Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species.
A serotype of the species California encephalitis virus (ENCEPHALITIS VIRUS, CALIFORNIA), in the genus ORTHOBUNYAVIRUS, causing human MENINGOENCEPHALITIS. This is the agent most responsible for California encephalitis (ENCEPHALITIS, CALIFORNIA), the most prevalent mosquito-borne disease recognized in the United States.
A viral infection of the brain caused by serotypes of California encephalitis virus (ENCEPHALITIS VIRUS, CALIFORNIA) transmitted to humans by the mosquito AEDES triseriatus. The majority of cases are caused by the LA CROSSE VIRUS. This condition is endemic to the midwestern United States and primarily affects children between 5-10 years of age. Clinical manifestations include FEVER; VOMITING; HEADACHE; and abdominal pain followed by SEIZURES, altered mentation, and focal neurologic deficits. (From Joynt, Clinical Neurology, 1996, Ch26, p13)
A species in the ORTHOBUNYAVIRUS genus of the family BUNYAVIRIDAE. Serotypes are found in temperate and arctic regions and each is closely associated with a single species of vector mosquito. The vertebrate hosts are usually small mammals but several serotypes infect humans.
The genetic process of crossbreeding between genetically dissimilar parents to produce a hybrid.
A family of viruses, mainly arboviruses, consisting of a single strand of RNA. Virions are enveloped particles 90-120 nm diameter. The complete family contains over 300 members arranged in five genera: ORTHOBUNYAVIRUS; HANTAVIRUS; NAIROVIRUS; PHLEBOVIRUS; and TOSPOVIRUS.
The adaptive superiority of the heterozygous GENOTYPE with respect to one or more characters in comparison with the corresponding HOMOZYGOTE.
Any method used for determining the location of and relative distances between genes on a chromosome.
The production of offspring by selective mating or HYBRIDIZATION, GENETIC in animals or plants.
Genetic loci associated with a QUANTITATIVE TRAIT.
The co-inheritance of two or more non-allelic GENES due to their being located more or less closely on the same CHROMOSOME.
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
The mating of plants or non-human animals which are closely related genetically.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
The total process by which organisms produce offspring. (Stedman, 25th ed)
A collection of single-stranded RNA viruses scattered across the Bunyaviridae, Flaviviridae, and Togaviridae families whose common property is the ability to induce encephalitic conditions in infected hosts.
A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Infections of the brain caused by arthropod-borne viruses (i.e., arboviruses) primarily from the families TOGAVIRIDAE; FLAVIVIRIDAE; BUNYAVIRIDAE; REOVIRIDAE; and RHABDOVIRIDAE. Life cycles of these viruses are characterized by ZOONOSES, with birds and lower mammals serving as intermediate hosts. The virus is transmitted to humans by the bite of mosquitoes (CULICIDAE) or TICKS. Clinical manifestations include fever, headache, alterations of mentation, focal neurologic deficits, and COMA. (From Clin Microbiol Rev 1994 Jan;7(1):89-116; Walton, Brain's Diseases of the Nervous System, 10th ed, p321)
The different ways GENES and their ALLELES interact during the transmission of genetic traits that effect the outcome of GENE EXPRESSION.
Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.
A characteristic showing quantitative inheritance such as SKIN PIGMENTATION in humans. (From A Dictionary of Genetics, 4th ed)
Mechanisms that prevent different populations from exchanging genes (GENE FLOW), resulting in or maintaining GENETIC SPECIATION. It can either prevent mating to take place or ensure that any offspring produced is either inviable or sterile, thereby preventing further REPRODUCTION.
The capacity to conceive or to induce conception. It may refer to either the male or female.
A principle of estimation in which the estimates of a set of parameters in a statistical model are those quantities minimizing the sum of squared differences between the observed values of a dependent variable and the values predicted by the model.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation.
Permanent deprivation of breast milk and commencement of nourishment with other food. (From Stedman, 25th ed)
The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield.
Genotypic differences observed among individuals in a population.
The chromosomal constitution of a cell containing multiples of the normal number of CHROMOSOMES; includes triploidy (symbol: 3N), tetraploidy (symbol: 4N), etc.
The fertilizing element of plants that contains the male GAMETOPHYTES.
Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of PLANTS.
Complex nucleoprotein structures which contain the genomic DNA and are part of the CELL NUCLEUS of MAMMALS.
The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X.
A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.
In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A plant genus of the family NELUMBONACEAE. The common name of lotus is also for LOTUS and NYMPHAEA.
A form of gene interaction whereby the expression of one gene interferes with or masks the expression of a different gene or genes. Genes whose expression interferes with or masks the effects of other genes are said to be epistatic to the effected genes. Genes whose expression is affected (blocked or masked) are hypostatic to the interfering genes.
The functional hereditary units of PLANTS.
A genus of bacteria comprised of a heterogenous group of gram-negative small rods and coccoid forms associated with arthropods. (From Bergey's Manual of Systematic Bacteriology, vol 1, 1984)
A parasexual process in BACTERIA; ALGAE; FUNGI; and ciliate EUKARYOTA for achieving exchange of chromosome material during fusion of two cells. In bacteria, this is a uni-directional transfer of genetic material; in protozoa it is a bi-directional exchange. In algae and fungi, it is a form of sexual reproduction, with the union of male and female gametes.
An individual that contains cell populations derived from different zygotes.
An individual having different alleles at one or more loci regarding a specific character.
The transfer of POLLEN grains (male gametes) to the plant ovule (female gamete).
A family of the order Rodentia containing 250 genera including the two genera Mus (MICE) and Rattus (RATS), from which the laboratory inbred strains are developed. The fifteen subfamilies are SIGMODONTINAE (New World mice and rats), CRICETINAE, Spalacinae, Myospalacinae, Lophiomyinae, ARVICOLINAE, Platacanthomyinae, Nesomyinae, Otomyinae, Rhizomyinae, GERBILLINAE, Dendromurinae, Cricetomyinae, MURINAE (Old World mice and rats), and Hydromyinae.
A genus of ascomycetous fungi of the family Hypocreaceae, order Hypocreales including several pathogens of grains and cereals. It is also the source of plant growth regulators such as gibberellin and gibberellic acid.
Vertical transmission of hereditary characters by DNA from cytoplasmic organelles such as MITOCHONDRIA; CHLOROPLASTS; and PLASTIDS, or from PLASMIDS or viral episomal DNA.
A species of ascomycetous fungi of the family Sordariaceae, order SORDARIALES, much used in biochemical, genetic, and physiologic studies.
The genetic complement of a plant (PLANTS) as represented in its DNA.
A genus of mosquitoes (CULICIDAE) frequently found in tropical and subtropical regions. YELLOW FEVER and DENGUE are two of the diseases that can be transmitted by species of this genus.
The reciprocal exchange of segments at corresponding positions along pairs of homologous CHROMOSOMES by symmetrical breakage and crosswise rejoining forming cross-over sites (HOLLIDAY JUNCTIONS) that are resolved during CHROMOSOME SEGREGATION. Crossing-over typically occurs during MEIOSIS but it may also occur in the absence of meiosis, for example, with bacterial chromosomes, organelle chromosomes, or somatic cell nuclear chromosomes.
A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.
The branch of science concerned with the means and consequences of transmission and generation of the components of biological inheritance. (Stedman, 26th ed)
The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A plant genus of the family Plantaginaceae. The small plants usually have a dense tuft of basal leaves and long, leafless stalks bearing a terminal spike of small flowers. The seeds, known as PSYLLIUM, swell in water and are used as laxatives. The leaves have been used medicinally.
Fungal genes that mostly encode TRANSCRIPTION FACTORS. In some FUNGI they also encode PHEROMONES and PHEROMONE RECEPTORS. The transcription factors control expression of specific proteins that give a cell its mating identity. Opposite mating type identities are required for mating.
Reproductive bodies produced by fungi.
A plant species of the family POACEAE. It is a tall grass grown for its EDIBLE GRAIN, corn, used as food and animal FODDER.
Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell.
Differential and non-random reproduction of different genotypes, operating to alter the gene frequencies within a population.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
An individual in which both alleles at a given locus are identical.
The presence of four sets of chromosomes. It is associated with ABNORMALITIES, MULTIPLE; and MISCARRAGES.
Cultivated plants or agricultural produce such as grain, vegetables, or fruit. (From American Heritage Dictionary, 1982)
A genus of ascomycetous fungi, family Sordariaceae, order SORDARIALES, comprising bread molds. They are capable of converting tryptophan to nicotinic acid and are used extensively in genetic and enzyme research. (Dorland, 27th ed)
A phylum of fungi which have cross-walls or septa in the mycelium. The perfect state is characterized by the formation of a saclike cell (ascus) containing ascospores. Most pathogenic fungi with a known perfect state belong to this phylum.
Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue.
Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state.
Coloration or discoloration of a part by a pigment.
The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species.
The transport of materials through a cell. It includes the uptake of materials by the cell (ENDOCYTOSIS), the movement of those materials through the cell, and the subsequent secretion of those materials (EXOCYTOSIS).
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.
Deoxyribonucleic acid that makes up the genetic material of plants.
A family of the order DIPTERA that comprises the mosquitoes. The larval stages are aquatic, and the adults can be recognized by the characteristic WINGS, ANIMAL venation, the scales along the wing veins, and the long proboscis. Many species are of particular medical importance.
The reproductive organs of plants.
The reproductive cells of plants.
The chromosomal constitution of cells, in which each type of CHROMOSOME is represented once. Symbol: N.
The number of males per 100 females.
Arthropod-borne viruses. A non-taxonomic designation for viruses that can replicate in both vertebrate hosts and arthropod vectors. Included are some members of the following families: ARENAVIRIDAE; BUNYAVIRIDAE; REOVIRIDAE; TOGAVIRIDAE; and FLAVIVIRIDAE. (From Dictionary of Microbiology and Molecular Biology, 2nd ed)
The degree of replication of the chromosome set in the karyotype.
The discipline studying genetic composition of populations and effects of factors such as GENETIC SELECTION, population size, MUTATION, migration, and GENETIC DRIFT on the frequencies of various GENOTYPES and PHENOTYPES using a variety of GENETIC TECHNIQUES.
Genes whose loss of function or gain of function MUTATION leads to the death of the carrier prior to maturity. They may be essential genes (GENES, ESSENTIAL) required for viability, or genes which cause a block of function of an essential gene at a time when the essential gene function is required for viability.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
A species of fruit fly much used in genetics because of the large size of its chromosomes.
A genus of mosquitoes in the family CULICIDAE. A large number of the species are found in the neotropical part of the Americas.
Genes that influence the PHENOTYPE only in the homozygous state.
The saxifrage plant family of the order ROSALES, subclass Rosidae, class Magnoliopsida. The leaves are alternate and sometimes deeply lobed or form rosettes. The flowers have both male and female parts and 4 or 5 sepals and petals; they are usually in branched clusters. The fruit is a capsule with many seeds.
The failure of PLANTS to complete fertilization and obtain seed (SEEDS) as a result of defective POLLEN or ovules, or other aberrations. (Dict. of Plant Genet. and Mol. Biol., 1998)
I'm sorry for any confusion, but the term "Tennessee" is not a medical concept or condition that has a defined meaning within the medical field. It is a geographical location, referring to a state in the United States. If you have any questions related to healthcare, medicine, or health conditions, I would be happy to help answer those!
The number of offspring produced at one birth by a viviparous animal.
The homologous chromosomes that are dissimilar in the heterogametic sex. There are the X CHROMOSOME, the Y CHROMOSOME, and the W, Z chromosomes (in animals in which the female is the heterogametic sex (the silkworm moth Bombyx mori, for example)). In such cases the W chromosome is the female-determining and the male is ZZ. (From King & Stansfield, A Dictionary of Genetics, 4th ed)
The functional hereditary units of FUNGI.
The fusion of a male gamete with a female gamete from the same individual animal or plant.
Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins.
The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics.
Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom.
A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs).
A plant genus of the family Phrymaceae. Members contain 6-geranylflavanones and mimulone.
The variable phenotypic expression of a GENE depending on whether it is of paternal or maternal origin, which is a function of the DNA METHYLATION pattern. Imprinted regions are observed to be more methylated and less transcriptionally active. (Segen, Dictionary of Modern Medicine, 1992)
A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.
A plant genus of the family POACEAE originating from the savanna of eastern Africa. It is widely grown for livestock forage.
A plant genus of the family RANUNCULACEAE that contains protoanemonin, anemonin, and ranunculin.
A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.
A plant genus of the family POACEAE that is the source of EDIBLE GRAIN. A hybrid with rye (SECALE CEREALE) is called TRITICALE. The seed is ground into FLOUR and used to make BREAD, and is the source of WHEAT GERM AGGLUTININS.
A genus herbs of the Asteraceae family. The SEEDS yield oil and are used as food and animal feed; the roots of Helianthus tuberosus (Jerusalem artichoke) are edible.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Diseases of plants.
Specific regions that are mapped within a GENOME. Genetic loci are usually identified with a shorthand notation that indicates the chromosome number and the position of a specific band along the P or Q arm of the chromosome where they are found. For example the locus 6p21 is found within band 21 of the P-arm of CHROMOSOME 6. Many well known genetic loci are also known by common names that are associated with a genetic function or HEREDITARY DISEASE.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium.
A number of syndromes with defective gonadal developments such as streak GONADS and dysgenetic testes or ovaries. The spectrum of gonadal and sexual abnormalities is reflected in their varied sex chromosome (SEX CHROMOSOMES) constitution as shown by the karyotypes of 45,X monosomy (TURNER SYNDROME); 46,XX (GONADAL DYSGENESIS, 46XX); 46,XY (GONADAL DYSGENESIS, 46,XY); and sex chromosome MOSAICISM; (GONADAL DYSGENESIS, MIXED). Their phenotypes range from female, through ambiguous, to male. This concept includes gonadal agenesis.
A species in the ORTHOBUNYAVIRUS genus of the family BUNYAVIRIDAE. A large number of serotypes or strains exist in many parts of the world. They are transmitted by mosquitoes and infect humans in some areas.
Inbred AKR mice are a strain of laboratory mice that are homozygous at all gene loci and have a high incidence of developing certain diseases, such as leukemia and autoimmune disorders, making them useful for research purposes in biomedicine.
A plant genus of the family FABACEAE known for the edible beans.
The edible portions of any animal used for food including domestic mammals (the major ones being cattle, swine, and sheep) along with poultry, fish, shellfish, and game.
A plant genus of the family POACEAE. The seed is one of the millets used in EDIBLE GRAIN. It contains vitexin. The common name of buffelgrass is also used for CENCHRUS.
The fusion of a spermatozoon (SPERMATOZOA) with an OVUM thus resulting in the formation of a ZYGOTE.
Nutritive tissue of the seeds of flowering plants that surrounds the EMBRYOS. It is produced by a parallel process of fertilization in which a second male gamete from the pollen grain fuses with two female nuclei within the embryo sac. The endosperm varies in ploidy and contains reserves of starch, oils, and proteins, making it an important source of human nutrition.
The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
A subdiscipline of genetics which deals with the genetic mechanisms and processes of microorganisms.
The splitting of an ancestral species into daughter species that coexist in time (King, Dictionary of Genetics, 6th ed). Causal factors may include geographic isolation, HABITAT geometry, migration, REPRODUCTIVE ISOLATION, random GENETIC DRIFT and MUTATION.
Asexual reproduction resulting in the formation of viable seeds from FLOWERS without fertlization (i.e. use of POLLEN). Progeny plants produced from apomictic seeds are perfect clones of the parent.
Deoxyribonucleic acid that makes up the genetic material of fungi.
A plant genus of the family SOLANACEAE. Members contain SOLANACEOUS ALKALOIDS. Some species in this genus are called deadly nightshade which is also a common name for ATROPA BELLADONNA.
A plant genus of the family CARYOPHYLLACEAE. The common name of campion is also used with LYCHNIS. The common name of 'pink' can be confused with other plants.
A huge subclass of mostly marine CRUSTACEA, containing over 14,000 species. The 10 orders comprise both planktonic and benthic organisms, and include both free-living and parasitic forms. Planktonic copepods form the principle link between PHYTOPLANKTON and the higher trophic levels of the marine food chains.
Inbred DBA mice are a strain of laboratory mice that are genetically identical and share specific characteristics, including a high incidence of deafness, coat color (black and white), and susceptibility to certain diseases, which make them useful for research purposes in biomedical studies.
Inability to reproduce after a specified period of unprotected intercourse. Reproductive sterility is permanent infertility.
A plant genus of the family ASTERACEAE. Members contain chicoric and chlorogenic acids and germacrane- and eudesmane-type SESQUITERPENES.
The total relative probability, expressed on a logarithmic scale, that a linkage relationship exists among selected loci. Lod is an acronym for "logarithmic odds."
Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome.
The element in plants that contains the female GAMETOPHYTES.
The fertilized OVUM resulting from the fusion of a male and a female gamete.
Members of the group of vascular plants which bear flowers. They are differentiated from GYMNOSPERMS by their production of seeds within a closed chamber (OVARY, PLANT). The Angiosperms division is composed of two classes, the monocotyledons (Liliopsida) and dicotyledons (Magnoliopsida). Angiosperms represent approximately 80% of all known living plants.
#### My apologies, but "West Virginia" is a geographical location and not a medical term or condition. It is a state located in the Appalachian region of the United States, known for its diverse topography, rich cultural history, and contributions to various fields including medicine.
A plant genus of the family CUCURBITACEAE known for the edible fruit.
A subfamily of assassin bugs (REDUVIIDAE) that are obligate blood-suckers of vertebrates. Included are the genera TRIATOMA; RHODNIUS; and PANSTRONGYLUS, which are vectors of TRYPANOSOMA CRUZI, the agent of CHAGAS DISEASE in humans.
Sexual activities of animals.
Annual cereal grass of the family POACEAE and its edible starchy grain, rice, which is the staple food of roughly one-half of the world's population.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
The science of breeding, feeding and care of domestic animals; includes housing and nutrition.
Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A plant genus of the family Turneraceae, order Violales, subclass Dilleniidae, class Magnoliopsida.
The initial stages of the growth of SEEDS into a SEEDLINGS. The embryonic shoot (plumule) and embryonic PLANT ROOTS (radicle) emerge and grow upwards and downwards respectively. Food reserves for germination come from endosperm tissue within the seed and/or from the seed leaves (COTYLEDON). (Concise Dictionary of Biology, 1990)
A species of SWINE, in the family Suidae, comprising a number of subspecies including the domestic pig Sus scrofa domestica.
Slow or difficult OBSTETRIC LABOR or CHILDBIRTH.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
The functional hereditary units of VIRUSES.
Exchange of substances between the maternal blood and the fetal blood at the PLACENTA via PLACENTAL CIRCULATION. The placental barrier excludes microbial or viral transmission.
The mass or quantity of heaviness of an individual at BIRTH. It is expressed by units of pounds or kilograms.
The orderly segregation of CHROMOSOMES during MEIOSIS or MITOSIS.
Geographic variety, population, or race, within a species, that is genetically adapted to a particular habitat. An ecotype typically exhibits phenotypic differences but is capable of interbreeding with other ecotypes.
Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE).
Viruses whose host is Escherichia coli.
The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX.
The genetic complement of an organism, including all of its GENES, as represented in its DNA, or in some cases, its RNA.
Expanded structures, usually green, of vascular plants, characteristically consisting of a bladelike expansion attached to a stem, and functioning as the principal organ of photosynthesis and transpiration. (American Heritage Dictionary, 2d ed)
Increase in BODY WEIGHT over existing weight.
A systemic agricultural fungicide used for control of certain fungal diseases of stone fruit.
The mechanisms by which the SEX of an individual's GONADS are fixed.
A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection.
The male sex chromosome, being the differential sex chromosome carried by half the male gametes and none of the female gametes in humans and in some other male-heterogametic species in which the homologue of the X chromosome has been retained.
The capability of an organism to survive and reproduce. The phenotypic expression of the genotype in a particular environment determines how genetically fit an organism will be.
A genus GREEN ALGAE in the order VOLVOCIDA. It consists of solitary biflagellated organisms common in fresh water and damp soil.
Inbred C3H mice are a strain of laboratory mice that have been selectively bred to maintain a high degree of genetic uniformity and share specific genetic characteristics, including susceptibility to certain diseases, which makes them valuable for biomedical research purposes.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS).
PLANTS, or their progeny, whose GENOME has been altered by GENETIC ENGINEERING.
Insects that transmit infective organisms from one host to another or from an inanimate reservoir to an animate host.
A species of imperfect fungi from which the antibiotic nidulin is obtained. Its teleomorph is Emericella nidulans.
whoa, buddy! I'm just a friendly AI and I don't have access to real-time databases or personal data, so I can't provide medical definitions or any other specific information about individuals, places, or things. But I can tell you that I couldn't find any recognized medical definition for "Wisconsin" - it's a state in the United States, not a medical term!
The relationships of groups of organisms as reflected by their genetic makeup.
The detection of RESTRICTION FRAGMENT LENGTH POLYMORPHISMS by selective PCR amplification of restriction fragments derived from genomic DNA followed by electrophoretic analysis of the amplified restriction fragments.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.
A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER.
A phylum of fungi that produce their sexual spores (basidiospores) on the outside of the basidium. It includes forms commonly known as mushrooms, boletes, puffballs, earthstars, stinkhorns, bird's-nest fungi, jelly fungi, bracket or shelf fungi, and rust and smut fungi.
The change in gene frequency in a population due to migration of gametes or individuals (ANIMAL MIGRATION) across population barriers. In contrast, in GENETIC DRIFT the cause of gene frequency changes are not a result of population or gamete movement.
The external elements and conditions which surround, influence, and affect the life and development of an organism or population.
A plant species cultivated for the seed used as animal feed and as a source of canola cooking oil.
The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990)
Antibiotic produced by Streptomyces pactum used as an antineoplastic agent. It is also used as a tool in biochemistry because it inhibits certain steps in protein synthesis.
One of many different processes which occur in ANGIOSPERMS by which genetic diversity is maintained while INBREEDING is prevented.
Double-stranded nucleic acid molecules (DNA-DNA or DNA-RNA) which contain regions of nucleotide mismatches (non-complementary). In vivo, these heteroduplexes can result from mutation or genetic recombination; in vitro, they are formed by nucleic acid hybridization. Electron microscopic analysis of the resulting heteroduplexes facilitates the mapping of regions of base sequence homology of nucleic acids.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Proteins found in any species of virus.
An ATP-dependent exodeoxyribonuclease that cleaves in either the 5'- to 3'- or the 3'- to 5'-direction to yield 5'-phosphooligonucleotides. It is primarily found in BACTERIA.
The proportion of one particular in the total of all ALLELES for one genetic locus in a breeding POPULATION.
An order of fish with eight families and numerous species of both egg-laying and livebearing fish. Families include Cyprinodontidae (egg-laying KILLIFISHES;), FUNDULIDAEl; (topminnows), Goodeidae (Mexican livebearers), Jenynsiidae (jenynsiids), Poeciliidae (livebearers), Profundulidae (Middle American killifishes), Aplocheilidae, and Rivulidae (rivulines). In the family Poeciliidae, the guppy and molly belong to the genus POECILIA.
The non-genetic biological changes of an organism in response to challenges in its ENVIRONMENT.

Features of the immune response to DNA in mice. I. Genetic control. (1/9064)

The genetic control of the immune response to DNA was studied in various strains of mice F1 hybrids and corresponding back-crosses immunized with single stranded DNA complexed to methylated bovine serum albumin. Anti-DNA antibody response was measured by radioimmuno-logical technique. High responder, low responder, and intermediate responder strains were found and the ability to respond to DNA was characterized as a dominant genetic trait which is not linked to the major locus of histocompatibility. Studies in back-crosses suggested that this immune response is under multigenic control. High responder mice produce both anti-double stranded DNA and anti-single stranded DNA 7S and 19S antibodies, while low responder mice produce mainly anti-single stranded DNA 19S antibodies.  (+info)

Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2 deficient mice results in extended hyperresponsiveness. (2/9064)

ICAM-2-deficient mice exhibit prolonged accumulation of eosinophils in lung interstitium concomitant with a delayed increase in eosinophil numbers in the airway lumen during the development of allergic lung inflammation. The ICAM-2-dependent increased and prolonged accumulation of eosinophils in lung interstitium results in prolonged, heightened airway hyperresponsiveness. These findings reveal an essential role for ICAM-2 in the development of the inflammatory and respiratory components of allergic lung disease. This phenotype is caused by the lack of ICAM-2 expression on non-hematopoietic cells. ICAM-2 deficiency on endothelial cells causes reduced eosinophil transmigration in vitro. ICAM-2 is not essential for lymphocyte homing or the development of leukocytes, with the exception of megakaryocyte progenitors, which are significantly reduced.  (+info)

Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. (3/9064)

The two genetically established antimicrobial mechanisms of macrophages are production of reactive oxygen intermediates by phagocyte oxidase (phox) and reactive nitrogen intermediates by inducible nitric oxide synthase (NOS2). Mice doubly deficient in both enzymes (gp91(phox-/-)/NOS2(-/-)) formed massive abscesses containing commensal organisms, mostly enteric bacteria, even when reared under specific pathogen-free conditions with antibiotics. Neither parental strain showed such infections. Thus, phox and NOS2 appear to compensate for each other's deficiency in providing resistance to indigenous bacteria, and no other pathway does so fully. Macrophages from gp91(phox-/-)/NOS2(-/-) mice could not kill virulent Listeria. Their killing of S. typhimurium, E. coli, and attenuated Listeria was markedly diminished but demonstrable, establishing the existence of a mechanism of macrophage antibacterial activity independent of phox and NOS2.  (+info)

Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. (4/9064)

We have generated mice with a cell type-specific disruption of the Stat3 gene in macrophages and neutrophils. The mutant mice are highly susceptible to endotoxin shock with increased production of inflammatory cytokines such as TNF alpha, IL-1, IFN gamma, and IL-6. Endotoxin-induced production of inflammatory cytokines is augmented because the suppressive effects of IL-10 on inflammatory cytokine production from macrophages and neutrophils are completely abolished. The mice show a polarized immune response toward the Th1 type and develop chronic enterocolitis with age. Taken together, Stat3 plays a critical role in deactivation of macrophages and neutrophils mainly exerted by IL-10.  (+info)

Localization and properties of a silencing element near the mat3-M mating-type cassette of Schizosaccharomyces pombe. (5/9064)

Transcription is repressed in a segment of Schizosaccharomyces pombe chromosome II that encompasses the mat2-P and mat3-M mating-type cassettes. Chromosomal deletion analysis revealed the presence of a repressor element within 500 bp of mat3-M. This element acted in synergy with the trans-acting factors Swi6, Clr1, Clr2, Clr3, and Clr4 and had several properties characteristic of silencers: it did not display promoter specificity, being able to silence not only the M mating-type genes but also the S. pombe ura4 and ade6 genes placed on the centromere-distal side of the mat3-M cassette; it could repress a gene when placed further than 2.6 kb from the promoter and it acted in both orientations, although with different efficiencies, the natural orientation repressing more stringently than the reverse. Following deletion of this element, two semistable states of expression of the mat3-M region were observed and these two states could interconvert. The deletion did not affect gene expression in the vicinity of the mat2-P cassette, 11 kb away from mat3-M. Conversely, deleting 1.5 kb on the centromere-proximal side of the mat2-P cassette, which was previously shown to partially derepress transcription around mat2-P, had no effect on gene expression near mat3-M. A double deletion removing the mat2-P and mat3-M repressor elements had the same effect as the single deletions on their respective cassettes when assayed in cells of the M mating type. These observations allow us to refine a model proposing that redundant pathways silence the mating type region of S. pombe.  (+info)

RAD53 regulates DBF4 independently of checkpoint function in Saccharomyces cerevisiae. (6/9064)

The Cdc7p and Dbf4p proteins form an active kinase complex in Saccharomyces cerevisiae that is essential for the initiation of DNA replication. A genetic screen for mutations that are lethal in combination with cdc7-1 led to the isolation of seven lsd (lethal with seven defect) complementation groups. The lsd7 complementation group contained two temperature-sensitive dbf4 alleles. The lsd1 complementation group contained a new allele of RAD53, which was designated rad53-31. RAD53 encodes an essential protein kinase that is required for the activation of DNA damage and DNA replication checkpoint pathways, and that is implicated as a positive regulator of S phase. Unlike other RAD53 alleles, we demonstrate that the rad53-31 allele retains an intact checkpoint function. Thus, the checkpoint function and the DNA replication function of RAD53 can be functionally separated. The activation of DNA replication through RAD53 most likely occurs through DBF4. Two-hybrid analysis indicates that the Rad53p protein binds to Dbf4p. Furthermore, the steady-state level of DBF4 message and Dbf4p protein is reduced in several rad53 mutant strains, indicating that RAD53 positively regulates DBF4. These results suggest that two different functions of the cell cycle, initiation of DNA replication and the checkpoint function, can be coordinately regulated through the common intermediate RAD53.  (+info)

Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. (7/9064)

The opportunistic pathogen Candida glabrata causes significant disease in humans. To develop genetic tools to investigate the pathogenicity of this organism, we have constructed ura3 and his3 auxotrophic strains by deleting the relevant coding regions in a C. glabrata clinical isolate. Linearized plasmids carrying a Saccharomyces cerevisiae URA3 gene efficiently transformed the ura3 auxotroph to prototrophy. Homologous recombination events were observed when the linearized plasmid carried short terminal regions homologous with the chromosome. In contrast, in the absence of any chromosomal homology, the plasmid integrated by illegitimate recombination into random sites in the genome. Sequence analysis of the target sites revealed that for the majority of illegitimate transformants there was no microhomology with the integration site. Approximately 0.25% of the insertions resulted in amino acid auxotrophy, suggesting that insertion was random at a gross level. Sequence analysis suggested that illegitimate recombination is nonrandom at the single-gene level and that the integrating plasmid has a preference for inserting into noncoding regions of the genome. Analysis of the relative numbers of homologous and illegitimate recombination events suggests that C. glabrata possesses efficient systems for both homologous and nonhomologous recombination.  (+info)

Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p. (8/9064)

In Saccharomyces cerevisiae, mating pheromones activate two MAP kinases (MAPKs), Fus3p and Kss1p, to induce G1 arrest prior to mating. Fus3p is known to promote G1 arrest by activating Far1p, which inhibits three Clnp/Cdc28p kinases. To analyze the contribution of Fus3p and Kss1p to G1 arrest that is independent of Far1p, we constructed far1 CLN strains that undergo G1 arrest from increased activation of the mating MAP kinase pathway. We find that Fus3p and Kss1p both control G1 arrest through multiple functions that operate in parallel with Far1p. Fus3p and Kss1p together promote G1 arrest by repressing transcription of G1/S cyclin genes (CLN1, CLN2, CLB5) by a mechanism that blocks their activation by Cln3p/Cdc28p kinase. In addition, Fus3p and Kss1p counteract G1 arrest through overlapping and distinct functions. Fus3p and Kss1p together increase the expression of CLN3 and PCL2 genes that promote budding, and Kss1p inhibits the MAP kinase cascade. Strikingly, Fus3p promotes proliferation by a novel function that is not linked to reduced Ste12p activity or increased levels of Cln2p/Cdc28p kinase. Genetic analysis suggests that Fus3p promotes proliferation through activation of Mcm1p transcription factor that upregulates numerous genes in G1 phase. Thus, Fus3p and Kss1p control G1 arrest through a balance of arrest functions that inhibit the Cdc28p machinery and proliferative functions that bypass this inhibition.  (+info)

"Genetic crosses" refer to the breeding of individuals with different genetic characteristics to produce offspring with specific combinations of traits. This process is commonly used in genetics research to study the inheritance patterns and function of specific genes.

There are several types of genetic crosses, including:

1. Monohybrid cross: A cross between two individuals that differ in the expression of a single gene or trait.
2. Dihybrid cross: A cross between two individuals that differ in the expression of two genes or traits.
3. Backcross: A cross between an individual from a hybrid population and one of its parental lines.
4. Testcross: A cross between an individual with unknown genotype and a homozygous recessive individual.
5. Reciprocal cross: A cross in which the male and female parents are reversed to determine if there is any effect of sex on the expression of the trait.

These genetic crosses help researchers to understand the mode of inheritance, linkage, recombination, and other genetic phenomena.

La Crosse virus (LACV) is an orthobunyavirus that belongs to the California serogroup and is the most common cause of pediatric arboviral encephalitis in the United States. It is named after La Crosse, Wisconsin, where it was first identified in 1963.

LACV is primarily transmitted through the bite of infected eastern treehole mosquitoes (Aedes triseriatus), which serve as the primary vector and amplifying host for the virus. The virus can also be found in other mosquito species, such as Aedes albopictus and Aedes japonicus.

The transmission cycle of LACV involves mosquitoes feeding on infected small mammals, particularly chipmunks and squirrels, which serve as the natural reservoirs for the virus. The virus then replicates in the salivary glands of the mosquito, making it possible to transmit the virus through their bite.

LACV infection can cause a range of symptoms, from mild flu-like illness to severe neurological complications such as encephalitis (inflammation of the brain) and meningitis (inflammation of the membranes surrounding the brain and spinal cord). Most cases occur in children under the age of 16, with peak transmission during summer months.

Preventive measures for LACV include using insect repellent, wearing protective clothing, eliminating standing water around homes to reduce mosquito breeding sites, and staying indoors during peak mosquito activity hours (dawn and dusk). There is currently no specific antiviral treatment available for LACV infection, and management typically involves supportive care to address symptoms.

"California encephalitis" is not a medical term used to describe a specific type of encephalitis. Instead, it refers to a group of related viral infections that are common in California and other western states. These viruses are transmitted to humans through the bite of infected mosquitoes.

The most common cause of California encephalitis is the California serogroup of viruses, which includes the La Crosse virus, Jamestown Canyon virus, and Snowshoe Hare virus. These viruses can cause inflammation of the brain (encephalitis) and can lead to symptoms such as fever, headache, vomiting, confusion, seizures, and coma.

California encephalitis is typically a mild illness, but in some cases, it can be severe or even life-threatening. Treatment usually involves supportive care, such as fluids and medication to manage symptoms. There is no specific antiviral treatment for California encephalitis. Prevention measures include avoiding mosquito bites, using insect repellent, and eliminating standing water where mosquitoes breed.

There is no medical definition or specific virus named "Encephalitis Virus, California." However, there are several viruses that can cause encephalitis (inflammation of the brain) and some of them have been identified in California. Some examples include:

1. West Nile Virus: A mosquito-borne virus that is the most common cause of encephalitis in the United States, including California.
2. St. Louis Encephalitis Virus: Another mosquito-borne virus that is less common but can cause encephalitis, particularly in older adults. It has been identified in California.
3. Californian serogroup viruses (La Crosse, Jamestown Canyon, Snowshoe Hare): These are transmitted through the bite of infected mosquitoes and have been known to cause encephalitis, particularly in children. They are named after California because they were first identified there.
4. Tick-borne encephalitis viruses: There are several tick-borne viruses that can cause encephalitis, including Powassan virus and deer tick virus. These have been reported in California but are rare.

It's important to note that any virus that causes an infection in the body has the potential to spread to the brain and cause encephalitis, so there are many other viruses that could potentially be associated with encephalitis in California or any other location.

Genetic hybridization is a biological process that involves the crossing of two individuals from different populations or species, which can lead to the creation of offspring with new combinations of genetic material. This occurs when the gametes (sex cells) from each parent combine during fertilization, resulting in a zygote with a unique genetic makeup.

In genetics, hybridization can also refer to the process of introducing new genetic material into an organism through various means, such as genetic engineering or selective breeding. This type of hybridization is often used in agriculture and biotechnology to create crops or animals with desirable traits, such as increased disease resistance or higher yields.

It's important to note that the term "hybrid" can refer to both crosses between different populations within a single species (intraspecific hybrids) and crosses between different species (interspecific hybrids). The latter is often more challenging, as significant genetic differences between the two parental species can lead to various reproductive barriers, making it difficult for the hybrid offspring to produce viable offspring of their own.

Bunyaviridae is a family of enveloped, single-stranded RNA viruses that includes more than 350 different species. These viruses are named after the type species, Bunyamwera virus, which was first isolated in 1943 from mosquitoes in Uganda.

The genome of Bunyaviridae viruses is divided into three segments: large (L), medium (M), and small (S). The L segment encodes the RNA-dependent RNA polymerase, which is responsible for replication and transcription of the viral genome. The M segment encodes two glycoproteins that form the viral envelope and are involved in attachment and fusion to host cells. The S segment encodes the nucleocapsid protein, which packages the viral RNA, and a non-structural protein that is involved in modulation of the host immune response.

Bunyaviridae viruses are transmitted to humans and animals through arthropod vectors such as mosquitoes, ticks, and sandflies. Some members of this family can cause severe disease in humans, including Hantavirus pulmonary syndrome, Crimean-Congo hemorrhagic fever, and Rift Valley fever.

Prevention and control measures for Bunyaviridae viruses include avoiding contact with vectors, using insect repellent and wearing protective clothing, and implementing vector control programs. There are no specific antiviral treatments available for most Bunyaviridae infections, although ribavirin has been shown to be effective against some members of the family. Vaccines are available for a few Bunyaviridae viruses, such as Hantavirus and Crimean-Congo hemorrhagic fever virus, but they are not widely used due to limitations in production and distribution.

Hybrid vigor, also known as heterosis or heterozygote advantage, is a phenomenon in genetics where the offspring of genetically diverse parents exhibit certain favorable traits that are not present in either parent. This results in increased growth, fertility, disease resistance, and overall hardiness in the offspring compared to the purebred parents.

In medical terms, hybrid vigor is often discussed in the context of breeding programs for livestock or plants used for agricultural purposes. By crossing two distinct lines or breeds with different genetic backgrounds, breeders can create offspring that have improved health and productivity traits, which can lead to better outcomes in farming and agriculture.

It's worth noting that while hybrid vigor is a well-established concept in genetics, its application in human medicine is limited. However, understanding the principles of hybrid vigor can still be useful for researchers studying genetic diversity and disease susceptibility in humans.

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

In medical terms, "breeding" is not a term that is commonly used. It is more frequently used in the context of animal husbandry to refer to the process of mating animals in order to produce offspring with specific desired traits or characteristics. In human medicine, the term is not typically applied to people and instead, related concepts such as reproduction, conception, or pregnancy are used.

Quantitative Trait Loci (QTL) are regions of the genome that are associated with variation in quantitative traits, which are traits that vary continuously in a population and are influenced by multiple genes and environmental factors. QTLs can help to explain how genetic variations contribute to differences in complex traits such as height, blood pressure, or disease susceptibility.

Quantitative trait loci are identified through statistical analysis of genetic markers and trait values in experimental crosses between genetically distinct individuals, such as strains of mice or plants. The location of a QTL is inferred based on the pattern of linkage disequilibrium between genetic markers and the trait of interest. Once a QTL has been identified, further analysis can be conducted to identify the specific gene or genes responsible for the variation in the trait.

It's important to note that QTLs are not themselves genes, but rather genomic regions that contain one or more genes that contribute to the variation in a quantitative trait. Additionally, because QTLs are identified through statistical analysis, they represent probabilistic estimates of the location of genetic factors influencing a trait and may encompass large genomic regions containing multiple genes. Therefore, additional research is often required to fine-map and identify the specific genes responsible for the variation in the trait.

Genetic linkage is the phenomenon where two or more genetic loci (locations on a chromosome) tend to be inherited together because they are close to each other on the same chromosome. This occurs during the process of sexual reproduction, where homologous chromosomes pair up and exchange genetic material through a process called crossing over.

The closer two loci are to each other on a chromosome, the lower the probability that they will be separated by a crossover event. As a result, they are more likely to be inherited together and are said to be linked. The degree of linkage between two loci can be measured by their recombination frequency, which is the percentage of meiotic events in which a crossover occurs between them.

Linkage analysis is an important tool in genetic research, as it allows researchers to identify and map genes that are associated with specific traits or diseases. By analyzing patterns of linkage between markers (identifiable DNA sequences) and phenotypes (observable traits), researchers can infer the location of genes that contribute to those traits or diseases on chromosomes.

Genetic recombination is the process by which genetic material is exchanged between two similar or identical molecules of DNA during meiosis, resulting in new combinations of genes on each chromosome. This exchange occurs during crossover, where segments of DNA are swapped between non-sister homologous chromatids, creating genetic diversity among the offspring. It is a crucial mechanism for generating genetic variability and facilitating evolutionary change within populations. Additionally, recombination also plays an essential role in DNA repair processes through mechanisms such as homologous recombinational repair (HRR) and non-homologous end joining (NHEJ).

Inbreeding, in a medical context, refers to the practice of mating closely related individuals within a given family or breeding population. This leads to an increased proportion of homozygous genes, meaning that the same alleles (versions of a gene) are inherited from both parents. As a result, recessive traits and disorders become more likely to be expressed because the necessary dominant allele may be absent.

In human medicine, consanguinity is the term often used instead of inbreeding, and it refers to relationships between individuals who share a common ancestor. Consanguinity increases the risk of certain genetic disorders due to the increased likelihood of sharing harmful recessive genes. The closer the relationship, the higher the risk.

In animal breeding, inbreeding can lead to reduced fertility, lower birth weights, higher infant mortality, and a decreased lifespan. It is crucial to maintain genetic diversity within populations to ensure their overall health and vigor.

A phenotype is the physical or biochemical expression of an organism's genes, or the observable traits and characteristics resulting from the interaction of its genetic constitution (genotype) with environmental factors. These characteristics can include appearance, development, behavior, and resistance to disease, among others. Phenotypes can vary widely, even among individuals with identical genotypes, due to differences in environmental influences, gene expression, and genetic interactions.

Reproduction, in the context of biology and medicine, refers to the process by which organisms produce offspring. It is a complex process that involves the creation, development, and growth of new individuals from parent organisms. In sexual reproduction, this process typically involves the combination of genetic material from two parents through the fusion of gametes (sex cells) such as sperm and egg cells. This results in the formation of a zygote, which then develops into a new individual with a unique genetic makeup.

In contrast, asexual reproduction does not involve the fusion of gametes and can occur through various mechanisms such as budding, fragmentation, or parthenogenesis. Asexual reproduction results in offspring that are genetically identical to the parent organism.

Reproduction is a fundamental process that ensures the survival and continuation of species over time. It is also an area of active research in fields such as reproductive medicine, where scientists and clinicians work to understand and address issues related to human fertility, contraception, and genetic disorders.

Encephalitis viruses are a group of viruses that can cause encephalitis, which is an inflammation of the brain. Some of the most common encephalitis viruses include:

1. Herpes simplex virus (HSV) type 1 and 2: These viruses are best known for causing cold sores and genital herpes, but they can also cause encephalitis, particularly in newborns and individuals with weakened immune systems.
2. Varicella-zoster virus (VZV): This virus causes chickenpox and shingles, and it can also lead to encephalitis, especially in people who have had chickenpox.
3. Enteroviruses: These viruses are often responsible for summertime meningitis outbreaks and can occasionally cause encephalitis.
4. Arboviruses: These viruses are transmitted through the bites of infected mosquitoes, ticks, or other insects. Examples include West Nile virus, St. Louis encephalitis virus, Eastern equine encephalitis virus, and Western equine encephalitis virus.
5. Rabies virus: This virus is transmitted through the bite of an infected animal and can cause encephalitis in its later stages.
6. Measles virus: Although rare in developed countries due to vaccination, measles can still cause encephalitis as a complication of the infection.
7. Mumps virus: Like measles, mumps is preventable through vaccination, but it can also lead to encephalitis as a rare complication.
8. Cytomegalovirus (CMV): This virus is a member of the herpesvirus family and can cause encephalitis in people with weakened immune systems, such as those with HIV/AIDS or organ transplant recipients.
9. La Crosse virus: This arbovirus is primarily transmitted through the bites of infected eastern treehole mosquitoes and mainly affects children.
10. Powassan virus: Another arbovirus, Powassan virus is transmitted through the bites of infected black-legged ticks (also known as deer ticks) and can cause severe encephalitis.

It's important to note that many of these viruses are preventable through vaccination or by avoiding exposure to infected animals or mosquitoes. If you suspect you may have been exposed to one of these viruses, consult a healthcare professional for proper diagnosis and treatment.

Genetic markers are specific segments of DNA that are used in genetic mapping and genotyping to identify specific genetic locations, diseases, or traits. They can be composed of short tandem repeats (STRs), single nucleotide polymorphisms (SNPs), restriction fragment length polymorphisms (RFLPs), or variable number tandem repeats (VNTRs). These markers are useful in various fields such as genetic research, medical diagnostics, forensic science, and breeding programs. They can help to track inheritance patterns, identify genetic predispositions to diseases, and solve crimes by linking biological evidence to suspects or victims.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Arbovirus encephalitis is a type of encephalitis (inflammation of the brain) caused by a group of viruses that are transmitted through the bite of infected arthropods, such as mosquitoes or ticks. The term "arbovirus" stands for "arthropod-borne virus."

There are many different types of arboviruses that can cause encephalitis, including:

* La Crosse virus
* St. Louis encephalitis virus
* West Nile virus
* Eastern equine encephalitis virus
* Western equine encephalitis virus
* Venezuelan equine encephalitis virus

The symptoms of arbovirus encephalitis can vary, but may include fever, headache, stiff neck, seizures, confusion, and weakness. In severe cases, it can lead to coma or death. Treatment typically involves supportive care to manage symptoms, as there is no specific antiviral treatment for most types of arbovirus encephalitis. Prevention measures include avoiding mosquito and tick bites, using insect repellent, and eliminating standing water where mosquitoes breed.

Inheritance patterns refer to the way in which a particular genetic trait or disorder is passed down from one generation to the next, following the rules of Mendelian genetics. There are several different inheritance patterns, including:

1. Autosomal dominant: A single copy of the altered gene in each cell is sufficient to cause the disorder. An affected parent has a 50% chance of passing on the altered gene to each offspring.
2. Autosomal recessive: Two copies of the altered gene in each cell are necessary for the disorder to occur. Both parents must be carriers of the altered gene and have a 25% chance of passing on the altered gene to each offspring, who may then develop the disorder.
3. X-linked dominant: The altered gene is located on the X chromosome, and one copy of the altered gene in each cell is sufficient to cause the disorder. Females are more likely to be affected than males, and an affected female has a 50% chance of passing on the altered gene to each offspring.
4. X-linked recessive: The altered gene is located on the X chromosome, and two copies of the altered gene in each cell are necessary for the disorder to occur. Males are more likely to be affected than females, and an affected male will pass on the altered gene to all of his daughters (who will be carriers) but none of his sons.
5. Mitochondrial inheritance: The altered gene is located in the mitochondria, the energy-producing structures in cells. Both males and females can pass on mitochondrial genetic disorders, but only through the female line because offspring inherit their mother's mitochondria.

Understanding inheritance patterns helps medical professionals predict the likelihood of a genetic disorder occurring in families and provides information about how a disorder may be passed down through generations.

An allele is a variant form of a gene that is located at a specific position on a specific chromosome. Alleles are alternative forms of the same gene that arise by mutation and are found at the same locus or position on homologous chromosomes.

Each person typically inherits two copies of each gene, one from each parent. If the two alleles are identical, a person is said to be homozygous for that trait. If the alleles are different, the person is heterozygous.

For example, the ABO blood group system has three alleles, A, B, and O, which determine a person's blood type. If a person inherits two A alleles, they will have type A blood; if they inherit one A and one B allele, they will have type AB blood; if they inherit two B alleles, they will have type B blood; and if they inherit two O alleles, they will have type O blood.

Alleles can also influence traits such as eye color, hair color, height, and other physical characteristics. Some alleles are dominant, meaning that only one copy of the allele is needed to express the trait, while others are recessive, meaning that two copies of the allele are needed to express the trait.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Genetic models are theoretical frameworks used in genetics to describe and explain the inheritance patterns and genetic architecture of traits, diseases, or phenomena. These models are based on mathematical equations and statistical methods that incorporate information about gene frequencies, modes of inheritance, and the effects of environmental factors. They can be used to predict the probability of certain genetic outcomes, to understand the genetic basis of complex traits, and to inform medical management and treatment decisions.

There are several types of genetic models, including:

1. Mendelian models: These models describe the inheritance patterns of simple genetic traits that follow Mendel's laws of segregation and independent assortment. Examples include autosomal dominant, autosomal recessive, and X-linked inheritance.
2. Complex trait models: These models describe the inheritance patterns of complex traits that are influenced by multiple genes and environmental factors. Examples include heart disease, diabetes, and cancer.
3. Population genetics models: These models describe the distribution and frequency of genetic variants within populations over time. They can be used to study evolutionary processes, such as natural selection and genetic drift.
4. Quantitative genetics models: These models describe the relationship between genetic variation and phenotypic variation in continuous traits, such as height or IQ. They can be used to estimate heritability and to identify quantitative trait loci (QTLs) that contribute to trait variation.
5. Statistical genetics models: These models use statistical methods to analyze genetic data and infer the presence of genetic associations or linkage. They can be used to identify genetic risk factors for diseases or traits.

Overall, genetic models are essential tools in genetics research and medical genetics, as they allow researchers to make predictions about genetic outcomes, test hypotheses about the genetic basis of traits and diseases, and develop strategies for prevention, diagnosis, and treatment.

Genotype, in genetics, refers to the complete heritable genetic makeup of an individual organism, including all of its genes. It is the set of instructions contained in an organism's DNA for the development and function of that organism. The genotype is the basis for an individual's inherited traits, and it can be contrasted with an individual's phenotype, which refers to the observable physical or biochemical characteristics of an organism that result from the expression of its genes in combination with environmental influences.

It is important to note that an individual's genotype is not necessarily identical to their genetic sequence. Some genes have multiple forms called alleles, and an individual may inherit different alleles for a given gene from each parent. The combination of alleles that an individual inherits for a particular gene is known as their genotype for that gene.

Understanding an individual's genotype can provide important information about their susceptibility to certain diseases, their response to drugs and other treatments, and their risk of passing on inherited genetic disorders to their offspring.

A quantitative trait is a phenotypic characteristic that can be measured and displays continuous variation, meaning it can take on any value within a range. Examples include height, blood pressure, or biochemical measurements like cholesterol levels. These traits are usually influenced by the combined effects of multiple genes (polygenic inheritance) as well as environmental factors.

Heritability, in the context of genetics, refers to the proportion of variation in a trait that can be attributed to genetic differences among individuals in a population. It is estimated using statistical methods and ranges from 0 to 1, with higher values indicating a greater contribution of genetics to the observed phenotypic variance.

Therefore, a heritable quantitative trait would be a phenotype that shows continuous variation, influenced by multiple genes and environmental factors, and for which a significant portion of the observed variation can be attributed to genetic differences among individuals in a population.

Reproductive isolation is a concept in reproductive biology and evolutionary biology that refers to the mechanisms that prevent interbreeding between two populations of organisms, leading to their genetic separation and potential speciation. These mechanisms can be prezygotic (preventing the formation of a viable zygote) or postzygotic (preventing the successful development of offspring). Prezygotic isolation includes temporal isolation (different mating times), behavioral isolation (different courtship behaviors), mechanical isolation (physical incompatibility between gametes), and gametic isolation (inviable or non-functional gametes when crossed). Postzygotic isolation includes hybrid inviability (hybrid offspring die early) and hybrid sterility (hybrid offspring are unable to reproduce). Reproductive isolation is crucial for the formation of new species and the maintenance of biodiversity.

Fertility is the natural ability to conceive or to cause conception of offspring. In humans, it is the capacity of a woman and a man to reproduce through sexual reproduction. For women, fertility usually takes place during their reproductive years, which is from adolescence until menopause. A woman's fertility depends on various factors including her age, overall health, and the health of her reproductive system.

For men, fertility can be affected by a variety of factors such as age, genetics, general health, sexual function, and environmental factors that may affect sperm production or quality. Factors that can negatively impact male fertility include exposure to certain chemicals, radiation, smoking, alcohol consumption, drug use, and sexually transmitted infections (STIs).

Infertility is a common medical condition affecting about 10-15% of couples trying to conceive. Infertility can be primary or secondary. Primary infertility refers to the inability to conceive after one year of unprotected sexual intercourse, while secondary infertility refers to the inability to conceive following a previous pregnancy.

Infertility can be treated with various medical and surgical interventions depending on the underlying cause. These may include medications to stimulate ovulation, intrauterine insemination (IUI), in vitro fertilization (IVF), or surgery to correct anatomical abnormalities.

Least-Squares Analysis is not a medical term, but rather a statistical method that is used in various fields including medicine. It is a way to find the best fit line or curve for a set of data points by minimizing the sum of the squared distances between the observed data points and the fitted line or curve. This method is often used in medical research to analyze data, such as fitting a regression line to a set of data points to make predictions or identify trends. The goal is to find the line or curve that most closely represents the pattern of the data, which can help researchers understand relationships between variables and make more informed decisions based on their analysis.

Inbred strains of mice are defined as lines of mice that have been brother-sister mated for at least 20 consecutive generations. This results in a high degree of homozygosity, where the mice of an inbred strain are genetically identical to one another, with the exception of spontaneous mutations.

Inbred strains of mice are widely used in biomedical research due to their genetic uniformity and stability, which makes them useful for studying the genetic basis of various traits, diseases, and biological processes. They also provide a consistent and reproducible experimental system, as compared to outbred or genetically heterogeneous populations.

Some commonly used inbred strains of mice include C57BL/6J, BALB/cByJ, DBA/2J, and 129SvEv. Each strain has its own unique genetic background and phenotypic characteristics, which can influence the results of experiments. Therefore, it is important to choose the appropriate inbred strain for a given research question.

Weaning is the process of gradually introducing an infant or young child to a new source of nutrition, such as solid foods, while simultaneously decreasing their dependence on breast milk or formula. This process can begin when the child is developmentally ready, typically around 6 months of age, and involves offering them small amounts of pureed or mashed foods to start, then gradually introducing more textured and varied foods as they become comfortable with the new diet. The weaning process should be done slowly and under the guidance of a healthcare provider to ensure that the child's nutritional needs are being met and to avoid any potential digestive issues.

In medical terms, "seeds" are often referred to as a small amount of a substance, such as a radioactive material or drug, that is inserted into a tissue or placed inside a capsule for the purpose of treating a medical condition. This can include procedures like brachytherapy, where seeds containing radioactive materials are used in the treatment of cancer to kill cancer cells and shrink tumors. Similarly, in some forms of drug delivery, seeds containing medication can be used to gradually release the drug into the body over an extended period of time.

It's important to note that "seeds" have different meanings and applications depending on the medical context. In other cases, "seeds" may simply refer to small particles or structures found in the body, such as those present in the eye's retina.

Genetic variation refers to the differences in DNA sequences among individuals and populations. These variations can result from mutations, genetic recombination, or gene flow between populations. Genetic variation is essential for evolution by providing the raw material upon which natural selection acts. It can occur within a single gene, between different genes, or at larger scales, such as differences in the number of chromosomes or entire sets of chromosomes. The study of genetic variation is crucial in understanding the genetic basis of diseases and traits, as well as the evolutionary history and relationships among species.

Polyploidy is a condition in which a cell or an organism has more than two sets of chromosomes, unlike the typical diploid state where there are only two sets (one from each parent). Polyploidy can occur through various mechanisms such as errors during cell division, fusion of egg and sperm cells that have an abnormal number of chromosomes, or through the reproduction process in plants.

Polyploidy is common in the plant kingdom, where it often leads to larger size, increased biomass, and sometimes hybrid vigor. However, in animals, polyploidy is less common and usually occurs in only certain types of cells or tissues, as most animals require a specific number of chromosomes for normal development and reproduction. In humans, polyploidy is typically not compatible with life and can lead to developmental abnormalities and miscarriage.

Pollen, in a medical context, refers to the fine powder-like substance produced by the male reproductive organ of seed plants. It contains microscopic grains known as pollen grains, which are transported by various means such as wind, water, or insects to the female reproductive organ of the same or another plant species for fertilization.

Pollen can cause allergic reactions in some individuals, particularly during the spring and summer months when plants release large amounts of pollen into the air. These allergies, also known as hay fever or seasonal allergic rhinitis, can result in symptoms such as sneezing, runny nose, congestion, itchy eyes, and coughing.

It is important to note that while all pollen has the potential to cause allergic reactions, certain types of plants, such as ragweed, grasses, and trees, are more likely to trigger symptoms in sensitive individuals.

Chromosomes in plants are thread-like structures that contain genetic material, DNA, and proteins. They are present in the nucleus of every cell and are inherited from the parent plants during sexual reproduction. Chromosomes come in pairs, with each pair consisting of one chromosome from each parent.

In plants, like in other organisms, chromosomes play a crucial role in inheritance, development, and reproduction. They carry genetic information that determines various traits and characteristics of the plant, such as its physical appearance, growth patterns, and resistance to diseases.

Plant chromosomes are typically much larger than those found in animals, making them easier to study under a microscope. The number of chromosomes varies among different plant species, ranging from as few as 2 in some ferns to over 1000 in certain varieties of wheat.

During cell division, the chromosomes replicate and then separate into two identical sets, ensuring that each new cell receives a complete set of genetic information. This process is critical for the growth and development of the plant, as well as for the production of viable seeds and offspring.

Mammalian chromosomes are thread-like structures that exist in the nucleus of mammalian cells, consisting of DNA, hist proteins, and RNA. They carry genetic information that is essential for the development and function of all living organisms. In mammals, each cell contains 23 pairs of chromosomes, for a total of 46 chromosomes, with one set inherited from the mother and the other from the father.

The chromosomes are typically visualized during cell division, where they condense and become visible under a microscope. Each chromosome is composed of two identical arms, separated by a constriction called the centromere. The short arm of the chromosome is labeled as "p," while the long arm is labeled as "q."

Mammalian chromosomes play a critical role in the transmission of genetic information from one generation to the next and are essential for maintaining the stability and integrity of the genome. Abnormalities in the number or structure of mammalian chromosomes can lead to various genetic disorders, including Down syndrome, Turner syndrome, and Klinefelter syndrome.

Diploidy is a term used in genetics to describe the state of having two sets of chromosomes in each cell. In diploid organisms, one set of chromosomes is inherited from each parent, resulting in a total of 2 sets of chromosomes.

In humans, for example, most cells are diploid and contain 46 chromosomes arranged in 23 pairs. This includes 22 pairs of autosomal chromosomes and one pair of sex chromosomes (XX in females or XY in males). Diploidy is a characteristic feature of many complex organisms, including animals, plants, and fungi.

Diploid cells can undergo a process called meiosis, which results in the formation of haploid cells that contain only one set of chromosomes. These haploid cells can then combine with other haploid cells during fertilization to form a new diploid organism.

Abnormalities in diploidy can lead to genetic disorders, such as Down syndrome, which occurs when an individual has three copies of chromosome 21 instead of the typical two. This extra copy of the chromosome can result in developmental delays and intellectual disabilities.

A gene is a specific sequence of nucleotides in DNA that carries genetic information. Genes are the fundamental units of heredity and are responsible for the development and function of all living organisms. They code for proteins or RNA molecules, which carry out various functions within cells and are essential for the structure, function, and regulation of the body's tissues and organs.

Each gene has a specific location on a chromosome, and each person inherits two copies of every gene, one from each parent. Variations in the sequence of nucleotides in a gene can lead to differences in traits between individuals, including physical characteristics, susceptibility to disease, and responses to environmental factors.

Medical genetics is the study of genes and their role in health and disease. It involves understanding how genes contribute to the development and progression of various medical conditions, as well as identifying genetic risk factors and developing strategies for prevention, diagnosis, and treatment.

Chromosomes are thread-like structures that exist in the nucleus of cells, carrying genetic information in the form of genes. They are composed of DNA and proteins, and are typically present in pairs in the nucleus, with one set inherited from each parent. In humans, there are 23 pairs of chromosomes for a total of 46 chromosomes. Chromosomes come in different shapes and forms, including sex chromosomes (X and Y) that determine the biological sex of an individual. Changes or abnormalities in the number or structure of chromosomes can lead to genetic disorders and diseases.

"Nelumbo" is the scientific genus name for the lotus flower, which includes two species: Nelumbo nucifera (also known as Sacred Lotus) and Nelumbo lutea (American Lotus). These aquatic plants are known for their large, beautiful flowers that bloom on the surface of the water. While "Nelumbo" is a term from plant taxonomy and botany, it does not have a specific medical definition as such. However, various parts of Nelumbo plants have been used in traditional medicine across different cultures for treating various health conditions. For instance, the seeds, leaves, and roots of Nelumbo nucifera are used in Traditional Chinese Medicine to treat several ailments like diarrhea, fever, and skin diseases. Nonetheless, it is essential to consult healthcare professionals before using any plant or herbal remedy for medicinal purposes.

Epistasis is a phenomenon in genetics where the effect of one gene (the "epistatic" gene) is modified by one or more other genes (the "modifier" genes). This interaction can result in different phenotypic expressions than what would be expected based on the individual effects of each gene.

In other words, epistasis occurs when the expression of one gene is influenced by the presence or absence of another gene. The gene that is being masked or modified is referred to as the hypostatic gene, while the gene doing the masking or modifying is called the epistatic gene.

Epistasis can take many forms and can be involved in complex genetic traits and diseases. It can also make it more difficult to map genes associated with certain traits or conditions because the phenotypic expression may not follow simple Mendelian inheritance patterns.

There are several types of epistasis, including recessive-recessive, dominant-recessive, and dominant-dominant epistasis. In recessive-recessive epistasis, for example, the presence of two copies of the epistatic gene prevents the expression of the hypostatic gene, even if the individual has two copies of the hypostatic gene.

Understanding epistasis is important in genetics because it can help researchers better understand the genetic basis of complex traits and diseases, as well as improve breeding programs for plants and animals.

A gene in plants, like in other organisms, is a hereditary unit that carries genetic information from one generation to the next. It is a segment of DNA (deoxyribonucleic acid) that contains the instructions for the development and function of an organism. Genes in plants determine various traits such as flower color, plant height, resistance to diseases, and many others. They are responsible for encoding proteins and RNA molecules that play crucial roles in the growth, development, and reproduction of plants. Plant genes can be manipulated through traditional breeding methods or genetic engineering techniques to improve crop yield, enhance disease resistance, and increase nutritional value.

Wolbachia is a genus of intracellular bacteria that naturally infects a wide variety of arthropods (insects, spiders, mites) and filarial nematodes (roundworms). These bacteria are transmitted vertically from mother to offspring, often through the cytoplasm of eggs. Wolbachia can manipulate the reproductive biology of their hosts in various ways, such as feminization, parthenogenesis, male killing, and cytoplasmic incompatibility, which favor the spread and maintenance of the bacteria within host populations. The interactions between Wolbachia and their hosts have implications for insect pest management, disease transmission, and evolutionary biology.

Genetic conjugation is a type of genetic transfer that occurs between bacterial cells. It involves the process of one bacterium (the donor) transferring a piece of its DNA to another bacterium (the recipient) through direct contact or via a bridge-like connection called a pilus. This transferred DNA may contain genes that provide the recipient cell with new traits, such as antibiotic resistance or virulence factors, which can make the bacteria more harmful or difficult to treat. Genetic conjugation is an important mechanism for the spread of antibiotic resistance and other traits among bacterial populations.

A chimera, in the context of medicine and biology, is a single organism that is composed of cells with different genetics. This can occur naturally in some situations, such as when fraternal twins do not fully separate in utero and end up sharing some organs or tissues. The term "chimera" can also refer to an organism that contains cells from two different species, which can happen in certain types of genetic research or medical treatments. For example, a patient's cells might be genetically modified in a lab and then introduced into their body to treat a disease; if some of these modified cells mix with the patient's original cells, the result could be a chimera.

It's worth noting that the term "chimera" comes from Greek mythology, where it referred to a fire-breathing monster that was part lion, part goat, and part snake. In modern scientific usage, the term has a specific technical meaning related to genetics and organisms, but it may still evoke images of fantastical creatures for some people.

A heterozygote is an individual who has inherited two different alleles (versions) of a particular gene, one from each parent. This means that the individual's genotype for that gene contains both a dominant and a recessive allele. The dominant allele will be expressed phenotypically (outwardly visible), while the recessive allele may or may not have any effect on the individual's observable traits, depending on the specific gene and its function. Heterozygotes are often represented as 'Aa', where 'A' is the dominant allele and 'a' is the recessive allele.

I'm sorry for any confusion, but "pollination" is not a term typically used in medical definitions. Pollination is a process in biology, specifically in botany, that refers to the transfer of pollen from the male reproductive organ (anther) of a flower to the female reproductive organ (stigma) of the same or another flower, leading to fertilization and the production of fruits and seeds.

If you have any medical terms or concepts in mind, please provide them so I can offer an accurate definition or explanation.

I apologize for any confusion, but "Muridae" is not a medical term. It is a taxonomic category in biology, specifically it is a family of rodents that includes mice, rats, hamsters, gerbils, and many other species. If you have any questions about medical terminology or concepts, I would be happy to help with those.

"Gibberella" is not a medical term itself, but it is a genus of filamentous fungi that can cause various plant diseases. One species in particular, "Gibberella zeae," is well-known for causing a disease called "wheat scab" or "head blight" in wheat and barley crops. This disease can lead to significant yield losses and contamination of grains with mycotoxins, which can pose risks to human and animal health if consumed.

In a medical context, the term "Gibberella" may be mentioned in relation to mycotoxicosis, which is poisoning caused by the consumption of food or feed contaminated with mycotoxins produced by fungi such as Gibberella. However, it is important to note that "Gibberella" itself is not a medical term, but rather a term used in mycology and plant pathology.

Extrachromosomal inheritance refers to the transmission of genetic information that occurs outside of the chromosomes, which are the structures in the cell nucleus that typically contain and transmit genetic material. This type of inheritance is relatively rare and can involve various types of genetic elements, such as plasmids or transposons.

In extrachromosomal inheritance, these genetic elements can replicate independently of the chromosomes and be passed on to offspring through mechanisms other than traditional Mendelian inheritance. This can lead to non-Mendelian patterns of inheritance, where traits do not follow the expected dominant or recessive patterns.

One example of extrachromosomal inheritance is the transmission of mitochondrial DNA (mtDNA), which occurs in the cytoplasm of the cell rather than on the chromosomes. Mitochondria are organelles that produce energy for the cell, and they contain their own small circular genome that is inherited maternally. Mutations in mtDNA can lead to a variety of genetic disorders, including mitochondrial diseases.

Overall, extrachromosomal inheritance is an important area of study in genetics, as it can help researchers better understand the complex ways in which genetic information is transmitted and expressed in living organisms.

"Neurospora crassa" is not a medical term, but it is a scientific name used in the field of biology. It refers to a type of filamentous fungus that belongs to the phylum Ascomycota. This organism is commonly found in the environment and has been widely used as a model system for studying various biological processes, including genetics, cell biology, and molecular biology.

"Neurospora crassa" has a characteristic red pigment that makes it easy to identify, and it reproduces sexually through the formation of specialized structures called ascocarps or "fruiting bodies." The fungus undergoes meiosis inside these structures, resulting in the production of ascospores, which are haploid spores that can germinate and form new individuals.

The genome of "Neurospora crassa" was one of the first fungal genomes to be sequenced, and it has served as an important tool for understanding fundamental biological processes in eukaryotic cells. However, because it is not a medical term, there is no official medical definition for "Neurospora crassa."

A plant genome refers to the complete set of genetic material or DNA present in the cells of a plant. It contains all the hereditary information necessary for the development and functioning of the plant, including its structural and functional characteristics. The plant genome includes both coding regions that contain instructions for producing proteins and non-coding regions that have various regulatory functions.

The plant genome is composed of several types of DNA molecules, including chromosomes, which are located in the nucleus of the cell. Each chromosome contains one or more genes, which are segments of DNA that code for specific proteins or RNA molecules. Plants typically have multiple sets of chromosomes, with each set containing a complete copy of the genome.

The study of plant genomes is an active area of research in modern biology, with important applications in areas such as crop improvement, evolutionary biology, and medical research. Advances in DNA sequencing technologies have made it possible to determine the complete sequences of many plant genomes, providing valuable insights into their structure, function, and evolution.

"Aedes" is a genus of mosquitoes that are known to transmit various diseases, including Zika virus, dengue fever, chikungunya, and yellow fever. These mosquitoes are typically found in tropical and subtropical regions around the world. They are distinguished by their black and white striped legs and thorax. Aedes aegypti is the most common species associated with disease transmission, although other species such as Aedes albopictus can also transmit diseases. It's important to note that only female mosquitoes bite and feed on blood, while males feed solely on nectar and plant juices.

Crossing over, genetic is a process that occurs during meiosis, where homologous chromosomes exchange genetic material with each other. It is a crucial mechanism for generating genetic diversity in sexually reproducing organisms.

Here's a more detailed explanation:

During meiosis, homologous chromosomes pair up and align closely with each other. At this point, sections of the chromosomes can break off and reattach to the corresponding section on the homologous chromosome. This exchange of genetic material is called crossing over or genetic recombination.

The result of crossing over is that the two resulting chromosomes are no longer identical to each other or to the original chromosomes. Instead, they contain a unique combination of genetic material from both parents. Crossing over can lead to new combinations of alleles (different forms of the same gene) and can increase genetic diversity in the population.

Crossing over is a random process, so the location and frequency of crossover events vary between individuals and between chromosomes. The number and position of crossovers can affect the likelihood that certain genes will be inherited together or separated, which is an important consideration in genetic mapping and breeding studies.

A genetic complementation test is a laboratory procedure used in molecular genetics to determine whether two mutated genes can complement each other's function, indicating that they are located at different loci and represent separate alleles. This test involves introducing a normal or wild-type copy of one gene into a cell containing a mutant version of the same gene, and then observing whether the presence of the normal gene restores the normal function of the mutated gene. If the introduction of the normal gene results in the restoration of the normal phenotype, it suggests that the two genes are located at different loci and can complement each other's function. However, if the introduction of the normal gene does not restore the normal phenotype, it suggests that the two genes are located at the same locus and represent different alleles of the same gene. This test is commonly used to map genes and identify genetic interactions in a variety of organisms, including bacteria, yeast, and animals.

Genetics is the scientific study of genes, heredity, and variation in living organisms. It involves the analysis of how traits are passed from parents to offspring, the function of genes, and the way genetic information is transmitted and expressed within an organism's biological system. Genetics encompasses various subfields, including molecular genetics, population genetics, quantitative genetics, and genomics, which investigate gene structure, function, distribution, and evolution in different organisms. The knowledge gained from genetics research has significant implications for understanding human health and disease, as well as for developing medical treatments and interventions based on genetic information.

Genetic transduction is a process in molecular biology that describes the transfer of genetic material from one bacterium to another by a viral vector called a bacteriophage (or phage). In this process, the phage infects one bacterium and incorporates a portion of the bacterial DNA into its own genetic material. When the phage then infects a second bacterium, it can transfer the incorporated bacterial DNA to the new host. This can result in the horizontal gene transfer (HGT) of traits such as antibiotic resistance or virulence factors between bacteria.

There are two main types of transduction: generalized and specialized. In generalized transduction, any portion of the bacterial genome can be packaged into the phage particle, leading to a random assortment of genetic material being transferred. In specialized transduction, only specific genes near the site where the phage integrates into the bacterial chromosome are consistently transferred.

It's important to note that genetic transduction is not to be confused with transformation or conjugation, which are other mechanisms of HGT in bacteria.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

"Plantago" is the genus name for a group of plants commonly known as plantains. There are several species within this genus, including Plantago major (common plantain) and Plantago lanceolata (narrow-leaved plantain), which are found in many parts of the world. These plants have been used in traditional medicine for their alleged healing properties, such as soothing skin irritations, reducing inflammation, and promoting wound healing. However, it is important to note that the medical community's scientific evidence supporting these claims is limited, and further research is needed before any definitive health benefits can be attributed to Plantago species.

1. Genes: These are hereditary units that carry genetic information from parents to offspring and determine various characteristics such as eye color, hair color, and height in living organisms. In fungi, genes are responsible for encoding different traits, including mating type.

2. Mating Type: Fungi have a complex sexual reproduction system involving two or more mating types that must come together to reproduce sexually. The mating type of a fungus is determined by the presence or absence of specific genes called "mating type loci" (MAT). These genes control the ability of fungal cells to recognize and fuse with each other during sexual reproduction.

3. Fungal: This term refers to any member of the kingdom Fungi, which includes a diverse group of organisms such as yeasts, molds, and mushrooms. Fungi are eukaryotic, meaning they have complex cells with a true nucleus and other membrane-bound organelles. They play essential roles in various ecosystems, decomposing organic matter, recycling nutrients, and forming mutualistic relationships with plants and animals.

In summary, 'Genes, Mating Type, Fungal' refers to the genetic factors that determine the mating type of fungi, which is crucial for their sexual reproduction and survival in various environments.

Fungal spores are defined as the reproductive units of fungi that are produced by specialized structures called hyphae. These spores are typically single-celled and can exist in various shapes such as round, oval, or ellipsoidal. They are highly resistant to extreme environmental conditions like heat, cold, and dryness, which allows them to survive for long periods until they find a suitable environment to germinate and grow into a new fungal organism. Fungal spores can be found in the air, water, soil, and on various surfaces, making them easily dispersible and capable of causing infections in humans, animals, and plants.

'Zea mays' is the biological name for corn or maize, which is not typically considered a medical term. However, corn or maize can have medical relevance in certain contexts. For example, cornstarch is sometimes used as a diluent for medications and is also a component of some skin products. Corn oil may be found in topical ointments and creams. In addition, some people may have allergic reactions to corn or corn-derived products. But generally speaking, 'Zea mays' itself does not have a specific medical definition.

Bacterial chromosomes are typically circular, double-stranded DNA molecules that contain the genetic material of bacteria. Unlike eukaryotic cells, which have their DNA housed within a nucleus, bacterial chromosomes are located in the cytoplasm of the cell, often associated with the bacterial nucleoid.

Bacterial chromosomes can vary in size and structure among different species, but they typically contain all of the genetic information necessary for the survival and reproduction of the organism. They may also contain plasmids, which are smaller circular DNA molecules that can carry additional genes and can be transferred between bacteria through a process called conjugation.

One important feature of bacterial chromosomes is their ability to replicate rapidly, allowing bacteria to divide quickly and reproduce in large numbers. The replication of the bacterial chromosome begins at a specific origin point and proceeds in opposite directions until the entire chromosome has been copied. This process is tightly regulated and coordinated with cell division to ensure that each daughter cell receives a complete copy of the genetic material.

Overall, the study of bacterial chromosomes is an important area of research in microbiology, as understanding their structure and function can provide insights into bacterial genetics, evolution, and pathogenesis.

Genetic selection, also known as natural selection, is a fundamental mechanism of evolution. It refers to the process by which certain heritable traits become more or less common in a population over successive generations due to differential reproduction of organisms with those traits.

In genetic selection, traits that increase an individual's fitness (its ability to survive and reproduce) are more likely to be passed on to the next generation, while traits that decrease fitness are less likely to be passed on. This results in a gradual change in the distribution of traits within a population over time, leading to adaptation to the environment and potentially speciation.

Genetic selection can occur through various mechanisms, including viability selection (differential survival), fecundity selection (differences in reproductive success), and sexual selection (choices made by individuals during mating). The process of genetic selection is driven by environmental pressures, such as predation, competition for resources, and changes in the availability of food or habitat.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

A homozygote is an individual who has inherited the same allele (version of a gene) from both parents and therefore possesses two identical copies of that allele at a specific genetic locus. This can result in either having two dominant alleles (homozygous dominant) or two recessive alleles (homozygous recessive). In contrast, a heterozygote has inherited different alleles from each parent for a particular gene.

The term "homozygote" is used in genetics to describe the genetic makeup of an individual at a specific locus on their chromosomes. Homozygosity can play a significant role in determining an individual's phenotype (observable traits), as having two identical alleles can strengthen the expression of certain characteristics compared to having just one dominant and one recessive allele.

Tetraploidy is a genetic condition where an individual has four sets of chromosomes in their cells instead of the typical two sets (two from each parent). This means that the person has twice the normal number of chromosomes, resulting in a total of 92 chromosomes compared to the usual 46.

Tetraploidy can occur as a result of errors during cell division, such as during fertilization when two sperm fertilize a single egg, or during mitosis when an abnormal number of chromosomes are distributed unevenly between two daughter cells.

Tetraploidy is often associated with developmental delays, intellectual disability, physical abnormalities, and increased risk of certain medical conditions. However, the severity of symptoms can vary widely depending on the specific genetic makeup of the individual and the degree to which the extra chromosomes are present in different cells throughout the body.

It is important to note that tetraploidy is a rare condition, and its diagnosis typically requires specialized genetic testing and evaluation by medical professionals with expertise in genetics and developmental disorders.

Agricultural crops refer to plants that are grown and harvested for the purpose of human or animal consumption, fiber production, or other uses such as biofuels. These crops can include grains, fruits, vegetables, nuts, seeds, and legumes, among others. They are typically cultivated using various farming practices, including traditional row cropping, companion planting, permaculture, and organic farming methods. The choice of crop and farming method depends on factors such as the local climate, soil conditions, and market demand. Proper management of agricultural crops is essential for ensuring food security, promoting sustainable agriculture, and protecting the environment.

Neurospora is not a medical term, but a genus of fungi commonly found in the environment. It is often used in scientific research, particularly in the fields of genetics and molecular biology. The most common species used in research is Neurospora crassa, which has been studied extensively due to its haploid nature, simple genetic structure, and rapid growth rate. Research using Neurospora has contributed significantly to our understanding of fundamental biological processes such as gene regulation, metabolism, and circadian rhythms.

Ascomycota is a phylum in the kingdom Fungi, also known as sac fungi. This group includes both unicellular and multicellular organisms, such as yeasts, mold species, and morel mushrooms. Ascomycetes are characterized by their reproductive structures called ascus, which contain typically eight haploid spores produced sexually through a process called ascogony. Some members of this phylum have significant ecological and economic importance, as they can be decomposers, mutualistic symbionts, or plant pathogens causing various diseases. Examples include the baker's yeast Saccharomyces cerevisiae, ergot fungus Claviceps purpurea, and morel mushroom Morchella esculenta.

The Blood-Brain Barrier (BBB) is a highly specialized, selective interface between the central nervous system (CNS) and the circulating blood. It is formed by unique endothelial cells that line the brain's capillaries, along with tight junctions, astrocytic foot processes, and pericytes, which together restrict the passage of substances from the bloodstream into the CNS. This barrier serves to protect the brain from harmful agents and maintain a stable environment for proper neural function. However, it also poses a challenge in delivering therapeutics to the CNS, as most large and hydrophilic molecules cannot cross the BBB.

Dominant genes refer to the alleles (versions of a gene) that are fully expressed in an individual's phenotype, even if only one copy of the gene is present. In dominant inheritance patterns, an individual needs only to receive one dominant allele from either parent to express the associated trait. This is in contrast to recessive genes, where both copies of the gene must be the recessive allele for the trait to be expressed. Dominant genes are represented by uppercase letters (e.g., 'A') and recessive genes by lowercase letters (e.g., 'a'). If an individual inherits one dominant allele (A) from either parent, they will express the dominant trait (A).

Pigmentation, in a medical context, refers to the coloring of the skin, hair, or eyes due to the presence of pigment-producing cells called melanocytes. These cells produce a pigment called melanin, which determines the color of our skin, hair, and eyes.

There are two main types of melanin: eumelanin and pheomelanin. Eumelanin is responsible for brown or black coloration, while pheomelanin produces a red or yellow hue. The amount and type of melanin produced by melanocytes can vary from person to person, leading to differences in skin color and hair color.

Changes in pigmentation can occur due to various factors such as genetics, exposure to sunlight, hormonal changes, inflammation, or certain medical conditions. For example, hyperpigmentation refers to an excess production of melanin that results in darkened patches on the skin, while hypopigmentation is a condition where there is a decreased production of melanin leading to lighter or white patches on the skin.

The X chromosome is one of the two types of sex-determining chromosomes in humans (the other being the Y chromosome). It's one of the 23 pairs of chromosomes that make up a person's genetic material. Females typically have two copies of the X chromosome (XX), while males usually have one X and one Y chromosome (XY).

The X chromosome contains hundreds of genes that are responsible for the production of various proteins, many of which are essential for normal bodily functions. Some of the critical roles of the X chromosome include:

1. Sex Determination: The presence or absence of the Y chromosome determines whether an individual is male or female. If there is no Y chromosome, the individual will typically develop as a female.
2. Genetic Disorders: Since females have two copies of the X chromosome, they are less likely to be affected by X-linked genetic disorders than males. Males, having only one X chromosome, will express any recessive X-linked traits they inherit.
3. Dosage Compensation: To compensate for the difference in gene dosage between males and females, a process called X-inactivation occurs during female embryonic development. One of the two X chromosomes is randomly inactivated in each cell, resulting in a single functional copy per cell.

The X chromosome plays a crucial role in human genetics and development, contributing to various traits and characteristics, including sex determination and dosage compensation.

Transcytosis is a cellular process in which substances, such as proteins and lipids, are transported across the cell membrane from one side to the other. This process involves the internalization of the substance into the cell through endocytosis, followed by the formation of vesicles containing the substance. These vesicles then traffic through the cytoplasm and fuse with the opposite side of the cell membrane, releasing the substance outside the cell.

In the context of the brain, transcytosis is a crucial mechanism that allows large molecules, such as antibodies and nanoparticles, to cross the blood-brain barrier (BBB) and enter the central nervous system (CNS). The BBB is a highly selective barrier that restricts the movement of substances between the bloodstream and the CNS. Transcytosis provides a way for certain substances to bypass this barrier and reach their targets in the brain.

Transcytosis can occur via two main pathways: receptor-mediated transcytosis (RMT) and adsorptive-mediated transcytosis (AMT). RMT involves the specific binding of a substance to a receptor on the cell surface, which triggers its internalization into the cell. AMT, on the other hand, relies on the electrostatic interaction between a positively charged substance and the negatively charged cell membrane, leading to its internalization.

Understanding transcytosis is essential for developing targeted drug delivery systems that can effectively transport therapeutic agents across biological barriers, including the BBB, to treat various neurological disorders.

Meiosis is a type of cell division that results in the formation of four daughter cells, each with half the number of chromosomes as the parent cell. It is a key process in sexual reproduction, where it generates gametes or sex cells (sperm and eggs).

The process of meiosis involves one round of DNA replication followed by two successive nuclear divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes pair, form chiasma and exchange genetic material through crossing over, then separate from each other. In meiosis II, sister chromatids separate, leading to the formation of four haploid cells. This process ensures genetic diversity in offspring by shuffling and recombining genetic information during the formation of gametes.

DNA, or deoxyribonucleic acid, is the genetic material present in the cells of all living organisms, including plants. In plants, DNA is located in the nucleus of a cell, as well as in chloroplasts and mitochondria. Plant DNA contains the instructions for the development, growth, and function of the plant, and is passed down from one generation to the next through the process of reproduction.

The structure of DNA is a double helix, formed by two strands of nucleotides that are linked together by hydrogen bonds. Each nucleotide contains a sugar molecule (deoxyribose), a phosphate group, and a nitrogenous base. There are four types of nitrogenous bases in DNA: adenine (A), guanine (G), cytosine (C), and thymine (T). Adenine pairs with thymine, and guanine pairs with cytosine, forming the rungs of the ladder that make up the double helix.

The genetic information in DNA is encoded in the sequence of these nitrogenous bases. Large sequences of bases form genes, which provide the instructions for the production of proteins. The process of gene expression involves transcribing the DNA sequence into a complementary RNA molecule, which is then translated into a protein.

Plant DNA is similar to animal DNA in many ways, but there are also some differences. For example, plant DNA contains a higher proportion of repetitive sequences and transposable elements, which are mobile genetic elements that can move around the genome and cause mutations. Additionally, plant cells have cell walls and chloroplasts, which are not present in animal cells, and these structures contain their own DNA.

'Culicidae' is the biological family that includes all species of mosquitoes. It consists of three subfamilies: Anophelinae, Culicinae, and Toxorhynchitinae. Mosquitoes are small, midge-like flies that are known for their ability to transmit various diseases to humans and other animals, such as malaria, yellow fever, dengue fever, and Zika virus. The medical importance of Culicidae comes from the fact that only female mosquitoes require blood meals to lay eggs, and during this process, they can transmit pathogens between hosts.

I'm sorry for any confusion, but "flowers" is not a term that has a medical definition. The term "flowers" is commonly used to refer to the reproductive structures of flowering plants (angiosperms), which are characterized by having both male and female reproductive organs or separate male and female flowers.

If you have any questions related to medical terminology or health conditions, I would be happy to try to help answer those for you!

I'm sorry for any confusion, but the term "germ cells" is typically used in the context of animals and humans, referring to the reproductive cells (sperm and eggs) that can give rise to new individuals. It is not commonly used to describe plants.

In plants, the terms often used to refer to the reproductive cells are "male gametophyte" and "female gametophyte." The male gametophyte produces sperm cells, while the female gametophyte produces egg cells. These gametophytes are found within the pollen grains (male) and ovules (female) of plants.

Therefore, there isn't a medical definition for "germ cells, plant," as the term is not applicable in this context.

Haploidy is a term used in genetics to describe the condition of having half the normal number of chromosomes in a cell or an organism. In humans, for example, a haploid cell contains 23 chromosomes, whereas a diploid cell has 46 chromosomes.

Haploid cells are typically produced through a process called meiosis, which is a type of cell division that occurs in the reproductive organs of sexually reproducing organisms. During meiosis, a diploid cell undergoes two rounds of division to produce four haploid cells, each containing only one set of chromosomes.

In humans, haploid cells are found in the sperm and egg cells, which fuse together during fertilization to create a diploid zygote with 46 chromosomes. Haploidy is important for maintaining the correct number of chromosomes in future generations and preventing genetic abnormalities that can result from having too many or too few chromosomes.

The sex ratio is not a medical term per se, but it is a term used in demography and population health. The sex ratio is the ratio of males to females in a given population. It is typically expressed as the number of males for every 100 females. A sex ratio of 100 would indicate an equal number of males and females.

In the context of human populations, the sex ratio at birth is usually around 103-107 males per 100 females, reflecting a slightly higher likelihood of male births. However, due to biological factors such as higher male mortality rates in infancy and childhood, as well as social and behavioral factors, the sex ratio tends to equalize over time and can even shift in favor of women in older age groups.

It's worth noting that significant deviations from the expected sex ratio at birth or in a population can indicate underlying health issues or societal problems. For example, skewed sex ratios may be associated with gender discrimination, selective abortion of female fetuses, or exposure to environmental toxins that affect male reproductive health.

Arboviruses are a group of viruses that are primarily transmitted to humans and animals through the bites of infected arthropods, such as mosquitoes, ticks, and sandflies. The term "arbovirus" is short for "arthropod-borne virus."

Arboviruses can cause a wide range of symptoms, depending on the specific virus and the individual host's immune response. Some common symptoms associated with arboviral infections include fever, headache, muscle and joint pain, rash, and fatigue. In severe cases, arboviral infections can lead to serious complications such as encephalitis (inflammation of the brain), meningitis (inflammation of the membranes surrounding the brain and spinal cord), or hemorrhagic fever (bleeding disorders).

There are hundreds of different arboviruses, and they are found in many parts of the world. Some of the most well-known arboviral diseases include dengue fever, chikungunya, Zika virus infection, West Nile virus infection, yellow fever, and Japanese encephalitis.

Prevention of arboviral infections typically involves avoiding mosquito bites and other arthropod vectors through the use of insect repellent, wearing long sleeves and pants, and staying indoors during peak mosquito feeding times. Public health efforts also focus on reducing vector populations through environmental management and the use of larvicides. Vaccines are available for some arboviral diseases, such as yellow fever and Japanese encephalitis.

Ploidy is a term used in genetics to describe the number of sets of chromosomes in a cell or an organism. The ploidy level can have important implications for genetic inheritance and expression, as well as for evolutionary processes such as speciation and hybridization.

In most animals, including humans, the normal ploidy level is diploid, meaning that each cell contains two sets of chromosomes - one set inherited from each parent. However, there are also many examples of polyploidy, in which an organism has more than two sets of chromosomes.

Polyploidy can arise through various mechanisms, such as genome duplication or hybridization between different species. In some cases, polyploidy may confer evolutionary advantages, such as increased genetic diversity and adaptability to new environments. However, it can also lead to reproductive isolation and the formation of new species.

In plants, polyploidy is relatively common and has played a significant role in their evolution and diversification. Many crop plants are polyploids, including wheat, cotton, and tobacco. In some cases, artificial induction of polyploidy has been used to create new varieties with desirable traits for agriculture and horticulture.

Overall, ploidy is an important concept in genetics and evolution, with implications for a wide range of biological processes and phenomena.

Population Genetics is a subfield of genetics that deals with the genetic composition of populations and how this composition changes over time. It involves the study of the frequency and distribution of genes and genetic variations in populations, as well as the evolutionary forces that contribute to these patterns, such as mutation, gene flow, genetic drift, and natural selection.

Population genetics can provide insights into a wide range of topics, including the history and relationships between populations, the genetic basis of diseases and other traits, and the potential impacts of environmental changes on genetic diversity. This field is important for understanding evolutionary processes at the population level and has applications in areas such as conservation biology, medical genetics, and forensic science.

A lethal gene is a type of gene that causes the death of an organism or prevents it from surviving to maturity. This can occur when the gene contains a mutation that disrupts the function of a protein essential for the organism's survival. In some cases, the presence of two copies of a lethal gene (one inherited from each parent) can result in a condition that is incompatible with life, and the organism will not survive beyond embryonic development or shortly after birth.

Lethal genes can also contribute to genetic disorders, where the disruption of protein function caused by the mutation leads to progressive degeneration and ultimately death. In some cases, lethal genes may only cause harm when expressed in certain tissues or at specific stages of development, leading to a range of phenotypes from embryonic lethality to adult-onset disorders.

It's important to note that the term "lethal" is relative and can depend on various factors such as genetic background, environmental conditions, and the presence of modifier genes. Additionally, some lethal genes may be targeted for gene editing or other therapeutic interventions to prevent their harmful effects.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

'Drosophila melanogaster' is the scientific name for a species of fruit fly that is commonly used as a model organism in various fields of biological research, including genetics, developmental biology, and evolutionary biology. Its small size, short generation time, large number of offspring, and ease of cultivation make it an ideal subject for laboratory studies. The fruit fly's genome has been fully sequenced, and many of its genes have counterparts in the human genome, which facilitates the understanding of genetic mechanisms and their role in human health and disease.

Here is a brief medical definition:

Drosophila melanogaster (droh-suh-fih-luh meh-lon-guh-ster): A species of fruit fly used extensively as a model organism in genetic, developmental, and evolutionary research. Its genome has been sequenced, revealing many genes with human counterparts, making it valuable for understanding genetic mechanisms and their role in human health and disease.

"Ochlerotatus" is not a medical term itself, but it is a genus of mosquitoes that includes several species that can transmit diseases to humans and animals. Some of the medically important species in this genus include:

* Ochlerotatus triseriatus (Eastern treehole mosquito), which can transmit La Crosse encephalitis virus.
* Ochlerotatus trivittatus (Blacktailed mosquito), which can transmit West Nile virus and eastern equine encephalitis virus.
* Ochlerotatus japonicus (Asian bush mosquito), which is a potential vector of several arboviruses, including West Nile virus.

It's important to note that not all species in the genus "Ochlerotatus" are vectors of disease and some may not even bite humans or animals.

Recessive genes refer to the alleles (versions of a gene) that will only be expressed when an individual has two copies of that particular allele, one inherited from each parent. If an individual inherits one recessive allele and one dominant allele for a particular gene, the dominant allele will be expressed and the recessive allele will have no effect on the individual's phenotype (observable traits).

Recessive genes can still play a role in determining an individual's genetic makeup and can be passed down through generations even if they are not expressed. If two carriers of a recessive gene have children, there is a 25% chance that their offspring will inherit two copies of the recessive allele and exhibit the associated recessive trait.

Examples of genetic disorders caused by recessive genes include cystic fibrosis, sickle cell anemia, and albinism.

I apologize for any confusion, but "Saxifragaceae" is not a medical term. It is a taxonomic category in botany, referring to the Saxifrage family of plants, which includes over 40 genera and 600 species. These plants are found primarily in the Northern Hemisphere, with some in mountainous regions of South America and South Africa. They are often characterized by their showy flowers and ability to grow in rocky or otherwise inhospitable environments.

If you have a medical term that you would like defined, please provide it, and I would be happy to help.

'Plant infertility' is not a standard medical term, as it is typically used in the context of agriculture and plant biology. However, I can provide you with a general definition related to this context:

Plant infertility refers to the inability of a plant to produce viable seeds, fruits, or propagules due to various factors affecting its reproductive system. These factors may include genetic disorders, environmental stressors (such as extreme temperatures, drought, or nutrient deficiencies), pathogens, pests, or poor pollination. In some cases, assisted reproduction techniques, such as hand-pollination or embryo rescue, might be employed to overcome infertility issues in plants.

I'm sorry for any confusion, but "Tennessee" is a proper noun and not a medical term or condition. It is the name of a state located in the southeastern United States. If you have any questions about medical conditions or terminology, I would be happy to help clarify those for you.

Litter size is a term used in veterinary medicine, particularly in relation to breeding of animals. It refers to the number of offspring that are born to an animal during one pregnancy. For example, in the case of dogs or cats, it would be the number of kittens or puppies born in a single litter. The size of the litter can vary widely depending on the species, breed, age, and health status of the parent animals.

Sex chromosomes, often denoted as X and Y, are one of the 23 pairs of human chromosomes found in each cell of the body. Normally, females have two X chromosomes (46,XX), and males have one X and one Y chromosome (46,XY). The sex chromosomes play a significant role in determining the sex of an individual. They contain genes that contribute to physical differences between men and women. Any variations or abnormalities in the number or structure of these chromosomes can lead to various genetic disorders and conditions related to sexual development and reproduction.

Fungal genes refer to the genetic material present in fungi, which are eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. The genetic material of fungi is composed of DNA, just like in other eukaryotes, and is organized into chromosomes located in the nucleus of the cell.

Fungal genes are segments of DNA that contain the information necessary to produce proteins and RNA molecules required for various cellular functions. These genes are transcribed into messenger RNA (mRNA) molecules, which are then translated into proteins by ribosomes in the cytoplasm.

Fungal genomes have been sequenced for many species, revealing a diverse range of genes that encode proteins involved in various cellular processes such as metabolism, signaling, and regulation. Comparative genomic analyses have also provided insights into the evolutionary relationships among different fungal lineages and have helped to identify unique genetic features that distinguish fungi from other eukaryotes.

Understanding fungal genes and their functions is essential for advancing our knowledge of fungal biology, as well as for developing new strategies to control fungal pathogens that can cause diseases in humans, animals, and plants.

Self-fertilization is not a term typically used in human or animal medicine, but it is a concept in botany. It refers to the fertilization of an ovule (a structure in plants that develops into a seed after fertilization) with pollen from the same plant. This can occur in hermaphroditic flowers, which have both male and female reproductive organs. Self-fertilization can increase genetic similarity within a population of plants, which can have implications for their evolution and survival.

Mitochondrial DNA (mtDNA) is the genetic material present in the mitochondria, which are specialized structures within cells that generate energy. Unlike nuclear DNA, which is present in the cell nucleus and inherited from both parents, mtDNA is inherited solely from the mother.

MtDNA is a circular molecule that contains 37 genes, including 13 genes that encode for proteins involved in oxidative phosphorylation, a process that generates energy in the form of ATP. The remaining genes encode for rRNAs and tRNAs, which are necessary for protein synthesis within the mitochondria.

Mutations in mtDNA can lead to a variety of genetic disorders, including mitochondrial diseases, which can affect any organ system in the body. These mutations can also be used in forensic science to identify individuals and establish biological relationships.

Biological evolution is the change in the genetic composition of populations of organisms over time, from one generation to the next. It is a process that results in descendants differing genetically from their ancestors. Biological evolution can be driven by several mechanisms, including natural selection, genetic drift, gene flow, and mutation. These processes can lead to changes in the frequency of alleles (variants of a gene) within populations, resulting in the development of new species and the extinction of others over long periods of time. Biological evolution provides a unifying explanation for the diversity of life on Earth and is supported by extensive evidence from many different fields of science, including genetics, paleontology, comparative anatomy, and biogeography.

DNA transposable elements, also known as transposons or jumping genes, are mobile genetic elements that can change their position within a genome. They are composed of DNA sequences that include genes encoding the enzymes required for their own movement (transposase) and regulatory elements. When activated, the transposase recognizes specific sequences at the ends of the element and catalyzes the excision and reintegration of the transposable element into a new location in the genome. This process can lead to genetic variation, as the insertion of a transposable element can disrupt the function of nearby genes or create new combinations of gene regulatory elements. Transposable elements are widespread in both prokaryotic and eukaryotic genomes and are thought to play a significant role in genome evolution.

Microsatellite repeats, also known as short tandem repeats (STRs), are repetitive DNA sequences made up of units of 1-6 base pairs that are repeated in a head-to-tail manner. These repeats are spread throughout the human genome and are highly polymorphic, meaning they can have different numbers of repeat units in different individuals.

Microsatellites are useful as genetic markers because of their high degree of variability. They are commonly used in forensic science to identify individuals, in genealogy to trace ancestry, and in medical research to study genetic diseases and disorders. Mutations in microsatellite repeats have been associated with various neurological conditions, including Huntington's disease and fragile X syndrome.

"Mimulus" is a term used in the context of botany, rather than medicine. It refers to a genus of plants commonly known as "monkey flowers," which belong to the Phrymaceae family. These plants are native to North and South America and are known for their vibrant, tubular flowers that attract pollinators such as hummingbirds and bees.

While "Mimulus" is not a medical term, some species of this plant have been used in traditional medicine by indigenous peoples. For example, Mimulus guttatus (the common monkey flower) has been used in Native American medicine for treating respiratory issues, skin irritations, and gastrointestinal problems. However, it's important to note that the use of these plants as medicinal remedies should not be considered a substitute for seeking advice from a licensed healthcare professional or following evidence-based medical treatments.

Genomic imprinting is a epigenetic process that leads to the differential expression of genes depending on their parental origin. It involves the methylation of certain CpG sites in the DNA, which results in the silencing of one of the two copies of a gene, either the maternal or paternal allele. This means that only one copy of the gene is active and expressed, while the other is silent.

This phenomenon is critical for normal development and growth, and it plays a role in the regulation of genes involved in growth and behavior. Genomic imprinting is also associated with certain genetic disorders, such as Prader-Willi and Angelman syndromes, which occur when there are errors in the imprinting process that lead to the absence or abnormal expression of certain genes.

It's important to note that genomic imprinting is a complex and highly regulated process that is not yet fully understood. Research in this area continues to provide new insights into the mechanisms underlying gene regulation and their impact on human health and disease.

"Drosophila" is a genus of small flies, also known as fruit flies. The most common species used in scientific research is "Drosophila melanogaster," which has been a valuable model organism for many areas of biological and medical research, including genetics, developmental biology, neurobiology, and aging.

The use of Drosophila as a model organism has led to numerous important discoveries in genetics and molecular biology, such as the identification of genes that are associated with human diseases like cancer, Parkinson's disease, and obesity. The short reproductive cycle, large number of offspring, and ease of genetic manipulation make Drosophila a powerful tool for studying complex biological processes.

Brachiaria is a genus of tropical and subtropical grasses that are native to Africa, but have since been introduced and naturalized in many other parts of the world. They are important pasture grasses for grazing livestock, particularly in areas with low soil fertility and high temperatures. Some species of Brachiaria have also been found to have potential as cover crops and for erosion control.

There is no medical definition of 'Brachiaria' as it is a term used in botany and agriculture, not medicine.

"Ranunculus" is a term that refers to a genus of flowering plants, and it does not have a specific medical definition. However, some species within the Ranunculus genus are known to contain toxic compounds that can cause symptoms such as skin irritation, gastrointestinal distress, and in severe cases, organ damage if ingested.

The most well-known medically relevant species is likely "buttercups" (Ranunculus spp.), which can cause contact dermatitis and blistering of the skin upon contact. Ingesting large quantities of buttercups can lead to gastrointestinal symptoms such as nausea, vomiting, and diarrhea.

It's worth noting that while some Ranunculus species have medicinal uses, they should only be used under the guidance of a qualified healthcare professional due to their potential toxicity.

'Arabidopsis' is a genus of small flowering plants that are part of the mustard family (Brassicaceae). The most commonly studied species within this genus is 'Arabidopsis thaliana', which is often used as a model organism in plant biology and genetics research. This plant is native to Eurasia and Africa, and it has a small genome that has been fully sequenced. It is known for its short life cycle, self-fertilization, and ease of growth, making it an ideal subject for studying various aspects of plant biology, including development, metabolism, and response to environmental stresses.

"Triticum" is the genus name for a group of cereal grains that includes common wheat (T. aestivum), durum wheat (T. durum), and spelt (T. spelta). These grains are important sources of food for humans, providing carbohydrates, proteins, and various nutrients. They are used to make a variety of foods such as bread, pasta, and breakfast cereals. Triticum species are also known as "wheat" in layman's terms.

I'm sorry for any confusion, but "Helianthus" is not a medical term. It is the genus name for sunflowers in the family Asteraceae. Sunflowers are native to North America and are known for their large, daisy-like flowers and tall stems. They have various uses, including ornamental purposes, food (seeds and oil), and medicinal applications in some traditional systems of medicine. However, there isn't a widely accepted medical definition associated with the term "Helianthus."

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

A plant disease is a disorder that affects the normal growth and development of plants, caused by pathogenic organisms such as bacteria, viruses, fungi, parasites, or nematodes, as well as environmental factors like nutrient deficiencies, extreme temperatures, or physical damage. These diseases can cause various symptoms, including discoloration, wilting, stunted growth, necrosis, and reduced yield or productivity, which can have significant economic and ecological impacts.

A genetic locus (plural: loci) is a specific location on a chromosome where a particular gene or DNA sequence is found. It is the precise position where a specific genetic element, such as a gene or marker, is located on a chromsomere. This location is defined in terms of its relationship to other genetic markers and features on the same chromosome. Genetic loci can be used in linkage and association studies to identify the inheritance patterns and potential relationships between genes and various traits or diseases.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Lysogeny is a process in the life cycle of certain viruses, known as bacteriophages or phages, which can infect bacteria. In lysogeny, the viral DNA integrates into the chromosome of the host bacterium and replicates along with it, remaining dormant and not producing any new virus particles. This state is called lysogeny or the lysogenic cycle.

The integrated viral DNA is known as a prophage. The bacterial cell that contains a prophage is called a lysogen. The lysogen can continue to grow and divide normally, passing the prophage onto its daughter cells during reproduction. This dormant state can last for many generations of the host bacterium.

However, under certain conditions such as DNA damage or exposure to UV radiation, the prophage can be induced to excise itself from the bacterial chromosome and enter the lytic cycle. In the lytic cycle, the viral DNA replicates rapidly, producing many new virus particles, which eventually leads to the lysis (breaking open) of the host cell and the release of the newly formed virions.

Lysogeny is an important mechanism for the spread and survival of bacteriophages in bacterial populations. It also plays a role in horizontal gene transfer between bacteria, as genes carried by prophages can be transferred to other bacteria during transduction.

Gonadal dysgenesis is a condition characterized by the abnormal development of the gonads, which are the reproductive organs that produce sex hormones and gametes (sperm or eggs). In individuals with gonadal dysgenesis, the gonads may be underdeveloped, structurally abnormal, or completely absent. This condition can affect people of any gender and is often associated with other genetic disorders, such as Turner or Klinefelter syndromes.

The clinical presentation of gonadal dysgenesis varies widely depending on the severity of the disorder and the presence of other associated conditions. Some individuals may have normal sexual development and fertility, while others may experience delayed puberty, infertility, or ambiguous genitalia. Gonadal dysgenesis can also increase the risk of developing gonadal tumors, particularly in individuals with complete or partial absence of the gonads.

The diagnosis of gonadal dysgenesis is typically made through a combination of clinical evaluation, imaging studies, and genetic testing. Treatment may include hormone replacement therapy to support sexual development and prevent complications associated with hormonal imbalances. In some cases, surgical removal of the gonads may be recommended to reduce the risk of tumor development.

Bunyamwera virus is an enveloped, single-stranded RNA virus that belongs to the family Peribunyaviridae and genus Orthobunyavirus. It was first isolated in 1943 from mosquitoes in the Bunyamwera district of Uganda. The viral genome consists of three segments: large (L), medium (M), and small (S).

The virus is primarily transmitted to vertebrates, including humans, through the bite of infected mosquitoes. It can cause a mild febrile illness in humans, characterized by fever, headache, muscle pain, and rash. However, Bunyamwera virus infection is usually asymptomatic or causes only mild symptoms in humans.

Bunyamwera virus has a wide host range, including mammals, birds, and mosquitoes, and is found in many parts of the world, particularly in tropical and subtropical regions. It is an important pathogen in veterinary medicine, causing disease in livestock such as cattle, sheep, and goats.

Research on Bunyamwera virus has contributed significantly to our understanding of the biology and ecology of bunyaviruses, which are a major cause of human and animal diseases worldwide.

'Inbred AKR mice' is a strain of laboratory mice used in biomedical research. The 'AKR' designation stands for "Akita Radioactive," referring to the location where this strain was first developed in Akita, Japan. These mice are inbred, meaning that they have been produced by many generations of brother-sister matings, resulting in a genetically homogeneous population with minimal genetic variation.

Inbred AKR mice are known for their susceptibility to certain types of leukemia and lymphoma, making them valuable models for studying these diseases and testing potential therapies. They also develop age-related cataracts and have a higher incidence of diabetes than some other strains.

It is important to note that while inbred AKR mice are widely used in research, their genetic uniformity may limit the applicability of findings to more genetically diverse human populations.

I apologize for any confusion, but "Cicer" is not a medical term or a widely recognized abbreviation in the medical field. It might be referring to Cicero, an ancient Roman philosopher and statesman, or it could have other meanings depending on the context. If you could provide more information about where you encountered this term, I would be happy to help you further.

In a medical context, "meat" generally refers to the flesh of animals that is consumed as food. This includes muscle tissue, as well as fat and other tissues that are often found in meat products. However, it's worth noting that some people may have dietary restrictions or medical conditions that prevent them from consuming meat, so it's always important to consider individual preferences and needs when discussing food options.

It's also worth noting that the consumption of meat can have both positive and negative health effects. On the one hand, meat is a good source of protein, iron, vitamin B12, and other essential nutrients. On the other hand, consuming large amounts of red and processed meats has been linked to an increased risk of heart disease, stroke, and certain types of cancer. Therefore, it's generally recommended to consume meat in moderation as part of a balanced diet.

I'm sorry for any confusion, but "Pennisetum" is not a medical term. It is the name of a genus of plants in the grass family, also known as fountain grasses or feather grasses. They are often used in ornamental landscaping. If you have any questions about a medical term or concept, I'd be happy to help clarify!

Fertilization is the process by which a sperm cell (spermatozoon) penetrates and fuses with an egg cell (ovum), resulting in the formation of a zygote. This fusion of genetic material from both the male and female gametes initiates the development of a new organism. In human biology, fertilization typically occurs in the fallopian tube after sexual intercourse, when a single sperm out of millions is able to reach and penetrate the egg released from the ovary during ovulation. The successful fusion of these two gametes marks the beginning of pregnancy.

Endosperm is a type of tissue found in the seeds of flowering plants, which provides nutrition to the developing embryo. It is formed from the fusion of one sperm cell with two polar nuclei during double fertilization in angiosperms (flowering plants). The endosperm can be triploid (having three sets of chromosomes) or sometimes diploid (having two sets of chromosomes), depending on the species.

The endosperm can have different forms and functions across various plant species. In some seeds, it serves as a food storage tissue, accumulating starch, proteins, and lipids that are used up by the embryo during germination and early growth. Examples of such seeds include cereal grains like corn, wheat, rice, and barley, where the endosperm makes up a significant portion of the grain.

In other plants, the endosperm may be absorbed by the developing embryo before seed maturation, leaving only a thin layer called the aleurone layer that surrounds the embryo. This aleurone layer is responsible for producing enzymes during germination, which help in breaking down stored nutrients and making them available to the growing embryo.

Overall, endosperm plays a crucial role in the development and survival of angiosperm seeds, acting as a source of nutrition and energy for the embryo.

Genetic polymorphism refers to the occurrence of multiple forms (called alleles) of a particular gene within a population. These variations in the DNA sequence do not generally affect the function or survival of the organism, but they can contribute to differences in traits among individuals. Genetic polymorphisms can be caused by single nucleotide changes (SNPs), insertions or deletions of DNA segments, or other types of genetic rearrangements. They are important for understanding genetic diversity and evolution, as well as for identifying genetic factors that may contribute to disease susceptibility in humans.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

Microbial genetics is the study of heredity and variation in microorganisms, including bacteria, viruses, fungi, and parasites. It involves the investigation of their genetic material (DNA and RNA), genes, gene expression, genetic regulation, mutations, genetic recombination, and genome organization. This field is crucial for understanding the mechanisms of microbial pathogenesis, evolution, ecology, and biotechnological applications. Research in microbial genetics has led to significant advancements in areas such as antibiotic resistance, vaccine development, and gene therapy.

Genetic speciation is not a widely used term in the scientific literature, but it generally refers to the process by which new species arise due to genetic differences and reproductive isolation. This process can occur through various mechanisms such as mutation, gene flow, genetic drift, natural selection, or chromosomal changes that lead to the accumulation of genetic differences between populations. Over time, these genetic differences can result in the development of reproductive barriers that prevent interbreeding between the populations, leading to the formation of new species.

In other words, genetic speciation is a type of speciation that involves the evolution of genetic differences that ultimately lead to the formation of new species. It is an essential concept in the field of evolutionary biology and genetics, as it explains how biodiversity arises over time.

Apomixis is a form of asexual reproduction in plants that involves the development of a seed without fertilization. It occurs through various mechanisms, such as agamospermy or parthenogenesis, where the embryo develops from an unfertilized egg cell or other cells within the ovule. This process bypasses the formation of gametes and meiosis, resulting in offspring that are genetically identical to the parent plant.

In agamospermy, the embryo sac develops without fertilization, and the chromosome number is maintained through mitotic divisions. In parthenogenesis, the egg cell develops into an embryo without being fertilized by a sperm cell. Apomixis can be advantageous for plant breeding as it allows for the rapid propagation of desirable traits and hybrids without the need for time-consuming and expensive traditional breeding methods. However, apomictic plants may also exhibit reduced genetic diversity, which can make them more susceptible to diseases and pests.

Fungal DNA refers to the genetic material present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. The DNA of fungi, like that of all living organisms, is made up of nucleotides that are arranged in a double helix structure.

Fungal DNA contains the genetic information necessary for the growth, development, and reproduction of fungi. This includes the instructions for making proteins, which are essential for the structure and function of cells, as well as other important molecules such as enzymes and nucleic acids.

Studying fungal DNA can provide valuable insights into the biology and evolution of fungi, as well as their potential uses in medicine, agriculture, and industry. For example, researchers have used genetic engineering techniques to modify the DNA of fungi to produce drugs, biofuels, and other useful products. Additionally, understanding the genetic makeup of pathogenic fungi can help scientists develop new strategies for preventing and treating fungal infections.

"Solanum" is a genus of flowering plants that includes many species, some of which are economically important as food crops and others which are toxic. The term "Solanum" itself does not have a specific medical definition, but several species within this genus are relevant to medicine and human health. Here are some examples:

1. Solanum lycopersicum (tomato): While tomatoes are primarily known as a food crop, they also contain various compounds with potential medicinal properties. For instance, they are rich in antioxidants like lycopene, which has been studied for its potential benefits in preventing cancer and cardiovascular diseases.
2. Solanum tuberosum (potato): Potatoes are a staple food crop, but their leaves and green parts contain solanine, a toxic alkaloid that can cause gastrointestinal disturbances, neurological symptoms, and even death in severe cases.
3. Solanum melongena (eggplant): Eggplants have been studied for their potential health benefits due to their high antioxidant content, including nasunin, which has been shown to protect against lipid peroxidation and DNA damage.
4. Solanum nigrum (black nightshade): This species contains solanine and other toxic alkaloids, but some parts of the plant have been used in traditional medicine for their anti-inflammatory, analgesic, and antipyretic properties. However, its use as a medicinal herb is not well-established, and it can be toxic if improperly prepared or consumed in large quantities.
5. Solanum dulcamara (bittersweet nightshade): This species has been used in traditional medicine for various purposes, including treating skin conditions, respiratory ailments, and gastrointestinal complaints. However, its use as a medicinal herb is not well-supported by scientific evidence, and it can be toxic if ingested in large quantities.

In summary, "Solanum" refers to a genus of flowering plants that includes several species with relevance to medicine and human health. While some species are important food crops, others contain toxic compounds that can cause harm if improperly consumed or prepared. Additionally, the medicinal use of some Solanum species is not well-established and may carry risks.

"Silene" is a genus of flowering plants in the family Caryophyllaceae. It includes over 700 species that are found worldwide, particularly in temperate regions. These plants are commonly known as catchflies or campions. They are usually herbaceous and can vary in size from small annuals to large perennials. The flowers of Silene species are typically radial symmetrical with five distinct petals, often with notched or lobed ends. Some species have inflated calyxes that enclose the flower buds, giving them a bladder-like appearance.

However, it's important to note that "Silene" is not a medical term and does not have a direct application in human health or medicine.

Copepoda is a subclass of small crustaceans found in various aquatic environments, including marine and freshwater. They are typically characterized by a segmented body with a distinct head and thorax, and they have a pair of antennae, mandibles, and maxillules used for feeding. Copepods are important members of the zooplankton community and serve as a significant food source for many larger aquatic organisms, such as fish and whales. Some copepod species can also be parasitic, infecting various marine animals, including fish, crustaceans, and mammals.

'DBA' is an abbreviation for 'Database of Genotypes and Phenotypes,' but in the context of "Inbred DBA mice," it refers to a specific strain of laboratory mice that have been inbred for many generations. The DBA strain is one of the oldest inbred strains, and it was established in 1909 by C.C. Little at the Bussey Institute of Harvard University.

The "Inbred DBA" mice are genetically identical mice that have been produced by brother-sister matings for more than 20 generations. This extensive inbreeding results in a homozygous population, where all members of the strain have the same genetic makeup. The DBA strain is further divided into several sub-strains, including DBA/1, DBA/2, and DBA/J, among others.

DBA mice are known for their black coat color, which can fade to gray with age, and they exhibit a range of phenotypic traits that make them useful for research purposes. For example, DBA mice have a high incidence of retinal degeneration, making them a valuable model for studying eye diseases. They also show differences in behavior, immune response, and susceptibility to various diseases compared to other inbred strains.

In summary, "Inbred DBA" mice are a specific strain of laboratory mice that have been inbred for many generations, resulting in a genetically identical population with distinct phenotypic traits. They are widely used in biomedical research to study various diseases and biological processes.

Infertility is a reproductive health disorder defined as the failure to achieve a clinical pregnancy after 12 months or more of regular, unprotected sexual intercourse or due to an impairment of a person's capacity to reproduce either as an individual or with their partner. It can be caused by various factors in both men and women, including hormonal imbalances, structural abnormalities, genetic issues, infections, age, lifestyle factors, and others. Infertility can have significant emotional and psychological impacts on individuals and couples experiencing it, and medical intervention may be necessary to help them conceive.

"Taraxacum" is the scientific name for the plant species commonly known as dandelions. These are flowering plants that belong to the Asteraceae family and are native to Eurasia. The name "Taraxacum" comes from the Greek words "taraxos," meaning disorder, and "akos," meaning remedy, reflecting the historical use of dandelion leaves and roots as herbal medicine.

Dandelions have bright yellow flowers that turn into spherical seed heads, which are often blown away by the wind, scattering the seeds. All parts of the plant, including the leaves, flowers, and roots, can be used in various culinary and medicinal applications. Dandelion greens are rich in vitamins and minerals, while dandelion root tea is believed to have diuretic properties. However, it's important to note that the medical benefits of dandelions have not been extensively studied or proven by modern scientific research.

A LOD (Logarithm of Odds) score is not a medical term per se, but rather a statistical concept that is used in genetic research and linkage analysis to determine the likelihood of a gene or genetic marker being linked to a particular disease or trait. The LOD score compares the odds of observing the pattern of inheritance of a genetic marker in a family if the marker is linked to the disease, versus the odds if the marker is not linked. A LOD score of 3 or higher is generally considered evidence for linkage, while a score of -2 or lower is considered evidence against linkage.

Genetic transformation is the process by which an organism's genetic material is altered or modified, typically through the introduction of foreign DNA. This can be achieved through various techniques such as:

* Gene transfer using vectors like plasmids, phages, or artificial chromosomes
* Direct uptake of naked DNA using methods like electroporation or chemically-mediated transfection
* Use of genome editing tools like CRISPR-Cas9 to introduce precise changes into the organism's genome.

The introduced DNA may come from another individual of the same species (cisgenic), from a different species (transgenic), or even be synthetically designed. The goal of genetic transformation is often to introduce new traits, functions, or characteristics that do not exist naturally in the organism, or to correct genetic defects.

This technique has broad applications in various fields, including molecular biology, biotechnology, and medical research, where it can be used to study gene function, develop genetically modified organisms (GMOs), create cell lines for drug screening, and even potentially treat genetic diseases through gene therapy.

An ovule is the structure in female plants (including gymnosperms and angiosperms) that contains the female gametophyte and gives rise to the seed after fertilization. It consists of a protective outer layer called the integument, enclosing a small mass of tissue called the nucellus, within which is located the embryo sac or female germ unit.

The embryo sac contains the egg cell (oocyte), two synergids that assist in fertilization, and three antipodal cells at the opposite end. Upon fertilization of the egg cell by a male gamete from pollen, the zygote forms, which develops into an embryo within the ovule. The other male gamete fuses with the central cell (containing two polar nuclei) to form the endosperm, which serves as nutritive tissue for the developing embryo.

Once mature, the ovule transforms into a seed, enclosed by a seed coat formed from the integuments. The seed contains the developed embryo and stored food reserves (endosperm) that support its initial growth after germination.

A zygote is the initial cell formed when a sperm fertilizes an egg, also known as an oocyte. This occurs in the process of human reproduction and marks the beginning of a new genetic identity, containing 46 chromosomes - 23 from the sperm and 23 from the egg. The zygote starts the journey of cell division and growth, eventually developing into a blastocyst, then an embryo, and finally a fetus over the course of pregnancy.

Angiosperms, also known as flowering plants, are a group of plants that produce seeds enclosed within an ovary. The term "angiosperm" comes from the Greek words "angeion," meaning "case" or "capsule," and "sperma," meaning "seed." This group includes the majority of plant species, with over 300,000 known species.

Angiosperms are characterized by their reproductive structures, which consist of flowers. The flower contains male and female reproductive organs, including stamens (which produce pollen) and carpels (which contain the ovules). After fertilization, the ovule develops into a seed, while the ovary matures into a fruit, which provides protection and nutrition for the developing embryo.

Angiosperms are further divided into two main groups: monocots and eudicots. Monocots have one cotyledon or embryonic leaf, while eudicots have two. Examples of monocots include grasses, lilies, and orchids, while examples of eudicots include roses, sunflowers, and legumes.

Angiosperms are ecologically and economically important, providing food, shelter, and other resources for many organisms, including humans. They have evolved a wide range of adaptations to different environments, from the desert to the ocean floor, making them one of the most diverse and successful groups of plants on Earth.

I'm sorry for any confusion, but "West Virginia" is a state located in the Eastern United States, and it is not a medical term or condition. If you have any questions about medical definitions or topics, I would be happy to try to help answer them!

"Citrullus" is a genus of plants that includes watermelon and several other species of vine-like fruits. The name "Citrullus" comes from the Latin word for watermelon, "citrullus lanatus." Watermelons are the most well-known member of this genus and are popular for their juicy, sweet red or pink flesh, which is high in vitamins A and C and contains a high amount of lycopene. Other species in the Citrullus genus include citron melon (Citrullus lanatus var. citroides) and colocynth (Citrullus colocynthis), also known as bitter apple.

Triatominae is a subfamily of insects in the family Reduviidae, also known as assassin bugs. Triatomines are commonly called "kissing bugs" because they often bite humans near the mouth or eyes while they sleep. They are called this because of their habit of feeding on the blood of mammals, including humans, and prefer to bite near the lips or eyes where the skin is thin.

Triatomines are vectors for Trypanosoma cruzi, a parasitic protozoan that causes Chagas disease, a potentially life-threatening illness endemic in the Americas. The transmission of T. cruzi to humans occurs when feces or urine from an infected triatomine is accidentally rubbed into the bite wound or mucous membranes, such as those found in the eyes or mouth.

Triatomines are typically nocturnal and hide during the day in crevices in walls, roofs, or beds. They are attracted to light and can be found near human dwellings, particularly in rural areas with poor housing conditions. Preventing triatomine infestations and reducing contact with these insects is an important part of Chagas disease prevention.

Sexual behavior in animals refers to a variety of behaviors related to reproduction and mating that occur between members of the same species. These behaviors can include courtship displays, mating rituals, and various physical acts. The specific forms of sexual behavior displayed by a given species are influenced by a combination of genetic, hormonal, and environmental factors.

In some animals, sexual behavior is closely tied to reproductive cycles and may only occur during certain times of the year or under specific conditions. In other species, sexual behavior may be more frequent and less closely tied to reproduction, serving instead as a means of social bonding or communication.

It's important to note that while humans are animals, the term "sexual behavior" is often used in a more specific sense to refer to sexual activities between human beings. The study of sexual behavior in animals is an important area of research within the field of animal behavior and can provide insights into the evolutionary origins of human sexual behavior as well as the underlying mechanisms that drive it.

"Oryza sativa" is the scientific name for Asian rice, which is a species of grass and one of the most important food crops in the world. It is a staple food for more than half of the global population, providing a significant source of calories and carbohydrates. There are several varieties of Oryza sativa, including indica and japonica, which differ in their genetic makeup, growth habits, and grain characteristics.

Oryza sativa is an annual plant that grows to a height of 1-2 meters and produces long slender leaves and clusters of flowers at the top of the stem. The grains are enclosed within a tough husk, which must be removed before consumption. Rice is typically grown in flooded fields or paddies, which provide the necessary moisture for germination and growth.

Rice is an important source of nutrition for people around the world, particularly in developing countries where it may be one of the few reliable sources of food. It is rich in carbohydrates, fiber, and various vitamins and minerals, including thiamin, riboflavin, niacin, iron, and magnesium. However, rice can also be a significant source of arsenic, a toxic heavy metal that can accumulate in the grain during growth.

In medical terms, Oryza sativa may be used as a component of nutritional interventions for individuals who are at risk of malnutrition or who have specific dietary needs. It may also be studied in clinical trials to evaluate its potential health benefits or risks.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Animal husbandry is the practice of breeding and raising animals for agricultural purposes, such as for the production of meat, milk, eggs, or fiber. It involves providing proper care for the animals, including feeding, housing, health care, and breeding management. The goal of animal husbandry is to maintain healthy and productive animals while also being mindful of environmental sustainability and animal welfare.

Restriction Fragment Length Polymorphism (RFLP) is a term used in molecular biology and genetics. It refers to the presence of variations in DNA sequences among individuals, which can be detected by restriction enzymes. These enzymes cut DNA at specific sites, creating fragments of different lengths.

In RFLP analysis, DNA is isolated from an individual and treated with a specific restriction enzyme that cuts the DNA at particular recognition sites. The resulting fragments are then separated by size using gel electrophoresis, creating a pattern unique to that individual's DNA. If there are variations in the DNA sequence between individuals, the restriction enzyme may cut the DNA at different sites, leading to differences in the length of the fragments and thus, a different pattern on the gel.

These variations can be used for various purposes, such as identifying individuals, diagnosing genetic diseases, or studying evolutionary relationships between species. However, RFLP analysis has largely been replaced by more modern techniques like polymerase chain reaction (PCR)-based methods and DNA sequencing, which offer higher resolution and throughput.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

"Turnera" is a genus name that refers to a group of flowering plants commonly known as "damiana." These plants are native to the warm climates of southern Texas, Central and South America, and the Caribbean. The Turnera species includes over 100 different plant types, but the most well-known and medicinally used is Turnera diffusa, also called Damiana leaves.

Damiana has been traditionally used in herbal medicine for various purposes, including as a mild laxative, diuretic, and for its purported effects on increasing sexual desire and treating symptoms of menopause. However, it's important to note that the scientific evidence supporting these uses is limited, and more research is needed before any definitive conclusions can be drawn about its effectiveness.

As with any medication or supplement, it's essential to consult a healthcare provider before using Turnera or damiana products to ensure safety and appropriateness for individual health needs.

In the context of medical terminology, "germination" is not typically used as a term to describe a physiological process in humans or animals. It is primarily used in the field of botany to refer to the process by which a seed or spore sprouts and begins to grow into a new plant.

However, if you are referring to the concept of germination in the context of bacterial or viral growth, then it could be defined as:

The process by which bacteria, viruses, or other microorganisms become active and start to multiply, often after a period of dormancy or latency. This can occur when the microorganisms encounter favorable conditions, such as moisture, warmth, or nutrients, that allow them to grow and reproduce. In medical contexts, this term is more commonly used in relation to infectious diseases caused by these microorganisms.

'Sus scrofa' is the scientific name for the wild boar, a species of suid that is native to much of Eurasia and North Africa. It is not a medical term or concept. If you have any questions related to medical terminology or health-related topics, I would be happy to help with those instead!

Dystocia is a medical term used to describe difficult or abnormal labor or delivery in animals, including humans. It refers to a situation where the natural process of childbirth is hindered or obstructed, making it difficult for the fetus to pass through the birth canal. This condition can be caused by various factors such as the size and position of the fetus, maternal pelvic size or shape, hormonal imbalances, or other medical conditions that affect the mother's ability to give birth.

Dystocia can lead to serious complications for both the mother and the fetus if not treated promptly and appropriately. Prolonged labor can result in fetal distress, hypoxia (lack of oxygen), or even death. In addition, maternal injuries such as uterine rupture, cervical trauma, or infection can occur during a difficult delivery.

The treatment for dystocia depends on the underlying cause and severity of the condition. In some cases, manual assistance or manipulation of the fetus may be sufficient to facilitate delivery. However, in more severe cases, medical intervention such as cesarean section (C-section) may be necessary to ensure the safety of both the mother and the fetus.

It is important for pregnant individuals to receive regular prenatal care from a qualified healthcare provider to monitor their pregnancy and identify any potential risk factors for dystocia or other complications. Prompt medical attention should be sought if any signs of difficult labor or delivery are observed.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Viral genes refer to the genetic material present in viruses that contains the information necessary for their replication and the production of viral proteins. In DNA viruses, the genetic material is composed of double-stranded or single-stranded DNA, while in RNA viruses, it is composed of single-stranded or double-stranded RNA.

Viral genes can be classified into three categories: early, late, and structural. Early genes encode proteins involved in the replication of the viral genome, modulation of host cell processes, and regulation of viral gene expression. Late genes encode structural proteins that make up the viral capsid or envelope. Some viruses also have structural genes that are expressed throughout their replication cycle.

Understanding the genetic makeup of viruses is crucial for developing antiviral therapies and vaccines. By targeting specific viral genes, researchers can develop drugs that inhibit viral replication and reduce the severity of viral infections. Additionally, knowledge of viral gene sequences can inform the development of vaccines that stimulate an immune response to specific viral proteins.

Maternal-fetal exchange, also known as maternal-fetal transport or placental transfer, refers to the physiological process by which various substances are exchanged between the mother and fetus through the placenta. This exchange includes the transfer of oxygen and nutrients from the mother's bloodstream to the fetal bloodstream, as well as the removal of waste products and carbon dioxide from the fetal bloodstream to the mother's bloodstream.

The process occurs via passive diffusion, facilitated diffusion, and active transport mechanisms across the placental barrier, which is composed of fetal capillary endothelial cells, the extracellular matrix, and the syncytiotrophoblast layer of the placenta. The maternal-fetal exchange is crucial for the growth, development, and survival of the fetus throughout pregnancy.

Birth weight refers to the first weight of a newborn infant, usually taken immediately after birth. It is a critical vital sign that indicates the baby's health status and is used as a predictor for various short-term and long-term health outcomes.

Typically, a full-term newborn's weight ranges from 5.5 to 8.8 pounds (2.5 to 4 kg), although normal birth weights can vary significantly based on factors such as gestational age, genetics, maternal health, and nutrition. Low birth weight is defined as less than 5.5 pounds (2.5 kg), while high birth weight is greater than 8.8 pounds (4 kg).

Low birth weight babies are at a higher risk for various medical complications, including respiratory distress syndrome, jaundice, infections, and developmental delays. High birth weight babies may face challenges with delivery, increased risk of obesity, and potential metabolic issues later in life. Regular prenatal care is essential to monitor fetal growth and ensure a healthy pregnancy and optimal birth weight for the baby.

Chromosome segregation is the process that occurs during cell division (mitosis or meiosis) where replicated chromosomes are separated and distributed equally into two daughter cells. Each chromosome consists of two sister chromatids, which are identical copies of genetic material. During chromosome segregation, these sister chromatids are pulled apart by a structure called the mitotic spindle and moved to opposite poles of the cell. This ensures that each new cell receives one copy of each chromosome, preserving the correct number and composition of chromosomes in the organism.

An ecotype is a population of a species that is adapted to specific environmental conditions and exhibits genetic differences from other populations of the same species that live in different environments. These genetic adaptations allow the ecotype to survive and reproduce more successfully in its particular habitat compared to other populations. The term "ecotype" was first introduced by botanist John Gregor Mendel in 1870 to describe the variation within plant species due to environmental factors.

Ecotypes can be found in various organisms, including plants, animals, and microorganisms. They are often studied in ecology and evolutionary biology to understand how genetic differences arise and evolve in response to environmental pressures. Ecotypes can differ from each other in traits such as morphology, physiology, behavior, and life history strategies.

Examples of ecotypes include:

* Desert and coastal ecotypes of the lizard Uta stansburiana, which show differences in body size, limb length, and reproductive strategies due to adaptation to different habitats.
* Arctic and alpine ecotypes of the plant Arabis alpina, which have distinct flowering times and cold tolerance mechanisms that help them survive in their respective environments.
* Freshwater and marine ecotypes of the copepod Eurytemora affinis, which differ in body size, developmental rate, and salinity tolerance due to adaptation to different aquatic habitats.

It is important to note that the concept of ecotype is not always clearly defined or consistently applied in scientific research. Some researchers use it to describe any population that shows genetic differences related to environmental factors, while others reserve it for cases where there is strong evidence of local adaptation and reproductive isolation between populations.

Genetic suppression is a concept in genetics that refers to the phenomenon where the expression or function of one gene is reduced or silenced by another gene. This can occur through various mechanisms such as:

* Allelic exclusion: When only one allele (version) of a gene is expressed, while the other is suppressed.
* Epigenetic modifications: Chemical changes to the DNA or histone proteins that package DNA can result in the suppression of gene expression.
* RNA interference: Small RNAs can bind to and degrade specific mRNAs (messenger RNAs), preventing their translation into proteins.
* Transcriptional repression: Proteins called transcription factors can bind to DNA and prevent the recruitment of RNA polymerase, which is necessary for gene transcription.

Genetic suppression plays a crucial role in regulating gene expression and maintaining proper cellular function. It can also contribute to diseases such as cancer when genes that suppress tumor growth are suppressed themselves.

Coliphages are viruses that infect and replicate within certain species of bacteria that belong to the coliform group, particularly Escherichia coli (E. coli). These viruses are commonly found in water and soil environments and are frequently used as indicators of fecal contamination in water quality testing. Coliphages are not harmful to humans or animals, but their presence in water can suggest the potential presence of pathogenic bacteria or other microorganisms that may pose a health risk. There are two main types of coliphages: F-specific RNA coliphages and somatic (or non-F specific) DNA coliphages.

A haplotype is a group of genes or DNA sequences that are inherited together from a single parent. It refers to a combination of alleles (variant forms of a gene) that are located on the same chromosome and are usually transmitted as a unit. Haplotypes can be useful in tracing genetic ancestry, understanding the genetic basis of diseases, and developing personalized medical treatments.

In population genetics, haplotypes are often used to study patterns of genetic variation within and between populations. By comparing haplotype frequencies across populations, researchers can infer historical events such as migrations, population expansions, and bottlenecks. Additionally, haplotypes can provide information about the evolutionary history of genes and genomic regions.

In clinical genetics, haplotypes can be used to identify genetic risk factors for diseases or to predict an individual's response to certain medications. For example, specific haplotypes in the HLA gene region have been associated with increased susceptibility to certain autoimmune diseases, while other haplotypes in the CYP450 gene family can affect how individuals metabolize drugs.

Overall, haplotypes provide a powerful tool for understanding the genetic basis of complex traits and diseases, as well as for developing personalized medical treatments based on an individual's genetic makeup.

A genome is the complete set of genetic material (DNA, or in some viruses, RNA) present in a single cell of an organism. It includes all of the genes, both coding and noncoding, as well as other regulatory elements that together determine the unique characteristics of that organism. The human genome, for example, contains approximately 3 billion base pairs and about 20,000-25,000 protein-coding genes.

The term "genome" was first coined by Hans Winkler in 1920, derived from the word "gene" and the suffix "-ome," which refers to a complete set of something. The study of genomes is known as genomics.

Understanding the genome can provide valuable insights into the genetic basis of diseases, evolution, and other biological processes. With advancements in sequencing technologies, it has become possible to determine the entire genomic sequence of many organisms, including humans, and use this information for various applications such as personalized medicine, gene therapy, and biotechnology.

I believe there may be a slight misunderstanding in your question. "Plant leaves" are not a medical term, but rather a general biological term referring to a specific organ found in plants.

Leaves are organs that are typically flat and broad, and they are the primary site of photosynthesis in most plants. They are usually green due to the presence of chlorophyll, which is essential for capturing sunlight and converting it into chemical energy through photosynthesis.

While leaves do not have a direct medical definition, understanding their structure and function can be important in various medical fields, such as pharmacognosy (the study of medicinal plants) or environmental health. For example, certain plant leaves may contain bioactive compounds that have therapeutic potential, while others may produce allergens or toxins that can impact human health.

Weight gain is defined as an increase in body weight over time, which can be attributed to various factors such as an increase in muscle mass, fat mass, or total body water. It is typically measured in terms of pounds or kilograms and can be intentional or unintentional. Unintentional weight gain may be a cause for concern if it's significant or accompanied by other symptoms, as it could indicate an underlying medical condition such as hypothyroidism, diabetes, or heart disease.

It is important to note that while body mass index (BMI) can be used as a general guideline for weight status, it does not differentiate between muscle mass and fat mass. Therefore, an increase in muscle mass through activities like strength training could result in a higher BMI, but this may not necessarily be indicative of increased health risks associated with excess body fat.

Benomyl is a systemic fungicide that is derived from methyl 1-(butylcarbamoyl)-2-benzimidazole carbamate. It works by inhibiting the synthesis of microtubules in fungal cells, which are necessary for cell division and growth. Benomyl is used to control a wide range of fungal diseases in crops such as cereals, fruits, vegetables, and ornamental plants. However, it has been banned or restricted in many countries due to its potential toxicity to non-target organisms, including humans.

In medical contexts, benomyl is not used as a drug or therapy. It can be harmful if ingested, inhaled, or comes into contact with the skin, and may cause symptoms such as nausea, vomiting, diarrhea, abdominal pain, dizziness, headache, and respiratory difficulties. Long-term exposure to benomyl has been linked to neurological and reproductive effects in animals, but its effects on human health are not well understood.

"Sex determination processes" refer to the series of genetic and biological events that occur during embryonic and fetal development which lead to the development of male or female physical characteristics. In humans, this process is typically determined by the presence or absence of a Y chromosome in the fertilized egg. If the egg has a Y chromosome, it will develop into a male (genetically XY) and if it does not have a Y chromosome, it will develop into a female (genetically XX).

The sex determination process involves the activation and repression of specific genes on the sex chromosomes, which direct the development of the gonads (ovaries or testes) and the production of hormones that influence the development of secondary sexual characteristics. This includes the development of internal and external genitalia, as well as other sex-specific physical traits.

It is important to note that while sex is typically determined by genetics and biology, gender identity is a separate construct that can be self-identified and may not align with an individual's biological sex.

Bacteriophage lambda, often simply referred to as phage lambda, is a type of virus that infects the bacterium Escherichia coli (E. coli). It is a double-stranded DNA virus that integrates its genetic material into the bacterial chromosome as a prophage when it infects the host cell. This allows the phage to replicate along with the bacterium until certain conditions trigger the lytic cycle, during which new virions are produced and released by lysing, or breaking open, the host cell.

Phage lambda is widely studied in molecular biology due to its well-characterized life cycle and genetic structure. It has been instrumental in understanding various fundamental biological processes such as gene regulation, DNA recombination, and lysis-lysogeny decision.

The Y chromosome is one of the two sex-determining chromosomes in humans and many other animals, along with the X chromosome. The Y chromosome contains the genetic information that helps to determine an individual's sex as male. It is significantly smaller than the X chromosome and contains fewer genes.

The Y chromosome is present in males, who inherit it from their father. Females, on the other hand, have two X chromosomes, one inherited from each parent. The Y chromosome includes a gene called SRY (sex-determining region Y), which initiates the development of male sexual characteristics during embryonic development.

It is worth noting that the Y chromosome has a relatively high rate of genetic mutation and degeneration compared to other chromosomes, leading to concerns about its long-term viability in human evolution. However, current evidence suggests that the Y chromosome has been stable for at least the past 25 million years.

Genetic fitness is a term used in the field of genetics and evolutionary biology to describe the ability of an individual organism to survive and reproduce, passing its genes on to the next generation. An organism that is highly genetically fit has a greater likelihood of producing offspring that will also survive and reproduce, thereby ensuring the survival of its genetic traits in the population.

In the context of human genetics, genetic fitness may refer to the ability of an individual to pass on their genes to future generations due to certain genetic traits or characteristics that enhance their chances of survival and reproduction. However, it is important to note that the concept of "fitness" in this context does not necessarily imply superiority or inferiority, but rather a measure of reproductive success.

It's also worth noting that genetic fitness can be influenced by various factors such as environmental conditions, cultural practices, and social structures, which can all interact with an individual's genetic traits to affect their overall fitness.

Chlamydomonas is a genus of single-celled, green algae that are widely found in freshwater and marine environments. These microorganisms are characterized by their oval or spherical shape, and each cell contains a single, large chloroplast used for photosynthesis. They also have two flagella, which are hair-like structures that enable them to move through their aquatic habitats. Chlamydomonas species are often used in scientific research due to their simple cell structure and ease of cultivation in the lab.

'C3H' is the name of an inbred strain of laboratory mice that was developed at the Jackson Laboratory in Bar Harbor, Maine. The mice are characterized by their uniform genetic background and have been widely used in biomedical research for many decades.

The C3H strain is particularly notable for its susceptibility to certain types of cancer, including mammary tumors and lymphomas. It also has a high incidence of age-related macular degeneration and other eye diseases. The strain is often used in studies of immunology, genetics, and carcinogenesis.

Like all inbred strains, the C3H mice are the result of many generations of brother-sister matings, which leads to a high degree of genetic uniformity within the strain. This makes them useful for studying the effects of specific genes or environmental factors on disease susceptibility and other traits. However, it also means that they may not always be representative of the genetic diversity found in outbred populations, including humans.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Microbial drug resistance is a significant medical issue that refers to the ability of microorganisms (such as bacteria, viruses, fungi, or parasites) to withstand or survive exposure to drugs or medications designed to kill them or limit their growth. This phenomenon has become a major global health concern, particularly in the context of bacterial infections, where it is also known as antibiotic resistance.

Drug resistance arises due to genetic changes in microorganisms that enable them to modify or bypass the effects of antimicrobial agents. These genetic alterations can be caused by mutations or the acquisition of resistance genes through horizontal gene transfer. The resistant microbes then replicate and multiply, forming populations that are increasingly difficult to eradicate with conventional treatments.

The consequences of drug-resistant infections include increased morbidity, mortality, healthcare costs, and the potential for widespread outbreaks. Factors contributing to the emergence and spread of microbial drug resistance include the overuse or misuse of antimicrobials, poor infection control practices, and inadequate surveillance systems.

To address this challenge, it is crucial to promote prudent antibiotic use, strengthen infection prevention and control measures, develop new antimicrobial agents, and invest in research to better understand the mechanisms underlying drug resistance.

Genetically modified plants (GMPs) are plants that have had their DNA altered through genetic engineering techniques to exhibit desired traits. These modifications can be made to enhance certain characteristics such as increased resistance to pests, improved tolerance to environmental stresses like drought or salinity, or enhanced nutritional content. The process often involves introducing genes from other organisms, such as bacteria or viruses, into the plant's genome. Examples of GMPs include Bt cotton, which has a gene from the bacterium Bacillus thuringiensis that makes it resistant to certain pests, and golden rice, which is engineered to contain higher levels of beta-carotene, a precursor to vitamin A. It's important to note that genetically modified plants are subject to rigorous testing and regulation to ensure their safety for human consumption and environmental impact before they are approved for commercial use.

Insect vectors are insects that transmit disease-causing pathogens (such as viruses, bacteria, parasites) from one host to another. They do this while feeding on the host's blood or tissues. The insects themselves are not infected by the pathogen but act as mechanical carriers that pass it on during their bite. Examples of diseases spread by insect vectors include malaria (transmitted by mosquitoes), Lyme disease (transmitted by ticks), and plague (transmitted by fleas). Proper prevention measures, such as using insect repellent and reducing standing water where mosquitoes breed, can help reduce the risk of contracting these diseases.

'Aspergillus nidulans' is a species of filamentous fungi that belongs to the genus Aspergillus. It is commonly found in soil, decaying vegetation, and indoor environments such as air conditioning systems and damp buildings. This fungus can produce spores that become airborne and can be inhaled, which can cause respiratory infections in individuals with weakened immune systems.

'Aspergillus nidulans' is also a widely used model organism in scientific research, particularly in the fields of genetics, molecular biology, and cell biology. Its genetic tractability, short life cycle, and ability to grow at a wide range of temperatures make it an ideal system for studying fundamental biological processes such as DNA repair, cell division, and metabolism. Additionally, this fungus is known to produce a variety of secondary metabolites, including pigments, antibiotics, and mycotoxins, which have potential applications in medicine and industry.

I'm sorry for any confusion, but "Wisconsin" is a U.S. state located in the Midwest and is not a medical term or condition. If you have any medical questions or terms you would like defined, I'd be happy to help with those!

Phylogeny is the evolutionary history and relationship among biological entities, such as species or genes, based on their shared characteristics. In other words, it refers to the branching pattern of evolution that shows how various organisms have descended from a common ancestor over time. Phylogenetic analysis involves constructing a tree-like diagram called a phylogenetic tree, which depicts the inferred evolutionary relationships among organisms or genes based on molecular sequence data or other types of characters. This information is crucial for understanding the diversity and distribution of life on Earth, as well as for studying the emergence and spread of diseases.

Amplified Fragment Length Polymorphism (AFLP) analysis is a molecular biology technique used for DNA fingerprinting, genetic mapping, and population genetics studies. It is based on the selective amplification of restriction fragments from a total digest of genomic DNA, followed by separation and detection of the resulting fragments using polyacrylamide gel electrophoresis.

In AFLP analysis, genomic DNA is first digested with two different restriction enzymes, one that cuts frequently (e.g., EcoRI) and another that cuts less frequently (e.g., MseI). The resulting fragments are then ligated to adapter sequences that provide recognition sites for PCR amplification.

Selective amplification of the restriction fragments is achieved by using primers that anneal to the adapter sequences and contain additional selective nucleotides at their 3' ends. This allows for the amplification of a subset of the total number of restriction fragments, resulting in a pattern of bands that is specific to the DNA sample being analyzed.

The amplified fragments are then separated by size using polyacrylamide gel electrophoresis and visualized by staining with a fluorescent dye. The resulting banding pattern can be used for various applications, including identification of genetic differences between individuals, detection of genomic alterations in cancer cells, and analysis of population structure and diversity.

Overall, AFLP analysis is a powerful tool for the study of complex genomes and has been widely used in various fields of biology, including plant and animal breeding, forensic science, and medical research.

Gene expression regulation in plants refers to the processes that control the production of proteins and RNA from the genes present in the plant's DNA. This regulation is crucial for normal growth, development, and response to environmental stimuli in plants. It can occur at various levels, including transcription (the first step in gene expression, where the DNA sequence is copied into RNA), RNA processing (such as alternative splicing, which generates different mRNA molecules from a single gene), translation (where the information in the mRNA is used to produce a protein), and post-translational modification (where proteins are chemically modified after they have been synthesized).

In plants, gene expression regulation can be influenced by various factors such as hormones, light, temperature, and stress. Plants use complex networks of transcription factors, chromatin remodeling complexes, and small RNAs to regulate gene expression in response to these signals. Understanding the mechanisms of gene expression regulation in plants is important for basic research, as well as for developing crops with improved traits such as increased yield, stress tolerance, and disease resistance.

"Salmonella enterica" serovar "Typhimurium" is a subspecies of the bacterial species Salmonella enterica, which is a gram-negative, facultatively anaerobic, rod-shaped bacterium. It is a common cause of foodborne illness in humans and animals worldwide. The bacteria can be found in a variety of sources, including contaminated food and water, raw meat, poultry, eggs, and dairy products.

The infection caused by Salmonella Typhimurium is typically self-limiting and results in gastroenteritis, which is characterized by symptoms such as diarrhea, abdominal cramps, fever, and vomiting. However, in some cases, the infection can spread to other parts of the body and cause more severe illness, particularly in young children, older adults, and people with weakened immune systems.

Salmonella Typhimurium is a major public health concern due to its ability to cause outbreaks of foodborne illness, as well as its potential to develop antibiotic resistance. Proper food handling, preparation, and storage practices can help prevent the spread of Salmonella Typhimurium and other foodborne pathogens.

Basidiomycota is a phylum in the kingdom Fungi that consists of organisms commonly known as club fungi or club mushrooms. The name Basidiomycota is derived from the presence of a characteristic reproductive structure called a basidium, which is where spores are produced.

The basidiomycetes include many familiar forms such as mushrooms, toadstools, bracket fungi, and other types of polypores. They have a complex life cycle that involves both sexual and asexual reproduction. The sexual reproductive stage produces a characteristic fruiting body, which may be microscopic or highly visible, depending on the species.

Basidiomycota fungi play important ecological roles in decomposing organic matter, forming mutualistic relationships with plants, and acting as parasites on other organisms. Some species are economically important, such as edible mushrooms, while others can be harmful or even deadly to humans and animals.

Gene flow, also known as genetic migration or gene admixture, refers to the transfer of genetic variation from one population to another. It occurs when individuals reproduce and exchange genes with members of other populations through processes such as migration and interbreeding. This can result in an alteration of the genetic composition of both populations, increasing genetic diversity and reducing the differences between them. Gene flow is an important mechanism in evolutionary biology and population genetics, contributing to the distribution and frequency of alleles (versions of a gene) within and across populations.

The term "environment" in a medical context generally refers to the external conditions and surroundings that can have an impact on living organisms, including humans. This includes both physical factors such as air quality, water supply, soil composition, temperature, and radiation, as well as biological factors such as the presence of microorganisms, plants, and animals.

In public health and epidemiology, the term "environmental exposure" is often used to describe the contact between an individual and a potentially harmful environmental agent, such as air pollution or contaminated water. These exposures can have significant impacts on human health, contributing to a range of diseases and disorders, including respiratory illnesses, cancer, neurological disorders, and reproductive problems.

Efforts to protect and improve the environment are therefore critical for promoting human health and preventing disease. This includes measures to reduce pollution, conserve natural resources, promote sustainable development, and mitigate the impacts of climate change.

'Brassica rapa' is the scientific name for a species of plant that includes various types of vegetables such as turnips, Chinese cabbages, and bok choy. It is a member of the Brassicaceae family, also known as the mustard or cabbage family. The plants in this species are characterized by their broad leaves and branching stem, and they are native to Europe and Central Asia.

Turnips, which are one of the most common vegetables in this species, are cool-season root crops that are grown for their enlarged taproot. They have a white or yellowish flesh that is crisp and tender with a sweet, slightly bitter flavor. Turnips can be eaten raw or cooked and are often used in soups, stews, and casseroles.

Chinese cabbages, also known as Napa cabbages, are another type of vegetable in the 'Brassica rapa' species. They have elongated, pale green leaves that form a compact head, and they are often used in Asian cuisine. Chinese cabbages have a mild flavor and can be eaten raw or cooked.

Bok choy, also known as pak choi, is another type of vegetable in the 'Brassica rapa' species. It has dark green leaves and white stems, and it is often used in stir-fries and soups. Bok choy has a mild flavor and a crisp texture.

Overall, 'Brassica rapa' is an important species of plant that includes many nutritious and delicious vegetables that are popular around the world.

Cytoplasm is the material within a eukaryotic cell (a cell with a true nucleus) that lies between the nuclear membrane and the cell membrane. It is composed of an aqueous solution called cytosol, in which various organelles such as mitochondria, ribosomes, endoplasmic reticulum, Golgi apparatus, lysosomes, and vacuoles are suspended. Cytoplasm also contains a variety of dissolved nutrients, metabolites, ions, and enzymes that are involved in various cellular processes such as metabolism, signaling, and transport. It is where most of the cell's metabolic activities take place, and it plays a crucial role in maintaining the structure and function of the cell.

Pactamycin is an antitumor antibiotic that is produced by the bacterium Streptomyces pactum. It works by inhibiting protein synthesis in cells, which can ultimately lead to cell death. Pactamycin has been studied for its potential use in treating various types of cancer, although it is not currently approved for clinical use in humans.

In addition to its antitumor activity, pactamycin has also been found to have antibacterial and antiviral properties. However, its use as a therapeutic agent is limited by its toxicity, which can cause side effects such as hearing loss, kidney damage, and bone marrow suppression.

It's important to note that pactamycin is primarily used in research settings to study its mechanisms of action and potential therapeutic uses. It should only be handled by trained professionals in a controlled laboratory environment.

Self-incompatibility (SI) in flowering plants is a genetic mechanism that prevents self-fertilization and promotes outcrossing. It is a complex system that recognizes and rejects self-pollen, thus preventing the fusion of sperm and egg from the same plant. This ensures genetic diversity within plant populations and reduces the risk of inbreeding depression.

Self-incompatibility systems are classified into two main types: homomorphic and heteromorphic. Homomorphic SI is found in plants where all individuals have the same morphological appearance, but their pollen is rejected by genetically similar stigmas. Heteromorphic SI occurs in plants with distinct morphological differences between individuals (dimorphic or trimorphic), and pollen from one form is rejected by the stigma of another form.

The genetic basis for self-incompatibility involves a specific gene locus, called the S-locus, which contains two tightly linked genes: the pistil S gene (SP) and the pollen S gene (SR). The SP gene encodes a receptor kinase in the stigma that recognizes and interacts with the SR protein on compatible pollen grains. In self-incompatible interactions, the SP and SR proteins interact in a way that triggers a signal transduction cascade leading to the inhibition of pollen tube growth and subsequent rejection of self-pollen.

Self-incompatibility is an essential mechanism for maintaining genetic diversity and ensuring the long-term survival and adaptability of plant populations.

A nucleic acid heteroduplex is a double-stranded structure formed by the pairing of two complementary single strands of nucleic acids (DNA or RNA) that are derived from different sources. The term "hetero" refers to the fact that the two strands are not identical and come from different parents, genes, or organisms.

Heteroduplexes can form spontaneously during processes like genetic recombination, where DNA repair mechanisms may mistakenly pair complementary regions between two different double-stranded DNA molecules. They can also be generated intentionally in laboratory settings for various purposes, such as analyzing the similarity of DNA sequences or detecting mutations.

Heteroduplexes are often used in molecular biology techniques like polymerase chain reaction (PCR) and DNA sequencing, where they can help identify mismatches, insertions, deletions, or other sequence variations between the two parental strands. These variations can provide valuable information about genetic diversity, evolutionary relationships, and disease-causing mutations.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

Exodeoxyribonuclease V, also known as RecJ or ExoV, is an enzyme that belongs to the family of exodeoxyribonucleases. It functions by removing nucleotides from the 3'-end of a DNA strand in a stepwise manner, leaving 5'-phosphate and 3'-hydroxyl groups after each cleavage event. Exodeoxyribonuclease V plays a crucial role in various DNA metabolic processes, including DNA repair, recombination, and replication. It is highly specific for double-stranded DNA substrates and requires the presence of a 5'-phosphate group at the cleavage site. Exodeoxyribonuclease V has been identified in several organisms, including bacteria and archaea, and its activity is tightly regulated to ensure proper maintenance and protection of genomic integrity.

Gene frequency, also known as allele frequency, is a measure in population genetics that reflects the proportion of a particular gene or allele (variant of a gene) in a given population. It is calculated as the number of copies of a specific allele divided by the total number of all alleles at that genetic locus in the population.

For example, if we consider a gene with two possible alleles, A and a, the gene frequency of allele A (denoted as p) can be calculated as follows:

p = (number of copies of allele A) / (total number of all alleles at that locus)

Similarly, the gene frequency of allele a (denoted as q) would be:

q = (number of copies of allele a) / (total number of all alleles at that locus)

Since there are only two possible alleles for this gene in this example, p + q = 1. These frequencies can help researchers understand genetic diversity and evolutionary processes within populations.

Cyprinodontiformes is an order of ray-finned fish that includes several families, such as Cyprinodontidae (livebearers), Poeciliidae (including guppies and mollies), Aplocheilidae, Nothobranchiidae, Rivulidae, Valenciidae, Profundulidae, Goodeidae, Anablepidae, and Jenynsiidae. These fish are characterized by their small size, live-bearing reproduction (in most families), and the presence of a urogenital papilla in males. They inhabit a wide range of freshwater and brackish environments, with some species also found in marine habitats. Many cyprinodontiform fishes are popular as aquarium pets due to their vibrant colors and interesting behaviors.

Physiological adaptation refers to the changes or modifications that occur in an organism's biological functions or structures as a result of environmental pressures or changes. These adaptations enable the organism to survive and reproduce more successfully in its environment. They can be short-term, such as the constriction of blood vessels in response to cold temperatures, or long-term, such as the evolution of longer limbs in animals that live in open environments.

In the context of human physiology, examples of physiological adaptation include:

1. Acclimatization: The process by which the body adjusts to changes in environmental conditions, such as altitude or temperature. For example, when a person moves to a high-altitude location, their body may produce more red blood cells to compensate for the lower oxygen levels, leading to improved oxygen delivery to tissues.

2. Exercise adaptation: Regular physical activity can lead to various physiological adaptations, such as increased muscle strength and endurance, enhanced cardiovascular function, and improved insulin sensitivity.

3. Hormonal adaptation: The body can adjust hormone levels in response to changes in the environment or internal conditions. For instance, during prolonged fasting, the body releases stress hormones like cortisol and adrenaline to help maintain energy levels and prevent muscle wasting.

4. Sensory adaptation: Our senses can adapt to different stimuli over time. For example, when we enter a dark room after being in bright sunlight, it takes some time for our eyes to adjust to the new light level. This process is known as dark adaptation.

5. Aging-related adaptations: As we age, various physiological changes occur that help us adapt to the changing environment and maintain homeostasis. These include changes in body composition, immune function, and cognitive abilities.

As more advanced techniques to determine genotype emerge, the test cross is becoming less prevalent in genetics. Genetic ... These test cross experiments became hallmarks in the discovery of sex-linked traits. Test crosses have a variety of ... Basic procedures for performing test crosses in these organisms are provided below: To perform a test cross with C. elegans, ... By performing a test cross, one can determine whether the individual is heterozygous or homozygous dominant. In a test cross, ...
"Genetic linkage & mapping". Khan Academy. AMGEN Foundation. Retrieved 2021-03-29. (Genetics). ... In genetics, a three-point cross is used to determine the loci of three genes in an organism's genome. An individual ... heterozygous for three mutations is crossed with a homozygous recessive individual, and the phenotypes of the progeny are ...
Researchers use genetic methods to better understand the Cross River gorilla population. More specifically, certain loci within ... Cross River gorillas eat more liana and tree bark throughout the year, and less fruit during dry periods of scarcity. The Cross ... This distribution is supported by genetic research, which has found evidence that many Cross River gorilla localities continue ... This distribution is corroborated by genetic research, which has found evidence that many Cross River gorilla localities ...
Eslava AP, Alvarez MI, Burke PV, Delbrück M (July 1975). "Genetic recombination in sexual crosses of phycomyces". Genetics. 80 ...
If many lines of different genetic background are used, a huge amount of genetic diversity will be present. Seeds from crosses ... CCPs can be a valuable resource of genetic material. They can be used to preserve valuable genetic diversity for future use, or ... and crossed them to obtain 190 new crosses. These seeds were not further selected and planted, grown, harvested and reseeded ... A CCP, including crosses of resistant cultivars, was grown with heavy common bunt infection for 5 years and it appeared to get ...
"Hybrid Crosses : Xiphophorus Genetic Stock Center : Texas State University". Archived from the original on October 23, 2014. ... The Xiphophorus Genetic stock center, founded by Myron Gordon in 1939, is an important source of these fish for research. In ... PMID: 8485710 xiphophorus genetic stock center xiphophorus.org xiphophorus.net(Chinese ver.) (Articles with short description, ... Patton, E Elizabeth; Mitchell, David L; Nairn, Rodney S (2010). "Genetic and environmental melanoma models in fish". Pigment ...
Blue Cross Blue Shield of Tennessee. Retrieved 18 August 2016. Ludman, Mark (2009). The Encyclopedia of Genetic Disorders and ... Third-degree relatives are generally defined by the expected amount of genetic overlap that exists between two people, with the ...
McKusick, V. A.; Cross, H. E. (1966-02-28). "Ataxia-telangiectasia and Swiss-type agammaglobulinemia. Two genetic disorders of ... "Short-limb skeletal dysplasia with severe combined immunodeficiency - About the Disease - Genetic and Rare Diseases Information ... Genetic diseases and disorders, Autosomal recessive disorders). ...
"The Collaborative Cross, a community resource for the genetic analysis of complex traits." Nature genetics 36.11 (2004): 1133. ... In 2019 Karl Broman and a group of researchers published a study which found genetic variants in mice that impacted the bile ... "Comprehensive human genetic maps: individual and sex-specific variation in recombination." The American Journal of Human ... "R/qtl: QTL mapping in experimental crosses." Bioinformatics 19.7 (2003): 889-890. Churchill, Gary A., et al. " ...
When found, these hybrids often can show remarkable genetic relationships. Crosses between two philodendrons in different ... This may be because philodendrons have many geographic and time barriers to prevent any such cross pollination.[citation needed ... Because of these outside barriers, philodendrons may not have had to evolve physical mechanisms to prevent cross-pollination.[ ... some aspects of making crosses can make philodendron hybridization more difficult. Philodendrons often flower at different ...
Making most of hitting genetic jackpot". 23 October 2014. "Heather van Norman - Men's Cross Country Coach". Derek Mills profile ...
An intermediate genetic distance may thus be most conducive to hybrid speciation. Experimental lab crosses support this ... Interspecific hybridization can enrich the genetic diversity of introgressed taxon, lead to introgression of beneficial genetic ... These methods infer a user-specified number of genetic groups from the data and assign each individual to one or a mix of these ... Given time, genetic drift will eventually stochastically fix blocks derived from the two parent species in finite isolated ...
"Cross-eyed tigers". Scientific American. 229:43. August 1973. Guillery, R.W.; Kaas, J.H. (22 June 1973). "Genetic abnormality ... To better preserve genetic diversity and avoid genetic defects, the Association of Zoos and Aquariums barred member zoos from ... Another genetic characteristic makes the stripes of the tiger very pale; white tigers of this type are called snow-white or " ... An additional genetic condition can result in near-complete absence of stripes, making the tiger almost pure white. One such ...
This has also led to a loss in genetic diversity and genetic material for further breeding. This type of loss is also called as ... However, maize is a cross-pollinator. In countries with small scale agriculture, as it is the case in Switzerland, fields are ... Switzerland has a broad genetic diversity of maize landraces, which are also distinguishable to the genetic pools of ... also indicating some genetic differences between the regions and thus partly a genetic separation within the Swiss landraces. ...
There are certain genetic crosses that are lethal to the foal. There is no point to re-breeding in such cases, so the stallion ... This is to ensure that the mare is healthy, able to carry a foal, and to check for genetic incompatibilities. ...
Cross-Disorder Group of the Psychiatric Genomics Consortium; Genetic Risk Outcome of Psychosis (GROUP) Consortium (2013). " ... identified a list of 32 genes targeted by miR-137 by cross-referencing the global gene expression analysis of HCT 116 ...
Nath, S. K.; Majumder, P. P.; Nordlund, J. J. (1994). "Genetic epidemiology of vitiligo: multilocus recessivity cross-validated ... The genetic mechanism behind human skin color is mainly regulated by the enzyme tyrosinase, which creates the color of the skin ... genetic evidence [demonstrate] that strong levels of natural selection acted about 1.2 mya to produce darkly pigmented skin in ... The genetic mutations leading to light skin, though partially different among East Asians and Western Europeans, suggest the ...
History of cross stitch in the Russian Empire]. pattern.rusneb.ru. Retrieved 2022-10-14. Cole, Jeffrey (2011). Ethnic Groups of ... In 2017 a full genome study found Chuvash largely show a Finno-Ugric genetic component despite having a common Turkic component ... Spitsin, V. A.; Batsevich, V. A.; El'chinova, G. I.; KobylianskiÄ­, E. D. (2009). "[Genetic position of Chuvashes in the system ... Salmin, Anton K. (February 28, 2022). Genetic Geography of the Historical Ancestors of the Chuvash. Scientific Research ...
Wikimedia Commons has media related to Crossed arms. "Observable Human Characteristics". Learn.Genetics. Genetic Science ... Falk C. T., Ayala F. J. (1971): Genetic aspects of arm folding and hand clasping. Jpn. J. Hum. Genet., 15: 241-247. [PubMed: ... Supporters of the assumptions that genetic factors play an important role in forming these properties, are reinforced by the ... Quelce-Salgado, A; Freire-Maia, Ademar; Freire-Maia, Newton (1961). "Arm folding: A genetic trait?". Jinrui Idengaku Zasshi. ...
Penn, Dustin; Potts, Wayne (22 July 1998). "MHC-disassortative mating preferences reversed by cross-fostering". Proceedings of ... Genetic Literacy Project. "Genetic sexual attraction" (PDF). Cumbria County Counsel. Kirsta, Alix (16 May 2023). "Genetic ... Genetic sexual attraction is a theory that attraction may be a product of genetic similarities.: 200 There is "little ... "Debunking genetic sexual attraction: Incest by any other name is still incest". Salon. 16 August 2016. Retrieved 28 September ...
Genetic crosses of individuals found a general dominance hierarchy within the alleles. Allele combinations also determine not ... In other words, alleles did not enter into the genome from genetic transfer from other species. Different combinations of the ...
It was initially found, using genetic crosses, that poky is maternally inherited. Subsequently, the primary defect in the poky ... "Control of plastid inheritance by environmental and genetic factors". Nature Plants. 9 (1): 68-80. doi:10.1038/s41477-022-01323 ...
In genetic crosses, the poky phenotype was found to be maternally inherited. The protoperithecial parent is regarded as the ... When poky females were crossed to wild-type males, all progeny had the poky phenotype. When wild-type females were crossed to ... Like all other genetic concepts, the discovery of uniparental inheritance stems from the days of an Augustinian priest known as ...
"China: Designing policies and laws to ensure fair access and benefit sharing of genetic resources and participatory plant ... Myers, Christopher G.; Kopelman, Shirli (2012). "Cooperation between Cultures in the Commons: Implications for Cross-Cultural ... A number of individuals from each family were used in mapping crosses.)". eLife. 7: e37143. doi:10.7554/elife.37143.009. HARDIN ... "Resource Availability Modulates the Cooperative and Competitive Nature of a Microbial Cross-Feeding Mutualism". PLOS Biology. ...
Genetic alterations in mouse models are similar to those found in human cancers. These models are generated by methods ... Comparative oncogenomics uses cross-species comparisons to identify oncogenes. This research involves studying cancer genomes, ... Cancer is a genetic disease caused by accumulation of DNA mutations and epigenetic alterations leading to unrestrained cell ... Before BRAF, the genetic mechanism of melanoma development was unknown and therefore prognosis for patients was poor. ...
Strabismus ("crossed eyes") may be corrected by surgery. In addition, people with BOFS should be managed by an ophthalmologist ... Genetic counseling is recommended for the patients and their families for reproductive health. It was estimated that only 100 ... Genetic syndromes, Transcription factor deficiencies, Rare syndromes, Syndromes with intellectual disability, Syndromes with ...
Ingram AK, Cross GA, Horn D (December 2000). "Genetic manipulation indicates that ARD1 is an essential N(alpha)- ... "Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study". ...
Darwin, C. R. (1876). The effects of cross and selffertilisation in the vegetable kingdom. London: John Murray. Crnokrak, P.; ... Genetic purging is the reduction of the frequency of a deleterious allele, caused by an increased efficiency of natural ... As an example of genetic purging, consider a large population where there are recessive lethal alleles segregating at very low ... Nevertheless, in practical situations, the genetic change in fitness also depends on many other factors, besides inbreeding and ...
... can also solve dihybrid and multi-hybrid crosses. A problem is converted to a series of monohybrid crosses, and the results are ... Each genetic locus is always represented by two letters. So in the case of eye color, say "B = Brown eyes" and "b = green eyes ... The Punnett square is a square diagram that is used to predict the genotypes of a particular cross or breeding experiment. It ... "Mono-" means "one"; this cross indicates that the examination of a single trait. This could mean (for example) eye color. ...
Cross-Disorder Group of the Psychiatric Genomics Consortium (September 2013). "Genetic relationship between five psychiatric ... The genetic and heritable proportion of the cause of five major psychiatric disorders found in family and twin studies is 81% ... David Levinson; Laura Gaccione (1997). Health and Illness: A Cross-cultural Encyclopedia. ABC-CLIO. p. 42. Koenig, Harold G. ( ...
Cross-Disorder Group of the Psychiatric Genomics Consortium (September 2013). "Genetic relationship between five psychiatric ... by quantifying the total contribution of common genetic variants. Furthermore, an increasing number of specific genetic loci ... In contrast to genetic studies, the investigation of environmental exposures of psychiatric problems face the question of ... These studies began in the 70's and studied the impact of perinatal problems, genetic variants, sexual abuse and other adverse ...
Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related ... Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related ... The Collaborative Cross (CC) is a mouse reference population with high allelic diversity that is being constructed using a ... Phenotypic variation in the CC breeding population exceeds that of existing mouse genetic reference populations due to both ...
Discover how the hybrid method of Cross Entropy with Genetic Algorithm (CEGA) solves the no-wait job-shop scheduling problem ... B. Santosa, M. Budiman and S. Wiratno, "A Cross Entropy-Genetic Algorithm for m-Machines No-Wait Job-ShopScheduling Problem," ... A Cross Entropy-Genetic Algorithm for m-Machines No-Wait Job-ShopScheduling Problem () ... Considering this shortcoming, this paper proposed a hybrid of cross entropy with genetic algorithm (GA), called CEGA, on m- ...
Our genetic counselor in La Crosse will screen and assess the risks of developing certain diseases and suggest preventive ... The genetic counselor will help you understand complex genetic information and the options available for genetic testing. From ... Genetic Counseling Services in La Crosse Making the decision to start a family is an important one. Have you considered how ... Family planning: Knowing your genetic risk can help determine risk for your future children to have the same condition. Genetic ...
Genetic Analysis Reveals Differences in CD8+ T Cell Epitope Regions That May Impact Cross-Reactivity of Vaccine-Induced T Cells ... "Genetic Analysis Reveals Differences in CD8+ T Cell Epitope Regions That May Impact Cross-Reactivity of Vaccine-Induced T Cells ... "Genetic Analysis Reveals Differences in CD8+ T Cell Epitope Regions That May Impact Cross-Reactivity of Vaccine-Induced T Cells ... Conceptualization, P.K., C.A.C.M.v.E., J.d.W. and R.B.; methodology, M.E.E., H.D.M., J.K.; genetic analysis, R.B.; In silico ...
silicoCROSS: a help in genetic crosses. Posted by Mario Metzler, on 12 August 2013 ... Lets say we have a quite easy cross: on the second chromosome we have a mutant gene, that we want to have homozygous, and on ... but I still use it in daily work when setting up crosses to have a nice graphic to glue in my fly-notebook or for teaching ...
Bivariate mixed models analyses using ASReml procedures were used to estimate the genetic correlations. The genetic ... The genetic correlations between the overall measures of reproduction (NLBj, NLWj and TWWj) and GFW, CFW and FD were negative ... The genetic correlations between the reproductive traits and WEC were close to zero, except between AWW and WEC (0.42). The ... The genetic correlations were generally favourable between ewe reproduction and growth, with early selection for traits such as ...
... when using genetic crosses to generate strains, both the direction of the genetic cross and choice of the individual cross ... Genetic crosses with mut-16 mutants to test for initiation of mating-induced silencing. In Fig. 2a, L4 male cross progeny were ... Genetic crosses. Three L4 hermaphrodites and 7-13 males were placed on the same plate and allowed to mate in each cross plate. ... This work reveals that the direction of a genetic cross can strongly influence the phenotype of cross progeny (Fig. 1). ...
... falciparum Genetic Crosses project has:. *Sequenced the parents and 78 progeny clones from the crosses 3D7xHB3, HB3xDd2 and ... Unfortunately, it is extremely laborious to perform genetic crosses for P. falciparum, and to date it has been accomplished ... A preprint of a manuscript highlighting several interesting features of the genetic crosses data (v1.0) is now available on ... The parents and progeny of these genetic crosses represent a hugely valuable resource for the malaria research community to ...
Genetic crosses Lab. Answer the questions below. When you are finished, submit this assignment to your teacher by the due date ...
2001/viewarticle/genetic-profiles-affect-smokers-lung-cancer-risk-2023a1000icu. news Genetic Profiles Affect Smokers Lung ... 2001/viewarticle/genetic-profiles-affect-smokers-lung-cancer-risk-2023a1000icu. Genetic Profiles Affect Smokers Lung Cancer ... The CROSS trial compared weekly paclitaxel/carboplatin with the standard of surgery alone rather than other established ... van Hagen P, Hulshof MC, van Lanschot JJ, et al; CROSS Group. N Engl J Med. 2012;366:2074-2084 ...
Yu H, Chen W, Chang H, Tang R, Zhao J, Gan L, Genetic analysis of the VP1 region of enterovirus 71 reveals the emergence of ... Zhang H, An D, Liu W, Mao Q, Jin J, Xu L, Analysis of cross-reactive neutralizing antibodies in human HFMD serum with an EV71 ... Huang SW, Hsu YW, Smith DJ, Kiang D, Tsai HP, Lin KH, Reemergence of enterovirus 71 in 2008 in Taiwan: dynamics of genetic and ... Thoa LPK, Chiang PS, Khanh TH, Luo ST, Dan TN, Wang YF, Genetic and antigenic characterization of enterovirus 71 in Ho Chi Minh ...
When Mendel crossed plants that were heterozygous. asked in Fundamentals of Genetics by Lifeeasy Biology *. genetic crosses. ...
As more advanced techniques to determine genotype emerge, the test cross is becoming less prevalent in genetics. Genetic ... These test cross experiments became hallmarks in the discovery of sex-linked traits. Test crosses have a variety of ... Basic procedures for performing test crosses in these organisms are provided below: To perform a test cross with C. elegans, ... By performing a test cross, one can determine whether the individual is heterozygous or homozygous dominant. In a test cross, ...
MITOCHONDRIA AND APICOPLAST INHERITANCE PATTERNS IN PLASMODIUM FALCIPARUM GENETIC CROSSES SUGGEST INCOMPATIBILITIES ACROSS THE ... MITOCHONDRIA AND APICOPLAST INHERITANCE PATTERNS IN PLASMODIUM FALCIPARUM GENETIC CROSSES SUGGEST INCOMPATIBILITIES ACROSS THE ... Contribution of genetic factors to high rates of neonatal hyperbilirubinaemia on the Thailand-Myanmar border ... Mapping genetic markers of artemisinin resistance in Plasmodium falciparum malaria in Asia: a systematic review and ...
CheckMate: Is there really a new genetic vaccine being given to Aussie kids?. ... Tasmania makes gender optional on birth certificates after Liberal crosses floor. By state political reporters Alexandra ... CheckMate: Is there really a new genetic vaccine being given to Aussie kids?. ... CheckMate: Is there really a new genetic vaccine being given to Aussie kids?. ...
Within the Western gorillas, it also indicated that Cross River Gorillas were a distinct group. (18) ... GENETIC ANALYSIS OF CROSS RIVER GORILLAS. Genetic analysis of samples from various Cross River Gorilla sites found their ... Of the 71 individuals from which genetic samples were analysed, eight were found to either be migrants themselves, or to have ... Collaborative programme to save Cross River Gorillas from extinction. Fewer than 300 individuals left in the wild. Africas ...
Plasmodium falciparum genetic crosses in a humanized mouse model Share Share Share ...
Genetic Influences on Educational Achievement in Cross-National Perspective. Tina Baier, Volker Lang, Michael Grätz, Kieron J. ... Genetic Influences on Educational Achievement in Cross-National Perspective. In: European Sociological Review. 2022 ; Vol. 38, ... Genetic Influences on Educational Achievement in Cross-National Perspective. / Baier, Tina; Lang, Volker; Grätz, Michael et al ... Genetic Influences on Educational Achievement in Cross-National Perspective. European Sociological Review. 2022 Dec 1;38(6):959 ...
Cross-Sectional Studies * DNA Repeat Expansion / genetics* * Female * Frontotemporal Dementia / genetics* * Genetic Loci ... Interpretation: A common Mendelian genetic lesion in C9orf72 is implicated in many cases of sporadic and familial ALS and FTD. ... Testing for this pathogenic expansion should be considered in the management and genetic counselling of patients with these ... a cross-sectional study Lancet Neurol. 2012 Apr;11(4):323-30. doi: 10.1016/S1474-4422(12)70043-1. Epub 2012 Mar 9. ...
Acly was tested for a role in murine hematopoiesis by small-molecule inhibition or genetic deletion in lineage-depleted, c-Kit- ... Acly Deficiency Enhances Myelopoiesis through Acetyl Coenzyme A and Metabolic-Epigenetic Cross-Talk Immunohorizons. 2022 Dec 1; ...
The impact of cross-kingdom molecular forensics on genetic privacy. Eran Elhaik, Sofia Ahsanuddin, Jake M. Robinson, Emily M. ... The impact of cross-kingdom molecular forensics on genetic privacy. / Elhaik, Eran; Ahsanuddin, Sofia; Robinson, Jake M. et al ... The impact of cross-kingdom molecular forensics on genetic privacy. Microbiome. 2021 Dec 1;9(1):114. doi: 10.1186/s40168-021- ... Through cross-kingdom genetic and metagenomic forensics, we can already predict at least a dozen human phenotypes with varying ...
Genetic Variability And Heritability For An Intercultivar Cross Of Peanuts¹. Authors: J. C. Wynne , J. O. Rawlings ... Genetic Variability And Heritability For An Intercultivar Cross Of Peanuts¹. Authors: J. C. Wynne , J. O. Rawlings ... Wynne, J. & Rawlings, J., (1978) "Genetic Variability And Heritability For An Intercultivar Cross Of Peanuts¹", Peanut Science ... Wynne, J & Rawlings, J. (1978) Genetic Variability And Heritability For An Intercultivar Cross Of Peanuts¹, Peanut Science. 5 ...
... falciparum genetic cross (7G8 × GB4). We detected 638 recombination events and constructed a high-resolution genetic map. ... Comparing genetic and physical maps, we obtained an overall recombination rate of 9.6 kb per centimorgan and identified 54 ... Genetic recombination and nucleotide substitution are the two major mechanisms that the parasite employs to generate genome ... RESULTS: Here, we used a high-density tiling array to estimate the genetic recombination rate among 32 progeny of a P. ...
Active genetic crosses. Request a detailed protocol All crosses using active genetics were performed in accordance to an ... Crosses giving the expected deletion band were kept and individual F1 progeny from those crosses were crossed again to the riAB ... Following the cross of riCC-AB males to y1-MCR females (Figure 4B), resulting female progeny were crossed to w- males to ... In four crosses, the riCC-AB allele was copied with 100% efficiency to F2 progeny, in three crosses the efficiency averaged 89 ...
CRL Crosses Above Key Moving Average Level. 12/01/23-3:27AM EST Market News Video. Charles River and Genetic Cures for Kids ...
... François, Sarah; ... François, S., Nazki, S., Vickers, S. H., Fournié, G., Perrins, C. M., Broadbent, A. J., …Hill, S. C. (2023). Genetic diversity ... recombination and cross-species transmission of a waterbird gammacoronavirus in the wild. Journal of General Virology, https:// ...
15 phenotypes from 3 alleles in 3 genetic backgrounds 5 phenotypes from multigenic genotypes 10 phenotype references ... homozygous for a targeted null mutation are viable and fertile but exhibit increased sensitivity to the DNA interstrand cross- ...
A method for an unbiased estimate of cross-ancestry genetic correlation using individual-level data *Md. Moksedul Momin ... Early genetic association studies of psychiatric traits were predicated on optimism regarding the existence of common variants ... Genetic and environmental influences on behavioral disinhibition. Am J Med Genet Part B Neuropsychiatr Genet. 2000;695:684-95. ... Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. ...
... to the same or closely linked regions on the linkage map that in turn underscored the validity of the DA approach for genetic ... rice genome at intervals of 10.5 cM on the average was constructed based on 312 doubled haploid lines derived from the cross ... Wild relatives of cultivated rice varieties offer new genetic sources for enhancing economic value, but traditional interval ... Aluko, Gabriel Kayode, "Genetic mapping of agronomic traits from the interspecific cross of Oryza sativa (L.) and Oryza ...
A controversial test called Preimplantation Genetic Diagnosis allows parents going through in vitro fertilization to select ... but are fearful of passing on a genetic disorder, now have more options. ... US secures the release of the soldier who crossed … Late-night TV shows announce their return after Hollywood … ... Five years ago doctors could test for about 20 genetic disorders, and now they can test for about 100. The can even check for ...
  • Genetic correlations between reproductive and productivity traits of ewes and their early growth, wool production and worm resistance traits were estimated among 2460 crossbred ewes. (edu.au)
  • The genetic correlations between TWWj and growth traits were positive and moderate to high and ranged from 0.34 for BWT to 0.61 for PWWT. (edu.au)
  • The genetic correlations between the reproductive traits and WEC were close to zero, except between AWW and WEC (0.42). (edu.au)
  • The genetic correlations were generally favourable between ewe reproduction and growth, with early selection for traits such as WWT and PWWT likely to give some improvement in subsequent reproduction and ewe productivity. (edu.au)
  • These test cross experiments became hallmarks in the discovery of sex-linked traits. (wikipedia.org)
  • Genetic variances for yield and several fruit traits for the F 5 and F 6 generations of an intercultivar peanut ( Arachis hypogaea L.) cross were estimated by maximum likelihood procedures from a nested mating design. (peanutscience.com)
  • Estimates of additive and additive by environmental variances were significant for yield and the fruit traits for the cross between the two Virginia (ssp. (peanutscience.com)
  • Early genetic association studies of psychiatric traits were predicated on optimism regarding the existence of common variants with substantial effects on disease liability [ 1 ]. (nature.com)
  • Genetic mapping of agronomic traits from the interspecific cross of Oryza sativa (L.) and Oryza glaberrima (Steud. (lsu.edu)
  • There was a large additive genetic component for body traits in the four strains of red tilapia. (worldfishcenter.org)
  • In pea plants Gregor Mendel also performed dihybrid crosses, breeding experiments between organisms that vary by two traits, like seed shape and seed color. (jove.com)
  • To determine whether traits are inherited together or separately, Gregor Mendel crossed pea plants that differed in two traits. (jove.com)
  • To determine whether two traits were inherited separately or together, Mendel also performed crosses with pea plants that differed in two traits, such as pea color and pea shape. (jove.com)
  • For these dihybrid crosses, Mendel first mated plants that were true breeding (i.e., homozygous) for different traits of the same two characteristics. (jove.com)
  • As more advanced techniques to determine genotype emerge, the test cross is becoming less prevalent in genetics. (wikipedia.org)
  • In the new project, Meharry, a historically Black academic health sciences center, will recruit patients from the Nashville area to donate blood, then send it to the Regeneron Genetics Center, which will do the genetic sequencing for free. (news10.com)
  • The first uses of test crosses were in Gregor Mendel's experiments in plant hybridization. (wikipedia.org)
  • Gregor Mendel's monohybrid crosses, between pea plants that differed in a single trait, demonstrated that (1) organisms randomly inherit one of two copies of each gene from each parent (Mendel's first law, segregation), and (2) the dominant allele can mask the recessive allele's effects on phenotype (the principle of uniformity). (jove.com)
  • The P. falciparum Genetic Crosses project is generating high-quality data on genome sequence variation and sexual recombination for the parents and progeny of parasite crosses. (malariagen.net)
  • Data generated by the P. falciparum Genetic Crosses project is made available open access. (malariagen.net)
  • High recombination rates and hotspots in a Plasmodium falciparum genetic cross. (ox.ac.uk)
  • RESULTS: Here, we used a high-density tiling array to estimate the genetic recombination rate among 32 progeny of a P. falciparum genetic cross (7G8 × GB4). (ox.ac.uk)
  • A controversial test called Preimplantation Genetic Diagnosis allows parents going through in vitro fertilization to select embryos that do not carry certain gene mutations. (kdvr.com)
  • Genetic recombination and nucleotide substitution are the two major mechanisms that the parasite employs to generate genome diversity. (ox.ac.uk)
  • We detected 638 recombination events and constructed a high-resolution genetic map. (ox.ac.uk)
  • Comparing genetic and physical maps, we obtained an overall recombination rate of 9.6 kb per centimorgan and identified 54 candidate recombination hotspots. (ox.ac.uk)
  • We also demonstrate that self-propagating active genetic elements (CopyCat elements) can efficiently delete and replace the L2-CRM with orthologous sequences from other divergent fly species. (elifesciences.org)
  • In this work, a genetic algorithm is introduced to demonstrate the minimization of the thermal warpage of a substrate by optimizing the copper content in the conductor layers. (ibm.com)
  • A molecular linkage map comprising 100 SSR markers that spanned the rice genome at intervals of 10.5 cM on the average was constructed based on 312 doubled haploid lines derived from the cross interspecific Oryza sativa x O. glaberrima. (lsu.edu)
  • Laboratories that perform molecular genetic testing are subject to the general CLIA quality systems requirements for nonwaived testing and the CLIA personnel requirements for tests of high complexity. (cdc.gov)
  • Although many laboratories that perform molecular genetic testing comply with applicable regulatory requirements and adhere to professional practice guidelines,specific guidelines for quality assurance are needed to ensure the quality of test performance. (cdc.gov)
  • To enhance the oversight of genetic testing under the CLIA framework,CDC and the Centers for Medicare & Medicaid Services (CMS) have taken practical steps to address the quality management concerns in molecular genetic testing,including working with the Clinical Laboratory Improvement Advisory Committee (CLIAC). (cdc.gov)
  • This report provides CLIAC recommendations for good laboratory practices for ensuring the quality of molecular genetic testing for heritable diseases and conditions. (cdc.gov)
  • The recommended practices address the total testing process (including the preanalytic,analytic,and postanalytic phases),laboratory responsibilities regarding authorized persons,confidentiality of patient information,personnel competency,considerations before introducing molecular genetic testing or offering new molecular genetic tests,and the quality management system approach to molecular genetic testing. (cdc.gov)
  • These recommendations are intended for laboratories that perform molecular genetic testing for heritable diseases and conditions and for medical and public health professionals who evaluate laboratory practices and policies to improve the quality of molecular genetic laboratory services. (cdc.gov)
  • This report also is intended to be a resource for users of laboratory services to aid in their use of molecular genetic tests and test results in health assessment and care. (cdc.gov)
  • Genetic testing encompasses a broad range of laboratory tests performed to analyze DNA, RNA, chromosomes, proteins, and certain metabolites using biochemical, cytogenetic, or molecular methods or a combination of these methods. (cdc.gov)
  • Since that time, advances in scientific research and technology have led to a substantial increase both in the health conditions for which genetic defects or variations can be detected with molecular methods and in the spectrum of the molecular testing methods ( 1 ). (cdc.gov)
  • As the number of molecular genetic tests performed for patient testing has steadily increased, so has the number of laboratories that perform molecular genetic testing for heritable diseases and conditions ( 2,3 ). (cdc.gov)
  • With increasing use in clinical and public health practices, molecular genetic testing affects persons and their families in every life stage by contributing to disease diagnosis, prediction of future disease risk, optimization of treatment, prevention of adverse drug response, and health assessment and management. (cdc.gov)
  • Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. (ornl.gov)
  • Common animal organisms, called model organisms, where test crosses are often used include Caenorhabditis elegans and Drosophila melanogaster. (wikipedia.org)
  • Basic procedures for performing test crosses in these organisms are provided below: To perform a test cross with C. elegans, place worms with a known recessive genotype with worms of an unknown genotype on an agar plate. (wikipedia.org)
  • The situation is this: the existing technologies for genetic engineering organisms are crude, unreliable, uncontrollable and unpredictable, and they are inherently hazardous. (i-sis.org.uk)
  • The public are told that genetic engineering organisms is no different from conventional breeding, only more precise, faster and safer. (i-sis.org.uk)
  • The construction of this population provided a unique opportunity to observe phenotypic variation as new allelic combinations arose through intercrossing and inbreeding to create new stable genetic combinations. (ornl.gov)
  • Phenotypic variation in the CC breeding population exceeds that of existing mouse genetic reference populations due to both high founder genetic diversity and novel epistatic combinations. (ornl.gov)
  • Discovering the genetic causes of natural phenotypic variation in P. falciparum requires a combination of epidemiological and laboratory-based approaches. (malariagen.net)
  • There's also genetic variation within dengue virus types, with some variants showing higher levels of virulence. (cdc.gov)
  • Bivariate mixed models analyses using ASReml procedures were used to estimate the genetic correlations. (edu.au)
  • Quantitative trait loci analyses (log of the odds=15) indicated association of the genetic factor within a few centiMorgan of the best evidence for Ahl [Johnson et al. (cdc.gov)
  • Heterosis, direct additive genetic and general reciprocal effects were estimated from a complete diallel cross involving four strains of red tilapia Oreochromis spp from Malaysia, Stirling, Taiwan and Thailand. (worldfishcenter.org)
  • Ranking of strains based on estimates of reciprocal effects was generally similar to that of additive genetic effects. (worldfishcenter.org)
  • This study determined the seed generation effect on the quality of genetic information obtained from a maize diallel cross. (iita.org)
  • The Collaborative Cross (CC) is a mouse reference population with high allelic diversity that is being constructed using a randomized breeding design that systematically outcrosses eight founder strains, followed by inbreeding to obtain new recombinant inbred strains. (ornl.gov)
  • The strains that have been crossed are 3D7 with HB3 ( Walliker et al , 1987 ), HB3 with Dd2 ( Wellems et al , 1990 ) and 7G8 with GB4 ( Hayton et al , 2008 ). (malariagen.net)
  • Asian B3-4 and C4 strains were efficiently cross-neutralized, predicting possible protection against extensive circulation and associated outbreaks of those types in Europe. (cdc.gov)
  • Most EV-71 strains circulating in Europe belong to genotypes C1 and C2, and presence of herd immunity conferred by cross-protective antibodies induced by these types could explain the limited spread of new genotypes. (cdc.gov)
  • To gain more insight into the potential threat of Asian EV-71 outbreak strains for the European population and the potential treatment efficacy of IVIg, we determined the cross-neutralizing capacity of IVIg batches composed of plasma from the general population of the Netherlands during 2005-2014 against EV-71 subtypes circulating in Europe or Asia and compared results to IVIg batches from Japanese and Vietnamese donors. (cdc.gov)
  • The present study was based on a conventional cross between two inbred strains, CBxB6.F(1) backcrossed to B6 with segregation for the putative +/Ahl:Ahl/Ahl. (cdc.gov)
  • From the explanation of test results to providing an initial emotional and psychosocial assessment, the genetic counselor will be there with you to navigate the complexity of genetic disorders. (mayoclinichealthsystem.org)
  • Five years ago doctors could test for about 20 genetic disorders, and now they can test for about 100. (kdvr.com)
  • A 1975 report by the National Academy of Sciences presented 92 genetic disorders which were thought to predispose individuals to pollutant toxicity. (cdc.gov)
  • Introduction: Several factors are cited as capable to influence the development of Temporomandibular Disorders (TMD), among them, the psychological, systemic, genetic, and occlusal factors. (bvsalud.org)
  • From 1908-1911, Thomas Hunt Morgan conducted test crosses while determining the inheritance pattern of a white eye-colour mutation in Drosophila. (wikipedia.org)
  • Explore the signs and symptoms, genetic cause, and inheritance pattern of various health conditions. (medlineplus.gov)
  • The parents and progeny of these genetic crosses represent a hugely valuable resource for the malaria research community to investigate a range of different phenotypes. (malariagen.net)
  • Variable expressivity is when a single allele produces a range of phenotypes, which is also not accounted for in a test cross. (wikipedia.org)
  • Through cross-kingdom genetic and metagenomic forensics, we can already predict at least a dozen human phenotypes with varying degrees of accuracy. (lu.se)
  • Backwards elimination was used to determine phenotypic and genetic variance explained by SNPs. (springer.com)
  • This SNP explained 3% of the phenotypic variance, and 36% of the total genetic variance. (springer.com)
  • These SNPs explained 1 to 6% of the phenotypic variance and 9 to 44% of the total genetic variance. (springer.com)
  • When Mendel crossed plants that were heterozygous. (lifeeasy.org)
  • By performing a test cross, one can determine whether the individual is heterozygous or homozygous dominant. (wikipedia.org)
  • Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. (cdc.gov)
  • Genetic engineering is a set of techniques which enables genes to be transferred in the laboratory between any and every species. (i-sis.org.uk)
  • These genes are joined together in combinations that have never existed in nature, and are then introduced into host species using invasive gene-carriers made of bits of the most infectious viruses and other genetic parasites that have the ability to jump into the genome of the host. (i-sis.org.uk)
  • Unfortunately, the genetic engineer has no control whatever as to where in the genome the foreign genes end up. (i-sis.org.uk)
  • More dangerous still, the foreign genes and gene-constructs may spread out of control not only to related species by cross-pollination, but also to unrelated species, by the genetic material itself being taken up. (i-sis.org.uk)
  • The biotechnologists failed to take proper account of the plethora of scientific findings within the past 20 years revealing an immense amount of cross-talk between genes. (i-sis.org.uk)
  • Despite these inescapable pressures, high diversity and precision for genetic mapping remain. (ornl.gov)
  • Multiple studies have reported cross-neutralization, but antigenic diversity among different EV-71 genotypes has also been observed ( 11 - 17 ). (cdc.gov)
  • Scientists have long known that the reference they compare to individual genomes has serious limits because it mostly relies on genetic material from one man and doesn't reflect the spectrum of human diversity. (news10.com)
  • We investigated the genetic diversity and dynamics of this gammacoronavirus using untargeted metagenomic sequencing of 223 faecal samples from swans of known age and sex, and RT-PCR screening of 1632 additional bird samples. (ox.ac.uk)
  • Haemoglobinopathies are the most prevalent genetic defect worldwide, with an estimated 269 million carriers [1]. (who.int)
  • While the overwhelming majority of STS cases are sporadic, rare cases involve a genetic predisposition. (medscape.com)
  • The National Comprehensive Cancer Network (NCCN) Soft Tissue Sarcoma Panel specifically identifies Li-Fraumeni syndrome and familial adenomatous polyposis (FAP) as genetic cancer syndromes with a predisposition for the development of STS, along with Carney-Stratakis syndrome, which is associated with gastrointestinal stromal tumors (GISTs) and paragangliomas. (medscape.com)
  • Unlike such genetic changes, epigenetic changes, which do not alter genome sequence, can result in three possible outcomes: passive dilution, active repair through negative feedback, or active maintenance through positive feedback. (nature.com)
  • Our study highlights how including proportionally more participants from underrepresented populations improves genetic prediction of PSA levels, with potential to personalize prostate cancer screening. (lu.se)
  • The majority of grants proposed cross-sectional study designs, with clinical settings in primarily white, non-Hispanic study populations. (cdc.gov)
  • One such preclinical safety study is the assessment of tissue cross-reactivity (TCR). (genengnews.com)
  • Preimplantation genetic testing is an umbrella term that refers to the assessment of embryos prior to implantation or pregnancy. (medscape.com)
  • Simultaneous assessment of genetic and occupational risk factors. (cdc.gov)
  • In most of the studies reviewed, the methodologies for the assessment of the interaction of genetic and occupational risk factors were of limited effectiveness. (cdc.gov)
  • The author suggests that more powerful techniques need to be utilized for the simultaneous assessment of genetic and occupational risk. (cdc.gov)
  • Most grants were in cancer genetic testing for risk assessment. (cdc.gov)
  • Considering this shortcoming, this paper proposed a hybrid of cross entropy with genetic algorithm (GA), called CEGA, on m-machines NWJSS. (scirp.org)
  • The results are compared with other metaheuritics: Genetic Algorithm-Simulated Annealing (GASA) and hybrid tabu search. (scirp.org)
  • B. Santosa, M. Budiman and S. Wiratno, "A Cross Entropy-Genetic Algorithm for m-Machines No-Wait Job-ShopScheduling Problem," Journal of Intelligent Learning Systems and Applications , Vol. 3 No. 3, 2011, pp. 171-180. (scirp.org)
  • P. J. Chao-Hsien and H. Han-Chiang, "A Hybrid Genetic Algorithm for No-Wait Job Shop Scheduling Problems," Expert Systems with Application, Vol. 36, No. 2, Part 2, 2009, pp. 5800-5806. (scirp.org)
  • As the result, it is confirmed that the genetic algorithm can provide the optimal copper content value on each conductor layer with a practical computation time. (ibm.com)
  • One method we began in 2018 is cross-check auditing of CCOF-certified operations. (ccof.org)
  • In 2018 we conducted a cross-check pilot program focused on industries with increased risk of fraud. (ccof.org)
  • Genetic testing and genome mapping are modern advances which allow for more efficient and detailed information about one's genotype to be determined. (wikipedia.org)
  • For example, he crossed plants that bred true for round, yellow peas ( RRYY genotype) with those that bred true for wrinkled, green peas ( rryy genotype). (jove.com)
  • Five methodologies have been described for delineating environmental and genetic influences on disease distribution, including twin studies, adoption studies, path analysis, analysis of cultural transmission of risk factors for disease, and studies of specific genotype and disease associations. (cdc.gov)
  • Let's say we have a quite easy cross: on the second chromosome we have a mutant gene, that we want to have homozygous, and on the third we want to have a gal4 driver and a uas:GFP reporter. (biologists.com)
  • In a test cross, the individual in question is bred with another individual that is homozygous for the recessive trait and the offspring of the test cross are examined. (wikipedia.org)
  • Mice homozygous for a targeted null mutation are viable and fertile but exhibit increased sensitivity to the DNA interstrand cross-linking agent mitomycin C. (jax.org)
  • Preimplantation genetic testing (PGT) is a technique used to identify chromosomal genetic abnormalities in embryos created through in vitro fertilization (IVF) before pregnancy. (medscape.com)
  • The use of preimplantation genetic testing for aneuploidy (PGT-A), formerly known as preimplantation genetic screening or PGS, has increased in recent years, now encompassing an estimated 40% of in vitro fertilization (IVF) cycles in the United States. (medscape.com)
  • Part of the joke is knowing you can't because there are biological barriers between species which only allow one to cross closely related species such as horse and donkey, for example. (i-sis.org.uk)
  • Because they have been designed to cross species barriers, they are more likely to do so again. (i-sis.org.uk)
  • Cross-pollination with native species, producing viable offspring. (nps.gov)
  • Non-invasive sampling of bird coronaviruses may provide a tractable model system for understanding the evolutionary and cross-species dynamics of coronaviruses. (ox.ac.uk)
  • Only healthy and normal embryos are transferred into the mother's uterus, thus diminishing invasive prenatal diagnoses, late pregnancy termination, or the birth of a child with a serious genetic disease. (medscape.com)
  • I have written a detailed report together with a number of colleagues questioning the links between commercial genetic engineering and the resurgence of infectious diseases, and demanding an urgent enquiry. (i-sis.org.uk)
  • To perform a test cross with D. melanogaster, select a trait with a known dominant and recessive phenotype. (wikipedia.org)
  • This is one of the first large studies investigating the genetic architecture of a socially-affected trait. (springer.com)
  • After the genetic sequencing, the data will go into a repository at the Diaspora Human Genomics Institute, and the database will be provided exclusively to HBCUs and the institutions involved in Africa. (news10.com)
  • The F2 full-sib generation exhibited superiority in providing genetic information required for parental line selection when breeding for weevil resistance, compared to F1 hybrid and F2 half-sib grain. (iita.org)
  • The mating involved 16 parental female and male breeders per strain, producing 64 full sib families in total, with four full-sib families per cross. (worldfishcenter.org)
  • This study provides estimates of genetic correlations from crossbred ewes that add to the limited knowledge of these parameters that will improve the accuracy of genetic evaluation and prediction of the outcomes from breeding programs for meat and wool objectives that include reproduction. (edu.au)
  • The genome is just the totality of all the genetic material organised into structures called chromosomes. (i-sis.org.uk)
  • This cross-sectional study aimed to analyse the impacts of long COVID on general health and psychosocial well-being. (medrxiv.org)
  • Narrow sense estimates of heritability over reciprocal crosses and environments ranged from 0.54 for yield to 0.89 for fruit length. (peanutscience.com)
  • Infection with the dengue virus leads to lifelong type-specific immunity against the infecting dengue virus and short-term cross-protective immunity to the other dengue viruses, usually for about one to three years. (cdc.gov)
  • Rediscovery of Mendel's work in the early 1900s led to an explosion of experiments employing the principles of test crosses. (wikipedia.org)
  • A fourth cross between clones 803 and GB4 was recently performed to study the genetic basis for artemisinin resistance. (malariagen.net)
  • Genetic testing can also be performed during pregnancy to screen for common conditions that occur randomly and are not passed on in families such as down syndrome. (mayoclinichealthsystem.org)
  • Her first child, Ellie, was born with a rare genetic disorder called Wolfram Syndrome. (kdvr.com)
  • Eight weevilresistant and two susceptible maize inbred lines from eastern and southern Africa were crossed in a 10-parent diallel scheme. (iita.org)
  • The hope is to build a new "reference genome" - a template to compare to full sets of DNA from individuals - and better understand genetic variants that affect Black people. (news10.com)
  • At present, host genetic data from somatic or germ cells provide more reliable information than microbiome samples. (lu.se)
  • This commentary underscores the need to update legal and policy frameworks for genetic privacy with additional considerations for the information that could be acquired from microbiome-derived data. (lu.se)
  • Survival data of three layer crosses (W1 * WA, W1 * WB, and W1 * WC) were used. (springer.com)
  • To assess the impact of macro-level influences, we compare genetic influences on educational achievement and their social stratification across Germany, Norway, Sweden, and the United States. (princeton.edu)
  • First, Germany stands out with comparatively weak genetic influences on educational achievement suggesting that early tracking limits the realization thereof. (princeton.edu)
  • Second, in the United States genetic influences are comparatively strong and similar in size compared to the Nordic countries. (princeton.edu)
  • Third, in Sweden genetic influences are stronger among disadvantaged families supporting the expectation that challenging and uncertain circumstances promote genetic expression. (princeton.edu)
  • People of African ancestry are poorly represented in genetic studies. (news10.com)
  • A few studies have investigated the genetic architecture of IGE. (springer.com)
  • A review was made of examples of studies involving both genetic and occupational health risk factors. (cdc.gov)
  • Among a sample of participants of all ages collected during the year 2010, the antibody testing of stored sera specimens from NHANES 2009-2010 was conducted to determine population levels of pre-pandemic cross reactive antibody to the 2009 pandemic influenza A/H1N1 virus and related influenza viruses prior to the spread of the novel 2009 H1N1 virus. (cdc.gov)
  • Genetic analysis in the Collaborative Cross breeding population. (ornl.gov)
  • Introduction to Genetic Analysis. (wikipedia.org)
  • Genetic analysis of samples from various Cross River Gorilla sites found their situation to be more hopeful than was previously thought. (crossrivergorilla.org)
  • Rapid genetic analysis of x-linked chronic granulomatous disease by high-resolution melting. (lu.se)
  • DENVER - Families who want to have a baby, but are fearful of passing on a genetic disorder, now have more options. (kdvr.com)
  • There is potential to identify and track individuals, along with new, surreptitious means of genetic discrimination. (lu.se)
  • Knowing your genetic risk can help determine risk for your future children to have the same condition. (mayoclinichealthsystem.org)
  • Many individuals utilize prenatal genetic testing to determine risk for these genetic conditions and prepare medically and emotionally to have a child with a genetic condition. (mayoclinichealthsystem.org)
  • Talk to your prenatal care provider to determine if meeting with a genetic counselor is right for you. (mayoclinichealthsystem.org)
  • A SNP associated with DGE was found in cross W1 * WA, with an allele substitution effect of 22 days. (springer.com)
  • PGT is presently the only option available for avoiding a high risk of having a child affected with a genetic disease prior to implantation. (medscape.com)
  • Preimplantation genetic testing (PGT) is recommended when couples risk transmitting a known genetic abnormality to their children. (medscape.com)
  • Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. (cdc.gov)