A chelating agent that has been used to mobilize toxic metals from the tissues of humans and experimental animals. It is the main metabolite of DISULFIRAM.

Effects of pyrogallol, hydroquinone and duroquinone on responses to nitrergic nerve stimulation and NO in the rat anococcygeus muscle. (1/271)

1. The hypothesis that endogenous superoxide dismutase (SOD) protects the nitrergic transmitter from inactivation by superoxide and that this explains the lack of sensitivity of the transmitter to superoxide generators was tested in the rat isolated anococcygeus muscle. 2. Responses to nitrergic nerve stimulation or to NO were not significantly affected by exogenous SOD or by the Cu/Zn SOD inhibitor diethyldithiocarbamic acid (DETCA). 3. Hydroquinone produced a concentration-dependent reduction of responses to NO with an IC50 of 27 microM, and higher concentrations reduced relaxant responses to nitrergic nerve stimulation with an IC50 of 612 microM. The effects of hydroquinone were only slightly reversed by SOD, so it does not appear to be acting as a superoxide generator. 4. Pyrogallol produced a concentration-dependent reduction in responses to NO with an IC50 value of 39 microM and this effect was reversed by SOD (100-1000 u ml(-1)). Pyrogallol did not affect responses to nitrergic nerve stimulation. Treatment with DETCA did not alter the differentiating action of pyrogallol. 5. Duroquinone produced a concentration-dependent reduction of relaxations to NO with an IC50 value of 240 microM and 100 microM slightly decreased nitrergic relaxations. After treatment with DETCA, duroquinone produced greater reductions of relaxant responses to NO and to nitrergic stimulation, the IC50 values being 8.5 microM for NO and 40 microM for nitrergic nerve stimulation: these reductions were reversed by SOD. 6. The findings do not support the hypothesis that the presence of Cu/Zn SOD explains the greater susceptibility of NO than the nitrergic transmitter to the superoxide generator pyrogallol, but suggest that it may play a role in the effects of duroquinone.  (+info)

Activity of disulfiram (bis(diethylthiocarbamoyl)disulphide) and ditiocarb (diethyldithiocarbamate) against metronidazole-sensitive and -resistant Trichomonas vaginalis and Tritrichomonas foetus. (2/271)

Clinical resistance of Trichomonas vaginalis to metronidazole is best correlated with MIC values measured under aerobic conditions. Under these conditions both disulfiram (bis(diethylthiocarbamoyl)disulphide), and its first mammalian metabolite, ditiocarb (diethyldithiocarbamate), showed high levels of activity against metronidazole-sensitive (disulfiram MIC, 0.1-0.7 microM; ditiocarb MIC, 0.3-9 microM) and -resistant (MICs 0.2-1.3 microM and 1.2-9 microM respectively) isolates. Tritrichomonas foetus was also sensitive-the MICs for seven metronidazole-sensitive isolates were 0.1-1.0 microM for disulfiram and 1.0-6.9 microM for ditiocarb; those for two highly metronidazole-resistant strains were 0.3-1.3 microM and 0.6-6 microM respectively. Under anerobic conditions most strains became highly resistant to both compounds. Surprisingly, disulfiram was consistently more active than ditiocarb.  (+info)

Chelation of intracellular zinc ions affects human sperm cell motility. (3/271)

The effects of two different zinc chelators, diethyldithiocarbamate (DEDTC) and calcium ethylenediaminetetraacetic acid (EDTA), in full semen samples and 'swim-up' samples were investigated. DEDTC, which crosses cell membranes, and EDTA, which does not cross cell membranes, were added to semen samples in different concentrations. Sperm cell motility parameters were assessed by computer-assisted semen analysis (CASA). It was found that very small concentrations (0.01 mM) of DEDTC immobilized the sperm cells within 80 min, while EDTA had no depressing effect at the concentrations used. In full semen samples EDTA enhanced straight line velocity (VSL) at concentrations of 1.0 and 0.5 mM; this effect was not found at higher concentrations. It is suggested that intracellular mitochondrial zinc ions play a crucial role for sperm cell motility, while loosely bound or free zinc ions in the seminal plasma exert a secondary role on human sperm cell motility.  (+info)

Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. (4/271)

Although it is recognized that late preconditioning (PC) results from upregulation of cardioprotective genes, the specific transcription factor(s) that govern this genetic adaptation remains unknown. The aim of this study was to test the hypothesis that the development of late PC is mediated by nuclear factor-kappaB (NF-kappaB) and to elucidate the mechanisms that control the activation of NF-kappaB after an ischemic stimulus in vivo. A total of 152 chronically instrumented, conscious rabbits were used. A sequence of six 4-minute coronary occlusion/4-minute reperfusion cycles, which elicits late PC, induced rapid activation of NF-kappaB, as evidenced by a marked increase in p65 content (+164%; Western immunoblotting) and NF-kappaB DNA binding activity (+306%; electrophoretic mobility shift assay) in nuclear extracts isolated 30 minutes after the last reperfusion. These changes were attenuated 2 hours after ischemic PC and resolved by 4 hours. Competition and supershift assays confirmed the specificity of the NF-kappaB DNA complex signals. The mobility of the NF-kappaB DNA complex was shifted by anti-p65 and anti-p50 antibodies but not by anti-c-Rel antibodies, indicating that the subunits of NF-kappaB involved in gene activation after ischemic PC consist of p65-p50 heterodimers. Pretreatment with the NF-kappaB inhibitor diethyldithiocarbamate (DDTC; 150 mg/kg IP 15 minutes before ischemic PC) completely blocked the nuclear translocation and increased DNA binding activity of NF-kappaB. The same dose of DDTC completely blocked the cardioprotective effects of late PC against both myocardial stunning and myocardial infarction, indicating that NF-kappaB activation is essential for the development of this phenomenon in vivo. The ischemic PC-induced activation of NF-kappaB was also blocked by pretreatment with Nomega-nitro-L-arginine (L-NA), a nitric oxide synthase (NOS) inhibitor, N-2-mercaptopropionyl glycine (MPG), a reactive oxygen species (ROS) scavenger, chelerythrine, a protein kinase C (PKC) inhibitor, and lavendustin A, a tyrosine kinase inhibitor (all given at doses previously shown to block late PC), indicating that ischemic PC activates NF-kappaB via formation of NO and ROS and activation of PKC- and tyrosine kinase-dependent signaling pathways. A subcellular redistribution and increased DNA binding activity of NF-kappaB quantitatively similar to those induced by ischemic PC could be reproduced pharmacologically by giving the NO donor diethylenetriamine/NO (DETA/NO) (at a dose previously shown to elicit late PC), demonstrating that NO in itself can activate NF-kappaB in the heart. Taken together, these results provide direct evidence that activation of NF-kappaB is a critical step in the signal transduction pathway that underlies the development of the late phase of ischemic PC in conscious rabbits. The finding that four different pharmacological manipulations (L-NA, MPG, chelerythrine, and lavendustin A) produced similar inhibition of NF-kappaB suggests that this transcription factor is a common downstream pathway through which multiple signals elicited by ischemic stress (NO, ROS, PKC, tyrosine kinases) act to induce gene expression. To our knowledge, this is the first demonstration that NO can promote NF-kappaB activation in the heart, a finding that identifies a new biological function of NO and may have important implications for various pathophysiological conditions in which NO is involved and for nitrate therapy.  (+info)

Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. (5/271)

Oxidative stress has been implicated in the pathophysiology of myocardial failure. We tested the hypothesis that inhibition of endogenous antioxidant enzymes can regulate the phenotype of cardiac myocytes. Neonatal rat ventricular myocytes in vitro were exposed to diethyldithiocarbamic acid (DDC), an inhibitor of cytosolic (Cu, Zn) and extracellular superoxide dismutase (SOD). DDC inhibited SOD activity and increased intracellular superoxide in a concentration-dependent manner. A low concentration (1 micromol/L) of DDC stimulated myocyte growth, as demonstrated by increases in protein synthesis, cellular protein, prepro-atrial natriuretic peptide, and c-fos mRNAs and decreased sarcoplasmic reticulum Ca(2+)ATPase mRNA. These actions were all inhibited by the superoxide scavenger Tiron (4,5-dihydroxy-1,3-benzene disulfonic acid). Higher concentrations of DDC (100 micromol/L) stimulated myocyte apoptosis, as evidenced by DNA laddering, characteristic nuclear morphology, in situ terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL), and increased bax mRNA expression. DDC-stimulated apoptosis was inhibited by the SOD/catalase mimetic EUK-8. The growth and apoptotic effects of DDC were mimicked by superoxide generation with xanthine plus xanthine oxidase. Thus, increased intracellular superoxide resulting from inhibition of SOD causes activation of a growth program and apoptosis in cardiac myocytes. These findings support a role for oxidative stress in the pathogenesis of myocardial remodeling and failure.  (+info)

Role of superoxide dismutase in in vivo and in vitro nitrate tolerance. (6/271)

We assessed whether pharmacological inhibition of CuZn-superoxide dismutase (SOD) mimics the molecular mechanism of either in vitro or in vivo nitrovasodilator tolerance. In endothelium-intact aortic rings from in vivo tolerant rabbits the GTN- and acetylcholine (ACh)-induced maximal relaxation was attenuated by 36 and 23%, respectively. In vitro treatment of control rings with GTN (1 h 10 microM) similarly attenuated the vasorelaxant response to GTN, but not to ACh. Formation of superoxide radicals (*O2-) in endothelium-intact rings (lucigenin-chemiluminescence) increased 2.5 fold in in vivo tolerance, but significantly decreased in in vitro tolerance. The membrane associated NADH oxidase activity was increased 2.5 fold in homogenates of in vivo tolerant aortae, but was not changed in in vitro tolerant aorta. Conversely, SOD activity and protein expression was halved in in vivo tolerance, but SOD activity was not altered by in vitro tolerance. The *O2- scavenger tiron (10 mM) effectively restored the vasorelaxant response to GTN in in vivo tolerant aortic rings, but not the reduced response to GTN in in vitro tolerant rings. Pretreatment (1 h) of vessels with diethyldithiocarbamate (DETC; 10 mM) attenuated vasorelaxant responses to GTN and ACh, increased vascular *O2- production, and inhibited SOD activity in vessel homogenates to a similar degree as observed in in vivo tolerance. DETC-treatment of in vivo-tolerant vessels induced an additional increase in *O2- production. Increased *O2- production in in vivo nitrate tolerant aorta is associated with activation of vascular NADH oxidase and inactivation of CuZnSOD. Therefore, in vivo tolerance can be mimicked by in vitro inhibition of CuZnSOD, but not by in vitro exposure to GTN, which does not affect vascular *O2- production, NADH oxidase and CuZnSOD.  (+info)

Resistance of endothelium-dependent relaxation to elevation of O(-)(2) levels in rabbit carotid artery. (7/271)

Endogenous superoxide anion (O(-)(2)) interferes with the bioactivity of nitric oxide (NO) in endothelium-dependent arterial relaxation (EDR). Using the lucigenin chemiluminescence assay, we measured O(-)(2) in the thoracic and abdominal aortas and the carotid artery of rabbits to determine whether ambient O(-)(2) varies among the three arteries and differentially diminishes the effect of NO. Basal levels of O(-)(2) were significantly higher in carotid arteries than in the thoracic aorta [23 +/- 6.1 vs. 3.9 +/- 1.4 chemiluminescence units (CU); P < 0.05], whereas EDR in response to ACh (10(-8)-10(-5) M) was not significantly different on ANOVA. After treatment with the superoxide dismutase (SOD) inhibitor diethyldithiocarbamate (DDC; 10 mM), O(-)(2) levels were significantly elevated, becoming greater in the carotid artery and abdominal aorta than in the thoracic aorta (185 +/- 31.2 and 202 +/- 40.3 vs. 89 +/- 18 CU; P < 0.05). DDC significantly reversed EDR in the thoracic aorta but not in the carotid artery; at 10(-6) M ACh, the decrease seen with DDC was 48 +/- 6.2 vs. 6.8 +/- 8.0% of maximal relaxation in the thoracic aorta and carotid artery, respectively. In the thoracic aorta, exogenous SOD reversed the inhibition of EDR caused by DDC. Moreover, DDC/O(-)(2)-resistant EDR in the carotid artery was ablated by the addition of nitro-L-arginine methyl ester (300 microM; P < 0.05), an NO synthase inhibitor, consistent with peroxynitrite or an O(-)(2)-resistant NO donor being involved in carotid relaxation. Indeed, exogenous peroxynitrite caused similar relaxation of the carotid artery and thoracic aorta, which was unaffected by DDC. Our studies show a greater production of nitrite and O(-)(2) per unit area by the carotid artery, suggesting a greater amount of their product peroxynitrite. These findings support the hypothesis that peroxynitrite is the relaxing agent that resists high O(-)(2) in the carotid artery.  (+info)

Protective role of copper, zinc superoxide dismutase against UVB-induced injury of the human keratinocyte cell line HaCaT. (8/271)

On the basis of our recent observation that copper, zinc-superoxide dismutase and manganese-superoxide dismutase change differently following a single exposure to ultraviolet-B irradiation in the human keratinocyte cell line HaCaT, we have examined the possible role of endogenous copper,zinc-superoxide dismutase or manganese-superoxide dismutase against ultraviolet-B-induced reactive-oxygen- species-mediated keratinocyte injury in vitro. To evaluate the individual defensive roles of copper, zinc-superoxide dismutase and manganese-super-oxide dismutase, we treated HaCaT cells with diethyldithiocarbamate, a chelating agent of ionic copper that inactivates copper,zinc-superoxide dismutase activities, tumor necrosis factor alpha, which enhances manganese-superoxide dismutase levels, or transforming growth factor beta1, which inhibits manganese-superoxide dismutase levels. After the treatment with each reagent, HaCaT cells in the three different conditions were exposed to a single dose of ultraviolet-B irradiation. We assessed ultraviolet-B-induced cytotoxicity by measuring both lactate dehydrogenase leakage and cell viability using trypan blue dye exclusion assay. The lactate dehydrogenase leakage in the supernatant from damaged HaCaT cells whose copper,zinc-superoxide dismutase levels were inactivated by diethyldithiocarbamate was significantly increased and the cell viability was significantly decreased in comparison with untreated groups at 8 and 24 h after ultraviolet-B irradiation. On the other hand, the lactate dehydrogenase release and cell viability for HaCaT cells whose manganese-superoxide dismutase levels were enhanced by tumor necrosis factor alpha or inhibited by transforming growth factor beta1 showed no significant difference from untreated groups. Furthermore, increased production of intracellular peroxides in HaCaT cells treated with diethyldithiocarbamate was observed by flow cytometric analysis at 8 h after ultraviolet-B irradiation. These results suggest that copper,zinc-superoxide dismutase may play a primary protective role against ultraviolet-B-induced injury of the human keratinocyte cell line HaCaT.  (+info)

I'm sorry for any confusion, but "Ditiocarb" is not a recognized medical term or abbreviation in standard medical or clinical contexts. It's possible that you may have made a typo or are referring to a term from a different field. If you have more information or if there's a specific context in which you encountered this term, I'd be happy to help further!

No FAQ available that match "ditiocarb"

No images available that match "ditiocarb"