Difficulty and/or pain in PHONATION or speaking.
Pathological processes that affect voice production, usually involving VOCAL CORDS and the LARYNGEAL MUCOSA. Voice disorders can be caused by organic (anatomical), or functional (emotional or psychological) factors leading to DYSPHONIA; APHONIA; and defects in VOICE QUALITY, loudness, and pitch.
That component of SPEECH which gives the primary distinction to a given speaker's VOICE when pitch and loudness are excluded. It involves both phonatory and resonatory characteristics. Some of the descriptions of voice quality are harshness, breathiness and nasality.
Congenital or acquired paralysis of one or both VOCAL CORDS. This condition is caused by defects in the CENTRAL NERVOUS SYSTEM, the VAGUS NERVE and branches of LARYNGEAL NERVES. Common symptoms are VOICE DISORDERS including HOARSENESS or APHONIA.
Branches of the vagus (tenth cranial) nerve. The recurrent laryngeal nerves originate more caudally than the superior laryngeal nerves and follow different paths on the right and left sides. They carry efferents to all muscles of the larynx except the cricothyroid and carry sensory and autonomic fibers to the laryngeal, pharyngeal, tracheal, and cardiac regions.
A pair of cone-shaped elastic mucous membrane projecting from the laryngeal wall and forming a narrow slit between them. Each contains a thickened free edge (vocal ligament) extending from the THYROID CARTILAGE to the ARYTENOID CARTILAGE, and a VOCAL MUSCLE that shortens or relaxes the vocal cord to control sound production.
Pathological processes involving any part of the LARYNX which coordinates many functions such as voice production, breathing, swallowing, and coughing.
Examination, therapy or surgery of the interior of the larynx performed with a specially designed endoscope.
The striated muscle groups which move the LARYNX as a whole or its parts, such as altering tension of the VOCAL CORDS, or size of the slit (RIMA GLOTTIDIS).
Complete loss of phonation due to organic disease of the larynx or to nonorganic (i.e., psychogenic) causes.
A variety of techniques used to help individuals utilize their voice for various purposes and with minimal use of muscle energy.
The sounds produced by humans by the passage of air through the LARYNX and over the VOCAL CORDS, and then modified by the resonance organs, the NASOPHARYNX, and the MOUTH.
A tubular organ of VOICE production. It is located in the anterior neck, superior to the TRACHEA and inferior to the tongue and HYOID BONE.
The 17-valerate derivative of BETAMETHASONE. It has substantial topical anti-inflammatory activity and relatively low systemic anti-inflammatory activity.
A disorder characterized by an intermittent abnormal VOCAL CORDS movement toward the midline during inspiration or expiration resulting in upper AIRWAY OBSTRUCTION.
The observation of successive phases of MOVEMENT by use of a flashing light.
Measurement of parameters of the speech product such as vocal tone, loudness, pitch, voice quality, articulation, resonance, phonation, phonetic structure and prosody.
The process of producing vocal sounds by means of VOCAL CORDS vibrating in an expiratory blast of air.
Drugs used for their actions on skeletal muscle. Included are agents that act directly on skeletal muscle, those that alter neuromuscular transmission (NEUROMUSCULAR BLOCKING AGENTS), and drugs that act centrally as skeletal muscle relaxants (MUSCLE RELAXANTS, CENTRAL). Drugs used in the treatment of movement disorders are ANTI-DYSKINESIA AGENTS.
An involuntary contraction of a muscle or group of muscles. Spasms may involve SKELETAL MUSCLE or SMOOTH MUSCLE.
Restoration, reconstruction, or improvement of a defective or damaged LARYNX.
An unnaturally deep or rough quality of voice.
Branches of the VAGUS NERVE. The superior laryngeal nerves originate near the nodose ganglion and separate into external branches, which supply motor fibers to the cricothyroid muscles, and internal branches, which carry sensory fibers. The RECURRENT LARYNGEAL NERVE originates more caudally and carries efferents to all muscles of the larynx except the cricothyroid. The laryngeal nerves and their various branches also carry sensory and autonomic fibers to the laryngeal, pharyngeal, tracheal, and cardiac regions.
Treatment for individuals with speech defects and disorders that involves counseling and use of various exercises and aids to help the development of new speech habits.
Traumatic injuries to the RECURRENT LARYNGEAL NERVE that may result in vocal cord dysfunction.
A serotype of botulinum toxins that has specificity for cleavage of SYNAPTOSOMAL-ASSOCIATED PROTEIN 25.
One of a pair of small pyramidal cartilages that articulate with the lamina of the CRICOID CARTILAGE. The corresponding VOCAL LIGAMENT and several muscles are attached to it.
The vocal apparatus of the larynx, situated in the middle section of the larynx. Glottis consists of the VOCAL FOLDS and an opening (rima glottidis) between the folds.
Difficulty in SWALLOWING which may result from neuromuscular disorder or mechanical obstruction. Dysphagia is classified into two distinct types: oropharyngeal dysphagia due to malfunction of the PHARYNX and UPPER ESOPHAGEAL SPHINCTER; and esophageal dysphagia due to malfunction of the ESOPHAGUS.
A syndrome characterized by orofacial DYSTONIA; including BLEPHAROSPASM; forceful jaw opening; lip retraction; platysma muscle spasm; and tongue protrusion. It primarily affects older adults, with an incidence peak in the seventh decade of life. (From Adams et al., Principles of Neurology, 6th ed, p108)
The acoustic aspects of speech in terms of frequency, intensity, and time.

Transcutaneous electrical nerve stimulation in dysphonic women. (1/82)

 (+info)

Describing pediatric dysphonia with nonlinear dynamic parameters. (2/82)

 (+info)

Prospective clinical and fiberoptic evaluation of the Supreme laryngeal mask airway. (3/82)

 (+info)

Treatment for spasmodic dysphonia: limitations of current approaches. (4/82)

 (+info)

Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3. (5/82)

 (+info)

Differentiating between adductor and abductor spasmodic dysphonia using airflow interruption. (6/82)

 (+info)

Vocal tract analysis in patients with vocal fold nodules, clefts and cysts. (7/82)

 (+info)

Correlation between voice and life quality and occupation. (8/82)

 (+info)

Dysphonia is a medical term that refers to difficulty or discomfort in producing sounds or speaking, often characterized by hoarseness, roughness, breathiness, strain, or weakness in the voice. It can be caused by various conditions such as vocal fold nodules, polyps, inflammation, neurological disorders, or injuries to the vocal cords. Dysphonia can affect people of all ages and may impact their ability to communicate effectively, causing social, professional, and emotional challenges. Treatment for dysphonia depends on the underlying cause and may include voice therapy, medication, surgery, or lifestyle modifications.

Voice disorders are conditions that affect the quality, pitch, or volume of a person's voice. These disorders can result from damage to or abnormalities in the vocal cords, which are the small bands of muscle located in the larynx (voice box) that vibrate to produce sound.

There are several types of voice disorders, including:

1. Vocal cord dysfunction: This occurs when the vocal cords do not open and close properly, resulting in a weak or breathy voice.
2. Vocal cord nodules: These are small growths that form on the vocal cords as a result of excessive use or misuse of the voice, such as from shouting or singing too loudly.
3. Vocal cord polyps: These are similar to nodules but are usually larger and can cause more significant changes in the voice.
4. Laryngitis: This is an inflammation of the vocal cords that can result from a viral infection, overuse, or exposure to irritants such as smoke.
5. Muscle tension dysphonia: This occurs when the muscles around the larynx become tense and constricted, leading to voice changes.
6. Paradoxical vocal fold movement: This is a condition in which the vocal cords close when they should be open, causing breathing difficulties and a weak or breathy voice.
7. Spasmodic dysphonia: This is a neurological disorder that causes involuntary spasms of the vocal cords, resulting in voice breaks and difficulty speaking.

Voice disorders can cause significant impairment in communication, social interactions, and quality of life. Treatment may include voice therapy, medication, or surgery, depending on the underlying cause of the disorder.

Voice quality, in the context of medicine and particularly in otolaryngology (ear, nose, and throat medicine), refers to the characteristic sound of an individual's voice that can be influenced by various factors. These factors include the vocal fold vibration, respiratory support, articulation, and any underlying medical conditions.

A change in voice quality might indicate a problem with the vocal folds or surrounding structures, neurological issues affecting the nerves that control vocal fold movement, or other medical conditions. Examples of terms used to describe voice quality include breathy, hoarse, rough, strained, or tense. A detailed analysis of voice quality is often part of a speech-language pathologist's assessment and can help in diagnosing and managing various voice disorders.

Vocal cord paralysis is a medical condition characterized by the inability of one or both vocal cords to move or function properly due to nerve damage or disruption. The vocal cords are two bands of muscle located in the larynx (voice box) that vibrate to produce sound during speech, singing, and breathing. When the nerves that control the vocal cord movements are damaged or not functioning correctly, the vocal cords may become paralyzed or weakened, leading to voice changes, breathing difficulties, and other symptoms.

The causes of vocal cord paralysis can vary, including neurological disorders, trauma, tumors, surgery, or infections. The diagnosis typically involves a physical examination, including a laryngoscopy, to assess the movement and function of the vocal cords. Treatment options may include voice therapy, surgical procedures, or other interventions to improve voice quality and breathing functions.

The Recurrent Laryngeal Nerve (RLN) is a branch of the vagus nerve (cranial nerve X), which is a mixed sensory, motor, and autonomic nerve. The RLN has important functions in providing motor innervation to the intrinsic muscles of the larynx, except for the cricothyroid muscle, which is supplied by the external branch of the superior laryngeal nerve.

The recurrent laryngeal nerve supplies all the muscles that are responsible for adduction (bringing together) of the vocal cords, including the vocalis muscle, lateral cricoarytenoid, thyroarytenoid, and interarytenoid muscles. These muscles play a crucial role in voice production, coughing, and swallowing.

The right recurrent laryngeal nerve has a longer course than the left one. It loops around the subclavian artery in the chest before ascending to the larynx, while the left RLN hooks around the arch of the aorta. This anatomical course makes them vulnerable to injury during various surgical procedures, such as thyroidectomy and neck dissection, leading to potential voice impairment or vocal cord paralysis.

Vocal cords, also known as vocal folds, are specialized bands of muscle, membrane, and connective tissue located within the larynx (voice box). They are essential for speech, singing, and other sounds produced by the human voice. The vocal cords vibrate when air from the lungs is passed through them, creating sound waves that vary in pitch and volume based on the tension, length, and mass of the vocal cords. These sound waves are then further modified by the resonance chambers of the throat, nose, and mouth to produce speech and other vocalizations.

Laryngeal diseases refer to conditions that affect the structure and function of the larynx, also known as the voice box. The larynx is a complex structure composed of cartilages, muscles, membranes, and mucous glands that play essential roles in breathing, swallowing, and vocalization.

Laryngeal diseases can be categorized into several types based on their causes and manifestations. Some common laryngeal diseases include:

1. Laryngitis: Inflammation of the larynx that can cause hoarseness, throat pain, coughing, and difficulty swallowing. Acute laryngitis is often caused by viral infections or irritants, while chronic laryngitis may result from prolonged exposure to smoke, chemicals, or acid reflux.
2. Vocal cord lesions: Abnormal growths on the vocal cords, such as polyps, nodules, or cysts, that can affect voice quality and cause hoarseness, breathiness, or pain. These lesions are often caused by overuse, misuse, or trauma to the vocal cords.
3. Laryngeal cancer: Malignant tumors that develop in the larynx and can invade surrounding structures, such as the throat, neck, and chest. Laryngeal cancer is often associated with smoking, alcohol consumption, and human papillomavirus (HPV) infection.
4. Laryngeal stenosis: Narrowing of the airway due to scarring or thickening of the tissues in the larynx. This condition can cause difficulty breathing, wheezing, and coughing, especially during physical activity or sleep.
5. Reinke's edema: Swelling of the vocal cords caused by fluid accumulation in the mucous membrane that covers them. Reinke's edema is often associated with smoking and can cause hoarseness, low voice, and difficulty projecting the voice.
6. Laryngeal papillomatosis: A rare condition characterized by the growth of benign tumors (papillomas) in the larynx, usually caused by HPV infection. These tumors can recur and may require repeated surgeries to remove them.
7. Vocal cord paralysis: Inability of one or both vocal cords to move due to nerve damage or other medical conditions. This condition can cause hoarseness, breathiness, and difficulty speaking or swallowing.

These are some of the common laryngeal disorders that can affect a person's voice, breathing, and swallowing functions. Proper diagnosis and treatment by an otolaryngologist (ear, nose, and throat specialist) are essential to manage these conditions effectively and prevent complications.

Laryngoscopy is a medical procedure that involves the examination of the larynx, which is the upper part of the windpipe (trachea), and the vocal cords using a specialized instrument called a laryngoscope. The laryngoscope is inserted through the mouth or nose to provide a clear view of the larynx and surrounding structures. This procedure can be performed for diagnostic purposes, such as identifying abnormalities like growths, inflammation, or injuries, or for therapeutic reasons, such as removing foreign objects or taking tissue samples for biopsy. There are different types of laryngoscopes and techniques used depending on the reason for the examination and the patient's specific needs.

The laryngeal muscles are a group of skeletal muscles located in the larynx, also known as the voice box. These muscles play a crucial role in breathing, swallowing, and producing sounds for speech. They include:

1. Cricothyroid muscle: This muscle helps to tense the vocal cords and adjust their pitch during phonation (voice production). It is the only laryngeal muscle that is not innervated by the recurrent laryngeal nerve. Instead, it is supplied by the external branch of the superior laryngeal nerve.
2. Posterior cricoarytenoid muscle: This muscle is primarily responsible for abducting (opening) the vocal cords during breathing and speaking. It is the only muscle that can abduct the vocal cords.
3. Lateral cricoarytenoid muscle: This muscle adducts (closes) the vocal cords during phonation, swallowing, and coughing.
4. Transverse arytenoid muscle: This muscle also contributes to adduction of the vocal cords, working together with the lateral cricoarytenoid muscle. It also helps to relax and lengthen the vocal cords during quiet breathing.
5. Oblique arytenoid muscle: This muscle is involved in adducting, rotating, and shortening the vocal cords. It works together with the transverse arytenoid muscle to provide fine adjustments for voice production.
6. Thyroarytenoid muscle (Vocalis): This muscle forms the main body of the vocal cord and is responsible for its vibration during phonation. The vocalis portion of the muscle helps control pitch and tension in the vocal cords.

These muscles work together to enable various functions of the larynx, such as breathing, swallowing, and speaking.

Aphonia is a medical term that refers to the inability or difficulty in producing sounds or voiced speech. This condition arises when the vocal cords in the larynx (voice box) fail to vibrate or function properly, often due to damage, inflammation, or paralysis of the vocal cord muscles.

There are several possible causes for aphonia, including:

1. Vocal cord trauma: Overuse, misuse, or injury to the vocal cords can result in swelling, inflammation, and temporary or permanent damage, leading to aphonia.
2. Vocal cord paralysis: Damage to the nerves that control the vocal cord muscles (recurrent laryngeal nerve) may cause one or both of the vocal cords to become paralyzed, resulting in aphonia. This can occur due to various reasons, such as surgery, trauma, tumors, or neurological disorders like multiple sclerosis and Parkinson's disease.
3. Laryngitis: Inflammation of the larynx (laryngitis) caused by viral or bacterial infections can lead to aphonia due to swelling and irritation of the vocal cords.
4. Vocal cord lesions: Benign or malignant growths on the vocal cords, such as polyps, nodules, or cancer, can interfere with their ability to vibrate and produce sound, resulting in aphonia.
5. Neurological conditions: Certain neurological disorders, like cerebral palsy, myasthenia gravis, or amyotrophic lateral sclerosis (ALS), can affect the nerves controlling the vocal cords and lead to aphonia.
6. Psychological factors: In some cases, psychological conditions such as anxiety, stress, or depression may cause a person to experience temporary aphonia due to muscle tension in the larynx. This is known as a conversion disorder or functional aphonia.

Treatment for aphonia depends on the underlying cause and may include voice therapy, medication, surgery, or other interventions. In cases of functional aphonia, addressing the psychological factors through counseling or relaxation techniques can help alleviate symptoms.

"Voice training" is not a term that has a specific medical definition in the field of otolaryngology (ear, nose, and throat medicine) or speech-language pathology. However, voice training generally refers to the process of developing and improving one's vocal skills through various exercises and techniques. This can include training in breath control, pitch, volume, resonance, articulation, and interpretation, among other aspects of vocal production. Voice training is often used to help individuals with voice disorders or professionals such as singers and actors to optimize their vocal abilities. In a medical context, voice training may be recommended or overseen by a speech-language pathologist as part of the treatment plan for a voice disorder.

In medical terms, the term "voice" refers to the sound produced by vibration of the vocal cords caused by air passing out from the lungs during speech, singing, or breathing. It is a complex process that involves coordination between respiratory, phonatory, and articulatory systems. Any damage or disorder in these systems can affect the quality, pitch, loudness, and flexibility of the voice.

The medical field dealing with voice disorders is called Phoniatrics or Voice Medicine. Voice disorders can present as hoarseness, breathiness, roughness, strain, weakness, or a complete loss of voice, which can significantly impact communication, social interaction, and quality of life.

The larynx, also known as the voice box, is a complex structure in the neck that plays a crucial role in protection of the lower respiratory tract and in phonation. It is composed of cartilaginous, muscular, and soft tissue structures. The primary functions of the larynx include:

1. Airway protection: During swallowing, the larynx moves upward and forward to close the opening of the trachea (the glottis) and prevent food or liquids from entering the lungs. This action is known as the swallowing reflex.
2. Phonation: The vocal cords within the larynx vibrate when air passes through them, producing sound that forms the basis of human speech and voice production.
3. Respiration: The larynx serves as a conduit for airflow between the upper and lower respiratory tracts during breathing.

The larynx is located at the level of the C3-C6 vertebrae in the neck, just above the trachea. It consists of several important structures:

1. Cartilages: The laryngeal cartilages include the thyroid, cricoid, and arytenoid cartilages, as well as the corniculate and cuneiform cartilages. These form a framework for the larynx and provide attachment points for various muscles.
2. Vocal cords: The vocal cords are thin bands of mucous membrane that stretch across the glottis (the opening between the arytenoid cartilages). They vibrate when air passes through them, producing sound.
3. Muscles: There are several intrinsic and extrinsic muscles associated with the larynx. The intrinsic muscles control the tension and position of the vocal cords, while the extrinsic muscles adjust the position and movement of the larynx within the neck.
4. Nerves: The larynx is innervated by both sensory and motor nerves. The recurrent laryngeal nerve provides motor innervation to all intrinsic laryngeal muscles, except for one muscle called the cricothyroid, which is innervated by the external branch of the superior laryngeal nerve. Sensory innervation is provided by the internal branch of the superior laryngeal nerve and the recurrent laryngeal nerve.

The larynx plays a crucial role in several essential functions, including breathing, speaking, and protecting the airway during swallowing. Dysfunction or damage to the larynx can result in various symptoms, such as hoarseness, difficulty swallowing, shortness of breath, or stridor (a high-pitched sound heard during inspiration).

Betamethasone valerate is a synthetic corticosteroid drug, which is a derivative of betamethasone. It is used as a topical preparation for the treatment of various skin conditions such as eczema, psoriasis, and dermatitis. The valerate ester of betamethasone provides a sustained release of the active steroid, allowing for less frequent application and improved penetration into the skin.

Betamethasone valerate works by reducing inflammation, suppressing the immune system, and relieving itching and redness in the affected area. It is available in various forms, including creams, ointments, and lotions, and should be used under the direction of a healthcare professional to ensure proper use and minimize potential side effects.

Like other corticosteroids, betamethasone valerate can cause thinning of the skin, increased hair growth, and acne with prolonged or excessive use. It is important to follow the recommended dosage and duration of treatment to avoid these side effects.

Vocal cord dysfunction (VCD), also known as paradoxical vocal fold motion (PVFM), is a condition where the vocal cords move in an abnormal way during breathing, particularly during inspiration (inhaling). Instead of staying open to allow airflow into the lungs, the vocal cords close or come together, which can cause symptoms such as shortness of breath, wheezing, coughing, and throat tightness. VCD is often mistaken for asthma because some of the symptoms are similar, but it does not respond to typical asthma treatments. It can be associated with anxiety, gastroesophageal reflux disease (GERD), or other conditions, and is typically diagnosed through a laryngoscopy exam. Treatment may include speech therapy, breathing exercises, and addressing any underlying causes.

Stroboscopy is a medical examination technique used primarily for the evaluation of voice and swallowing disorders. It involves the use of a strobe light that flickers at a rate equal to or close to the vibration rate of the vocal folds (vocal cords). This allows the examiner to visualize the movement of the vocal folds in slow motion, which can help identify any abnormalities in their movement or structure.

During the procedure, a thin, flexible tube called a stroboscope is inserted through the nose and into the throat. The strobe light is then activated, and the examiner observes the vibration of the vocal folds using an attached camera and video monitor. This technique can help diagnose conditions such as vocal fold nodules, polyps, paralysis, and other disorders that affect voice production.

It's important to note that stroboscopy should be performed by a trained healthcare professional, such as an otolaryngologist (ear, nose, and throat specialist) or speech-language pathologist, who has experience in evaluating voice and swallowing disorders.

Speech production measurement is the quantitative analysis and assessment of various parameters and characteristics of spoken language, such as speech rate, intensity, duration, pitch, and articulation. These measurements can be used to diagnose and monitor speech disorders, evaluate the effectiveness of treatment, and conduct research in fields such as linguistics, psychology, and communication disorders. Speech production measurement tools may include specialized software, hardware, and techniques for recording, analyzing, and visualizing speech data.

Phonation is the process of sound production in speech, singing, or crying. It involves the vibration of the vocal folds (also known as the vocal cords) in the larynx, which is located in the neck. When air from the lungs passes through the vibrating vocal folds, it causes them to vibrate and produce sound waves. These sound waves are then shaped into speech sounds by the articulatory structures of the mouth, nose, and throat.

Phonation is a critical component of human communication and is used in various forms of verbal expression, such as speaking, singing, and shouting. It requires precise control of the muscles that regulate the tension, mass, and length of the vocal folds, as well as the air pressure and flow from the lungs. Dysfunction in phonation can result in voice disorders, such as hoarseness, breathiness, or loss of voice.

Neuromuscular agents are drugs or substances that affect the function of the neuromuscular junction, which is the site where nerve impulses are transmitted to muscles. These agents can either enhance or inhibit the transmission of signals across the neuromuscular junction, leading to a variety of effects on muscle tone and activity.

Neuromuscular blocking agents (NMBAs) are a type of neuromuscular agent that is commonly used in anesthesia and critical care settings to induce paralysis during intubation or mechanical ventilation. NMBAs can be classified into two main categories: depolarizing and non-depolarizing agents.

Depolarizing NMBAs, such as succinylcholine, work by activating the nicotinic acetylcholine receptors at the neuromuscular junction, causing muscle contraction followed by paralysis. Non-depolarizing NMBAs, such as rocuronium and vecuronium, block the activation of these receptors, preventing muscle contraction and leading to paralysis.

Other types of neuromuscular agents include cholinesterase inhibitors, which increase the levels of acetylcholine at the neuromuscular junction and can be used to reverse the effects of NMBAs, and botulinum toxin, which is a potent neurotoxin that inhibits the release of acetylcholine from nerve terminals and is used in the treatment of various neurological disorders.

A spasm is a sudden, involuntary contraction or tightening of a muscle, group of muscles, or a hollow organ such as the ureter or bronchi. Spasms can occur as a result of various factors including muscle fatigue, injury, irritation, or abnormal nerve activity. They can cause pain and discomfort, and in some cases, interfere with normal bodily functions. For example, a spasm in the bronchi can cause difficulty breathing, while a spasm in the ureter can cause severe pain and may lead to a kidney stone blockage. The treatment for spasms depends on the underlying cause and may include medication, physical therapy, or lifestyle changes.

Laryngoplasty is a surgical procedure that involves reconstructing or reinforcing the larynx, specifically the vocal cords. The goal of this procedure can be to improve voice quality, restore breathing function, or manage airway obstructions caused by various conditions such as vocal cord paralysis, vocal fold bowing, or scarring.

There are different types of laryngoplasties, including:

1. Type I Thyroplasty (Medialization Laryngoplasty): This procedure involves placing an implant made of silicone, Gore-Tex, or other materials in the thyroid cartilage to medialize (move towards the midline) and support the paralyzed vocal cord. This helps improve voice quality and airway closure during speech and swallowing.
2. Arytenoid Adduction: In this procedure, the arytenoid cartilage is repositioned or fixed in place to help approximate (bring together) the vocal cords. It is often performed along with a Type I Thyroplasty for better voice and airway outcomes.
3. Laryngeal Framework Surgery: This is a more extensive procedure that involves reshaping the laryngeal framework, including the thyroid and cricoid cartilages, to improve voice, swallowing, or breathing function.

The choice of surgical technique depends on the underlying condition, its severity, and the patient's individual needs and goals.

Hoarseness is a condition characterized by an abnormal change in the quality of voice, making it sound rough, breathy, strained, or weak. Medically, it's described as a disorder of phonation, which is the process of producing sound by vibrating the vocal cords in the larynx (voice box). Hoarseness can be caused by various factors, such as inflammation, irritation, or injury to the vocal cords, and may result in symptoms like altered voice pitch, volume, and clarity. It's essential to consult a healthcare professional if hoarseness persists for more than two weeks, especially if it's accompanied by other concerning symptoms like difficulty swallowing or breathing.

The laryngeal nerves are a pair of nerves that originate from the vagus nerve (cranial nerve X) and provide motor and sensory innervation to the larynx. There are two branches of the laryngeal nerves: the superior laryngeal nerve and the recurrent laryngeal nerve.

The superior laryngeal nerve has two branches: the external branch, which provides motor innervation to the cricothyroid muscle and sensation to the mucous membrane of the laryngeal vestibule; and the internal branch, which provides sensory innervation to the mucous membrane of the laryngeal vestibule.

The recurrent laryngeal nerve provides motor innervation to all the intrinsic muscles of the larynx, except for the cricothyroid muscle, and sensation to the mucous membrane below the vocal folds. The right recurrent laryngeal nerve has a longer course than the left one, as it hooks around the subclavian artery before ascending to the larynx.

Damage to the laryngeal nerves can result in voice changes, difficulty swallowing, and respiratory distress.

Speech Therapy, also known as Speech-Language Pathology, is a medical field that focuses on the assessment, diagnosis, treatment, and prevention of communication and swallowing disorders in children and adults. These disorders may include speech sound production difficulties (articulation disorders or phonological processes disorders), language disorders (expressive and/or receptive language impairments), voice disorders, fluency disorders (stuttering), cognitive-communication disorders, and swallowing difficulties (dysphagia).

Speech therapists, who are also called speech-language pathologists (SLPs), work with clients to improve their communication abilities through various therapeutic techniques and exercises. They may also provide counseling and education to families and caregivers to help them support the client's communication development and management of the disorder.

Speech therapy services can be provided in a variety of settings, including hospitals, clinics, schools, private practices, and long-term care facilities. The specific goals and methods used in speech therapy will depend on the individual needs and abilities of each client.

Recurrent laryngeal nerve injuries refer to damages or trauma inflicted on the recurrent laryngeal nerve, which is a branch of the vagus nerve that supplies motor function to the intrinsic muscles of the larynx, except for the cricothyroid muscle. This nerve plays a crucial role in controlling vocal fold movement and swallowing.

Injuries to this nerve can result in voice changes, hoarseness, or even complete loss of voice, depending on the severity and location of the injury. Additionally, it may also lead to breathing difficulties, coughing, and choking while swallowing due to impaired laryngeal function.

Recurrent laryngeal nerve injuries can occur due to various reasons, such as surgical complications (particularly during thyroid or neck surgeries), tumors, infections, inflammation, or direct trauma to the neck region. In some cases, these injuries may be temporary and resolve on their own or through appropriate treatment; however, severe or prolonged injuries might require medical intervention, including possible surgical repair.

Botulinum toxins type A are neurotoxins produced by the bacterium Clostridium botulinum and related species. These toxins act by blocking the release of acetylcholine at the neuromuscular junction, leading to muscle paralysis. Botulinum toxin type A is used in medical treatments for various conditions characterized by muscle spasticity or excessive muscle activity, such as cervical dystonia, blepharospasm, strabismus, and chronic migraine. It is also used cosmetically to reduce the appearance of wrinkles by temporarily paralyzing the muscles that cause them. The commercial forms of botulinum toxin type A include Botox, Dysport, and Xeomin.

The arytenoid cartilages are paired, irregularly shaped pieces of elastic cartilage located in the larynx (voice box) of mammals. They play a crucial role in the process of vocalization and breathing.

Each arytenoid cartilage has a body and two projections: the vocal process, which provides attachment for the vocal cord, and the muscular process, which serves as an attachment site for various intrinsic laryngeal muscles. The arytenoid cartilages are connected to the cricoid cartilage below by the synovial cricoarytenoid joints, allowing for their movement during respiration and phonation.

These cartilages help in adjusting the tension of the vocal cords and controlling the opening and closing of the rima glottidis (the space between the vocal cords), which is essential for breathing, swallowing, and producing sounds. Any abnormalities or injuries to the arytenoid cartilages may result in voice disturbances or respiratory difficulties.

The glottis is a medical term that refers to the opening between the vocal cords (the ligaments in the larynx that produce sound when air passes through them during speech) in the human throat or larynx. It is an important structure for breathing, swallowing, and producing sounds or speech. The glottis opens during inhalation to allow air into the lungs and closes during swallowing to prevent food or liquids from entering the trachea (windpipe) and lungs.

Deglutition disorders, also known as swallowing disorders, are conditions that affect the ability to move food or liquids from the mouth to the stomach safely and efficiently. These disorders can occur at any stage of the swallowing process, which includes oral preparation (chewing and manipulating food in the mouth), pharyngeal phase (activating muscles and structures in the throat to move food toward the esophagus), and esophageal phase (relaxing and contracting the esophagus to propel food into the stomach).

Symptoms of deglutition disorders may include coughing or choking during or after eating, difficulty initiating a swallow, food sticking in the throat or chest, regurgitation, unexplained weight loss, and aspiration (inhaling food or liquids into the lungs), which can lead to pneumonia.

Deglutition disorders can be caused by various factors, such as neurological conditions (e.g., stroke, Parkinson's disease, multiple sclerosis), structural abnormalities (e.g., narrowing or blockage of the esophagus), muscle weakness or dysfunction, and cognitive or behavioral issues. Treatment for deglutition disorders may involve dietary modifications, swallowing exercises, medications, or surgical interventions, depending on the underlying cause and severity of the condition.

Meige Syndrome, also known as Brueghel's syndrome or Hemifacial spasm-blepharospasm syndrome, is a rare neurological disorder characterized by the simultaneous contraction of muscles in the face, neck, and sometimes other parts of the body. It is a form of dystonia, which is a movement disorder that causes involuntary muscle contractions and abnormal postures.

Meige Syndrome is typically divided into two types:

1. Ocular Meige Syndrome: This type primarily affects the muscles around the eyes, causing involuntary spasms, blinks, and eyelid closure.
2. Cranio-cervical Dystonia or Brueghel's syndrome: This type involves both the cranial (head) and cervical (neck) regions, leading to abnormal head postures, neck pain, and involuntary movements of the facial muscles.

The exact cause of Meige Syndrome is not fully understood, but it is believed to be related to abnormal functioning in the basal ganglia, a part of the brain responsible for controlling movement. In some cases, it may be associated with structural lesions or vascular abnormalities in the brain.

Treatment options for Meige Syndrome include medications such as botulinum toxin (Botox) injections, which help to relax the overactive muscles and reduce spasms. In severe cases, surgical interventions may be considered.

Speech acoustics is a subfield of acoustic phonetics that deals with the physical properties of speech sounds, such as frequency, amplitude, and duration. It involves the study of how these properties are produced by the vocal tract and perceived by the human ear. Speech acousticians use various techniques to analyze and measure the acoustic signals produced during speech, including spectral analysis, formant tracking, and pitch extraction. This information is used in a variety of applications, such as speech recognition, speaker identification, and hearing aid design.

No FAQ available that match "dysphonia"

No images available that match "dysphonia"