The metabolic process of all living cells (animal and plant) in which oxygen is used to provide a source of energy for the cell.
The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane.
An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration (= OXYGEN CONSUMPTION) or cell respiration (= CELL RESPIRATION).
An abnormal pattern of breathing characterized by alternating periods of apnea and deep, rapid breathing. The cycle begins with slow, shallow breaths that gradually increase in depth and rate and is then followed by a period of apnea. The period of apnea can last 5 to 30 seconds, then the cycle repeats every 45 seconds to 3 minutes.
Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds.
The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270)

Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. (1/1245)

We investigated mechanisms of cell death during hypoxia/reoxygenation of cultured kidney cells. During glucose-free hypoxia, cell ATP levels declined steeply resulting in the translocation of Bax from cytosol to mitochondria. Concurrently, there was cytochrome c release and caspase activation. Cells that leaked cytochrome c underwent apoptosis after reoxygenation. ATP depletion induced by a mitochondrial uncoupler resulted in similar alterations even in the presence of oxygen. Moreover, inclusion of glucose during hypoxia prevented protein translocations and reoxygenation injury by maintaining intracellular ATP. Thus, ATP depletion, rather than hypoxia per se, was the cause of protein translocations. Overexpression of Bcl-2 prevented cytochrome c release and reoxygenation injury without ameliorating ATP depletion or Bax translocation. On the other hand, caspase inhibitors did not prevent protein translocations, but inhibited apoptosis during reoxygenation. Nevertheless, they could not confer long-term viability, since mitochondria had been damaged. Omission of glucose during reoxygenation resulted in continued failure of ATP production, and cell death with necrotic morphology. In contrast, cells expressing Bcl-2 had functional mitochondria and remained viable during reoxygenation even without glucose. Therefore, Bax translocation during hypoxia is a molecular trigger for cell death during reoxygenation. If ATP is available during reoxygenation, apoptosis develops; otherwise, death occurs by necrosis. By preserving mitochondrial integrity, BCL-2 prevents both forms of cell death and ensures cell viability.  (+info)

Beneficial effects of raxofelast (IRFI 016), a new hydrophilic vitamin E-like antioxidant, in carrageenan-induced pleurisy. (2/1245)

1. Peroxynitrite is a strong oxidant that results from reaction between NO and superoxide. It has been recently proposed that peroxynitrite plays a pathogenetic role in inflammatory processes. Here we have investigated the therapeutic efficacy of raxofelast, a new hydrophilic vitamin E-like antioxidant agent, in rats subjected to carrageenan-induced pleurisy. 2. In vivo treatment with raxofelast (5, 10, 20 mg kg(-1) intraperitoneally 5 min before carrageenan) prevented in a dose dependent manner carrageenan-induced pleural exudation and polymorphonuclear migration in rats subjected to carrageenan-induced pleurisy. Lung myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels, as well as histological organ injury were significantly reduced by raxofelast. 3. Immunohistochemical analysis for nitrotyrosine, a footprint of peroxynitrite, revealed a positive staining in lungs from carrageenan-treated rats. No positive nitrotyrosine staining was found in the lungs of the carrageenan-treated rats, which received raxofelast (20 mg kg 1) treatment. 4. Furthermore, in vivo raxofelast (5, 10, 20 mg kg(-1)) treatment significantly reduced peroxynitrite formation as measured by the oxidation of the fluorescent dihydrorhodamine 123, prevented the appearance of DNA damage, the decrease in mitochondrial respiration and partially restored the cellular level of NAD+ in ex vivo macrophages harvested from the pleural cavity of rats subjected to carrageenan-induced pleurisy. 5. In conclusion, our study demonstrates that raxofelast, a new hydrophilic vitamin E-like antioxidant agent, exerts multiple protective effects in carrageenan-induced acute inflammation.  (+info)

Cytosolic Ca2+ movements of endothelial cells exposed to reactive oxygen intermediates: role of hydroxyl radical-mediated redox alteration of cell-membrane Ca2+ channels. (3/1245)

1. The mode of action of reactive oxygen intermediates in cysosolic Ca2+ movements of cultured porcine aortic endothelial cells exposed to xanthine/xanthine oxidase (X/XO) was investigated. 2. Cytosolic Ca2+ movements provoked by X/XO consisted of an initial Ca2+ release from thapsigargin-sensitive intracellular Ca2+ stores and a sustained Ca2+ influx through cell-membrane Ca2+ channels. The Ca2+ movements from both sources were inhibited by catalase, cell-membrane permeable iron chelators (o-phenanthroline and deferoxamine), a *OH scavenger (5,5-dimethyl-1-pyrroline-N-oxide), or an anion channel blocker (disodium 4, 4'-diisothiocyano-2, 2'-stilbenedisulphonic acid), suggesting that *O2- influx through anion channels was responsible for the Ca2+ movements, in which *OH generation catalyzed by intracellular transition metals (i.e., Haber-Weiss cycle) was involved. 3. After an initial Ca2+ elevation provoked by X/XO, cytosolic Ca2+ concentration decreased to a level higher than basal levels. Removal of X/XO slightly enhanced the Ca2+ decrease. Extracellular addition of sulphydryl (SH)-reducing agents, dithiothreitol or glutathione, after the removal of X/XO accelerated the decrement. A Ca2+ channel blocker, Ni2+, abolished the sustained increase in Ca2+, suggesting that Ca2+ influx through cell-membrane Ca2+ channels was extracellularly regulated by the redox state of SH-groups. 4. The X/XO-provoked change in cellular respiration was inhibited by Ni2+ or dithiothreitol as well as inhibitors of Haber-Weiss cycle, suggesting that Ca2+ influx was responsible for *OH-mediated cytotoxicity. We concluded that intracellular *OH generation was involved in the Ca2+ movements in endothelial cells exposed to X/XO. Cytosolic Ca2+ elevation was partly responsible for the oxidants-mediated cytotoxicity.  (+info)

Myogenin induces a shift of enzyme activity from glycolytic to oxidative metabolism in muscles of transgenic mice. (4/1245)

Physical training regulates muscle metabolic and contractile properties by altering gene expression. Electrical activity evoked in muscle fiber membrane during physical activity is crucial for such regulation, but the subsequent intracellular pathway is virtually unmapped. Here we investigate the ability of myogenin, a muscle-specific transcription factor strongly regulated by electrical activity, to alter muscle phenotype. Myogenin was overexpressed in transgenic mice using regulatory elements that confer strong expression confined to differentiated post-mitotic fast muscle fibers. In fast muscles from such mice, the activity levels of oxidative mitochondrial enzymes were elevated two- to threefold, whereas levels of glycolytic enzymes were reduced to levels 0.3-0.6 times those found in wild-type mice. Histochemical analysis shows widespread increases in mitochondrial components and glycogen accumulation. The changes in enzyme content were accompanied by a reduction in fiber size, such that many fibers acquired a size typical of oxidative fibers. No change in fiber type-specific myosin heavy chain isoform expression was observed. Changes in metabolic properties without changes in myosins are observed after moderate endurance training in mammals, including humans. Our data suggest that myogenin regulated by electrical activity may mediate effects of physical training on metabolic capacity in muscle.  (+info)

Mitochondrial group II introns, cytochrome c oxidase, and senescence in Podospora anserina. (5/1245)

Podospora anserina is a filamentous fungus with a limited life span. It expresses a degenerative syndrome called senescence, which is always associated with the accumulation of circular molecules (senDNAs) containing specific regions of the mitochondrial chromosome. A mobile group II intron (alpha) has been thought to play a prominent role in this syndrome. Intron alpha is the first intron of the cytochrome c oxidase subunit I gene (COX1). Mitochondrial mutants that escape the senescence process are missing this intron, as well as the first exon of the COX1 gene. We describe here the first mutant of P. anserina that has the alpha sequence precisely deleted and whose cytochrome c oxidase activity is identical to that of wild-type cells. The integration site of the intron is slightly modified, and this change prevents efficient homing of intron alpha. We show here that this mutant displays a senescence syndrome similar to that of the wild type and that its life span is increased about twofold. The introduction of a related group II intron into the mitochondrial genome of the mutant does not restore the wild-type life span. These data clearly demonstrate that intron alpha is not the specific senescence factor but rather an accelerator or amplifier of the senescence process. They emphasize the role that intron alpha plays in the instability of the mitochondrial chromosome and the link between this instability and longevity. Our results strongly support the idea that in Podospora, "immortality" can be acquired not by the absence of intron alpha but rather by the lack of active cytochrome c oxidase.  (+info)

Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide. (6/1245)

BACKGROUND: The partial pressure (tension) of oxygen (PO2) in the kidney medulla has been established to be lower than that of the cortex. The kidney medulla has been shown to be particularly sensitive to hypoxia. However, the measured PO2 in the kidney medulla is sufficient to support maximal respiration. It has been recently shown that endogenously produced nitric oxide (NO) may inhibit oxygen consumption in the kidney. We studied whether NO plays a role in hypersensitivity of the kidney medulla to hypoxia. METHODS: We studied the effect of added NO on isolated cortical and outer medullary renal tubules in simultaneous oxygen consumption and NO measurements at different oxygen concentrations. RESULTS: We found that NO could potently and reversibly inhibit respiration at nanomolar concentrations. The inhibitory effect of NO was markedly increased at low physiological oxygen concentrations. The effect of NO was cGMP independent because the selective guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) at a 10 microM concentration had no effect on basal or NO-inhibited respiration. The value for half-maximal NO-mediated inhibition of respiration was virtually identical to that found in isolated mitochondria, and therefore, NO was most likely directly acting on mitochondria. Interestingly, we found no differences in sensitivity to NO-mediated inhibition between outer medullary and cortical tubules. CONCLUSIONS: We suggest that because of its low PO2, the renal outer medulla is more sensitive to hypoxia, not because of the low PO2 as such, but probably because of the competition between NO and oxygen to control respiration.  (+info)

Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase. (7/1245)

We previously reported that cardiac reperfusion results in declines in mitochondrial NADH-linked respiration. The degree of inactivation increased with age and was paralleled by modification of protein by the lipid peroxidation product 4-hydroxy-2-nonenal. To gain insight into potential sites of oxidative damage, the present study was undertaken to identify specific mitochondrial protein(s) inactivated during ischemia and reperfusion and to determine which of these losses in activity are responsible for observed declines in mitochondrial respiration. Using a Langendorff rat heart perfusion protocol, we observed age-dependent inactivation of complex I during ischemia and complex IV and alpha-ketoglutarate dehydrogenase during reperfusion. Although losses in complex I and IV activities were found not to be of sufficient magnitude to cause declines in mitochondrial respiration, an age-related decrease in complex I activity during ischemia may predispose old animals to more severe oxidative damage during reperfusion. It was determined that inactivation of alpha-ketoglutarate dehydrogenase is responsible, in large part, for observed reperfusion-induced declines in NADH-linked respiration. alpha-Ketoglutarate dehydrogenase is highly susceptible to 4-hydroxy-2-nonenal inactivation in vitro. Thus, our results suggest a plausible mechanism for age-dependent, reperfusion-induced declines in mitochondrial function and identify alpha-ketoglutarate dehydrogenase as a likely site of free radical-mediated damage.  (+info)

Respiratory uncoupling induces delta-aminolevulinate synthase expression through a nuclear respiratory factor-1-dependent mechanism in HeLa cells. (8/1245)

Nuclear respiratory factor (NRF)-1 appears to be important for the expression of several respiratory genes, but there is no direct evidence that NRF-1 transduces a physiological signal into the production of an enzyme critical for mitochondrial biogenesis. We generated HeLa cells containing plasmids allowing doxycycline-inducible expression of uncoupling protein (UCP)-1. In the absence of doxycycline, UCP-1 mRNA and protein were undetectable. In the presence of doxycycline, UCP-1 was expressed and oxygen consumption doubled. This rise in oxygen consumption was associated with an increase in NRF-1 mRNA. It was also associated with an increase in NRF-1 protein binding activity as determined by electrophoretic mobility shift assay using a functional NRF-1 binding site from the delta-aminolevulinate (ALA) synthase promoter. Respiratory uncoupling also caused a time-dependent increase in protein levels of ALA synthase, an early marker for mitochondrial biogenesis. ALA synthase induction by respiratory uncoupling was prevented by transfecting cells with an oligonucleotide antisense to the region of the NRF-1 initiation codon; a scrambled oligonucleotide with the same base composition had no effect. Respiratory uncoupling increases oxygen consumption and lowers energy reserves. In HeLa cells, uncoupling also increases ALA synthase, an enzyme critical for mitochondrial respiration, but only if translatable mRNA for NRF-1 is available. These data suggest that the transcription factor NRF-1 plays a key role in cellular adaptation to energy demands by translating physiological signals into an increased capacity for generating energy.  (+info)

Cell respiration is the process by which cells convert biochemical energy from nutrients into adenosine triphosphate (ATP), and then release waste products. The three main stages of cell respiration are glycolysis, the citric acid cycle (also known as the Krebs cycle), and the electron transport chain.

During glycolysis, which takes place in the cytoplasm, glucose is broken down into two molecules of pyruvate, producing a small amount of ATP and reducing power in the form of NADH.

The citric acid cycle occurs in the mitochondria and involves the breakdown of acetyl-CoA (formed from pyruvate) to produce more ATP, NADH, and FADH2.

Finally, the electron transport chain, also located in the mitochondria, uses the energy from NADH and FADH2 to pump protons across the inner mitochondrial membrane, creating a proton gradient. The flow of protons back across the membrane drives the synthesis of ATP, which is used as a source of energy by the cell.

Cell respiration is a crucial process that allows cells to generate the energy they need to perform various functions and maintain homeostasis.

Oxygen consumption, also known as oxygen uptake, is the amount of oxygen that is consumed or utilized by the body during a specific period of time, usually measured in liters per minute (L/min). It is a common measurement used in exercise physiology and critical care medicine to assess an individual's aerobic metabolism and overall health status.

In clinical settings, oxygen consumption is often measured during cardiopulmonary exercise testing (CPET) to evaluate cardiovascular function, pulmonary function, and exercise capacity in patients with various medical conditions such as heart failure, chronic obstructive pulmonary disease (COPD), and other respiratory or cardiac disorders.

During exercise, oxygen is consumed by the muscles to generate energy through a process called oxidative phosphorylation. The amount of oxygen consumed during exercise can provide important information about an individual's fitness level, exercise capacity, and overall health status. Additionally, measuring oxygen consumption can help healthcare providers assess the effectiveness of treatments and rehabilitation programs in patients with various medical conditions.

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

Electron Transport Complex IV is also known as Cytochrome c oxidase. It is the last complex in the electron transport chain, located in the inner mitochondrial membrane of eukaryotic cells and the plasma membrane of prokaryotic cells. This complex contains 13 subunits, two heme groups (a and a3), and three copper centers (A, B, and C).

In the electron transport chain, Complex IV receives electrons from cytochrome c and transfers them to molecular oxygen, reducing it to water. This process is accompanied by the pumping of protons across the membrane, contributing to the generation of a proton gradient that drives ATP synthesis via ATP synthase (Complex V). The overall reaction catalyzed by Complex IV can be summarized as follows:

4e- + 4H+ + O2 → 2H2O

Defects in Cytochrome c oxidase can lead to various diseases, including mitochondrial encephalomyopathies and neurodegenerative disorders.

Oxygen is a colorless, odorless, tasteless gas that constitutes about 21% of the earth's atmosphere. It is a crucial element for human and most living organisms as it is vital for respiration. Inhaled oxygen enters the lungs and binds to hemoglobin in red blood cells, which carries it to tissues throughout the body where it is used to convert nutrients into energy and carbon dioxide, a waste product that is exhaled.

Medically, supplemental oxygen therapy may be provided to patients with conditions such as chronic obstructive pulmonary disease (COPD), pneumonia, heart failure, or other medical conditions that impair the body's ability to extract sufficient oxygen from the air. Oxygen can be administered through various devices, including nasal cannulas, face masks, and ventilators.

Nitric oxide (NO) is a molecule made up of one nitrogen atom and one oxygen atom. In the body, it is a crucial signaling molecule involved in various physiological processes such as vasodilation, immune response, neurotransmission, and inhibition of platelet aggregation. It is produced naturally by the enzyme nitric oxide synthase (NOS) from the amino acid L-arginine. Inhaled nitric oxide is used medically to treat pulmonary hypertension in newborns and adults, as it helps to relax and widen blood vessels, improving oxygenation and blood flow.

Medical Definition of Respiration:

Respiration, in physiology, is the process by which an organism takes in oxygen and gives out carbon dioxide. It's also known as breathing. This process is essential for most forms of life because it provides the necessary oxygen for cellular respiration, where the cells convert biochemical energy from nutrients into adenosine triphosphate (ATP), and releases waste products, primarily carbon dioxide.

In humans and other mammals, respiration is a two-stage process:

1. Breathing (or external respiration): This involves the exchange of gases with the environment. Air enters the lungs through the mouth or nose, then passes through the pharynx, larynx, trachea, and bronchi, finally reaching the alveoli where the actual gas exchange occurs. Oxygen from the inhaled air diffuses into the blood, while carbon dioxide, a waste product of metabolism, diffuses from the blood into the alveoli to be exhaled.

2. Cellular respiration (or internal respiration): This is the process by which cells convert glucose and other nutrients into ATP, water, and carbon dioxide in the presence of oxygen. The carbon dioxide produced during this process then diffuses out of the cells and into the bloodstream to be exhaled during breathing.

In summary, respiration is a vital physiological function that enables organisms to obtain the necessary oxygen for cellular metabolism while eliminating waste products like carbon dioxide.

Cheyne-Stokes respiration is a pattern of breathing characterized by cyclical changes in the depth and rate of respirations. It is often associated with various medical conditions that affect the brainstem, such as stroke, brain injury, or certain neurological disorders.

In Cheyne-Stokes respiration, the individual's breathing starts with a series of deeper and faster breaths (hyperventilation), which gradually become shallower and slower (hypoventilation). This cycle repeats every few minutes, resulting in a pattern of waxing and waning of the depth and rate of respirations.

The underlying mechanism for Cheyne-Stokes respiration is related to the regulation of breathing by the brainstem. When there are abnormalities in this area, it can lead to instability in the control of breathing, resulting in the cyclical pattern of hyperventilation and hypoventilation.

Cheyne-Stokes respiration can be a sign of serious underlying medical conditions, and it is important to seek medical attention if you or someone else experiences this type of breathing pattern. Treatment may involve addressing the underlying cause, such as managing heart failure or reducing intracranial pressure in patients with brain injury or stroke.

Oxidative phosphorylation is the metabolic process by which cells use enzymes to generate energy in the form of adenosine triphosphate (ATP) from the oxidation of nutrients, such as glucose or fatty acids. This process occurs in the inner mitochondrial membrane of eukaryotic cells and is facilitated by the electron transport chain, which consists of a series of protein complexes that transfer electrons from donor molecules to acceptor molecules. As the electrons are passed along the chain, they release energy that is used to pump protons across the membrane, creating a gradient. The ATP synthase enzyme then uses the flow of protons back across the membrane to generate ATP, which serves as the main energy currency for cellular processes.

The Electron Transport Chain (ETC) is a series of complexes in the inner mitochondrial membrane that are involved in the process of cellular respiration. It is the final pathway for electrons derived from the oxidation of nutrients such as glucose, fatty acids, and amino acids to be transferred to molecular oxygen. This transfer of electrons drives the generation of a proton gradient across the inner mitochondrial membrane, which is then used by ATP synthase to produce ATP, the main energy currency of the cell.

The electron transport chain consists of four complexes (I-IV) and two mobile electron carriers (ubiquinone and cytochrome c). Electrons from NADH and FADH2 are transferred to Complex I and Complex II respectively, which then pass them along to ubiquinone. Ubiquinone then transfers the electrons to Complex III, which passes them on to cytochrome c. Finally, cytochrome c transfers the electrons to Complex IV, where they combine with oxygen and protons to form water.

The transfer of electrons through the ETC is accompanied by the pumping of protons from the mitochondrial matrix to the intermembrane space, creating a proton gradient. The flow of protons back across the inner membrane through ATP synthase drives the synthesis of ATP from ADP and inorganic phosphate.

Overall, the electron transport chain is a crucial process for generating energy in the form of ATP in the cell, and it plays a key role in many metabolic pathways.

No FAQ available that match "cell respiration"

No images available that match "cell respiration"