Damages to the CAROTID ARTERIES caused either by blunt force or penetrating trauma, such as CRANIOCEREBRAL TRAUMA; THORACIC INJURIES; and NECK INJURIES. Damaged carotid arteries can lead to CAROTID ARTERY THROMBOSIS; CAROTID-CAVERNOUS SINUS FISTULA; pseudoaneurysm formation; and INTERNAL CAROTID ARTERY DISSECTION. (From Am J Forensic Med Pathol 1997, 18:251; J Trauma 1994, 37:473)
Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery.
Branch of the common carotid artery which supplies the anterior part of the brain, the eye and its appendages, the forehead and nose.
Blood clot formation in any part of the CAROTID ARTERIES. This may produce CAROTID STENOSIS or occlusion of the vessel, leading to TRANSIENT ISCHEMIC ATTACK; CEREBRAL INFARCTION; or AMAUROSIS FUGAX.
The two principal arteries supplying the structures of the head and neck. They ascend in the neck, one on each side, and at the level of the upper border of the thyroid cartilage, each divides into two branches, the external (CAROTID ARTERY, EXTERNAL) and internal (CAROTID ARTERY, INTERNAL) carotid arteries.
General or unspecified injuries to the neck. It includes injuries to the skin, muscles, and other soft tissues of the neck.
Pathological conditions involving the CAROTID ARTERIES, including the common, internal, and external carotid arteries. ATHEROSCLEROSIS and TRAUMA are relatively frequent causes of carotid artery pathology.
The innermost layer of an artery or vein, made up of one layer of endothelial cells and supported by an internal elastic lamina.
Injuries caused by impact with a blunt object where there is no penetration of the skin.
Narrowing or stricture of any part of the CAROTID ARTERIES, most often due to atherosclerotic plaque formation. Ulcerations may form in atherosclerotic plaques and induce THROMBUS formation. Platelet or cholesterol emboli may arise from stenotic carotid lesions and induce a TRANSIENT ISCHEMIC ATTACK; CEREBROVASCULAR ACCIDENT; or temporary blindness (AMAUROSIS FUGAX). (From Adams et al., Principles of Neurology, 6th ed, pp 822-3)
The new and thickened layer of scar tissue that forms on a PROSTHESIS, or as a result of vessel injury especially following ANGIOPLASTY or stent placement.
An increase in the number of cells in a tissue or organ without tumor formation. It differs from HYPERTROPHY, which is an increase in bulk without an increase in the number of cells.
Branch of the common carotid artery which supplies the exterior of the head, the face, and the greater part of the neck.
The excision of the thickened, atheromatous tunica intima of a carotid artery.
Injuries to blood vessels caused by laceration, contusion, puncture, or crush and other types of injuries. Symptoms vary by site and mode of injuries and may include bleeding, bruising, swelling, pain, and numbness. It does not include injuries secondary to pathologic function or diseases such as ATHEROSCLEROSIS.
The vessels carrying blood away from the heart.
The nonstriated involuntary muscle tissue of blood vessels.
Penetrating wounds caused by a pointed object.
The first branch of the SUBCLAVIAN ARTERY with distribution to muscles of the NECK; VERTEBRAE; SPINAL CORD; CEREBELLUM; and interior of the CEREBRUM.
The main artery of the thigh, a continuation of the external iliac artery.
Formation and development of a thrombus or blood clot in the blood vessel.
Damage inflicted on the body as the direct or indirect result of an external force, with or without disruption of structural continuity.
Wounds caused by objects penetrating the skin.
The splitting of the vessel wall in one or both (left and right) internal carotid arteries (CAROTID ARTERY, INTERNAL). Interstitial hemorrhage into the media of the vessel wall can lead to occlusion of the internal carotid artery and aneurysm formation.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A small cluster of chemoreceptive and supporting cells located near the bifurcation of the internal carotid artery. The carotid body, which is richly supplied with fenestrated capillaries, senses the pH, carbon dioxide, and oxygen concentrations in the blood and plays a crucial role in their homeostatic control.
Artery arising from the brachiocephalic trunk on the right side and from the arch of the aorta on the left side. It distributes to the neck, thoracic wall, spinal cord, brain, meninges, and upper limb.
The dilated portion of the common carotid artery at its bifurcation into external and internal carotids. It contains baroreceptors which, when stimulated, cause slowing of the heart, vasodilatation, and a fall in blood pressure.
Devices that provide support for tubular structures that are being anastomosed or for body cavities during skin grafting.
Radiography of blood vessels after injection of a contrast medium.
Any adverse condition in a patient occurring as the result of treatment by a physician, surgeon, or other health professional, especially infections acquired by a patient during the course of treatment.
Disruption of structural continuity of the body as a result of the discharge of firearms.
Either of two large arteries originating from the abdominal aorta; they supply blood to the pelvis, abdominal wall and legs.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The arterial blood vessels supplying the CEREBRUM.
The middle layer of blood vessel walls, composed principally of thin, cylindrical, smooth muscle cells and elastic tissue. It accounts for the bulk of the wall of most arteries. The smooth muscle cells are arranged in circular layers around the vessel, and the thickness of the coat varies with the size of the vessel.
The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs.
Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Tomography using x-ray transmission and a computer algorithm to reconstruct the image.
Radiography of the vascular system of the brain after injection of a contrast medium.
A measurement of the thickness of the carotid artery walls. It is measured by B-mode ULTRASONOGRAPHY and is used as a surrogate marker for ATHEROSCLEROSIS.
The continuation of the subclavian artery; it distributes over the upper limb, axilla, chest and shoulder.
Not an aneurysm but a well-defined collection of blood and CONNECTIVE TISSUE outside the wall of a blood vessel or the heart. It is the containment of a ruptured blood vessel or heart, such as sealing a rupture of the left ventricle. False aneurysm is formed by organized THROMBUS and HEMATOMA in surrounding tissue.
The first and largest artery branching from the aortic arch. It distributes blood to the right side of the head and neck and to the right arm.
Elements of limited time intervals, contributing to particular results or situations.
Use or insertion of a tubular device into a duct, blood vessel, hollow organ, or body cavity for injecting or withdrawing fluids for diagnostic or therapeutic purposes. It differs from INTUBATION in that the tube here is used to restore or maintain patency in obstructions.
The artery formed by the union of the right and left vertebral arteries; it runs from the lower to the upper border of the pons, where it bifurcates into the two posterior cerebral arteries.
Ultrasonography applying the Doppler effect combined with real-time imaging. The real-time image is created by rapid movement of the ultrasound beam. A powerful advantage of this technique is the ability to estimate the velocity of flow from the Doppler shift frequency.
A branch of the abdominal aorta which supplies the kidneys, adrenal glands and ureters.
Pathological processes which result in the partial or complete obstruction of ARTERIES. They are characterized by greatly reduced or absence of blood flow through these vessels. They are also known as arterial insufficiency.
Arteries which arise from the abdominal aorta and distribute to most of the intestines.
Use of a balloon catheter for dilation of an occluded artery. It is used in treatment of arterial occlusive diseases, including renal artery stenosis and arterial occlusions in the leg. For the specific technique of BALLOON DILATION in coronary arteries, ANGIOPLASTY, BALLOON, CORONARY is available.
Adverse functional, metabolic, or structural changes in ischemic tissues resulting from the restoration of blood flow to the tissue (REPERFUSION), including swelling; HEMORRHAGE; NECROSIS; and damage from FREE RADICALS. The most common instance is MYOCARDIAL REPERFUSION INJURY.
Brief reversible episodes of focal, nonconvulsive ischemic dysfunction of the brain having a duration of less than 24 hours, and usually less than one hour, caused by transient thrombotic or embolic blood vessel occlusion or stenosis. Events may be classified by arterial distribution, temporal pattern, or etiology (e.g., embolic vs. thrombotic). (From Adams et al., Principles of Neurology, 6th ed, pp814-6)
An abnormal direct communication between an artery and a vein without passing through the CAPILLARIES. An A-V fistula usually leads to the formation of a dilated sac-like connection, arteriovenous aneurysm. The locations and size of the shunts determine the degree of effects on the cardiovascular functions such as BLOOD PRESSURE and HEART RATE.
Non-invasive method of vascular imaging and determination of internal anatomy without injection of contrast media or radiation exposure. The technique is used especially in CEREBRAL ANGIOGRAPHY as well as for studies of other vascular structures.
Injuries incurred during participation in competitive or non-competitive sports.
Thickening and loss of elasticity of the walls of ARTERIES of all sizes. There are many forms classified by the types of lesions and arteries involved, such as ATHEROSCLEROSIS with fatty lesions in the ARTERIAL INTIMA of medium and large muscular arteries.
Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.).
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Surgical excision, performed under general anesthesia, of the atheromatous tunica intima of an artery. When reconstruction of an artery is performed as an endovascular procedure through a catheter, it is called ATHERECTOMY.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
A method of delineating blood vessels by subtracting a tissue background image from an image of tissue plus intravascular contrast material that attenuates the X-ray photons. The background image is determined from a digitized image taken a few moments before injection of the contrast material. The resulting angiogram is a high-contrast image of the vessel. This subtraction technique allows extraction of a high-intensity signal from the superimposed background information. The image is thus the result of the differential absorption of X-rays by different tissues.
The circulation of blood through the BLOOD VESSELS of the BRAIN.
Reconstruction or repair of a blood vessel, which includes the widening of a pathological narrowing of an artery or vein by the removal of atheromatous plaque material and/or the endothelial lining as well, or by dilatation (BALLOON ANGIOPLASTY) to compress an ATHEROMA. Except for ENDARTERECTOMY, usually these procedures are performed via catheterization as minimally invasive ENDOVASCULAR PROCEDURES.
Complications that affect patients during surgery. They may or may not be associated with the disease for which the surgery is done, or within the same surgical procedure.
Operative procedures for the treatment of vascular disorders.
The veins and arteries of the HEART.
Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Surgical therapy of ischemic coronary artery disease achieved by grafting a section of saphenous vein, internal mammary artery, or other substitute between the aorta and the obstructed coronary artery distal to the obstructive lesion.
The continuation of the femoral artery coursing through the popliteal fossa; it divides into the anterior and posterior tibial arteries.
The direct continuation of the brachial trunk, originating at the bifurcation of the brachial artery opposite the neck of the radius. Its branches may be divided into three groups corresponding to the three regions in which the vessel is situated, the forearm, wrist, and hand.
Penetrating and nonpenetrating traumatic injuries to an extracranial or intracranial blood vessel that supplies the brain. This includes the CAROTID ARTERIES; VERTEBRAL ARTERIES; MENINGEAL ARTERIES; CEREBRAL ARTERIES; veins, and venous sinuses.
A group of pathological conditions characterized by sudden, non-convulsive loss of neurological function due to BRAIN ISCHEMIA or INTRACRANIAL HEMORRHAGES. Stroke is classified by the type of tissue NECROSIS, such as the anatomic location, vasculature involved, etiology, age of the affected individual, and hemorrhagic vs. non-hemorrhagic nature. (From Adams et al., Principles of Neurology, 6th ed, pp777-810)
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
A spectrum of pathological conditions of impaired blood flow in the brain. They can involve vessels (ARTERIES or VEINS) in the CEREBRUM, the CEREBELLUM, and the BRAIN STEM. Major categories include INTRACRANIAL ARTERIOVENOUS MALFORMATIONS; BRAIN ISCHEMIA; CEREBRAL HEMORRHAGE; and others.
The continuation of the axillary artery; it branches into the radial and ulnar arteries.
Techniques for controlling bleeding.
Accidents on streets, roads, and highways involving drivers, passengers, pedestrians, or vehicles. Traffic accidents refer to AUTOMOBILES (passenger cars, buses, and trucks), BICYCLING, and MOTORCYCLES but not OFF-ROAD MOTOR VEHICLES; RAILROADS nor snowmobiles.
Surgical insertion of BLOOD VESSEL PROSTHESES to repair injured or diseased blood vessels.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
The largest of the cerebral arteries. It trifurcates into temporal, frontal, and parietal branches supplying blood to most of the parenchyma of these lobes in the CEREBRAL CORTEX. These are the areas involved in motor, sensory, and speech activities.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
Artery originating from the internal carotid artery and distributing to the eye, orbit and adjacent facial structures.
Multiple physical insults or injuries occurring simultaneously.
Non-striated, elongated, spindle-shaped cells found lining the digestive tract, uterus, and blood vessels. They are derived from specialized myoblasts (MYOBLASTS, SMOOTH MUSCLE).
Arteries originating from the subclavian or axillary arteries and distributing to the anterior thoracic wall, mediastinal structures, diaphragm, pectoral muscles and mammary gland.
Pathological outpouching or sac-like dilatation in the wall of any blood vessel (ARTERIES or VEINS) or the heart (HEART ANEURYSM). It indicates a thin and weakened area in the wall which may later rupture. Aneurysms are classified by location, etiology, or other characteristics.
The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz.
Blocking of a blood vessel in the SKULL by an EMBOLUS which can be a blood clot (THROMBUS) or other undissolved material in the blood stream. Most emboli are of cardiac origin and are associated with HEART DISEASES. Other non-cardiac sources of emboli are usually associated with VASCULAR DISEASES.
A value equal to the total volume flow divided by the cross-sectional area of the vascular bed.
A thickening and loss of elasticity of the walls of ARTERIES that occurs with formation of ATHEROSCLEROTIC PLAQUES within the ARTERIAL INTIMA.
Ultrasonography applying the Doppler effect, with the superposition of flow information as colors on a gray scale in a real-time image. This type of ultrasonography is well-suited to identifying the location of high-velocity flow (such as in a stenosis) or of mapping the extent of flow in a certain region.
Surgical union or shunt between ducts, tubes or vessels. It may be end-to-end, end-to-side, side-to-end, or side-to-side.
An anatomic severity scale based on the Abbreviated Injury Scale (AIS) and developed specifically to score multiple traumatic injuries. It has been used as a predictor of mortality.
The formation of an area of NECROSIS in the CEREBRUM caused by an insufficiency of arterial or venous blood flow. Infarcts of the cerebrum are generally classified by hemisphere (i.e., left vs. right), lobe (e.g., frontal lobe infarction), arterial distribution (e.g., INFARCTION, ANTERIOR CEREBRAL ARTERY), and etiology (e.g., embolic infarction).
Application of a ligature to tie a vessel or strangulate a part.
The flow of BLOOD through or around an organ or region of the body.
Vascular diseases characterized by thickening and hardening of the walls of ARTERIES inside the SKULL. There are three subtypes: (1) atherosclerosis with fatty deposits in the ARTERIAL INTIMA; (2) Monckeberg's sclerosis with calcium deposits in the media and (3) arteriolosclerosis involving the small caliber arteries. Clinical signs include HEADACHE; CONFUSION; transient blindness (AMAUROSIS FUGAX); speech impairment; and HEMIPARESIS.
A non-invasive technique using ultrasound for the measurement of cerebrovascular hemodynamics, particularly cerebral blood flow velocity and cerebral collateral flow. With a high-intensity, low-frequency pulse probe, the intracranial arteries may be studied transtemporally, transorbitally, or from below the foramen magnum.
Abnormal outpouching in the wall of intracranial blood vessels. Most common are the saccular (berry) aneurysms located at branch points in CIRCLE OF WILLIS at the base of the brain. Vessel rupture results in SUBARACHNOID HEMORRHAGE or INTRACRANIAL HEMORRHAGES. Giant aneurysms (>2.5 cm in diameter) may compress adjacent structures, including the OCULOMOTOR NERVE. (From Adams et al., Principles of Neurology, 6th ed, p841)
A polygonal anastomosis at the base of the brain formed by the internal carotid (CAROTID ARTERY, INTERNAL), proximal parts of the anterior, middle, and posterior cerebral arteries (ANTERIOR CEREBRAL ARTERY; MIDDLE CEREBRAL ARTERY; POSTERIOR CEREBRAL ARTERY), the anterior communicating artery and the posterior communicating arteries.
A collection of blood outside the BLOOD VESSELS. Hematoma can be localized in an organ, space, or tissue.
General or unspecified injuries involving the leg.
Benign paraganglioma at the bifurcation of the COMMON CAROTID ARTERIES. It can encroach on the parapharyngeal space and produce dysphagia, pain, and cranial nerve palsies.
Damage to any compartment of the lung caused by physical, chemical, or biological agents which characteristically elicit inflammatory reaction. These inflammatory reactions can either be acute and dominated by NEUTROPHILS, or chronic and dominated by LYMPHOCYTES and MACROPHAGES.
Arteries arising from the external carotid or the maxillary artery and distributing to the temporal region.
The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE.
Embolism or thrombosis involving blood vessels which supply intracranial structures. Emboli may originate from extracranial or intracranial sources. Thrombosis may occur in arterial or venous structures.
Microsurgical revascularization to improve intracranial circulation. It usually involves joining the extracranial circulation to the intracranial circulation but may include extracranial revascularization (e.g., subclavian-vertebral artery bypass, subclavian-external carotid artery bypass). It is performed by joining two arteries (direct anastomosis or use of graft) or by free autologous transplantation of highly vascularized tissue to the surface of the brain.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Transient complete or partial monocular blindness due to retinal ischemia. This may be caused by emboli from the CAROTID ARTERY (usually in association with CAROTID STENOSIS) and other locations that enter the central RETINAL ARTERY. (From Adams et al., Principles of Neurology, 6th ed, p245)
The largest branch of the celiac trunk with distribution to the spleen, pancreas, stomach and greater omentum.
Ultrasonography applying the Doppler effect, with frequency-shifted ultrasound reflections produced by moving targets (usually red blood cells) in the bloodstream along the ultrasound axis in direct proportion to the velocity of movement of the targets, to determine both direction and velocity of blood flow. (Stedman, 25th ed)
The condition of an anatomical structure's being constricted beyond normal dimensions.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
Pathologic processes that affect patients after a surgical procedure. They may or may not be related to the disease for which the surgery was done, and they may or may not be direct results of the surgery.
The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM.
Sudden ISCHEMIA in the RETINA due to blocked blood flow through the CENTRAL RETINAL ARTERY or its branches leading to sudden complete or partial loss of vision, respectively, in the eye.
A method of hemostasis utilizing various agents such as Gelfoam, silastic, metal, glass, or plastic pellets, autologous clot, fat, and muscle as emboli. It has been used in the treatment of spinal cord and INTRACRANIAL ARTERIOVENOUS MALFORMATIONS, renal arteriovenous fistulas, gastrointestinal bleeding, epistaxis, hypersplenism, certain highly vascular tumors, traumatic rupture of blood vessels, and control of operative hemorrhage.
An irregularly shaped venous space in the dura mater at either side of the sphenoid bone.
A branch of the celiac artery that distributes to the stomach, pancreas, duodenum, liver, gallbladder, and greater omentum.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
Veins in the neck which drain the brain, face, and neck into the brachiocephalic or subclavian veins.
Levels within a diagnostic group which are established by various measurement criteria applied to the seriousness of a patient's disorder.
Damage or trauma inflicted to the eye by external means. The concept includes both surface injuries and intraocular injuries.
The arterial trunk that arises from the abdominal aorta and after a short course divides into the left gastric, common hepatic and splenic arteries.
A condition of lung damage that is characterized by bilateral pulmonary infiltrates (PULMONARY EDEMA) rich in NEUTROPHILS, and in the absence of clinical HEART FAILURE. This can represent a spectrum of pulmonary lesions, endothelial and epithelial, due to numerous factors (physical, chemical, or biological).
The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE.
Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.
The first seven VERTEBRAE of the SPINAL COLUMN, which correspond to the VERTEBRAE of the NECK.
The qualitative or quantitative estimation of the likelihood of adverse effects that may result from exposure to specified health hazards or from the absence of beneficial influences. (Last, Dictionary of Epidemiology, 1988)
A large vessel supplying the whole length of the small intestine except the superior part of the duodenum. It also supplies the cecum and the ascending part of the colon and about half the transverse part of the colon. It arises from the anterior surface of the aorta below the celiac artery at the level of the first lumbar vertebra.
Lesions formed within the walls of ARTERIES.
Agents that prevent clotting.
Dysfunction of one or more cranial nerves causally related to a traumatic injury. Penetrating and nonpenetrating CRANIOCEREBRAL TRAUMA; NECK INJURIES; and trauma to the facial region are conditions associated with cranial nerve injuries.
NECROSIS occurring in the MIDDLE CEREBRAL ARTERY distribution system which brings blood to the entire lateral aspects of each CEREBRAL HEMISPHERE. Clinical signs include impaired cognition; APHASIA; AGRAPHIA; weak and numbness in the face and arms, contralaterally or bilaterally depending on the infarction.
Pathologic deposition of calcium salts in tissues.

Endothelial implants inhibit intimal hyperplasia after porcine angioplasty. (1/784)

The perivascular implantation of tissue-engineered endothelial cells around injured arteries offers an opportunity to study fundamental vascular physiology as well as restore and improve tissue function. Cell source is an important issue because the ability to implant either xenogeneic or allogeneic cells would greatly enhance the clinical applications of tissue-engineered grafts. We investigated the biological and immunological responses to endothelial cell xenografts and allografts in pigs 4 weeks after angioplasty of the carotid arteries. Porcine or bovine aortic endothelial cells were cultured within Gelfoam matrices and implanted in the perivascular space of 42 injured arteries. Both porcine and bovine endothelial cell grafts reduced the restenosis index compared with control by 54% and 46%, respectively. Perivascular heparin release devices, formulated to release heparin at twice the rate of release of heparan sulfate proteoglycan from endothelial cell implants, produced no significant reduction in the restenosis index. Endothelial cell implants also reduced occlusive thrombosis compared with control and heparin release devices. Host immune responses to endothelial implants were investigated by immunohistochemical examination of explanted devices and by immunocytochemistry of serum samples. The bovine cell grafts displayed infiltration of leukocytes, consisting primarily of lymphocytes, and caused an increase in antibodies detected in serum samples. Reduced cellular infiltration and no humoral response were detected in animals that received allografts. Despite the difference in immune response, the biological effects of xenografts or allografts did not differ significantly.  (+info)

Prostacyclin synthase gene transfer accelerates reendothelialization and inhibits neointimal formation in rat carotid arteries after balloon injury. (2/784)

Prostacyclin (PGI2), a metabolite of arachidonic acid, has the vasoprotective effects of vasodilation, anti-platelet aggregation, and inhibition of smooth muscle cell proliferation. We hypothesized that an overexpression of endogenous PGI2 may accelerate the recovery from endothelial damage and inhibit neointimal formation in the injured artery. To test this hypothesis, we investigated in vivo transfer of the PGI2 synthase (PCS) gene into balloon-injured rat carotid arteries by a nonviral lipotransfection method. Seven days after transfection, a significant regeneration of endothelium was observed in the arteries transfected with a plasmid carrying the rat PCS gene (pCMV-PCS), but little regeneration was seen in those with the control plasmid carrying the lacZ gene (pCMV-lacZ) (percent luminal circumference lined by newly regenerated endothelium: 87. 1+/-6.9% in pCMV-PCS-transfected vessels and 6.9+/-0.2% in pCMV-lacZ vessels, P<0.001). BrdU staining of arterial segments demonstrated a significantly lower incorporation in pCMV-PCS-transfected vessels (7. 5+/-0.3% positive nuclei in vessel cells) than in pCMV-lacZ (50. 7+/-9.6%, P<0.01). Moreover, 2 weeks after transfection, the PCS gene transfer resulted in a significant inhibition of neointimal formation (88% reduction in ratio of intima/media areas), whereas medial area was similar among the groups. Arterial segments transfected with pCMV-PCS produced significantly higher levels of 6-keto-PGF1alpha, the main metabolite of PGI2, compared with the segments transfected with pCMV-lacZ (10.2+/-0.55 and 2.1+/-0.32 ng/mg tissue for pCMV-PCS and pCMV-placZ, P<0.001). In conclusion, this study demonstrated that an in vivo PCS gene transfer increased the production of PGI2 and markedly inhibited neointimal formation with accelerated reendothelialization in rat carotid arteries after balloon injury.  (+info)

Continuous perivascular L-arginine delivery increases total vessel area and reduces neointimal thickening after experimental balloon dilatation. (3/784)

The aim of this study was to evaluate whether vascular remodeling and neointimal thickening occur after balloon dilatation of the nonatherosclerotic rabbit carotid artery, and whether both processes are influenced by continuous perivascular delivery of L-arginine or the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME). In the first experiment, histological and morphometric evaluation of arteries was performed at different time points after balloon dilatation: 10 minutes (n=7), and 1 (n=7), 2 (n=9), 3 (n=20), or 10 (n=5) weeks. Neointimal thickening progressively contributed to luminal narrowing for at least 10 weeks after angioplasty. During the first 2 weeks after dilatation, a significant decrease of the total vessel area was measured. Ten weeks after dilatation, both the neointimal and total vessel area were increased without further changing of the luminal area. In the second experiment, endothelial injured rabbits were randomly assigned to receive 2 weeks of continuous local perivascular physiological salt solution (n=6), L-arginine (n=8), or L-NAME (n=7), starting immediately after balloon dilatation (ie, local drug delivery during the first phase of the biphasic vascular remodeling process). Perivascular L-arginine delivery significantly reduced the neointimal area, despite an increased number of neointimal Ki-67-positive smooth muscle cells. Both the luminal area and total vessel area were significantly increased. Serum L-arginine levels remained unchanged. L-NAME administration had no effect on the neointimal area, nor on the luminal and total vessel area. Neointimal formation and biphasic vascular remodeling occur after experimental balloon dilatation of the nonatherosclerotic rabbit carotid artery, and can be influenced by continuous local perivascular delivery of L-arginine.  (+info)

TIMP-4 is regulated by vascular injury in rats. (4/784)

The role of basement membrane-degrading matrix metalloproteinases (MMPs) in enabling vascular smooth muscle cell migration after vascular injury has been established in several animal models. In contrast, the role of their native inhibitors, the tissue inhibitors of matrix metalloproteinases (TIMPs), has remained unproven despite frequent coregulation of MMPs and TIMPs in other disease states. We have investigated the time course of expression and localization of TIMP-4 in rat carotid arteries 6 hours, 24 hours, 3 days, 7 days, and 14 days after balloon injury by in situ hybridization, immunohistochemistry, and Western blot analysis. TIMP-4 protein was present in the adventitia of injured carotid arteries from 24 hours after injury. At 7 and 14 days after injury, widespread immunostaining for TIMP-4 was observed throughout the neointima, media, and adventitia of injured arteries. Western blot analysis confirmed the quantitative increase in TIMP-4 protein at 7 and 14 days. In situ hybridization detected increased expression of TIMP-4 as early as 24 hours after injury and a marked induction in neointimal cells 7 days after injury. We then studied the effect of TIMP-4 protein on the migration of smooth muscle cells through a matrix-coated membrane in vitro and demonstrated a 53% reduction in invasion of rat vascular smooth muscle cells. These data and the temporal relationship between the upregulation of TIMP-4, its accumulation, and the onset of collagen deposition suggest an important role for TIMP-4 in the proteolytic balance of the vasculature controlling both smooth muscle migration and collagen accumulation in the injured arterial wall.  (+info)

The role of alpha and beta platelet-derived growth factor receptor in the vascular response to injury in nonhuman primates. (5/784)

Restenosis remains a significant clinical problem associated with mechanical interventional procedures for arterial revascularization or repair, including coronary angioplasty and stenting. Studies with rodents have established that platelet-derived growth factor (PDGF), a potent chemotactic and mitogenic agent for vascular smooth muscle cells, is a key mediator of lesion formation after vascular injury. To further explore this hypothesis in a more clinically relevant model, neutralizing monoclonal antibodies (mAbs) were used to examine the effect of selective inhibition of alpha or beta PDGF receptor (PDGFR) on neointima formation in nonhuman primates. Carotid arteries were injured by surgical endarterectomy and femoral arteries by balloon catheter dilatation. Immunostaining revealed that both injuries induced cell proliferation and the upregulation of beta PDGFR but not alpha PDGFR. By 7 days after injury, beta PDGFR staining was limited to the luminal region of the media, the small areas of neointima, and the adventitia. Nearly all bromodeoxyuridine-positive cells were found in these regions as well. After 30 days, a concentric neointima that stained strongly for beta PDGFR had formed in the carotid and femoral arteries. Treatment of baboons with anti-beta PDGFR mAb 2A1E2 for 6 days after injury reduced the carotid artery and femoral artery lesion sizes by 37% (P<0.05) and 48% (P<0.005), respectively, when measured at 30 days. Under the same conditions, treatment with anti-alpha PDGFR mAb 2H7C5 had no effect. These findings suggest that PDGF mediates neointima formation through the beta PDGFR, and that antagonism of this pathway may be a promising therapeutic strategy for reducing clinical restenosis.  (+info)

Glucocorticoid resistance caused by reduced expression of the glucocorticoid receptor in cells from human vascular lesions. (6/784)

Mechanisms that control the balance between cell proliferation and death are important in the development of vascular lesions. Rat primary smooth muscle cells were 80% inhibited by low microgram doses of hydrocortisone (HC) and 50% inhibited by nanogram concentrations of transforming growth factor-beta1 (TGF-beta1), although some lines acquired resistance in late passage. However, comparable doses of HC, or TGF-beta1, failed to inhibit most human lesion-derived cell (LDC) lines. In sensitive LDC, HC (10 microg/mL) inhibited proliferation by up to 50%, with obvious apoptosis in some lines, and TGF-beta1 inhibited proliferation by more than 90%. Collagen production, as measured by [3H]proline incorporation or RIA for type III pro-collagen, was either unaffected or increased in the LDCs by HC. These divergent responses between LDC lines were partially explained by the absence of the glucocorticoid receptor (GR) and heat shock protein 90 mRNA in 10 of 12 LDC lines, but the presence of the mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type II. Western blot analysis confirmed the absence of the GR protein in cells lacking GR mRNA. Immunohistochemistry of human carotid lesions showed high levels of GR in the tunica media, but large areas lacking GR in the fibrous lesion. Considering the absence of the GR in most lines, the effects of HC may be elicited through the mineralocorticoid receptor. Functional resistance to the antiproliferative and antifibrotic effects of HC may contribute to excessive wound repair in atherosclerosis and restenosis.  (+info)

Apoptosis and Bcl-xs in the intimal thickening of balloon-injured carotid arteries. (7/784)

We performed balloon injury in the rat carotid artery and identified intimal thickening after injury. Balloon-injured carotid arteries showed maximum thickness of the neointima on the 14th day before complete endothelial cell regeneration. In this lesion we identified apoptosis of vascular smooth muscle cells (VSMCs) by in situ DNA labelling and electron microscopy in the neointima on the 14th day after injury. mRNA expression levels of bcl-2, bax, bcl-x, p53 and caspase-1 were determined by the reverse transcriptase-polymerase chain reaction method both in injured and uninjured carotid arteries. Neither bcl-2 nor bcl-xl mRNA expression was detected in either injured or uninjured arteries, whereas bax and p53 mRNA expression was identified and their mRNA levels were not altered after balloon injury. In contrast, both bcl-xs and caspase-1 mRNA was detected and was markedly induced only in the injured carotid artery. Positive staining for immunoreactive Bcl-x was observed specifically in the injured arterial wall and co-localized with positive staining of nuclei identified by in situ DNA labelling. We conclude that two opposite cellular responses, VSMC proliferation and apoptosis, exist together in the neointima of the rat carotid artery after balloon injury, and selective induction of Bcl-xs expression is a key regulator of VSMC apoptosis in the process of vascular remodelling.  (+info)

Soluble transforming growth factor-beta type II receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth. (8/784)

Using the rat balloon catheter denudation model, we examined the role of transforming growth factor-beta (TGF-beta) isoforms in vascular repair processes. By en face in situ hybridization, proliferating and quiescent smooth muscle cells in denuded vessels expressed high levels of mRNA for TGF-beta1, TGF-beta2, TGF-beta3, and lower levels of TGF-beta receptor II (TGF-betaRII) mRNA. Compared with normal endothelium, TGF-beta1 and TGF-beta2, as well as TGF-betaRII, mRNA were upregulated in endothelium at the wound edge. Injected recombinant soluble TGF-betaRII (TGF-betaR:Fc) localized preferentially to the adventitia and developing neointima in the injured carotid artery, causing a reduction in intimal lesion formation (up to 65%) and an increase in lumen area (up to 88%). The gain in lumen area was largely due to inhibition of negative remodeling, which coincided with reduced adventitial fibrosis and collagen deposition. Four days after injury, TGF-betaR:Fc treatment almost completely inhibited the induction of smooth muscle alpha-actin expression in adventitial cells. In the vessel wall, TGF-betaR:Fc caused a marked reduction in mRNA levels for collagens type I and III. TGF-betaR:Fc had no effect on endothelial proliferation as determined by reendothelialization of the denuded rat aorta. Together, these findings identify the TGF-beta isoforms as major factors mediating adventitial fibrosis and negative remodeling after vascular injury, a major cause of restenosis after angioplasty.  (+info)

Carotid artery injuries refer to damages or traumas that affect the carotid arteries, which are a pair of major blood vessels located in the neck that supply oxygenated blood to the head and neck. These injuries can occur due to various reasons such as penetrating or blunt trauma, iatrogenic causes (during medical procedures), or degenerative diseases.

Carotid artery injuries can be categorized into three types:

1. Blunt carotid injury (BCI): This type of injury is caused by a sudden and severe impact to the neck, which can result in intimal tears, dissection, or thrombosis of the carotid artery. BCIs are commonly seen in motor vehicle accidents, sports-related injuries, and assaults.
2. Penetrating carotid injury: This type of injury is caused by a foreign object that penetrates the neck and damages the carotid artery. Examples include gunshot wounds, stab wounds, or other sharp objects that pierce the skin and enter the neck.
3. Iatrogenic carotid injury: This type of injury occurs during medical procedures such as endovascular interventions, surgical procedures, or the placement of central lines.

Symptoms of carotid artery injuries may include:

* Stroke or transient ischemic attack (TIA)
* Neurological deficits such as hemiparesis, aphasia, or visual disturbances
* Bleeding from the neck or mouth
* Pulsatile mass in the neck
* Hypotension or shock
* Loss of consciousness

Diagnosis of carotid artery injuries may involve imaging studies such as computed tomography angiography (CTA), magnetic resonance angiography (MRA), or conventional angiography. Treatment options include endovascular repair, surgical repair, or anticoagulation therapy, depending on the severity and location of the injury.

The carotid arteries are a pair of vital blood vessels in the human body that supply oxygenated blood to the head and neck. Each person has two common carotid arteries, one on each side of the neck, which branch off from the aorta, the largest artery in the body.

The right common carotid artery originates from the brachiocephalic trunk, while the left common carotid artery arises directly from the aortic arch. As they ascend through the neck, they split into two main branches: the internal and external carotid arteries.

The internal carotid artery supplies oxygenated blood to the brain, eyes, and other structures within the skull, while the external carotid artery provides blood to the face, scalp, and various regions of the neck.

Maintaining healthy carotid arteries is crucial for overall cardiovascular health and preventing serious conditions like stroke, which can occur when the arteries become narrowed or blocked due to the buildup of plaque or fatty deposits (atherosclerosis). Regular check-ups with healthcare professionals may include monitoring carotid artery health through ultrasound or other imaging techniques.

The internal carotid artery is a major blood vessel that supplies oxygenated blood to the brain. It originates from the common carotid artery and passes through the neck, entering the skull via the carotid canal in the temporal bone. Once inside the skull, it branches into several smaller vessels that supply different parts of the brain with blood.

The internal carotid artery is divided into several segments: cervical, petrous, cavernous, clinoid, and supraclinoid. Each segment has distinct clinical significance in terms of potential injury or disease. The most common conditions affecting the internal carotid artery include atherosclerosis, which can lead to stroke or transient ischemic attack (TIA), and dissection, which can cause severe headache, neck pain, and neurological symptoms.

It's important to note that any blockage or damage to the internal carotid artery can have serious consequences, as it can significantly reduce blood flow to the brain and lead to permanent neurological damage or even death. Therefore, regular check-ups and screening tests are recommended for individuals at high risk of developing vascular diseases.

Carotid artery thrombosis is a medical condition characterized by the formation of a blood clot (thrombus) inside the carotid artery, which is one of the major blood vessels that supplies oxygenated blood to the head and neck. This condition can lead to serious complications such as a stroke or transient ischemic attack (TIA), also known as a "mini-stroke," if the clot dislodges and travels to the brain, blocking the flow of blood and oxygen.

Carotid artery thrombosis can result from various factors, including atherosclerosis (the buildup of fats, cholesterol, and other substances in the artery walls), hypertension (high blood pressure), diabetes, smoking, and genetic predisposition. Symptoms may include neck pain or stiffness, weakness or numbness in the face or limbs, difficulty speaking or understanding speech, vision problems, and sudden severe headaches. Diagnosis typically involves imaging tests such as ultrasound, CT angiography, or MRI angiography. Treatment options may include anticoagulant or antiplatelet medications, endovascular procedures to remove the clot, or surgery to clean out the artery (carotid endarterectomy).

The common carotid artery is a major blood vessel in the neck that supplies oxygenated blood to the head and neck. It originates from the brachiocephalic trunk or the aortic arch and divides into the internal and external carotid arteries at the level of the upper border of the thyroid cartilage. The common carotid artery is an important structure in the circulatory system, and any damage or blockage to it can have serious consequences, including stroke.

Neck injuries refer to damages or traumas that occur in any part of the neck, including soft tissues (muscles, ligaments, tendons), nerves, bones (vertebrae), and joints (facet joints, intervertebral discs). These injuries can result from various incidents such as road accidents, falls, sports-related activities, or work-related tasks. Common neck injuries include whiplash, strain or sprain of the neck muscles, herniated discs, fractured vertebrae, and pinched nerves, which may cause symptoms like pain, stiffness, numbness, tingling, or weakness in the neck, shoulders, arms, or hands. Immediate medical attention is necessary for proper diagnosis and treatment to prevent further complications and ensure optimal recovery.

Carotid artery diseases refer to conditions that affect the carotid arteries, which are the major blood vessels that supply oxygen-rich blood to the head and neck. The most common type of carotid artery disease is atherosclerosis, which occurs when fatty deposits called plaques build up in the inner lining of the arteries.

These plaques can cause the arteries to narrow or become blocked, reducing blood flow to the brain and increasing the risk of stroke. Other carotid artery diseases include carotid artery dissection, which occurs when there is a tear in the inner lining of the artery, and fibromuscular dysplasia, which is a condition that affects the muscle and tissue in the walls of the artery.

Symptoms of carotid artery disease may include neck pain or pulsations, transient ischemic attacks (TIAs) or "mini-strokes," and strokes. Treatment options for carotid artery disease depend on the severity and type of the condition but may include lifestyle changes, medications, endarterectomy (a surgical procedure to remove plaque from the artery), or angioplasty and stenting (procedures to open blocked arteries using a balloon and stent).

Tunica intima, also known as the intima layer, is the innermost layer of a blood vessel, including arteries and veins. It is in direct contact with the flowing blood and is composed of simple squamous endothelial cells that form a continuous, non-keratinized, stratified epithelium. These cells play a crucial role in maintaining vascular homeostasis by regulating the passage of molecules and immune cells between the blood and the vessel wall, as well as contributing to the maintenance of blood fluidity and preventing coagulation.

The tunica intima is supported by a thin layer of connective tissue called the basement membrane, which provides structural stability and anchorage for the endothelial cells. Beneath the basement membrane lies a loose network of elastic fibers and collagen, known as the internal elastic lamina, that separates the tunica intima from the middle layer, or tunica media.

In summary, the tunica intima is the innermost layer of blood vessels, primarily composed of endothelial cells and a basement membrane, which regulates various functions to maintain vascular homeostasis.

Nonpenetrating wounds are a type of trauma or injury to the body that do not involve a break in the skin or underlying tissues. These wounds can result from blunt force trauma, such as being struck by an object or falling onto a hard surface. They can also result from crushing injuries, where significant force is applied to a body part, causing damage to internal structures without breaking the skin.

Nonpenetrating wounds can cause a range of injuries, including bruising, swelling, and damage to internal organs, muscles, bones, and other tissues. The severity of the injury depends on the force of the trauma, the location of the impact, and the individual's overall health and age.

While nonpenetrating wounds may not involve a break in the skin, they can still be serious and require medical attention. If you have experienced blunt force trauma or suspect a nonpenetrating wound, it is important to seek medical care to assess the extent of the injury and receive appropriate treatment.

Carotid stenosis is a medical condition that refers to the narrowing or constriction of the lumen (inner space) of the carotid artery. The carotid arteries are major blood vessels that supply oxygenated blood to the head and neck. Carotid stenosis usually results from the buildup of plaque, made up of fat, cholesterol, calcium, and other substances, on the inner walls of the artery. This process is called atherosclerosis.

As the plaque accumulates, it causes the artery to narrow, reducing blood flow to the brain. Severe carotid stenosis can increase the risk of stroke, as a clot or debris from the plaque can break off and travel to the brain, blocking a smaller blood vessel and causing tissue damage or death.

Carotid stenosis is typically diagnosed through imaging tests such as ultrasound, CT angiography, or MRI angiography. Treatment options may include lifestyle modifications (such as quitting smoking, controlling blood pressure, and managing cholesterol levels), medications to reduce the risk of clots, or surgical procedures like endarterectomy or stenting to remove or bypass the blockage.

Neointima is a term used in pathology and refers to the layer of tissue that forms inside a blood vessel as part of the healing process after an injury, such as angioplasty or stenting. This new tissue is composed mainly of smooth muscle cells and extracellular matrix and can grow inward, potentially causing restenosis (re-narrowing) of the vessel lumen.

In simpler terms, Neointima is a type of scar tissue that forms inside blood vessels as part of the healing process after an injury, but its growth can sometimes cause problems by narrowing the vessel and restricting blood flow.

Hyperplasia is a medical term that refers to an abnormal increase in the number of cells in an organ or tissue, leading to an enlargement of the affected area. It's a response to various stimuli such as hormones, chronic irritation, or inflammation. Hyperplasia can be physiological, like the growth of breast tissue during pregnancy, or pathological, like in the case of benign or malignant tumors. The process is generally reversible if the stimulus is removed. It's important to note that hyperplasia itself is not cancerous, but some forms of hyperplasia can increase the risk of developing cancer over time.

The external carotid artery is a major blood vessel in the neck that supplies oxygenated blood to the structures of the head and neck, excluding the brain. It originates from the common carotid artery at the level of the upper border of the thyroid cartilage, then divides into several branches that supply various regions of the head and neck, including the face, scalp, ears, and neck muscles.

The external carotid artery has eight branches:

1. Superior thyroid artery: Supplies blood to the thyroid gland, larynx, and surrounding muscles.
2. Ascending pharyngeal artery: Supplies blood to the pharynx, palate, and meninges of the brain.
3. Lingual artery: Supplies blood to the tongue and floor of the mouth.
4. Facial artery: Supplies blood to the face, nose, lips, and palate.
5. Occipital artery: Supplies blood to the scalp and muscles of the neck.
6. Posterior auricular artery: Supplies blood to the ear and surrounding muscles.
7. Maxillary artery: Supplies blood to the lower face, nasal cavity, palate, and meninges of the brain.
8. Superficial temporal artery: Supplies blood to the scalp, face, and temporomandibular joint.

The external carotid artery is an essential structure for maintaining adequate blood flow to the head and neck, and any damage or blockage can lead to serious medical conditions such as stroke or tissue necrosis.

Carotid endarterectomy is a surgical procedure to remove plaque buildup (atherosclerosis) from the carotid arteries, which are the major blood vessels that supply oxygen-rich blood to the brain. The surgery involves making an incision in the neck, opening the carotid artery, and removing the plaque from the inside of the artery wall. The goal of the procedure is to restore normal blood flow to the brain and reduce the risk of stroke caused by the narrowing or blockage of the carotid arteries.

Vascular system injuries refer to damages or disruptions to the body's vascular system, which is made up of the heart, arteries, veins, and capillaries. These injuries can occur due to various reasons such as trauma, disease, or surgical complications. They may result in bleeding, blockage of blood flow, or formation of blood clots, leading to serious consequences like tissue damage, organ failure, or even death if not treated promptly and appropriately.

Traumatic injuries to the vascular system can include cuts, tears, or bruises to the blood vessels, which can lead to internal or external bleeding. Blunt trauma can also cause damage to the blood vessels, leading to blockages or aneurysms.

Diseases such as atherosclerosis, diabetes, and inflammatory conditions can weaken the blood vessels and make them more prone to injury. Surgical complications, such as accidental cuts to blood vessels during operations, can also lead to vascular system injuries.

Treatment for vascular system injuries may include surgery, medication, or lifestyle changes, depending on the severity and location of the injury.

Arteries are blood vessels that carry oxygenated blood away from the heart to the rest of the body. They have thick, muscular walls that can withstand the high pressure of blood being pumped out of the heart. Arteries branch off into smaller vessels called arterioles, which further divide into a vast network of tiny capillaries where the exchange of oxygen, nutrients, and waste occurs between the blood and the body's cells. After passing through the capillary network, deoxygenated blood collects in venules, then merges into veins, which return the blood back to the heart.

A smooth muscle within the vascular system refers to the involuntary, innervated muscle that is found in the walls of blood vessels. These muscles are responsible for controlling the diameter of the blood vessels, which in turn regulates blood flow and blood pressure. They are called "smooth" muscles because their individual muscle cells do not have the striations, or cross-striped patterns, that are observed in skeletal and cardiac muscle cells. Smooth muscle in the vascular system is controlled by the autonomic nervous system and by hormones, and can contract or relax slowly over a period of time.

A stab wound is a type of penetrating trauma to the body caused by a sharp object such as a knife or screwdriver. The injury may be classified as either a stabbing or a puncture wound, depending on the nature of the object and the manner in which it was inflicted. Stab wounds typically involve a forceful thrusting motion, which can result in damage to internal organs, blood vessels, and other structures.

The depth and severity of a stab wound depend on several factors, including the type and length of the weapon used, the angle and force of the strike, and the location of the wound on the body. Stab wounds to vital areas such as the chest or abdomen can be particularly dangerous due to the risk of internal bleeding and infection.

Immediate medical attention is required for stab wounds, even if they appear minor at first glance. Treatment may involve wound cleaning, suturing, antibiotics, and in some cases, surgery to repair damaged tissues or organs. In severe cases, stab wounds can lead to shock, organ failure, and even death if left untreated.

The vertebral artery is a major blood vessel that supplies oxygenated blood to the brain and upper spinal cord. It arises from the subclavian artery, then ascends through the transverse processes of several cervical vertebrae before entering the skull through the foramen magnum. Inside the skull, it joins with the opposite vertebral artery to form the basilar artery, which supplies blood to the brainstem and cerebellum. The vertebral artery also gives off several important branches that supply blood to various regions of the brainstem and upper spinal cord.

The femoral artery is the major blood vessel that supplies oxygenated blood to the lower extremity of the human body. It is a continuation of the external iliac artery and becomes the popliteal artery as it passes through the adductor hiatus in the adductor magnus muscle of the thigh.

The femoral artery is located in the femoral triangle, which is bound by the sartorius muscle anteriorly, the adductor longus muscle medially, and the biceps femoris muscle posteriorly. It can be easily palpated in the groin region, making it a common site for taking blood samples, measuring blood pressure, and performing surgical procedures such as femoral artery catheterization and bypass grafting.

The femoral artery gives off several branches that supply blood to the lower limb, including the deep femoral artery, the superficial femoral artery, and the profunda femoris artery. These branches provide blood to the muscles, bones, skin, and other tissues of the leg, ankle, and foot.

Thrombosis is the formation of a blood clot (thrombus) inside a blood vessel, obstructing the flow of blood through the circulatory system. When a clot forms in an artery, it can cut off the supply of oxygen and nutrients to the tissues served by that artery, leading to damage or tissue death. If a thrombus forms in the heart, it can cause a heart attack. If a thrombus breaks off and travels through the bloodstream, it can lodge in a smaller vessel, causing blockage and potentially leading to damage in the organ that the vessel supplies. This is known as an embolism.

Thrombosis can occur due to various factors such as injury to the blood vessel wall, abnormalities in blood flow, or changes in the composition of the blood. Certain medical conditions, medications, and lifestyle factors can increase the risk of thrombosis. Treatment typically involves anticoagulant or thrombolytic therapy to dissolve or prevent further growth of the clot, as well as addressing any underlying causes.

A wound is a type of injury that occurs when the skin or other tissues are cut, pierced, torn, or otherwise broken. Wounds can be caused by a variety of factors, including accidents, violence, surgery, or certain medical conditions. There are several different types of wounds, including:

* Incisions: These are cuts that are made deliberately, often during surgery. They are usually straight and clean.
* Lacerations: These are tears in the skin or other tissues. They can be irregular and jagged.
* Abrasions: These occur when the top layer of skin is scraped off. They may look like a bruise or a scab.
* Punctures: These are wounds that are caused by sharp objects, such as needles or knives. They are usually small and deep.
* Avulsions: These occur when tissue is forcibly torn away from the body. They can be very serious and require immediate medical attention.

Injuries refer to any harm or damage to the body, including wounds. Injuries can range from minor scrapes and bruises to more severe injuries such as fractures, dislocations, and head trauma. It is important to seek medical attention for any injury that is causing significant pain, swelling, or bleeding, or if there is a suspected bone fracture or head injury.

In general, wounds and injuries should be cleaned and covered with a sterile bandage to prevent infection. Depending on the severity of the wound or injury, additional medical treatment may be necessary. This may include stitches for deep cuts, immobilization for broken bones, or surgery for more serious injuries. It is important to follow your healthcare provider's instructions carefully to ensure proper healing and to prevent complications.

Penetrating wounds are a type of traumatic injury that occurs when an object pierces through the skin and underlying tissues, creating a hole or cavity in the body. These wounds can vary in severity, depending on the size and shape of the object, as well as the location and depth of the wound.

Penetrating wounds are typically caused by sharp objects such as knives, bullets, or glass. They can damage internal organs, blood vessels, nerves, and bones, leading to serious complications such as bleeding, infection, organ failure, and even death if not treated promptly and properly.

The management of penetrating wounds involves a thorough assessment of the wound and surrounding tissues, as well as the identification and treatment of any associated injuries or complications. This may include wound cleaning and closure, antibiotics to prevent infection, pain management, and surgery to repair damaged structures. In some cases, hospitalization and close monitoring may be necessary to ensure proper healing and recovery.

A carotid artery, internal, dissection is a medical condition that affects the internal carotid artery, which is a major blood vessel in the neck that supplies oxygenated blood to the brain. In this condition, there is a separation (dissection) of the layers of the artery wall, causing blood to accumulate in the space between the layers. This can lead to narrowing or blockage of the artery, reducing blood flow to the brain and increasing the risk of stroke. Internal carotid artery dissection can be caused by trauma, high blood pressure, connective tissue disorders, or spontaneously. Symptoms may include neck pain, headache, facial pain, visual disturbances, weakness or numbness in the arms or legs, difficulty speaking or understanding speech, and dizziness or loss of balance.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

The carotid body is a small chemoreceptor organ located near the bifurcation of the common carotid artery into the internal and external carotid arteries. It plays a crucial role in the regulation of respiration, blood pressure, and pH balance by detecting changes in the chemical composition of the blood, particularly oxygen levels, carbon dioxide levels, and hydrogen ion concentration (pH).

The carotid body contains specialized nerve endings called glomus cells that are sensitive to changes in these chemical parameters. When there is a decrease in oxygen or an increase in carbon dioxide or hydrogen ions, the glomus cells release neurotransmitters such as acetylcholine and dopamine, which activate afferent nerve fibers leading to the brainstem's nucleus tractus solitarius. This information is then integrated with other physiological signals in the brainstem, resulting in appropriate adjustments in breathing rate, depth, and pattern, as well as changes in heart rate and blood vessel diameter to maintain homeostasis.

Dysfunction of the carotid body can lead to various disorders, such as hypertension, sleep apnea, and chronic lung disease. In some cases, overactivity of the carotid body may result in conditions like primary breathing pattern disorders or pseudohypoxia, where the body responds as if it is experiencing hypoxia despite normal oxygen levels.

The subclavian artery is a major blood vessel that supplies the upper limb and important structures in the neck and head. It arises from the brachiocephalic trunk (in the case of the right subclavian artery) or directly from the aortic arch (in the case of the left subclavian artery).

The subclavian artery has several branches, including:

1. The vertebral artery, which supplies blood to the brainstem and cerebellum.
2. The internal thoracic artery (also known as the mammary artery), which supplies blood to the chest wall, breast, and anterior mediastinum.
3. The thyrocervical trunk, which gives rise to several branches that supply the neck, including the inferior thyroid artery, the suprascapular artery, and the transverse cervical artery.
4. The costocervical trunk, which supplies blood to the neck and upper back, including the posterior chest wall and the lower neck muscles.

The subclavian artery is a critical vessel in maintaining adequate blood flow to the upper limb, and any blockage or damage to this vessel can lead to significant morbidity, including arm pain, numbness, weakness, or even loss of function.

The carotid sinus is a small, dilated area located at the bifurcation (or fork) of the common carotid artery into the internal and external carotid arteries. It is a baroreceptor region, which means it contains specialized sensory nerve endings that can detect changes in blood pressure. When the blood pressure increases, the walls of the carotid sinus stretch, activating these nerve endings and sending signals to the brain. The brain then responds by reducing the heart rate and relaxing the blood vessels, which helps to lower the blood pressure back to normal.

The carotid sinus is an important part of the body's autonomic nervous system, which regulates various involuntary functions such as heart rate, blood pressure, and digestion. It plays a crucial role in maintaining cardiovascular homeostasis and preventing excessive increases in blood pressure that could potentially damage vital organs.

A stent is a small mesh tube that's used to treat narrow or weak arteries. Arteries are blood vessels that carry blood away from your heart to other parts of your body. A stent is placed in an artery as part of a procedure called angioplasty. Angioplasty restores blood flow through narrowed or blocked arteries by inflating a tiny balloon inside the blocked artery to widen it.

The stent is then inserted into the widened artery to keep it open. The stent is usually made of metal, but some are coated with medication that is slowly and continuously released to help prevent the formation of scar tissue in the artery. This can reduce the chance of the artery narrowing again.

Stents are also used in other parts of the body, such as the neck (carotid artery) and kidneys (renal artery), to help maintain blood flow and prevent blockages. They can also be used in the urinary system to treat conditions like ureteropelvic junction obstruction or narrowing of the urethra.

Angiography is a medical procedure in which an x-ray image is taken to visualize the internal structure of blood vessels, arteries, or veins. This is done by injecting a radiopaque contrast agent (dye) into the blood vessel using a thin, flexible catheter. The dye makes the blood vessels visible on an x-ray image, allowing doctors to diagnose and treat various medical conditions such as blockages, narrowing, or malformations of the blood vessels.

There are several types of angiography, including:

* Cardiac angiography (also called coronary angiography) - used to examine the blood vessels of the heart
* Cerebral angiography - used to examine the blood vessels of the brain
* Peripheral angiography - used to examine the blood vessels in the limbs or other parts of the body.

Angiography is typically performed by a radiologist, cardiologist, or vascular surgeon in a hospital setting. It can help diagnose conditions such as coronary artery disease, aneurysms, and peripheral arterial disease, among others.

Iatrogenic disease refers to any condition or illness that is caused, directly or indirectly, by medical treatment or intervention. This can include adverse reactions to medications, infections acquired during hospitalization, complications from surgical procedures, or injuries caused by medical equipment. It's important to note that iatrogenic diseases are unintended and often preventable with proper care and precautions.

Gunshot wounds are defined as traumatic injuries caused by the penetration of bullets or other projectiles fired from firearms into the body. The severity and extent of damage depend on various factors such as the type of firearm used, the distance between the muzzle and the victim, the size and shape of the bullet, and its velocity.

Gunshot wounds can be classified into two main categories:

1. Penetrating gunshot wounds: These occur when a bullet enters the body but does not exit, causing damage to the organs, tissues, and blood vessels along its path.

2. Perforating gunshot wounds: These happen when a bullet enters and exits the body, creating an entry and exit wound, causing damage to the structures it traverses.

Based on the mechanism of injury, gunshot wounds can also be categorized into low-velocity (less than 1000 feet per second) and high-velocity (greater than 1000 feet per second) injuries. High-velocity gunshot wounds are more likely to cause extensive tissue damage due to the transfer of kinetic energy from the bullet to the surrounding tissues.

Immediate medical attention is required for individuals with gunshot wounds, as they may experience significant blood loss, infection, and potential long-term complications such as organ dysfunction or disability. Treatment typically involves surgical intervention to control bleeding, remove foreign material, repair damaged structures, and manage infections if present.

The iliac arteries are major branches of the abdominal aorta, the large artery that carries oxygen-rich blood from the heart to the rest of the body. The iliac arteries divide into two branches, the common iliac arteries, which further bifurcate into the internal and external iliac arteries.

The internal iliac artery supplies blood to the lower abdomen, pelvis, and the reproductive organs, while the external iliac artery provides blood to the lower extremities, including the legs and feet. Together, the iliac arteries play a crucial role in circulating blood throughout the body, ensuring that all tissues and organs receive the oxygen and nutrients they need to function properly.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Cerebral arteries refer to the blood vessels that supply oxygenated blood to the brain. These arteries branch off from the internal carotid arteries and the vertebral arteries, which combine to form the basilar artery. The major cerebral arteries include:

1. Anterior cerebral artery (ACA): This artery supplies blood to the frontal lobes of the brain, including the motor and sensory cortices responsible for movement and sensation in the lower limbs.
2. Middle cerebral artery (MCA): The MCA is the largest of the cerebral arteries and supplies blood to the lateral surface of the brain, including the temporal, parietal, and frontal lobes. It is responsible for providing blood to areas involved in motor function, sensory perception, speech, memory, and vision.
3. Posterior cerebral artery (PCA): The PCA supplies blood to the occipital lobe, which is responsible for visual processing, as well as parts of the temporal and parietal lobes.
4. Anterior communicating artery (ACoA) and posterior communicating arteries (PComAs): These are small arteries that connect the major cerebral arteries, forming an important circulatory network called the Circle of Willis. The ACoA connects the two ACAs, while the PComAs connect the ICA with the PCA and the basilar artery.

These cerebral arteries play a crucial role in maintaining proper brain function by delivering oxygenated blood to various regions of the brain. Any damage or obstruction to these arteries can lead to serious neurological conditions, such as strokes or transient ischemic attacks (TIAs).

The tunica media is the middle layer of the wall of a blood vessel or hollow organ in the body. It is primarily composed of smooth muscle cells and elastic fibers, which allow the vessel or organ to expand and contract. This layer helps regulate the diameter of the lumen (the inner space) of the vessel or organ, thereby controlling the flow of fluids such as blood or lymph through it. The tunica media plays a crucial role in maintaining proper organ function and blood pressure regulation.

The pulmonary artery is a large blood vessel that carries deoxygenated blood from the right ventricle of the heart to the lungs for oxygenation. It divides into two main branches, the right and left pulmonary arteries, which further divide into smaller vessels called arterioles, and then into a vast network of capillaries in the lungs where gas exchange occurs. The thin walls of these capillaries allow oxygen to diffuse into the blood and carbon dioxide to diffuse out, making the blood oxygen-rich before it is pumped back to the left side of the heart through the pulmonary veins. This process is crucial for maintaining proper oxygenation of the body's tissues and organs.

A brain injury is defined as damage to the brain that occurs following an external force or trauma, such as a blow to the head, a fall, or a motor vehicle accident. Brain injuries can also result from internal conditions, such as lack of oxygen or a stroke. There are two main types of brain injuries: traumatic and acquired.

Traumatic brain injury (TBI) is caused by an external force that results in the brain moving within the skull or the skull being fractured. Mild TBIs may result in temporary symptoms such as headaches, confusion, and memory loss, while severe TBIs can cause long-term complications, including physical, cognitive, and emotional impairments.

Acquired brain injury (ABI) is any injury to the brain that occurs after birth and is not hereditary, congenital, or degenerative. ABIs are often caused by medical conditions such as strokes, tumors, anoxia (lack of oxygen), or infections.

Both TBIs and ABIs can range from mild to severe and may result in a variety of physical, cognitive, and emotional symptoms that can impact a person's ability to perform daily activities and function independently. Treatment for brain injuries typically involves a multidisciplinary approach, including medical management, rehabilitation, and supportive care.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Cerebral angiography is a medical procedure that involves taking X-ray images of the blood vessels in the brain after injecting a contrast dye into them. This procedure helps doctors to diagnose and treat various conditions affecting the blood vessels in the brain, such as aneurysms, arteriovenous malformations, and stenosis (narrowing of the blood vessels).

During the procedure, a catheter is inserted into an artery in the leg and threaded through the body to the blood vessels in the neck or brain. The contrast dye is then injected through the catheter, and X-ray images are taken to visualize the blood flow through the brain's blood vessels.

Cerebral angiography provides detailed images of the blood vessels in the brain, allowing doctors to identify any abnormalities or blockages that may be causing symptoms or increasing the risk of stroke. Based on the results of the cerebral angiography, doctors can develop a treatment plan to address these issues and prevent further complications.

Carotid intima-media thickness (CIMT) is a measurement of the thickness of the inner two layers of the carotid artery, which are the intima and media layers. This measurement is used as a marker for assessing cardiovascular disease risk, particularly the risk of atherosclerosis, or the buildup of plaque in the arteries.

CIMT can be measured using ultrasound imaging, and it is typically measured at several points along the length of the common carotid artery, as well as at the bifurcation where the common carotid artery divides into the internal and external carotid arteries. Increased CIMT has been associated with an increased risk of cardiovascular events such as heart attack and stroke.

It is important to note that while CIMT can provide valuable information about a person's cardiovascular health, it should not be used as the sole determinant of cardiovascular disease risk. Other factors, such as age, family history, smoking status, blood pressure, cholesterol levels, and diabetes status, should also be taken into account when assessing cardiovascular disease risk.

The axillary artery is a major blood vessel in the upper limb. It is the continuation of the subclavian artery and begins at the lateral border of the first rib, where it becomes the brachial artery. The axillary artery supplies oxygenated blood to the upper extremity, chest wall, and breast.

The axillary artery is divided into three parts based on the surrounding structures:

1. First part: From its origin at the lateral border of the first rib to the medial border of the pectoralis minor muscle. It lies deep to the clavicle and is covered by the scalene muscles, the anterior and middle scalene being the most important. The branches arising from this portion are the superior thoracic artery and the thyrocervical trunk.
2. Second part: Behind the pectoralis minor muscle. The branches arising from this portion are the lateral thoracic artery and the subscapular artery.
3. Third part: After leaving the lower border of the pectoralis minor muscle, it becomes the brachial artery. The branches arising from this portion are the anterior circumflex humeral artery and the posterior circumflex humeral artery.

The axillary artery is a common site for surgical interventions such as angioplasty and stenting to treat peripheral arterial disease, as well as for bypass grafting in cases of severe atherosclerosis or occlusion.

A false aneurysm, also known as a pseudoaneurysm, is a type of aneurysm that occurs when there is a leakage or rupture of blood from a blood vessel into the surrounding tissues, creating a pulsating hematoma or collection of blood. Unlike true aneurysms, which involve a localized dilation or bulging of the blood vessel wall, false aneurysms do not have a complete covering of all three layers of the arterial wall (intima, media, and adventitia). Instead, they are typically covered by only one or two layers, such as the intima and adventitia, or by surrounding tissues like connective tissue or fascia.

False aneurysms can result from various factors, including trauma, infection, iatrogenic causes (such as medical procedures), or degenerative changes in the blood vessel wall. They are more common in arteries than veins and can occur in any part of the body. If left untreated, false aneurysms can lead to serious complications such as rupture, thrombosis, distal embolization, or infection. Treatment options for false aneurysms include surgical repair, endovascular procedures, or observation with regular follow-up imaging.

The brachiocephalic trunk, also known as the brachiocephalic artery or innominate artery, is a large vessel that branches off the aorta and divides into the right common carotid artery and the right subclavian artery. It supplies blood to the head, neck, and arms on the right side of the body.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Catheterization is a medical procedure in which a catheter (a flexible tube) is inserted into the body to treat various medical conditions or for diagnostic purposes. The specific definition can vary depending on the area of medicine and the particular procedure being discussed. Here are some common types of catheterization:

1. Urinary catheterization: This involves inserting a catheter through the urethra into the bladder to drain urine. It is often performed to manage urinary retention, monitor urine output in critically ill patients, or assist with surgical procedures.
2. Cardiac catheterization: A procedure where a catheter is inserted into a blood vessel, usually in the groin or arm, and guided to the heart. This allows for various diagnostic tests and treatments, such as measuring pressures within the heart chambers, assessing blood flow, or performing angioplasty and stenting of narrowed coronary arteries.
3. Central venous catheterization: A catheter is inserted into a large vein, typically in the neck, chest, or groin, to administer medications, fluids, or nutrition, or to monitor central venous pressure.
4. Peritoneal dialysis catheterization: A catheter is placed into the abdominal cavity for individuals undergoing peritoneal dialysis, a type of kidney replacement therapy.
5. Neurological catheterization: In some cases, a catheter may be inserted into the cerebrospinal fluid space (lumbar puncture) or the brain's ventricular system (ventriculostomy) to diagnose or treat various neurological conditions.

These are just a few examples of catheterization procedures in medicine. The specific definition and purpose will depend on the medical context and the particular organ or body system involved.

The basilar artery is a major blood vessel that supplies oxygenated blood to the brainstem and cerebellum. It is formed by the union of two vertebral arteries at the lower part of the brainstem, near the junction of the medulla oblongata and pons.

The basilar artery runs upward through the center of the brainstem and divides into two posterior cerebral arteries at the upper part of the brainstem, near the midbrain. The basilar artery gives off several branches that supply blood to various parts of the brainstem, including the pons, medulla oblongata, and midbrain, as well as to the cerebellum.

The basilar artery is an important part of the circle of Willis, a network of arteries at the base of the brain that ensures continuous blood flow to the brain even if one of the arteries becomes blocked or narrowed.

Ultrasonography, Doppler, and Duplex are diagnostic medical techniques that use sound waves to create images of internal body structures and assess their function. Here are the definitions for each:

1. Ultrasonography: Also known as ultrasound, this is a non-invasive imaging technique that uses high-frequency sound waves to produce images of internal organs and tissues. A small handheld device called a transducer is placed on the skin surface, which emits and receives sound waves. The returning echoes are then processed to create real-time visual images of the internal structures.
2. Doppler: This is a type of ultrasound that measures the velocity and direction of blood flow in the body by analyzing the frequency shift of the reflected sound waves. It can be used to assess blood flow in various parts of the body, such as the heart, arteries, and veins.
3. Duplex: Duplex ultrasonography is a combination of both gray-scale ultrasound and Doppler ultrasound. It provides detailed images of internal structures, as well as information about blood flow velocity and direction. This technique is often used to evaluate conditions such as deep vein thrombosis, carotid artery stenosis, and peripheral arterial disease.

In summary, ultrasonography is a diagnostic imaging technique that uses sound waves to create images of internal structures, Doppler is a type of ultrasound that measures blood flow velocity and direction, and duplex is a combination of both techniques that provides detailed images and information about blood flow.

The renal artery is a pair of blood vessels that originate from the abdominal aorta and supply oxygenated blood to each kidney. These arteries branch into several smaller vessels that provide blood to the various parts of the kidneys, including the renal cortex and medulla. The renal arteries also carry nutrients and other essential components needed for the normal functioning of the kidneys. Any damage or blockage to the renal artery can lead to serious consequences, such as reduced kidney function or even kidney failure.

Arterial occlusive diseases are medical conditions characterized by the blockage or narrowing of the arteries, which can lead to a reduction in blood flow to various parts of the body. This reduction in blood flow can cause tissue damage and may result in serious complications such as tissue death (gangrene), organ dysfunction, or even death.

The most common cause of arterial occlusive diseases is atherosclerosis, which is the buildup of plaque made up of fat, cholesterol, calcium, and other substances in the inner lining of the artery walls. Over time, this plaque can harden and narrow the arteries, restricting blood flow. Other causes of arterial occlusive diseases include blood clots, emboli (tiny particles that travel through the bloodstream and lodge in smaller vessels), inflammation, trauma, and certain inherited conditions.

Symptoms of arterial occlusive diseases depend on the location and severity of the blockage. Common symptoms include:

* Pain, cramping, or fatigue in the affected limb, often triggered by exercise and relieved by rest (claudication)
* Numbness, tingling, or weakness in the affected limb
* Coldness or discoloration of the skin in the affected area
* Slow-healing sores or wounds on the toes, feet, or legs
* Erectile dysfunction in men

Treatment for arterial occlusive diseases may include lifestyle changes such as quitting smoking, exercising regularly, and eating a healthy diet. Medications to lower cholesterol, control blood pressure, prevent blood clots, or manage pain may also be prescribed. In severe cases, surgical procedures such as angioplasty, stenting, or bypass surgery may be necessary to restore blood flow.

The mesenteric arteries are the arteries that supply oxygenated blood to the intestines. There are three main mesenteric arteries: the superior mesenteric artery, which supplies blood to the small intestine (duodenum to two-thirds of the transverse colon) and large intestine (cecum, ascending colon, and the first part of the transverse colon); the inferior mesenteric artery, which supplies blood to the distal third of the transverse colon, descending colon, sigmoid colon, and rectum; and the middle colic artery, which is a branch of the superior mesenteric artery that supplies blood to the transverse colon. These arteries are important in maintaining adequate blood flow to the intestines to support digestion and absorption of nutrients.

Angioplasty, balloon refers to a medical procedure used to widen narrowed or obstructed blood vessels, particularly the coronary arteries that supply blood to the heart muscle. This procedure is typically performed using a catheter-based technique, where a thin, flexible tube called a catheter is inserted into an artery, usually through the groin or wrist, and guided to the site of the narrowing or obstruction in the coronary artery.

Once the catheter reaches the affected area, a small balloon attached to the tip of the catheter is inflated, which compresses the plaque against the artery wall and stretches the artery, thereby restoring blood flow. The balloon is then deflated and removed, along with the catheter.

Balloon angioplasty is often combined with the placement of a stent, a small metal mesh tube that helps to keep the artery open and prevent it from narrowing again. This procedure is known as percutaneous coronary intervention (PCI) or coronary angioplasty and stenting.

Overall, balloon angioplasty is a relatively safe and effective treatment for coronary artery disease, although complications such as bleeding, infection, or re-narrowing of the artery can occur in some cases.

Reperfusion injury is a complex pathophysiological process that occurs when blood flow is restored to previously ischemic tissues, leading to further tissue damage. This phenomenon can occur in various clinical settings such as myocardial infarction (heart attack), stroke, or peripheral artery disease after an intervention aimed at restoring perfusion.

The restoration of blood flow leads to the generation of reactive oxygen species (ROS) and inflammatory mediators, which can cause oxidative stress, cellular damage, and activation of the immune system. This results in a cascade of events that may lead to microvascular dysfunction, capillary leakage, and tissue edema, further exacerbating the injury.

Reperfusion injury is an important consideration in the management of ischemic events, as interventions aimed at restoring blood flow must be carefully balanced with potential harm from reperfusion injury. Strategies to mitigate reperfusion injury include ischemic preconditioning (exposing the tissue to short periods of ischemia before a prolonged ischemic event), ischemic postconditioning (applying brief periods of ischemia and reperfusion after restoring blood flow), remote ischemic preconditioning (ischemia applied to a distant organ or tissue to protect the target organ), and pharmacological interventions that scavenge ROS, reduce inflammation, or improve microvascular function.

A Transient Ischemic Attack (TIA), also known as a "mini-stroke," is a temporary period of symptoms similar to those you'd get if you were having a stroke. A TIA doesn't cause permanent damage and is often caused by a temporary decrease in blood supply to part of your brain, which may last as little as five minutes.

Like an ischemic stroke, a TIA occurs when a clot or debris blocks blood flow to part of your nervous system. However, unlike a stroke, a TIA doesn't leave lasting damage because the blockage is temporary.

Symptoms of a TIA can include sudden onset of weakness, numbness or paralysis in your face, arm or leg, typically on one side of your body. You could also experience slurred or garbled speech, or difficulty understanding others. Other symptoms can include blindness in one or both eyes, dizziness, or a severe headache with no known cause.

Even though TIAs usually last only a few minutes, they are a serious condition and should not be ignored. If you suspect you or someone else is experiencing a TIA, seek immediate medical attention. TIAs can be a warning sign that a full-blown stroke is imminent.

An arteriovenous fistula is an abnormal connection or passageway between an artery and a vein. This connection causes blood to flow directly from the artery into the vein, bypassing the capillary network that would normally distribute the oxygen-rich blood to the surrounding tissues.

Arteriovenous fistulas can occur as a result of trauma, disease, or as a planned surgical procedure for patients who require hemodialysis, a treatment for advanced kidney failure. In hemodialysis, the arteriovenous fistula serves as a site for repeated access to the bloodstream, allowing for efficient removal of waste products and excess fluids.

The medical definition of an arteriovenous fistula is:

"An abnormal communication between an artery and a vein, usually created by surgical means for hemodialysis access or occurring as a result of trauma, congenital defects, or disease processes such as vasculitis or neoplasm."

Magnetic Resonance Angiography (MRA) is a non-invasive medical imaging technique that uses magnetic fields and radio waves to create detailed images of the blood vessels or arteries within the body. It is a type of Magnetic Resonance Imaging (MRI) that focuses specifically on the circulatory system.

MRA can be used to diagnose and evaluate various conditions related to the blood vessels, such as aneurysms, stenosis (narrowing of the vessel), or the presence of plaques or tumors. It can also be used to plan for surgeries or other treatments related to the vascular system. The procedure does not use radiation and is generally considered safe, although people with certain implants like pacemakers may not be able to have an MRA due to safety concerns.

Athletic injuries are damages or injuries to the body that occur while participating in sports, physical activities, or exercise. These injuries can be caused by a variety of factors, including:

1. Trauma: Direct blows, falls, collisions, or crushing injuries can cause fractures, dislocations, contusions, lacerations, or concussions.
2. Overuse: Repetitive motions or stress on a particular body part can lead to injuries such as tendonitis, stress fractures, or muscle strains.
3. Poor technique: Using incorrect form or technique during exercise or sports can put additional stress on muscles, joints, and ligaments, leading to injury.
4. Inadequate warm-up or cool-down: Failing to properly prepare the body for physical activity or neglecting to cool down afterwards can increase the risk of injury.
5. Lack of fitness or flexibility: Insufficient strength, endurance, or flexibility can make individuals more susceptible to injuries during sports and exercise.
6. Environmental factors: Extreme weather conditions, poor field or court surfaces, or inadequate equipment can contribute to the risk of athletic injuries.

Common athletic injuries include ankle sprains, knee injuries, shoulder dislocations, tennis elbow, shin splints, and concussions. Proper training, warm-up and cool-down routines, use of appropriate protective gear, and attention to technique can help prevent many athletic injuries.

Arteriosclerosis is a general term that describes the hardening and stiffening of the artery walls. It's a progressive condition that can occur as a result of aging, or it may be associated with certain risk factors such as high blood pressure, high cholesterol, diabetes, smoking, and a sedentary lifestyle.

The process of arteriosclerosis involves the buildup of plaque, made up of fat, cholesterol, calcium, and other substances, in the inner lining of the artery walls. Over time, this buildup can cause the artery walls to thicken and harden, reducing the flow of oxygen-rich blood to the body's organs and tissues.

Arteriosclerosis can affect any of the body's arteries, but it is most commonly found in the coronary arteries that supply blood to the heart, the cerebral arteries that supply blood to the brain, and the peripheral arteries that supply blood to the limbs. When arteriosclerosis affects the coronary arteries, it can lead to heart disease, angina, or heart attack. When it affects the cerebral arteries, it can lead to stroke or transient ischemic attack (TIA). When it affects the peripheral arteries, it can cause pain, numbness, or weakness in the limbs, and in severe cases, gangrene and amputation.

Spinal cord injuries (SCI) refer to damage to the spinal cord that results in a loss of function, such as mobility or feeling. This injury can be caused by direct trauma to the spine or by indirect damage resulting from disease or degeneration of surrounding bones, tissues, or blood vessels. The location and severity of the injury on the spinal cord will determine which parts of the body are affected and to what extent.

The effects of SCI can range from mild sensory changes to severe paralysis, including loss of motor function, autonomic dysfunction, and possible changes in sensation, strength, and reflexes below the level of injury. These injuries are typically classified as complete or incomplete, depending on whether there is any remaining function below the level of injury.

Immediate medical attention is crucial for spinal cord injuries to prevent further damage and improve the chances of recovery. Treatment usually involves immobilization of the spine, medications to reduce swelling and pressure, surgery to stabilize the spine, and rehabilitation to help regain lost function. Despite advances in treatment, SCI can have a significant impact on a person's quality of life and ability to perform daily activities.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Endarterectomy is a surgical procedure in which the inner lining of an artery (the endothelium) that has become thickened, damaged, or narrowed due to the buildup of fatty deposits, called plaques, is removed. This process helps restore normal blood flow through the artery and reduces the risk of serious complications such as stroke or limb loss.

The procedure typically involves making an incision in the affected artery, carefully removing the plaque and inner lining, and then closing the artery with sutures or a patch graft. Endarterectomy is most commonly performed on the carotid arteries in the neck, but it can also be done on other arteries throughout the body, including the femoral artery in the leg and the iliac artery in the pelvis.

Endarterectomy is usually recommended for patients with significant narrowing of their arteries who are experiencing symptoms such as pain, numbness, or weakness in their limbs, or who have a high risk of stroke due to carotid artery disease. The procedure is generally safe and effective, but like any surgery, it carries risks such as bleeding, infection, and damage to nearby nerves or tissues.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Digital subtraction angiography (DSA) is a medical imaging technique used to visualize the blood vessels and blood flow within the body. It combines the use of X-ray technology with digital image processing to produce detailed images of the vascular system.

In DSA, a contrast agent is injected into the patient's bloodstream through a catheter, which is typically inserted into an artery in the leg and guided to the area of interest using fluoroscopy. As the contrast agent flows through the blood vessels, X-ray images are taken at multiple time points.

The digital subtraction process involves taking a baseline image without contrast and then subtracting it from subsequent images taken with contrast. This allows for the removal of background structures and noise, resulting in clearer images of the blood vessels. DSA can be used to diagnose and evaluate various vascular conditions, such as aneurysms, stenosis, and tumors, and can also guide interventional procedures such as angioplasty and stenting.

Cerebrovascular circulation refers to the network of blood vessels that supply oxygenated blood and nutrients to the brain tissue, and remove waste products. It includes the internal carotid arteries, vertebral arteries, circle of Willis, and the intracranial arteries that branch off from them.

The internal carotid arteries and vertebral arteries merge to form the circle of Willis, a polygonal network of vessels located at the base of the brain. The anterior cerebral artery, middle cerebral artery, posterior cerebral artery, and communicating arteries are the major vessels that branch off from the circle of Willis and supply blood to different regions of the brain.

Interruptions or abnormalities in the cerebrovascular circulation can lead to various neurological conditions such as stroke, transient ischemic attack (TIA), and vascular dementia.

Angioplasty is a medical procedure used to open narrowed or blocked blood vessels, often referred to as coronary angioplasty when it involves the heart's blood vessels (coronary arteries). The term "angio" refers to an angiogram, which is a type of X-ray image that reveals the inside of blood vessels.

The procedure typically involves the following steps:

1. A thin, flexible catheter (tube) is inserted into a blood vessel, usually through a small incision in the groin or arm.
2. The catheter is guided to the narrowed or blocked area using real-time X-ray imaging.
3. Once in place, a tiny balloon attached to the tip of the catheter is inflated to widen the blood vessel and compress any plaque buildup against the artery walls.
4. A stent (a small mesh tube) may be inserted to help keep the blood vessel open and prevent it from narrowing again.
5. The balloon is deflated, and the catheter is removed.

Angioplasty helps improve blood flow, reduce symptoms such as chest pain or shortness of breath, and lower the risk of heart attack in patients with blocked arteries. It's important to note that angioplasty is not a permanent solution for coronary artery disease, and lifestyle changes, medications, and follow-up care are necessary to maintain long-term cardiovascular health.

Intraoperative complications refer to any unforeseen problems or events that occur during the course of a surgical procedure, once it has begun and before it is completed. These complications can range from minor issues, such as bleeding or an adverse reaction to anesthesia, to major complications that can significantly impact the patient's health and prognosis.

Examples of intraoperative complications include:

1. Bleeding (hemorrhage) - This can occur due to various reasons such as injury to blood vessels or organs during surgery.
2. Infection - Surgical site infections can develop if the surgical area becomes contaminated during the procedure.
3. Anesthesia-related complications - These include adverse reactions to anesthesia, difficulty maintaining the patient's airway, or cardiovascular instability.
4. Organ injury - Accidental damage to surrounding organs can occur during surgery, leading to potential long-term consequences.
5. Equipment failure - Malfunctioning surgical equipment can lead to complications and compromise the safety of the procedure.
6. Allergic reactions - Patients may have allergies to certain medications or materials used during surgery, causing an adverse reaction.
7. Prolonged operative time - Complications may arise if a surgical procedure takes longer than expected, leading to increased risk of infection and other issues.

Intraoperative complications require prompt identification and management by the surgical team to minimize their impact on the patient's health and recovery.

Vascular surgical procedures are operations that are performed to treat conditions and diseases related to the vascular system, which includes the arteries, veins, and capillaries. These procedures can be invasive or minimally invasive and are often used to treat conditions such as peripheral artery disease, carotid artery stenosis, aortic aneurysms, and venous insufficiency.

Some examples of vascular surgical procedures include:

* Endarterectomy: a procedure to remove plaque buildup from the inside of an artery
* Bypass surgery: creating a new path for blood to flow around a blocked or narrowed artery
* Angioplasty and stenting: using a balloon to open a narrowed artery and placing a stent to keep it open
* Aneurysm repair: surgically repairing an aneurysm, a weakened area in the wall of an artery that has bulged out and filled with blood
* Embolectomy: removing a blood clot from a blood vessel
* Thrombectomy: removing a blood clot from a vein

These procedures are typically performed by vascular surgeons, who are trained in the diagnosis and treatment of vascular diseases.

Coronary vessels refer to the network of blood vessels that supply oxygenated blood and nutrients to the heart muscle, also known as the myocardium. The two main coronary arteries are the left main coronary artery and the right coronary artery.

The left main coronary artery branches off into the left anterior descending artery (LAD) and the left circumflex artery (LCx). The LAD supplies blood to the front of the heart, while the LCx supplies blood to the side and back of the heart.

The right coronary artery supplies blood to the right lower part of the heart, including the right atrium and ventricle, as well as the back of the heart.

Coronary vessel disease (CVD) occurs when these vessels become narrowed or blocked due to the buildup of plaque, leading to reduced blood flow to the heart muscle. This can result in chest pain, shortness of breath, or a heart attack.

Brain ischemia is the medical term used to describe a reduction or interruption of blood flow to the brain, leading to a lack of oxygen and glucose delivery to brain tissue. This can result in brain damage or death of brain cells, known as infarction. Brain ischemia can be caused by various conditions such as thrombosis (blood clot formation), embolism (obstruction of a blood vessel by a foreign material), or hypoperfusion (reduced blood flow). The severity and duration of the ischemia determine the extent of brain damage. Symptoms can range from mild, such as transient ischemic attacks (TIAs or "mini-strokes"), to severe, including paralysis, speech difficulties, loss of consciousness, and even death. Immediate medical attention is required for proper diagnosis and treatment to prevent further damage and potential long-term complications.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Coronary artery bypass surgery, also known as coronary artery bypass grafting (CABG), is a surgical procedure used to improve blood flow to the heart in patients with severe coronary artery disease. This condition occurs when the coronary arteries, which supply oxygen-rich blood to the heart muscle, become narrowed or blocked due to the buildup of fatty deposits, called plaques.

During CABG surgery, a healthy blood vessel from another part of the body is grafted, or attached, to the coronary artery, creating a new pathway for oxygen-rich blood to flow around the blocked or narrowed portion of the artery and reach the heart muscle. This bypass helps to restore normal blood flow and reduce the risk of angina (chest pain), shortness of breath, and other symptoms associated with coronary artery disease.

There are different types of CABG surgery, including traditional on-pump CABG, off-pump CABG, and minimally invasive CABG. The choice of procedure depends on various factors, such as the patient's overall health, the number and location of blocked arteries, and the presence of other medical conditions.

It is important to note that while CABG surgery can significantly improve symptoms and quality of life in patients with severe coronary artery disease, it does not cure the underlying condition. Lifestyle modifications, such as regular exercise, a healthy diet, smoking cessation, and medication therapy, are essential for long-term management and prevention of further progression of the disease.

The popliteal artery is the continuation of the femoral artery that passes through the popliteal fossa, which is the area behind the knee. It is the major blood vessel that supplies oxygenated blood to the lower leg and foot. The popliteal artery divides into the anterior tibial artery and the tibioperoneal trunk at the lower border of the popliteus muscle. Any damage or blockage to this artery can result in serious health complications, including reduced blood flow to the leg and foot, which may lead to pain, cramping, numbness, or even tissue death (gangrene) if left untreated.

The radial artery is a key blood vessel in the human body, specifically a part of the peripheral arterial system. Originating from the brachial artery in the upper arm, the radial artery travels down the arm and crosses over the wrist, where it can be palpated easily. It then continues into the hand, dividing into several branches to supply blood to the hand's tissues and digits.

The radial artery is often used for taking pulse readings due to its easy accessibility at the wrist. Additionally, in medical procedures such as coronary angiography or bypass surgery, the radial artery can be utilized as a site for catheter insertion. This allows healthcare professionals to examine the heart's blood vessels and assess cardiovascular health.

Cerebrovascular trauma refers to an injury or damage to the blood vessels of the brain. This type of trauma can include things like carotid artery dissection, vertebral artery dissection, and intracranial hemorrhage (bleeding in the brain). These types of injuries can be caused by blunt force trauma, penetrating trauma, or iatrogenic causes (caused unintentionally during medical procedures). Symptoms of cerebrovascular trauma can include headache, neck pain, altered level of consciousness, weakness or numbness in the face or extremities, and difficulty speaking or understanding speech. Treatment for cerebrovascular trauma depends on the severity and location of the injury, and may include medications to control blood pressure and prevent seizures, surgery to repair damaged blood vessels, or endovascular procedures to treat aneurysms or blockages in the blood vessels.

A stroke, also known as cerebrovascular accident (CVA), is a serious medical condition that occurs when the blood supply to part of the brain is interrupted or reduced, leading to deprivation of oxygen and nutrients to brain cells. This can result in the death of brain tissue and cause permanent damage or temporary impairment to cognitive functions, speech, memory, movement, and other body functions controlled by the affected area of the brain.

Strokes can be caused by either a blockage in an artery that supplies blood to the brain (ischemic stroke) or the rupture of a blood vessel in the brain (hemorrhagic stroke). A transient ischemic attack (TIA), also known as a "mini-stroke," is a temporary disruption of blood flow to the brain that lasts only a few minutes and does not cause permanent damage.

Symptoms of a stroke may include sudden weakness or numbness in the face, arm, or leg; difficulty speaking or understanding speech; vision problems; loss of balance or coordination; severe headache with no known cause; and confusion or disorientation. Immediate medical attention is crucial for stroke patients to receive appropriate treatment and prevent long-term complications.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Cerebrovascular disorders are a group of medical conditions that affect the blood vessels of the brain. These disorders can be caused by narrowing, blockage, or rupture of the blood vessels, leading to decreased blood flow and oxygen supply to the brain. The most common types of cerebrovascular disorders include:

1. Stroke: A stroke occurs when a blood vessel in the brain becomes blocked or bursts, causing a lack of oxygen and nutrients to reach brain cells. This can lead to permanent damage or death of brain tissue.
2. Transient ischemic attack (TIA): Also known as a "mini-stroke," a TIA occurs when blood flow to the brain is temporarily blocked, often by a blood clot. Symptoms may last only a few minutes to a few hours and typically resolve on their own. However, a TIA is a serious warning sign that a full-blown stroke may occur in the future.
3. Aneurysm: An aneurysm is a weakened or bulging area in the wall of a blood vessel. If left untreated, an aneurysm can rupture and cause bleeding in the brain.
4. Arteriovenous malformation (AVM): An AVM is a tangled mass of abnormal blood vessels that connect arteries and veins. This can lead to bleeding in the brain or stroke.
5. Carotid stenosis: Carotid stenosis occurs when the carotid arteries, which supply blood to the brain, become narrowed or blocked due to plaque buildup. This can increase the risk of stroke.
6. Vertebrobasilar insufficiency: This condition occurs when the vertebral and basilar arteries, which supply blood to the back of the brain, become narrowed or blocked. This can lead to symptoms such as dizziness, vertigo, and difficulty swallowing.

Cerebrovascular disorders are a leading cause of disability and death worldwide. Risk factors for these conditions include age, high blood pressure, smoking, diabetes, high cholesterol, and family history. Treatment may involve medications, surgery, or lifestyle changes to reduce the risk of further complications.

The brachial artery is a major blood vessel in the upper arm. It supplies oxygenated blood to the muscles and tissues of the arm, forearm, and hand. The brachial artery originates from the axillary artery at the level of the shoulder joint and runs down the medial (inner) aspect of the arm, passing through the cubital fossa (the depression on the anterior side of the elbow) where it can be palpated during a routine blood pressure measurement. At the lower end of the forearm, the brachial artery bifurcates into the radial and ulnar arteries, which further divide into smaller vessels to supply the hand and fingers.

Hemostatic techniques refer to various methods used in medicine to stop bleeding or hemorrhage. The goal of these techniques is to promote the body's natural clotting process and prevent excessive blood loss. Some common hemostatic techniques include:

1. Mechanical compression: Applying pressure directly to the wound to physically compress blood vessels and stop the flow of blood. This can be done manually or with the use of medical devices such as clamps, tourniquets, or compression bandages.
2. Suturing or stapling: Closing a wound with stitches or staples to bring the edges of the wound together and allow the body's natural clotting process to occur.
3. Electrocautery: Using heat generated by an electrical current to seal off blood vessels and stop bleeding.
4. Hemostatic agents: Applying topical substances that promote clotting, such as fibrin glue, collagen, or gelatin sponges, to the wound site.
5. Vascular embolization: Inserting a catheter into a blood vessel and injecting a substance that blocks the flow of blood to a specific area, such as a bleeding tumor or aneurysm.
6. Surgical ligation: Tying off a bleeding blood vessel with suture material during surgery.
7. Arterial or venous repair: Repairing damaged blood vessels through surgical intervention to restore normal blood flow and prevent further bleeding.

Traffic accidents are incidents that occur when a vehicle collides with another vehicle, a pedestrian, an animal, or a stationary object, resulting in damage or injury. These accidents can be caused by various factors such as driver error, distracted driving, drunk driving, speeding, reckless driving, poor road conditions, and adverse weather conditions. Traffic accidents can range from minor fender benders to severe crashes that result in serious injuries or fatalities. They are a significant public health concern and cause a substantial burden on healthcare systems, emergency services, and society as a whole.

Blood vessel prosthesis implantation is a surgical procedure in which an artificial blood vessel, also known as a vascular graft or prosthetic graft, is inserted into the body to replace a damaged or diseased native blood vessel. The prosthetic graft can be made from various materials such as Dacron (polyester), PTFE (polytetrafluoroethylene), or bovine/human tissue.

The implantation of a blood vessel prosthesis is typically performed to treat conditions that cause narrowing or blockage of the blood vessels, such as atherosclerosis, aneurysms, or traumatic injuries. The procedure may be used to bypass blocked arteries in the legs (peripheral artery disease), heart (coronary artery bypass surgery), or neck (carotid endarterectomy). It can also be used to replace damaged veins for hemodialysis access in patients with kidney failure.

The success of blood vessel prosthesis implantation depends on various factors, including the patient's overall health, the location and extent of the vascular disease, and the type of graft material used. Possible complications include infection, bleeding, graft thrombosis (clotting), and graft failure, which may require further surgical intervention or endovascular treatments.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

The Middle Cerebral Artery (MCA) is one of the main blood vessels that supplies oxygenated blood to the brain. It arises from the internal carotid artery and divides into several branches, which supply the lateral surface of the cerebral hemisphere, including the frontal, parietal, and temporal lobes.

The MCA is responsible for providing blood flow to critical areas of the brain, such as the primary motor and sensory cortices, Broca's area (associated with speech production), Wernicke's area (associated with language comprehension), and the visual association cortex.

Damage to the MCA or its branches can result in a variety of neurological deficits, depending on the specific location and extent of the injury. These may include weakness or paralysis on one side of the body, sensory loss, language impairment, and visual field cuts.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

The ophthalmic artery is the first branch of the internal carotid artery, which supplies blood to the eye and its adnexa. It divides into several branches that provide oxygenated blood to various structures within the eye, including the retina, optic nerve, choroid, iris, ciliary body, and cornea. Any blockage or damage to the ophthalmic artery can lead to serious vision problems or even blindness.

Multiple trauma, also known as polytrauma, is a medical term used to describe severe injuries to the body that are sustained in more than one place or region. It often involves damage to multiple organ systems and can be caused by various incidents such as traffic accidents, falls from significant heights, high-energy collisions, or violent acts.

The injuries sustained in multiple trauma may include fractures, head injuries, internal bleeding, chest and abdominal injuries, and soft tissue injuries. These injuries can lead to a complex medical situation requiring immediate and ongoing care from a multidisciplinary team of healthcare professionals, including emergency physicians, trauma surgeons, critical care specialists, nurses, rehabilitation therapists, and mental health providers.

Multiple trauma is a serious condition that can result in long-term disability or even death if not treated promptly and effectively.

Smooth muscle myocytes are specialized cells that make up the contractile portion of non-striated, or smooth, muscles. These muscles are found in various organs and structures throughout the body, including the walls of blood vessels, the digestive system, the respiratory system, and the reproductive system.

Smooth muscle myocytes are smaller than their striated counterparts (skeletal and cardiac muscle cells) and have a single nucleus. They lack the distinctive banding pattern seen in striated muscles and instead have a uniform appearance of actin and myosin filaments. Smooth muscle myocytes are controlled by the autonomic nervous system, which allows them to contract and relax involuntarily.

These cells play an essential role in many physiological processes, such as regulating blood flow, moving food through the digestive tract, and facilitating childbirth. They can also contribute to various pathological conditions, including hypertension, atherosclerosis, and gastrointestinal disorders.

The mammary arteries are a set of blood vessels that supply oxygenated blood to the mammary glands, which are the structures in female breasts responsible for milk production during lactation. The largest mammary artery, also known as the internal thoracic or internal mammary artery, originates from the subclavian artery and descends along the inner side of the chest wall. It then branches into several smaller arteries that supply blood to the breast tissue. These include the anterior and posterior intercostal arteries, lateral thoracic artery, and pectoral branches. The mammary arteries are crucial in maintaining the health and function of the breast tissue, and any damage or blockage to these vessels can lead to various breast-related conditions or diseases.

An aneurysm is a localized, balloon-like bulge in the wall of a blood vessel. It occurs when the pressure inside the vessel causes a weakened area to swell and become enlarged. Aneurysms can develop in any blood vessel, but they are most common in arteries at the base of the brain (cerebral aneurysm) and the main artery carrying blood from the heart to the rest of the body (aortic aneurysm).

Aneurysms can be classified as saccular or fusiform, depending on their shape. A saccular aneurysm is a round or oval bulge that projects from the side of a blood vessel, while a fusiform aneurysm is a dilated segment of a blood vessel that is uniform in width and involves all three layers of the arterial wall.

The size and location of an aneurysm can affect its risk of rupture. Generally, larger aneurysms are more likely to rupture than smaller ones. Aneurysms located in areas with high blood pressure or where the vessel branches are also at higher risk of rupture.

Ruptured aneurysms can cause life-threatening bleeding and require immediate medical attention. Symptoms of a ruptured aneurysm may include sudden severe headache, neck stiffness, nausea, vomiting, blurred vision, or loss of consciousness. Unruptured aneurysms may not cause any symptoms and are often discovered during routine imaging tests for other conditions.

Treatment options for aneurysms depend on their size, location, and risk of rupture. Small, unruptured aneurysms may be monitored with regular imaging tests to check for growth or changes. Larger or symptomatic aneurysms may require surgical intervention, such as clipping or coiling, to prevent rupture and reduce the risk of complications.

Ultrasonography, also known as sonography, is a diagnostic medical procedure that uses high-frequency sound waves (ultrasound) to produce dynamic images of organs, tissues, or blood flow inside the body. These images are captured in real-time and can be used to assess the size, shape, and structure of various internal structures, as well as detect any abnormalities such as tumors, cysts, or inflammation.

During an ultrasonography procedure, a small handheld device called a transducer is placed on the patient's skin, which emits and receives sound waves. The transducer sends high-frequency sound waves into the body, and these waves bounce back off internal structures and are recorded by the transducer. The recorded data is then processed and transformed into visual images that can be interpreted by a medical professional.

Ultrasonography is a non-invasive, painless, and safe procedure that does not use radiation like other imaging techniques such as CT scans or X-rays. It is commonly used to diagnose and monitor conditions in various parts of the body, including the abdomen, pelvis, heart, blood vessels, and musculoskeletal system.

An intracranial embolism is a medical condition that occurs when a blood clot or other foreign material (embolus) forms elsewhere in the body and travels to the blood vessels within the brain. This embolus then blocks the flow of blood in the cerebral arteries, leading to potential damage or death of brain tissue. Common sources of intracranial emboli include heart conditions such as atrial fibrillation, valvular heart disease, or following a heart attack; or from large-vessel atherosclerosis in the carotid arteries. Symptoms can vary depending on the location and size of the obstruction, but may include sudden weakness or numbness, confusion, difficulty speaking, vision loss, severe headache, or even loss of consciousness. Immediate medical attention is required to diagnose and treat intracranial embolism, often involving anticoagulation therapy, endovascular procedures, or surgery.

Blood flow velocity is the speed at which blood travels through a specific part of the vascular system. It is typically measured in units of distance per time, such as centimeters per second (cm/s) or meters per second (m/s). Blood flow velocity can be affected by various factors, including cardiac output, vessel diameter, and viscosity of the blood. Measuring blood flow velocity is important in diagnosing and monitoring various medical conditions, such as heart disease, stroke, and peripheral vascular disease.

Atherosclerosis is a medical condition characterized by the buildup of plaques, made up of fat, cholesterol, calcium, and other substances found in the blood, on the inner walls of the arteries. This process gradually narrows and hardens the arteries, reducing the flow of oxygen-rich blood to various parts of the body. Atherosclerosis can affect any artery in the body, including those that supply blood to the heart (coronary arteries), brain, limbs, and other organs. The progressive narrowing and hardening of the arteries can lead to serious complications such as coronary artery disease, carotid artery disease, peripheral artery disease, and aneurysms, which can result in heart attacks, strokes, or even death if left untreated.

The exact cause of atherosclerosis is not fully understood, but it is believed to be associated with several risk factors, including high blood pressure, high cholesterol levels, smoking, diabetes, obesity, physical inactivity, and a family history of the condition. Atherosclerosis can often progress without any symptoms for many years, but as the disease advances, it can lead to various signs and symptoms depending on which arteries are affected. Treatment typically involves lifestyle changes, medications, and, in some cases, surgical procedures to restore blood flow.

Ultrasonography, Doppler, color is a type of diagnostic ultrasound technique that uses the Doppler effect to produce visual images of blood flow in vessels and the heart. The Doppler effect is the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the source of the wave. In this context, it refers to the change in frequency of the ultrasound waves as they reflect off moving red blood cells.

In color Doppler ultrasonography, different colors are used to represent the direction and speed of blood flow. Red typically represents blood flowing toward the transducer (the device that sends and receives sound waves), while blue represents blood flowing away from the transducer. The intensity or brightness of the color is proportional to the velocity of blood flow.

Color Doppler ultrasonography is often used in conjunction with grayscale ultrasound imaging, which provides information about the structure and composition of tissues. Together, these techniques can help diagnose a wide range of conditions, including heart disease, blood clots, and abnormalities in blood flow.

Surgical anastomosis is a medical procedure that involves the connection of two tubular structures, such as blood vessels or intestines, to create a continuous passage. This technique is commonly used in various types of surgeries, including vascular, gastrointestinal, and orthopedic procedures.

During a surgical anastomosis, the ends of the two tubular structures are carefully prepared by removing any damaged or diseased tissue. The ends are then aligned and joined together using sutures, staples, or other devices. The connection must be secure and leak-free to ensure proper function and healing.

The success of a surgical anastomosis depends on several factors, including the patient's overall health, the location and condition of the structures being joined, and the skill and experience of the surgeon. Complications such as infection, bleeding, or leakage can occur, which may require additional medical intervention or surgery.

Proper postoperative care is also essential to ensure the success of a surgical anastomosis. This may include monitoring for signs of complications, administering medications to prevent infection and promote healing, and providing adequate nutrition and hydration.

The Injury Severity Score (ISS) is a medical scoring system used to assess the severity of trauma in patients with multiple injuries. It's based on the Abbreviated Injury Scale (AIS), which classifies each injury by body region on a scale from 1 (minor) to 6 (maximum severity).

The ISS is calculated by summing the squares of the highest AIS score in each of the three most severely injured body regions. The possible ISS ranges from 0 to 75, with higher scores indicating more severe injuries. An ISS over 15 is generally considered a significant injury, and an ISS over 25 is associated with a high risk of mortality. It's important to note that the ISS has limitations, as it doesn't consider the number or type of injuries within each body region, only the most severe one.

Cerebral infarction, also known as a "stroke" or "brain attack," is the sudden death of brain cells caused by the interruption of their blood supply. It is most commonly caused by a blockage in one of the blood vessels supplying the brain (an ischemic stroke), but can also result from a hemorrhage in or around the brain (a hemorrhagic stroke).

Ischemic strokes occur when a blood clot or other particle blocks a cerebral artery, cutting off blood flow to a part of the brain. The lack of oxygen and nutrients causes nearby brain cells to die. Hemorrhagic strokes occur when a weakened blood vessel ruptures, causing bleeding within or around the brain. This bleeding can put pressure on surrounding brain tissues, leading to cell death.

Symptoms of cerebral infarction depend on the location and extent of the affected brain tissue but may include sudden weakness or numbness in the face, arm, or leg; difficulty speaking or understanding speech; vision problems; loss of balance or coordination; and severe headache with no known cause. Immediate medical attention is crucial for proper diagnosis and treatment to minimize potential long-term damage or disability.

Ligation, in the context of medical terminology, refers to the process of tying off a part of the body, usually blood vessels or tissue, with a surgical suture or another device. The goal is to stop the flow of fluids such as blood or other substances within the body. It is commonly used during surgeries to control bleeding or to block the passage of fluids, gases, or solids in various parts of the body.

Regional blood flow (RBF) refers to the rate at which blood flows through a specific region or organ in the body, typically expressed in milliliters per minute per 100 grams of tissue (ml/min/100g). It is an essential physiological parameter that reflects the delivery of oxygen and nutrients to tissues while removing waste products. RBF can be affected by various factors such as metabolic demands, neural regulation, hormonal influences, and changes in blood pressure or vascular resistance. Measuring RBF is crucial for understanding organ function, diagnosing diseases, and evaluating the effectiveness of treatments.

Intracranial arteriosclerosis is a medical condition characterized by the thickening and hardening of the walls of the intracranial arteries, which are the blood vessels that supply blood to the brain. This process is caused by the buildup of plaque, made up of fat, cholesterol, and other substances, within the walls of the arteries.

Intracranial arteriosclerosis can lead to a narrowing or blockage of the affected arteries, reducing blood flow to the brain. This can result in various neurological symptoms, such as headaches, dizziness, seizures, and transient ischemic attacks (TIAs) or strokes.

The condition is more common in older adults, particularly those with a history of hypertension, diabetes, smoking, and high cholesterol levels. Intracranial arteriosclerosis can be diagnosed through imaging tests such as magnetic resonance angiography (MRA) or computed tomographic angiography (CTA). Treatment typically involves managing risk factors and may include medications to control blood pressure, cholesterol levels, and prevent blood clots. In severe cases, surgical procedures such as angioplasty and stenting may be necessary to open up the affected arteries.

Transcranial Doppler ultrasonography is a non-invasive diagnostic technique that uses high-frequency sound waves to visualize and measure the velocity of blood flow in the cerebral arteries located in the skull. This imaging modality employs the Doppler effect, which describes the change in frequency of sound waves as they reflect off moving red blood cells. By measuring the frequency shift of the reflected ultrasound waves, the velocity and direction of blood flow can be determined.

Transcranial Doppler ultrasonography is primarily used to assess cerebrovascular circulation and detect abnormalities such as stenosis (narrowing), occlusion (blockage), or embolism (obstruction) in the intracranial arteries. It can also help monitor patients with conditions like sickle cell disease, vasospasm following subarachnoid hemorrhage, and evaluate the effectiveness of treatments such as thrombolysis or angioplasty. The procedure is typically performed by placing a transducer on the patient's skull after applying a coupling gel, and it does not involve radiation exposure or contrast agents.

An intracranial aneurysm is a localized, blood-filled dilation or bulging in the wall of a cerebral artery within the skull (intracranial). These aneurysms typically occur at weak points in the arterial walls, often at branching points where the vessel divides into smaller branches. Over time, the repeated pressure from blood flow can cause the vessel wall to weaken and balloon out, forming a sac-like structure. Intracranial aneurysms can vary in size, ranging from a few millimeters to several centimeters in diameter.

There are three main types of intracranial aneurysms:

1. Saccular (berry) aneurysm: This is the most common type, characterized by a round or oval shape with a narrow neck and a bulging sac. They usually develop at branching points in the arteries due to congenital weaknesses in the vessel wall.
2. Fusiform aneurysm: These aneurysms have a dilated segment along the length of the artery, forming a cigar-shaped or spindle-like structure. They are often caused by atherosclerosis and can affect any part of the cerebral arteries.
3. Dissecting aneurysm: This type occurs when there is a tear in the inner lining (intima) of the artery, allowing blood to flow between the layers of the vessel wall. It can lead to narrowing or complete blockage of the affected artery and may cause subarachnoid hemorrhage if it ruptures.

Intracranial aneurysms can be asymptomatic and discovered incidentally during imaging studies for other conditions. However, when they grow larger or rupture, they can lead to severe complications such as subarachnoid hemorrhage, stroke, or even death. Treatment options include surgical clipping, endovascular coiling, or flow diversion techniques to prevent further growth and potential rupture of the aneurysm.

The Circle of Willis is a circulatory arrangement in the brain where the major arteries that supply blood to the brain converge to form an almost circular structure. It is named after Thomas Willis, an English physician who first described it in 1664.

This circle is formed by the joining of the two internal carotid arteries, which divide into the anterior cerebral and middle cerebral arteries, with the basilar artery, which arises from the vertebral arteries. These vessels anastomose, or connect, to form a polygon-like structure at the base of the brain.

The Circle of Willis plays a crucial role in maintaining adequate blood flow to the brain, as it allows for collateral circulation. If one of the arteries that make up the circle becomes blocked or narrowed, blood can still reach the affected area through the other vessels in the circle. This helps to minimize the risk of stroke and other neurological disorders.

A hematoma is defined as a localized accumulation of blood in a tissue, organ, or body space caused by a break in the wall of a blood vessel. This can result from various causes such as trauma, surgery, or certain medical conditions that affect coagulation. The severity and size of a hematoma may vary depending on the location and extent of the bleeding. Symptoms can include swelling, pain, bruising, and decreased mobility in the affected area. Treatment options depend on the size and location of the hematoma but may include observation, compression, ice, elevation, or in some cases, surgical intervention.

Leg injuries refer to damages or harm caused to any part of the lower extremity, including the bones, muscles, tendons, ligaments, blood vessels, and other soft tissues. These injuries can result from various causes such as trauma, overuse, or degenerative conditions. Common leg injuries include fractures, dislocations, sprains, strains, contusions, and cuts. Symptoms may include pain, swelling, bruising, stiffness, weakness, or difficulty walking. The specific treatment for a leg injury depends on the type and severity of the injury.

A carotid body tumor is a rare, usually noncancerous (benign) growth that develops in the carotid body, a small structure located near the bifurcation (fork) of the common carotid artery in the neck. The carotid body is part of the chemoreceptor system that helps regulate breathing and blood pressure by responding to changes in oxygen, carbon dioxide, and pH levels in the blood.

Carotid body tumors are also known as carotid body paragangliomas or chemodectomas. They typically grow slowly and may not cause any symptoms for many years. However, as they enlarge, they can cause a visible or palpable mass in the neck, along with symptoms such as difficulty swallowing, hoarseness, or voice changes. In some cases, carotid body tumors can compress nearby nerves or blood vessels, leading to more serious complications like stroke or nerve damage.

Treatment for carotid body tumors typically involves surgical removal of the growth, which may be performed using traditional open surgery or minimally invasive techniques such as endovascular surgery or robotic-assisted surgery. Radiation therapy and chemotherapy are generally not effective in treating these tumors. Regular follow-up care is important to monitor for recurrence or development of new tumors.

Lung injury, also known as pulmonary injury, refers to damage or harm caused to the lung tissue, blood vessels, or air sacs (alveoli) in the lungs. This can result from various causes such as infection, trauma, exposure to harmful substances, or systemic diseases. Common types of lung injuries include acute respiratory distress syndrome (ARDS), pneumonia, and chemical pneumonitis. Symptoms may include difficulty breathing, cough, chest pain, and decreased oxygen levels in the blood. Treatment depends on the underlying cause and may include medications, oxygen therapy, or mechanical ventilation.

Temporal arteries are the paired set of arteries that run along the temples on either side of the head. They are branches of the external carotid artery and play a crucial role in supplying oxygenated blood to the scalp and surrounding muscles. One of the most common conditions associated with temporal arteries is Temporal Arteritis (also known as Giant Cell Arteritis), which is an inflammation of these arteries that can lead to serious complications like vision loss if not promptly diagnosed and treated.

Vasodilation is the widening or increase in diameter of blood vessels, particularly the involuntary relaxation of the smooth muscle in the tunica media (middle layer) of the arteriole walls. This results in an increase in blood flow and a decrease in vascular resistance. Vasodilation can occur due to various physiological and pathophysiological stimuli, such as local metabolic demands, neural signals, or pharmacological agents. It plays a crucial role in regulating blood pressure, tissue perfusion, and thermoregulation.

1. Intracranial Embolism: This is a medical condition that occurs when a blood clot or other particle (embolus) formed elsewhere in the body, travels through the bloodstream and lodges itself in the intracranial blood vessels, blocking the flow of blood to a part of the brain. This can lead to various neurological symptoms such as weakness, numbness, speech difficulties, or even loss of consciousness, depending on the severity and location of the blockage.

2. Intracranial Thrombosis: This is a medical condition that occurs when a blood clot (thrombus) forms within the intracranial blood vessels. The clot can partially or completely obstruct the flow of blood, leading to various symptoms such as headache, confusion, seizures, or neurological deficits, depending on the severity and location of the thrombosis. Intracranial thrombosis can occur due to various factors including atherosclerosis, hypertension, diabetes, and other medical conditions that increase the risk of blood clot formation.

Cerebral revascularization is a surgical procedure aimed at restoring blood flow to the brain. This is often performed in cases where there is narrowing or blockage of the cerebral arteries, a condition known as cerebrovascular disease. The most common type of cerebral revascularization is called carotid endarterectomy, which involves removing plaque buildup from the carotid artery in the neck to improve blood flow to the brain. Another type is extracranial-intracranial bypass, where a new connection is created between an external carotid artery and an intracranial artery to bypass a blockage.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Amaurosis fugax is a medical term that describes a temporary loss of vision in one eye, which is often described as a "shade or curtain falling over the field of vision." It's usually caused by a temporary interruption of blood flow to the retina or optic nerve. This condition is often associated with conditions such as giant cell arteritis, carotid artery stenosis, and cardiovascular disease.

It's important to note that Amaurosis fugax can be a warning sign for a more serious medical event, such as a stroke, so it's essential to seek medical attention promptly if you experience any symptoms of this condition.

The splenic artery is the largest branch of the celiac trunk, which arises from the abdominal aorta. It supplies blood to the spleen and several other organs in the upper left part of the abdomen. The splenic artery divides into several branches that ultimately form a network of capillaries within the spleen. These capillaries converge to form the main venous outflow, the splenic vein, which drains into the hepatic portal vein.

The splenic artery is a vital structure in the human body, and any damage or blockage can lead to serious complications, including splenic infarction (reduced blood flow to the spleen) or splenic rupture (a surgical emergency that can be life-threatening).

Ultrasonography, Doppler refers to a non-invasive diagnostic medical procedure that uses high-frequency sound waves to create real-time images of the movement of blood flow through vessels, tissues, or heart valves. The Doppler effect is used to measure the frequency shift of the ultrasound waves as they bounce off moving red blood cells, which allows for the calculation of the speed and direction of blood flow. This technique is commonly used to diagnose and monitor various conditions such as deep vein thrombosis, carotid artery stenosis, heart valve abnormalities, and fetal heart development during pregnancy. It does not use radiation or contrast agents and is considered safe with minimal risks.

Pathological constriction refers to an abnormal narrowing or tightening of a body passage or organ, which can interfere with the normal flow of blood, air, or other substances through the area. This constriction can occur due to various reasons such as inflammation, scarring, or abnormal growths, and can affect different parts of the body, including blood vessels, airways, intestines, and ureters. Pathological constriction can lead to a range of symptoms and complications depending on its location and severity, and may require medical intervention to correct.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

Postoperative complications refer to any unfavorable condition or event that occurs during the recovery period after a surgical procedure. These complications can vary in severity and may include, but are not limited to:

1. Infection: This can occur at the site of the incision or inside the body, such as pneumonia or urinary tract infection.
2. Bleeding: Excessive bleeding (hemorrhage) can lead to a drop in blood pressure and may require further surgical intervention.
3. Blood clots: These can form in the deep veins of the legs (deep vein thrombosis) and can potentially travel to the lungs (pulmonary embolism).
4. Wound dehiscence: This is when the surgical wound opens up, which can lead to infection and further complications.
5. Pulmonary issues: These include atelectasis (collapsed lung), pneumonia, or respiratory failure.
6. Cardiovascular problems: These include abnormal heart rhythms (arrhythmias), heart attack, or stroke.
7. Renal failure: This can occur due to various reasons such as dehydration, blood loss, or the use of certain medications.
8. Pain management issues: Inadequate pain control can lead to increased stress, anxiety, and decreased mobility.
9. Nausea and vomiting: These can be caused by anesthesia, opioid pain medication, or other factors.
10. Delirium: This is a state of confusion and disorientation that can occur in the elderly or those with certain medical conditions.

Prompt identification and management of these complications are crucial to ensure the best possible outcome for the patient.

Hemodynamics is the study of how blood flows through the cardiovascular system, including the heart and the vascular network. It examines various factors that affect blood flow, such as blood volume, viscosity, vessel length and diameter, and pressure differences between different parts of the circulatory system. Hemodynamics also considers the impact of various physiological and pathological conditions on these variables, and how they in turn influence the function of vital organs and systems in the body. It is a critical area of study in fields such as cardiology, anesthesiology, and critical care medicine.

Retinal artery occlusion (RAO) is a medical condition characterized by the blockage or obstruction of the retinal artery, which supplies oxygenated blood to the retina. This blockage typically occurs due to embolism (a small clot or debris that travels to the retinal artery), thrombosis (blood clot formation in the artery), or vasculitis (inflammation of the blood vessels).

There are two types of retinal artery occlusions:

1. Central Retinal Artery Occlusion (CRAO): This type occurs when the main retinal artery is obstructed, affecting the entire inner layer of the retina. It can lead to severe and sudden vision loss in the affected eye.
2. Branch Retinal Artery Occlusion (BRAO): This type affects a branch of the retinal artery, causing visual field loss in the corresponding area. Although it is less severe than CRAO, it can still result in noticeable vision impairment.

Immediate medical attention is crucial for both types of RAO to improve the chances of recovery and minimize potential damage to the eye and vision. Treatment options may include medications, laser therapy, or surgery, depending on the underlying cause and the severity of the condition.

Therapeutic embolization is a medical procedure that involves intentionally blocking or obstructing blood vessels to stop excessive bleeding or block the flow of blood to a tumor or abnormal tissue. This is typically accomplished by injecting small particles, such as microspheres or coils, into the targeted blood vessel through a catheter, which is inserted into a larger blood vessel and guided to the desired location using imaging techniques like X-ray or CT scanning. The goal of therapeutic embolization is to reduce the size of a tumor, control bleeding, or block off abnormal blood vessels that are causing problems.

The cavernous sinus is a venous structure located in the middle cranial fossa, which is a depression in the skull that houses several important nerves and blood vessels. The cavernous sinus is situated on either side of the sphenoid bone, near the base of the skull, and it contains several important structures:

* The internal carotid artery, which supplies oxygenated blood to the brain
* The abducens nerve (cranial nerve VI), which controls lateral movement of the eye
* The oculomotor nerve (cranial nerve III), which controls most of the muscles that move the eye
* The trochlear nerve (cranial nerve IV), which controls one of the muscles that moves the eye
* The ophthalmic and maxillary divisions of the trigeminal nerve (cranial nerve V), which transmit sensory information from the face and head

The cavernous sinus is an important structure because it serves as a conduit for several critical nerves and blood vessels. However, it is also vulnerable to various pathological conditions such as thrombosis (blood clots), infection, tumors, or aneurysms, which can lead to serious neurological deficits or even death.

The hepatic artery is a branch of the celiac trunk or abdominal aorta that supplies oxygenated blood to the liver. It typically divides into two main branches, the right and left hepatic arteries, which further divide into smaller vessels to supply different regions of the liver. The hepatic artery also gives off branches to supply other organs such as the gallbladder, pancreas, and duodenum.

It's worth noting that there is significant variability in the anatomy of the hepatic artery, with some individuals having additional branches or variations in the origin of the vessel. This variability can have implications for surgical procedures involving the liver and surrounding organs.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

The jugular veins are a pair of large, superficial veins that carry blood from the head and neck to the heart. They are located in the neck and are easily visible when looking at the side of a person's neck. The external jugular vein runs along the surface of the muscles in the neck, while the internal jugular vein runs within the carotid sheath along with the carotid artery and the vagus nerve.

The jugular veins are important in clinical examinations because they can provide information about a person's cardiovascular function and intracranial pressure. For example, distention of the jugular veins may indicate heart failure or increased intracranial pressure, while decreased venous pulsations may suggest a low blood pressure or shock.

It is important to note that medical conditions such as deep vein thrombosis (DVT) can also affect the jugular veins and can lead to serious complications if not treated promptly.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Eye injuries refer to any damage or trauma caused to the eye or its surrounding structures. These injuries can vary in severity and may include:

1. Corneal abrasions: A scratch or scrape on the clear surface of the eye (cornea).
2. Chemical burns: Occurs when chemicals come into contact with the eye, causing damage to the cornea and other structures.
3. Eyelid lacerations: Cuts or tears to the eyelid.
4. Subconjunctival hemorrhage: Bleeding under the conjunctiva, the clear membrane that covers the white part of the eye.
5. Hyphema: Accumulation of blood in the anterior chamber of the eye, which is the space between the cornea and iris.
6. Orbital fractures: Breaks in the bones surrounding the eye.
7. Retinal detachment: Separation of the retina from its underlying tissue, which can lead to vision loss if not treated promptly.
8. Traumatic uveitis: Inflammation of the uvea, the middle layer of the eye, caused by trauma.
9. Optic nerve damage: Damage to the optic nerve, which transmits visual information from the eye to the brain.

Eye injuries can result from a variety of causes, including accidents, sports-related injuries, violence, and chemical exposure. It is important to seek medical attention promptly for any suspected eye injury to prevent further damage and potential vision loss.

The celiac artery, also known as the anterior abdominal aortic trunk, is a major artery that originates from the abdominal aorta and supplies oxygenated blood to the foregut, which includes the stomach, liver, spleen, pancreas, and upper part of the duodenum. It branches into three main branches: the left gastric artery, the splenic artery, and the common hepatic artery. The celiac artery plays a crucial role in providing blood to these vital organs, and any disruption or damage to it can lead to serious health consequences.

Acute Lung Injury (ALI) is a medical condition characterized by inflammation and damage to the lung tissue, which can lead to difficulty breathing and respiratory failure. It is often caused by direct or indirect injury to the lungs, such as pneumonia, sepsis, trauma, or inhalation of harmful substances.

The symptoms of ALI include shortness of breath, rapid breathing, cough, and low oxygen levels in the blood. The condition can progress rapidly and may require mechanical ventilation to support breathing. Treatment typically involves addressing the underlying cause of the injury, providing supportive care, and managing symptoms.

In severe cases, ALI can lead to Acute Respiratory Distress Syndrome (ARDS), a more serious and life-threatening condition that requires intensive care unit (ICU) treatment.

Vasoconstriction is a medical term that refers to the narrowing of blood vessels due to the contraction of the smooth muscle in their walls. This process decreases the diameter of the lumen (the inner space of the blood vessel) and reduces blood flow through the affected vessels. Vasoconstriction can occur throughout the body, but it is most noticeable in the arterioles and precapillary sphincters, which control the amount of blood that flows into the capillary network.

The autonomic nervous system, specifically the sympathetic division, plays a significant role in regulating vasoconstriction through the release of neurotransmitters like norepinephrine (noradrenaline). Various hormones and chemical mediators, such as angiotensin II, endothelin-1, and serotonin, can also induce vasoconstriction.

Vasoconstriction is a vital physiological response that helps maintain blood pressure and regulate blood flow distribution in the body. However, excessive or prolonged vasoconstriction may contribute to several pathological conditions, including hypertension, stroke, and peripheral vascular diseases.

Medical Definition:

Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic imaging technique that uses a strong magnetic field and radio waves to create detailed cross-sectional or three-dimensional images of the internal structures of the body. The patient lies within a large, cylindrical magnet, and the scanner detects changes in the direction of the magnetic field caused by protons in the body. These changes are then converted into detailed images that help medical professionals to diagnose and monitor various medical conditions, such as tumors, injuries, or diseases affecting the brain, spinal cord, heart, blood vessels, joints, and other internal organs. MRI does not use radiation like computed tomography (CT) scans.

The cervical vertebrae are the seven vertebrae that make up the upper part of the spine, also known as the neck region. They are labeled C1 to C7, with C1 being closest to the skull and C7 connecting to the thoracic vertebrae in the chest region. The cervical vertebrae have unique structures to allow for a wide range of motion in the neck while also protecting the spinal cord and providing attachment points for muscles and ligaments.

Risk assessment in the medical context refers to the process of identifying, evaluating, and prioritizing risks to patients, healthcare workers, or the community related to healthcare delivery. It involves determining the likelihood and potential impact of adverse events or hazards, such as infectious diseases, medication errors, or medical devices failures, and implementing measures to mitigate or manage those risks. The goal of risk assessment is to promote safe and high-quality care by identifying areas for improvement and taking action to minimize harm.

The superior mesenteric artery (SMA) is a major artery that supplies oxygenated blood to the intestines, specifically the lower part of the duodenum, jejunum, ileum, cecum, ascending colon, and the first and second parts of the transverse colon. It originates from the abdominal aorta, located just inferior to the pancreas, and passes behind the neck of the pancreas before dividing into several branches to supply the intestines. The SMA is an essential vessel in the digestive system, providing blood flow for nutrient absorption and overall gut function.

Atherosclerotic plaque is a deposit of fatty (cholesterol and fat) substances, calcium, and other substances in the inner lining of an artery. This plaque buildup causes the artery to narrow and harden, reducing blood flow through the artery, which can lead to serious cardiovascular conditions such as coronary artery disease, angina, heart attack, or stroke. The process of atherosclerosis develops gradually over decades and can start in childhood.

Anticoagulants are a class of medications that work to prevent the formation of blood clots in the body. They do this by inhibiting the coagulation cascade, which is a series of chemical reactions that lead to the formation of a clot. Anticoagulants can be given orally, intravenously, or subcutaneously, depending on the specific drug and the individual patient's needs.

There are several different types of anticoagulants, including:

1. Heparin: This is a naturally occurring anticoagulant that is often used in hospitalized patients who require immediate anticoagulation. It works by activating an enzyme called antithrombin III, which inhibits the formation of clots.
2. Low molecular weight heparin (LMWH): LMWH is a form of heparin that has been broken down into smaller molecules. It has a longer half-life than standard heparin and can be given once or twice daily by subcutaneous injection.
3. Direct oral anticoagulants (DOACs): These are newer oral anticoagulants that work by directly inhibiting specific clotting factors in the coagulation cascade. Examples include apixaban, rivaroxaban, and dabigatran.
4. Vitamin K antagonists: These are older oral anticoagulants that work by inhibiting the action of vitamin K, which is necessary for the formation of clotting factors. Warfarin is an example of a vitamin K antagonist.

Anticoagulants are used to prevent and treat a variety of conditions, including deep vein thrombosis (DVT), pulmonary embolism (PE), atrial fibrillation, and prosthetic heart valve thrombosis. It is important to note that anticoagulants can increase the risk of bleeding, so they must be used with caution and regular monitoring of blood clotting times may be required.

Cranial nerve injuries refer to damages or trauma to one or more of the twelve cranial nerves (CN I through CN XII). These nerves originate from the brainstem and are responsible for transmitting sensory information (such as vision, hearing, smell, taste, and balance) and controlling various motor functions (like eye movement, facial expressions, swallowing, and speaking).

Cranial nerve injuries can result from various causes, including head trauma, tumors, infections, or neurological conditions. The severity of the injury may range from mild dysfunction to complete loss of function, depending on the extent of damage to the nerve. Treatment options vary based on the type and location of the injury but often involve a combination of medical management, physical therapy, surgical intervention, or rehabilitation.

Middle Cerebral Artery (MCA) infarction is a type of ischemic stroke that occurs when there is an obstruction in the blood supply to the middle cerebral artery, which is one of the major blood vessels that supplies oxygenated blood to the brain. The MCA supplies blood to a large portion of the brain, including the motor and sensory cortex, parts of the temporal and parietal lobes, and the basal ganglia.

An infarction is the death of tissue due to the lack of blood supply, which can lead to damage or loss of function in the affected areas of the brain. Symptoms of MCA infarction may include weakness or numbness on one side of the body, difficulty speaking or understanding speech, vision problems, and altered levels of consciousness.

MCA infarctions can be caused by various factors, including embolism (a blood clot that travels to the brain from another part of the body), thrombosis (a blood clot that forms in the MCA itself), or stenosis (narrowing of the artery due to atherosclerosis or other conditions). Treatment for MCA infarction may include medications to dissolve blood clots, surgery to remove the obstruction, or rehabilitation to help regain lost function.

Calcinosis is a medical condition characterized by the abnormal deposit of calcium salts in various tissues of the body, commonly under the skin or in the muscles and tendons. These calcium deposits can form hard lumps or nodules that can cause pain, inflammation, and restricted mobility. Calcinosis can occur as a complication of other medical conditions, such as autoimmune disorders, kidney disease, and hypercalcemia (high levels of calcium in the blood). In some cases, the cause of calcinosis may be unknown. Treatment for calcinosis depends on the underlying cause and may include medications to manage calcium levels, physical therapy, and surgical removal of large deposits.

Chin, OY; Ghosh, R; Fang, CH; Baredes, S; Liu, JK; Eloy, JA (2016). "Internal carotid artery injury in endoscopic endonasal ... The loss of vision and haemorrhage can be caused by unintentional injuries of the optic nerve and the internal carotid artery ... The first was when nasal operations only consisted of the repair of minimal external nose injuries. The second period was ... They are proven to treat minor external nasal injuries more cost-effectively in comparison to surgical rhinoplasty. With ...
... or whiplash injury. 1-2% of those with major trauma may have an injury to the carotid or vertebral arteries. In many cases of ... The other type, carotid artery dissection, involves the carotid arteries. Vertebral artery dissection is further classified as ... Vertebral artery dissection is less common than carotid artery dissection (dissection of the large arteries in the front of the ... or for symptoms of carotid artery dissection to occur at the same time as those of vertebral artery dissection. Some give a ...
... resistant to the vascular damage caused by balloon catheter-induced injury of the external carotid artery; e) less likely to ... SNP variant rs768963 in TBX2R was associated with increased frequency of large artery atherosclerosis, small artery occlusion, ... studies on rat and human cerebral artery preparations indicate that increased blood flow through these arteries triggers ... Toth P, Rozsa B, Springo Z, Doczi T, Koller A (2011). "Isolated human and rat cerebral arteries constrict to increases in flow ...
Margaret Prial, who performed Vetrano's autopsy, described her injuries, including a compressed carotid artery in her neck. The ... She ran alone, despite the expressed concerns of her father, her usual running partner, who was suffering from a back injury. ... and that he had also suffered a hand injury. Lewis' family continued to deny his involvement in the homicide. His father ...
Angela, Lucia and Massimiliano received serious injuries, while Francesca had her carotid artery severed, killing her on the ... Unfortunately, Lucia Masala succumbed to her injuries in hospital, while the remaining victims recovered. Immediately ...
Madonna suffered multiple internal injuries, a brain bleed, a nicked carotid artery, lung collapse, and a shattered heel. News ...
Acute injury to the internal carotid artery (carotid dissection, occlusion, pseudoaneurysm formation) may be asymptomatic or ... Involvement of the petrous segment of the carotid canal is associated with a relatively high incidence of carotid injury. ... They are almost exclusively observed when the carotid canal is fractured, although only a minority of carotid canal fractures ... Pediatric Head Trauma at eMedicine Skull Fracture at eMedicine "About Brain Injury". Brain Injury Association of America. ...
Contralateral laryngeal nerve injury Tracheostoma Carotid artery stenting is an alternative to carotid endarterectomy in cases ... Carotid endarterectomy is used to reduce the risk of strokes caused by carotid artery stenosis over time. Carotid stenosis can ... Carotid endarterectomy is a surgical procedure used to reduce the risk of stroke from carotid artery stenosis (narrowing the ... The lumen of the internal carotid artery is opened, and the atheromatous plaque substance removed. The artery is closed using ...
Other rare complications of mandibular trauma include internal carotid artery injury, and obliteration of the ear canal due to ... vascular injury can result (with particular attention to the internal carotid and jugular) from high velocity injuries or ... Tveita, Ingrid Aune; Madsen, Martin Ragnar Skjerve; Nielsen, Erik Waage (2017). "Dissection of the internal carotid artery and ... The same injury can be seen on the opposite side 3D CT reconstruction of mandible fracture, white arrow marks fracture, red ...
... and management of reperfusion injury and hyperperfusion syndrome after carotid endarterectomy and carotid artery stenting". ... The first symptom is usually severe headache, and a headache in the setting of recent carotid endarterectomy or carotid ... usually following treatment of carotid artery stenosis. Risk factors include hypertension, particularly high blood pressures in ... Kirchoff-Torres, KF; Bakradze, E (19 March 2018). "Cerebral Hyperperfusion Syndrome After Carotid Revascularization and Acute ...
The probable mechanism of injury for most internal carotid injuries is rapid deceleration, with resultant hyperextension and ... The incidence of spontaneous carotid artery dissection is low, and incidence rates for internal carotid artery dissection have ... Carotid artery dissection is a separation of the layers of the artery wall supplying oxygen-bearing blood to the head and brain ... which stretches the internal carotid artery over the upper cervical vertebrae, producing an intimal tear. After such an injury ...
Taylor was hospitalized for a serious ATV accident in which he suffered a severe brain injury and trauma to the carotid artery ...
... and carotid artery injury. There are some suggestions that the Vikings practiced hanging as human sacrifices to Odin, to honour ... A hanging may induce one or more of the following medical conditions, some leading to death: Closure of carotid arteries ... Where death has occurred through carotid artery obstruction or cervical fracture, the face will typically be pale in colour and ... Compromise of the cerebral blood flow may occur by obstruction of the carotid arteries, even though their obstruction requires ...
... carotid artery thrombosis MeSH C10.228.140.300.200.345 - carotid artery injuries MeSH C10.228.140.300.200.345.300 - carotid ... carotid artery injuries MeSH C10.900.250.300.300 - carotid artery, internal, dissection MeSH C10.900.250.300.400 - carotid- ... carotid artery injuries MeSH C10.228.140.300.350.500.300 - carotid artery, internal, dissection MeSH C10.228.140.300.350.500. ... carotid artery, internal, dissection MeSH C10.228.140.300.200.360 - carotid stenosis MeSH C10.228.140.300.200.490 - carotid- ...
... and carotid artery injury. Ron M. Brown writes that hanging has a "fairly imperspicuous and complicated symbolic history". ... About 11 lb (5 kg) of pressure is required to compress the carotid artery; 4.4 lb (2 kg) for the jugular veins; and at least 33 ... compression of the carotid arteries, the jugular veins, or the airway. ... Cervical spine fractures are rare unless the hanging is a drop hanging, which usually causes an injury known as hangman's ...
His injuries include: Amputation of both arms and both legs; Severed left carotid artery; Broken nose, left eye socket and ... As a result of the EFP entering the vehicle through his door, he sustained severe, permanent and life changing injuries. ... resulting in one fatality and two injuries. ...
"Common Carotid Artery Laceration Managed by Clamping at Emergency Department". Journal of Trauma and Injury. doi:10.20408/jti. ... Severing of the common carotid artery or jugular vein is lethal by causing hypovolemic shock and leads to death by ... "Successful management of suicidal cut throat injury with internal jugular, tracheal and esophageal transection: A case report ... Injuries of head, Mutilation, Street culture, Torture, Violence, Violent crime). ...
Her wounds, described as superficial, came within two millimeters of her carotid artery. Routier was treated at a hospital and ... They also stated that, despite her injuries, Routier's blood was not found in the garage or anywhere outside the home. The ... medical examiner Vincent DiMaio testified that the wound to Routier's neck came within two millimeters of her carotid artery ... During the trial, the prosecution argued that Routier's injuries were self-inflicted, that the crime scene had been staged, and ...
... to help Florida win 4-2 in the game after Richard Zedník suffered a neck injury in which he had his external carotid artery cut ... I just tried to get it to the net and it went in every time." Despite missing ten games to injury, Horton was tied with ... However, Horton was unavailable for the game due to an injury. The goal scored by Horton in the original fixture was the only ... Horton's last NHL game came in April 2014 due to a back injury. Though he did not officially retire, the surgery required to ...
... may develop as a result of arterial dissection in the carotid artery or aorta or as a result of iatrogenic arterial injury (e.g ... Reduction of body temperature also reduces the inflammation response and reperfusion injury. For frostbite injuries, limiting ... Surgical revascularization may be used in the setting of trauma (e.g., laceration of the artery). Amputation is reserved for ... Zhai Y, Petrowsky H, Hong JC, et al: Ischaemia-reperfusion injury in liver transplantation-From bench to bedside. Nat Rev ...
... with which he would have cut the carotid artery. This second injury caused a cerebral anemia that led to his death in a short ...
In 1943 Drunina was seriously injured when a shell fragment struck her in the neck several millimeters from her carotid artery ... Unaware of the severity of her injury, she simply wrapped her neck in bandages and continued to work. Eventually, she was ...
... arterial injury or retroperitoneal bleeding. The investigation chosen will depend on the clinical question and the imaging ... The carotid artery divides into the internal carotid artery and the external carotid artery. The internal carotid artery ... At the throat it forks into the internal carotid artery and the external carotid artery. The internal carotid artery supplies ... Carotid arteries Section of carotid artery with plaque. Blood flows from the common carotid artery(bottom), and divides into ...
... carotid artery diseases MeSH C14.907.253.123.331 - carotid artery thrombosis MeSH C14.907.253.123.345 - carotid artery injuries ... carotid artery injuries MeSH C14.907.253.535.500.300 - carotid artery, internal, dissection MeSH C14.907.253.535.500.350 - ... carotid artery, internal, dissection MeSH C14.907.253.123.360 - carotid stenosis MeSH C14.907.253.123.490 - carotid-cavernous ... carotid artery, internal, dissection MeSH C14.907.253.123.345.400 - carotid-cavernous sinus fistula MeSH C14.907.253.123.353 - ...
Very serious injury can also occur if the jumper's neck or body gets entangled in the cord. More recently, carotid artery ... Traumatic carotid artery dissection caused by bungee jumping. J Vascular Surg 2007;46:1044-6 Iguana Entertainment (1 August ... Whiplash injuries may occur as the jumper is jolted on the bungee cord and in at least one case, this has led to quadriplegia ... Bungee jumping injuries may be divided into those that occur after jumping secondary to equipment mishap or tragic accident, ...
... blockage in the carotid artery: some researchers think that a blockage of the carotid artery leads to the under-/no development ... Hydranencephaly is a result of an injury of the nervous system or an abnormal development of the nervous system. The neural ... The cause of these injuries/development is not clear. Theories regarding the causes of hydrancephaly include: ...
... threatening injury during an NHL game when the skate of his teammate Olli Jokinen accidentally sliced his common carotid artery ... Common Carotid Artery Laceration in a Professional Hockey Player. The American Journal of Sports Medicine, Chicago, 25 June ... "Zednik stable after carotid artery severed in Panthers-Sabres game". ESPN. 11 February 2008. Retrieved 11 February 2008. ... Zedník's injury drew comparisons with a similar injury suffered in 1989 by Clint Malarchuk, who was a goalkeeper for the ...
This artery branches from the superior thyroid artery near its bifurcation from the external carotid artery. Together with the ... making it at risk of injury during surgery. Inferior thyroid artery Diagram showing the origins of the main branches of the ... The superior thyroid artery arises from the external carotid artery just below the level of the greater cornu of the hyoid bone ... carotid arteries. The internal carotid and vertebral arteries. Right side. (Superior thyroid visible at center.) The thyroid ...
He suffered a basilar skull fracture, damaged his carotid artery and sinus. He recovered and returned to race the entire 2000 ... Carelli raced every series race until he suffered near-fatal injuries when his truck hit the wall during a race at Memphis ...
Landau's carotid artery was severed by a bullet passing through his neck, and Rosenkrantz was hit repeatedly at point-blank ... Nevertheless, despite their injuries, both gangsters rose to their feet, returned fire, and drove the assassins out of the ... He eventually died from his injuries 29 hours after the shooting. Schultz received the last rites from a Catholic priest at his ...
... which allows blood under arterial pressure to enter the wall of the artery and split its layers. The result is either an ... Carotid artery dissection begins as a tear in one of the carotid arteries of the neck, ... Rates of delayed stroke due to blunt-traumatic causes of carotid artery injury range from 3% in grade I injuries to 44% in ... Blunt carotid and vertebral artery injuries. Injury. 2008 Nov. 39(11):1232-41. [QxMD MEDLINE Link]. ...
S06.824A is a billable diagnosis code used to specify injury of l int carotid, intcr w loc of 6-24 hrs, init. View S06.824A ... Traumatic Brain Injury. What is traumatic brain injury (TBI)?. Traumatic brain injury (TBI) is a sudden injury that causes ... Injury of left internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of 6 hours to ... S06.821S - Injury of left internal carotid artery, intracranial portion, not elsewhere classified with loss of consciousness of ...
Carotid Artery Injuries / immunology * Carotid Artery Injuries / metabolism* * Carotid Artery Injuries / pathology ... progenitors leads to repair after murine immune vascular injury Arterioscler Thromb Vasc Biol. 2012 Jan;32(1):42-9. doi: ... indicating similar vascular injuries. Adoptively transferred Tg CD34(+) (but not CD34(-)) cells inhibited IH in WT recipients, ...
Chin, OY; Ghosh, R; Fang, CH; Baredes, S; Liu, JK; Eloy, JA (2016). "Internal carotid artery injury in endoscopic endonasal ... The loss of vision and haemorrhage can be caused by unintentional injuries of the optic nerve and the internal carotid artery ... The first was when nasal operations only consisted of the repair of minimal external nose injuries. The second period was ... They are proven to treat minor external nasal injuries more cost-effectively in comparison to surgical rhinoplasty. With ...
The molecular mechanism of actinomycin D in preventing neointimal formation in rat carotid arteries after balloon injury. / Wu ... The molecular mechanism of actinomycin D in preventing neointimal formation in rat carotid arteries after balloon injury. 於: ... 深入研究「The molecular mechanism of actinomycin D in preventing neointimal formation in rat carotid arteries after balloon injury」主 ... The molecular mechanism of actinomycin D in preventing neointimal formation in rat carotid arteries after balloon injury. ...
The in vivo neointimal hyperplasia model was established 2 weeks after the carotid artery balloon injury in SHR rats. ... right after the injury significantly increased PON2 expression in the artery, inhibiting ROS production, and efficiently ... and alleviates neointimal hyperplasia after intimal injury. PON2 may be a potential therapeutic target to reduce arterial ... reduced carotid neointimal hyperplasia. These results indicate that fisetin increases the expression of antioxidant PON2 via ...
Nearly one third of carotid artery injuries are associated with a central neurologic deficit. ... Collaterals for another life after ligation of common carotid artery and subclavian artery. Chin J Traumatol. 2017 Feb. 20 (1): ... Signs of penetrating injuries of the heart, aorta, and great vessels. Signs of penetrating injuries include the following:. * ... Lee TS, Ducic Y, Gordin E, Stroman D. Management of carotid artery trauma. Craniomaxillofac Trauma Reconstr. 2014 Sep. 7 (3): ...
Shin DD, Wall MJ, Mattox KL "Combined penetrating injury of the innominate artery, left common carotid artery, trachea, and ... Brown MF, Graham JM, Feliciano DV, Mattox KL, Beall AC, DeBakey ME "Carotid artery injuries.." Am. J. Surg.. 1982 Dec;144(6): ... Mattox KL, Rea J, Ennix CL, Beall AC, DeBakey ME "Penetrating injuries to the iliac arteries.." Am. J. Surg.. 1978 Dec;136(6): ... Graham JM, Mattox KL, Beall AC, DeBakey ME "Injuries to the visceral arteries.." Surgery. 1978 Dec;84(6):835-9. Pubmed PMID: ...
Analysis of carotid artery injury in patients with basilar skull fractures. Otology & neurotology : official publication of the ... Exposure of the distal cervical segment of the internal carotid artery using the trans-spinosum corridor: cadaveric study of ... Limitations to mobilizing the intrapetrous carotid artery. The Annals of otology, rhinology, and laryngology, 111 4, 343-8 ... The surgical anatomy and approaches to lesions of the lower basilar artery and vertebral artery union. The American journal of ...
FXI is essential for thrombus formation following FeCl3-induced injury of the carotid artery in the mouse. Thromb Haemost. 2002 ... while not impacting ischemic stroke risk associated with large artery atherosclerosis or small artery occlusion. [12] ...
Avoidance of carotid artery injuries in transsphenoidal surgery with the Doppler probe and micro-hook blades. Operative ...
Damage to the carotid artery or internal jugular artery due to injuries, such as a stab wound, that may be associated with GPN ... To find out whether a blood vessel is pressing on the nerve, pictures of the brain arteries may be taken using:. *Magnetic ...
In reply to #147 where the idiot says there is no mention of Hockey players with carotid artery injuries in the media......took ... Why are people here talking about carotid artery trauma anyway?. The injury which killed Katie May was chiropractic ... the evidence that chiropractic manipulation can cause carotid artery injury is much less convincing. ... hockey players suffer carotid artery damage and go on the injured list, carefully watched until their arteries heal.* Strangely ...
Blunt carotid artery injury: the futility of aggressive screening and diagnosis. Arch Surg. 2004;139(6):609- 612; discussion ... A Axillary and Brachial Arteries the axillary artery is a continuation of the subclavian artery, and is called the brachial ... Although ulnar-sided injuries have been reported, the overwhelming majority of injuries happen to the radial sagittal band. ... or the chance of underlying systemic illness contributing to closed injuries caused by low-energy trauma. Injury could end ...
... we determined the intima/media ratios in carotid arteries 2 and 4 weeks after injury. We found that carotid arteries transduced ... Experimental animals and in vivo balloon injury. Balloon injury of the right carotid artery was performed in male Sprague- ... The external carotid artery was tied, and blood flow was restored through the common and internal carotid arteries. Following ... Through the external carotid artery, the balloon catheter was introduced into the common carotid artery and inflated 7 times. ...
For venous access via the neck, common carotid and subclavian artery injuries have been reported.2 The risk of artery injury is ... artery. The catheter tip is seen at the origin of the left subclavian artery (thin white arrow). Over the right neck, a ... vertebral artery, and harbouring at the origin of the left subclavian artery. Computed tomographic angiogram also showed ... vertebral artery. Oozing was noted from the left IJV exit site. Haemostasis was controlled by direct pressure onto the IJV. ...
Injury to the carotid or vertebral artery *Diabetic oculomotor nerve palsy *Prior eye trauma, including surgery for cataracts ... Head injury - first aid References. Balcer JL. Pupillary disorders. In: Liu GT, Volpe NJ, Galetta SL, eds. Liu, Volpe, and ... If you have differing pupil size after an eye or head injury, get medical help immediately. ...
Role of the JAK/STAT pathway in rat carotid artery remodeling after vascular injury ... tyrosine nitration of prostacyclin synthase is associated with increased inflammation in atherosclerotic carotid arteries from ... a chronic disease characterized by inflammation in the artery wall (8). Conversely, inhibition of STAT3 improves insulin ...
Medial and superior incisions are safer from the standpoint of potential injury to the carotid artery. See the video below:. ...
... and the pharmacodynamics and key targets were verified using the rat middle cerebral artery occlusion (MCAO) model. ,i,Methods ... in the neointima and reduce the neointima membrane formation after carotid artery injury in rats, ultimately improving carotid ... The right common carotid artery (CCA) was exposed layer-by-layer separation, and the right CCA, internal carotid artery (ICA), ... Y. Zhang, K. Li, J. Yang et al., "Effect and mechanism of emodin on carotid stenosis in rats after balloon injury," Journal of ...
He states I also carried out orthopaedic and neurological tests for disc injury, blocked carotid arteries, sensory alterations ... He also said that he undertook orthopaedic and neurological tests for disc injury, blocked carotid arteries, sensory ... I asked [HDC to] clarify when [Ms A] received her injury. Her injury is confirmed as occurring on 22nd November 2006. [Ms A] ... As completed, ACC45 Form FX12356 did not record [Ms As] right elbow injury. The only injuries recorded are for cervical (S570 ...
Management of carotid artery injury in endonasal surgery. Int Arch Otorhinolaryngol. 2014. 18: S173-8 ... Endovascular management of a ruptured cavernous carotid artery aneurysm associated with a carotid cavernous fistula with an ... Carotid cavernous fistula due to a ruptured intracavernous aneurysm of the internal carotid artery: treatment with selective ... Flow diversion in the treatment of carotid injury and carotid-cavernous fistula after transsphenoidal surgery. Interv ...
... and equipment manufacturers seeking significant compensation for players who sustained brain injuries while playing sports. ... diffuse axonal injuries, carotid artery, and vertebral dissections. ... Further, plaintiffs claim defendants failed to warn players of risks involved with head injuries, possibly resulting in chronic ... What are the key hurdles for counsel pursuing or defending against class actions for sports concussion injuries? ...
The ferric chloride carotid artery injury model in mice was chosen to test the effect of anti-EPCR mAb on thrombus formation. ... a murine carotid artery laser thrombosis model revealed that higher sPLA2-V levels were directly associated with faster artery ... The ferric chloride carotid artery model was used to compare the antithrombotic role of CM-695 and rivaroxaban, a direct oral ... The effects on thrombosis were studied with the laser carotid artery occlusion model, and APC generation capacity was measured ...
They are often associated with injuries of blood vessels such as cavernous sinus and internal carotid artery (ICA). We report a ... Carotid artery stenting was suc-cessfully added for the residual pseudoaneurysm of the internal carotid artery seven days after ... We experienced a tandem occlusion of the extracranial carotid artery and middle cerebral artery due to the internal carotid ... We report a case of a transorbital penetrating injury with a deviated intracranial internal carotid artery (ICA) by a wooden ...
... may be useful for the early detection of radiation-induced carotid artery injury, can guide future research aiming to mitigate ... CONCLUSIONS Functional and morphologic changes of the carotid arteries detected by carotid ultrasound, such as changes in ... METHODS Bilateral carotid artery duplex studies were performed at 0, 3, 6, 12, 18 months and 2, 3, 4, and 5 years following RT ... Longitudinal Changes in the Carotid Arteries of Head and Neck Cancer Patients Following Radiation Therapy: Results from a ...
If this artery is clogged, it may require surgery. Learn more here. ... The carotid artery brings oxygen to your face and brain. ... It may sting and bruise, but its generally a minor injury that ... Carotid artery surgery is a procedure for someone who has a narrowed carotid artery that can cause a stroke. ... What to Know About Carotid Stent Surgery. Carotid stent surgery is used to treat carotid artery stenosis, a condition thats ...
Substantial inhibition of neo-intimal response to balloon injury in the rat carotid artery using a combination of antibodies to ... Effects of synthetic monocyte chemotactic protein-1 fragment 65-76 on neointima formation after carotid artery balloon injury ... reported inhibition of neointimal response to balloon injury in the rat carotid artery using antibodies to PDGF (41). The ... Expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in the pig coronary artery injury model: ...
In addition, carotid artery wire injury in mice triggered a trend towards an increase in total vascular BMP-9 levels, which was ... Our group has shown that TGF-b1/ALK1 signalling drives SMC migration and that NF in ligation-injured carotid arteries is ... observational multiple timepoint carotid artery ligation study in mice which aimed to link BMP-9 presence with vascular injury ... Coronary artery bypass grafting (CABG) is a surgical technique utilised to bypass one or more stenosed coronary arteries to re- ...
... to the internal carotid artery. So it is very important to use navigation for the important landmarks during the resection. And ... As I showed in the beginning, there are always dangerous structures and we would like to avoid injury, for example, ... or close relationship to the carotid artery and optic nerve, in all of those situations, is navigation helpful, but there is a ... because you only see this close relationship to the internal carotid artery in the MRI picture. And you also need the ...
  • The mechanism of action of Sanhua Decoction (SHD) in the treatment of ischemic stroke (IS) was analyzed based on the network pharmacology technology, and the pharmacodynamics and key targets were verified using the rat middle cerebral artery occlusion (MCAO) model. (hindawi.com)
  • Intracranial Vessel Wall Magnetic Resonance Imaging of Middle Cerebral Artery Dissection in Neurofibromatosis Type 1. (medscape.com)
  • Penetrating neck injuries are uncommon in children and a post traumatic common carotid artery to internal jugular vein fistula rarely occurs. (scirp.org)
  • The young child was initially evaluated with a color flow ultrasonography Doppler imaging which revealed a left neck haematoma, a pseudo aneurysm of the left common carotid artery (LCCA), and a continuous flow from the LCCA to the left internal jugular vein (LIJV) which was indicative for the presence of a carotid-jugular fistula. (scirp.org)
  • Ten patients had internal carotid artery injuries, two patients had common carotid artery injuries, and 11 patients had vertebral artery injuries. (biomedcentral.com)
  • A) Tear and elevation of intima from wall of artery, resulting in luminal stenosis. (medscape.com)
  • CONCLUSIONS Functional and morphologic changes of the carotid arteries detected by carotid ultrasound, such as changes in global circumferential strain at 6 months and carotid IMT at 18 months, may be useful for the early detection of radiation-induced carotid artery injury, can guide future research aiming to mitigate carotid artery stenosis, and should be considered for clinical surveillance survivorship recommendations after head and neck RT. (medrxiv.org)
  • Should patients with asymptomatic carotid artery stenosis undergo carotid procedures, or does medical therapy provide sufficient protection against stroke? (medscape.com)
  • In this study, we investigated the effect of NBD peptide on neointimal formation using two animal models of arterial injury: rat carotid artery balloon angioplasty and wire-induced carotid injury in apolipoproteinE-deficient (apoE-/-) mice. (unina.it)
  • Moreover, its importance in blood vessel formation, vascular restoration, and functioning of PACs was indicated in different animal models, such as wire-induced carotid artery injury model, HLI, or retinal ischemia (13, 33C35, 47). (mingsheng88.org)
  • Carrick MM, Morrison CA, Pham HQ, Norman MA, Marvin B, Lee J, Wall MJ, Mattox KL " Modern management of traumatic subclavian artery injuries: a single institution's experience in the evolution of endovascular repair. . (bcm.edu)
  • For venous access via the neck, common carotid and subclavian artery injuries have been reported. (hkmj.org)
  • A study by Gill et al indicated that greater genetically determined levels of factor XI increase the risk of ischemic stroke arising from cardioembolisms, while not impacting ischemic stroke risk associated with large artery atherosclerosis or small artery occlusion. (medscape.com)
  • As part of the second discussion, I pointed out that, while the evidence base supporting chiropractic manipulation as a cause of strokes due to occlusion of the vertebral or basilar arteries is pretty convincing, the evidence that chiropractic manipulation can cause carotid artery injury is much less convincing. (scienceblogs.com)
  • One patient developed delayed bleeding 6 h after covered stent placement and underwent successful endovascular occlusion of the ICA but died 6 days after the injury. (bmj.com)
  • 4 Because of these complications, endovascular occlusion has become the preferred treatment for ICA injuries. (bmj.com)
  • Blood flow restoration with fibrinolysis and thrombectomy is recommended to limit injury in stroke patients with proximal artery occlusion. (biomedcentral.com)
  • A surgery called carotid endarterectomy (CEA) is one way to remove blockages to the normal flow of blood and to minimize your risk of a stroke. (healthline.com)
  • Carotid angiography. (healthline.com)
  • The patient underwent The stricture of the right CCA and tor- In 15 of 36 cadavers (48%) the level carotid angiography (Figures 1 and 2). (who.int)
  • Carotid artery dissection is a significant cause of ischemic stroke in all age groups, but it occurs most frequently in the fifth decade of life and accounts for a much larger percentage of strokes in young patients. (medscape.com)
  • Now, TMZ reports reports that a visit to the chiropractor left her with an injury that precipitated the stroke. (scienceblogs.com)
  • That injury tore an artery in her neck and cut off blood flow to her brain, which led to the stroke that killed her. (scienceblogs.com)
  • Carotid artery disease can lead to a stroke. (healthline.com)
  • CEA is considered a reasonably safe procedure that can greatly reduce the risk of stroke if you have carotid artery disease. (healthline.com)
  • Does treatment delay for blunt cerebrovascular injury affect stroke rate? (bvsalud.org)
  • Carotid Artery Thrombosis and Stroke After Blunt Pharyngeal Injury. (drkarimbenitez.com)
  • Does prior traumatic brain injury increase the long-term risk of stroke? (medscape.com)
  • Our group has shown that TGF-b1/ALK1 signalling drives SMC migration and that NF in ligation-injured carotid arteries is blunted in heterozygous Smad1 knockout mice. (gla.ac.uk)
  • Together, these results prompted an observational multiple timepoint carotid artery ligation study in mice which aimed to link BMP-9 presence with vascular injury responses. (gla.ac.uk)
  • Carotid ligation triggered intimal and medial SMC proliferation which was paralleled by a loss of SMC a-smooth muscle actin (SMA) indicating SMC phenotype switching. (gla.ac.uk)
  • Hypoxic-ischemic brain injury (HI) was induced by unilateral carotid artery ligation and subsequent exposure to 10% oxygen for 50 minutes in infant (P9) and juvenile (P30) mice. (wisc.edu)
  • Hypoxia-ischemia (HI) was induced in P9 and P30 mice using unilateral carotid artery ligation and exposure to 10% oxygen for 50min. (wisc.edu)
  • 1 , 2 The presentation of this potentially fatal complication includes severe perioperative or postoperative bleeding, a false aneurysm of the ICA or a carotid cavernous fistula. (bmj.com)
  • Seven patients presented with Degree I arterial injuries, 10 patients presented with Degree II artery injuries, four patients presented with Degree IV artery injuries, one patient presented with a Degree V artery injury, and one patient had a carotid fistula. (biomedcentral.com)
  • It's also less plausible, too, given that there is a clear physical mechanism for injury to the vertebral arteries. (scienceblogs.com)
  • The CCA is close to many vital structures in the neck, including the trachea, oesophagus, inferior thyroid and vertebral arteries, and recurrent la- ryngeal nerves. (who.int)
  • It's not difficult to see how a rapid rotation of the head could potentially stretch the basilar arteries. (scienceblogs.com)
  • Calcified Basilar Artery Embolus With False-Patency Sign on Computed Tomography Angiogram. (medscape.com)
  • Coronary artery bypass grafting (CABG) is a surgical technique utilised to bypass one or more stenosed coronary arteries to re-establish blood supply to cardiac tissue. (gla.ac.uk)
  • Hard signs of an arterial injury include a large expanding hematoma, severe active or pulsatile bleeding, shock unresponsive to fluids, signs of cerebral infarction, presence of a bruit or thrill, and diminished distal pulses. (medscape.com)
  • Although there is no consensus regarding the criteria that should be used to indicate angiotomography for BCVI diagnosis, we conclude that the criteria used in the current study led to a diagnosis of BCVI in 0.93% of 2,467 trauma patients, BCVI injuries were associated with more severe traumas and did not affect mortality. (biomedcentral.com)
  • Retinal ischemia/reperfusion (I/R) injury can cause severe vision impairment. (mdpi.com)
  • Surgery is often needed in patients with more severe injury to place monitors to track and treat intracranial pressure elevation, decompress the brain if intracranial pressure is increased, or remove intracranial hematomas. (msdmanuals.com)
  • Patients with less severe injuries may have no gross structural damage. (msdmanuals.com)
  • They typically involve bullets or sharp objects, but a skull fracture with overlying laceration due to severe blunt force is also considered an open injury. (msdmanuals.com)
  • However, it carries some risk of intraoperative arterial injuries, which is mainly attributed to direct iatrogenic rupture of the internal carotid artery (ICA). (surgicalneurologyint.com)
  • 25 28 38 ] However, even in the absence of this vascular configuration, the rate of intraoperative arterial injuries remains significant. (surgicalneurologyint.com)
  • Carotid artery dissection begins as a tear in one of the carotid arteries of the neck, which allows blood under arterial pressure to enter the wall of the artery and split its layers. (medscape.com)
  • [ 1 ] Dissection of the internal carotid artery can occur intracranially or extracranially, with the latter being more frequent. (medscape.com)
  • Internal carotid artery dissection can be caused by major or minor trauma, or it can be spontaneous, in which case, genetic, familial, or heritable disorders are likely etiologies. (medscape.com)
  • Once diagnosed and treated, patients with carotid artery dissection require regular follow-up and imaging studies of both carotid arteries. (medscape.com)
  • It is widely accepted that carotid artery dissection is a multifactorial disease. (medscape.com)
  • Carotid artery dissection begins as a tear in the tunica intima or directly within the tunica media (possibly originating from the vasa vasorum). (medscape.com)
  • [ 1 , 2 ] The dilatation resulting from an internal carotid artery dissection may be termed a true rather than a false aneurysm because the wall is composed of blood vessel elements. (medscape.com)
  • To investigate the relative importance of stent induced arterial stretch and deep injury to the development of in-stent neointima. (bmj.com)
  • Stretch of the coronary artery in a stent is common, and a major contributor to neointima formation, even in the absence of deep injury. (bmj.com)
  • Deep injury is, however, a more potent stimulus to neointima formation than stretch. (bmj.com)
  • Where neither deep injury nor stretch are seen, the stent has no effect upon the development of neointima. (bmj.com)
  • 2, 3 Multicellular designs appear to produce less vascular injury and neointima than slotted tubes. (bmj.com)
  • 5- 8 The balance to be achieved is, therefore, in attaining adequate final stent dimensions without an excess of vascular injury, because vascular injury is intimately linked to in-stent neointima formation. (bmj.com)
  • 2 8 9 14 ] Thus, the imputed number of iatrogenic vascular injuries encountered during TSS in the United States is approximately 18 cases per year, which is a significant cause of morbidity and mortality as well as physician liability. (surgicalneurologyint.com)
  • Intraoperative injuries of the internal carotid artery (ICA) have a high morbidity and mortality when they occur during trans-sphenoidal surgery. (bmj.com)
  • In view of the major contribution of intrapartum risk factors and prematurity to subsequent neurological morbidity and mortality, studies are needed that address the underlying mechanisms of brain injury that occur in utero to the immature and near-term fetal CNS. (jneurosci.org)
  • 1 29 ] One of the preoperative considerations for TSS is an exclusion of "kissing internal carotid arteries: (ICA), a rare anatomical variant and absolute contraindication for TSS. (surgicalneurologyint.com)
  • An EAST Multicenter Study Analysis of Internal Carotid Artery Blunt Cerebrovascular Injury. (bvsalud.org)
  • Deep injury (rupture of the internal elastic lamina) occurred in 20% of struts (23% of sections) and produced a 1.7-fold increase in neointimal area (3.33 (0.41) mm 2 ) compared with stretch only (p = 0.0002). (bmj.com)
  • Purpose To report our experience with intraoperative complications involving the internal carotid artery (ICA) during trans-sphenoidal surgery and their outcome with reconstructive endovascular management. (bmj.com)
  • Blunt carotid and vertebral artery injury (BCVI) occur infrequently. (biomedcentral.com)
  • Closed head injuries typically occur when the head is struck, strikes an object, or is shaken violently, causing rapid brain acceleration and deceleration. (msdmanuals.com)
  • Chronic Traumatic Encephalopathy (CTE) Chronic traumatic encephalopathy (CTE) is a progressive degenerative brain disorder that may occur after repetitive head trauma or blast injuries. (msdmanuals.com)
  • Immunohistochemistry (IHC) demonstrated that BMP-9 was present in human pre-implantation SVGs and murine carotid arteries. (gla.ac.uk)
  • Some experts in the field of trauma assert that physical examination alone is sufficient to assess zone II for injury, while others believe that diagnostic testing is mandatory. (medscape.com)
  • A single examination is not sufficient, because the onset of signs of injury may be delayed and progressive with neck trauma. (medscape.com)
  • About 50% of cases of penetrating neck trauma in which the platysma is violated have no further injury. (medscape.com)
  • Numerous lawsuits have been filed in the past few years against colleges and professional sports leagues and conferences alleging negligence over the handling of head trauma injuries of players involved in sports. (straffordpub.com)
  • During a 30-month (2006-2008), all patients admitted to the emergency room of Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo with blunt cervical trauma and potential risk of cervical vessel injury, were subjected to cervical angiotomography to diagnose BCVI. (biomedcentral.com)
  • The incidence of this type of injury is difficult to evaluate as many emergency room patients are neurologically asymptomatic or have symptoms attributed to cranial trauma or to other associated injuries. (biomedcentral.com)
  • INTRODUCTION We prospectively evaluated morphologic and functional changes in the carotid arteries of patients treated with unilateral neck radiation therapy (RT) for head and neck cancer. (medrxiv.org)
  • BALB/c aortas (H-2(d)) transplanted into α-TFPI-transgenic (Tg) mice (H-2(b)) regenerated a quiescent endothelium in contrast to progressive IH seen in C57BL/6 wild-type (WT) mice even though both developed aggressive anti-H-2(d) alloresponses, indicating similar vascular injuries. (nih.gov)
  • In addition, carotid artery wire injury in mice triggered a trend towards an increase in total vascular BMP-9 levels, which was paralleled by SMC phenotype switching, indicating a potential role for BMP-9 in NF. (gla.ac.uk)
  • Similar results were observed in apoE-/- mice in which bindarit administration resulted in a 42% reduction of the number of proliferating cells at day 7 after carotid injury and in a 47% inhibition of neointimal formation at day 28. (unina.it)
  • The incidence of this type of injury is difficult to determine as many emergency room patients are neurologically asymptomatic. (biomedcentral.com)
  • Traumatic brain injury (TBI) is physical injury to brain tissue that temporarily or permanently impairs brain function. (msdmanuals.com)
  • Sports-Related Concussion Sports activities are a common cause of concussion, a form of mild traumatic brain injury. (msdmanuals.com)
  • The duplex scan has 86% sensitivity, but is limited in its ability to identify carotid artery lesions near the base of the skull. (biomedcentral.com)
  • [ 1 ] The blood dissects along the artery to create an intramural hematoma that leads to a thrombus, which can narrow the carotid artery lumen and become a nidus for distal embolization (see the image below). (medscape.com)
  • Consider an arterial injury of the neck in patients manifesting any degree of gross bleeding or presence of a hematoma. (medscape.com)
  • Soft signs, such as a nonexpanding hematoma and paresthesias, do not improve the predictive value of an arterial injury more than indicating the proximity of the wound to a major vessel. (medscape.com)
  • The purpose of this study was to clarify the criteria for initial treatment of chronic subdural hematoma (CSDH) by com-paring the backgrounds and post-treatment courses of patients who underwent drainage or middle meningeal artery (MMA) emboliza-tion for CSDH. (go.jp)
  • With even deeper injury (rupture of the external elastic lamina), there was a 2.6-fold increase in neointimal area (5.01 (0.48) mm 2 ) compared with stretch only (p = 0.02). (bmj.com)
  • 10 Vascular injury may be seen as deep penetration of the arterial wall leading to medial rupture. (bmj.com)
  • Risk factors for ICA rupture included two patients with carotid dehiscence, one with sphenoid septal attachment to the ICA, two with revision surgery, one with prior radiation to the tumor, one with bromocriptine treatment and two with acromegaly. (bmj.com)
  • A CEA is also known as carotid artery surgery. (healthline.com)
  • Carotid artery surgery also helps prevent a transient ischemic attack (TIA) . (healthline.com)
  • In the days before the surgery, your doctor may want to conduct tests that will give them a better picture of your arteries. (healthline.com)
  • The artery that's being cleared will be clamped during the surgery, but blood will still reach the brain through the carotid artery on the other side of your neck. (healthline.com)
  • A tube might also be used to reroute the blood flow around the artery receiving surgery. (healthline.com)
  • Percutaneous coronary intervention (PCI) is the current procedure that allows the endovascular treatment of occlusive artery disease, without the need of bypass surgery. (unina.it)
  • Methods A retrospective review was conducted of patients with an ICA injury related to trans-sphenoidal surgery from 2000 to 2012. (bmj.com)
  • Conclusions Endovascular management with arterial reconstruction is helpful in the treatment of ICA injuries during trans-sphenoidal surgery. (bmj.com)
  • Carotid Artery Injury in Anterior Cervical Spine Surgery: Multicenter Cohort Study and Literature Review. (cornell.edu)
  • of the CCA and its importance in neck carotid artery surgery. (who.int)
  • The in vivo neointimal hyperplasia model was established 2 weeks after the carotid artery balloon injury in SHR rats. (hindawi.com)
  • These effects were associated with a significant reduction of NF-κB activation and monocyte chemotactic protein-1 (MCP-1) expression in the carotid arteries of rats treated with the peptide. (unina.it)
  • Treatment of rats with bindarit (200 mg/kg/day) significantly reduced balloon injury-induced neointimal formation by 39% at day 14 without affecting re-endothelialisation and reduced the number of medial and neointimal proliferating cells at day 7 by 54% and 30%, respectively. (unina.it)
  • These effects were associated with a significant reduction of MCP-1 levels both in sera and in injured carotid arteries of rats treated with bindarit. (unina.it)
  • TMZ obtained May's death certificate, which says that she suffered a blunt force injury during a "neck manipulation by [a] chiropractor. (scienceblogs.com)
  • Blunt carotid and vertebral artery injury (BCVI) is infrequent, but may have serious repercussions. (biomedcentral.com)
  • Actinomycin D has been regarded as a potential candidate to prevent balloon injury-induced neointimal formation. (tmu.edu.tw)
  • The observation of in vivo SMC phenotype switching in pre-implantation SVGs prompted development and generation of a ligand-independent contractile differentiation protocol for primary HSVSMCs and primary human coronary artery (HCA) SMCs. (gla.ac.uk)
  • Here we investigate whether age-dependent microglial responses may be related to pre-injury developmental differences in microglial phenotype. (wisc.edu)
  • Uterine ischemia in the dams resulted in a distinct neurobehavioral phenotype in the newborn pups, which was characterized by an increase in forelimb tone that was significantly correlated with histological evidence of persistent injury to subcortical motor pathways involving the basal ganglia and anterior thalamus. (jneurosci.org)
  • Microglia maturation is associated with changes in morphology and gene expression, and microglial responses to ischemia in the developing brain differ based on the age at which injury occurs. (wisc.edu)
  • These findings provide a unique behavioral model to define mechanisms and sequelae of perinatal brain injury from antenatal hypoxia-ischemia. (jneurosci.org)
  • Hypoxia-ischemia (H-I) is also associated with subsequent cerebral injury in a disproportionately high percentage of the survivors of premature birth ( Volpe, 2001 ). (jneurosci.org)
  • In the vasculature, activation of STAT1 and STAT3 promotes inflammatory response ( 5 ), increases neointimal formation ( 6 ), and accelerates the development of atherosclerosis ( 7 ), a chronic disease characterized by inflammation in the artery wall ( 8 ). (diabetesjournals.org)
  • Graham JM, Mattox KL, Feliciano DV, DeBakey ME " Vascular injuries of the axilla. . (bcm.edu)
  • Neuroinflammation plays an important role in ischemic brain injury and recovery, however the interplay between brain development and the neuroinflammatory response is poorly understood. (wisc.edu)
  • Hypoxic-ischemic brain injury results in cerebral palsy (CP), mental retardation, or learning disabilities in surviving children ( Robertson and Finer, 1985 ). (jneurosci.org)
  • Administration of fisetin (ip 3 mg/kg daily for 2 weeks) right after the injury significantly increased PON2 expression in the artery, inhibiting ROS production, and efficiently reduced carotid neointimal hyperplasia. (hindawi.com)
  • These results indicate that fisetin increases the expression of antioxidant PON2 via activation of PPAR γ , reducing oxidative stress, inhibiting VSMC proliferation and migration, and alleviates neointimal hyperplasia after intimal injury. (hindawi.com)
  • Neointimal hyperplasia after vascular injury plays a critical role in the process of vascular restenosis, but the mechanism has not been fully elucidated yet [ 3 ]. (hindawi.com)
  • It is commonly believed that abnormal proliferation and migration of medial vascular smooth muscle cells (VSMCs) are the pathological causes of neointimal formation after intima injury [ 4 ]. (hindawi.com)
  • Effect of NBD peptide on injury-induced neointimal formation The activation of nuclear factor-κB (NF-κB) is a crucial step in the arterial wall's response to injury. (unina.it)
  • In addition, the NBD peptide (0.01 to 1 μM) reduced rat SMC proliferation, migration, and invasion in vitro, processes contributing to the injury-induced neointimal formation in vivo. (unina.it)
  • 2. Use of the anti-inflammatory agent bindarit to control neointimal hyperplasia Chemokines are a family of proteins that regulate the migration of circulating leukocytes to sites of arterial injury as well as the activation of SMCs. (unina.it)
  • Multiple serial cross sections were analysed morphometrically and the neointimal areas were correlated with the type and degree of injury. (bmj.com)
  • For patients with injuries due to hanging, try to determine the suspension time (when the patient was last seen), drop height, ligature used, history of alcohol or drug abuse, and history of suicide attempts. (medscape.com)
  • Virtually all patients with hard signs of an arterial injury require operative repair. (medscape.com)
  • By identifying MRI biomarkers in animal models of pediatric brain injury, Waisman investigator Peter Ferrazzano hopes to provide a means for selecting the patients most likely to benefit from a particular neuroprotective intervention in subsequent clinical trials. (wisc.edu)
  • In three patients, covered stent placement achieved hemostasis at the site of injury within the ICA. (bmj.com)
  • Additionally, patients with weakness of the joint capsule, anatomic aberration of the joint, or injury to the associated ligaments are at greater risk of dislocation. (medscape.com)
  • Medial and superior incisions are safer from the standpoint of potential injury to the carotid artery. (medscape.com)
  • In the first few days after the injury, maintaining adequate brain perfusion and oxygenation and preventing complications of altered sensorium are important. (msdmanuals.com)
  • The presence of a pulse does not exclude a vascular injury, and absence of a pulse is not diagnostic of vascular damage. (medscape.com)
  • There was no intra-oral bleeding, and the carotid pulse was faint. (scirp.org)
  • The best places to check for a pulse are the carotid artery in the neck and the femoral artery in the groin. (cdc.gov)
  • These blockages can be caused by plaque or by a blood clot that has clogged the artery. (healthline.com)