors on operative trauma and endotoxemia. Most cited papers: ... Microhemodynamic and cellular mechanisms of activated protein C action during endotoxemia. Crit Care Med 32:1011-1017, IF:6,33 ... Antithrombin reduces inflammation and microcirculatory perfusion failure in closed soft-tissue injury and endotoxemia.Crit Care ...
February 2012). "Endotoxemia is associated with partial uncoupling of cardiac pacemaker from cholinergic neural control in rats ...
March 1996). "Low-density lipoprotein receptor-deficient mice are protected against lethal endotoxemia and severe gram-negative ...
August 2021). "Endothelial Nox2 Limits Systemic Inflammation and Hypotension in Endotoxemia by Controlling Expression of Toll- ...
... can prevent the release of adrenocorticotropic hormone in mice due to shock, alcohol and endotoxemia. Treatment ...
Katagiri H (2004). "Role of thromboxane derived from COX-1 and -2 in hepatic microcirculatory dysfunction during endotoxemia in ...
... was increased upon endotoxemia and ischemia reperfusion damage where CB2 receptors play a protective role. The wide ...
"Upregulation of renal inducible nitric oxide synthase during human endotoxemia and sepsis is associated with proximal tubule ...
... expression patterns of surface and soluble triggering receptor expressed on myeloid cells-1 in human endotoxemia". Journal of ...
Three conditions are thought to cause secondary laminitis: Sepsis/endotoxemia or generalized inflammation Endocrinopathy Trauma ... In cases of sepsis or endotoxemia, the underlying cause should be addressed concurrently with laminitis treatment. There are ... endotoxemia, retained placenta, carbohydrate overload (excessive grain or pasture), enterocolitis, pleuropneumonia, and contact ...
The team also discovered that a synthetic chondroitin sulfate E 19-mer attenuates multi-organ damage in endotoxemia mice. Jian ...

No FAQ available that match "endotoxemia"

No images available that match "endotoxemia"