A semisynthetic cephalosporin analog with broad-spectrum antibiotic action due to inhibition of bacterial cell wall synthesis. It attains high serum levels and is excreted quickly via the urine.
A group of broad-spectrum antibiotics first isolated from the Mediterranean fungus ACREMONIUM. They contain the beta-lactam moiety thia-azabicyclo-octenecarboxylic acid also called 7-aminocephalosporanic acid.
Semisynthetic wide-spectrum cephalosporin with prolonged action, probably due to beta-lactamase resistance. It is used also as the nafate.
One of the CEPHALOSPORINS that has a broad spectrum of activity against both gram-positive and gram-negative microorganisms.
A cephalosporin antibiotic.
A cephalosporin antibiotic.
Thiadiazoles are heterocyclic compounds containing a five-membered ring with two nitrogen atoms and two sulfur atoms, which have been widely studied for their potential therapeutic benefits, including antibacterial, antifungal, anti-inflammatory, and antitumor activities.
Organic mercury compounds in which the mercury is attached to a phenyl group. Often used as fungicides and seed treatment agents.
Substances that reduce the growth or reproduction of BACTERIA.
Use of antibiotics before, during, or after a diagnostic, therapeutic, or surgical procedure to prevent infectious complications.
A semisynthetic cephalosporin antibiotic with antimicrobial activity similar to that of CEPHALORIDINE or CEPHALOTHIN, but somewhat less potent. It is effective against both gram-positive and gram-negative organisms.
Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses).
Broad- spectrum beta-lactam antibiotic similar in structure to the CEPHALOSPORINS except for the substitution of an oxaazabicyclo moiety for the thiaazabicyclo moiety of certain CEPHALOSPORINS. It has been proposed especially for the meningitides because it passes the blood-brain barrier and for anaerobic infections.
Naturally occurring family of beta-lactam cephalosporin-type antibiotics having a 7-methoxy group and possessing marked resistance to the action of beta-lactamases from gram-positive and gram-negative organisms.
A semi-synthetic antibiotic related to penicillin.
A semisynthetic cephamycin antibiotic with a broad spectrum of activity against both gram-positive and gram-negative microorganisms. It has a high rate of efficacy in many types of infection and to date no severe side effects have been noted.
A second-generation cephalosporin administered intravenously or intramuscularly. Its bactericidal action results from inhibition of cell wall synthesis. It is used for urinary tract infections, lower respiratory tract infections, and soft tissue and bone infections.
Infections with bacteria of the genus STAPHYLOCOCCUS.
The administration of liquid medication, nutrient, or other fluid through some other route than the alimentary canal, usually over minutes or hours, either by gravity flow or often by infusion pumping.
Broad-spectrum cephalosporin antibiotic resistant to beta-lactamase. It has been proposed for infections with gram-negative and gram-positive organisms, GONORRHEA, and HAEMOPHILUS.
Infection occurring at the site of a surgical incision.

Structure-function studies of Ser-289 in the class C beta-lactamase from Enterobacter cloacae P99. (1/308)

Site-directed mutagenesis of Ser-289 of the class C beta-lactamase from Enterobacter cloacae P99 was performed to investigate the role of this residue in beta-lactam hydrolysis. This amino acid lies near the active site of the enzyme, where it can interact with the C-3 substituent of cephalosporins. Kinetic analysis of six mutant beta-lactamases with five cephalosporins showed that Ser-289 can be substituted by amino acids with nonpolar or polar uncharged side chains without altering the catalytic efficiency of the enzyme. These data suggest that Ser-289 is not essential in the binding or hydrolytic mechanism of AmpC beta-lactamase. However, replacement by Lys or Arg decreased by two- to threefold the kcat of four of the five beta-lactams tested, particularly cefoperazone, cephaloridine, and cephalothin. Three-dimensional models of the mutant beta-lactamases revealed that the length and positive charge of the side chain of Lys and Arg could create an electrostatic linkage to the C-4 carboxylic acid group of the dihydrothiazine ring of the acyl intermediate which could slow the deacylation step or hinder release of the product.  (+info)

Pharmacokinetics of intermittent intraperitoneal cefazolin in continuous ambulatory peritoneal dialysis patients. (2/308)

OBJECTIVE: To investigate the pharmacokinetic parameters of intermittent intraperitoneal (IP) cefazolin, and recommend a cefazolin dosing regimen in continuous ambulatory peritoneal dialysis (CAPD) patients. DESIGN: Prospective nonrandomized open study. SETTING: CAPD outpatient clinic in Albany, New York. PATIENTS: Seven volunteer CAPD patients without peritonitis. Three of the patients were nonanuric while 4 were anuric. INTERVENTIONS: Cefazolin (15 mg/kg total body weight) was given to each patient during the first peritoneal exchange. Blood and dialysate samples were collected at times 0, 0.5, 1,2,3,6 (end of the first antibiotic-containing dwell), 24, and 48 hours after the administration of IP cefazolin. Urine samples were collected in nonanuric patients over the study period. RESULTS: The mean+/-SD amount of cefazolin dose absorbed from the dialysate after the 6-hour dwell was 69.7%+/-8.0% of the administered dose. The cefazolin absorption rate constant from dialysate to serum was 0.21+/-0.1/hr (absorption half-life 3.5+/-0.8 hr). The mean serum concentrations reached at 24 and 48 hours were 52.4+/-3.7 mg/L and 30.3+/-5.9 mg/L, respectively. The mean dialysate cefazolin concentrations reached at 24 and 48 hours were 15.1+/-3.4 mg/L and 7.9+/-1.4 mg/L, respectively. The cefazolin serum elimination rate constant was 0.02+/-0.01/hr (elimination half-life 31.5+/-8.8 hr). The total cefazolin body clearance was 3.4+/-0.6 ml/min. In the 3 nonanuric patients the mean renal clearance of cefazolin was 0.6+/-0.4 ml/min. The peritoneal clearance of cefazolin was 1.0+/-0.3 mL/min. The systemic volume of distribution of cefazolin was 0.2+/-0.05 L/kg. No statistical difference was detected in pharmacokinetic parameters between anuric and nonanuric patients, although this may be due to the small number of patients in each group. CONCLUSION: A single daily dose of cefazolin dosed at 15 mg/kg actual body weight in CAPD patients is effective in achieving serum concentration levels greater than the minimum inhibitory concentration for sensitive organisms over 48 hours, and dialysate concentration levels over 24 hours. Caution is warranted in extrapolation of dosing recommendations to patients who maintain a significant degree of residual renal function.  (+info)

Primary Shewanella alga septicemia in a patient on hemodialysis. (3/308)

We report the first Japanese case of primary septicemia with Shewanella alga and also describe the bacteriological characteristics of and results of antibiotic susceptibility tests of the isolate. S. alga was repeatedly isolated, at times simultaneously with Escherichia coli, from the blood of a 64-year-old female undergoing hemodialysis. The isolated organism was determined to be S. alga based on recently published identification criteria, such as hemolysis on sheep blood agar, no acid production from carbohydrates, and growth on agar containing 6. 5% NaCl. Results of antibiotic susceptibility tests demonstrated that the isolate was sensitive to levofloxacin and cefpirome (MICs, 128, 64, and 8 microg/ml, respectively). Although the role of S. alga as a human pathogen has not been fully determined, accumulating data suggest that this organism may be a potential pathogen, especially in compromised hosts.  (+info)

Prophylactic cefazolin in amnioinfusions administered for meconium-stained amniotic fluid. (4/308)

OBJECTIVE: To determine if amnioinfusion with an antibiotic solution decreased the rate of clinical chorioamnionitis and puerperal endometritis in patients with meconium-stained amniotic fluid. METHODS: Patients in labor at 36 weeks of gestation or greater with singleton pregnancies and meconium-stained amniotic fluid were randomized to receive either cefazolin, 1 g/1,000 mL, of normal saline (n = 90) or normal saline (n = 93) amnioinfusion. Rates of clinically diagnosed chorioamnionitis and endometritis and of suspected and culture-proven neonatal infection were determined. RESULTS: Between the study and control groups, the incidences of clinical chorioamnionitis (7.8% vs. 8.6%), endometritis (2.4% vs. 3.5%), aggregate intrauterine infection (10.0% vs. 11.8%), suspected neonatal infection (17.8% vs. 21.5%), and proven neonatal infection (0.0% vs. 2.2%) were not significantly different. CONCLUSIONS: Prophylactic use of cefazolin in amnioinfusions did not significantly reduce rates of maternal or neonatal infection in patients with meconium-stained amniotic fluid.  (+info)

Antibacterial activity of combinations of cefazolin and semisynthetic penicillins. (5/308)

The antibacterial activity of cephalosporin (CS) and semisynthetic penicillins was studied using CS-resistant strains of Escherichia freundii and Proteus morganii. A synergistic growth inhibitory action toward these microorganisms was demonstrated by a qualitative method and confirmed by a quantitative determination.  (+info)

Treatment of hospitalized patients with complicated gram-positive skin and skin structure infections: two randomized, multicentre studies of quinupristin/dalfopristin versus cefazolin, oxacillin or vancomycin. Synercid Skin and Skin Structure Infection Group. (6/308)

Quinupristin/dalfopristin (Synercid), the first injectable streptogramin antibiotic available for the treatment of complicated gram-positive skin and skin structure infections, was compared with standard comparators (cefazolin, oxacillin or vancomycin) in one USA and one international trial. These two randomized, open-label trials of virtually identical design enrolled a total of 893 patients (450 quinupristin/dalfopristin, 443 comparator). The majority of patients had erysipelas, traumatic wound infection or clean surgical wound infection. Staphylococcus aureus was the most frequently isolated pathogen in both treatment groups and polymicrobial infection was more common in the quinupristin/dalfopristin group than in the comparator group. The clinical success rate (cure plus improvement) in the clinically evaluable population was equivalent between the two treatment groups (68.2% quinupristin/dalfopristin, 70.7% comparator; 95% CI, -10.1, 5.1) despite a shorter mean duration of treatment for quinupristin/dalfopristin patients. In the bacteriologically evaluable population, by-patient and by-pathogen bacteriological eradication rates were somewhat lower for quinupristin/dalfopristin (65.8% and 66.6%, respectively) than for the comparator regimens (72.7% and 77.7%, respectively). The lower bacteriological response rates in the quinupristin/dalfopristin group were, in part, due to a higher rate of polymicrobial infections and a higher incidence of patients classified as clinical failure, a category which included premature discontinuation of treatment because of local venous adverse events. The bacteriological eradication rate for quinupristin/dalfopristin was higher in monomicrobial infections than in polymicrobial infections (72.6% versus 63.3%, respectively), whereas the corresponding rate for the comparator regimens was lower for monomicrobial infections than polymicrobial infections (70.8% versus 83.1%). This finding was not unexpected, since the spectrum of quinupristin/dalfopristin is focused on gram-positive pathogens and additional antibiotics to treat gram-negative bacteria were not required per protocol. The systemic tolerability of both treatment regimens was qualitatively similar. A higher rate of drug-related venous adverse events was reported for quinupristin/dalfopristin (66.2%) than for the comparator regimen (28.4%). Premature discontinuation of study drug was primarily due to adverse clinical events for quinupristin/dalfopristin (19.1%), whereas the most common reason for discontinuation among those receiving the comparator regimens was treatment failure (11.5%). Quinupristin/dalfopristin is an effective alternative for the treatment of hospitalized patients with complicated skin and skin structure infections due to quinupristin/ dalfopristin-susceptible gram-positive organisms, including methicillin- and erythromycin-resistant S. aureus.  (+info)

Bacteremic pneumonia caused by a single clone of Streptococcus pneumoniae with different optochin susceptibilities. (7/308)

Two isolates of Streptococcus pneumoniae having different optochin susceptibilities were recovered from a blood sample of a 2-year-old boy with community-acquired pneumonia. The two isolates were documented to belong to a single clone on the basis of the isolates' identical serotype (23F), antibiograms by the E-test, random amplified polymorphic DNA patterns generated by arbitrarily primed PCR, pulsed-field gel electrophoresis, and restriction fragment length polymorphism of the penicillin-binding protein genes pbp2b and pbp2x.  (+info)

Fluoroquinolone and fortified antibiotics for treating bacterial corneal ulcers. (8/308)

AIM: To compare the clinical efficacy of commercially available fluoroquinolone drops with the use of combined fortified antibiotics (tobramycin 1.3%-cefazolin 5%) in treatment of bacterial corneal ulcer. METHODS: The medical records of 140 patients with a diagnosis of bacterial corneal ulcer who were admitted to the Royal Victorian Eye and Ear Hospital, Melbourne, Australia between January 1993 and December 1997 were reviewed retrospectively. Final outcome and results of 138 ulcer episodes were compared between those treated initially with fluoroquinolone and those who received fortified antibiotics. Two patients had been treated with chloramphenicol. RESULTS: No significant treatment difference was found between fluoroquinolone and fortified therapy in terms of final visual outcome. However, serious complications such as corneal perforation, evisceration, or enucleation of the affected eye were more common with fluoroquinolone therapy (16.7%) compared with the fortified therapy (2.4%, p= 0.02). The duration of intensive therapy was less with fluoroquinolone especially in those over 60 years of age (4 days v 6 days, p=0.01). Hospital stay was also less in the fluoroquinolone group compared with the fortified group for all patients and was significantly less with fluoroquinolone treatment (7 days v 10 days, p=0.02) in patients in the age group over 60 years old. CONCLUSIONS: Monotherapy with fluoroquinolone eye drops for the treatment of bacterial corneal ulcers led to shorter duration of intensive therapy and shorter hospital stay compared with combined fortified therapy (tobramycin-cefazolin). This finding may have resulted from quicker clinical response of healing as a result of less toxicity found in the patients treated with fluoroquinolone. However, as some serious complications were encountered more commonly in the fluoroquinolone group, caution should be exercised in using fluoroquinolones in large, deep ulcers in the elderly.  (+info)

Cefazolin is a type of antibiotic known as a cephalosporin, which is used to treat a variety of bacterial infections. It works by interfering with the bacteria's ability to form a cell wall, which is necessary for its survival. Without a functional cell wall, the bacteria are not able to grow and multiply, and are eventually destroyed by the body's immune system.

Cefazolin is commonly used to treat infections of the skin, bones, joints, heart, lungs, and urinary tract. It may also be used to prevent infection during surgery. Like all antibiotics, cefazolin is only effective against certain types of bacteria, so it is important to know the specific type of bacteria causing an infection before using this medication.

Cefazolin is usually given as an injection into a vein or muscle, and may be administered in a hospital setting or at home with proper training. The dosage and duration of treatment will depend on the severity and location of the infection, as well as the patient's overall health status.

As with any medication, cefazolin can cause side effects, including diarrhea, nausea, vomiting, headache, and rash. In rare cases, it may also cause serious side effects such as allergic reactions, kidney damage, or abnormal blood clotting. It is important to report any unusual symptoms to a healthcare provider promptly.

It is essential to complete the full course of treatment with cefazolin, even if symptoms improve, to ensure that the infection is fully treated and to reduce the risk of antibiotic resistance.

Cephalosporins are a class of antibiotics that are derived from the fungus Acremonium, originally isolated from seawater and cow dung. They have a similar chemical structure to penicillin and share a common four-membered beta-lactam ring in their molecular structure.

Cephalosporins work by inhibiting the synthesis of bacterial cell walls, which ultimately leads to bacterial death. They are broad-spectrum antibiotics, meaning they are effective against a wide range of bacteria, including both Gram-positive and Gram-negative organisms.

There are several generations of cephalosporins, each with different spectra of activity and pharmacokinetic properties. The first generation cephalosporins have a narrow spectrum of activity and are primarily used to treat infections caused by susceptible Gram-positive bacteria, such as Staphylococcus aureus and Streptococcus pneumoniae.

Second-generation cephalosporins have an expanded spectrum of activity that includes some Gram-negative organisms, such as Escherichia coli and Haemophilus influenzae. Third-generation cephalosporins have even broader spectra of activity and are effective against many resistant Gram-negative bacteria, such as Pseudomonas aeruginosa and Klebsiella pneumoniae.

Fourth-generation cephalosporins have activity against both Gram-positive and Gram-negative organisms, including some that are resistant to other antibiotics. They are often reserved for the treatment of serious infections caused by multidrug-resistant bacteria.

Cephalosporins are generally well tolerated, but like penicillin, they can cause allergic reactions in some individuals. Cross-reactivity between cephalosporins and penicillin is estimated to occur in 5-10% of patients with a history of penicillin allergy. Other potential adverse effects include gastrointestinal symptoms (such as nausea, vomiting, and diarrhea), neurotoxicity, and nephrotoxicity.

Cefamandole is a second-generation cephalosporin antibiotic, which is a type of antibacterial medication used to treat various infections caused by bacteria. It works by interfering with the ability of bacteria to form cell walls, resulting in weakening and eventual death of the bacterial cells.

Cefamandole has a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, making it useful for treating a variety of infections, including respiratory tract infections, urinary tract infections, skin and soft tissue infections, bone and joint infections, and septicemia.

Like other cephalosporins, cefamandole is generally well-tolerated and has a low incidence of serious side effects. However, it can cause gastrointestinal symptoms such as nausea, vomiting, and diarrhea, as well as allergic reactions in some people. It may also interact with other medications, so it's important to inform your healthcare provider of all the medications you are taking before starting cefamandole therapy.

It is important to note that antibiotics should only be used to treat bacterial infections and not viral infections, as they are not effective against viruses and can contribute to the development of antibiotic resistance.

Cefotiam is a type of antibiotic known as a cephalosporin, which is used to treat various bacterial infections. It works by interfering with the bacteria's ability to form a cell wall, leading to bacterial cell death. Cefotiam has a broad spectrum of activity and is effective against many gram-positive and gram-negative bacteria.

Here is the medical definition of 'Cefotiam':

Cefotiam is a semisynthetic, broad-spectrum, beta-lactam antibiotic belonging to the cephalosporin class. It has activity against both gram-positive and gram-negative bacteria, including many strains that are resistant to other antibiotics. Cefotiam inhibits bacterial cell wall synthesis by binding to penicillin-binding proteins (PBPs), leading to bacterial cell death.

Cefotiam is available in various formulations, including intravenous (IV) and intramuscular (IM) injections, for the treatment of a wide range of infections, such as:

* Lower respiratory tract infections (e.g., pneumonia, bronchitis)
* Urinary tract infections (e.g., pyelonephritis, cystitis)
* Skin and soft tissue infections (e.g., cellulitis, wound infections)
* Bone and joint infections (e.g., osteomyelitis, septic arthritis)
* Intra-abdominal infections (e.g., peritonitis, appendicitis)
* Septicemia (bloodstream infections)

Cefotiam is generally well tolerated, but like other antibiotics, it can cause side effects, including gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea), skin rashes, and allergic reactions. In rare cases, cefotiam may cause serious adverse effects, such as seizures, interstitial nephritis, or hemorrhagicystitis. It should be used with caution in patients with a history of allergy to beta-lactam antibiotics, impaired renal function, or a history of seizure disorders.

It is essential to complete the full course of treatment as prescribed by a healthcare professional, even if symptoms improve, to ensure that the infection is entirely eradicated and to reduce the risk of developing antibiotic resistance.

Cephalothin is a type of antibiotic known as a first-generation cephalosporin. It is used to treat a variety of bacterial infections, including respiratory tract infections, skin and soft tissue infections, bone and joint infections, and urinary tract infections.

Cephalothin works by interfering with the ability of bacteria to form cell walls, which are essential for their survival. It binds to specific proteins in the bacterial cell wall, causing the wall to become unstable and ultimately leading to the death of the bacterium.

Like other antibiotics, cephalothin is only effective against certain types of bacteria, and it should be used under the direction of a healthcare professional. It is important to take the full course of treatment as directed, even if symptoms improve, to ensure that the infection is fully treated and to reduce the risk of developing antibiotic resistance.

Common side effects of cephalothin include gastrointestinal symptoms such as nausea, vomiting, and diarrhea. More serious side effects may include allergic reactions, kidney damage, and seizures. It is important to inform your healthcare provider of any medical conditions you have or medications you are taking before starting treatment with cephalothin.

Cephaloridine is a type of antibiotic that belongs to the class of cephalosporins. It is used for treating various bacterial infections, including respiratory tract infections, urinary tract infections, skin and soft tissue infections, bone and joint infections, and septicemia.

Cephaloridine works by inhibiting the synthesis of the bacterial cell wall, leading to bacterial death. It is administered intramuscularly or intravenously and is known for its broad-spectrum activity against both Gram-positive and Gram-negative bacteria. However, due to its potential nephrotoxicity (kidney toxicity), it has largely been replaced by other antibiotics with similar spectra of activity but better safety profiles.

It's important to note that the use of cephaloridine should be reserved for infections caused by bacteria that are resistant to other antibiotics, and its administration should be closely monitored by a healthcare professional to minimize the risk of adverse effects.

Thiadiazoles are heterocyclic compounds that contain a five-membered ring consisting of two nitrogen atoms and two sulfur atoms, along with a third non-carbon atom or group. They have the molecular formula N-S-N-C-S. Thiadiazole rings can be found in various pharmaceutical and agrochemical compounds, as they exhibit a wide range of biological activities, including anti-inflammatory, antimicrobial, antiviral, and anticancer properties. Some well-known thiadiazole derivatives include the drugs furazolidone, nitrofurantoin, and sufasalazine.

Phenylmercury compounds are organic mercury salts that contain a phenyl group, which is a functional group consisting of a benzene ring with a hydroxyl group (-PHenyl-). These compounds were once used in various industrial and medical applications, such as antiseptics, preservatives, and vaccines. However, due to their toxicity and potential for bioaccumulation, the use of phenylmercury compounds has been largely discontinued.

Exposure to phenylmercury compounds can cause a range of adverse health effects, including neurological damage, kidney dysfunction, and developmental problems in children. Therefore, it is important to minimize exposure to these compounds and handle them with care if they are still used in certain applications.

Anti-bacterial agents, also known as antibiotics, are a type of medication used to treat infections caused by bacteria. These agents work by either killing the bacteria or inhibiting their growth and reproduction. There are several different classes of anti-bacterial agents, including penicillins, cephalosporins, fluoroquinolones, macrolides, and tetracyclines, among others. Each class of antibiotic has a specific mechanism of action and is used to treat certain types of bacterial infections. It's important to note that anti-bacterial agents are not effective against viral infections, such as the common cold or flu. Misuse and overuse of antibiotics can lead to antibiotic resistance, which is a significant global health concern.

Antibiotic prophylaxis refers to the use of antibiotics to prevent infection from occurring in the first place, rather than treating an existing infection. This practice is commonly used before certain medical procedures or surgeries that have a high risk of infection, such as joint replacements, heart valve surgery, or organ transplants. The goal of antibiotic prophylaxis is to reduce the risk of infection by introducing antibiotics into the body before bacteria have a chance to multiply and cause an infection.

The choice of antibiotic for prophylaxis depends on several factors, including the type of procedure being performed, the patient's medical history and allergies, and the most common types of bacteria that can cause infection in that particular situation. The antibiotic is typically given within one hour before the start of the procedure, and may be continued for up to 24 hours afterward, depending on the specific guidelines for that procedure.

It's important to note that antibiotic prophylaxis should only be used when it is truly necessary, as overuse of antibiotics can contribute to the development of antibiotic-resistant bacteria. Therefore, the decision to use antibiotic prophylaxis should be made carefully and in consultation with a healthcare provider.

Cephalexin is a type of antibiotic known as a first-generation cephalosporin. It works by interfering with the bacteria's ability to form a cell wall, which is essential for its survival. Without a functional cell wall, the bacterial cells become unstable and eventually die.

Cephalexin is effective against a wide range of gram-positive and some gram-negative bacteria, making it a useful antibiotic for treating various types of infections, such as respiratory tract infections, skin and soft tissue infections, bone and joint infections, and urinary tract infections.

Like all antibiotics, cephalexin should be used only to treat bacterial infections, as it has no effect on viral infections. It is important to take the full course of treatment as directed by a healthcare professional, even if symptoms improve before the medication is finished, to ensure that the infection is fully treated and to reduce the risk of antibiotic resistance.

Common side effects of cephalexin include nausea, diarrhea, vomiting, and stomach pain. In rare cases, more serious side effects such as allergic reactions, severe skin rashes, or liver damage may occur. It is important to seek medical attention immediately if any signs of an allergic reaction or serious side effect are experienced while taking cephalexin.

Microbial sensitivity tests, also known as antibiotic susceptibility tests (ASTs) or bacterial susceptibility tests, are laboratory procedures used to determine the effectiveness of various antimicrobial agents against specific microorganisms isolated from a patient's infection. These tests help healthcare providers identify which antibiotics will be most effective in treating an infection and which ones should be avoided due to resistance. The results of these tests can guide appropriate antibiotic therapy, minimize the potential for antibiotic resistance, improve clinical outcomes, and reduce unnecessary side effects or toxicity from ineffective antimicrobials.

There are several methods for performing microbial sensitivity tests, including:

1. Disk diffusion method (Kirby-Bauer test): A standardized paper disk containing a predetermined amount of an antibiotic is placed on an agar plate that has been inoculated with the isolated microorganism. After incubation, the zone of inhibition around the disk is measured to determine the susceptibility or resistance of the organism to that particular antibiotic.
2. Broth dilution method: A series of tubes or wells containing decreasing concentrations of an antimicrobial agent are inoculated with a standardized microbial suspension. After incubation, the minimum inhibitory concentration (MIC) is determined by observing the lowest concentration of the antibiotic that prevents visible growth of the organism.
3. Automated systems: These use sophisticated technology to perform both disk diffusion and broth dilution methods automatically, providing rapid and accurate results for a wide range of microorganisms and antimicrobial agents.

The interpretation of microbial sensitivity test results should be done cautiously, considering factors such as the site of infection, pharmacokinetics and pharmacodynamics of the antibiotic, potential toxicity, and local resistance patterns. Regular monitoring of susceptibility patterns and ongoing antimicrobial stewardship programs are essential to ensure optimal use of these tests and to minimize the development of antibiotic resistance.

Moxalactam is not a medical condition but actually an antibiotic medication. It is a type of beta-lactam antibiotic, specifically a fourth-generation cephalosporin, which is used to treat various bacterial infections. Moxalactam has a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, including many that are resistant to other antibiotics.

Moxalactam works by inhibiting the synthesis of the bacterial cell wall, leading to bacterial death. It is commonly used to treat intra-abdominal infections, urinary tract infections, pneumonia, and sepsis, among other conditions. As with any medication, moxalactam can have side effects, including gastrointestinal symptoms such as nausea, vomiting, and diarrhea, as well as allergic reactions and changes in liver function tests. It is important to use antibiotics only when necessary and under the guidance of a healthcare professional to minimize the development of antibiotic resistance.

Cephamycins are a subclass of cephalosporin antibiotics, which are derived from the fungus Acremonium species. They have a similar chemical structure to other cephalosporins but have an additional methoxy group on their side chain that makes them more resistant to beta-lactamases, enzymes produced by some bacteria that can inactivate other cephalosporins and penicillins.

Cephamycins are primarily used to treat infections caused by Gram-negative bacteria, including Pseudomonas aeruginosa, Proteus species, and Enterobacter species. They have a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, making them useful for treating a variety of infections.

The two main cephamycins that are used clinically are cefoxitin and cefotetan. Cefoxitin is often used to treat intra-abdominal infections, pelvic inflammatory disease, and skin and soft tissue infections. Cefotetan is primarily used for the treatment of surgical prophylaxis, gynecological infections, and pneumonia.

Like other cephalosporins, cephamycins can cause allergic reactions, including rashes, hives, and anaphylaxis. They should be used with caution in patients who have a history of allergies to penicillin or other beta-lactam antibiotics. Additionally, cephamycins can disrupt the normal gut flora, leading to secondary infections such as Clostridioides difficile (C. diff) diarrhea.

Nafcillin is a type of antibiotic known as a penicillinase-resistant penicillin. It is used to treat infections caused by bacteria that are resistant to other types of penicillins. Nafcillin is active against many gram-positive bacteria, including Staphylococcus aureus and Streptococcus pyogenes.

Nafcillin works by binding to and inhibiting the activity of certain proteins (called penicillin-binding proteins) that are necessary for the bacterial cell wall to synthesize properly. This leads to the death of the bacteria and the resolution of the infection.

Nafcillin is available in injectable form and is typically given intravenously (IV) in a hospital setting. It may also be given as an injection into a muscle (IM). The dosage and duration of treatment will depend on the type and severity of the infection being treated, as well as the patient's overall health and medical history.

It is important to note that nafcillin, like all antibiotics, should be used only to treat bacterial infections and not viral infections, such as the common cold or flu. Overuse of antibiotics can lead to the development of antibiotic resistance, which makes it more difficult to treat infections in the future.

Cefmetazole is a second-generation cephalosporin antibiotic, which is used to treat various bacterial infections. It works by interfering with the bacteria's ability to form a cell wall, leading to bacterial cell death. Cefmetazole has a broad spectrum of activity against both Gram-positive and Gram-negative bacteria, including many strains that are resistant to other antibiotics.

Common side effects of cefmetazole include diarrhea, nausea, vomiting, and headache. More serious side effects can include allergic reactions, seizures, and changes in blood cell counts or liver function. As with all antibiotics, it is important to take cefmetazole exactly as directed by a healthcare provider, and to complete the full course of treatment even if symptoms improve.

Cefonicid is a type of antibiotic known as a cephalosporin, which is used to treat various bacterial infections. It works by interfering with the bacteria's ability to form a cell wall, leading to the death of the bacteria. Cefonicid is administered intravenously and is typically used to treat serious infections such as sepsis, pneumonia, and meningitis.

Here is the medical definition of 'Cefonicid':

Cefonicid is a semisynthetic, broad-spectrum, bactericidal antibiotic of the cephalosporin class. It is administered intravenously and has a long half-life, allowing for once- or twice-daily dosing. Cefonicid is stable in the presence of beta-lactamases, including extended-spectrum beta-lactamases (ESBLs), making it useful for treating infections caused by bacteria that produce these enzymes. It is used to treat a variety of bacterial infections, including pneumonia, meningitis, and sepsis.

Common side effects of cefonicid include diarrhea, nausea, vomiting, and local reactions at the injection site. More serious side effects can include allergic reactions, kidney damage, and seizures. Cefonicid should be used with caution in patients with a history of allergy to beta-lactam antibiotics, impaired renal function, or a history of seizure disorders.

Staphylococcal infections are a type of infection caused by Staphylococcus bacteria, which are commonly found on the skin and nose of healthy people. However, if they enter the body through a cut, scratch, or other wound, they can cause an infection.

There are several types of Staphylococcus bacteria, but the most common one that causes infections is Staphylococcus aureus. These infections can range from minor skin infections such as pimples, boils, and impetigo to serious conditions such as pneumonia, bloodstream infections, and toxic shock syndrome.

Symptoms of staphylococcal infections depend on the type and severity of the infection. Treatment typically involves antibiotics, either topical or oral, depending on the severity and location of the infection. In some cases, hospitalization may be necessary for more severe infections. It is important to note that some strains of Staphylococcus aureus have developed resistance to certain antibiotics, making them more difficult to treat.

Parenteral infusions refer to the administration of fluids or medications directly into a patient's vein or subcutaneous tissue using a needle or catheter. This route bypasses the gastrointestinal tract and allows for rapid absorption and onset of action. Parenteral infusions can be used to correct fluid and electrolyte imbalances, administer medications that cannot be given orally, provide nutritional support, and deliver blood products. Common types of parenteral infusions include intravenous (IV) drips, IV push, and subcutaneous infusions. It is important that parenteral infusions are administered using aseptic technique to reduce the risk of infection.

Cefuroxime is a type of antibiotic known as a cephalosporin, which is used to treat a variety of bacterial infections. It works by interfering with the bacteria's ability to form a cell wall, which is necessary for its survival. Without a functional cell wall, the bacteria are unable to grow and multiply, and are eventually destroyed by the body's immune system.

Cefuroxime is effective against many different types of bacteria, including both Gram-positive and Gram-negative organisms. It is often used to treat respiratory tract infections, urinary tract infections, skin and soft tissue infections, and bone and joint infections.

Like all antibiotics, cefuroxime should be used only under the direction of a healthcare provider, and it is important to take the full course of treatment as prescribed, even if symptoms improve before the medication is finished. Misuse of antibiotics can lead to the development of drug-resistant bacteria, which are more difficult to treat and can pose a serious threat to public health.

A surgical wound infection, also known as a surgical site infection (SSI), is defined by the Centers for Disease Control and Prevention (CDC) as an infection that occurs within 30 days after surgery (or within one year if an implant is left in place) and involves either:

1. Purulent drainage from the incision;
2. Organisms isolated from an aseptically obtained culture of fluid or tissue from the incision;
3. At least one of the following signs or symptoms of infection: pain or tenderness, localized swelling, redness, or heat; and
4. Diagnosis of surgical site infection by the surgeon or attending physician.

SSIs can be classified as superficial incisional, deep incisional, or organ/space infections, depending on the depth and extent of tissue involvement. They are a common healthcare-associated infection and can lead to increased morbidity, mortality, and healthcare costs.

Cefazolin levels are not significantly affected by liver disease. As with other antibiotics, cefazolin may interact with other ... Caution should be used in breastfeeding as a small amount of cefazolin enters the breast milk. Cefazolin can be used ... Some important drugs that may interact with cefazolin such as probenecid. Side effects associated with use of cefazolin therapy ... Cefazolin is used in a variety of infections provided that susceptible organisms are involved. It is indicated for use in the ...
Cefazolin/dextrose premix (By injection). Cefazolin Sodium (sef-A-zoe-lin SOE-dee-um), Dextrose (DEX-trose). Treats serious ... You should not use this medicine if you have ever had an allergic reaction to cefazolin or any other cephalosporin medicine ...
... equivalent to 1.05 g Cefazolin Sodium, USP per 50 mL or 2 g Cefazolin, USP, equivalent to 2.10 g Cefazolin Sodium, USP per 100 ... Injection: 1 gram cefazolin per 50 mL or 2 gram cefazolin per 100 mL in a single-dose GALAXY Container supplied as a frozen, ... Administer cefazolin injection intravenously over approximately 30 minutes.. If a dose of cefazolin injection is required that ... The sodium content is 48 mg/g of cefazolin sodium.. The pH of cefazolin injection may have been adjusted with sodium ...
Intravenous cefazolin plus oral probenecid versus oral cephalexin for the treatment of skin and soft tissue infections: a ... Intravenous cefazolin plus oral probenecid versus oral cephalexin for the treatment of skin and soft tissue infections: a ... Intravenous cefazolin plus oral probenecid versus oral cephalexin for the treatment of skin and soft tissue infections: a ...
Cefazolin Sodium Powder for Injection 250 mg (of cefazolin), 500 mg, 1, 5, 10, & 20g; Ancef® (SKF); Kefzol® (Lilly); Zolicef® ( ... Cefazolin Sodium for Injection (IV infusion) 500 mg in 5% Dextrose in Water (of cefazolin), 1 g in 5% Dextrose in Water, 1 g in ... Uses/Indications - In the United States, there are no cefazolin products approved for veterinary species, but it has been used ... Storage/Stability/Compatibility - Cefazolin sodium powder for injection and solutions for injection should be protected from ...
We evaluated the infection rates of cefazolin and vancomycin for craniotomy for tumor patients with and without shunts. ... Non-shunted Patients undergoing Craniotomy for Tumor with Cefazolin or Vancomycin Prophylaxis. ... Patients receiving cefazolin and vancomycin with no prior shunt had infection rates of 2/164 (1.22%) and 1/19 (5.26%), ... There were no infections for patients with cefazolin and prior shunt (0/4), while vancomycin and prior shunt had an infection ...
... reaching 4.2 on day five but responded equally rapidly to parenteral Vitamin K and withdrawal of cefazolin. Cefazolin is an ... Peri-operatively he was started on cefazolin, a normal diet and regular hemodialysis without heparin. The international ... reaching 4.2 on day five but responded equally rapidly to parenteral Vitamin K and withdrawal of cefazolin. Cefazolin is an ... Cefazolin induced hypoprothrombinemia. Am J Health-sys pharm. 2000; 65::823-826. ...
Cefazolin Impuirty L (EP),USP Impurity M ,Cefazolin Epimer ... Cefazolin EP Impurity E(Cefazolin USP Impurity F,MMTD,Cefazolin ... Cefazolin EP Impuirty L(USP Impurity M,Cefazolin Epimer). Catalog No: PI00017010. Product Name: Cefazolin Impuirty L (EP),USP ... Cefazolin Impurity D (USP) 【Cefazolin open-ring lactone 】. Catalog No: PI00017011. Product Name: Cefazolin Impurity D (USP) 【 ... Cefazolin EP Impurity B(USP Impurity N). Catalog No: PI00017003. Product Name: Cefazolin EP Impurity B(USP Impurity N). CAS No: ...
CEFAZOLIN, 1G, INJ.POWDER. Common uses. This medication contains an antibiotic from the cephalosporin family. Typically, it is ...
Shoulder Arthroplasty: Doxy + Cefazolin No Better than Cefazolin Alone Against P. Acnes. June 13, 2018. OrthoBuzz for Surgeons ...
Completed order forms and supporting clinical documentation can be faxed to (833) 786-0025 or uploaded to our secured portal ...
LBXMF2 - Cefazolin 2. Variable Name: LBXMF2. SAS Label: Cefazolin 2. English Text: Cefazolin 2 Target: Both males and females 1 ... LBXMF1 - Cefazolin 1. Variable Name: LBXMF1. SAS Label: Cefazolin 1. English Text: Cefazolin 1. Target: Both males and females ...
Cefazolin is typically used alone for skin and skin-structure coverage but does not cover MRSA. ... Cefazolin is a first-generation semisynthetic cephalosporin that arrests bacterial cell wall synthesis, inhibiting bacterial ...
Cefazolin. *View full drug information. First-generation semisynthetic cephalosporin that arrests bacterial cell wall synthesis ... Cefazolin versus anti-staphylococcal penicillins for the treatment of patients with Staphylococcus aureus bacteraemia. Clin ... 55] The addition of daptomycin to cefazolin or cloxacillin did not result in improved outcomes in patients with MSSA bacteremia ... Treatment of methicillin-susceptible S aureus (MSSA) bacteremia with cefazolin has been shown to improve survival rates and ...
小動物外科學22 CEFAZOLIN JAVMA tplo 抗生素 獸醫 獸醫學 獸醫系大五 美國獸醫 臨床入門 臨床獸醫
Cefazolin answers are found in the Johns Hopkins ABX Guide powered by Unbound Medicine. Available for iPhone, iPad, Android, ... "Cefazolin." Johns Hopkins ABX Guide, The Johns Hopkins University, 2022. Pediatrics Central, peds.unboundmedicine.com/ ... pedscentral/view/Johns_Hopkins_ABX_Guide/540087/all/Cefazolin. Auwaerter PG, Avdic E. Cefazolin. Johns Hopkins ABX Guide. The ... TY - ELEC T1 - Cefazolin ID - 540087 A1 - Auwaerter,Paul,M.D. AU - Avdic,Edina,Pharm.D. Y1 - 2022/10/18/ BT - Johns Hopkins ABX ...
Find information on Cefazolin (Ancef) in Daviss Drug Guide including dosage, side effects, interactions, nursing implications ... "CeFAZolin." Daviss Drug Guide, 18th ed., F.A. Davis Company, 2023. Nursing Central, nursing.unboundmedicine.com/nursingcentral ... Davis-Drug-Guide/109015/all/ceFAZolin. Vallerand AHA, Sanoski CAC, Quiring CC. CeFAZolin. Daviss Drug Guide. F.A. Davis ... Vallerand, A. H., Sanoski, C. A., & Quiring, C. (2023). CeFAZolin. In Daviss Drug Guide (18th ed.). F.A. Davis Company. https ...
Each vial of Cefazolin for Injection, USP contains cefazolin sodium equivalent to 2 grams cefazolin. ... CEFAZOLIN injection, powder, for solution Cefazolin by Drug Labeling and Warnings. * FDA.report ... Cefazolin by Drug Facts Cefazolin by is a Prescription medication manufactured, distributed, or labeled by REMEDYREPACK INC.. ... Cefazolin for Injection, USP is a sterile white or off-white powder or crystalline powder containing Cefazolin Sodium USP ...
It is used to treat respiratory infections such as otitis media, bronchitis, pneumonia, urinary tract infections, skin and soft tissue infections, bone and joint infections, sepsis, infective endocarditis, hepatobiliary system infections and eye, ear, nos
The Indian Generic Medicines is a Consultancy and Service company providing access to genuine generic medicines to patients all across the world. We also have own pharmacy named as Indian Generic Medicines which work under compliant distribution guidelines.. ...
Cefazolin Sodium published on 01 Jan 2023 by ASHP. ... Cefazolin Sodium AHFS 8:12.06.04 in ASHP® Injectable Drug ...
... print coupons and get savings tips for Cefazolin In Sodium Chloride and other medications at 65,000 pharmacies. Start saving up ...
20% who received cefazolin (P = 0.001). In a multivariate analysis, patients treated with cefazolin had a 37% reduction in 30- ... Cefazolin often is used for MSSA infections in hemodialysis patients because of its convenient dosing regimen (i.e., at the end ... cefazolin.. The study was a retrospective cohort that included medical and surgical patients admitted to one of 119 Veterans ... Cefazolin Leads to Better Outcomes for Methicillin-susceptible Staphylococcus aureus Bacteremia Than Nafcillin or Oxacillin ...
Explore the 1 paper that mention a possible interaction between Cefazolin and Methionine. ... cefazolin about 14-fold lower than that of Escherichia coli, and that the number of beta-lactamase molecules produced by this ...
Cefazolin. Also Known As: Cefazolin, Ancef, Cefacidal, Cefamezin, Cefrina, Elzogram, Faxilen, Gramaxin, Kefazol, Kefol, ... Cefazolin is mainly used to treat bacterial infections of the skin. It can also be used to treat moderately severe bacterial ... Cefazolin (INN), also known as cefazoline or cephazolin, is a first-generation cephalosporin antibiotic. ... Complete a survey on Cefazolin to help the CureCrowd community. If you have tried to treat this ailment, please complete the ...
Bryant, R. E., & Alford, R. H. (1977). Unsuccessful Treatment of Staphylococcal Endocarditis With Cefazolin. JAMA: The Journal ... Bryant, RE & Alford, RH 1977, Unsuccessful Treatment of Staphylococcal Endocarditis With Cefazolin, JAMA: The Journal of the ... Bryant, Richard E. ; Alford, Robert H. / Unsuccessful Treatment of Staphylococcal Endocarditis With Cefazolin. In: JAMA: The ... Unsuccessful Treatment of Staphylococcal Endocarditis With Cefazolin. / Bryant, Richard E.; Alford, Robert H. In: JAMA: The ...
Cefazolin binds to and inactivates penicillin-binding proteins (PBP) located on the inner membrane of the bacterial cell wall. ... Cefazolin. Cephalosporin antibiotic-indicated in the treatment of serious infections due to susceptible organisms - respiratory ... In addition to this, the drug safety alert list also includes Cefazolin, which is a beta-lactam antibiotic and a first- ... Cefazolin is indicated in the treatment of serious infections due to susceptible organisms: respiratory tract infections, ...
20210722CEF-2 Cefazolin 3 Gram, Bag for Injection. Posted August 17, 2021. by Certificate Manager ...

No FAQ available that match "cefazolin"

No images available that match "cefazolin"