At low concentrations, this compound inhibits reduction of conventional hydrophilic electron acceptors, probably acting as a plastoquinone antagonist. At higher concentrations, it acts as an electron acceptor, intercepting electrons either before or at the site of its inhibitory activity.

The Qo-site inhibitor DBMIB favours the proximal position of the chloroplast Rieske protein and induces a pK-shift of the redox-linked proton. (1/32)

The interaction of the inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) with the Rieske protein of the chloroplast b6f complex has been studied by EPR. All three redox states of DBMIB were found to interact with the iron-sulphur cluster. The presence of the oxidised form of DBMIB altered the equilibrium distribution of the Rieske protein's conformational substates, strongly favouring the proximal position close to heme bL. In addition to this conformational effect, DBMIB shifted the pK-value of the redox-linked proton involved in the iron-sulphur cluster's redox transition by about 1.5 pH units towards more acidic values. The implications of these results with respect to the interaction of the native quinone substrate and the Rieske cluster in cytochrome bc complexes are discussed.  (+info)

Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast. (2/32)

Previous work showed a transient but dramatic arrest in the synthesis of Rubisco large subunit (LSU) upon transfer of Chlamydomonas reinhardtii cells from low light (LL) to high light (HL). Using dichlorofluorescin, a short-term increase in reactive oxygen species (ROS) was demonstrated, suggesting that their excessive formation could signal LSU down-regulation. A decrease in LSU synthesis occurred at LL in the presence of methyl viologen and was prevented at HL by ascorbate. Interfering with D1 function by mutations or by incubation with DCMU prevented the increase in ROS formation at HL and the concomitant down-regulation of LSU synthesis. If the electron transport was blocked further downstream, by mutation in the cytochrome b(6)/f or by incubation with 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, ROS formation increased, and LSU synthesis ceased. The elevation of ROS occurred concurrently with a change in the redox state of the glutathione pool, which shifted toward its oxidized form immediately after the transfer to HL and returned to its original value after 6 h. The decrease in the reduced/oxidized glutathione ratio at HL was prevented by ascorbate and could be induced at LL by methyl viologen. We suggest that excess ROS mediate a decrease in the reduced/oxidized glutathione ratio that in turn signals the translational arrest of the rbcL transcript.  (+info)

Contrasted effects of inhibitors of cytochrome b6f complex on state transitions in Chlamydomonas reinhardtii: the role of Qo site occupancy in LHCII kinase activation. (3/32)

We have investigated the relationship between the occupancy of the Q(o) site in the cytochrome b(6)f complex and the activation of the LHCII protein kinase that controls state transitions. To this aim, fluorescence emission and LHCII phosphorylation patterns were studied in whole cells of Chlamydomonas reinhardtii treated with different plastoquinone analogues. The analysis of fluorescence induction at room temperature indicates that stigmatellin consistently prevented transition to State 2, whereas 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone behaved as an inhibitor of state transitions only after the cells were preilluminated. The same effects were observed on the phosphorylation patterns of the LHCII proteins, while subunit V of the cytochrome b(6)f complex showed a different behavior. These findings are discussed on the basis of a dynamic structural model of cytochrome b(6)f that relates the activation of the LHCII kinase to the occupancy of the Q(o) site and the movement of the Rieske protein.  (+info)

Modification of inhibitor binding sites in the cytochrome bf complex by directed mutagenesis of cytochrome b(6) in Synechococcus sp. PCC 7002. (4/32)

The cytochrome bf complex, which links electron transfer from photosystem II to photosystem I in oxygenic photosynthesis, has not been amenable to site-directed mutagenesis in cyanobacteria. Using the cyanobacterium Synechococcus sp. PCC 7002, we have successfully modified the cytochrome b(6) subunit of the cytochrome bf complex. Single amino acid substitutions in cytochrome b(6) at the positions D148, A154, and S159 revealed altered binding of the quinol-oxidation inhibitors 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), myxothiazol, and stigmatellin. Cytochrome bf and mitochondrial-type cytochrome bc(1) complexes are closely related in structure and function but exhibit quite different inhibitor specificities. Cytochrome bf complexes are insensitive to myxothiazol and sensitive to DBMIB, whereas cytochrome bc(1) complexes are sensitive to myxothiazol and relatively insensitive to DBMIB. Measurements of flash-induced and steady-state electron transfer rates through the cytochrome bf complex revealed increased resistance to DBMIB in the mutants A154G and S159A, increased resistance to stigmatellin in A154G, and created sensitivity to myxothiazol in the mutant D148G. Therefore these mutations made the cytochrome bf complex more like the cytochrome bc(1) complex. This work demonstrates that cyanobacteria can be used as effective models to investigate structure-function relationships in the cytochrome bf complex.  (+info)

A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. (5/32)

Photosynthetic organisms acclimate to long term changes in the environmental light quality by an adjustment of their photosystem stoichiometry to maintain photosynthetic efficiency. By using light sources that predominantly excite either photosystem I (PSI) or photosystem II (PSII), we studied the effects of excitation imbalances between both photosystems on nuclear PSI gene transcription in transgenic tobacco seedlings with promoter::beta-glucuronidase gene fusions. Shifts from PSI to PSII light sources (and vice versa) induced changes in the reduction/oxidation state of intersystem redox components, and acclimation of tobacco seedlings to such changes were monitored by changes in chlorophyll a/b ratios and in vivo chlorophyll a fluorescence. The ferredoxin-NADP(+)-oxidoreductase gene promoter did not respond to these treatments, those from the genes for subunits PsaD and PsaF of PSI are activated by a reduction signal, and the plastocyanin promoter responded to both reduction and oxidation signals. Additional experiments with photosynthetic electron transport inhibitors 3-(3',4'-dichlorophenyl)-1,1'-dimethyl urea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone demonstrated that the redox state of the plastoquinone pool controls the activity of the plastocyanin promoter, whereas subunit PsaD and PsaF gene transcription is regulated by other photosynthesis-derived signals. Thus, the expression of nuclear-encoded PSI genes is controlled by diverse light quality-dependent redox signals from the plastids during photosystem stoichiometry adjustment.  (+info)

Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. (6/32)

In the modern ocean, a significant amount of nitrogen fixation is attributed to filamentous, nonheterocystous cyanobacteria of the genus Trichodesmium. In these organisms, nitrogen fixation is confined to the photoperiod and occurs simultaneously with oxygenic photosynthesis. Nitrogenase, the enzyme responsible for biological N2 fixation, is irreversibly inhibited by oxygen in vitro. How nitrogenase is protected from damage by photosynthetically produced O2 was once an enigma. Using fast repetition rate fluorometry and fluorescence kinetic microscopy, we show that there is both temporal and spatial segregation of N2 fixation and photosynthesis within the photoperiod. Linear photosynthetic electron transport protects nitrogenase by reducing photosynthetically evolved O2 in photosystem I (PSI). We postulate that in the early evolutionary phase of oxygenic photosynthesis, nitrogenase served as an electron acceptor for anaerobic heterotrophic metabolism and that PSI was favored by selection because it provided a micro-anaerobic environment for N2 fixation in cyanobacteria.  (+info)

The redox state of plastoquinone pool regulates state transitions via cytochrome b6f complex in Synechocystis sp. PCC 6803. (7/32)

The effects of benzoquinone analogues, phenyl-1,4-benzoquinone (PBQ) and 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone (DBMIB), on state transitions in Synechocystis sp. PCC 6803 were investigated. PBQ induced a transition from state 2 to state 1 in the absence of actinic light whereas DBMIB caused a state 2 transition. 3-(3,4-Dichlorophenyl)-1,1-dimethyl urea could not eliminate the effects of PBQ and DBMIB. These results imply that the redox state of the plastoquinone pool controls the state transitions in vivo and cytochrome b6f complex is involved in this process. As a working hypothesis, we propose that the occupancy of the quinol oxidation site and the movement of the Rieske protein may be pivotal in this regulation.  (+info)

DNA microarray analysis of redox-responsive genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803. (8/32)

Whole-genome DNA microarrays were used to evaluate the effect of the redox state of the photosynthetic electron transport chain on gene expression in Synechocystis sp. strain PCC 6803. Two specific inhibitors of electron transport, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), were added to the cultures, and changes in accumulation of transcripts were examined. About 140 genes were highlighted as reproducibly affected by the change in the redox state of the photosynthetic electron transport chain. It was shown that some stress-responsive genes but not photosynthetic genes were under the control of the redox state of the plastoquinone pool in Synechocystis sp. strain PCC 6803.  (+info)

Dibromothymoquinone is not a medical term, but a chemical compound with the formula C10H8Br2O2. It is an orange crystalline powder that is slightly soluble in water and more soluble in organic solvents. Dibromothymoquinone is used as a intermediate in the synthesis of various pharmaceuticals and other chemical products.

It does not have any specific medical use or indication, but it may have some biological activities that could be explored for potential therapeutic applications. For example, some studies suggest that dibromothymoquinone has anticancer, anti-inflammatory, and antioxidant properties, although more research is needed to confirm these findings and determine the safety and efficacy of this compound in humans.

Therefore, it is important to consult with a healthcare professional or a chemist for more information about dibromothymoquinone and its potential uses or risks.

"Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone". Biochim Biophys Acta ...
Dibromothymoquinone Preferred Term Term UI T012102. Date01/01/1999. LexicalTag NON. ThesaurusID NLM (1975). ... Dibromothymoquinone Preferred Concept UI. M0006255. Registry Number. 29096-93-3. Scope Note. At low concentrations, this ... Dibromothymoquinone. Tree Number(s). D02.806.250.280. Unique ID. D003991. RDF Unique Identifier. http://id.nlm.nih.gov/mesh/ ...
Dibromothymoquinone Preferred Term Term UI T012102. Date01/01/1999. LexicalTag NON. ThesaurusID NLM (1975). ... Dibromothymoquinone Preferred Concept UI. M0006255. Registry Number. 29096-93-3. Scope Note. At low concentrations, this ... Dibromothymoquinone. Tree Number(s). D02.806.250.280. Unique ID. D003991. RDF Unique Identifier. http://id.nlm.nih.gov/mesh/ ...
Dibromothymoquinone - Preferred Concept UI. M0006255. Scope note. At low concentrations, this compound inhibits reduction of ... Dibromothymoquinone Entry term(s). 2,5 Dibromo 3 methyl 6 isopropyl p benzoquinone 2,5-Dibromo-3-methyl-6-isopropyl-p- ...
... dibromothymoquinone; Fd; ferredoxin; FRL; far-red light; IAc; iodoacetamide; LET; linear electron transport; MV; methyl ...
N0000007966 Dibenzoxazepines N0000007967 Dibenzoxepins N0000166517 Dibenzylchlorethamine N0000166804 Dibromothymoquinone ...
2,5 Dibromo 3 methyl 6 isopropyl p benzoquinone use Dibromothymoquinone 2,5 Dihydroxybenzenesulfonate use Calcium Dobesilate ...
Dibromothymoquinone Dibucaine Dibutyl Phthalate Dibutyryl Cyclic GMP Dicamba Dicarbethoxydihydrocollidine Dicarboxylic Acid ...
Dibenzothiazepines Dibenzothiepins Dibenzoxazepines Dibenzoxepins Dibenzylchlorethamine Dibromothymoquinone Dibucaine Dibutyl ...

No FAQ available that match "dibromothymoquinone"

No images available that match "dibromothymoquinone"