Large endothelium-lined venous channels situated between the two layers of DURA MATER, the endosteal and the meningeal layers. They are devoid of valves and are parts of the venous system of dura mater. Major cranial sinuses include a postero-superior group (such as superior sagittal, inferior sagittal, straight, transverse, and occipital) and an antero-inferior group (such as cavernous, petrosal, and basilar plexus).
The air space located in the body of the MAXILLARY BONE near each cheek. Each maxillary sinus communicates with the middle passage (meatus) of the NASAL CAVITY on the same side.
Air-filled spaces located within the bones around the NASAL CAVITY. They are extensions of the nasal cavity and lined by the ciliated NASAL MUCOSA. Each sinus is named for the cranial bone in which it is located, such as the ETHMOID SINUS; the FRONTAL SINUS; the MAXILLARY SINUS; and the SPHENOID SINUS.
An irregularly shaped venous space in the dura mater at either side of the sphenoid bone.
The dilatation of the aortic wall behind each of the cusps of the aortic valve.
The dilated portion of the common carotid artery at its bifurcation into external and internal carotids. It contains baroreceptors which, when stimulated, cause slowing of the heart, vasodilatation, and a fall in blood pressure.
One of the paired, but seldom symmetrical, air spaces located between the inner and outer compact layers of the FRONTAL BONE in the forehead.
Diseases affecting or involving the PARANASAL SINUSES and generally manifesting as inflammation, abscesses, cysts, or tumors.
One of the paired air spaces located in the body of the SPHENOID BONE behind the ETHMOID BONE in the middle of the skull. Sphenoid sinus communicates with the posterosuperior part of NASAL CAVITY on the same side.
A short vein that collects about two thirds of the venous blood from the MYOCARDIUM and drains into the RIGHT ATRIUM. Coronary sinus, normally located between the LEFT ATRIUM and LEFT VENTRICLE on the posterior surface of the heart, can serve as an anatomical reference for cardiac procedures.
Formation or presence of a blood clot (THROMBUS) in the CRANIAL SINUSES, large endothelium-lined venous channels situated within the SKULL. Intracranial sinuses, also called cranial venous sinuses, include the superior sagittal, cavernous, lateral, petrous sinuses, and many others. Cranial sinus thrombosis can lead to severe HEADACHE; SEIZURE; and other neurological defects.
A condition caused by dysfunctions related to the SINOATRIAL NODE including impulse generation (CARDIAC SINUS ARREST) and impulse conduction (SINOATRIAL EXIT BLOCK). It is characterized by persistent BRADYCARDIA, chronic ATRIAL FIBRILLATION, and failure to resume sinus rhythm following CARDIOVERSION. This syndrome can be congenital or acquired, particularly after surgical correction for heart defects.
The numerous (6-12) small thin-walled spaces or air cells in the ETHMOID BONE located between the eyes. These air cells form an ethmoidal labyrinth.
Tumors or cancer of the PARANASAL SINUSES.
Simple rapid heartbeats caused by rapid discharge of impulses from the SINOATRIAL NODE, usually between 100 and 180 beats/min in adults. It is characterized by a gradual onset and termination. Sinus tachycardia is common in infants, young children, and adults during strenuous physical activities.
Tumors or cancer of the MAXILLARY SINUS. They represent the majority of paranasal neoplasms.
A hair-containing cyst or sinus, occurring chiefly in the coccygeal region.
The two large endothelium-lined venous channels that begin at the internal occipital protuberance at the back and lower part of the CRANIUM and travels laterally and forward ending in the internal jugular vein (JUGULAR VEINS). One of the transverse sinuses, usually the right one, is the continuation of the SUPERIOR SAGITTAL SINUS. The other transverse sinus is the continuation of the straight sinus.
The long large endothelium-lined venous channel on the top outer surface of the brain. It receives blood from a vein in the nasal cavity, runs backwards, and gradually increases in size as blood drains from veins of the brain and the DURA MATER. Near the lower back of the CRANIUM, the superior sagittal sinus deviates to one side (usually the right) and continues on as one of the TRANSVERSE SINUSES.
The small mass of modified cardiac muscle fibers located at the junction of the superior vena cava (VENA CAVA, SUPERIOR) and right atrium. Contraction impulses probably start in this node, spread over the atrium (HEART ATRIUM) and are then transmitted by the atrioventricular bundle (BUNDLE OF HIS) to the ventricle (HEART VENTRICLE).

Multiple dural arteriovenous shunts in a 5-year-old boy. (1/170)

We describe a rare case of multiple dural arteriovenous shunts (DAVSs) in a 5-year-old boy. MR imaging performed at 1 year of age showed only a dilated anterior part of the superior sagittal sinus; however, angiography at 5 years of age revealed an infantile-type DAVS there and two other DAVSs of the adult type. The pathophysiological evolution of DAVSs in children and their treatment strategies are discussed.  (+info)

Variant arteriovenous fistula of the superior sagittal sinus--case report. (2/170)

A 57-year-old male presented with a rare variant of dural arteriovenous fistula, located in the wall of an unobstructed superior sagittal sinus. Drainage occurred through a cortical vein no longer connected to its parent sinus, which filled up a cluster of transmedullary running veins, one of which was the presumed site of hemorrhage. Arterial blood was supplied via the external carotid artery branches. This type of fistula seriously increases the risk of hemorrhage in the patient and therefore requires complete obliteration. Attempts to embolize the fistula failed. The draining vein was isolated and coagulated resulting in permanent occlusion of the fistula. The fistula probably developed through a process of thrombophlebitis and revascularization via arterioles of the vein rather than previous occlusion of the sinus.  (+info)

Cavernous sinus and inferior petrosal sinus flow signal on three-dimensional time-of-flight MR angiography. (3/170)

BACKGROUND AND PURPOSE: Venous flow signal in the cavernous sinus and inferior petrosal sinus has been shown on MR angiograms in patients with carotid cavernous fistula (CCF). We, however, identified flow signal in some patients without symptoms and signs of CCF. This review was performed to determine the frequency of such normal venous flow depiction at MR angiography. METHODS: Twenty-five 3D time-of-flight (TOF) MR angiograms obtained on two different imaging units (scanners A and B) were reviewed with attention to presence of venous flow signal in the cavernous sinus or inferior petrosal sinus or both. Twenty-five additional MR angiograms were reviewed in patients who had also had cerebral arteriography to document absence of CCF where venous MR angiographic signal was detected, as well as to gain insight into venous flow patterns that might contribute to MR angiographic venous flow signal. Differences in scanning technique parameters were reviewed. RESULTS: Nine (36%) of the 25 MR angiograms obtained on scanner A but only one (4%) of the 25 obtained on scanner B showed flow signal in the cavernous or inferior petrosal sinus or both in the absence of signs of CCF. On review of 25 patients who had both MR angiography and arteriography, three patients with venous signal at MR angiography failed to exhibit CCF at arteriography. CONCLUSION: Identification of normal cavernous sinus or inferior petrosal sinus venous signal on 3D TOF MR angiograms may occur frequently, and is probably dependent on technical factors that vary among scanners. The exact factors most responsible, however, were not elucidated by this preliminary review.  (+info)

Regions of interest in the venous sinuses as input functions for quantitative PET. (4/170)

As clinical PET becomes increasingly available, quantitative methods that are feasible in busy clinical settings are becoming necessary. We investigated the use of intracranial blood pools as sources of an input function for quantitative PET. METHODS: We studied 25 patients after the intravenous injection of [18F]6-fluoro-L-m-tyrosine and compared sampled blood time-activity curves with those obtained in small regions of interest (ROIs) defined in the blood pools visible in the PET images. Because of the comparatively large dimensions of the blood pool at the confluence of the superior sagittal, straight and transverse sinuses, a venous ROI input function was chosen for further analysis. We applied simple corrections to the ROI-derived time-activity curves, deriving expressions for partial volume, spillover and partition of tracer between plasma and red blood cells. The results of graphic and compartmental analysis using both sampled [Cs(t)] and ROI [Cr(t)] venous input functions for each patient were compared. We also used an analytic approach to examine possible differences between venous and arterial input functions in the cerebral circulation. RESULTS: Cr(t) peaked significantly earlier and higher than Cs(t) in this patient population, although the total integral under the curves did not differ significantly. We report some apparent differences in the results of modeling using the two input functions; however, neither the graphically determined influx constant, Ki, nor the model parameter that reflects presynaptic dopaminergic metabolism, k3, differed significantly between the two methods. The analytic results suggest that the venous ROI input function may be closer to the arterial supply of radiotracer to the brain than arterialized venous blood, at least in some patient populations. CONCLUSION: We present a simple method of obtaining an input function for PET that is applicable to a wide range of tracers and quantitative methods and is feasible for diagnostic PET imaging.  (+info)

Skull metastasis of Ewing's sarcoma--three case reports. (5/170)

Three cases of skull metastasis of Ewing's sarcoma were treated. The metastatic lesion was located at the midline of the skull above the superior sagittal sinus in all cases. Surgery was performed in two patients with solitary skull lesions involving short segments of the superior sagittal sinus without remarkable systemic metastasis, resulting in good outcome. The third patient had extensive, multiple tumors involving the superior sagittal sinus which could not be excised, and died due to intracranial hypertension. The surgical indication for skull metastasis of Ewing's sarcoma depends on the location and length of the involved superior sagittal sinus, and general condition.  (+info)

Absent vestibulo-ocular reflexes and acute supratentorial lesions. (6/170)

Loss of vestibulo-ocular reflexes occurred in two patients with acute supratentorial lesions who received therapeutic doses of anticonvulsant drugs. There was no clinical or angiographic evidence of focal brain-stem damage. Absence of vestibulo-ocular reflexes is attributed to a combination of acute cerebral damage and anticonvulsant drugs. The loss of these reflexes in patients with acute cerebral lesions cannot be interpreted as evidence of irreversible brain-stem injury.  (+info)

Scalp vein detected using internal carotid angiography that did not result in venous sinus compromise. (7/170)

We present an unusual case of a scalp vein detected by using angiography of the internal carotid artery. The vein arose from the superior sagittal sinus and drained into the deep posterior cervical vein via the parietal emissary vein. This scalp vein may be a collateral pathway for venous sinuses; however, the patient had no evidence of venous sinus occlusive disease or intracranial hypertension.  (+info)

Sigmoid sinus thrombosis after mild closed head injury in an infant: diagnosis by magnetic resonance imaging in the acute phase--case report. (8/170)

Intracranial sinus thrombosis following a mild closed head injury without a skull fracture or intracranial hematoma is extremely rare. A 23-month-old girl presented with vomiting and gait ataxia 1 day after occipital trauma. Computed tomography revealed a slightly increased density area in the region of the left sigmoid sinus. T1-weighted magnetic resonance (MR) imaging demonstrated an isointense area in the left sigmoid sinus and T2-weighted imaging showed a hyperintense area reflecting the characteristics of oxyhemoglobin. MR angiography and cerebral angiography indicated occlusion of the left sigmoid sinus. After 4 days of conservative treatment, her symptoms subsided completely. Follow-up MR angiography and cerebral angiography showed recanalization of the sigmoid sinus. The MR images and MR angiograms were useful for both early diagnosis and follow-up. Treatment should reflect the severity of individual cases, and early diagnosis will help achieve a good outcome.  (+info)

Cranial sinuses are a part of the venous system in the human head. They are air-filled spaces located within the skull and are named according to their location. The cranial sinuses include:

1. Superior sagittal sinus: It runs along the top of the brain, inside the skull, and drains blood from the scalp and the veins of the brain.
2. Inferior sagittal sinus: It runs along the bottom of the brain and drains into the straight sinus.
3. Straight sinus: It is located at the back of the brain and receives blood from the inferior sagittal sinus and great cerebral vein.
4. Occipital sinuses: They are located at the back of the head and drain blood from the scalp and skull.
5. Cavernous sinuses: They are located on each side of the brain, near the temple, and receive blood from the eye and surrounding areas.
6. Sphenoparietal sinus: It is a small sinus that drains blood from the front part of the brain into the cavernous sinus.
7. Petrosquamosal sinuses: They are located near the ear and drain blood from the scalp and skull.

The cranial sinuses play an essential role in draining blood from the brain and protecting it from injury.

The maxillary sinuses, also known as the antrums of Highmore, are the largest of the four pairs of paranasal sinuses located in the maxilla bones. They are air-filled cavities that surround the nasolacrimal duct and are situated superior to the upper teeth and lateral to the nasal cavity. Each maxillary sinus is lined with a mucous membrane, which helps to warm, humidify, and filter the air we breathe. Inflammation or infection of the maxillary sinuses can result in conditions such as sinusitis, leading to symptoms like facial pain, headaches, and nasal congestion.

Paranasal sinuses are air-filled cavities in the skull that surround the nasal cavity. There are four pairs of paranasal sinuses, including the maxillary, frontal, ethmoid, and sphenoid sinuses. These sinuses help to warm, humidify, and filter the air we breathe. They also contribute to our voice resonance and provide a slight cushioning effect for the skull. The openings of the paranasal sinuses lead directly into the nasal cavity, allowing mucus produced in the sinuses to drain into the nose. Infections or inflammation of the paranasal sinuses can result in conditions such as sinusitis.

The cavernous sinus is a venous structure located in the middle cranial fossa, which is a depression in the skull that houses several important nerves and blood vessels. The cavernous sinus is situated on either side of the sphenoid bone, near the base of the skull, and it contains several important structures:

* The internal carotid artery, which supplies oxygenated blood to the brain
* The abducens nerve (cranial nerve VI), which controls lateral movement of the eye
* The oculomotor nerve (cranial nerve III), which controls most of the muscles that move the eye
* The trochlear nerve (cranial nerve IV), which controls one of the muscles that moves the eye
* The ophthalmic and maxillary divisions of the trigeminal nerve (cranial nerve V), which transmit sensory information from the face and head

The cavernous sinus is an important structure because it serves as a conduit for several critical nerves and blood vessels. However, it is also vulnerable to various pathological conditions such as thrombosis (blood clots), infection, tumors, or aneurysms, which can lead to serious neurological deficits or even death.

The Sinus of Valsalva are three pouch-like dilations or outpouchings located at the upper part (root) of the aorta, just above the aortic valve. They are named after Antonio Maria Valsalva, an Italian anatomist and physician. These sinuses are divided into three parts:

1. Right Sinus of Valsalva: It is located to the right of the ascending aorta and usually gives rise to the right coronary artery.
2. Left Sinus of Valsalva: It is situated to the left of the ascending aorta and typically gives rise to the left coronary artery.
3. Non-coronary Sinus of Valsalva: This sinus is located in between the right and left coronary sinuses, and it does not give rise to any coronary arteries.

These sinuses play a crucial role during the cardiac cycle, particularly during ventricular contraction (systole). The pressure difference between the aorta and the ventricles causes the aortic valve cusps to be pushed into these sinuses, preventing the backflow of blood from the aorta into the ventricles.

Anatomical variations in the size and shape of the Sinuses of Valsalva can occur, and certain conditions like congenital heart diseases (e.g., aortic valve stenosis or bicuspid aortic valve) may affect their structure and function. Additionally, aneurysms or ruptures of the sinuses can lead to severe complications, such as cardiac tamponade, endocarditis, or stroke.

The carotid sinus is a small, dilated area located at the bifurcation (or fork) of the common carotid artery into the internal and external carotid arteries. It is a baroreceptor region, which means it contains specialized sensory nerve endings that can detect changes in blood pressure. When the blood pressure increases, the walls of the carotid sinus stretch, activating these nerve endings and sending signals to the brain. The brain then responds by reducing the heart rate and relaxing the blood vessels, which helps to lower the blood pressure back to normal.

The carotid sinus is an important part of the body's autonomic nervous system, which regulates various involuntary functions such as heart rate, blood pressure, and digestion. It plays a crucial role in maintaining cardiovascular homeostasis and preventing excessive increases in blood pressure that could potentially damage vital organs.

A frontal sinus is a paired, air-filled paranasal sinus located in the frontal bone of the skull, above the eyes and behind the forehead. It is one of the four pairs of sinuses found in the human head. The frontal sinuses are lined with mucous membrane and are interconnected with the nasal cavity through small openings called ostia. They help to warm, humidify, and filter the air we breathe, and contribute to the resonance of our voice. Variations in size, shape, and asymmetry of frontal sinuses are common among individuals.

Paranasal sinus diseases refer to a group of medical conditions that affect the paranasal sinuses, which are air-filled cavities located within the skull near the nasal cavity. These sinuses include the maxillary, frontal, ethmoid, and sphenoid sinuses.

Paranasal sinus diseases can be caused by a variety of factors, including viral, bacterial, or fungal infections, allergies, structural abnormalities, or autoimmune disorders. Some common paranasal sinus diseases include:

1. Sinusitis: Inflammation or infection of the sinuses, which can cause symptoms such as nasal congestion, thick nasal discharge, facial pain or pressure, and reduced sense of smell.
2. Nasal polyps: Soft, benign growths that develop in the lining of the nasal passages or sinuses, which can obstruct airflow and cause difficulty breathing through the nose.
3. Sinonasal tumors: Abnormal growths that can be benign or malignant, which can cause symptoms such as nasal congestion, facial pain, and bleeding from the nose.
4. Sinus cysts: Fluid-filled sacs that form in the sinuses, which can cause symptoms similar to those of sinusitis.
5. Fungal sinusitis: Infection of the sinuses with fungi, which can cause symptoms such as nasal congestion, facial pain, and thick, discolored mucus.

Treatment for paranasal sinus diseases depends on the underlying cause and severity of the condition. Treatment options may include medications, such as antibiotics, antihistamines, or corticosteroids, as well as surgical intervention in more severe cases.

The sphenoid sinuses are air-filled spaces located within the sphenoid bone, which is one of the bones that make up the skull base. These sinuses are located deep inside the skull, behind the eyes and nasal cavity. They are paired and separated by a thin bony septum, and each one opens into the corresponding nasal cavity through a small opening called the sphenoethmoidal recess. The sphenoid sinuses vary greatly in size and shape between individuals. They develop during childhood and continue to grow until early adulthood. The function of the sphenoid sinuses, like other paranasal sinuses, is not entirely clear, but they may contribute to reducing the weight of the skull, resonating voice during speech, and insulating the brain from trauma.

The coronary sinus is a large vein that receives blood from the heart's muscle tissue. It is located on the posterior side of the heart and is a part of the cardiovascular system. The coronary sinus collects oxygen-depleted blood from the myocardium (the heart muscle) and drains it into the right atrium, where it will then be pumped to the lungs for oxygenation.

The coronary sinus is an essential structure in medical procedures such as cardiac catheterization and electrophysiological studies. It is also a common site for the implantation of pacemakers and other cardiac devices.

Intracranial sinus thrombosis is a medical condition characterized by the formation of a blood clot (thrombus) within the intracranial venous sinuses, which are responsible for draining blood from the brain. The condition can lead to various neurological symptoms and complications, such as increased intracranial pressure, headaches, seizures, visual disturbances, and altered consciousness. Intracranial sinus thrombosis may result from various factors, including hypercoagulable states, infections, trauma, and malignancies. Immediate medical attention is necessary for proper diagnosis and treatment to prevent potential long-term neurological damage or even death.

Sick Sinus Syndrome (SSS) is a term used to describe a group of abnormal heart rhythm disturbances that originates in the sinoatrial node (the natural pacemaker of the heart). This syndrome is characterized by impaired functioning of the sinoatrial node, resulting in various abnormalities such as sinus bradycardia (abnormally slow heart rate), sinus arrest (complete cessation of sinus node activity), and/or sinoatrial exit block (failure of the electrical impulse to leave the sinus node and spread to the atria).

People with SSS may experience symptoms such as palpitations, dizziness, fatigue, shortness of breath, or syncope (fainting) due to inadequate blood supply to the brain caused by slow heart rate. The diagnosis of SSS is typically made based on the patient's symptoms and the results of an electrocardiogram (ECG), Holter monitoring, or event recorder that shows evidence of abnormal sinus node function. Treatment options for SSS may include lifestyle modifications, medications, or implantation of a pacemaker to regulate the heart rate.

The ethmoid sinuses are a pair of air-filled spaces located in the ethmoid bone, which is a part of the skull that forms the upper portion of the nasal cavity and the inner eye socket. These sinuses are divided into anterior and posterior groups and are present in adults, but not at birth. They continue to grow and develop until early adulthood.

The ethmoid sinuses are lined with mucous membrane, which helps to warm, humidify, and filter the air we breathe. They are surrounded by a network of blood vessels and nerves, making them susceptible to inflammation and infection. Inflammation of the ethmoid sinuses can lead to conditions such as sinusitis, which can cause symptoms such as nasal congestion, headache, and facial pain.

Paranasal sinus neoplasms refer to abnormal growths or tumors that develop within the paranasal sinuses, which are air-filled cavities located inside the skull near the nasal cavity. These tumors can be benign (noncancerous) or malignant (cancerous), and they can arise from various types of tissue within the sinuses, such as the lining of the sinuses (mucosa), bone, or other soft tissues.

Paranasal sinus neoplasms can cause a variety of symptoms, including nasal congestion, nosebleeds, facial pain or numbness, and visual disturbances. The diagnosis of these tumors typically involves a combination of imaging studies (such as CT or MRI scans) and biopsy to determine the type and extent of the tumor. Treatment options may include surgery, radiation therapy, chemotherapy, or a combination of these approaches, depending on the specific type and stage of the neoplasm.

Sinus tachycardia is a type of rapid heart rate, characterized by an abnormally fast sinus rhythm, with a rate greater than 100 beats per minute in adults. The sinoatrial node (SA node), which is the natural pacemaker of the heart, generates these impulses regularly and at an increased rate.

Sinus tachycardia is usually a physiological response to various stimuli or conditions, such as physical exertion, strong emotions, fever, anxiety, pain, or certain medications. It can also be caused by hormonal imbalances, anemia, hyperthyroidism, or other medical disorders.

In most cases, sinus tachycardia is not harmful and resolves once the underlying cause is addressed. However, if it occurs persistently or is associated with symptoms like palpitations, shortness of breath, dizziness, or chest discomfort, further evaluation by a healthcare professional is recommended to rule out any underlying heart conditions or other medical issues.

Maxillary sinus neoplasms refer to abnormal growths or tumors that develop in the maxillary sinuses, which are located in the upper part of your cheekbones, below your eyes. These growths can be benign (non-cancerous) or malignant (cancerous).

Benign neoplasms may include conditions such as an osteoma (a benign bone tumor), a papilloma (a benign growth of the lining of the sinus), or a fibrous dysplasia (a condition where bone is replaced by fibrous tissue).

Malignant neoplasms, on the other hand, can be primary (originating in the maxillary sinuses) or secondary (spreading to the maxillary sinuses from another site in the body). Common types of malignant tumors that arise in the maxillary sinus include squamous cell carcinoma, adenocarcinoma, and mucoepidermoid carcinoma.

Symptoms of maxillary sinus neoplasms may include nasal congestion, nosebleeds, facial pain or numbness, vision changes, and difficulty swallowing or speaking. Treatment options depend on the type, size, and location of the tumor but may include surgery, radiation therapy, chemotherapy, or a combination of these approaches.

A pilonidal sinus is a small hole or tunnel in the skin that usually develops in the cleft at the top of the buttocks. It can be painful and may become infected, causing symptoms such as redness, swelling, pain, and pus discharge. The condition often affects young adults and is more common in men than women.

The term "pilonidal" comes from the Latin words "pilus," meaning hair, and "nidus," meaning nest. This refers to the fact that the sinus often contains hairs that have become embedded in the skin. The exact cause of pilonidal sinuses is not known, but they are thought to develop as a result of ingrown hairs or chronic irritation in the affected area.

Treatment for pilonidal sinuses typically involves surgical removal of the sinus and any associated hair follicles. In some cases, this may be done using a minor procedure that can be performed in a doctor's office. More complex cases may require hospitalization and a more extensive surgical procedure. After surgery, patients will need to take steps to prevent the sinus from recurring, such as keeping the area clean and avoiding prolonged periods of sitting or driving.

The transverse sinuses are a pair of venous channels located within the skull. They are part of the intracranial venous system and are responsible for draining blood from the brain. The transverse sinuses run horizontally along the upper portion of the inner skull, starting at the occipital bone (at the back of the head) and extending to the temporal bones (on the sides of the head).

These sinuses receive blood from the superior sagittal sinus, straight sinus, and the occipital sinus. After passing through the transverse sinuses, the blood is then drained into the sigmoid sinuses, which in turn drain into the internal jugular veins. The transverse sinuses are an essential component of the cerebral venous system, ensuring proper blood flow and drainage from the brain.

The Superior Sagittal Sinus is a medical term that refers to a venous sinus (a channel for blood flow) located in the superior part (highest portion) of the sagittal suture, which is the line along the top of the skull where the two parietal bones join in the middle. It runs from front to back, starting at the frontal bone and ending at the occipital bone, and it receives blood from veins that drain the cerebral hemispheres (the right and left halves of the brain).

The Superior Sagittal Sinus is an important structure in the circulatory system of the brain as it plays a critical role in draining venous blood from the cranial cavity. It also contains valveless venous channels that allow for the flow of cerebrospinal fluid (CSF) between the intracranial and extracranial compartments.

It is worth noting that any damage to this structure, such as through trauma or infection, can lead to serious neurological complications, including increased intracranial pressure, seizures, and even death.

The sinoatrial (SA) node, also known as the sinus node, is the primary pacemaker of the heart. It is a small bundle of specialized cardiac conduction tissue located in the upper part of the right atrium, near the entrance of the superior vena cava. The SA node generates electrical impulses that initiate each heartbeat, causing the atria to contract and pump blood into the ventricles. This process is called sinus rhythm.

The SA node's electrical activity is regulated by the autonomic nervous system, which can adjust the heart rate in response to changes in the body's needs, such as during exercise or rest. The SA node's rate of firing determines the heart rate, with a normal resting heart rate ranging from 60 to 100 beats per minute.

If the SA node fails to function properly or its electrical impulses are blocked, other secondary pacemakers in the heart may take over, resulting in abnormal heart rhythms called arrhythmias.

No FAQ available that match "cranial sinuses"

No images available that match "cranial sinuses"