A sub-class of protein tyrosine phosphatases that contain an additional phosphatase activity which cleaves phosphate ester bonds on SERINE or THREONINE residues that are located on the same protein.
A dual specificity phosphatase subtype that plays a role in intracellular signal transduction by inactivating MITOGEN-ACTIVATED PROTEIN KINASES. It has specificity for EXTRACELLULAR SIGNAL-REGULATED MAP KINASES.
A dual specificity phosphatase subtype that plays a role in intracellular signal transduction by inactivating MITOGEN-ACTIVATED PROTEIN KINASES. It has specificity for EXTRACELLULAR SIGNAL-REGULATED MAP KINASES and is primarily localized to the CYTOSOL.
A dual specificity phosphatase subtype that plays a role in intracellular signal transduction by inactivating MITOGEN-ACTIVATED PROTEIN KINASES. It has specificity for P38 MITOGEN-ACTIVATED PROTEIN KINASES and JNK MITOGEN-ACTIVATED PROTEIN KINASES.
A subcategory of phosphohydrolases that are specific for MITOGEN-ACTIVATED PROTEIN KINASES. They play a role in the inactivation of the MAP KINASE SIGNALING SYSTEM.
An enzyme group that specifically dephosphorylates phosphotyrosyl residues in selected proteins. Together with PROTEIN-TYROSINE KINASE, it regulates tyrosine phosphorylation and dephosphorylation in cellular signal transduction and may play a role in cell growth control and carcinogenesis.
A group of enzymes removing the SERINE- or THREONINE-bound phosphate groups from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase. (Enzyme Nomenclature, 1992)
A subclass of dual specificity phosphatases that play a role in the progression of the CELL CYCLE. They dephosphorylate and activate CYCLIN-DEPENDENT KINASES.
A eukayrotic protein serine-threonine phosphatase subtype that dephosphorylates a wide variety of cellular proteins. The enzyme is comprised of a catalytic subunit and regulatory subunit. Several isoforms of the protein phosphatase catalytic subunit exist due to the presence of multiple genes and the alternative splicing of their mRNAs. A large number of proteins have been shown to act as regulatory subunits for this enzyme. Many of the regulatory subunits have additional cellular functions.
A subcategory of protein tyrosine phosphatases that occur in the CYTOPLASM. Many of the proteins in this category play a role in intracellular signal transduction.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. EC 3.1.3.
A dual specificity phosphatase subtype that plays a role in intracellular signal transduction by inactivating MITOGEN-ACTIVATED PROTEIN KINASES. It has specificity for EXTRACELLULAR SIGNAL-REGULATED MAP KINASES and is primarily localized to the CELL NUCLEUS.
A form of stimulus sensitive myoclonic epilepsy inherited as an autosomal recessive condition. The most common presenting feature is a single seizure in the second decade of life. This is followed by progressive myoclonus, myoclonic seizures, tonic-clonic seizures, focal occipital seizures, intellectual decline, and severe motor and coordination impairments. Most affected individuals do not live past the age of 25 years. Concentric amyloid (Lafora) bodies are found in neurons, liver, skin, bone, and muscle (From Menkes, Textbook of Childhood Neurology, 5th ed, pp111-110)
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
An intracellular signaling system involving the MAP kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A subgroup of mitogen-activated protein kinases that activate TRANSCRIPTION FACTOR AP-1 via the phosphorylation of C-JUN PROTEINS. They are components of intracellular signaling pathways that regulate CELL PROLIFERATION; APOPTOSIS; and CELL DIFFERENTIATION.
Proteins that are coded by immediate-early genes, in the absence of de novo protein synthesis. The term was originally used exclusively for viral regulatory proteins that were synthesized just after viral integration into the host cell. It is also used to describe cellular proteins which are synthesized immediately after the resting cell is stimulated by extracellular signals.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
A serine-threonine protein kinase family whose members are components in protein kinase cascades activated by diverse stimuli. These MAPK kinases phosphorylate MITOGEN-ACTIVATED PROTEIN KINASES and are themselves phosphorylated by MAP KINASE KINASE KINASES. JNK kinases (also known as SAPK kinases) are a subfamily.
A superfamily of PROTEIN-SERINE-THREONINE KINASES that are activated by diverse stimuli via protein kinase cascades. They are the final components of the cascades, activated by phosphorylation by MITOGEN-ACTIVATED PROTEIN KINASE KINASES, which in turn are activated by mitogen-activated protein kinase kinase kinases (MAP KINASE KINASE KINASES).
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
A mitogen-activated protein kinase subfamily that regulates a variety of cellular processes including CELL GROWTH PROCESSES; CELL DIFFERENTIATION; APOPTOSIS; and cellular responses to INFLAMMATION. The P38 MAP kinases are regulated by CYTOKINE RECEPTORS and can be activated in response to bacterial pathogens.
CELL LINES derived from the CV-1 cell line by transformation with a replication origin defective mutant of SV40 VIRUS, which codes for wild type large T antigen (ANTIGENS, POLYOMAVIRUS TRANSFORMING). They are used for transfection and cloning. (The CV-1 cell line was derived from the kidney of an adult male African green monkey (CERCOPITHECUS AETHIOPS).)
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
A proline-directed serine/threonine protein kinase which mediates signal transduction from the cell surface to the nucleus. Activation of the enzyme by phosphorylation leads to its translocation into the nucleus where it acts upon specific transcription factors. p40 MAPK and p41 MAPK are isoforms.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2.
A 44-kDa extracellular signal-regulated MAP kinase that may play a role the initiation and regulation of MEIOSIS; MITOSIS; and postmitotic functions in differentiated cells. It phosphorylates a number of TRANSCRIPTION FACTORS; and MICROTUBULE-ASSOCIATED PROTEINS.
A phosphoprotein phosphatase subtype that is comprised of a catalytic subunit and two different regulatory subunits. At least two genes encode isoforms of the protein phosphatase catalytic subunit, while several isoforms of regulatory subunits exist due to the presence of multiple genes and the alternative splicing of their mRNAs. Protein phosphatase 2 acts on a broad variety of cellular proteins and may play a role as a regulator of intracellular signaling processes.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A mitogen-activated protein kinase subfamily that is widely expressed and plays a role in regulation of MEIOSIS; MITOSIS; and post mitotic functions in differentiated cells. The extracellular signal regulated MAP kinases are regulated by a broad variety of CELL SURFACE RECEPTORS and can be activated by certain CARCINOGENS.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Established cell cultures that have the potential to propagate indefinitely.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A cell line derived from cultured tumor cells.
An enzyme that catalyzes the conversion of D-glucose 6-phosphate and water to D-glucose and orthophosphate. EC 3.1.3.9.
The rate dynamics in chemical or physical systems.
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site.
Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Proteins prepared by recombinant DNA technology.
A subtype of non-receptor protein tyrosine phosphatases that contain two SRC HOMOLOGY DOMAINS. Mutations in the gene for protein tyrosine phosphatase, non-receptor type 11 are associated with NOONAN SYNDROME.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A subtype of non-receptor protein tyrosine phosphatases that includes two distinctive targeting motifs; an N-terminal motif specific for the INSULIN RECEPTOR, and a C-terminal motif specific for the SH3 domain containing proteins. This subtype includes a hydrophobic domain which localizes it to the ENDOPLASMIC RETICULUM.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
A Src-homology domain-containing protein tyrosine phosphatase found in the CYTOSOL of hematopoietic cells. It plays a role in signal transduction by dephosphorylating signaling proteins that are activated or inactivated by PROTEIN-TYROSINE KINASES.
A specific inhibitor of phosphoserine/threonine protein phosphatase 1 and 2a. It is also a potent tumor promoter. (Thromb Res 1992;67(4):345-54 & Cancer Res 1993;53(2):239-41)
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
A phosphoprotein phosphatase that is specific for MYOSIN LIGHT CHAINS. It is composed of three subunits, which include a catalytic subunit, a myosin binding subunit, and a third subunit of unknown function.
A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.
The region of an enzyme that interacts with its substrate to cause the enzymatic reaction.
A mitogen-activated protein kinase kinase with specificity for JNK MITOGEN-ACTIVATED PROTEIN KINASES. It takes part in a SIGNAL TRANSDUCTION pathway that is activated in response to CYTOKINES.
A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.
An enzyme that deactivates glycogen phosphorylase a by releasing inorganic phosphate and phosphorylase b, the inactive form. EC 3.1.3.17.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A CALMODULIN-dependent enzyme that catalyzes the phosphorylation of proteins. This enzyme is also sometimes dependent on CALCIUM. A wide range of proteins can act as acceptor, including VIMENTIN; SYNAPSINS; GLYCOGEN SYNTHASE; MYOSIN LIGHT CHAINS; and the MICROTUBULE-ASSOCIATED PROTEINS. (From Enzyme Nomenclature, 1992, p277)
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
A subclass of receptor-like protein tryosine phosphatases that contain multiple extracellular immunoglobulin G-like domains and fibronectin type III-like domains. An additional memprin-A5-mu domain is found on some members of this subclass.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
A mitogen-activated protein kinase kinase with specificity for JNK MITOGEN-ACTIVATED PROTEIN KINASES; P38 MITOGEN-ACTIVATED PROTEIN KINASES and the RETINOID X RECEPTORS. It takes part in a SIGNAL TRANSDUCTION pathway that is activated in response to cellular stress.
An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins.
Antibodies, often monoclonal, in which the two antigen-binding sites are specific for separate ANTIGENIC DETERMINANTS. They are artificial antibodies produced by chemical crosslinking, fusion of HYBRIDOMA cells, or by molecular genetic techniques. They function as the main mediators of targeted cellular cytotoxicity and have been shown to be efficient in the targeting of drugs, toxins, radiolabeled haptens, and effector cells to diseased tissue, primarily tumors.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Compounds of the general formula R-O-R arranged in a ring or crown formation.
A phosphomonoesterase involved in the synthesis of triacylglycerols. It catalyzes the hydrolysis of phosphatidates with the formation of diacylglycerols and orthophosphate. EC 3.1.3.4.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite.
An abundant 43-kDa mitogen-activated protein kinase kinase subtype with specificity for MITOGEN-ACTIVATED PROTEIN KINASE 1 and MITOGEN-ACTIVATED PROTEIN KINASE 3.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
A large collection of DNA fragments cloned (CLONING, MOLECULAR) from a given organism, tissue, organ, or cell type. It may contain complete genomic sequences (GENOMIC LIBRARY) or complementary DNA sequences, the latter being formed from messenger RNA and lacking intron sequences.
A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey (C. pygerythrus) is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.

Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. (1/32)

Extracellular signal-regulated kinase (ERK) is an important intermediate in signal transduction pathways that are initiated by many types of cell surface receptors. It is thought to play a pivotal role in integrating and transmitting transmembrane signals required for growth and differentiation. Constitutive activation of ERK in fibroblasts elicits oncogenic transformation, and recently, constitutive activation of ERK has been observed in some human malignancies, including acute leukemia. However, mechanisms underlying constitutive activation of ERK have not been well characterized. In this study, we examined the activation of ERK in 79 human acute leukemia samples and attempted to find factors contributing to constitutive ERK activation. First, we showed that ERK and MEK were constitutively activated in acute leukemias by in vitro kinase assay and immunoblot analysis. However, in only one half of the studied samples, the pattern of ERK activation was similar to that of MEK activation. Next, by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblot analysis, we showed hyperexpression of ERK in a majority of acute leukemias. In 17 of 26 cases (65.4%) analyzed by immunoblot, the pattern of ERK expression was similar to that of ERK activation. The fact of constitutive activation of ERK in acute leukemias suggested to us the possibility of an abnormal downregulation mechanism of ERK. Therefore, we examined PAC1, a specific ERK phosphatase predominantly expressed in hematopoietic tissue and known to be upregulated at the transcription level in response to ERK activation. Interestingly, in our study, PAC1 gene expression in acute leukemias showing constitutive ERK activation was significantly lower than that in unstimulated, normal bone marrow (BM) samples showing minimal or no ERK activation (P =.002). Also, a significant correlation was observed between PAC1 downregulation and phosphorylation of ERK in acute leukemias (P =.002). Finally, by further analysis of 26 cases, we showed that a complementary role of MEK activation, ERK hyperexpression, and PAC1 downregulation could contribute to determining the constitutive activation of ERK in acute leukemia. Our results suggest that ERK is constitutively activated in a majority of acute leukemias, and in addition to the activation of MEK, the hyperexpression of ERK and downregulation of PAC1 also contribute to constitutive ERK activation in acute leukemias.  (+info)

Divalent cations differentially regulate integrin alphaIIb cytoplasmic tail binding to beta3 and to calcium- and integrin-binding protein. (2/32)

We have used recombinant or synthetic alphaIIb and beta3 integrin cytoplasmic peptides to study their in vitro complexation and ligand binding capacity by surface plasmon resonance. alpha.beta heterodimerization occurred in a 1:1 stoichiometry with a weak KD in the micromolar range. Divalent cations were not required for this association but stabilized the alpha.beta complex by decreasing the dissociation rate. alpha.beta complexation was impaired by the R995A substitution or the KVGFFKR deletion in alphaIIb but not by the beta3 S752P mutation. Recombinant calcium- and integrin-binding protein (CIB), an alphaIIb-specific ligand, bound to the alphaIIb cytoplasmic peptide in a Ca2+- or Mn2+-independent, one-to-one reaction with a KD value of 12 microM. In contrast, in vitro liquid phase binding of CIB to intact alphaIIbbeta3 occurred preferentially with Mn2+-activated alphaIIbbeta3 conformers, as demonstrated by enhanced coimmunoprecipitation of CIB with PAC-1-captured Mn2+-activated alphaIIbbeta3, suggesting that Mn2+ activation of intact alphaIIbbeta3 induces the exposure of a CIB-binding site, spontaneously exposed by the free alphaIIb peptide. Since CIB did not stimulate PAC-1 binding to inactive alphaIIbbeta3 nor prevented activated alphaIIbbeta3 occupancy by PAC-1, we conclude that CIB does not regulate alphaIIbbeta3 inside-out signaling, but rather is involved in an alphaIIbbeta3 post-receptor occupancy event.  (+info)

Cocoa and wine polyphenols modulate platelet activation and function. (3/32)

There is speculation that dietary polyphenols can provide cardioprotective effects due to direct antioxidant or antithrombotic mechanisms. We report in vitro and postingestion ex vivo effects of cocoa procyanidins, a procyanidin-rich cocoa beverage and dealcoholized red wine (DRW) on human platelet activation. In a series of in vitro studies, cocoa procyanidin trimers, pentamers or DRW (3 and 10 micromol/L) were incubated with citrated peripheral whole blood in the presence and absence of platelet agonists. Platelet activation was detected using fluorescent-labeled monoclonal antibodies recognizing the fibrinogen binding conformation of GPIIb-IIIa (referred to herein as PAC-1 binding) and the activation-dependent platelet epitope CD62P (P-selectin). The percentage of CD42a-positive platelets coexpressing PAC-1 binding and/or CD62P was determined by multiparameter flow cytometry. Procyanidin trimers, pentamers and DRW added to whole blood in vitro increased PAC-1 binding and P-selectin expression. In contrast, procyanidin trimers, pentamers and DRW inhibited the platelet activation in response to epinephrine. The effects on platelet activation of cocoa beverage and DRW consumption were also studied in healthy subjects. Citrated blood was obtained before and 2 and 6 h after the ingestion of a cocoa beverage, a caffeine-containing beverage, DRW or water. Platelet activation was measured by flow cytometry. The consumption of DRW did not affect the expression of activation-dependent platelet antigens, either unstimulated or after ex vivo activation with epinephrine. However, the consumption of DRW increased PAC-1 binding in response to 100 micromol/L ADP ex vivo. Cocoa consumption reduced platelet response to agonists ex vivo. The ingestion of water had no effect on platelet activation, whereas a caffeine-containing beverage augmented the response of platelets to epinephrine. In summary, select cocoa procyanidins and DRW added to whole blood in vitro increased expression of platelet activation markers in unstimulated platelets but suppressed the platelet activation response to epinephrine. In contrast, cocoa consumption suppressed unstimulated and stimulated platelet activation in whole blood. This suppressive effect observed on platelet reactivity may explain in part the reported cardioprotective effects of dietary polyphenols.  (+info)

Antiplatelet effects of clopidogrel compared with aspirin after myocardial infarction: enhanced inhibitory effects of combination therapy. (4/32)

OBJECTIVES: We sought to compare the inhibitory effects of the combination of two doses of aspirin plus clopidogrel with either drug alone on platelet aggregation and activation. BACKGROUND: Enhanced platelet inhibitory effects of clopidogrel by aspirin on platelet aggregation and activation are suggested by experimental studies but have not been shown in humans. METHODS: The effects of clopidogrel 75 mg or aspirin 100 (300) mg on platelet aggregation and activation by flow cytometry after stimulation with various agonists were determined in 30 patients with a past history of myocardial infarction. RESULTS: Clopidogrel alone or in combination with aspirin markedly inhibited adenosine diphosphate (ADP)-mediated platelet aggregation compared with monotherapy with aspirin (24.6 +/- 3.3% or 26.6 +/- 2.7% vs. 44.7 +/- 2.9%; p < 0.001). Combined treatment significantly inhibited collagen-induced aggregation compared with aspirin and clopidogrel (16.4 +/- 2.4%, 36.5 +/- 4.2% and 59.3 +/- 5.1%, respectively;, p < 0.001) and resulted in considerable inhibition of aggregation induced by thrombin receptor agonist peptide (TRAP, p < 0.03). Clopidogrel with or without aspirin significantly suppressed expression of platelet activation markers CD 62p, CD 63 and PAC-1 after stimulation with ADP or thrombin (p < 0.001). In addition, the combined treatment was more effective than either agent alone after activation with low dose thrombin (p < 0.05). Both doses of aspirin equally potentiated the platelet inhibitory effects of clopidogrel. CONCLUSIONS In this prospective clinical ex vivo platelet study, clopidogrel was more effective than aspirin in inhibiting ADP-mediated platelet aggregation and activation. Clopidogrel in combination with aspirin showed synergistic inhibitory effects after stimulation with collagen and thrombin compared with monotherapies. Thus, this dual antiplatelet treatment strategy deserves further evaluation in clinical trials for secondary prevention of acute myocardial infarction or unstable angina.  (+info)

A filarial nematode-secreted phosphorylcholine-containing glycoprotein uncouples the B cell antigen receptor from extracellular signal-regulated kinase-mitogen-activated protein kinase by promoting the surface Ig-mediated recruitment of Src homology 2 domain-containing tyrosine phosphatase-1 and Pac-1 mitogen-activated kinase-phosphatase. (5/32)

Unraveling the molecular mechanisms by which filarial nematodes, major human pathogens in the tropics, evade the host immune system remains an elusive goal. We have previously shown that excretory-secretory product-62 (ES-62), a homologue of phosphorylcholine-containing molecules that are secreted by human parasites and which is active in rodent models of filarial infection, is able to polyclonally activate certain protein tyrosine kinase and mitogen-activating protein kinase signal transduction elements in B lymphocytes. Such activation mediates desensitization of subsequent B cell Ag receptor (BCR) ligation-induced activation of extracellular signal-regulated kinase-mitogen-activated protein (ErkMAP) kinase and ultimately B cell proliferation. We now show that the desensitization is due to ES-62 targeting two major regulatory sites of B cell activation. Firstly, pre-exposure to ES-62 primes subsequent BCR-mediated recruitment of SHP-1 tyrosine phosphatase to abolish recruitment of the RasErkMAP kinase cascade via the Igalphabeta-ShcGrb2Sos adaptor complex interactions. Secondly, any ongoing ErkMAP kinase signaling in ES-62-primed B cells is terminated by the MAP kinase phosphatase, Pac-1 that is activated consequently to challenge via the BCR.  (+info)

Protein kinase C- and calcium-regulated pathways independently synergize with Gi pathways in agonist-induced fibrinogen receptor activation. (6/32)

Platelet fibrinogen receptor activation is a critical step in platelet plug formation. The fibrinogen receptor (integrin alphaIIbbeta3) is activated by agonist-mediated G(q) stimulation and resultant phospholipase C activation. We investigated the role of downstream signalling events from phospholipase C, namely the activation of protein kinase C (PKC) and rise in intracellular calcium, in agonist-induced fibrinogen receptor activation using Ro 31-8220 (a PKC inhibitor) or dimethyl BAPTA [5,5'-dimethyl-bis-(o-aminophenoxy)ethane-N,N,N', N'-tetra-acetic acid], a high-affinity calcium chelator. All the experiments were performed with human platelets treated with aspirin, to avoid positive feedback from thromboxane A2. In the presence of Ro 31-8220, platelet aggregation caused by U46619 was completely inhibited while no effect or partial inhibition was seen with ADP and the thrombin-receptor-activating peptide SFLLRN, respectively. In the presence of intracellular dimethyl BAPTA, ADP- and U46619-induced aggregation and anti-alphaIIbbeta3 antibody PAC-1 binding were completely abolished. However, similar to the effects of Ro 31-8220, dimethyl BAPTA only partially inhibited SFLLRN-induced aggregation, and was accompanied by diminished dense-granule secretion. When either PKC activation or intracellular calcium release was abrogated, aggregation and fibrinogen receptor activation with U46619 or SFLLRN was partially restored by additional selective activation of the G(i) signalling pathway. In contrast, when both PKC activity and intracellular calcium increase were simultaneously inhibited, the complete inhibition of aggregation that occurred in response to either U46619 or SFLLRN could not be restored with concomitant G(i) signalling. We conclude that, while the PKC- and calcium-regulated signalling pathways are capable of inducing activating fibrinogen receptor independently and that each can synergize with G(i) signalling to cause irreversible fibrinogen receptor activation, both pathways act synergistically to effect irreversible fibrinogen receptor activation.  (+info)

Increased platelet aggregation and activation in peripheral arterial disease. (7/32)

OBJECTIVES: patients with peripheral arterial disease (PAD) have a threefold increase in cardiovascular mortality. Standard antiplatelet treatment may not confer uniform benefit in different patient groups. This study aimed to compare platelet function in patients with lower limb PAD, carotid disease and abdominal aortic aneurysm (AAA) with age- and sex-matched healthy controls. METHODS: patients with lower limb PAD (n = 20), carotid disease (n = 40), AAA (n = 13) and age/sex matched healthy controls (n= 20) were studied. Whole blood methods to detect spontaneous platelet aggregation (SPA), and adenosine diphosphate (ADP) and collagen-induced aggregation were used. The detection of platelet P-selectin and the PAC-1 antigen by flow cytometry were also used as markers of platelet activation and aggregation. RESULTS: patients with lower limb PAD or AAA had higher baseline SPA compared to normal controls (p < 0.01). There was significantly higher collagen-induced aggregation in IC patients compared to normal controls (p < 0.01). However, there was no difference in ADP-induced aggregation between lower limb PAD and control patients. There was no difference in PAC-1 binding between control patients and the patients with lower limb PAD, carotid disease or AAA. Patients with carotid disease had a higher expression of P-selectin compared to normal controls (p < 0.05). CONCLUSIONS: this study provides further evidence that platelet hyperactivity is present in patients with PAD despite the use of antiplatelet therapy. Further antiplatelet strategies may be indicated to protect these patients.  (+info)

Activation of platelet gpIIbIIIa by phospholipase C from Clostridium perfringens involves store-operated calcium entry. (8/32)

Clostridium perfringens gas gangrene is characterized by rapid tissue destruction, and amputation remains the single best treatment. Previous studies have demonstrated that tissue destruction follows C. perfringens phospholipase C (PLC)-induced, platelet gpIIbIIIa-mediated formation of occlusive intravascular platelet/leukocyte aggregates. In this study, the intracellular signaling events leading to activation of gpIIbIIIa by PLC were investigated. PLC activated surface expressed gpIIbIIIa and mobilized gpIIbIIIa from internal stores. Chelation of intracellular calcium or inhibition of store-operated calcium entry each blocked PLC-induced activation of gpIIbIIIa, whereas inhibition of protein kinase C was without effect. Thus, PLC initiates an "inside-out" signaling cascade that begins with depletion of internal calcium stores, is sustained by an influx of calcium through store-sensitive channels, and culminates in the functional activation of gpIIbIIIa. These findings suggest that calcium-channel blockade and strategies targeting gpIIbIIIa may prevent vascular occlusion, maintain tissue viability, and provide an alternative to radical amputation for patients with gas gangrene.  (+info)

Dual-specificity phosphatases (DUSPs) are a group of enzymes that regulate various cellular processes by removing phosphate groups from specific proteins. They are called "dual-specificity" because they can remove phosphates from both tyrosine and serine/threonine residues on their target proteins, whereas most other protein phosphatases can only remove phosphates from one or the other.

DUSPs play important roles in regulating signal transduction pathways that are involved in various cellular functions such as proliferation, differentiation, survival, and apoptosis. They act as negative regulators of these pathways by dephosphorylating and inactivating key signaling molecules, including mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinases (ERKs).

There are several subfamilies of DUSPs, each with distinct substrate specificities and cellular localizations. Some DUSPs are primarily cytoplasmic, while others are nuclear or associated with the plasma membrane. Dysregulation of DUSP activity has been implicated in various diseases, including cancer, diabetes, and neurodegenerative disorders. Therefore, understanding the function and regulation of DUSPs is important for developing new therapeutic strategies for these diseases.

Dual Specificity Phosphatase 3 (DUSP3), also known as Phosphatase of Regenerating Liver-3 (PRL-3), is a protein that belongs to the dual specificity phosphatase family. These enzymes are capable of dephosphorylating both tyrosine and serine/threonine residues on their target proteins, thereby regulating various cellular processes such as signal transduction, cell growth, differentiation, and survival.

DUSP3 specifically dephosphorylates and inactivates members of the mitogen-activated protein kinase (MAPK) family, including extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38 MAPKs. These MAPKs play crucial roles in various cellular responses to external stimuli, such as growth factors, hormones, and stress. By negatively regulating MAPK signaling, DUSP3 helps maintain the balance of these pathways and prevents excessive or aberrant activation.

Dysregulation of DUSP3 has been implicated in several diseases, including cancer. Overexpression of DUSP3 has been observed in various tumor types, where it may contribute to tumor progression by promoting cell proliferation, survival, and metastasis. On the other hand, loss or downregulation of DUSP3 has also been associated with tumorigenesis, suggesting a complex role for this phosphatase in cancer development and progression.

Dual specificity phosphatase 6 (DUSP6), also known as MAP kinase phosphatase 3 (MKP3), is a type of enzyme that belongs to the dual specificity phosphatase family. These enzymes are capable of removing phosphate groups from both tyrosine and threonine/serine residues on their target proteins, including mitogen-activated protein kinases (MAPKs).

DUSP6 specifically dephosphorylates and inactivates extracellular signal-regulated kinase 1 and 2 (ERK1/2), which are MAPKs that play crucial roles in various cellular processes such as proliferation, differentiation, and survival. By negatively regulating ERK1/2 signaling, DUSP6 helps maintain the balance of this pathway and prevents excessive or aberrant activation, which can contribute to diseases like cancer.

DUSP6 is primarily localized in the nucleus and is involved in various cellular responses, including the negative feedback regulation of ERK1/2 signaling upon growth factor stimulation. Dysregulation of DUSP6 has been implicated in several pathological conditions, including cancer and neurological disorders.

Dual Specificity Phosphatase 1 (DUSP1), also known as MAP Kinase Phosphatase 1 (MKP-1), is a protein that plays a crucial role in the negative regulation of cell signaling pathways. It is a member of the dual specificity phosphatase family, which can dephosphorylate both tyrosine and serine/threonine residues on its target proteins.

DUSP1 specifically dephosphorylates and inactivates members of the mitogen-activated protein kinase (MAPK) family, including extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38 MAPKs. These MAPK signaling pathways are involved in various cellular processes such as proliferation, differentiation, survival, and apoptosis.

DUSP1 is rapidly induced in response to various stimuli, including growth factors, cytokines, and stress signals. Its expression helps maintain the balance of MAPK signaling, preventing excessive or prolonged activation that could lead to cellular dysfunction and diseases such as cancer, inflammation, and neurodegeneration.

In summary, Dual Specificity Phosphatase 1 (DUSP1) is a protein that negatively regulates MAPK signaling pathways by dephosphorylating and inactivating ERKs, JNKs, and p38 MAPKs. Its expression is critical for maintaining the proper balance of cell signaling and preventing the development of various diseases.

Mitogen-Activated Protein Kinase Phosphatases (MAPK Phosphatases or MAPKPs) are a group of enzymes that play a crucial role in the regulation of Mitogen-Activated Protein Kinase (MAPK) signaling pathways. MAPKs are serine/threonine protein kinases involved in various cellular processes, including proliferation, differentiation, and apoptosis.

MAPK Phosphatases dephosphorylate and inactivate both the threonine and tyrosine residues of MAPKs, thereby acting as negative regulators of MAPK signaling cascades. There are three major subfamilies of MAPK Phosphatases:

1. DUSPs (Dual Specificity Phosphatases) - also known as MKPs (MAP Kinase Phosphatases)
2. CDC14s
3. PTENs (Phosphatase and Tensin Homologs)

Each subfamily has distinct substrate specificities, cellular localizations, and regulatory mechanisms. Dysregulation of MAPK Phosphatases can lead to various pathological conditions, such as cancer, inflammation, and neurodegenerative diseases. Therefore, understanding the function and regulation of MAPK Phosphatases is essential for developing novel therapeutic strategies targeting MAPK signaling pathways.

Protein Tyrosine Phosphatases (PTPs) are a group of enzymes that play a crucial role in the regulation of various cellular processes, including cell growth, differentiation, and signal transduction. PTPs function by removing phosphate groups from tyrosine residues on proteins, thereby counteracting the effects of tyrosine kinases, which add phosphate groups to tyrosine residues to activate proteins.

PTPs are classified into several subfamilies based on their structure and function, including classical PTPs, dual-specificity PTPs (DSPs), and low molecular weight PTPs (LMW-PTPs). Each subfamily has distinct substrate specificities and regulatory mechanisms.

Classical PTPs are further divided into receptor-like PTPs (RPTPs) and non-receptor PTPs (NRPTPs). RPTPs contain a transmembrane domain and extracellular regions that mediate cell-cell interactions, while NRPTPs are soluble enzymes located in the cytoplasm.

DSPs can dephosphorylate both tyrosine and serine/threonine residues on proteins and play a critical role in regulating various signaling pathways, including the mitogen-activated protein kinase (MAPK) pathway.

LMW-PTPs are a group of small molecular weight PTPs that localize to different cellular compartments, such as the endoplasmic reticulum and mitochondria, and regulate various cellular processes, including protein folding and apoptosis.

Overall, PTPs play a critical role in maintaining the balance of phosphorylation and dephosphorylation events in cells, and dysregulation of PTP activity has been implicated in various diseases, including cancer, diabetes, and neurological disorders.

Phosphoprotein phosphatases (PPPs) are a family of enzymes that play a crucial role in the regulation of various cellular processes by removing phosphate groups from serine, threonine, and tyrosine residues on proteins. Phosphorylation is a post-translational modification that regulates protein function, localization, and stability, and dephosphorylation by PPPs is essential for maintaining the balance of this regulation.

The PPP family includes several subfamilies, such as PP1, PP2A, PP2B (also known as calcineurin), PP4, PP5, and PP6. Each subfamily has distinct substrate specificities and regulatory mechanisms. For example, PP1 and PP2A are involved in the regulation of metabolism, signal transduction, and cell cycle progression, while PP2B is involved in immune response and calcium signaling.

Dysregulation of PPPs has been implicated in various diseases, including cancer, neurodegenerative disorders, and cardiovascular disease. Therefore, understanding the function and regulation of PPPs is important for developing therapeutic strategies to target these diseases.

CDC25 phosphatases are a group of enzymes that play crucial roles in the regulation of the cell cycle, which is the series of events that cells undergo as they grow and divide. Specifically, CDC25 phosphatases function to remove inhibitory phosphates from certain cyclin-dependent kinases (CDKs), thereby activating them and allowing the cell cycle to progress.

There are three main types of CDC25 phosphatases in humans, known as CDC25A, CDC25B, and CDC25C. These enzymes are named after the original yeast homolog, called Cdc25, which was discovered to be essential for cell cycle progression.

CDC25 phosphatases are tightly regulated during the cell cycle, with their activity being controlled by various mechanisms such as phosphorylation, protein-protein interactions, and subcellular localization. Dysregulation of CDC25 phosphatases has been implicated in several human diseases, including cancer, where they can contribute to uncontrolled cell growth and division. Therefore, understanding the functions and regulation of CDC25 phosphatases is an important area of research in molecular biology and medicine.

Protein Phosphatase 1 (PP1) is a type of serine/threonine protein phosphatase that plays a crucial role in the regulation of various cellular processes, including metabolism, signal transduction, and cell cycle progression. PP1 functions by removing phosphate groups from specific serine and threonine residues on target proteins, thereby reversing the effects of protein kinases and controlling protein activity, localization, and stability.

PP1 is a highly conserved enzyme found in eukaryotic cells and is composed of a catalytic subunit associated with one or more regulatory subunits that determine its substrate specificity, subcellular localization, and regulation. The human genome encodes several isoforms of the PP1 catalytic subunit, including PP1α, PP1β/δ, and PP1γ, which share a high degree of sequence similarity and functional redundancy.

PP1 has been implicated in various physiological processes, such as muscle contraction, glycogen metabolism, DNA replication, transcription, and RNA processing. Dysregulation of PP1 activity has been associated with several pathological conditions, including neurodegenerative diseases, cancer, and diabetes. Therefore, understanding the molecular mechanisms that regulate PP1 function is essential for developing novel therapeutic strategies to treat these disorders.

Protein Tyrosine Phosphatases, Non-Receptor (PTPNs) are a type of enzymes that play a crucial role in the regulation of various cellular processes by removing phosphate groups from tyrosine residues of proteins. Unlike receptor protein tyrosine phosphatases, PTPNs do not have a transmembrane domain and are located in the cytoplasm. They are involved in several signaling pathways that control cell growth, differentiation, migration, and survival. Dysregulation of PTPN function has been implicated in various diseases, including cancer, diabetes, and neurological disorders.

Substrate specificity in the context of medical biochemistry and enzymology refers to the ability of an enzyme to selectively bind and catalyze a chemical reaction with a particular substrate (or a group of similar substrates) while discriminating against other molecules that are not substrates. This specificity arises from the three-dimensional structure of the enzyme, which has evolved to match the shape, charge distribution, and functional groups of its physiological substrate(s).

Substrate specificity is a fundamental property of enzymes that enables them to carry out highly selective chemical transformations in the complex cellular environment. The active site of an enzyme, where the catalysis takes place, has a unique conformation that complements the shape and charge distribution of its substrate(s). This ensures efficient recognition, binding, and conversion of the substrate into the desired product while minimizing unwanted side reactions with other molecules.

Substrate specificity can be categorized as:

1. Absolute specificity: An enzyme that can only act on a single substrate or a very narrow group of structurally related substrates, showing no activity towards any other molecule.
2. Group specificity: An enzyme that prefers to act on a particular functional group or class of compounds but can still accommodate minor structural variations within the substrate.
3. Broad or promiscuous specificity: An enzyme that can act on a wide range of structurally diverse substrates, albeit with varying catalytic efficiencies.

Understanding substrate specificity is crucial for elucidating enzymatic mechanisms, designing drugs that target specific enzymes or pathways, and developing biotechnological applications that rely on the controlled manipulation of enzyme activities.

Phosphoric monoester hydrolases are a class of enzymes that catalyze the hydrolysis of phosphoric monoesters into alcohol and phosphate. This class of enzymes includes several specific enzymes, such as phosphatases and nucleotidases, which play important roles in various biological processes, including metabolism, signal transduction, and regulation of cellular processes.

Phosphoric monoester hydrolases are classified under the EC number 3.1.3 by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB). The enzymes in this class share a common mechanism of action, which involves the nucleophilic attack on the phosphorus atom of the substrate by a serine or cysteine residue in the active site of the enzyme. This results in the formation of a covalent intermediate, which is then hydrolyzed to release the products.

Phosphoric monoester hydrolases are important therapeutic targets for the development of drugs that can modulate their activity. For example, inhibitors of phosphoric monoester hydrolases have been developed as potential treatments for various diseases, including cancer, neurodegenerative disorders, and infectious diseases.

Dual specificity phosphatase 2 (DUSP2) is a type of enzyme that belongs to the dual specificity phosphatase family. This enzyme is also known as VHR (Vaccinia H1-related phosphatase) and plays a crucial role in regulating various cellular processes, including signal transduction pathways, by removing phosphate groups from both tyrosine and serine/threonine residues of proteins. DUSP2 is primarily located in the nucleus and has been shown to dephosphorylate and negatively regulate mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK) and p38 MAPK, which are involved in cell growth, differentiation, and stress responses. Dysregulation of DUSP2 has been implicated in several pathological conditions, including cancer and neurological disorders.

Lafora Disease is a rare, inherited, progressive myoclonus epilepsy (PME) disorder. It is characterized by the accumulation of abnormal glycogen particles called Lafora Bodies in nerve cells (neurons) throughout the body, most prominently in the brain and muscle tissue.

The disease typically begins in late childhood or early adolescence with symptoms such as:
- Seizures (myoclonic jerks, tonic-clonic seizures, absence seizures)
- Visual hallucinations
- Dementia
- Speech difficulties
- Muscle stiffness and rigidity
- Difficulty walking and coordinating movements

Lafora Disease is caused by mutations in either the EPM2A or NHLRC1 gene, which play a role in regulating glycogen metabolism. The disease is inherited in an autosomal recessive manner, meaning that an individual must inherit two copies of the mutated gene (one from each parent) to develop the condition.

There is currently no cure for Lafora Disease and treatment is focused on managing symptoms with anti-epileptic drugs and supportive care. The prognosis for individuals with Lafora Disease is poor, with most individuals not surviving beyond their mid-20s.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

Mitogen-activated protein kinase (MAPK) signaling system is a crucial pathway for the transmission and regulation of various cellular responses in eukaryotic cells. It plays a significant role in several biological processes, including proliferation, differentiation, apoptosis, inflammation, and stress response. The MAPK cascade consists of three main components: MAP kinase kinase kinase (MAP3K or MEKK), MAP kinase kinase (MAP2K or MEK), and MAP kinase (MAPK).

The signaling system is activated by various extracellular stimuli, such as growth factors, cytokines, hormones, and stress signals. These stimuli initiate a phosphorylation cascade that ultimately leads to the activation of MAPKs. The activated MAPKs then translocate into the nucleus and regulate gene expression by phosphorylating various transcription factors and other regulatory proteins.

There are four major MAPK families: extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK1/2/3), p38 MAPKs (p38α/β/γ/δ), and ERK5. Each family has distinct functions, substrates, and upstream activators. Dysregulation of the MAPK signaling system can lead to various diseases, including cancer, diabetes, cardiovascular diseases, and neurological disorders. Therefore, understanding the molecular mechanisms underlying this pathway is crucial for developing novel therapeutic strategies.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

JNK (c-Jun N-terminal kinase) Mitogen-Activated Protein Kinases are a subgroup of the Ser/Thr protein kinases that are activated by stress stimuli and play important roles in various cellular processes, including inflammation, apoptosis, and differentiation. They are involved in the regulation of gene expression through phosphorylation of transcription factors such as c-Jun. JNKs are activated by a variety of upstream kinases, including MAP2Ks (MKK4/SEK1 and MKK7), which are in turn activated by MAP3Ks (such as ASK1, MEKK1, MLKs, and TAK1). JNK signaling pathways have been implicated in various diseases, including cancer, neurodegenerative disorders, and inflammatory diseases.

Immediate-early proteins (IEPs) are a class of regulatory proteins that play a crucial role in the early stages of gene expression in viral infection and cellular stress responses. These proteins are synthesized rapidly, without the need for new protein synthesis, after the induction of immediate-early genes (IEGs).

In the context of viral infection, IEPs are often the first proteins produced by the virus upon entry into the host cell. They function as transcription factors that bind to specific DNA sequences and regulate the expression of early and late viral genes required for replication and packaging of the viral genome.

IEPs can also be involved in modulating host cell signaling pathways, altering cell cycle progression, and inducing apoptosis (programmed cell death). Dysregulation of IEPs has been implicated in various diseases, including cancer and neurological disorders.

It is important to note that the term "immediate-early proteins" is primarily used in the context of viral infection, while in other contexts such as cellular stress responses or oncogene activation, these proteins may be referred to by different names, such as "early response genes" or "transcription factors."

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Cell cycle proteins are a group of regulatory proteins that control the progression of the cell cycle, which is the series of events that take place in a eukaryotic cell leading to its division and duplication. These proteins can be classified into several categories based on their functions during different stages of the cell cycle.

The major groups of cell cycle proteins include:

1. Cyclin-dependent kinases (CDKs): CDKs are serine/threonine protein kinases that regulate key transitions in the cell cycle. They require binding to a regulatory subunit called cyclin to become active. Different CDK-cyclin complexes are activated at different stages of the cell cycle.
2. Cyclins: Cyclins are a family of regulatory proteins that bind and activate CDKs. Their levels fluctuate throughout the cell cycle, with specific cyclins expressed during particular phases. For example, cyclin D is important for the G1 to S phase transition, while cyclin B is required for the G2 to M phase transition.
3. CDK inhibitors (CKIs): CKIs are regulatory proteins that bind to and inhibit CDKs, thereby preventing their activation. CKIs can be divided into two main families: the INK4 family and the Cip/Kip family. INK4 family members specifically inhibit CDK4 and CDK6, while Cip/Kip family members inhibit a broader range of CDKs.
4. Anaphase-promoting complex/cyclosome (APC/C): APC/C is an E3 ubiquitin ligase that targets specific proteins for degradation by the 26S proteasome. During the cell cycle, APC/C regulates the metaphase to anaphase transition and the exit from mitosis by targeting securin and cyclin B for degradation.
5. Other regulatory proteins: Several other proteins play crucial roles in regulating the cell cycle, such as p53, a transcription factor that responds to DNA damage and arrests the cell cycle, and the polo-like kinases (PLKs), which are involved in various aspects of mitosis.

Overall, cell cycle proteins work together to ensure the proper progression of the cell cycle, maintain genomic stability, and prevent uncontrolled cell growth, which can lead to cancer.

Mitogen-Activated Protein Kinase Kinases (MAP2K or MEK) are a group of protein kinases that play a crucial role in intracellular signal transduction pathways. They are so named because they are activated by mitogens, which are substances that stimulate cell division, and other extracellular signals.

MAP2Ks are positioned upstream of the Mitogen-Activated Protein Kinases (MAPK) in a three-tiered kinase cascade. Once activated, MAP2Ks phosphorylate and activate MAPKs, which then go on to regulate various cellular processes such as proliferation, differentiation, survival, and apoptosis.

There are several subfamilies of MAP2Ks, including MEK1/2, MEK3/6 (also known as MKK3/6), MEK4/7 (also known as MKK4/7), and MEK5. Each MAP2K is specific to activating a particular MAPK, and they are activated by different MAP3Ks (MAP kinase kinase kinases) in response to various extracellular signals.

Dysregulation of the MAPK/MAP2K signaling pathways has been implicated in numerous diseases, including cancer, cardiovascular disease, and neurological disorders. Therefore, targeting these pathways with therapeutic agents has emerged as a promising strategy for treating various diseases.

Mitogen-Activated Protein Kinases (MAPKs) are a family of serine/threonine protein kinases that play crucial roles in various cellular processes, including proliferation, differentiation, transformation, and apoptosis, in response to diverse stimuli such as mitogens, growth factors, hormones, cytokines, and environmental stresses. They are highly conserved across eukaryotes and consist of a three-tiered kinase module composed of MAPK kinase kinases (MAP3Ks), MAPK kinases (MKKs or MAP2Ks), and MAPKs.

Activation of MAPKs occurs through a sequential phosphorylation and activation cascade, where MAP3Ks phosphorylate and activate MKKs, which in turn phosphorylate and activate MAPKs at specific residues (Thr-X-Tyr or Ser-Pro motifs). Once activated, MAPKs can further phosphorylate and regulate various downstream targets, including transcription factors and other protein kinases.

There are four major groups of MAPKs in mammals: extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK1/2/3), p38 MAPKs (p38α/β/γ/δ), and ERK5/BMK1. Each group of MAPKs has distinct upstream activators, downstream targets, and cellular functions, allowing for a high degree of specificity in signal transduction and cellular responses. Dysregulation of MAPK signaling pathways has been implicated in various human diseases, including cancer, diabetes, neurodegenerative disorders, and inflammatory diseases.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

p38 Mitogen-Activated Protein Kinases (p38 MAPKs) are a family of conserved serine-threonine protein kinases that play crucial roles in various cellular processes, including inflammation, immune response, differentiation, apoptosis, and stress responses. They are activated by diverse stimuli such as cytokines, ultraviolet radiation, heat shock, osmotic stress, and lipopolysaccharides (LPS).

Once activated, p38 MAPKs phosphorylate and regulate several downstream targets, including transcription factors and other protein kinases. This regulation leads to the expression of genes involved in inflammation, cell cycle arrest, and apoptosis. Dysregulation of p38 MAPK signaling has been implicated in various diseases, such as cancer, neurodegenerative disorders, and autoimmune diseases. Therefore, p38 MAPKs are considered promising targets for developing new therapeutic strategies to treat these conditions.

COS cells are a type of cell line that are commonly used in molecular biology and genetic research. The name "COS" is an acronym for "CV-1 in Origin," as these cells were originally derived from the African green monkey kidney cell line CV-1. COS cells have been modified through genetic engineering to express high levels of a protein called SV40 large T antigen, which allows them to efficiently take up and replicate exogenous DNA.

There are several different types of COS cells that are commonly used in research, including COS-1, COS-3, and COS-7 cells. These cells are widely used for the production of recombinant proteins, as well as for studies of gene expression, protein localization, and signal transduction.

It is important to note that while COS cells have been a valuable tool in scientific research, they are not without their limitations. For example, because they are derived from monkey kidney cells, there may be differences in the way that human genes are expressed or regulated in these cells compared to human cells. Additionally, because COS cells express SV40 large T antigen, they may have altered cell cycle regulation and other phenotypic changes that could affect experimental results. Therefore, it is important to carefully consider the choice of cell line when designing experiments and interpreting results.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Mitogen-Activated Protein Kinase 1 (MAPK1), also known as Extracellular Signal-Regulated Kinase 2 (ERK2), is a protein kinase that plays a crucial role in intracellular signal transduction pathways. It is a member of the MAPK family, which regulates various cellular processes such as proliferation, differentiation, apoptosis, and stress response.

MAPK1 is activated by a cascade of phosphorylation events initiated by upstream activators like MAPKK (Mitogen-Activated Protein Kinase Kinase) in response to various extracellular signals such as growth factors, hormones, and mitogens. Once activated, MAPK1 phosphorylates downstream targets, including transcription factors and other protein kinases, thereby modulating their activities and ultimately influencing gene expression and cellular responses.

MAPK1 is widely expressed in various tissues and cells, and its dysregulation has been implicated in several pathological conditions, including cancer, inflammation, and neurodegenerative diseases. Therefore, understanding the regulation and function of MAPK1 signaling pathways has important implications for developing therapeutic strategies to treat these disorders.

Acid phosphatase is a type of enzyme that is found in various tissues and organs throughout the body, including the prostate gland, red blood cells, bone, liver, spleen, and kidneys. This enzyme plays a role in several biological processes, such as bone metabolism and the breakdown of molecules like nucleotides and proteins.

Acid phosphatase is classified based on its optimum pH level for activity. Acid phosphatases have an optimal activity at acidic pH levels (below 7.0), while alkaline phosphatases have an optimal activity at basic or alkaline pH levels (above 7.0).

In clinical settings, measuring the level of acid phosphatase in the blood can be useful as a tumor marker for prostate cancer. Elevated acid phosphatase levels may indicate the presence of metastatic prostate cancer or disease progression. However, it is important to note that acid phosphatase is not specific to prostate cancer and can also be elevated in other conditions, such as bone diseases, liver disorders, and some benign conditions. Therefore, acid phosphatase should be interpreted in conjunction with other diagnostic tests and clinical findings for a more accurate diagnosis.

Mitogen-Activated Protein Kinase 3 (MAPK3), also known as extracellular signal-regulated kinase 1 (ERK1), is a serine/threonine protein kinase that plays a crucial role in intracellular signal transduction pathways. It is involved in the regulation of various cellular processes, including proliferation, differentiation, and survival, in response to extracellular stimuli such as growth factors, hormones, and stress.

MAPK3 is activated through a phosphorylation cascade that involves the activation of upstream MAPK kinases (MKK or MEK). Once activated, MAPK3 can phosphorylate and activate various downstream targets, including transcription factors, to regulate gene expression. Dysregulation of MAPK3 signaling has been implicated in several diseases, including cancer and neurological disorders.

Protein Phosphatase 2 (PP2A) is a type of serine/threonine protein phosphatase that plays a crucial role in the regulation of various cellular processes, including signal transduction, cell cycle progression, and metabolism. PP2A is a heterotrimeric enzyme composed of a catalytic subunit (C), a regulatory subunit A (A), and a variable regulatory subunit B (B). The different combinations of the B subunits confer specificity to PP2A, allowing it to regulate a diverse array of cellular targets.

PP2A is responsible for dephosphorylating many proteins that have been previously phosphorylated by protein kinases. This function is essential for maintaining the balance of phosphorylation and dephosphorylation in cells, which is necessary for proper protein function and cell signaling. Dysregulation of PP2A has been implicated in various diseases, including cancer, neurodegenerative disorders, and cardiovascular disease.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Extracellular signal-regulated mitogen-activated protein kinases (ERKs or Extracellular signal-regulated kinases) are a subfamily of the MAPK (mitogen-activated protein kinase) family, which are serine/threonine protein kinases that regulate various cellular processes such as proliferation, differentiation, migration, and survival in response to extracellular signals.

ERKs are activated by a cascade of phosphorylation events initiated by the binding of growth factors, hormones, or other extracellular molecules to their respective receptors. This activation results in the formation of a complex signaling pathway that involves the sequential activation of several protein kinases, including Ras, Raf, MEK (MAPK/ERK kinase), and ERK.

Once activated, ERKs translocate to the nucleus where they phosphorylate and activate various transcription factors, leading to changes in gene expression that ultimately result in the appropriate cellular response. Dysregulation of the ERK signaling pathway has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

Glucose-6-phosphatase is an enzyme that plays a crucial role in the regulation of glucose metabolism. It is primarily located in the endoplasmic reticulum of cells in liver, kidney, and intestinal mucosa. The main function of this enzyme is to remove the phosphate group from glucose-6-phosphate (G6P), converting it into free glucose, which can then be released into the bloodstream and used as a source of energy by cells throughout the body.

The reaction catalyzed by glucose-6-phosphatase is as follows:

Glucose-6-phosphate + H2O → Glucose + Pi (inorganic phosphate)

This enzyme is essential for maintaining normal blood glucose levels, particularly during periods of fasting or starvation. In these situations, the body needs to break down stored glycogen in the liver and convert it into glucose to supply energy to the brain and other vital organs. Glucose-6-phosphatase is a key enzyme in this process, allowing for the release of free glucose into the bloodstream.

Deficiencies or mutations in the gene encoding glucose-6-phosphatase can lead to several metabolic disorders, such as glycogen storage disease type I (von Gierke's disease) and other related conditions. These disorders are characterized by an accumulation of glycogen and/or fat in various organs, leading to impaired glucose metabolism, growth retardation, and increased risk of infection and liver dysfunction.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

Antibody specificity refers to the ability of an antibody to bind to a specific epitope or antigenic determinant on an antigen. Each antibody has a unique structure that allows it to recognize and bind to a specific region of an antigen, typically a small portion of the antigen's surface made up of amino acids or sugar residues. This highly specific binding is mediated by the variable regions of the antibody's heavy and light chains, which form a pocket that recognizes and binds to the epitope.

The specificity of an antibody is determined by its unique complementarity-determining regions (CDRs), which are loops of amino acids located in the variable domains of both the heavy and light chains. The CDRs form a binding site that recognizes and interacts with the epitope on the antigen. The precise fit between the antibody's binding site and the epitope is critical for specificity, as even small changes in the structure of either can prevent binding.

Antibody specificity is important in immune responses because it allows the immune system to distinguish between self and non-self antigens. This helps to prevent autoimmune reactions where the immune system attacks the body's own cells and tissues. Antibody specificity also plays a crucial role in diagnostic tests, such as ELISA assays, where antibodies are used to detect the presence of specific antigens in biological samples.

Protein-Tyrosine Kinases (PTKs) are a type of enzyme that plays a crucial role in various cellular functions, including signal transduction, cell growth, differentiation, and metabolism. They catalyze the transfer of a phosphate group from ATP to the tyrosine residues of proteins, thereby modifying their activity, localization, or interaction with other molecules.

PTKs can be divided into two main categories: receptor tyrosine kinases (RTKs) and non-receptor tyrosine kinases (NRTKs). RTKs are transmembrane proteins that become activated upon binding to specific ligands, such as growth factors or hormones. NRTKs, on the other hand, are intracellular enzymes that can be activated by various signals, including receptor-mediated signaling and intracellular messengers.

Dysregulation of PTK activity has been implicated in several diseases, such as cancer, diabetes, and inflammatory disorders. Therefore, PTKs are important targets for drug development and therapy.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

Protein Tyrosine Phosphatase, Non-Receptor Type 11 (PTPN11) is a gene that encodes for the protein tyrosine phosphatase SHP-2. This enzyme regulates various cellular processes, including cell growth, differentiation, and migration, by controlling the balance of phosphorylation and dephosphorylation of proteins involved in signal transduction pathways. Mutations in PTPN11 have been associated with several human diseases, most notably Noonan syndrome and its related disorders, as well as certain types of leukemia.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Protein Tyrosine Phosphatase, Non-Receptor Type 1 (PTPN1) is a type of enzyme that belongs to the protein tyrosine phosphatase (PTP) family. PTPs play crucial roles in regulating various cellular processes by removing phosphate groups from phosphorylated tyrosine residues on proteins, thereby controlling the activity of many proteins involved in signal transduction pathways.

PTPN1, also known as PTP1B, is a non-receptor type PTP that is localized to the endoplasmic reticulum and cytosol of cells. It has been extensively studied due to its important role in regulating various cellular signaling pathways, including those involved in metabolism, cell growth, differentiation, and survival.

PTPN1 dephosphorylates several key signaling molecules, such as the insulin receptor, epidermal growth factor receptor (EGFR), and Janus kinase 2 (JAK2). By negatively regulating these signaling pathways, PTPN1 acts as a tumor suppressor and plays a role in preventing excessive cell growth and survival. However, dysregulation of PTPN1 has been implicated in various diseases, including diabetes, obesity, and cancer.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Protein Tyrosine Phosphatase, Non-Receptor Type 6 (PTPN6) is a protein encoded by the PTPN6 gene in humans. It belongs to the family of protein tyrosine phosphatases (PTPs), which are enzymes that remove phosphate groups from phosphorylated tyrosine residues on proteins. This regulation of protein phosphorylation is critical for various cellular processes, including signal transduction, cell growth, and differentiation.

PTPN6, also known as SHP-1 (Src Homology 2 domain-containing Protein Tyrosine Phosphatase-1), is a non-receptor type PTP, meaning it does not have a transmembrane domain and is found in the cytosol. It contains two SH2 domains at its N-terminus, which allow it to bind to specific phosphotyrosine-containing motifs on target proteins, and a catalytic PTP domain at its C-terminus, responsible for its enzymatic activity.

PTPN6 plays essential roles in hematopoiesis, immune responses, and cancer. It negatively regulates various signaling pathways, including those downstream of cytokine receptors, growth factor receptors, and T-cell receptors. Dysregulation of PTPN6 has been implicated in several diseases, such as leukemia, lymphoma, and autoimmune disorders.

Okadaic acid is a type of toxin that is produced by certain species of marine algae, including Dinophysis and Prorocentrum. It is a potent inhibitor of protein phosphatases 1 and 2A, which are important enzymes that help regulate cellular processes in the body.

Okadaic acid can accumulate in shellfish that feed on these algae, and consumption of contaminated seafood can lead to a serious illness known as diarrhetic shellfish poisoning (DSP). Symptoms of DSP include nausea, vomiting, diarrhea, and abdominal cramps. In severe cases, it can also cause neurological symptoms such as dizziness, disorientation, and tingling or numbness in the lips, tongue, and fingers.

It is important to note that okadaic acid is not only a marine toxin but also used in scientific research as a tool to study the role of protein phosphatases in cellular processes. However, exposure to this compound should be avoided due to its toxic effects.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Myosin-Light-Chain Phosphatase (MLCP) is an enzyme complex that plays a crucial role in the regulation of muscle contraction and relaxation. It is responsible for dephosphorylating the myosin light chains, which are key regulatory components of the contractile apparatus in muscles.

The phosphorylation state of the myosin light chains regulates the interaction between actin and myosin filaments, which is necessary for muscle contraction. When the myosin light chains are phosphorylated, they bind more strongly to actin, leading to increased contractile force. Conversely, when the myosin light chains are dephosphorylated by MLCP, the interaction between actin and myosin is weakened, allowing for muscle relaxation.

MLCP is composed of three subunits: a catalytic subunit (PP1cδ), a regulatory subunit (MYPT1), and a small subunit (M20). The regulatory subunit contains binding sites for various signaling molecules that can modulate the activity of MLCP, such as calcium/calmodulin, protein kinase C, and Rho-associated protein kinase (ROCK). Dysregulation of MLCP has been implicated in various muscle disorders, including hypertrophic cardiomyopathy, dilated cardiomyopathy, and muscle atrophy.

Protein kinases are a group of enzymes that play a crucial role in many cellular processes by adding phosphate groups to other proteins, a process known as phosphorylation. This modification can activate or deactivate the target protein's function, thereby regulating various signaling pathways within the cell. Protein kinases are essential for numerous biological functions, including metabolism, signal transduction, cell cycle progression, and apoptosis (programmed cell death). Abnormal regulation of protein kinases has been implicated in several diseases, such as cancer, diabetes, and neurological disorders.

A catalytic domain is a portion or region within a protein that contains the active site, where the chemical reactions necessary for the protein's function are carried out. This domain is responsible for the catalysis of biological reactions, hence the name "catalytic domain." The catalytic domain is often composed of specific amino acid residues that come together to form the active site, creating a unique three-dimensional structure that enables the protein to perform its specific function.

In enzymes, for example, the catalytic domain contains the residues that bind and convert substrates into products through chemical reactions. In receptors, the catalytic domain may be involved in signal transduction or other regulatory functions. Understanding the structure and function of catalytic domains is crucial to understanding the mechanisms of protein function and can provide valuable insights for drug design and therapeutic interventions.

MAPK kinase 7 (MKK7) is a serine/threonine protein kinase that is also known as MAP2K7 or Mitogen-activated protein kinase kinase 7. It is a member of the MAPK kinase family, which are protein kinases that activate MAPKs (mitogen-activated protein kinases) by phosphorylating them on specific serine and threonine residues.

MKK7 specifically activates c-Jun N-terminal kinase (JNK), a subgroup of the MAPK family, by phosphorylating it on threonine and tyrosine residues. JNK plays important roles in various cellular processes such as proliferation, differentiation, survival, and apoptosis, and its activity is regulated by upstream kinases including MKK7.

MKK7 has been implicated in several signaling pathways that are activated in response to stress signals, inflammatory cytokines, and growth factors. Dysregulation of the MKK7-JNK signaling pathway has been associated with various diseases, including cancer, neurodegenerative disorders, and cardiovascular disease.

Tyrosine is an non-essential amino acid, which means that it can be synthesized by the human body from another amino acid called phenylalanine. Its name is derived from the Greek word "tyros," which means cheese, as it was first isolated from casein, a protein found in cheese.

Tyrosine plays a crucial role in the production of several important substances in the body, including neurotransmitters such as dopamine, norepinephrine, and epinephrine, which are involved in various physiological processes, including mood regulation, stress response, and cognitive functions. It also serves as a precursor to melanin, the pigment responsible for skin, hair, and eye color.

In addition, tyrosine is involved in the structure of proteins and is essential for normal growth and development. Some individuals may require tyrosine supplementation if they have a genetic disorder that affects tyrosine metabolism or if they are phenylketonurics (PKU), who cannot metabolize phenylalanine, which can lead to elevated tyrosine levels in the blood. However, it is important to consult with a healthcare professional before starting any supplementation regimen.

Phosphorylase phosphatase is an enzyme that plays a role in the regulation of glycogen metabolism. It works by removing phosphate groups from glycogen phosphorylase, which is an enzyme that breaks down glycogen into glucose-1-phosphate. The dephosphorylation of glycogen phosphorylase by phosphorylase phosphatase leads to the inactivation of the enzyme and therefore slows down the breakdown of glycogen. Phosphorylase phosphatase is itself regulated by various hormones and signaling molecules, allowing for fine-tuning of glycogen metabolism in response to changes in energy demand.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

Amino acid motifs are recurring patterns or sequences of amino acids in a protein molecule. These motifs can be identified through various sequence analysis techniques and often have functional or structural significance. They can be as short as two amino acids in length, but typically contain at least three to five residues.

Some common examples of amino acid motifs include:

1. Active site motifs: These are specific sequences of amino acids that form the active site of an enzyme and participate in catalyzing chemical reactions. For example, the catalytic triad in serine proteases consists of three residues (serine, histidine, and aspartate) that work together to hydrolyze peptide bonds.
2. Signal peptide motifs: These are sequences of amino acids that target proteins for secretion or localization to specific organelles within the cell. For example, a typical signal peptide consists of a positively charged n-region, a hydrophobic h-region, and a polar c-region that directs the protein to the endoplasmic reticulum membrane for translocation.
3. Zinc finger motifs: These are structural domains that contain conserved sequences of amino acids that bind zinc ions and play important roles in DNA recognition and regulation of gene expression.
4. Transmembrane motifs: These are sequences of hydrophobic amino acids that span the lipid bilayer of cell membranes and anchor transmembrane proteins in place.
5. Phosphorylation sites: These are specific serine, threonine, or tyrosine residues that can be phosphorylated by protein kinases to regulate protein function.

Understanding amino acid motifs is important for predicting protein structure and function, as well as for identifying potential drug targets in disease-associated proteins.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Calcium-calmodulin-dependent protein kinases (CAMKs) are a family of enzymes that play a crucial role in intracellular signaling pathways. They are activated by the binding of calcium ions and calmodulin, a ubiquitous calcium-binding protein, to their regulatory domain.

Once activated, CAMKs phosphorylate specific serine or threonine residues on target proteins, thereby modulating their activity, localization, or stability. This post-translational modification is essential for various cellular processes, including synaptic plasticity, gene expression, metabolism, and cell cycle regulation.

There are several subfamilies of CAMKs, including CaMKI, CaMKII, CaMKIII (also known as CaMKIV), and CaMK kinase (CaMKK). Each subfamily has distinct structural features, substrate specificity, and regulatory mechanisms. Dysregulation of CAMK signaling has been implicated in various pathological conditions, such as neurodegenerative diseases, cancer, and cardiovascular disorders.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Serine is an amino acid, which is a building block of proteins. More specifically, it is a non-essential amino acid, meaning that the body can produce it from other compounds, and it does not need to be obtained through diet. Serine plays important roles in the body, such as contributing to the formation of the protective covering of nerve fibers (myelin sheath), helping to synthesize another amino acid called tryptophan, and taking part in the metabolism of fatty acids. It is also involved in the production of muscle tissues, the immune system, and the forming of cell structures. Serine can be found in various foods such as soy, eggs, cheese, meat, peanuts, lentils, and many others.

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst, which remains unchanged at the end of the reaction. A catalyst lowers the activation energy required for the reaction to occur, thereby allowing the reaction to proceed more quickly and efficiently. This can be particularly important in biological systems, where enzymes act as catalysts to speed up metabolic reactions that are essential for life.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Receptor-like protein tyrosine phosphatases, class 2 (RPTPs-Class 2) are a subfamily of receptor-like protein tyrosine phosphatases that play crucial roles in various cellular processes, including cell growth, differentiation, and migration. These transmembrane enzymes are characterized by the presence of two extracellular fibronectin type III domains, a single membrane-spanning region, and one or two intracellular protein tyrosine phosphatase (PTP) domains.

RPTPs-Class 2 include four members in humans: PTPRD, PTPRF, PTPRG, and PTPRH. These enzymes can dephosphorylate and modulate the activity of various proteins involved in signal transduction pathways by removing phosphate groups from tyrosine residues. By doing so, RPTPs-Class 2 help regulate the balance between kinase-mediated phosphorylation and phosphatase-mediated dephosphorylation events, which is essential for proper cellular function.

Mutations in RPTPs-Class 2 genes have been associated with various human diseases, including cancer, neurological disorders, and developmental abnormalities. Therefore, understanding the structure, regulation, and functions of these enzymes can provide valuable insights into disease mechanisms and potential therapeutic strategies.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

MAP Kinase Kinase 4 (MAP2K4 or MKK4) is a serine/threonine protein kinase that plays a crucial role in intracellular signal transduction pathways, particularly the mitogen-activated protein kinase (MAPK) cascades. These cascades are involved in various cellular processes such as proliferation, differentiation, survival, and apoptosis in response to extracellular stimuli like cytokines, growth factors, and stress signals.

MAP2K4 specifically activates the c-Jun N-terminal kinase (JNK) pathway by phosphorylating and activating JNK proteins. The activation of JNK leads to the phosphorylation and regulation of various transcription factors, ultimately influencing gene expression and cellular responses. Dysregulation of MAP2K4 has been implicated in several diseases, including cancer and inflammatory disorders.

Threonine is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through the diet. Its chemical formula is HO2CCH(NH2)CH(OH)CH3. Threonine plays a crucial role in various biological processes, including protein synthesis, immune function, and fat metabolism. It is particularly important for maintaining the structural integrity of proteins, as it is often found in their hydroxyl-containing regions. Foods rich in threonine include animal proteins such as meat, dairy products, and eggs, as well as plant-based sources like lentils and soybeans.

Bispecific antibodies are a type of artificial protein that have been engineered to recognize and bind to two different antigens simultaneously. They are created by combining two separate antibody molecules, each with a unique binding site, into a single entity. This allows the bispecific antibody to link two cells or proteins together, bringing them into close proximity and facilitating various biological processes.

In the context of medicine and immunotherapy, bispecific antibodies are being investigated as a potential treatment for cancer and other diseases. For example, a bispecific antibody can be designed to recognize a specific tumor-associated antigen on the surface of cancer cells, while also binding to a component of the immune system, such as a T cell. This brings the T cell into close contact with the cancer cell, activating the immune system and triggering an immune response against the tumor.

Bispecific antibodies have several potential advantages over traditional monoclonal antibodies, which only recognize a single antigen. By targeting two different epitopes or antigens, bispecific antibodies can increase the specificity and affinity of the interaction, reducing off-target effects and improving therapeutic efficacy. Additionally, bispecific antibodies can bring together multiple components of the immune system, amplifying the immune response and enhancing the destruction of cancer cells.

Overall, bispecific antibodies represent a promising new class of therapeutics that have the potential to revolutionize the treatment of cancer and other diseases. However, further research is needed to fully understand their mechanisms of action and optimize their clinical use.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Cyclic ethers are a type of organic compound that contain an ether functional group (-O-) within a cyclic (ring-shaped) structure. In a cyclic ether, one or more oxygen atoms are part of the ring, which can consist of various numbers of carbon atoms. The simplest example of a cyclic ether is oxirane, also known as ethylene oxide, which contains a three-membered ring with two carbon atoms and one oxygen atom.

Cyclic ethers have diverse applications in the chemical industry, including their use as building blocks for the synthesis of other chemicals, pharmaceuticals, and materials. Some cyclic ethers, like tetrahydrofuran (THF), are common solvents due to their ability to dissolve a wide range of organic compounds. However, some cyclic ethers can be hazardous or toxic, so they must be handled with care during laboratory work and industrial processes.

Phosphatidate phosphatase is an enzyme that plays a crucial role in the metabolism of lipids, particularly in the synthesis of glycerophospholipids, which are key components of cell membranes.

The term "phosphatidate" refers to a type of lipid molecule known as a diacylglycerol phosphate. This molecule contains two fatty acid chains attached to a glycerol backbone, with a phosphate group also attached to the glycerol.

Phosphatidate phosphatase functions to remove the phosphate group from phosphatidate, converting it into diacylglycerol (DAG). This reaction is an important step in the biosynthesis of glycerophospholipids, as DAG can be further metabolized to produce various types of these lipids, including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol.

There are two main types of phosphatidate phosphatase enzymes: type 1 and type 2. Type 1 phosphatidate phosphatase is primarily located in the cytosol and is involved in the synthesis of triacylglycerols, which are stored as energy reserves in cells. Type 2 phosphatidate phosphatase, on the other hand, is found on the endoplasmic reticulum membrane and plays a key role in the biosynthesis of glycerophospholipids.

Deficiencies or mutations in phosphatidate phosphatase enzymes can lead to various metabolic disorders, including some forms of lipodystrophy, which are characterized by abnormalities in fat metabolism and distribution.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Glutathione transferases (GSTs) are a group of enzymes involved in the detoxification of xenobiotics and endogenous compounds. They facilitate the conjugation of these compounds with glutathione, a tripeptide consisting of cysteine, glutamic acid, and glycine, which results in more water-soluble products that can be easily excreted from the body.

GSTs play a crucial role in protecting cells against oxidative stress and chemical injury by neutralizing reactive electrophilic species and peroxides. They are found in various tissues, including the liver, kidneys, lungs, and intestines, and are classified into several families based on their structure and function.

Abnormalities in GST activity have been associated with increased susceptibility to certain diseases, such as cancer, neurological disorders, and respiratory diseases. Therefore, GSTs have become a subject of interest in toxicology, pharmacology, and clinical research.

MAPKKK1 or Mitogen-Activated Protein Kinase Kinase Kinase 1 is a serine/threonine protein kinase that belongs to the MAP3K family. It plays a crucial role in intracellular signal transduction pathways, particularly in the MAPK/ERK cascade, which is involved in various cellular processes such as proliferation, differentiation, and survival.

MAPKKK1 activates MAPKKs (Mitogen-Activated Protein Kinase Kinases) through phosphorylation of specific serine and threonine residues. In turn, activated MAPKKs phosphorylate and activate MAPKs (Mitogen-Activated Protein Kinases), which then regulate the activity of various transcription factors and other downstream targets to elicit appropriate cellular responses.

Mutations in MAPKKK1 have been implicated in several human diseases, including cancer and developmental disorders. Therefore, understanding its function and regulation is essential for developing novel therapeutic strategies to treat these conditions.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Isoenzymes, also known as isoforms, are multiple forms of an enzyme that catalyze the same chemical reaction but differ in their amino acid sequence, structure, and/or kinetic properties. They are encoded by different genes or alternative splicing of the same gene. Isoenzymes can be found in various tissues and organs, and they play a crucial role in biological processes such as metabolism, detoxification, and cell signaling. Measurement of isoenzyme levels in body fluids (such as blood) can provide valuable diagnostic information for certain medical conditions, including tissue damage, inflammation, and various diseases.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

A "gene library" is not a recognized term in medical genetics or molecular biology. However, the closest concept that might be referred to by this term is a "genomic library," which is a collection of DNA clones that represent the entire genetic material of an organism. These libraries are used for various research purposes, such as identifying and studying specific genes or gene functions.

'Cercopithecus aethiops' is the scientific name for the monkey species more commonly known as the green monkey. It belongs to the family Cercopithecidae and is native to western Africa. The green monkey is omnivorous, with a diet that includes fruits, nuts, seeds, insects, and small vertebrates. They are known for their distinctive greenish-brown fur and long tail. Green monkeys are also important animal models in biomedical research due to their susceptibility to certain diseases, such as SIV (simian immunodeficiency virus), which is closely related to HIV.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases ... Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases ... "Entrez Gene: Dual specificity phosphatase 8". Retrieved 2017-09-08. Hink RL, Hokanson JE, Shah I, Long JC, Goldman D, Sikela JM ... Dual specificity phosphatase 8 is a protein that in humans is encoded by the DUSP8 gene. ...
... (DUSP; DSP) is a form of phosphatase that can act upon tyrosine or serine/threonine residues. ... The main difference between tyrosine-specific phosphatases and dual-specificity phosphatases lies in the width of the latter ... Dual-Specificity+Phosphatases at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Denu JM, Dixon JE (June ... There are several families of dual-specificity phosphatase enzymes in mammals. All share a similar catalytic mechanism, by ...
Dual specificity phosphatases (DUSPs) also belong to the family of protein thyrosine phosphatases. MKPs are grouped into type I ... Tanoue, T. (9 July 1999). "Molecular Cloning and Characterization of a Novel Dual Specificity Phosphatase, MKP-5". Journal of ... Alonso, A.; Saxena, M.; Williams, S.; Mustelin, T. (20 November 2000). "Inhibitory Role for Dual Specificity Phosphatase VHR in ... MKPs are also known as dual-specificity phosphatases (DUSPs) because they deactivate MAPK by dephosphorylating the Threonine ...
... dual specificity phosphatase 1". Tanoue T, Yamamoto T, Maeda R, Nishida E (Jul 2001). "A Novel MAPK phosphatase MKP-7 ... Dual specificity protein phosphatase 1 is an enzyme that in humans is encoded by the DUSP1 gene. The expression of DUSP1 gene ... Martell KJ, Angelotti T, Ullrich A (Feb 1998). "The "VH1-like" dual-specificity protein tyrosine phosphatases". Molecules and ... Abraham SM, Clark AR (Dec 2006). "Dual-specificity phosphatase 1: a critical regulator of innate immune responses". Biochemical ...
The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases ... Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases ... Dual specificity protein phosphatase 5 is an enzyme that in humans is encoded by the DUSP5 gene. ... "Entrez Gene: DUSP5 dual specificity phosphatase 5". Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput ...
The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases ... Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases ... "Entrez Gene: DUSP12 dual specificity phosphatase 12". Hasstedt SJ, Chu WS, Das SK, et al. (2008). "Type 2 diabetes ... Dual specificity protein phosphatase 12 is an enzyme that in humans is encoded by the DUSP12 gene. ...
... dual specificity phosphatase 16". Tanoue, T; Yamamoto T; Maeda R; Nishida E (Jul 2001). "A Novel MAPK phosphatase MKP-7 ... dual-specificity kinases phosphorylate both threonine and tyrosine residues in MAPK TXY motifs. MKPs are dual-specificity ... Dual specificity protein phosphatase 16 is an enzyme that in humans is encoded by the DUSP16 gene. The activation of mitogen- ... Willoughby EA, Collins MK (Jul 2005). "Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold ...
The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases ... Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases ... "Entrez Gene: DUSP2 dual specificity phosphatase 2". Wu J, Jin YJ, Calaf GM, et al. (2007). "PAC1 is a direct transcription ... Dual specificity protein phosphatase 2 is an enzyme that in humans is encoded by the DUSP2 gene. ...
Ishibashi T, Bottaro DP, Chan A, Miki T, Aaronson SA (Dec 1992). "Expression cloning of a human dual-specificity phosphatase". ... Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (Jun 1996). "Receptor specificity of the ... A fibroblast growth factor family member with unusual target cell specificity". Annals of the New York Academy of Sciences. 638 ... 3.0.CO;2-G. PMID 9369951. S2CID 45221064. Ishibashi T, Tanaka T, Nibu K, Ishimoto S, Kaga K (Oct 1998). "Keratinocyte growth ...
Dual specificity protein phosphatase CDC14B is an enzyme that in humans is encoded by the CDC14B gene. The protein encoded by ... Cho HP, Liu Y, Gomez M, Dunlap J, Tyers M, Wang Y (June 2005). "The dual-specificity phosphatase CDC14B bundles and stabilizes ... this gene is a member of the dual specificity protein tyrosine phosphatase family. This protein is highly similar to ... Mailand N, Lukas C, Kaiser BK, Jackson PK, Bartek J, Lukas J (April 2002). "Deregulated human Cdc14A phosphatase disrupts ...
Hannon GJ, Casso D, Beach D (March 1994). "KAP: a dual specificity phosphatase that interacts with cyclin-dependent kinases". ... Brown NR, Noble ME, Endicott JA, Johnson LN (November 1999). "The structural basis for specificity of substrate and recruitment ... Cheng A, Kaldis P, Solomon MJ (November 2000). "Dephosphorylation of human cyclin-dependent kinases by protein phosphatase type ... "NIPP1-mediated interaction of protein phosphatase-1 with CDC5L, a regulator of pre-mRNA splicing and mitotic entry". The ...
Geng Q, Xhabija B, Knuckle C, Bonham CA, Vacratsis PO (January 2017). "The Atypical Dual Specificity Phosphatase hYVH1 ... Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L (February 2013). "Dual specificity kinase DYRK3 ... Fujimura K, Kano F, Murata M (February 2008). "Dual localization of the RNA binding protein CUGBP-1 to stress granule and ... 685 (1-2): 61-69. doi:10.1016/j.mrfmmm.2009.09.013. PMID 19800894. Das R, Schwintzer L, Vinopal S, Aguado Roca E, Sylvester M, ...
The protein encoded by this gene belongs to the dual specificity protein phosphatase family. It was identified as a cyclin- ... Hannon, G J; Casso D; Beach D (Mar 1994). "KAP: a dual specificity phosphatase that interacts with cyclin-dependent kinases". ... Hannon GJ, Casso D, Beach D (1994). "KAP: a dual specificity phosphatase that interacts with cyclin-dependent kinases". Proc. ... "Entrez Gene: CDKN3 cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity phosphatase)". Yeh, Chau-Ting; Lu Su- ...
Dual specificity protein phosphatase 10 is an enzyme that in humans is encoded by the DUSP10 gene. Dual specificity protein ... Different members of this family of dual specificity phosphatases show distinct substrate specificities for MAPKs, different ... "Entrez Gene: DUSP10 dual specificity phosphatase 10". Tanoue, T; Moriguchi T; Nishida E (Jul 1999). "Molecular cloning and ... Teng CH, Huang WN, Meng TC (2007). "Several dual specificity phosphatases coordinate to control the magnitude and duration of ...
This gene encodes a member of the myotubularin dual specificity protein phosphatase gene family. The encoded protein is ... "Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human". Hum Mol Genet. 7 (11): 1703 ... "A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast". Nat ... 13 (2): 175-82. doi:10.1038/ng0696-175. PMID 8640223. S2CID 30028223. Laporte J, Blondeau F, Buj-Bello A, Tentler D, Kretz C, ...
"Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human". Hum. Mol. Genet. 7 (11): ... 5-bisphosphate 3-phosphatase or phosphatidylinositol-3-phosphate phosphatase is a protein that in humans is encoded by the ... 5-bisphosphate 3-phosphatase; AltName: Full=Phosphatidylinositol-3-phosphate phosphatase". Retrieved March 7, 2020. Laporte J, ... This gene is a member of the myotubularin family and encodes a putative tyrosine phosphatase. The protein also contains a GRAM ...
2007). "Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution". Proteins ... Dual specificity protein phosphatase 22 is an enzyme that in humans is encoded by the DUSP22 gene. DUSP22 has been shown to ... "Entrez Gene: DUSP22 dual specificity phosphatase 22". Aoyama, K; Nagata M; Oshima K; Matsuda T; Aoki N (Jul 2001). "Molecular ... 2002). "Inhibition of T cell antigen receptor signaling by VHR-related MKPX (VHX), a new dual specificity phosphatase related ...
1998). "Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human". Hum. Mol. Genet. 7 ... 1996). "A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast". ... Members of this family contain the consensus sequence for the active site of protein tyrosine phosphatases. Alternatively ... Kim SA, Taylor GS, Torgersen KM, Dixon JE (2002). "Myotubularin and MTMR2, phosphatidylinositol 3-phosphatases mutated in ...
Similarly, dual-specificity tyrosine phosphatases can dephosphorylate not only tyrosine residues, but also serine residues. ... Thus, one phosphatase can exhibit the qualities of multiple phosphatase families. Acid phosphatase Alkaline phosphatase ... Phosphatases are able to dephosphorylate seemingly different sites on their substrates with great specificity. Identifying the ... Phosphatases are classified by substrate specificity and sequence homology in catalytic domains. Despite their classification ...
PTPs are tyrosine phosphatases, so are able to remove these phosphates and prevent signalling. Three major PTPs are SHP-1, SHP- ... Zhang, E. E.; Chapeau, E.; Hagihara, K.; Feng, G.-S. (2004). "Neuronal Shp2 tyrosine phosphatase controls energy balance and ... Xu, Dan; Qu, Cheng-Kui (2008). "Protein tyrosine phosphatases in the JAK/STAT pathway". Frontiers in Bioscience. 13 (1): 4925- ... Neel, Benjamin G.; Gu, Haihua; Pao, Lily (2003). "The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell ...
Dual specificity protein phosphatase 19 is an enzyme that in humans is encoded by the DUSP19 gene. DUSP19 has been shown to ... "Entrez Gene: DUSP19 dual specificity phosphatase 19". Zama T, Aoki R, Kamimoto T, Inoue K, Ikeda Y, Hagiwara M (June 2002). " ... Zama T, Aoki R, Kamimoto T, Inoue K, Ikeda Y, Hagiwara M (June 2002). "A novel dual specificity phosphatase SKRP1 interacts ... Zama T, Aoki R, Kamimoto T, Inoue K, Ikeda Y, Hagiwara M (June 2002). "A novel dual specificity phosphatase SKRP1 interacts ...
"Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human". Hum. Mol. Genet. 7 (11): ... Firestein R, Cleary ML (2001). "Pseudo-phosphatase Sbf1 contains an N-terminal GEF homology domain that modulates its growth ... a catalytically inactive phosphatase". Proc. Natl. Acad. Sci. U.S.A. 100 (8): 4492-7. Bibcode:2003PNAS..100.4492K. doi:10.1073/ ... a catalytically inactive phosphatase". Proc. Natl. Acad. Sci. U.S.A. 100 (8): 4492-7. Bibcode:2003PNAS..100.4492K. doi:10.1073/ ...
EPM2A codes for the protein laforin, a dual-specificity phosphatase that acts on carbohydrates by taking phosphates off. NHLRC1 ... Protein phosphatase 1, and malin. As defective enzyme molecules participate in the production of these molecules (GSK-3beta, ... caused by loss of function mutations in either the laforin glycogen phosphatase gene (EPM2A) or malin E3 ubiquitin ligase gene ... Graph 2' shows the percentage distribution of the cases from either an EPM2A gene mutation or an EPM2B (NHLRC1) gene mutation. ...
"Discovery and Biological Evaluation of a New Family of Potent Inhibitors of the Dual Specificity Protein Phosphatase Cdc25". ... American Chemical Society (ACS). 2 (8): 1165-1168. doi:10.1021/ol005777b. ISSN 1523-7060. PMID 10804580. Lazo, John S.; Aslan, ...
CDC14A encodes a dual-specificity phosphatase implicated in cell cycle control and also interacts with interphase centrosomes. ... J. Bembenek & H. Yu (December 2001). "Regulation of the anaphase-promoting complex by the dual specificity phosphatase human ... "Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA". Science. 314 (5807): 1903-1908. doi: ... "Deregulated human Cdc14A phosphatase disrupts centrosome separation and chromosome segregation". Nature Cell Biology. 4 (4): ...
M-phase inducer phosphatase: CDC25A; CDC25B; CDC25C; Dual specificity protein phosphatase: DUSP; DUSP1; DUSP2; DUSP4; DUSP5; ... including Cdc25 phosphatase catalytic domain. non-catalytic domains of eukaryotic dual-specificity MAPK-phosphatases non- ... This domain is found as a single copy in other proteins, including phosphatases and ubiquitin C-terminal hydrolases. This ... catalytic domains of yeast PTP-type MAPK-phosphatases non-catalytic domains of yeast Ubp4, Ubp5, Ubp7 non-catalytic domains of ...
1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating ... Pettiford SM, Herbst R (February 2000). "The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP ... kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity". J. ... "Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase". Nat. Cell Biol. 1 (5): 305-11. ...
Dual specificity protein kinase CLK1 is an enzyme that in humans is encoded by the CLK1 gene. This gene encodes a member of the ... phosphorylate and activate the tyrosine phosphatase, PTP-1B". J. Biol. Chem. 274 (38): 26697-704. doi:10.1074/jbc.274.38.26697 ... Menegay HJ, Myers MP, Moeslein FM, Landreth GE (2000). "Biochemical characterization and localization of the dual specificity ... family of dual specificity protein kinases. In the cell nucleus, the encoded protein phosphorylates serine/arginine-rich ...
... encodes the inositol polyphosphate 4-phosphatase type II, a dual specificity phosphatase. INPP4B is involved in ... Inositol polyphosphate-4-phosphatase, type II, 105kDa is a protein that in humans is encoded by the INPP4B gene. ... Munday AD, Norris FA, Caldwell KK, Brown S, Majerus PW, Mitchell CA (March 1999). "The inositol polyphosphate 4-phosphatase ... "Entrez Gene: Inositol polyphosphate-4-phosphatase, type II, 105kDa". Retrieved 2012-07-24. Lopez SM, Hodgson MC, Packianathan C ...
The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases ... Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases ... "Entrez Gene: DUSP6 dual specificity phosphatase 6". Muda M, Boschert U, Dickinson R, Martinou JC, Martinou I, Camps M, Schlegel ... Dual specificity phosphatase 6 (DUSP6) is an enzyme that in humans is encoded by the DUSP6 gene. ...
The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases ... Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases ... "Entrez Gene: Dual specificity phosphatase 8". Retrieved 2017-09-08. Hink RL, Hokanson JE, Shah I, Long JC, Goldman D, Sikela JM ... Dual specificity phosphatase 8 is a protein that in humans is encoded by the DUSP8 gene. ...
HUMAN VH1-RELATED DUAL-SPECIFICITY PHOSPHATASE VHR. A, B. 184. Homo sapiens. Mutation(s): 0 Gene Names: DUSP3, VHR. EC: 3.1. ... Crystal structure of the dual specificity protein phosphatase VHR.. Yuvaniyama, J., Denu, J.M., Dixon, J.E., Saper, M.A.. (1996 ... Dual specificity protein phosphatases (DSPs) regulate mitogenic signal transduction and control the cell cycle. Here, the ... HUMAN VH1-RELATED DUAL-SPECIFICITY PHOSPHATASE. *PDB DOI: https://doi.org/10.2210/pdb1VHR/pdb ...
DUSP9 dual specificity phosphatase 9 [Homo sapiens] DUSP9 dual specificity phosphatase 9 [Homo sapiens]. Gene ID:1852 ... a Dual-Specificity Phosphatase with a Key Role in Cell Biology and Human Diseases. Title: DUSP9, a Dual-Specificity Phosphatase ... dual specificity protein phosphatase 9. Names. map kinase phosphatase 4. mitogen-activated protein kinase phosphatase 4. serine ... DSPc; Dual specificity phosphatases (DSP); Ser/Thr and Tyr protein phosphatases. Structurally similar to tyrosine-specific ...
Selected quality suppliers for anti-Dual Specificity Phosphatase 3 antibodies. ... Order monoclonal and polyclonal Dual Specificity Phosphatase 3 antibodies for many applications. ... Aliases for Dual Specificity Phosphatase 3 Antibodies. dual specificity phosphatase 3 (DUSP3) Antibodies. dual specificity ... Dual Specificity Phosphatase 3 Antibodies by Binding Specificity. Find Dual Specificity Phosphatase 3 Antibodies with a ...
Dual specificity phosphatase 1. 1.92. 5.66. EGR1. Early growth response 1. 4.79. 8.57. ... Table 2. Comparison of gene expression changes between microarray and qRT-PCR in A172 cells infected with West Nile virus* ...
Dual Specificity Phosphatase Cdc25B, Mouse. 19. 0. 0. 0. Clustered By Gene (2). Code. Description. Substances. Purchasable. ... Dual Specificity Phosphatase Cdc25B, Human. 240. 48. 6. 2. MPIP2_MOUSE. P30306. CHEMBL2723. ... Dual Specificity Phosphatase Cdc25B (cluster #1 Of 2), Eukaryotic (187 Compounds) Code:. MPIP2-1-E. Compound Summary. ... Dual Specificity Phosphatase Cdc25B (cluster #2 Of 2), Eukaryotic. 86. 0. 0. 0. ...
Dual specificity phosphatase 8. 5.05. 87.30. ENSG00000130766. SESN2. Sestrin 2. 4.84. 593.42. ... Protein phosphatase 2, regulatory subunit B (PR 52). −2.65. −26.85. 72 h. ... Glycerol kinase 2. −17.49. −22.37. 72 h. ENSG00000164588. HCN1. Hyperpolarization activated cyclic nucleotide-gated potassium ... 2. Results. 2.1. HCV JFH-1 Infection of Huh 7.5 Cells. Triplicate cultures of Huh 7.5 cells were infected with HCV JFH-1 for 2 ...
In addition, the presence of EVs reduced inflammatory responses in Pam3CSK4-treated endothelial cells and HEK Dual reporter ... Genes that are upregulated by GC treatment, such as dual-specificity phosphatase 1 (DUSP1), GC-induced leucine zipper (GILZ), ... dual-specificity phosphatase-1; EVs, extracellular vesicles; FCS, fetal calf serum; FITC, fluorescein isothiocyanate; flTLR, ... HEK-Dual™ hTLR2 reporter cells express TLR2, an NF-κB/AP1-inducible secreted embryonic alkaline phosphatase (SEAP) reporter ...
Selective Cdc25 dual specificity phosphatase inhibitor. Cited in 1 publication. ... 180-fold selectivity over VH1-related dual-specificity phosphatase and protein tyrosine phosphatase 1b. Inhibits carcinoma cell ... NSC 95397 is a potent and selective irreversible inhibitor of Cdc25 dual specificity phosphatases (Ki values are 32, 96 and 40 ... Lazo et al (2002) Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Mol ...
... dual specificity phosphatases (dTyr and dSer/dThr). *(3) Cdc25 phosphatases (dTyr and/or dThr) ... Crystal structure of acid phosphatase 1 (Acp1) from Mus musculus. 2wja. Crystal structure of the tyrosine phosphatase Wzb from ... CRYSTAL STRUCTURE OF A HUMAN LOW MOLECULAR WEIGHT PHOSPHOTYROSYL PHOSPHATASE. IMPLICATIONS FOR SUBSTRATE SPECIFICITY. ... Low molecular weight phosphotyrosine protein phosphatase (P24666) (SMART). OMIM:171500: ACID PHOSPHATASE 1, SOLUBLE; ACP1. ...
... dual specificity protein phosphatase 5, DUSP5) (see Table 2). Accordingly, there was strong enrichment of cancer-related ... EGFR, MAPK and DUSP5 are closely linked within the same pathway as phosphatase DUSP5, whose expression is induced by MAPK ... glucose-6-phosphatase, albumin (ALB), alpha- 1 -antitrypsin (ATT, also known as SERPINA1), cytokeratin 8 (CK8), cytokeratin 18 ... Activity of liver enzymes such as glucose-6-phosphatase, CYP3A4 and/or CYP1A1 ; ...
dual specificity phosphatase 12 [Source:ZFIN;Acc:Z... [more]. dusp6. 8.727e-20. 43.85. dual specificity phosphatase 6 [Source: ... dual specificity phosphatase 6 [Source:NCBI gene;A... [more]. dusp6. 4.441e-20. 35.91. dual specificity phosphatase 6 [Source: ... dual specificity phosphatase 7 [Source:NCBI gene;A... [more]. dusp6. 1.920e-19. 43.75. dual specificity phosphatase 6 [Source: ... dual specificity phosphatase 12 [Source:ZFIN;Acc:Z... [more]. dusp12. 1.550e-44. 34.44. dual specificity phosphatase 12 [Source ...
... protein phosphatase 2A; PKC, protein kinase C; Tesk1, testicular protein kinase 1; CK, casein kinase; DYRK1A, dual-specificity ... 4). Kinases like dual-specificity tyrosine-phosphorylated and regulated kinase 1A (DYRK1A), testicular protein kinase 1 (TESK1 ... and MAPK-interacting kinase 1 (Mnk1) and phosphatases like PTEN, protein phosphatase 2 A (PP2A), Src homology-2-containing ... phosphotyrosine phosphatase (SHP2), and protein tyrosine phosphatase 1B (PTP1B) regulate the biological activity of Sprouties [ ...
In addition, eHSP70 increased the expression of the GR target dual-specificity phosphatase 1 (DUSP-1). In doing so, eHSP70 ... Extracellular Heat Shock Protein 70 Increases the Glucocorticoid Receptor and Dual-Specificity Phosphatase 1 via Toll-like ... RESULTS: Treatment with CDM at concentrations of 2 000 ng/mL and 4 000 ng/mL up-regulated IL-6, TNF-α, IFN-γ and IL-8 ... TNF-α/Pg-LPS could significantly increase the expression of HBD-2, HBD-3, IL-8, MCP-1, and p65, all of which were reduced by ...
... and the gene dual specificity phosphatase 22 (DUSP22) showed the same pattern in loss of methylation, amongst breachers with ... 9. Measure I. Auditory and visual impairments in patients with blast-related traumatic brain injury: effect of dual sensory ... Caroline M. Wilson1,2 Yongchao Ge3 Jeffrey Nemes4 Christina LaValle4 Angela Boutté4 Walter Carr4,5 Gary Kamimori4 Fatemeh ... FIGURE 2. Figure 2. Six significantly differentially methylated regions (DMRs) identified using the combined p-value tool in ...
Category: Dual-Specificity Phosphatase. M. M. Site-directed mutagenesis of and and signifies that the arousal from the ... whereas prephosphorylation from the phosphatase complicated by PKA inhibits the PKC phosphorylation of Spo7. Collectively, this ... nRIM1mt = 6; nwild-type = 9. Download Shape 3-2, DOCX document Figure 3-3. Overview of check- and p-values for amplitude and ... in residues that flank the diphosphate binding site perturb the ratios from the main and minor items observed upon result of 2 ...
... dual specificity phosphatase; LMW, low molecular weight; MKP, MAPK phosphatase; PKC, protein kinase C; PTP, protein tyrosine ... dual specificity phosphatase; LMW, low molecular weight; MKP, MAPK phosphatase; PKC, protein kinase C; PTP, protein tyrosine ... Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human ... Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human ...
HES1-mediated dual specificity phosphatase 1 repression and subsequent ERK activation (79); iv) HES1-mediated phosphatase and ... a dual variable domain immunoglobulin (DVD-Ig) targeting DLL4 and VEGF, demonstrates superior efficacy and favorable safety ... receptor-type tyrosine-protein phosphatase F and TRIO and F-actin-binding protein, which activates RAC1 to maintain vascular ... Notch4 (Int3), fibroblast growth factor (Fgf) 3 (Int2), Fgf4, R-spondin (Rspo) 2 (Int7), Rspo3, Wnt1 (Int1) and Wnt3 (Int4) are ...
... has been shown to upregulate expression of glucocorticoid-induced leucine zipper and dual-specificity phosphatase-1 (DUSP1/MKP1 ... Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J Exp Med. 2006 ... Femurs and lumbar vertebrae were also collected for dual energy X-ray absorptiometry, peripheral quantitative computed ... Figure 2. Prednisolone and dipyridamole combine to suppress acute inflammation in vivo. (a) Lewis rats were treated orally with ...
... placing them among the dual-specificity phos- slgnals (DSPs).. ) The net reaction is represented by signxls changes in ... Cdc14 phosphatases dephosphory- late SerThr as well as Tyr residues in artificial substrates in vitro [1,2], ... ξ Λ MP ξ 36 2. Area ofSa(r) }Sa(r) Thus u(a) is equal to the average value of u(x) on any sphere centered at a. ... 2 × 106 a. The note, by the signalls, still appears within Outlook, so if you happen to be working in Outlook, you can still ...
Recruitable PTEN dual-specificity phosphatase * Depositing Lab. Gerry Hammond * Publication. Goulden et al J Cell Biol. 2019 ...
DHEA acts as an inhibitor of these kinases through dephosphorylation via a DHEA-enhanced dual specificity protein phosphatase [ ... Ridings PC, Windsor AC, Jutila MA, Blocher CR, Fisher BJ, Sholley MM, Sugerman HJ, Fowler AA III: A dual-binding antibody to E ... negatively regulates the p38 mitogen-activated protein kinase pathway by a novel mitogen-activated protein kinase phosphatase. ... Table 2 Values of relative vascular cell adhesion molecule-1 expression. Full size table. ...
Where indicated (lanes 5 and 10), ARP2/3 was further incubated with dual-specificity Antarctic phosphatase. ARP2/3 complex ... Antibody specificity was demonstrated by detection of different targets fused to GST tag in transiently transfected lysates ... The Erbin PDZ domain binds with high affinity and specificity to the carboxyl termini of delta-catenin and ARVCF. ... Autofluorescence (AF) and secondary antibody stain (alpha-mouse) served as controls for specificity. Except for AF image, ...
Wu, G. S. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy 12, 1791-1803. ... 2B). The protein encoded by DUSP1 is a phosphatase that has dual specificity for amino acids such as tyrosine and threonine. ... 2A and 3). Interestingly, only one gene, dual specificity phosphatase 1 (DUSP1), was common for 24H and 48H, but surprisingly, ... Hoppstadter, J. & Ammit, A. J. Role of dual-specificity phosphatase 1 in glucocorticoid-driven anti-inflammatory responses. ...
Dual-Specificity Phosphatase OK carried out the synthesis of compound GGTI P61A6 and helped to draft the manuscript. * Post ... Second, we demonstrate the specificity of P61A6 by showing that a RhoA mutant whose biological activity NFBD1 is impartial of ... These studies indicated that pyroptosis may perform a dual part in promoting and inhibiting tumor cell growth in different ... To pipes ICVI, 2 ml sheath alternative was added, and pipes had been centrifuged at 652 g at area heat range for 5 min. The ...
Dual-Specificity Phosphatase Supplementary MaterialsSupplementary documents 1, 2, 3 and 4 41598_2019_42686_MOESM1_ESM. * Post ... Supplementary MaterialsSupplementary documents 1, 2, 3 and 4 41598_2019_42686_MOESM1_ESM. castrated at 8, 16, 24 and 32 wk and ...
Dual specificity phosphatase 6; Fcgr1: Fc Fragment of IgG, High Affinity Ia, Receptor; Atf7: Activating Transcription Factor 7 ... Figure 2: Genome-wide gene expression analyses in resting wild type and FURIN deficient peritoneal macrophages. A. The 19 most ... 2. Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nature Reviews Drug Discovery. 2012 ... C. FURIN deficient or littermate wild type bone marrow macrophages (n = 2/genotype) were left unstimulated or were stimulated ...
dual specificity phosphatase 12. Image. No pdb structure. Gene Ontology Annotations. Cellular Component. *Nucleus ...
dual specificity phosphatase 2. 2q11. CV:PGCnp. GSMA_I. PMID:cooccur. 11320. MGAT4A. GNT-IV , GNT-IVA , GnT-4a. mannosyl (alpha ... dual specificity phosphatase 4. 8p12-p11. CV:GWASdb. CV:PGCnp. DMG:Jaffe_2016. GSMA_IIA. GSMA_IIE. G2Cdb.humanNRC. G2Cdb. ... dual specificity phosphatase 10. 1q41. CV:GWASdb. CV:PGCnp. G2Cdb.humanPSD. G2Cdb.humanPSP. ... protein phosphatase 1 regulatory subunit 15B. 1q32.1. CV:PGCnp. DMG:Jaffe_2016. DMG:Wockner_2014. ...
Abbreviations: DUSP2: dual-specificity phosphatase-2; VEGF-C: vascular endothelial growth factor-C; EV: extracellular vesicles ... Here, we investigate the role of dual-specificity phosphatase-2 (DUSP2)-vascular endothelial growth factor-C (VEGF-C) axis in ... 2. Phage transcriptional regulator X (PtrX)-mediated augmentation of toxin production and virulence in Clostridioides difficile ... Suppression of Anx-A1 or its receptor, formyl peptide receptor 2 (FPR2), on the cell surface and gE or Anx-A1 on HSV-1 ...
  • Signal transduction pathways such as the Mitogen Activated Protein Kinase (MAPK) cascade responds to wide range of external stimuli to trigger growth, cell-division and proliferation[ 1 , 2 ]. (biomedcentral.com)
  • Figure 1 shows the schematics of a three layer MAPK cascade where each layer of the cascade is dephosphorylated by a specific phosphatase. (biomedcentral.com)
  • ERK1/2 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases. (ecmbio.com)
  • Raf family members will activate MEK1/2 followed by phosphorylation of ERK1/2 which acts on a large variety of targets. (springer.com)
  • Prephosphorylation of Nem1CSpo7 by PKC inhibits the PKA phosphorylation of Nem1, whereas prephosphorylation from the phosphatase complicated by PKA inhibits the PKC phosphorylation of Spo7. (phytid.org)
  • Levels of cellular protein phosphorylation are modulated both by protein kinases and phosphatases. (rupress.org)
  • To fully understand this complex and essential regulatory process, the kinases and phosphatases mediating the changes in cellular phosphorylation must be identified and characterized. (rupress.org)
  • M3K is activated upon single phosphorylation whereas M2K and MK are both activated upon double phosphorylation[ 2 - 4 ]. (biomedcentral.com)
  • Parallel to the phosphorylation by kinases, phosphatases present in the cellular volume dephosphorylates the phosphorylated kinases. (biomedcentral.com)
  • The mitogen-activated protein kinases (MAPKs) ERK2/MAPK1 and ERK1/MAPK3 (hereafter referred to collectively as ERK1/2) are activated by phosphorylation in a canonical Raf MEK ERK kinase cascade in response to most growth factors and cytokines, and ERK1/2 phosphorylate more than 150 cytosolic and nuclear substrates [5], [6]. (scienza-under-18.org)
  • Accordingly, cells treated with MG132 or other proteasome inhibitors exhibit higher expression of MKP3/DUSP6, an ERK1/2-specific DUSP, accompanied by lower levels of ERK phosphorylation stimulated by growth factors [12]C[14]. (scienza-under-18.org)
  • For a given level of MEK activation, ERK phosphorylation is reduced, consistent with the proposed upregulation of ERK phosphatase activity, Carnosol but maximal MEK activation is also diminished. (scienza-under-18.org)
  • Mainly in phosphorylation by specific phosphatases. (reageno.com)
  • A shallow active site pocket in VHR allows for the hydrolysis of phosphorylated serine, threonine, or tyrosine protein residues, whereas the deeper active site of protein tyrosine phosphatases (PTPs) restricts substrate specificity to only phosphotyrosine. (rcsb.org)
  • Displays 125 - 180-fold selectivity over VH1-related dual-specificity phosphatase and protein tyrosine phosphatase 1b. (tocris.com)
  • dual specificity tyrosine phosphorylatio. (gsea-msigdb.org)
  • Alkaline phosphatase has been clinically available for several years as a marker for bone metabolism. (medscape.com)
  • In adults with normal liver function, approximately 50% of the total alkaline phosphatase activity arises from the liver and 50% from the bone. (medscape.com)
  • The development of immunoassay-based markers with monoclonal antibodies directed to the bone-specific isoform of alkaline phosphatase has improved specificity and sensitivity. (medscape.com)
  • Changes in bone-specific alkaline phosphatase can lag by several weeks. (medscape.com)
  • The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. (wikipedia.org)
  • Find Dual Specificity Phosphatase 3 Antibodies for a variety of species such as anti-Human Dual Specificity Phosphatase 3, anti-Mouse Dual Specificity Phosphatase 3, anti-Rat Dual Specificity Phosphatase 3. (antibodies-online.com)
  • Find Dual Specificity Phosphatase 3 Antibodies validated for a specific application such as WB, ELISA, IHC, IF (cc). (antibodies-online.com)
  • Find Dual Specificity Phosphatase 3 Antibodies with a specific Host. (antibodies-online.com)
  • Find available monoclonal or polyclonal Dual Specificity Phosphatase 3 Antibodies. (antibodies-online.com)
  • Find Dual Specificity Phosphatase 3 Antibodies with a specific conjugate such as Biotin, FITC, HRP. (antibodies-online.com)
  • JEV virus-like particle immunization in mice further confirmed that such cross-reactive antibodies, mainly IgG3 isotype, can be induced and proliferate through heterologous dengue virus (DENV) serotype 2 virus-like particle stimulation. (bvsalud.org)
  • Antibodies against total ERK1/2, MEK1/2, Akt1/2/3 and MKP3 and phospho-specific antibodies against Rabbit Polyclonal to PHF1 PDGF -receptor pTyr751, Akt pSer473, ERK pThr202/pTyr204, and MEK pSer217/pSer221 were from Cell Signaling Technology (Beverly, MA). (scienza-under-18.org)
  • Immunocytochemical labeling of phosphorylated ERK1 in paraformaldehyde-fixed and NP-40-permeabilized rat A7r5 cells treated with calyculin A. The fixed cells were labeled with mouse monoclonal antibodies to anti-ERK1 (EM2331) and anti-ERK1/2 (Thr-202/Tyr-204) (EM2061). (ecmbio.com)
  • Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. (wikipedia.org)
  • A "recognition region," connecting helix alpha1 to strand beta1, may determine differences in substrate specificity between VHR, the PTPs, and other DSPs. (rcsb.org)
  • Cox-2 inhibitors reduce cancer but have side effects. (uam.es)
  • NSC 95397 is a potent and selective irreversible inhibitor of Cdc25 dual specificity phosphatases (K i values are 32, 96 and 40 nM for inhibition of Cdc25A, -B and -C respectively). (tocris.com)
  • These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. (wikipedia.org)
  • Although the importance of kinases in this process has long been recognized, an appreciation for the complex and fundamental role of phosphatases is more recent. (rupress.org)
  • Through extensive biochemical and genetic analysis, we now know that pathways are not simply switched on with kinases and off with phosphatases. (rupress.org)
  • Furthermore, kinases and phosphatases may work together to modulate the strength of a signal. (rupress.org)
  • Adding further complexity to this picture is the fact that both kinases and phosphatases can function in signaling networks where multiple kinases and phosphatases contribute to the outcome of a pathway. (rupress.org)
  • A variety of approaches, including biochemical purification, gene isolation by homology, and genetic screens, have been successfully used for the identification of putative protein kinases and phosphatases. (rupress.org)
  • The phosphatases P1, P2 and P3 dephosphorylate the kinases M3K, M2K and MK respectively. (biomedcentral.com)
  • Receptor dimerization and autophosphorylation attracts proteins containing Src homology 2 (SH2) or phosphotyrosine binding (PTB) domains including adaptor proteins like FRS2 and GRB2. (springer.com)
  • Poly-ubiquitinated proteins, targeted by E3 ubiquitin ligases, can be acknowledged and degraded by the 26S proteasome, a multi-subunit, Carnosol multi-catalytic protease machine [2]. (scienza-under-18.org)
  • Dual-specificity phosphatase 10 (Dusp10) controls stress response to serum deprivation and confluence arrest and binds and dephosphorylates Yes-associated protein 1 (YAP) in colorectal cancer progression. (uam.es)
  • Inhibits carcinoma cell growth and blocks G 2 /M phase transition in vitro . (tocris.com)
  • The augmentation of the two models was done to incorporate the nuclear-cytoplasmic shuttling of cascade components followed by induction of a nuclear phosphatase. (biomedcentral.com)
  • Beta 2-microglobulin is present in small amounts in serum, csf, and urine of normal people, and to a much greater degree in the urine and plasma of patients with tubular proteinemia, renal failure, or kidney transplants. (lookformedical.com)
  • The functional maturation of dormant pro-proteins is catalyzed by the proprotein convertase subtilisin/kexin (PCSK) enzymes (PCSK1-2, FURIN, PCSK5-7, membrane-bound transcription factor site 1, PCSK9) [ 1 ]. (oncotarget.com)
  • Aberrant expression of this gene is associated with type 2 diabetes and cancer progression in several cell types. (nih.gov)
  • Expression of Dual-Specificity Phosphatase 9 in Placenta and Its Relationship with Gestational Diabetes Mellitus. (nih.gov)
  • Violin plots show distribution of expression levels for dual specificity protein phosphatase 12 (SMED30022703) in cells (dots) of each of the 12 neoblast clusters. (stowers.org)
  • Expression of dual specificity protein phosphatase 12 (SMED30022703) in the t-SNE clustered sub-lethally irradiated X1 and X2 cells. (stowers.org)
  • Violin plots show distribution of expression levels for dual specificity protein phosphatase 12 (SMED30022703) in cells (dots) of each of the 10 clusters of sub-leathally irradiated X1 and X2 cells. (stowers.org)
  • Meanwhile, macrophage inflammatory protein 2 (MIP-2) expression levels were upregulated in nontumoral liver tissue from the end of Week 13 of CDAA-HF-T(-) feeding to the end of Week 63. (bvsalud.org)
  • Multiple ERK1/2 MAPKKKs have been identified, including members of the Raf family as well as Mos and Tpl2/Cot. (ecmbio.com)
  • The 2 major isoforms, TCFL5 and CHA, will result from alternative promoter usage and differential transcription, rather than from gene splicing. (uam.es)
  • Injuries from exposure to explosive blasts rose dramatically during Operation Iraqi Freedom and Operation Enduring Freedom (OIF, OEF) due to the increased use of improvised explosive devices (IEDs) in military settings and in civilian populations through acts of terrorism ( 1 , 2 ), which have motivated investigations of blast-related neurotrauma. (frontiersin.org)
  • The bill called for a review of the cognitive effects of blast exposure including both the effects of successive blast events, and the feasibility of understanding the cumulative (lifetime or annual) limits of blast exposure ( 2 ). (frontiersin.org)
  • Several downstream targets of ERK1/2 have been identified, including p90RSK and the transcription factor Elk-1. (ecmbio.com)
  • The ERK1/2 (p44/42) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines. (ecmbio.com)
  • The blots were probed with anti-ERK1 (C-terminal region) (lanes 1, 2, & 3) or anti-ERK1/2 (Thr-202/Tyr-204) (lanes 4, 5, & 6). (ecmbio.com)
  • Clone M206 was generated from a dual phosphorylated ERK1 (Thr-202/Tyr-204) synthetic peptide (coupled to carrier protein) corresponding to amino acids surrounding Thr-202 and Tyr-204 in human ERK1. (ecmbio.com)
  • DUSP9, a Dual-Specificity Phosphatase with a Key Role in Cell Biology and Human Diseases. (nih.gov)
  • Here, the crystal structure of a human DSP, vaccinia H1-related phosphatase (or VHR), was determined at 2.1 angstrom resolution. (rcsb.org)
  • Materials and Methods Reagents Human recombinant PDGF-BB and murine recombinant FGF-2 were purchased from Peprotech (Rocky Hill, NJ). (scienza-under-18.org)
  • INTRODUCTION Human cytomegalovirus (HCMV), a ubiquitous herpesvirus, is an important opportunistic pathogen affecting individuals whose immune functions are compromised or immature (1,2). (azd1152.com)
  • On the other hand, MIP-2 was expressed on macrophages in non-tumor areas and hepatocytes in tumor areas. (bvsalud.org)
  • Genes that are upregulated by GC treatment, such as dual-specificity phosphatase 1 (DUSP1), GC-induced leucine zipper (GILZ), and interleukin (IL)-10, are highly immunosuppressive and contribute to the overall effect of GC treatment ( 1 - 3 ). (frontiersin.org)
  • bone marrow stromal cell antigen 2 [Sour. (gsea-msigdb.org)
  • 2, 3, 4] See the Fracture Index WITH known Bone Mineral Density (BMD) calculator. (medscape.com)
  • The major advantages of using osteocalcin as a clinical index of bone turnover are its tissue specificity, its wide availability, and its relatively low within-person variation. (medscape.com)
  • These studies indicated that pyroptosis may perform a dual part in promoting and inhibiting tumor cell growth in different tumor cells. (colinsbraincancer.com)
  • Inflammatory bowel diseases 2016 Feb 22 (2): 249-56. (cdc.gov)
  • In addition, the presence of EVs reduced inflammatory responses in Pam 3 CSK 4 -treated endothelial cells and HEK Dual reporter cells, demonstrating that TLR2-EVs can act as decoy receptors. (frontiersin.org)