Washing liquid obtained from irrigation of the lung, including the BRONCHI and the PULMONARY ALVEOLI. It is generally used to assess biochemical, inflammatory, or infection status of the lung.
Washing out of the lungs with saline or mucolytic agents for diagnostic or therapeutic purposes. It is very useful in the diagnosis of diffuse pulmonary infiltrates in immunosuppressed patients.
Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood.
Endoscopic examination, therapy or surgery of the bronchi.
The washing of a body cavity or surface by flowing water or solution for therapy or diagnosis.
Round, granular, mononuclear phagocytes found in the alveoli of the lungs. They ingest small inhaled particles resulting in degradation and presentation of the antigen to immunocompetent cells.
Sarcoidosis affecting predominantly the lungs, the site most frequently involved and most commonly causing morbidity and mortality in sarcoidosis. Pulmonary sarcoidosis is characterized by sharply circumscribed granulomas in the alveolar, bronchial, and vascular walls, composed of tightly packed cells derived from the mononuclear phagocyte system. The clinical symptoms when present are dyspnea upon exertion, nonproductive cough, and wheezing. (Cecil Textbook of Medicine, 19th ed, p431)
Infection of the lung often accompanied by inflammation.
A process in which normal lung tissues are progressively replaced by FIBROBLASTS and COLLAGEN causing an irreversible loss of the ability to transfer oxygen into the bloodstream via PULMONARY ALVEOLI. Patients show progressive DYSPNEA finally resulting in death.
Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place.
Pathological processes involving any part of the LUNG.
An idiopathic systemic inflammatory granulomatous disorder comprised of epithelioid and multinucleated giant cells with little necrosis. It usually invades the lungs with fibrosis and may also involve lymph nodes, skin, liver, spleen, eyes, phalangeal bones, and parotid glands.
Medical procedure involving the emptying of contents in the stomach through the use of a tube inserted through the nose or mouth. It is performed to remove poisons or relieve pressure due to intestinal blockages or during surgery.
A common interstitial lung disease caused by hypersensitivity reactions of PULMONARY ALVEOLI after inhalation of and sensitization to environmental antigens of microbial, animal, or chemical sources. The disease is characterized by lymphocytic alveolitis and granulomatous pneumonitis.
A condition characterized by infiltration of the lung with EOSINOPHILS due to inflammation or other disease processes. Major eosinophilic lung diseases are the eosinophilic pneumonias caused by infections, allergens, or toxic agents.
Tendency of the smooth muscle of the tracheobronchial tree to contract more intensely in response to a given stimulus than it does in the response seen in normal individuals. This condition is present in virtually all symptomatic patients with asthma. The most prominent manifestation of this smooth muscle contraction is a decrease in airway caliber that can be readily measured in the pulmonary function laboratory.
Granular leukocytes with a nucleus that usually has two lobes connected by a slender thread of chromatin, and cytoplasm containing coarse, round granules that are uniform in size and stainable by eosin.
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
An albumin obtained from the white of eggs. It is a member of the serpin superfamily.
A pulmonary disease in humans occurring in immunodeficient or malnourished patients or infants, characterized by DYSPNEA, tachypnea, and HYPOXEMIA. Pneumocystis pneumonia is a frequently seen opportunistic infection in AIDS. It is caused by the fungus PNEUMOCYSTIS JIROVECII. The disease is also found in other MAMMALS where it is caused by related species of Pneumocystis.
The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI.
A form of bronchial disorder with three distinct components: airway hyper-responsiveness (RESPIRATORY HYPERSENSITIVITY), airway INFLAMMATION, and intermittent AIRWAY OBSTRUCTION. It is characterized by spasmodic contraction of airway smooth muscle, WHEEZING, and dyspnea (DYSPNEA, PAROXYSMAL).
The number of CELLS of a specific kind, usually measured per unit volume or area of sample.
The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells.
Washing out of the peritoneal cavity. The procedure is a diagnostic as well as a therapeutic technique following abdominal trauma or inflammation.
A form of hypersensitivity affecting the respiratory tract. It includes ASTHMA and RHINITIS, ALLERGIC, SEASONAL.
Damage to any compartment of the lung caused by physical, chemical, or biological agents which characteristically elicit inflammatory reaction. These inflammatory reactions can either be acute and dominated by NEUTROPHILS, or chronic and dominated by LYMPHOCYTES and MACROPHAGES.
A diverse group of lung diseases that affect the lung parenchyma. They are characterized by an initial inflammation of PULMONARY ALVEOLI that extends to the interstitium and beyond leading to diffuse PULMONARY FIBROSIS. Interstitial lung diseases are classified by their etiology (known or unknown causes), and radiological-pathological features.
Antigen-type substances that produce immediate hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).
Fluid obtained by THERAPEUTIC IRRIGATION or washout of the nasal cavity and NASAL MUCOSA. The resulting fluid is used in cytologic and immunologic assays of the nasal mucosa such as with the NASAL PROVOCATION TEST in the diagnosis of nasal hypersensitivity.
A condition of lung damage that is characterized by bilateral pulmonary infiltrates (PULMONARY EDEMA) rich in NEUTROPHILS, and in the absence of clinical HEART FAILURE. This can represent a spectrum of pulmonary lesions, endothelial and epithelial, due to numerous factors (physical, chemical, or biological).
A PULMONARY ALVEOLI-filling disease, characterized by dense phospholipoproteinaceous deposits in the alveoli, cough, and DYSPNEA. This disease is often related to, congenital or acquired, impaired processing of PULMONARY SURFACTANTS by alveolar macrophages, a process dependent on GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR.
A syndrome characterized by progressive life-threatening RESPIRATORY INSUFFICIENCY in the absence of known LUNG DISEASES, usually following a systemic insult such as surgery or major TRAUMA.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
A genus of ascomycetous FUNGI, family Pneumocystidaceae, order Pneumocystidales. It includes various host-specific species causing PNEUMOCYSTIS PNEUMONIA in humans and other MAMMALS.
Inflammation of the lung parenchyma that is caused by bacterial infections.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
Substances and drugs that lower the SURFACE TENSION of the mucoid layer lining the PULMONARY ALVEOLI.
An abundant pulmonary surfactant-associated protein that binds to a variety of lung pathogens and enhances their opsinization and killing by phagocytic cells. Surfactant protein D contains a N-terminal collagen-like domain and a C-terminal lectin domain that are characteristic of members of the collectin family of proteins.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Material coughed up from the lungs and expectorated via the mouth. It contains MUCUS, cellular debris, and microorganisms. It may also contain blood or pus.
An abundant pulmonary surfactant-associated protein that binds to a variety of lung pathogens, resulting in their opsinization. It also stimulates MACROPHAGES to undergo PHAGOCYTOSIS of microorganisms. Surfactant protein A contains a N-terminal collagen-like domain and a C-terminal lectin domain that are characteristic of members of the collectin family of proteins.
The mucous membrane lining the RESPIRATORY TRACT, including the NASAL CAVITY; the LARYNX; the TRACHEA; and the BRONCHI tree. The respiratory mucosa consists of various types of epithelial cells ranging from ciliated columnar to simple squamous, mucous GOBLET CELLS, and glands containing both mucous and serous cells.
The administration of drugs by the respiratory route. It includes insufflation into the respiratory tract.
Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc.
Excessive accumulation of extravascular fluid in the lung, an indication of a serious underlying disease or disorder. Pulmonary edema prevents efficient PULMONARY GAS EXCHANGE in the PULMONARY ALVEOLI, and can be life-threatening.
An enzyme that catalyzes the hydrolysis of proteins, including elastin. It cleaves preferentially bonds at the carboxyl side of Ala and Val, with greater specificity for Ala. EC 3.4.21.37.
An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).
Colloids with a gaseous dispersing phase and either liquid (fog) or solid (smoke) dispersed phase; used in fumigation or in inhalation therapy; may contain propellant agents.
Tests involving inhalation of allergens (nebulized or in dust form), nebulized pharmacologically active solutions (e.g., histamine, methacholine), or control solutions, followed by assessment of respiratory function. These tests are used in the diagnosis of asthma.
Ratio of T-LYMPHOCYTES that express the CD4 ANTIGEN to those that express the CD8 ANTIGEN. This value is commonly assessed in the diagnosis and staging of diseases affecting the IMMUNE SYSTEM including HIV INFECTIONS.
The transference of either one or both of the lungs from one human or animal to another.
Lung infections with the invasive forms of ASPERGILLUS, usually after surgery, transplantation, prolonged NEUTROPENIA or treatment with high-doses of CORTICOSTEROIDS. Invasive pulmonary aspergillosis can progress to CHRONIC NECROTIZING PULMONARY ASPERGILLOSIS or hematogenous spread to other organs.
The unstable triatomic form of oxygen, O3. It is a powerful oxidant that is produced for various chemical and industrial uses. Its production is also catalyzed in the ATMOSPHERE by ULTRAVIOLET RAY irradiation of oxygen or other ozone precursors such as VOLATILE ORGANIC COMPOUNDS and NITROGEN OXIDES. About 90% of the ozone in the atmosphere exists in the stratosphere (STRATOSPHERIC OZONE).
Inflammation of the lung parenchyma that is caused by a viral infection.
The diffusion or accumulation of neutrophils in tissues or cells in response to a wide variety of substances released at the sites of inflammatory reactions.
Quartz (SiO2). A glassy or crystalline form of silicon dioxide. Many colored varieties are semiprecious stones. (From Grant & Hackh's Chemical Dictionary, 5th ed)
A cytokine that promotes differentiation and activation of EOSINOPHILS. It also triggers activated B-LYMPHOCYTES to differentiate into IMMUNOGLOBULIN-secreting cells.
Pulmonary diseases caused by fungal infections, usually through hematogenous spread.
A quaternary ammonium parasympathomimetic agent with the muscarinic actions of ACETYLCHOLINE. It is hydrolyzed by ACETYLCHOLINESTERASE at a considerably slower rate than ACETYLCHOLINE and is more resistant to hydrolysis by nonspecific CHOLINESTERASES so that its actions are more prolonged. It is used as a parasympathomimetic bronchoconstrictor agent and as a diagnostic aid for bronchial asthma. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1116)
The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about.
Any method of artificial breathing that employs mechanical or non-mechanical means to force the air into and out of the lungs. Artificial respiration or ventilation is used in individuals who have stopped breathing or have RESPIRATORY INSUFFICIENCY to increase their intake of oxygen (O2) and excretion of carbon dioxide (CO2).
A complex of related glycopeptide antibiotics from Streptomyces verticillus consisting of bleomycin A2 and B2. It inhibits DNA metabolism and is used as an antineoplastic, especially for solid tumors.
A CXC chemokine that is synthesized by activated MONOCYTES and NEUTROPHILS. It has specificity for CXCR2 RECEPTORS.
The exposure to potentially harmful chemical, physical, or biological agents by inhaling them.
Altered reactivity to an antigen, which can result in pathologic reactions upon subsequent exposure to that particular antigen.
Compounds that accept electrons in an oxidation-reduction reaction. The reaction is induced by or accelerated by exposure to electromagnetic radiation in the spectrum of visible or ultraviolet light.
Water-soluble proteins found in egg whites, blood, lymph, and other tissues and fluids. They coagulate upon heating.
Proteins found in the LUNG that act as PULMONARY SURFACTANTS.
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
Endoscopes for the visualization of the interior of the bronchi.
Abnormal increase of EOSINOPHILS in the blood, tissues or organs.
Pneumonia due to aspiration or inhalation of various oily or fatty substances.
A human or animal whose immunologic mechanism is deficient because of an immunodeficiency disorder or other disease or as the result of the administration of immunosuppressive drugs or radiation.
Inflammation of the large airways in the lung including any part of the BRONCHI, from the PRIMARY BRONCHI to the TERTIARY BRONCHI.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells.
A form of pneumoconiosis caused by inhalation of asbestos fibers which elicit potent inflammatory responses in the parenchyma of the lung. The disease is characterized by interstitial fibrosis of the lung, varying from scattered sites to extensive scarring of the alveolar interstitium.
Delivery of medications through the nasal mucosa.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Class of pro-inflammatory cytokines that have the ability to attract and activate leukocytes. They can be divided into at least three structural branches: C; (CHEMOKINES, C); CC; (CHEMOKINES, CC); and CXC; (CHEMOKINES, CXC); according to variations in a shared cysteine motif.
The administration of therapeutic agents drop by drop, as eye drops, ear drops, or nose drops. It is also administered into a body space or cavity through a catheter. It differs from THERAPEUTIC IRRIGATION in that the irrigate is removed within minutes, but the instillate is left in place.
Inflammation of the BRONCHIOLES.
Serious INFLAMMATION of the LUNG in patients who required the use of PULMONARY VENTILATOR. It is usually caused by cross bacterial infections in hospitals (NOSOCOMIAL INFECTIONS).
A type of lung inflammation resulting from the aspiration of food, liquid, or gastric contents into the upper RESPIRATORY TRACT.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7.
Infections of the lungs with parasites, most commonly by parasitic worms (HELMINTHS).
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
The cartilaginous and membranous tube descending from the larynx and branching into the right and left main bronchi.
Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS.
The viscous secretion of mucous membranes. It contains mucin, white blood cells, water, inorganic salts, and exfoliated cells.
Inflammation of the BRONCHIOLES leading to an obstructive lung disease. Bronchioles are characterized by fibrous granulation tissue with bronchial exudates in the lumens. Clinical features include a nonproductive cough and DYSPNEA.
A species of PNEUMOCYSTIS infecting humans and causing PNEUMOCYSTIS PNEUMONIA. It also occasionally causes extrapulmonary disease in immunocompromised patients. Its former name was Pneumocystis carinii f. sp. hominis.
A form of alveolitis or pneumonitis due to an acquired hypersensitivity to inhaled antigens associated with farm environment. Antigens in the farm dust are commonly from bacteria actinomycetes (SACCHAROPOLYSPORA and THERMOACTINOMYCES), fungi, and animal proteins in the soil, straw, crops, pelts, serum, and excreta.
Inflammation of the lung parenchyma that is associated with BRONCHITIS, usually involving lobular areas from TERMINAL BRONCHIOLES to the PULMONARY ALVEOLI. The affected areas become filled with exudate that forms consolidated patches.
Narrowing of the caliber of the BRONCHI, physiologically or as a result of pharmacological intervention.
The endogenous compounds that mediate inflammation (AUTACOIDS) and related exogenous compounds including the synthetic prostaglandins (PROSTAGLANDINS, SYNTHETIC).
Earth or other matter in fine, dry particles. (Random House Unabridged Dictionary, 2d ed)
An interstitial lung disease of unknown etiology, occurring between 21-80 years of age. It is characterized by a dramatic onset of a "pneumonia-like" illness with cough, fever, malaise, fatigue, and weight loss. Pathological features include prominent interstitial inflammation without collagen fibrosis, diffuse fibroblastic foci, and no microscopic honeycomb change. There is excessive proliferation of granulation tissue within small airways and alveolar ducts.
Lung damage that is caused by the adverse effects of PULMONARY VENTILATOR usage. The high frequency and tidal volumes produced by a mechanical ventilator can cause alveolar disruption and PULMONARY EDEMA.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
A glandular epithelial cell or a unicellular gland. Goblet cells secrete MUCUS. They are scattered in the epithelial linings of many organs, especially the SMALL INTESTINE and the RESPIRATORY TRACT.
Elements of limited time intervals, contributing to particular results or situations.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
A steroid-inducible protein that was originally identified in uterine fluid. It is a secreted homodimeric protein with identical 70-amino acid subunits that are joined in an antiparallel orientation by two disulfide bridges. A variety of activities are associated with uteroglobin including the sequestering of hydrophobic ligands and the inhibition of SECRETORY PHOSPHOLIPASE A2.
The structural changes in the number, mass, size and/or composition of the airway tissues.
Inbreed BN (Brown Norway) rats are a strain of laboratory rats that are specifically bred for research purposes, characterized by their uniform genetic makeup and susceptibility to various diseases, which makes them ideal models for studying human physiology and pathophysiology.
Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
Subset of helper-inducer T-lymphocytes which synthesize and secrete the interleukins IL-4, IL-5, IL-6, and IL-10. These cytokines influence B-cell development and antibody production as well as augmenting humoral responses.
Enlargement of air spaces distal to the TERMINAL BRONCHIOLES where gas-exchange normally takes place. This is usually due to destruction of the alveolar wall. Pulmonary emphysema can be classified by the location and distribution of the lesions.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
Mechanical devices used to produce or assist pulmonary ventilation.
A secreted matrix metalloproteinase which is highly expressed by MACROPHAGES where it may play a role in INFLAMMATION and WOUND HEALING.
Infections with fungi of the genus ASPERGILLUS.
Inhaling liquid or solids, such as stomach contents, into the RESPIRATORY TRACT. When this causes severe lung damage, it is called ASPIRATION PNEUMONIA.
A common interstitial lung disease of unknown etiology, usually occurring between 50-70 years of age. Clinically, it is characterized by an insidious onset of breathlessness with exertion and a nonproductive cough, leading to progressive DYSPNEA. Pathological features show scant interstitial inflammation, patchy collagen fibrosis, prominent fibroblast proliferation foci, and microscopic honeycomb change.
The barrier between capillary blood and alveolar air comprising the alveolar EPITHELIUM and capillary ENDOTHELIUM with their adherent BASEMENT MEMBRANE and EPITHELIAL CELL cytoplasm. PULMONARY GAS EXCHANGE occurs across this membrane.
'Smoke' is a complex mixture of gases, fine particles, and volatile compounds, generally produced by combustion of organic substances, which can contain harmful chemicals known to have adverse health effects.
A cytokine synthesized by T-LYMPHOCYTES that produces proliferation, immunoglobulin isotype switching, and immunoglobulin production by immature B-LYMPHOCYTES. It appears to play a role in regulating inflammatory and immune responses.
X-ray visualization of the chest and organs of the thoracic cavity. It is not restricted to visualization of the lungs.
An abnormal increase in the amount of oxygen in the tissues and organs.
Liquid components of living organisms.
A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36.
Physiologically, the opposition to flow of air caused by the forces of friction. As a part of pulmonary function testing, it is the ratio of driving pressure to the rate of air flow.
Inhaling and exhaling the smoke of burning TOBACCO.
Removal and pathologic examination of specimens in the form of small pieces of tissue from the living body.
Polysaccharides consisting of mannose units.
The capability of the LUNGS to distend under pressure as measured by pulmonary volume change per unit pressure change. While not a complete description of the pressure-volume properties of the lung, it is nevertheless useful in practice as a measure of the comparative stiffness of the lung. (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p562)
Substances that reduce or suppress INFLAMMATION.
White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES).
A class of statistical methods applicable to a large set of probability distributions used to test for correlation, location, independence, etc. In most nonparametric statistical tests, the original scores or observations are replaced by another variable containing less information. An important class of nonparametric tests employs the ordinal properties of the data. Another class of tests uses information about whether an observation is above or below some fixed value such as the median, and a third class is based on the frequency of the occurrence of runs in the data. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p1284; Corsini, Concise Encyclopedia of Psychology, 1987, p764-5)
The technology of transmitting light over long distances through strands of glass or other transparent material.
The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement.
Pulmonary injury following the breathing in of toxic smoke from burning materials such as plastics, synthetics, building materials, etc. This injury is the most frequent cause of death in burn patients.
A genus of mitosporic fungi containing about 100 species and eleven different teleomorphs in the family Trichocomaceae.
Infections with bacteria of the genus PSEUDOMONAS.
Transparent, tasteless crystals found in nature as agate, amethyst, chalcedony, cristobalite, flint, sand, QUARTZ, and tridymite. The compound is insoluble in water or acids except hydrofluoric acid.
Agents causing the narrowing of the lumen of a bronchus or bronchiole.
A form of alveolitis or pneumonitis due to an acquired hypersensitivity to inhaled avian antigens, usually proteins in the dust of bird feathers and droppings.
An infection caused by an organism which becomes pathogenic under certain conditions, e.g., during immunosuppression.
A 66-kDa peroxidase found in EOSINOPHIL granules. Eosinophil peroxidase is a cationic protein with a pI of 10.8 and is comprised of a heavy chain subunit and a light chain subunit. It possesses cytotoxic activity towards BACTERIA and other organisms, which is attributed to its peroxidase activity.
A mixture of liquid hydrocarbons obtained from petroleum. It is used as laxative, lubricant, ointment base, and emollient.
Water content outside of the lung vasculature. About 80% of a normal lung is made up of water, including intracellular, interstitial, and blood water. Failure to maintain the normal homeostatic fluid exchange between the vascular space and the interstitium of the lungs can result in PULMONARY EDEMA and flooding of the alveolar space.
The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction.
Proteins found in EOSINOPHIL granules. They are primarily basic proteins that play a role in host defense and the proinflammatory actions of activated eosinophils.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
An autosomal recessive genetic disease of the EXOCRINE GLANDS. It is caused by mutations in the gene encoding the CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR expressed in several organs including the LUNG, the PANCREAS, the BILIARY SYSTEM, and the SWEAT GLANDS. Cystic fibrosis is characterized by epithelial secretory dysfunction associated with ductal obstruction resulting in AIRWAY OBSTRUCTION; chronic RESPIRATORY INFECTIONS; PANCREATIC INSUFFICIENCY; maldigestion; salt depletion; and HEAT PROSTRATION.
Animals or humans raised in the absence of a particular disease-causing virus or other microorganism. Less frequently plants are cultivated pathogen-free.
A procedure involving placement of a tube into the trachea through the mouth or nose in order to provide a patient with oxygen and anesthesia.
MYCOBACTERIUM infections of the lung.
A highly toxic gas that has been used as a chemical warfare agent. It is an insidious poison as it is not irritating immediately, even when fatal concentrations are inhaled. (From The Merck Index, 11th ed, p7304)
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS.
Diseases of domestic and wild horses of the species Equus caballus.
A hydroxylated form of the imino acid proline. A deficiency in ASCORBIC ACID can result in impaired hydroxyproline formation.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Infections of the respiratory tract with fungi of the genus ASPERGILLUS. Infections may result in allergic reaction (ALLERGIC BRONCHOPULMONARY ASPERGILLOSIS), colonization in pulmonary cavities as fungus balls (MYCETOMA), or lead to invasion of the lung parenchyma (INVASIVE PULMONARY ASPERGILLOSIS).
A form of pneumoconiosis resulting from inhalation of dust containing crystalline form of SILICON DIOXIDE, usually in the form of quartz. Amorphous silica is relatively nontoxic.
A metabolite of BROMHEXINE that stimulates mucociliary action and clears the air passages in the respiratory tract. It is usually administered as the hydrochloride.
Excess of normal lymphocytes in the blood or in any effusion.
Invasion of the host RESPIRATORY SYSTEM by microorganisms, usually leading to pathological processes or diseases.
The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990)
A pulmonary surfactant associated-protein that plays an essential role in alveolar stability by lowering the surface tension at the air-liquid interface. Inherited deficiency of pulmonary surfactant-associated protein B is one cause of RESPIRATORY DISTRESS SYNDROME, NEWBORN.
A CC-type chemokine that is specific for CCR3 RECEPTORS. It is a potent chemoattractant for EOSINOPHILS.
A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells.
A form of pneumoconiosis caused by inhaled rare metal BERYLLIUM or its soluble salts which are used in a wide variety of industry including alloys, ceramics, radiographic equipment, and vacuum tubes. Berylliosis is characterized by an acute inflammatory reaction in the upper airway leading to BRONCHIOLITIS; PULMONARY EDEMA; and pneumonia.
Disease having a short and relatively severe course.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist.
The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES.
The study of the structure, growth, function, genetics, and reproduction of fungi, and MYCOSES.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Any disorder marked by obstruction of conducting airways of the lung. AIRWAY OBSTRUCTION may be acute, chronic, intermittent, or persistent.
A classification of lymphocytes based on structurally or functionally different populations of cells.
Long, pliable, cohesive natural or manufactured filaments of various lengths. They form the structure of some minerals. The medical significance lies in their potential ability to cause various types of PNEUMOCONIOSIS (e.g., ASBESTOSIS) after occupational or environmental exposure. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed, p708)
Toxins closely associated with the living cytoplasm or cell wall of certain microorganisms, which do not readily diffuse into the culture medium, but are released upon lysis of the cells.
Family of house dust mites, in the superfamily Analgoidea, order Astigmata. They include the genera Dermatophagoides and Euroglyphus.
An amine derived by enzymatic decarboxylation of HISTIDINE. It is a powerful stimulant of gastric secretion, a constrictor of bronchial smooth muscle, a vasodilator, and also a centrally acting neurotransmitter.
Interstitial pneumonia caused by extensive infection of the lungs (LUNG) and BRONCHI, particularly the lower lobes of the lungs, by MYCOPLASMA PNEUMONIAE in humans. In SHEEP, it is caused by MYCOPLASMA OVIPNEUMONIAE. In CATTLE, it may be caused by MYCOPLASMA DISPAR.
Measure of the maximum amount of air that can be expelled in a given number of seconds during a FORCED VITAL CAPACITY determination . It is usually given as FEV followed by a subscript indicating the number of seconds over which the measurement is made, although it is sometimes given as a percentage of forced vital capacity.
Soluble mediators of the immune response that are neither antibodies nor complement. They are produced largely, but not exclusively, by monocytes and macrophages.
Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES.
Asbestos. Fibrous incombustible mineral composed of magnesium and calcium silicates with or without other elements. It is relatively inert chemically and used in thermal insulation and fireproofing. Inhalation of dust causes asbestosis and later lung and gastrointestinal neoplasms.
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research.
A member of the MATRIX METALLOPROTEINASES that cleaves triple-helical COLLAGEN types I, II, and III.
Hypersensitivity reaction (ALLERGIC REACTION) to fungus ASPERGILLUS in an individual with long-standing BRONCHIAL ASTHMA. It is characterized by pulmonary infiltrates, EOSINOPHILIA, elevated serum IMMUNOGLOBULIN E, and skin reactivity to Aspergillus antigen.
Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR.
Hypersensitivity reactions which occur within minutes of exposure to challenging antigen due to the release of histamine which follows the antigen-antibody reaction and causes smooth muscle contraction and increased vascular permeability.
Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall.
A CXC chemokine with specificity for CXCR2 RECEPTORS. It has growth factor activities and is implicated as a oncogenic factor in several tumor types.
Relating to the size of solids.
The process in which the neutrophil is stimulated by diverse substances, resulting in degranulation and/or generation of reactive oxygen products, and culminating in the destruction of invading pathogens. The stimulatory substances, including opsonized particles, immune complexes, and chemotactic factors, bind to specific cell-surface receptors on the neutrophil.
The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES).
A chronic multi-system disorder of CONNECTIVE TISSUE. It is characterized by SCLEROSIS in the SKIN, the LUNGS, the HEART, the GASTROINTESTINAL TRACT, the KIDNEYS, and the MUSCULOSKELETAL SYSTEM. Other important features include diseased small BLOOD VESSELS and AUTOANTIBODIES. The disorder is named for its most prominent feature (hard skin), and classified into subsets by the extent of skin thickening: LIMITED SCLERODERMA and DIFFUSE SCLERODERMA.
Group of chemokines with paired cysteines separated by a different amino acid. CXC chemokines are chemoattractants for neutrophils but not monocytes.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
A disease of chronic diffuse irreversible airflow obstruction. Subcategories of COPD include CHRONIC BRONCHITIS and PULMONARY EMPHYSEMA.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Short filamentous organism of the genus Mycoplasma, which binds firmly to the cells of the respiratory epithelium. It is one of the etiologic agents of non-viral primary atypical pneumonia in man.

GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal infection. (1/5496)

Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-targeted mice (GM-/-) cleared group B streptococcus (GBS) from the lungs more slowly than wild-type mice. Expression of GM-CSF in the respiratory epithelium of GM-/- mice improved bacterial clearance to levels greater than that in wild-type GM+/+ mice. Acute aerosolization of GM-CSF to GM+/+ mice significantly enhanced clearance of GBS at 24 hours. GBS infection was associated with increased neutrophilic infiltration in lungs of GM-/- mice, while macrophage infiltrates predominated in wild-type mice, suggesting an abnormality in macrophage clearance of bacteria in the absence of GM-CSF. While phagocytosis of GBS was unaltered, production of superoxide radicals and hydrogen peroxide was markedly deficient in macrophages from GM-/- mice. Lipid peroxidation, assessed by measuring the isoprostane 8-iso-PGF2alpha, was decreased in the lungs of GM-/- mice. GM-CSF plays an important role in GBS clearance in vivo, mediated in part by its role in enhancing superoxide and hydrogen peroxide production and bacterial killing by alveolar macrophages.  (+info)

Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer. (2/5496)

BACKGROUND: Conventional cytologic analysis of sputum is an insensitive test for the diagnosis of non-small-cell lung cancer (NSCLC). We have recently demonstrated that polymerase chain reaction (PCR)-based molecular methods are more sensitive than cytologic analysis in diagnosing bladder cancer. In this study, we examined whether molecular assays could identify cancer cells in bronchoalveolar lavage (BAL) fluid. METHODS: Tumor-specific oncogene mutations, CpG-island methylation status, and microsatellite alterations in the DNA of cells in BAL fluid from 50 consecutive patients with resectable (stages I through IIIa) NSCLC were assessed by use of four PCR-based techniques. RESULTS: Of 50 tumors, 28 contained a p53 mutation, and the identical mutation was detected with a plaque hybridization assay in the BAL fluid of 39% (11 of 28) of the corresponding patients. Eight of 19 adenocarcinomas contained a K-ras mutation, and the identical mutation was detected with a mutation ligation assay in the BAL fluid of 50% (four of eight) of the corresponding patients. The p16 gene was methylated in 19 of 50 tumors, and methylated p16 alleles were detected in the BAL fluid of 63% (12 of 19) of the corresponding patients. Microsatellite instability in at least one marker was detected with a panel of 15 markers frequently altered in NSCLC in 23 of 50 tumors; the identical alteration was detected in the BAL fluid of 14% (three of 22) of the corresponding patients. When all four techniques were used, mutations or microsatellite instability was detected in the paired BAL fluid of 23 (53%) of the 43 patients with tumors carrying a genetic alteration. CONCLUSION: Although still limited by sensitivity, molecular diagnostic strategies can detect the presence of neoplastic cells in the proximal airway of patients with surgically resectable NSCLC.  (+info)

Localization of a candidate surfactant convertase to type II cells, macrophages, and surfactant subfractions. (3/5496)

Pulmonary surfactant exists in the alveolus in several distinct subtypes that differ in their morphology, composition, and surface activity. Experiments by others have implicated a serine hydrolase in the production of the inactive small vesicular subtype of surfactant (N. J. Gross and R. M. Schultz. Biochim. Biophys. Acta 1044: 222-230, 1990). Our laboratory recently identified this enzyme in the rat as the serine carboxylesterase ES-2 [F. Barr, H. Clark, and S. Hawgood. Am. J. Physiol. 274 (Lung Cell. Mol. Physiol. 18): L404-L410, 1998]. In the present study, we determined the cellular sites of expression of ES-2 in rat lung using a digoxygenin-labeled ES-2 riboprobe. ES-2 mRNA was localized to type II cells and alveolar macrophages but not to Clara cells. Using a specific ES-2 antibody, we determined the protein distribution of ES-2 in the lung by immunohistochemistry, and it was found to be consistent with the sites of mRNA expression. Most of the ES-2 in rat bronchoalveolar lavage is in the surfactant-depleted supernatant, but ES-2 was also consistently localized to the small vesicular surfactant subfraction presumed to form as a consequence of conversion activity. These results are consistent with a role for endogenous lung ES-2 in surfactant metabolism.  (+info)

Expression of heat shock protein 72 by alveolar macrophages in hypersensitivity pneumonitis. (4/5496)

The current study was done to look at a possible role of heat shock proteins (HSPs) in hypersensitivity pneumonitis (HP). The specific aims were to determine whether there was a difference in the expression of HSP72 in alveolar macrophages (AMs) between mice challenged with HP antigen and saline-treated control mice and between AMs obtained by bronchoalveolar lavage from 18 patients with HP and 11 normal subjects. The expression of HSP72 was studied under basal conditions and under a mild heat shock. HSP72 expression by AMs in response to in vitro stimulation with Saccharopolyspora rectivirgula was lower in AMs of control mice than in those of HP animals. HSP72 was constitutively expressed in AMs of both normal and HP subjects. Densitometric ratios showed that AMs from normal subjects responded to heat shock with a 39 degrees C-to-37 degrees C ratio of 1.72 +/- 0.18 (mean +/- SE), and AMs from HP patients responded with a ratio of 1.16 +/- 0.16 (P = 0.0377). This decreased induction by additional stress of AMs could lead to an altered immunoregulatory activity and account for the inflammation seen in HP.  (+info)

A rapid polymerase chain reaction technique for detecting M tuberculosis in a variety of clinical specimens. (5/5496)

A rapid in-house polymerase chain reaction (PCR) assay is described for the direct detection of Mycobacterium tuberculosis complex in clinical material. Its performance is compared with two kit based systems. The results of the in-house assay were comparable with the commercial assays, detecting M tuberculosis in 100% of smear positive, culture positive samples. The in-house assay proved to be rapid, easy, and inexpensive to perform, and the inclusion of an internal inhibitor control permitted validation of the PCR results.  (+info)

Cigarette smoking decreases interleukin-8 secretion by human alveolar macrophages. (6/5496)

Cigarette smoking can impair pulmonary immune function, and hence influences the development of lung diseases. Interleukin-8 (IL-8) is a proinflammatory peptide and a potent chemotactic factor for neutrophils, and is produced by both immune and non-immune cells including monocytes and alveolar macrophages (AM). We investigated the effect of cigarette smoking on the secretion of IL-8 by human AM. The IL-8 concentration in bronchoalveolar lavage fluid (BALF) was much higher in smokers than in non-smokers (18.4 +/- 3.9 vs 4.1 +/- 1.0 pg ml-1; P < 0.005). However, spontaneous IL-8 secretion by cultured AM was lower in smokers than in non-smokers (46.8 +/- 12.7 vs 124.1 +/- 24.0 ng ml-1; P < 0.01). When stimulated with lipopolysaccharide (LPS), AM from smokers secreted significantly less IL-8 than those from non-smokers at all tested concentrations of LPS. In contrast, the amount of IL-8 secreted by peripheral blood monocytes with or without LPS stimulation was comparable in smokers and non-smokers. These observations indicate that smoking decreases IL-8 secretion by AM, which may modify or decrease the inflammatory response in the lung.  (+info)

Effect of hyperoxia on human macrophage cytokine response. (7/5496)

In the development of lung damage induced by oxidative stress, it has been proposed that changes in alveolar macrophages (AM) function with modifications in cytokine production may contribute to altered repair processes. To characterize the changes in profiles of cytokine production by macrophages exposed to oxidants, the effects of hyperoxia (95% O2) on interleukin (IL)-1 beta, IL-6, IL-8, and tumour necrosis factor-alpha (TNF-alpha) expression were studied. Experiments were first performed using AM obtained from control subjects and children with interstitial lung disease. Results showed that a 48 h O2 exposure was associated with two distinct patterns of response: a decrease in TNF-alpha, IL-1 beta and IL-6 expression, and an increase in IL-8. To complete these observations we used U937 cells that were exposed for various durations to hyperoxia. We confirmed that a 48 h O2 exposure led to similar changes with a decrease in TNF-alpha, IL-1 beta and IL-6 production and an increase in IL-8. Interestingly, this cytokine response was preceded during the first hours of O2 treatment by induction of TNF-alpha, IL-1 beta and IL-6. These data indicate that hyperoxia induces changes in the expression of macrophages inflammatory cytokines, and that these modifications appear to be influenced by the duration of O2 exposure.  (+info)

Pneumonia in febrile neutropenic patients and in bone marrow and blood stem-cell transplant recipients: use of high-resolution computed tomography. (8/5496)

PURPOSE: To obtain statistical data on the use of high-resolution computed tomography (HRCT) for early detection of pneumonia in febrile neutropenic patients with unknown focus of infection. MATERIALS AND METHODS: One hundred eighty-eight HRCT studies were performed prospectively in 112 neutropenic patients with fever of unknown origin persisting for more than 48 hours despite empiric antibiotic treatment. Fifty-four of these studies were performed in transplant recipients. All patients had normal chest roentgenograms. If pneumonia was detected by HRCT, guided bronchoalveolar lavage was recommended. Evidence of pneumonia on chest roentgenograms during follow-up and micro-organisms detected during follow-up were regarded as documentation of pneumonia. RESULTS: Of the 188 HRCT studies, 112 (60%) showed pneumonia and 76 were normal. Documentation of pneumonia was possible in 61 cases by chest roentgenography or micro-organism detection (54%) (P < 10(-6)). Sensitivity of HRCT was 87% (88% in transplant recipients), specificity was 57% (67%), and the negative predictive value was 88% (97%). A time gain of 5 days was achieved by the additional use of HRCT compared to an exclusive use of chest roentgenography. CONCLUSION: The high frequency of inflammatory pulmonary disease after a suspicious HRCT scan (> 50%) proves that pneumonia is not excluded by a normal chest roentgenogram. Given the significantly longer duration of febrile episodes in transplant recipients, HRCT findings are particularly relevant in this subgroup. Patients with normal HRCT scans, particularly transplant recipients, have a low risk of pneumonia during follow-up. All neutropenic patients with fever of unknown origin and normal chest roentgenograms should undergo HRCT.  (+info)

Bronchoalveolar lavage (BAL) fluid is a type of clinical specimen obtained through a procedure called bronchoalveolar lavage. This procedure involves inserting a bronchoscope into the lungs and instilling a small amount of saline solution into a specific area of the lung, then gently aspirating the fluid back out. The fluid that is recovered is called bronchoalveolar lavage fluid.

BAL fluid contains cells and other substances that are present in the lower respiratory tract, including the alveoli (the tiny air sacs where gas exchange occurs). By analyzing BAL fluid, doctors can diagnose various lung conditions, such as pneumonia, interstitial lung disease, and lung cancer. They can also monitor the effectiveness of treatments for these conditions by comparing the composition of BAL fluid before and after treatment.

BAL fluid is typically analyzed for its cellular content, including the number and type of white blood cells present, as well as for the presence of bacteria, viruses, or other microorganisms. The fluid may also be tested for various proteins, enzymes, and other biomarkers that can provide additional information about lung health and disease.

Bronchoalveolar lavage (BAL) is a medical procedure in which a small amount of fluid is introduced into a segment of the lung and then gently suctioned back out. The fluid contains cells and other materials that can be analyzed to help diagnose various lung conditions, such as inflammation, infection, or cancer.

The procedure is typically performed during bronchoscopy, which involves inserting a thin, flexible tube with a light and camera on the end through the nose or mouth and into the lungs. Once the bronchoscope is in place, a small catheter is passed through the bronchoscope and into the desired lung segment. The fluid is then introduced and suctioned back out, and the sample is sent to a laboratory for analysis.

BAL can be helpful in diagnosing various conditions such as pneumonia, interstitial lung diseases, alveolar proteinosis, and some types of cancer. It can also be used to monitor the effectiveness of treatment for certain lung conditions. However, like any medical procedure, it carries some risks, including bleeding, infection, and respiratory distress. Therefore, it is important that the procedure is performed by a qualified healthcare professional in a controlled setting.

A lung is a pair of spongy, elastic organs in the chest that work together to enable breathing. They are responsible for taking in oxygen and expelling carbon dioxide through the process of respiration. The left lung has two lobes, while the right lung has three lobes. The lungs are protected by the ribcage and are covered by a double-layered membrane called the pleura. The trachea divides into two bronchi, which further divide into smaller bronchioles, leading to millions of tiny air sacs called alveoli, where the exchange of gases occurs.

Bronchoscopy is a medical procedure that involves the examination of the inside of the airways and lungs with a flexible or rigid tube called a bronchoscope. This procedure allows healthcare professionals to directly visualize the airways, take tissue samples for biopsy, and remove foreign objects or secretions. Bronchoscopy can be used to diagnose and manage various respiratory conditions such as lung infections, inflammation, cancer, and bleeding. It is usually performed under local or general anesthesia to minimize discomfort and risks associated with the procedure.

Therapeutic irrigation, also known as lavage, is a medical procedure that involves the introduction of fluids or other agents into a body cavity or natural passageway for therapeutic purposes. This technique is used to cleanse, flush out, or introduce medication into various parts of the body, such as the bladder, lungs, stomach, or colon.

The fluid used in therapeutic irrigation can be sterile saline solution, distilled water, or a medicated solution, depending on the specific purpose of the procedure. The flow and pressure of the fluid are carefully controlled to ensure that it reaches the desired area without causing damage to surrounding tissues.

Therapeutic irrigation is used to treat a variety of medical conditions, including infections, inflammation, obstructions, and toxic exposures. It can also be used as a diagnostic tool to help identify abnormalities or lesions within body cavities.

Overall, therapeutic irrigation is a valuable technique in modern medicine that allows healthcare providers to deliver targeted treatment directly to specific areas of the body, improving patient outcomes and quality of life.

Alveolar macrophages are a type of macrophage (a large phagocytic cell) that are found in the alveoli of the lungs. They play a crucial role in the immune defense system of the lungs by engulfing and destroying any foreign particles, such as dust, microorganisms, and pathogens, that enter the lungs through the process of inhalation. Alveolar macrophages also produce cytokines, which are signaling molecules that help to coordinate the immune response. They are important for maintaining the health and function of the lungs by removing debris and preventing infection.

Sarcoidosis, pulmonary is a specific form of sarcoidosis, which is a multisystem inflammatory disorder characterized by the formation of noncaseating granulomas (small clusters of immune cells) in one or more organs. In pulmonary sarcoidosis, these granulomas primarily affect the lungs, but can also involve the lymph nodes within the chest. The condition is often asymptomatic, but some individuals may experience symptoms such as cough, shortness of breath, chest pain, and fatigue. Pulmonary sarcoidosis can lead to complications like pulmonary fibrosis (scarring of lung tissue) and chronic interstitial lung disease, which can impact lung function and quality of life. The exact cause of sarcoidosis is unknown, but it is believed to involve an abnormal immune response triggered by exposure to certain antigens, such as environmental particles or infectious agents.

Pneumonia is an infection or inflammation of the alveoli (tiny air sacs) in one or both lungs. It's often caused by bacteria, viruses, or fungi. Accumulated pus and fluid in these air sacs make it difficult to breathe, which can lead to coughing, chest pain, fever, and difficulty breathing. The severity of symptoms can vary from mild to life-threatening, depending on the underlying cause, the patient's overall health, and age. Pneumonia is typically diagnosed through a combination of physical examination, medical history, and diagnostic tests such as chest X-rays or blood tests. Treatment usually involves antibiotics for bacterial pneumonia, antivirals for viral pneumonia, and supportive care like oxygen therapy, hydration, and rest.

Pulmonary fibrosis is a specific type of lung disease that results from the thickening and scarring of the lung tissues, particularly those in the alveoli (air sacs) and interstitium (the space around the air sacs). This scarring makes it harder for the lungs to properly expand and transfer oxygen into the bloodstream, leading to symptoms such as shortness of breath, coughing, fatigue, and eventually respiratory failure. The exact cause of pulmonary fibrosis can vary, with some cases being idiopathic (without a known cause) or related to environmental factors, medications, medical conditions, or genetic predisposition.

Pulmonary alveoli, also known as air sacs, are tiny clusters of air-filled pouches located at the end of the bronchioles in the lungs. They play a crucial role in the process of gas exchange during respiration. The thin walls of the alveoli, called alveolar membranes, allow oxygen from inhaled air to pass into the bloodstream and carbon dioxide from the bloodstream to pass into the alveoli to be exhaled out of the body. This vital function enables the lungs to supply oxygen-rich blood to the rest of the body and remove waste products like carbon dioxide.

Lung diseases refer to a broad category of disorders that affect the lungs and other structures within the respiratory system. These diseases can impair lung function, leading to symptoms such as coughing, shortness of breath, chest pain, and wheezing. They can be categorized into several types based on the underlying cause and nature of the disease process. Some common examples include:

1. Obstructive lung diseases: These are characterized by narrowing or blockage of the airways, making it difficult to breathe out. Examples include chronic obstructive pulmonary disease (COPD), asthma, bronchiectasis, and cystic fibrosis.
2. Restrictive lung diseases: These involve stiffening or scarring of the lungs, which reduces their ability to expand and take in air. Examples include idiopathic pulmonary fibrosis, sarcoidosis, and asbestosis.
3. Infectious lung diseases: These are caused by bacteria, viruses, fungi, or parasites that infect the lungs. Examples include pneumonia, tuberculosis, and influenza.
4. Vascular lung diseases: These affect the blood vessels in the lungs, impairing oxygen exchange. Examples include pulmonary embolism, pulmonary hypertension, and chronic thromboembolic pulmonary hypertension (CTEPH).
5. Neoplastic lung diseases: These involve abnormal growth of cells within the lungs, leading to cancer. Examples include small cell lung cancer, non-small cell lung cancer, and mesothelioma.
6. Other lung diseases: These include interstitial lung diseases, pleural effusions, and rare disorders such as pulmonary alveolar proteinosis and lymphangioleiomyomatosis (LAM).

It is important to note that this list is not exhaustive, and there are many other conditions that can affect the lungs. Proper diagnosis and treatment of lung diseases require consultation with a healthcare professional, such as a pulmonologist or respiratory therapist.

Sarcoidosis is a multi-system disorder characterized by the formation of granulomas (small clumps of inflammatory cells) in various organs, most commonly the lungs and lymphatic system. These granulomas can impair the function of the affected organ(s), leading to a variety of symptoms. The exact cause of sarcoidosis is unknown, but it's thought to be an overactive immune response to an unknown antigen, possibly triggered by an infection, chemical exposure, or another environmental factor.

The diagnosis of sarcoidosis typically involves a combination of clinical evaluation, imaging studies (such as chest X-rays and CT scans), and laboratory tests (including blood tests and biopsies). While there is no cure for sarcoidosis, treatment may be necessary to manage symptoms and prevent complications. Corticosteroids are often used to suppress the immune system and reduce inflammation, while other medications may be prescribed to treat specific organ involvement or symptoms. In some cases, sarcoidosis may resolve on its own without any treatment.

Gastric lavage, also known as stomach pumping, is a medical procedure where the stomach's contents are emptied using a tube that is inserted through the mouth or nose and into the stomach. The tube is then connected to suction, which helps remove the stomach contents. This procedure is often used in emergency situations to treat poisonings or overdoses by removing the toxic substance before it gets absorbed into the bloodstream. It can also be used to empty the stomach before certain surgeries or procedures.

Extrinsic allergic alveolitis is a type of lung inflammation that occurs in response to inhaling organic dusts or mold spores that contain allergens. It is also known as hypersensitivity pneumonitis. This condition typically affects people who have been repeatedly exposed to the allergen over a period of time, such as farmers, bird fanciers, and workers in certain industries.

The symptoms of extrinsic allergic alveolitis can vary but often include cough, shortness of breath, fever, and fatigue. These symptoms may develop gradually or suddenly, depending on the frequency and intensity of exposure to the allergen. In some cases, the condition may progress to cause permanent lung damage if it is not treated promptly.

Diagnosis of extrinsic allergic alveolitis typically involves a combination of medical history, physical examination, imaging studies such as chest X-rays or CT scans, and pulmonary function tests. In some cases, blood tests or bronchoscopy with lavage may also be used to help confirm the diagnosis.

Treatment for extrinsic allergic alveolitis typically involves avoiding further exposure to the allergen, as well as using medications such as corticosteroids to reduce inflammation and relieve symptoms. In severe cases, hospitalization and oxygen therapy may be necessary. With prompt and appropriate treatment, most people with extrinsic allergic alveolitis can recover fully and avoid long-term lung damage.

Pulmonary eosinophilia is a condition characterized by an increased number of eosinophils, a type of white blood cell, in the lungs or pulmonary tissues. Eosinophils play a role in the body's immune response to parasites and allergens, but an overabundance can contribute to inflammation and damage in the lungs.

The condition may be associated with various underlying causes, such as:

1. Asthma or allergic bronchopulmonary aspergillosis (ABPA)
2. Eosinophilic lung diseases, like eosinophilic pneumonia or idiopathic hypereosinophilic syndrome
3. Parasitic infections, such as ascariasis or strongyloidiasis
4. Drug reactions, including certain antibiotics and anti-inflammatory drugs
5. Connective tissue disorders, like rheumatoid arthritis or Churg-Strauss syndrome
6. Malignancies, such as lymphoma or leukemia
7. Other less common conditions, like tropical pulmonary eosinophilia or cryptogenic organizing pneumonia

Symptoms of pulmonary eosinophilia can vary but often include cough, shortness of breath, wheezing, and chest discomfort. Diagnosis typically involves a combination of clinical evaluation, imaging studies, and laboratory tests, such as complete blood count (CBC) with differential, bronchoalveolar lavage (BAL), or lung biopsy. Treatment depends on the underlying cause and may include corticosteroids, antibiotics, or antiparasitic medications.

Bronchial hyperresponsiveness (BHR) or bronchial hyperreactivity (BH) is a medical term that refers to the increased sensitivity and exaggerated response of the airways to various stimuli. In people with BHR, the airways narrow (constrict) more than usual in response to certain triggers such as allergens, cold air, exercise, or irritants like smoke or fumes. This narrowing can cause symptoms such as wheezing, coughing, chest tightness, and shortness of breath.

BHR is often associated with asthma and other respiratory conditions, including chronic obstructive pulmonary disease (COPD) and bronchiectasis. It is typically diagnosed through a series of tests that measure the degree of airway narrowing in response to various stimuli. These tests may include spirometry, methacholine challenge test, or histamine challenge test.

BHR can be managed with medications such as bronchodilators and anti-inflammatory drugs, which help to relax the muscles around the airways and reduce inflammation. It is also important to avoid triggers that can exacerbate symptoms and make BHR worse.

Eosinophils are a type of white blood cell that play an important role in the body's immune response. They are produced in the bone marrow and released into the bloodstream, where they can travel to different tissues and organs throughout the body. Eosinophils are characterized by their granules, which contain various proteins and enzymes that are toxic to parasites and can contribute to inflammation.

Eosinophils are typically associated with allergic reactions, asthma, and other inflammatory conditions. They can also be involved in the body's response to certain infections, particularly those caused by parasites such as worms. In some cases, elevated levels of eosinophils in the blood or tissues (a condition called eosinophilia) can indicate an underlying medical condition, such as a parasitic infection, autoimmune disorder, or cancer.

Eosinophils are named for their staining properties - they readily take up eosin dye, which is why they appear pink or red under the microscope. They make up only about 1-6% of circulating white blood cells in healthy individuals, but their numbers can increase significantly in response to certain triggers.

Neutrophils are a type of white blood cell that are part of the immune system's response to infection. They are produced in the bone marrow and released into the bloodstream where they circulate and are able to move quickly to sites of infection or inflammation in the body. Neutrophils are capable of engulfing and destroying bacteria, viruses, and other foreign substances through a process called phagocytosis. They are also involved in the release of inflammatory mediators, which can contribute to tissue damage in some cases. Neutrophils are characterized by the presence of granules in their cytoplasm, which contain enzymes and other proteins that help them carry out their immune functions.

Ovalbumin is the major protein found in egg white, making up about 54-60% of its total protein content. It is a glycoprotein with a molecular weight of around 45 kDa and has both hydrophilic and hydrophobic regions. Ovalbumin is a single polypeptide chain consisting of 385 amino acids, including four disulfide bridges that contribute to its structure.

Ovalbumin is often used in research as a model antigen for studying immune responses and allergies. In its native form, ovalbumin is not allergenic; however, when it is denatured or degraded into smaller peptides through cooking or digestion, it can become an allergen for some individuals.

In addition to being a food allergen, ovalbumin has been used in various medical and research applications, such as vaccine development, immunological studies, and protein structure-function analysis.

"Pneumonia, Pneumocystis" is more commonly referred to as "Pneumocystis pneumonia (PCP)." It is a type of pneumonia caused by the microorganism Pneumocystis jirovecii. This organism was previously classified as a protozoan but is now considered a fungus.

PCP is an opportunistic infection, which means that it mainly affects people with weakened immune systems, such as those with HIV/AIDS, cancer, transplant recipients, or people taking immunosuppressive medications. The symptoms of PCP can include cough, shortness of breath, fever, and difficulty exercising. It is a serious infection that requires prompt medical treatment, typically with antibiotics.

It's important to note that PCP is not the same as pneumococcal pneumonia, which is caused by the bacterium Streptococcus pneumoniae. While both conditions are types of pneumonia, they are caused by different organisms and require different treatments.

"Bronchi" are a pair of airways in the respiratory system that branch off from the trachea (windpipe) and lead to the lungs. They are responsible for delivering oxygen-rich air to the lungs and removing carbon dioxide during exhalation. The right bronchus is slightly larger and more vertical than the left, and they further divide into smaller branches called bronchioles within the lungs. Any abnormalities or diseases affecting the bronchi can impact lung function and overall respiratory health.

Asthma is a chronic respiratory disease characterized by inflammation and narrowing of the airways, leading to symptoms such as wheezing, coughing, shortness of breath, and chest tightness. The airway obstruction in asthma is usually reversible, either spontaneously or with treatment.

The underlying cause of asthma involves a combination of genetic and environmental factors that result in hypersensitivity of the airways to certain triggers, such as allergens, irritants, viruses, exercise, and emotional stress. When these triggers are encountered, the airways constrict due to smooth muscle spasm, swell due to inflammation, and produce excess mucus, leading to the characteristic symptoms of asthma.

Asthma is typically managed with a combination of medications that include bronchodilators to relax the airway muscles, corticosteroids to reduce inflammation, and leukotriene modifiers or mast cell stabilizers to prevent allergic reactions. Avoiding triggers and monitoring symptoms are also important components of asthma management.

There are several types of asthma, including allergic asthma, non-allergic asthma, exercise-induced asthma, occupational asthma, and nocturnal asthma, each with its own set of triggers and treatment approaches. Proper diagnosis and management of asthma can help prevent exacerbations, improve quality of life, and reduce the risk of long-term complications.

"Cell count" is a medical term that refers to the process of determining the number of cells present in a given volume or sample of fluid or tissue. This can be done through various laboratory methods, such as counting individual cells under a microscope using a specialized grid called a hemocytometer, or using automated cell counters that use light scattering and electrical impedance techniques to count and classify different types of cells.

Cell counts are used in a variety of medical contexts, including hematology (the study of blood and blood-forming tissues), microbiology (the study of microscopic organisms), and pathology (the study of diseases and their causes). For example, a complete blood count (CBC) is a routine laboratory test that includes a white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin level, hematocrit value, and platelet count. Abnormal cell counts can indicate the presence of various medical conditions, such as infections, anemia, or leukemia.

A leukocyte count, also known as a white blood cell (WBC) count, is a laboratory test that measures the number of leukocytes in a sample of blood. Leukocytes are a vital part of the body's immune system and help fight infection and inflammation. A high or low leukocyte count may indicate an underlying medical condition, such as an infection, inflammation, or a bone marrow disorder. The normal range for a leukocyte count in adults is typically between 4,500 and 11,000 cells per microliter (mcL) of blood. However, the normal range can vary slightly depending on the laboratory and the individual's age and sex.

Peritoneal lavage is a medical procedure where a sterile fluid is introduced into the peritoneal cavity, which is the space between the lining of the abdominal wall and the organs within it. The fluid is then allowed to mix with any potentially present infectious or inflammatory material in the cavity. Afterward, the fluid is drained out and sent for laboratory analysis to diagnose various conditions such as bacterial peritonitis or other sources of abdominal infection or inflammation.

The procedure can help identify the presence of infection, determine the type of bacteria causing it, and guide appropriate antibiotic therapy. It is an invasive diagnostic test that requires careful monitoring and proper aseptic technique to avoid complications such as infection or bleeding.

Respiratory hypersensitivity, also known as respiratory allergies or hypersensitive pneumonitis, refers to an exaggerated immune response in the lungs to inhaled substances or allergens. This condition occurs when the body's immune system overreacts to harmless particles, leading to inflammation and damage in the airways and alveoli (air sacs) of the lungs.

There are two types of respiratory hypersensitivity: immediate and delayed. Immediate hypersensitivity, also known as type I hypersensitivity, is mediated by immunoglobulin E (IgE) antibodies and results in symptoms such as sneezing, runny nose, and asthma-like symptoms within minutes to hours of exposure to the allergen. Delayed hypersensitivity, also known as type III or type IV hypersensitivity, is mediated by other immune mechanisms and can take several hours to days to develop after exposure to the allergen.

Common causes of respiratory hypersensitivity include mold spores, animal dander, dust mites, pollen, and chemicals found in certain occupations. Symptoms may include coughing, wheezing, shortness of breath, chest tightness, and fatigue. Treatment typically involves avoiding the allergen, if possible, and using medications such as corticosteroids, bronchodilators, or antihistamines to manage symptoms. In severe cases, immunotherapy (allergy shots) may be recommended to help desensitize the immune system to the allergen.

Lung injury, also known as pulmonary injury, refers to damage or harm caused to the lung tissue, blood vessels, or air sacs (alveoli) in the lungs. This can result from various causes such as infection, trauma, exposure to harmful substances, or systemic diseases. Common types of lung injuries include acute respiratory distress syndrome (ARDS), pneumonia, and chemical pneumonitis. Symptoms may include difficulty breathing, cough, chest pain, and decreased oxygen levels in the blood. Treatment depends on the underlying cause and may include medications, oxygen therapy, or mechanical ventilation.

Interstitial lung diseases (ILDs) are a group of disorders characterized by inflammation and scarring (fibrosis) in the interstitium, the tissue and space around the air sacs (alveoli) of the lungs. The interstitium is where the blood vessels that deliver oxygen to the lungs are located. ILDs can be caused by a variety of factors, including environmental exposures, medications, connective tissue diseases, and autoimmune disorders.

The scarring and inflammation in ILDs can make it difficult for the lungs to expand and contract normally, leading to symptoms such as shortness of breath, cough, and fatigue. The scarring can also make it harder for oxygen to move from the air sacs into the bloodstream.

There are many different types of ILDs, including:

* Idiopathic pulmonary fibrosis (IPF): a type of ILD that is caused by unknown factors and tends to progress rapidly
* Hypersensitivity pneumonitis: an ILD that is caused by an allergic reaction to inhaled substances, such as mold or bird droppings
* Connective tissue diseases: ILDs can be a complication of conditions such as rheumatoid arthritis and scleroderma
* Sarcoidosis: an inflammatory disorder that can affect multiple organs, including the lungs
* Asbestosis: an ILD caused by exposure to asbestos fibers

Treatment for ILDs depends on the specific type of disease and its underlying cause. Some treatments may include corticosteroids, immunosuppressive medications, and oxygen therapy. In some cases, a lung transplant may be necessary.

An allergen is a substance that can cause an allergic reaction in some people. These substances are typically harmless to most people, but for those with allergies, the immune system mistakenly identifies them as threats and overreacts, leading to the release of histamines and other chemicals that cause symptoms such as itching, sneezing, runny nose, rashes, hives, and difficulty breathing. Common allergens include pollen, dust mites, mold spores, pet dander, insect venom, and certain foods or medications. When a person comes into contact with an allergen, they may experience symptoms that range from mild to severe, depending on the individual's sensitivity to the substance and the amount of exposure.

Nasal lavage fluid refers to the fluid that is obtained through a process called nasal lavage or nasal washing. This procedure involves instilling a saline solution into the nose and then allowing it to drain out, taking with it any mucus, debris, or other particles present in the nasal passages. The resulting fluid can be collected and analyzed for various purposes, such as diagnosing sinus infections, allergies, or other conditions affecting the nasal cavity and surrounding areas.

It is important to note that the term "nasal lavage fluid" may also be used interchangeably with "nasal wash fluid," "nasal irrigation fluid," or "sinus rinse fluid." These terms all refer to the same basic concept of using a saline solution to clean out the nasal passages and collect the resulting fluid for analysis.

Acute Lung Injury (ALI) is a medical condition characterized by inflammation and damage to the lung tissue, which can lead to difficulty breathing and respiratory failure. It is often caused by direct or indirect injury to the lungs, such as pneumonia, sepsis, trauma, or inhalation of harmful substances.

The symptoms of ALI include shortness of breath, rapid breathing, cough, and low oxygen levels in the blood. The condition can progress rapidly and may require mechanical ventilation to support breathing. Treatment typically involves addressing the underlying cause of the injury, providing supportive care, and managing symptoms.

In severe cases, ALI can lead to Acute Respiratory Distress Syndrome (ARDS), a more serious and life-threatening condition that requires intensive care unit (ICU) treatment.

Pulmonary Alveolar Proteinosis (PAP) is a rare lung disorder characterized by the accumulation of surfactant, a lipoprotein complex that reduces surface tension within the alveoli, in the air sacs (alveoli) of the lungs. This accumulation can lead to difficulty breathing and reduced oxygen levels in the blood.

There are three types of PAP:

1. Congenital PAP: A very rare inherited form that affects infants and is caused by a genetic mutation that disrupts the production or function of granulocyte-macrophage colony-stimulating factor (GM-CSF), a protein important for the development and function of alveolar macrophages.

2. Secondary PAP: This form is associated with conditions that impair the clearance of surfactant by alveolar macrophages, such as hematologic disorders (e.g., leukemia), infections, exposure to inhaled irritants (e.g., silica dust), and certain medications.

3. Idiopathic PAP: The most common form, also known as autoimmune PAP, is caused by the development of autoantibodies against GM-CSF, which disrupts its function and leads to surfactant accumulation in the lungs.

Treatment for PAP may include whole lung lavage (WLL), a procedure where the affected lung is filled with saline solution and then drained to remove excess surfactant, as well as managing any underlying conditions. In some cases of idiopathic PAP, off-label use of inhaled GM-CSF has shown promise in improving symptoms and lung function.

Respiratory Distress Syndrome, Adult (RDSa or ARDS), also known as Acute Respiratory Distress Syndrome, is a severe form of acute lung injury characterized by rapid onset of widespread inflammation in the lungs. This results in increased permeability of the alveolar-capillary membrane, pulmonary edema, and hypoxemia (low oxygen levels in the blood). The inflammation can be triggered by various direct or indirect insults to the lung, such as sepsis, pneumonia, trauma, or aspiration.

The hallmark of ARDS is the development of bilateral pulmonary infiltrates on chest X-ray, which can resemble pulmonary edema, but without evidence of increased left atrial pressure. The condition can progress rapidly and may require mechanical ventilation with positive end-expiratory pressure (PEEP) to maintain adequate oxygenation and prevent further lung injury.

The management of ARDS is primarily supportive, focusing on protecting the lungs from further injury, optimizing oxygenation, and providing adequate nutrition and treatment for any underlying conditions. The use of low tidal volumes and limiting plateau pressures during mechanical ventilation have been shown to improve outcomes in patients with ARDS.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

"Pneumocystis" is a genus of fungi that are commonly found in the lungs of many mammals, including humans. The most well-known and studied species within this genus is "Pneumocystis jirovecii," which was previously known as "Pneumocystis carinii." This organism can cause a serious lung infection known as Pneumocystis pneumonia (PCP) in individuals with weakened immune systems, such as those with HIV/AIDS or who are undergoing immunosuppressive therapy.

It's worth noting that while "Pneumocystis" was once classified as a protozoan, it is now considered to be a fungus based on its genetic and biochemical characteristics.

Bacterial pneumonia is a type of lung infection that's caused by bacteria. It can affect people of any age, but it's more common in older adults, young children, and people with certain health conditions or weakened immune systems. The symptoms of bacterial pneumonia can vary, but they often include cough, chest pain, fever, chills, and difficulty breathing.

The most common type of bacteria that causes pneumonia is Streptococcus pneumoniae (pneumococcus). Other types of bacteria that can cause pneumonia include Haemophilus influenzae, Staphylococcus aureus, and Mycoplasma pneumoniae.

Bacterial pneumonia is usually treated with antibiotics, which are medications that kill bacteria. The specific type of antibiotic used will depend on the type of bacteria causing the infection. It's important to take all of the prescribed medication as directed, even if you start feeling better, to ensure that the infection is completely cleared and to prevent the development of antibiotic resistance.

In severe cases of bacterial pneumonia, hospitalization may be necessary for close monitoring and treatment with intravenous antibiotics and other supportive care.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Pulmonary surfactants are a complex mixture of lipids and proteins that are produced by the alveolar type II cells in the lungs. They play a crucial role in reducing the surface tension at the air-liquid interface within the alveoli, which helps to prevent collapse of the lungs during expiration. Surfactants also have important immunological functions, such as inhibiting the growth of certain bacteria and modulating the immune response. Deficiency or dysfunction of pulmonary surfactants can lead to respiratory distress syndrome (RDS) in premature infants and other lung diseases.

Pulmonary Surfactant-Associated Protein D, also known as SP-D or surfactant protein D, is a protein that belongs to the collectin family. It is produced by specialized cells called type II alveolar epithelial cells and is found in the lungs, where it plays an important role in maintaining lung homeostasis and host defense.

SP-D has several functions in the lungs, including:

1. Reducing surface tension: SP-D helps to reduce surface tension in the alveoli, which facilitates breathing by preventing the collapse of the lungs during expiration.
2. Host defense: SP-D plays a crucial role in innate immunity by recognizing and binding to pathogens such as bacteria, viruses, and fungi. This helps to neutralize and clear these microorganisms from the lungs.
3. Inflammation regulation: SP-D has anti-inflammatory properties and can help to regulate the immune response in the lungs. It does this by modulating the activation of immune cells such as macrophages and neutrophils.
4. Tissue repair: SP-D may also play a role in tissue repair and remodeling in the lungs, although its exact mechanisms are not fully understood.

Abnormalities in SP-D have been implicated in several lung diseases, including respiratory distress syndrome, asthma, chronic obstructive pulmonary disease (COPD), and interstitial lung diseases.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Sputum is defined as a mixture of saliva and phlegm that is expelled from the respiratory tract during coughing, sneezing or deep breathing. It can be clear, mucoid, or purulent (containing pus) depending on the underlying cause of the respiratory issue. Examination of sputum can help diagnose various respiratory conditions such as infections, inflammation, or other lung diseases.

Pulmonary Surfactant-Associated Protein A (SP-A) is a protein that is a major component of pulmonary surfactant, which is a complex mixture of lipids and proteins found in the alveoli of the lungs. SP-A is produced by specialized cells called type II alveolar epithelial cells and has several important functions in the lung.

SP-A plays a role in innate immunity by binding to pathogens, such as bacteria and viruses, and facilitating their clearance from the lungs. It also helps to regulate surfactant homeostasis by participating in the reuptake and recycling of surfactant components. Additionally, SP-A has been shown to have anti-inflammatory effects and may help to modulate the immune response in the lung.

Deficiencies or mutations in SP-A have been associated with various respiratory diseases, including acute respiratory distress syndrome (ARDS), pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD).

Respiratory mucosa refers to the mucous membrane that lines the respiratory tract, including the nose, throat, bronchi, and lungs. It is a specialized type of tissue that is composed of epithelial cells, goblet cells, and glands that produce mucus, which helps to trap inhaled particles such as dust, allergens, and pathogens.

The respiratory mucosa also contains cilia, tiny hair-like structures that move rhythmically to help propel the mucus and trapped particles out of the airways and into the upper part of the throat, where they can be swallowed or coughed up. This defense mechanism is known as the mucociliary clearance system.

In addition to its role in protecting the respiratory tract from harmful substances, the respiratory mucosa also plays a crucial role in immune function by containing various types of immune cells that help to detect and respond to pathogens and other threats.

"Inhalation administration" is a medical term that refers to the method of delivering medications or therapeutic agents directly into the lungs by inhaling them through the airways. This route of administration is commonly used for treating respiratory conditions such as asthma, COPD (chronic obstructive pulmonary disease), and cystic fibrosis.

Inhalation administration can be achieved using various devices, including metered-dose inhalers (MDIs), dry powder inhalers (DPIs), nebulizers, and soft-mist inhalers. Each device has its unique mechanism of delivering the medication into the lungs, but they all aim to provide a high concentration of the drug directly to the site of action while minimizing systemic exposure and side effects.

The advantages of inhalation administration include rapid onset of action, increased local drug concentration, reduced systemic side effects, and improved patient compliance due to the ease of use and non-invasive nature of the delivery method. However, proper technique and device usage are crucial for effective therapy, as incorrect usage may result in suboptimal drug deposition and therapeutic outcomes.

Respiratory Function Tests (RFTs) are a group of medical tests that measure how well your lungs take in and exhale air, and how well they transfer oxygen and carbon dioxide into and out of your blood. They can help diagnose certain lung disorders, measure the severity of lung disease, and monitor response to treatment.

RFTs include several types of tests, such as:

1. Spirometry: This test measures how much air you can exhale and how quickly you can do it. It's often used to diagnose and monitor conditions like asthma, chronic obstructive pulmonary disease (COPD), and other lung diseases.
2. Lung volume testing: This test measures the total amount of air in your lungs. It can help diagnose restrictive lung diseases, such as pulmonary fibrosis or sarcoidosis.
3. Diffusion capacity testing: This test measures how well oxygen moves from your lungs into your bloodstream. It's often used to diagnose and monitor conditions like pulmonary fibrosis, interstitial lung disease, and other lung diseases that affect the ability of the lungs to transfer oxygen to the blood.
4. Bronchoprovocation testing: This test involves inhaling a substance that can cause your airways to narrow, such as methacholine or histamine. It's often used to diagnose and monitor asthma.
5. Exercise stress testing: This test measures how well your lungs and heart work together during exercise. It's often used to diagnose lung or heart disease.

Overall, Respiratory Function Tests are an important tool for diagnosing and managing a wide range of lung conditions.

Pulmonary edema is a medical condition characterized by the accumulation of fluid in the alveoli (air sacs) and interstitial spaces (the area surrounding the alveoli) within the lungs. This buildup of fluid can lead to impaired gas exchange, resulting in shortness of breath, coughing, and difficulty breathing, especially when lying down. Pulmonary edema is often a complication of heart failure, but it can also be caused by other conditions such as pneumonia, trauma, or exposure to certain toxins.

In the early stages of pulmonary edema, patients may experience mild symptoms such as shortness of breath during physical activity. However, as the condition progresses, symptoms can become more severe and include:

* Severe shortness of breath, even at rest
* Wheezing or coughing up pink, frothy sputum
* Rapid breathing and heart rate
* Anxiety or restlessness
* Bluish discoloration of the skin (cyanosis) due to lack of oxygen

Pulmonary edema can be diagnosed through a combination of physical examination, medical history, chest X-ray, and other diagnostic tests such as echocardiography or CT scan. Treatment typically involves addressing the underlying cause of the condition, as well as providing supportive care such as supplemental oxygen, diuretics to help remove excess fluid from the body, and medications to help reduce anxiety and improve breathing. In severe cases, mechanical ventilation may be necessary to support respiratory function.

Leukocyte elastase is a type of enzyme that is released by white blood cells (leukocytes), specifically neutrophils, during inflammation. Its primary function is to help fight infection by breaking down the proteins in bacteria and viruses. However, if not properly regulated, leukocyte elastase can also damage surrounding tissues, contributing to the progression of various diseases such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), and cystic fibrosis.

Leukocyte elastase is often measured in clinical settings as a marker of inflammation and neutrophil activation, particularly in patients with lung diseases. Inhibitors of leukocyte elastase have been developed as potential therapeutic agents for these conditions.

Immunoglobulin E (IgE) is a type of antibody that plays a key role in the immune response to parasitic infections and allergies. It is produced by B cells in response to stimulation by antigens, such as pollen, pet dander, or certain foods. Once produced, IgE binds to receptors on the surface of mast cells and basophils, which are immune cells found in tissues and blood respectively. When an individual with IgE antibodies encounters the allergen again, the cross-linking of IgE molecules bound to the FcεRI receptor triggers the release of mediators such as histamine, leukotrienes, prostaglandins, and various cytokines from these cells. These mediators cause the symptoms of an allergic reaction, such as itching, swelling, and redness. IgE also plays a role in protecting against certain parasitic infections by activating eosinophils, which can kill the parasites.

In summary, Immunoglobulin E (IgE) is a type of antibody that plays a crucial role in the immune response to allergens and parasitic infections, it binds to receptors on the surface of mast cells and basophils, when an individual with IgE antibodies encounters the allergen again, it triggers the release of mediators from these cells causing the symptoms of an allergic reaction.

Aerosols are defined in the medical field as suspensions of fine solid or liquid particles in a gas. In the context of public health and medicine, aerosols often refer to particles that can remain suspended in air for long periods of time and can be inhaled. They can contain various substances, such as viruses, bacteria, fungi, or chemicals, and can play a role in the transmission of respiratory infections or other health effects.

For example, when an infected person coughs or sneezes, they may produce respiratory droplets that can contain viruses like influenza or SARS-CoV-2 (the virus that causes COVID-19). Some of these droplets can evaporate quickly and leave behind smaller particles called aerosols, which can remain suspended in the air for hours and potentially be inhaled by others. This is one way that respiratory viruses can spread between people in close proximity to each other.

Aerosols can also be generated through medical procedures such as bronchoscopy, suctioning, or nebulizer treatments, which can produce aerosols containing bacteria, viruses, or other particles that may pose an infection risk to healthcare workers or other patients. Therefore, appropriate personal protective equipment (PPE) and airborne precautions are often necessary to reduce the risk of transmission in these settings.

Bronchial provocation tests are a group of medical tests used to assess the airway responsiveness of the lungs by challenging them with increasing doses of a specific stimulus, such as methacholine or histamine, which can cause bronchoconstriction (narrowing of the airways) in susceptible individuals. These tests are often performed to diagnose and monitor asthma and other respiratory conditions that may be associated with heightened airway responsiveness.

The most common type of bronchial provocation test is the methacholine challenge test, which involves inhaling increasing concentrations of methacholine aerosol via a nebulizer. The dose response is measured by monitoring lung function (usually through spirometry) before and after each exposure. A positive test is indicated when there is a significant decrease in forced expiratory volume in one second (FEV1) or other measures of airflow, which suggests bronchial hyperresponsiveness.

Other types of bronchial provocation tests include histamine challenges, exercise challenges, and mannitol challenges. These tests have specific indications, contraindications, and protocols that should be followed to ensure accurate results and patient safety. Bronchial provocation tests are typically conducted in a controlled clinical setting under the supervision of trained healthcare professionals.

The CD4-CD8 ratio is a measurement of the relative numbers of two types of immune cells, CD4+ T cells (also known as helper T cells) and CD8+ T cells (also known as cytotoxic T cells), in the blood. The CD4-CD8 ratio is commonly used as a marker of immune function and health.

CD4+ T cells play an important role in the immune response by helping to coordinate the activity of other immune cells, producing chemical signals that activate them, and producing antibodies. CD8+ T cells are responsible for directly killing infected cells and tumor cells.

A normal CD4-CD8 ratio is typically between 1.0 and 3.0. A lower ratio may indicate an impaired immune system, such as in cases of HIV infection or other immunodeficiency disorders. A higher ratio may be seen in some viral infections, autoimmune diseases, or cancer. It's important to note that the CD4-CD8 ratio should be interpreted in conjunction with other laboratory and clinical findings for a more accurate assessment of immune function.

Lung transplantation is a surgical procedure where one or both diseased lungs are removed and replaced with healthy lungs from a deceased donor. It is typically considered as a treatment option for patients with end-stage lung diseases, such as chronic obstructive pulmonary disease (COPD), cystic fibrosis, idiopathic pulmonary fibrosis, and alpha-1 antitrypsin deficiency, who have exhausted all other medical treatments and continue to suffer from severe respiratory failure.

The procedure involves several steps, including evaluating the patient's eligibility for transplantation, matching the donor's lung size and blood type with the recipient, and performing the surgery under general anesthesia. After the surgery, patients require close monitoring and lifelong immunosuppressive therapy to prevent rejection of the new lungs.

Lung transplantation can significantly improve the quality of life and survival rates for some patients with end-stage lung disease, but it is not without risks, including infection, bleeding, and rejection. Therefore, careful consideration and thorough evaluation are necessary before pursuing this treatment option.

Invasive pulmonary aspergillosis (IPA) is a severe and often life-threatening fungal infection caused by the mold Aspergillus fumigatus or other Aspergillus species. It primarily affects immunocompromised individuals, such as those with hematologic malignancies, solid organ transplant recipients, or those receiving high-dose corticosteroids or other immunosuppressive therapies.

In IPA, the fungal hyphae invade the pulmonary blood vessels and surrounding lung tissue, leading to the formation of nodular lesions, infarcts, and cavities in the lungs. The infection can also spread to other organs, causing disseminated aspergillosis.

Symptoms of IPA include fever, cough, chest pain, hemoptysis (coughing up blood), and shortness of breath. Diagnosis typically involves a combination of radiologic imaging, such as computed tomography (CT) scans, and microbiological or molecular testing of respiratory specimens, blood, or tissue samples.

Treatment usually includes systemic antifungal therapy with agents such as voriconazole, isavuconazole, or liposomal amphotericin B. The prognosis of IPA is generally poor, with high mortality rates ranging from 30% to 90%, depending on the underlying condition and severity of the infection.

Ozone (O3) is not a substance that is typically considered a component of health or medicine in the context of human body or physiology. It's actually a form of oxygen, but with three atoms instead of two, making it unstable and reactive. Ozone is naturally present in the Earth's atmosphere, where it forms a protective layer in the stratosphere that absorbs harmful ultraviolet (UV) radiation from the sun.

However, ozone can have both beneficial and detrimental effects on human health depending on its location and concentration. At ground level or in indoor environments, ozone is considered an air pollutant that can irritate the respiratory system and aggravate asthma symptoms when inhaled at high concentrations. It's important to note that ozone should not be confused with oxygen (O2), which is essential for human life and breathing.

Viral pneumonia is a type of pneumonia caused by viral infection. It primarily affects the upper and lower respiratory tract, leading to inflammation of the alveoli (air sacs) in the lungs. This results in symptoms such as cough, difficulty breathing, fever, fatigue, and chest pain. Common viruses that can cause pneumonia include influenza virus, respiratory syncytial virus (RSV), and adenovirus. Viral pneumonia is often milder than bacterial pneumonia but can still be serious, especially in young children, older adults, and people with weakened immune systems. Treatment typically involves supportive care, such as rest, hydration, and fever reduction, while the body fights off the virus. In some cases, antiviral medications may be used to help manage symptoms and prevent complications.

Neutrophil infiltration is a pathological process characterized by the accumulation of neutrophils, a type of white blood cell, in tissue. It is a common feature of inflammation and occurs in response to infection, injury, or other stimuli that trigger an immune response. Neutrophils are attracted to the site of tissue damage by chemical signals called chemokines, which are released by damaged cells and activated immune cells. Once they reach the site of inflammation, neutrophils help to clear away damaged tissue and microorganisms through a process called phagocytosis. However, excessive or prolonged neutrophil infiltration can also contribute to tissue damage and may be associated with various disease states, including cancer, autoimmune disorders, and ischemia-reperfusion injury.

I'm sorry for any confusion, but "quartz" is not a medical term. Quartz is a mineral that is one of the most common minerals on Earth. It is found in many different types of rocks and is made up of silicon dioxide (SiO2). It is often used in electronics and watches because of its piezoelectric properties, which means it can generate an electric charge when subjected to pressure or stress.

It does not have any direct relation with medical field, although there are some Quartz based equipment like quartz crystal microbalance (QCM) sensors that are used in medical research for the detection of biomolecules and pathogens.

Interleukin-5 (IL-5) is a type of cytokine, which is a small signaling protein that mediates and regulates immunity, inflammation, and hematopoiesis. IL-5 is primarily produced by activated T cells, especially Th2 cells, as well as mast cells, eosinophils, and innate lymphoid cells (ILCs).

The primary function of IL-5 is to regulate the growth, differentiation, activation, and survival of eosinophils, a type of white blood cell that plays a crucial role in the immune response against parasitic infections. IL-5 also enhances the ability of eosinophils to migrate from the bone marrow into the bloodstream and then into tissues, where they can participate in immune responses.

In addition to its effects on eosinophils, IL-5 has been shown to have a role in the regulation of B cell function, including promoting the survival and differentiation of B cells into antibody-secreting plasma cells. Dysregulation of IL-5 production and activity has been implicated in several diseases, including asthma, allergies, and certain parasitic infections.

Fungal lung diseases, also known as fungal pneumonia or mycoses, refer to a group of respiratory disorders caused by the infection of fungi in the lungs. These fungi are commonly found in the environment, such as soil, decaying organic matter, and contaminated materials. People can develop lung diseases from fungi after inhaling spores or particles that contain fungi.

There are several types of fungal lung diseases, including:

1. Aspergillosis: This is caused by the Aspergillus fungus and can affect people with weakened immune systems. It can cause allergic reactions, lung infections, or invasive aspergillosis, which can spread to other organs.
2. Cryptococcosis: This is caused by the Cryptococcus fungus and is usually found in soil contaminated with bird droppings. It can cause pneumonia, meningitis, or skin lesions.
3. Histoplasmosis: This is caused by the Histoplasma capsulatum fungus and is commonly found in the Ohio and Mississippi River valleys. It can cause flu-like symptoms, lung infections, or disseminated histoplasmosis, which can spread to other organs.
4. Blastomycosis: This is caused by the Blastomyces dermatitidis fungus and is commonly found in the southeastern and south-central United States. It can cause pneumonia, skin lesions, or disseminated blastomycosis, which can spread to other organs.
5. Coccidioidomycosis: This is caused by the Coccidioides immitis fungus and is commonly found in the southwestern United States. It can cause flu-like symptoms, lung infections, or disseminated coccidioidomycosis, which can spread to other organs.

Fungal lung diseases can range from mild to severe, depending on the type of fungus and the person's immune system. Treatment may include antifungal medications, surgery, or supportive care. Prevention measures include avoiding exposure to contaminated soil or dust, wearing protective masks in high-risk areas, and promptly seeking medical attention if symptoms develop.

Methacholine chloride is a medication that is used as a diagnostic tool to help identify and assess the severity of asthma or other respiratory conditions that cause airway hyperresponsiveness. It is a synthetic derivative of acetylcholine, which is a neurotransmitter that causes smooth muscle contraction in the body.

When methacholine chloride is inhaled, it stimulates the muscarinic receptors in the airways, causing them to constrict or narrow. This response is measured and used to determine the degree of airway hyperresponsiveness, which can help diagnose asthma and assess its severity.

The methacholine challenge test involves inhaling progressively higher doses of methacholine chloride until a significant decrease in lung function is observed or until a maximum dose is reached. The test results are then used to guide treatment decisions and monitor the effectiveness of therapy. It's important to note that this test should be conducted under the supervision of a healthcare professional, as it carries some risks, including bronchoconstriction and respiratory distress.

The Respiratory System is a complex network of organs and tissues that work together to facilitate the process of breathing, which involves the intake of oxygen and the elimination of carbon dioxide. This system primarily includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, bronchioles, lungs, and diaphragm.

The nostrils or mouth take in air that travels through the pharynx, larynx, and trachea into the lungs. Within the lungs, the trachea divides into two bronchi, one for each lung, which further divide into smaller tubes called bronchioles. At the end of these bronchioles are tiny air sacs known as alveoli where the exchange of gases occurs. Oxygen from the inhaled air diffuses through the walls of the alveoli into the bloodstream, while carbon dioxide, a waste product, moves from the blood to the alveoli and is exhaled out of the body.

The diaphragm, a large muscle that separates the chest from the abdomen, plays a crucial role in breathing by contracting and relaxing to change the volume of the chest cavity, thereby allowing air to flow in and out of the lungs. Overall, the Respiratory System is essential for maintaining life by providing the body's cells with the oxygen needed for metabolism and removing waste products like carbon dioxide.

Artificial respiration is an emergency procedure that can be used to provide oxygen to a person who is not breathing or is breathing inadequately. It involves manually forcing air into the lungs, either by compressing the chest or using a device to deliver breaths. The goal of artificial respiration is to maintain adequate oxygenation of the body's tissues and organs until the person can breathe on their own or until advanced medical care arrives. Artificial respiration may be used in conjunction with cardiopulmonary resuscitation (CPR) in cases of cardiac arrest.

Bleomycin is a type of chemotherapeutic agent used to treat various types of cancer, including squamous cell carcinoma, testicular cancer, and lymphomas. It works by causing DNA damage in rapidly dividing cells, which can inhibit the growth and proliferation of cancer cells.

Bleomycin is an antibiotic derived from Streptomyces verticillus and is often administered intravenously or intramuscularly. While it can be effective in treating certain types of cancer, it can also have serious side effects, including lung toxicity, which can lead to pulmonary fibrosis and respiratory failure. Therefore, bleomycin should only be used under the close supervision of a healthcare professional who is experienced in administering chemotherapy drugs.

Chemokine (C-X-C motif) ligand 2, also known as CXCL2, is a small signaling protein that belongs to the chemokine family. Chemokines are a group of cytokines, or cell signaling molecules, that play crucial roles in immune responses and inflammation. They mediate their effects by interacting with specific receptors on the surface of target cells, guiding the migration of various immune cells to sites of infection, injury, or inflammation.

CXCL2 is primarily produced by activated monocytes, macrophages, and neutrophils, as well as endothelial cells, fibroblasts, and certain types of tumor cells. Its primary function is to attract and activate neutrophils, which are key effector cells in the early stages of inflammation and host defense against invading pathogens. CXCL2 exerts its effects by binding to its specific receptor, CXCR2, which is expressed on the surface of neutrophils and other immune cells.

In addition to its role in inflammation and immunity, CXCL2 has been implicated in various pathological conditions, including cancer, atherosclerosis, and autoimmune diseases. Its expression can be regulated by several factors, such as pro-inflammatory cytokines, bacterial products, and growth factors. Understanding the role of CXCL2 in health and disease may provide insights into the development of novel therapeutic strategies for treating inflammation-associated disorders.

Inhalation exposure is a term used in occupational and environmental health to describe the situation where an individual breathes in substances present in the air, which could be gases, vapors, fumes, mist, or particulate matter. These substances can originate from various sources, such as industrial processes, chemical reactions, or natural phenomena.

The extent of inhalation exposure is determined by several factors, including:

1. Concentration of the substance in the air
2. Duration of exposure
3. Frequency of exposure
4. The individual's breathing rate
5. The efficiency of the individual's respiratory protection, if any

Inhalation exposure can lead to adverse health effects, depending on the toxicity and concentration of the inhaled substances. Short-term or acute health effects may include irritation of the eyes, nose, throat, or lungs, while long-term or chronic exposure can result in more severe health issues, such as respiratory diseases, neurological disorders, or cancer.

It is essential to monitor and control inhalation exposures in occupational settings to protect workers' health and ensure compliance with regulatory standards. Various methods are employed for exposure assessment, including personal air sampling, area monitoring, and biological monitoring. Based on the results of these assessments, appropriate control measures can be implemented to reduce or eliminate the risks associated with inhalation exposure.

Hypersensitivity is an exaggerated or inappropriate immune response to a substance that is generally harmless to most people. It's also known as an allergic reaction. This abnormal response can be caused by various types of immunological mechanisms, including antibody-mediated reactions (types I, II, and III) and cell-mediated reactions (type IV). The severity of the hypersensitivity reaction can range from mild discomfort to life-threatening conditions. Common examples of hypersensitivity reactions include allergic rhinitis, asthma, atopic dermatitis, food allergies, and anaphylaxis.

Photochemical oxidants refer to chemical compounds that are formed as a result of a photochemical reaction, which involves the absorption of light. These oxidants are often highly reactive and can cause oxidative damage to living cells and tissues.

In the context of environmental science, photochemical oxidants are primarily associated with air pollution and the formation of ozone (O3) and other harmful oxidizing agents in the atmosphere. These pollutants are formed when nitrogen oxides (NOx) and volatile organic compounds (VOCs) react in the presence of sunlight, particularly ultraviolet (UV) radiation.

Photochemical oxidation can also occur in biological systems, such as within cells, where reactive oxygen species (ROS) can be generated by the absorption of light by certain molecules. These ROS can cause damage to cellular components, such as DNA, proteins, and lipids, and have been implicated in a variety of diseases, including cancer, cardiovascular disease, and neurodegenerative disorders.

Overall, photochemical oxidants are a significant concern in both environmental and health contexts, and understanding the mechanisms of their formation and effects is an important area of research.

Albumins are a type of protein found in various biological fluids, including blood plasma. The most well-known albumin is serum albumin, which is produced by the liver and is the most abundant protein in blood plasma. Serum albumin plays several important roles in the body, such as maintaining oncotic pressure (which helps to regulate fluid balance in the body), transporting various substances (such as hormones, fatty acids, and drugs), and acting as an antioxidant.

Albumins are soluble in water and have a molecular weight ranging from 65,000 to 69,000 daltons. They are composed of a single polypeptide chain that contains approximately 585 amino acid residues. The structure of albumin is characterized by a high proportion of alpha-helices and beta-sheets, which give it a stable, folded conformation.

In addition to their role in human physiology, albumins are also used as diagnostic markers in medicine. For example, low serum albumin levels may indicate liver disease, malnutrition, or inflammation, while high levels may be seen in dehydration or certain types of kidney disease. Albumins may also be used as a replacement therapy in patients with severe protein loss, such as those with nephrotic syndrome or burn injuries.

Pulmonary surfactant-associated proteins are a group of proteins that are found in the pulmonary surfactant, a complex mixture of lipids and proteins that coats the inside surfaces of the alveoli in the lungs. The primary function of pulmonary surfactant is to reduce the surface tension at the air-liquid interface in the alveoli, which facilitates breathing by preventing collapse of the alveoli during expiration.

There are four main pulmonary surfactant-associated proteins, designated as SP-A, SP-B, SP-C, and SP-D. These proteins play important roles in maintaining the stability and function of the pulmonary surfactant film, as well as participating in host defense mechanisms in the lungs.

SP-A and SP-D are members of the collectin family of proteins and have been shown to have immunomodulatory functions, including binding to pathogens and modulating immune cell responses. SP-B and SP-C are hydrophobic proteins that play critical roles in reducing surface tension at the air-liquid interface and maintaining the stability of the surfactant film.

Deficiencies or dysfunction of pulmonary surfactant-associated proteins have been implicated in various lung diseases, including respiratory distress syndrome (RDS) in premature infants, chronic interstitial lung diseases, and pulmonary fibrosis.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

A bronchoscope is a medical device that is used to examine the airways and lungs. It is a long, thin, flexible tube that is equipped with a light and a camera at its tip. The bronchoscope is inserted through the nose or mouth and down the throat, allowing the doctor to visualize the trachea, bronchi, and smaller branches of the airway system.

Bronchoscopes can be used for diagnostic purposes, such as to take tissue samples (biopsies) or to investigate the cause of symptoms like coughing up blood or difficulty breathing. They can also be used for therapeutic purposes, such as to remove foreign objects from the airways or to place stents to keep them open.

There are several types of bronchoscopes, including flexible bronchoscopes and rigid bronchoscopes. Flexible bronchoscopes are more commonly used because they are less invasive and can be used to examine smaller airways. Rigid bronchoscopes, on the other hand, are larger and stiffer, and are typically used for more complex procedures or in emergency situations.

It is important to note that the use of bronchoscopes requires specialized training and should only be performed by healthcare professionals with the appropriate expertise.

Eosinophilia is a medical condition characterized by an abnormally high concentration of eosinophils in the circulating blood. Eosinophils are a type of white blood cell that play an important role in the immune system, particularly in fighting off parasitic infections and regulating allergic reactions. However, when their numbers become excessively high, they can contribute to tissue damage and inflammation.

Eosinophilia is typically defined as a count of more than 500 eosinophils per microliter of blood. Mild eosinophilia (up to 1,500 cells/μL) may not cause any symptoms and may be discovered during routine blood tests. However, higher levels of eosinophilia can lead to various symptoms such as coughing, wheezing, skin rashes, and organ damage, depending on the underlying cause.

The causes of eosinophilia are varied and can include allergic reactions, parasitic infections, autoimmune disorders, certain medications, and some types of cancer. Accurate diagnosis and treatment of eosinophilia require identification and management of the underlying cause.

I'm sorry for any confusion, but "Lipid Pneumonia" is not a type of pneumonia that is defined by the presence of lipids in the lungs. Instead, it refers to a condition where an abnormal amount of lipids or fatty substances accumulate in the lung tissue, which can lead to inflammation and infection, resulting in pneumonia.

Lipid pneumonia can occur due to various reasons, such as aspiration of lipid-containing materials (like oil-based nasal drops, mineral oil, or contaminated food), impaired lipid metabolism, or lung damage from certain medical conditions or treatments. The accumulation of these fatty substances in the lungs can cause an inflammatory response, leading to symptoms similar to those seen in other types of pneumonia, such as cough, fever, chest pain, and difficulty breathing.

Therefore, lipid pneumonia is not a medical definition per se but rather a term used to describe a condition where lipids accumulate in the lungs and cause inflammation and infection.

An immunocompromised host refers to an individual who has a weakened or impaired immune system, making them more susceptible to infections and decreased ability to fight off pathogens. This condition can be congenital (present at birth) or acquired (developed during one's lifetime).

Acquired immunocompromised states may result from various factors such as medical treatments (e.g., chemotherapy, radiation therapy, immunosuppressive drugs), infections (e.g., HIV/AIDS), chronic diseases (e.g., diabetes, malnutrition, liver disease), or aging.

Immunocompromised hosts are at a higher risk for developing severe and life-threatening infections due to their reduced immune response. Therefore, they require special consideration when it comes to prevention, diagnosis, and treatment of infectious diseases.

Bronchitis is a medical condition characterized by inflammation of the bronchi, which are the large airways that lead to the lungs. This inflammation can cause a variety of symptoms, including coughing, wheezing, chest tightness, and shortness of breath. Bronchitis can be either acute or chronic.

Acute bronchitis is usually caused by a viral infection, such as a cold or the flu, and typically lasts for a few days to a week. Symptoms may include a productive cough (coughing up mucus or phlegm), chest discomfort, and fatigue. Acute bronchitis often resolves on its own without specific medical treatment, although rest, hydration, and over-the-counter medications to manage symptoms may be helpful.

Chronic bronchitis, on the other hand, is a long-term condition that is characterized by a persistent cough with mucus production that lasts for at least three months out of the year for two consecutive years. Chronic bronchitis is typically caused by exposure to irritants such as cigarette smoke, air pollution, or occupational dusts and chemicals. It is often associated with chronic obstructive pulmonary disease (COPD), which includes both chronic bronchitis and emphysema.

Treatment for chronic bronchitis may include medications to help open the airways, such as bronchodilators and corticosteroids, as well as lifestyle changes such as smoking cessation and avoiding irritants. In severe cases, oxygen therapy or lung transplantation may be necessary.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

Interleukin-8 (IL-8) is a type of cytokine, which is a small signaling protein involved in immune response and inflammation. IL-8 is also known as neutrophil chemotactic factor or NCF because it attracts neutrophils, a type of white blood cell, to the site of infection or injury.

IL-8 is produced by various cells including macrophages, epithelial cells, and endothelial cells in response to bacterial or inflammatory stimuli. It acts by binding to specific receptors called CXCR1 and CXCR2 on the surface of neutrophils, which triggers a series of intracellular signaling events leading to neutrophil activation, migration, and degranulation.

IL-8 plays an important role in the recruitment of neutrophils to the site of infection or tissue damage, where they can phagocytose and destroy invading microorganisms. However, excessive or prolonged production of IL-8 has been implicated in various inflammatory diseases such as chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, and cancer.

Asbestosis is a chronic lung disease that is caused by the inhalation of asbestos fibers. It is characterized by scarring (fibrosis) of the lung tissue, which can lead to symptoms such as shortness of breath, coughing, and chest pain. The severity of the disease can range from mild to severe, and it is often progressive, meaning that it tends to worsen over time. Asbestosis is not a malignant condition, but it can increase the risk of developing lung cancer or mesothelioma, which are forms of cancer that are associated with asbestos exposure. The disease is typically diagnosed through a combination of medical history, physical examination, and imaging tests such as chest X-rays or CT scans. There is no cure for asbestosis, but treatment can help to manage the symptoms and slow the progression of the disease.

Intranasal administration refers to the delivery of medication or other substances through the nasal passages and into the nasal cavity. This route of administration can be used for systemic absorption of drugs or for localized effects in the nasal area.

When a medication is administered intranasally, it is typically sprayed or dropped into the nostril, where it is absorbed by the mucous membranes lining the nasal cavity. The medication can then pass into the bloodstream and be distributed throughout the body for systemic effects. Intranasal administration can also result in direct absorption of the medication into the local tissues of the nasal cavity, which can be useful for treating conditions such as allergies, migraines, or pain in the nasal area.

Intranasal administration has several advantages over other routes of administration. It is non-invasive and does not require needles or injections, making it a more comfortable option for many people. Additionally, intranasal administration can result in faster onset of action than oral administration, as the medication bypasses the digestive system and is absorbed directly into the bloodstream. However, there are also some limitations to this route of administration, including potential issues with dosing accuracy and patient tolerance.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Chemokines are a family of small cytokines, or signaling proteins, that are secreted by cells and play an important role in the immune system. They are chemotactic, meaning they can attract and guide the movement of various immune cells to specific locations within the body. Chemokines do this by binding to G protein-coupled receptors on the surface of target cells, initiating a signaling cascade that leads to cell migration.

There are four main subfamilies of chemokines, classified based on the arrangement of conserved cysteine residues near the amino terminus: CXC, CC, C, and CX3C. Different chemokines have specific roles in inflammation, immune surveillance, hematopoiesis, and development. Dysregulation of chemokine function has been implicated in various diseases, including autoimmune disorders, infections, and cancer.

In summary, Chemokines are a group of signaling proteins that play a crucial role in the immune system by directing the movement of immune cells to specific locations within the body, thus helping to coordinate the immune response.

Instillation, in the context of drug administration, refers to the process of introducing a medication or therapeutic agent into a body cavity or onto a mucous membrane surface using gentle, steady pressure. This is typically done with the help of a device such as an eyedropper, pipette, or catheter. The goal is to ensure that the drug is distributed evenly over the surface or absorbed through the mucous membrane for localized or systemic effects. Instillation can be used for various routes of administration including ocular (eye), nasal, auricular (ear), vaginal, and intra-articular (joint space) among others. The choice of instillation as a route of administration depends on the drug's properties, the desired therapeutic effect, and the patient's overall health status.

Bronchiolitis is a common respiratory infection in infants and young children, typically caused by a viral infection. It is characterized by inflammation and congestion of the bronchioles (the smallest airways in the lungs), which can lead to difficulty breathing and wheezing.

The most common virus that causes bronchiolitis is respiratory syncytial virus (RSV), but other viruses such as rhinovirus, influenza, and parainfluenza can also cause the condition. Symptoms of bronchiolitis may include cough, wheezing, rapid breathing, difficulty feeding, and fatigue.

In severe cases, bronchiolitis can lead to respiratory distress and require hospitalization. Treatment typically involves supportive care, such as providing fluids and oxygen therapy, and in some cases, medications to help open the airways may be used. Prevention measures include good hand hygiene and avoiding close contact with individuals who are sick.

Ventilator-associated pneumonia (VAP) is a specific type of pneumonia that develops in patients who have been mechanically ventilated through an endotracheal tube for at least 48 hours. It is defined as a nosocomial pneumonia (healthcare-associated infection occurring >48 hours after admission) that occurs in this setting. VAP is typically caused by aspiration of pathogenic microorganisms from the oropharynx or stomach into the lower respiratory tract, and it can lead to significant morbidity and mortality.

The diagnosis of VAP is often challenging due to the overlap of symptoms with other respiratory conditions and the potential for contamination of lower respiratory samples by upper airway flora. Clinical criteria, radiographic findings, and laboratory tests, such as quantitative cultures of bronchoalveolar lavage fluid or protected specimen brush, are often used in combination to make a definitive diagnosis.

Preventing VAP is crucial in critically ill patients and involves several evidence-based strategies, including elevating the head of the bed, oral care with chlorhexidine, and careful sedation management to allow for spontaneous breathing trials and early extubation when appropriate.

Aspiration pneumonia is a type of pneumonia that occurs when foreign materials such as food, liquid, or vomit enter the lungs, resulting in inflammation or infection. It typically happens when a person inhales these materials involuntarily due to impaired swallowing mechanisms, which can be caused by various conditions such as stroke, dementia, Parkinson's disease, or general anesthesia. The inhalation of foreign materials can cause bacterial growth in the lungs, leading to symptoms like cough, chest pain, fever, and difficulty breathing. Aspiration pneumonia can be a serious medical condition, particularly in older adults or individuals with weakened immune systems, and may require hospitalization and antibiotic treatment.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Peroxidase is a type of enzyme that catalyzes the chemical reaction in which hydrogen peroxide (H2O2) is broken down into water (H2O) and oxygen (O2). This enzymatic reaction also involves the oxidation of various organic and inorganic compounds, which can serve as electron donors.

Peroxidases are widely distributed in nature and can be found in various organisms, including bacteria, fungi, plants, and animals. They play important roles in various biological processes, such as defense against oxidative stress, breakdown of toxic substances, and participation in metabolic pathways.

The peroxidase-catalyzed reaction can be represented by the following chemical equation:

H2O2 + 2e- + 2H+ → 2H2O

In this reaction, hydrogen peroxide is reduced to water, and the electron donor is oxidized. The peroxidase enzyme facilitates the transfer of electrons between the substrate (hydrogen peroxide) and the electron donor, making the reaction more efficient and specific.

Peroxidases have various applications in medicine, industry, and research. For example, they can be used for diagnostic purposes, as biosensors, and in the treatment of wastewater and medical wastes. Additionally, peroxidases are involved in several pathological conditions, such as inflammation, cancer, and neurodegenerative diseases, making them potential targets for therapeutic interventions.

Parasitic lung diseases refer to conditions caused by infection of the lungs by parasites. These are small organisms that live on or in a host organism and derive their sustenance at the expense of the host. Parasitic lung diseases can be caused by various types of parasites, including helminths (worms) and protozoa.

Examples of parasitic lung diseases include:

1. Pulmonary echinococcosis (hydatid disease): This is a rare infection caused by the larval stage of the tapeworm Echinococcus granulosus. The larvae form cysts in various organs, including the lungs.
2. Paragonimiasis: This is a food-borne lung fluke infection caused by Paragonimus westermani and other species. Humans become infected by eating raw or undercooked crustaceans (such as crabs or crayfish) that contain the larval stage of the parasite.
3. Toxocariasis: This is a soil-transmitted helminth infection caused by the roundworm Toxocara canis or T. cati, which are found in the intestines of dogs and cats. Humans become infected through accidental ingestion of contaminated soil, undercooked meat, or through contact with an infected animal's feces. Although the primary site of infection is the small intestine, larval migration can lead to lung involvement in some cases.
4. Amebic lung disease: This is a rare complication of amebiasis, which is caused by the protozoan Entamoeba histolytica. The parasite usually infects the large intestine, but it can spread to other organs, including the lungs, through the bloodstream.
5. Cryptosporidiosis: This is a waterborne protozoan infection caused by Cryptosporidium parvum or C. hominis. Although the primary site of infection is the small intestine, immunocompromised individuals can develop disseminated disease, including pulmonary involvement.

Symptoms of parasitic lung diseases vary depending on the specific organism and the severity of infection but may include cough, chest pain, shortness of breath, fever, and sputum production. Diagnosis typically involves a combination of clinical evaluation, imaging studies, and laboratory tests, such as stool or blood examinations for parasites or their antigens. Treatment depends on the specific organism but may include antiparasitic medications, supportive care, and management of complications.

Lymphocytes are a type of white blood cell that is an essential part of the immune system. They are responsible for recognizing and responding to potentially harmful substances such as viruses, bacteria, and other foreign invaders. There are two main types of lymphocytes: B-lymphocytes (B-cells) and T-lymphocytes (T-cells).

B-lymphocytes produce antibodies, which are proteins that help to neutralize or destroy foreign substances. When a B-cell encounters a foreign substance, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies. These antibodies bind to the foreign substance, marking it for destruction by other immune cells.

T-lymphocytes, on the other hand, are involved in cell-mediated immunity. They directly attack and destroy infected cells or cancerous cells. T-cells can also help to regulate the immune response by producing chemical signals that activate or inhibit other immune cells.

Lymphocytes are produced in the bone marrow and mature in either the bone marrow (B-cells) or the thymus gland (T-cells). They circulate throughout the body in the blood and lymphatic system, where they can be found in high concentrations in lymph nodes, the spleen, and other lymphoid organs.

Abnormalities in the number or function of lymphocytes can lead to a variety of immune-related disorders, including immunodeficiency diseases, autoimmune disorders, and cancer.

The trachea, also known as the windpipe, is a tube-like structure in the respiratory system that connects the larynx (voice box) to the bronchi (the two branches leading to each lung). It is composed of several incomplete rings of cartilage and smooth muscle, which provide support and flexibility. The trachea plays a crucial role in directing incoming air to the lungs during inspiration and outgoing air to the larynx during expiration.

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine, a type of small signaling protein involved in immune response and inflammation. It is primarily produced by activated macrophages, although other cell types such as T-cells, natural killer cells, and mast cells can also produce it.

TNF-α plays a crucial role in the body's defense against infection and tissue injury by mediating inflammatory responses, activating immune cells, and inducing apoptosis (programmed cell death) in certain types of cells. It does this by binding to its receptors, TNFR1 and TNFR2, which are found on the surface of many cell types.

In addition to its role in the immune response, TNF-α has been implicated in the pathogenesis of several diseases, including autoimmune disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, as well as cancer, where it can promote tumor growth and metastasis.

Therapeutic agents that target TNF-α, such as infliximab, adalimumab, and etanercept, have been developed to treat these conditions. However, these drugs can also increase the risk of infections and other side effects, so their use must be carefully monitored.

Mucus is a viscous, slippery secretion produced by the mucous membranes that line various body cavities such as the respiratory and gastrointestinal tracts. It serves to lubricate and protect these surfaces from damage, infection, and foreign particles. Mucus contains water, proteins, salts, and other substances, including antibodies, enzymes, and glycoproteins called mucins that give it its characteristic gel-like consistency.

In the respiratory system, mucus traps inhaled particles such as dust, allergens, and pathogens, preventing them from reaching the lungs. The cilia, tiny hair-like structures lining the airways, move the mucus upward toward the throat, where it can be swallowed or expelled through coughing or sneezing. In the gastrointestinal tract, mucus helps protect the lining of the stomach and intestines from digestive enzymes and other harmful substances.

Excessive production of mucus can occur in various medical conditions such as allergies, respiratory infections, chronic lung diseases, and gastrointestinal disorders, leading to symptoms such as coughing, wheezing, nasal congestion, and diarrhea.

Bronchiolitis obliterans is a medical condition characterized by the inflammation and scarring (fibrosis) of the bronchioles, which are the smallest airways in the lungs. This results in the narrowing or complete obstruction of the airways, leading to difficulty breathing and reduced lung function.

The condition is often caused by a respiratory infection, such as adenovirus or mycoplasma pneumonia, but it can also be associated with exposure to certain chemicals, drugs, or radiation therapy. In some cases, the cause may be unknown.

Symptoms of bronchiolitis obliterans include cough, shortness of breath, wheezing, and crackles heard on lung examination. Diagnosis typically involves a combination of medical history, physical exam, imaging studies (such as chest X-ray or CT scan), and pulmonary function tests. In some cases, a biopsy may be necessary to confirm the diagnosis.

Treatment for bronchiolitis obliterans is focused on managing symptoms and preventing further lung damage. This may include bronchodilators to help open up the airways, corticosteroids to reduce inflammation, and oxygen therapy to help with breathing. In severe cases, a lung transplant may be necessary.

"Pneumocystis jirovecii" is a species of fungus that commonly infects the lungs of humans, leading to a serious respiratory infection known as Pneumocystis pneumonia (PCP). This fungal infection primarily affects individuals with weakened immune systems, such as those with HIV/AIDS, cancer, or organ transplant recipients. The organism was previously classified as a protozoan but has since been reclassified as a fungus based on genetic analysis. It is typically acquired through inhalation of airborne spores and can cause severe illness if left untreated.

Farmer's lung is a type of hypersensitivity pneumonitis, which is a lung inflammation caused by an allergic reaction to inhaled organic dusts. It is commonly associated with farmers and agricultural workers who are exposed to moldy hay, straw, or grain. When these materials are disturbed, such as during farming activities like harvesting, baling, or cleaning, the mold spores become airborne and can be inhaled, leading to an immune response in susceptible individuals.

The symptoms of Farmer's lung typically include cough, shortness of breath, fever, fatigue, and chest tightness, which usually occur within 4-6 hours after exposure. The condition can cause permanent lung damage if not properly diagnosed and managed with avoidance of exposures and/or medication. It is important for farmers and agricultural workers to use appropriate personal protective equipment, such as masks, and to ensure that their work environments are well-ventilated to reduce the risk of developing Farmer's lung.

Bronchopneumonia is a type of pneumonia that involves inflammation and infection of the bronchioles (small airways in the lungs) and alveoli (tiny air sacs in the lungs). It can be caused by various bacteria, viruses, or fungi and often occurs as a complication of a respiratory tract infection.

The symptoms of bronchopneumonia may include cough, chest pain, fever, chills, shortness of breath, and fatigue. In severe cases, it can lead to complications such as respiratory failure or sepsis. Treatment typically involves antibiotics for bacterial infections, antiviral medications for viral infections, and supportive care such as oxygen therapy and hydration.

Bronchoconstriction is a medical term that refers to the narrowing of the airways in the lungs (the bronchi and bronchioles) due to the contraction of the smooth muscles surrounding them. This constriction can cause difficulty breathing, wheezing, coughing, and shortness of breath, which are common symptoms of asthma and other respiratory conditions.

Bronchoconstriction can be triggered by a variety of factors, including allergens, irritants, cold air, exercise, and emotional stress. In some cases, it may also be caused by certain medications, such as beta-blockers or nonsteroidal anti-inflammatory drugs (NSAIDs). Treatment for bronchoconstriction typically involves the use of bronchodilators, which are medications that help to relax the smooth muscles around the airways and widen them, making it easier to breathe.

Inflammation mediators are substances that are released by the body in response to injury or infection, which contribute to the inflammatory response. These mediators include various chemical factors such as cytokines, chemokines, prostaglandins, leukotrienes, and histamine, among others. They play a crucial role in regulating the inflammatory process by attracting immune cells to the site of injury or infection, increasing blood flow to the area, and promoting the repair and healing of damaged tissues. However, an overactive or chronic inflammatory response can also contribute to the development of various diseases and conditions, such as autoimmune disorders, cardiovascular disease, and cancer.

In medical terms, "dust" is not defined as a specific medical condition or disease. However, generally speaking, dust refers to small particles of solid matter that can be found in the air and can come from various sources, such as soil, pollen, hair, textiles, paper, or plastic.

Exposure to certain types of dust, such as those containing allergens, chemicals, or harmful pathogens, can cause a range of health problems, including respiratory issues like asthma, allergies, and lung diseases. Prolonged exposure to certain types of dust, such as silica or asbestos, can even lead to serious conditions like silicosis or mesothelioma.

Therefore, it is important for individuals who work in environments with high levels of dust to take appropriate precautions, such as wearing masks and respirators, to minimize their exposure and reduce the risk of health problems.

Cryptogenic organizing pneumonia (COP) is a type of lung disorder that is characterized by the presence of inflammation and scarring in the lungs. The term "cryptogenic" means that the cause of the condition is unknown or unclear.

Organizing pneumonia is a specific pattern of injury to the lungs that can be caused by various factors, including infections, medications, and autoimmune disorders. However, in cases of COP, there is no clear underlying cause that can be identified.

The main symptoms of COP include cough, shortness of breath, fever, and fatigue. The condition can also cause crackles or wheezing sounds when listening to the lungs with a stethoscope. Diagnosis of COP typically involves a combination of imaging studies, such as chest X-rays or CT scans, and lung biopsy.

Treatment for COP usually involves the use of corticosteroids, which can help to reduce inflammation and improve symptoms. In some cases, other medications may also be used to manage the condition. The prognosis for people with COP is generally good, with most individuals responding well to treatment and experiencing improvement in their symptoms over time. However, recurrence of the condition is possible, and long-term monitoring may be necessary.

Ventilator-Induced Lung Injury (VILI) is a type of lung injury that can occur in patients who require mechanical ventilation to assist their breathing. It's caused by the application of excessive pressure or volume to the lungs during the process of mechanical ventilation, which can lead to damage of the alveoli (tiny air sacs in the lungs). This can result in inflammation, increased permeability of the alveolar-capillary membrane, and potentially even progressive lung dysfunction.

The risk factors for VILI include high tidal volumes (the amount of air moved into and out of the lungs during each breath), high inspiratory pressures, and high levels of positive end-expiratory pressure (PEEP). To minimize the risk of VILI, clinicians often use a lung protective ventilation strategy that involves using lower tidal volumes and limiting inspiratory pressures.

It's important to note that while mechanical ventilation is a lifesaving intervention for many critically ill patients, it is not without risks. VILI is one of the potential complications of this therapy, and clinicians must be mindful of this risk when managing mechanically ventilated patients.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

Goblet cells are specialized epithelial cells that are located in various mucosal surfaces, including the respiratory and gastrointestinal tracts. They are named for their goblet-like shape, which is characterized by a narrow base and a wide, rounded top that contains secretory granules. These cells play an essential role in producing and secreting mucins, which are high molecular weight glycoproteins that form the gel-like component of mucus.

Mucus serves as a protective barrier for the underlying epithelial cells by trapping foreign particles, microorganisms, and toxins, preventing them from coming into contact with the epithelium. Goblet cells also help maintain the hydration of the mucosal surface, which is important for normal ciliary function in the respiratory tract and for the movement of food through the gastrointestinal tract.

In summary, goblet cells are secretory cells that produce and release mucins to form the mucus layer, providing a protective barrier and maintaining the homeostasis of mucosal surfaces.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Uteroglobin, also known as blastokinin or Clara cell 10-kDa protein (CC10), is a small molecular weight protein that is abundantly present in the respiratory tract and reproductive system of many mammals. It was first identified in the uterine fluid of pregnant animals, hence its name.

In the human body, uteroglobin is primarily produced by non-ciliated bronchial epithelial cells known as Clara cells, which are located in the respiratory tract. Uteroglobin has been found to have anti-inflammatory and immunomodulatory properties, and it may play a role in protecting the lungs from injury and inflammation.

In the reproductive system, uteroglobin is produced by the endometrial glands of the uterus during pregnancy, and it has been suggested to have a role in maintaining pregnancy and promoting fetal growth. However, its precise functions in both the respiratory and reproductive systems are not fully understood and are still the subject of ongoing research.

Airway remodeling is a term used to describe the structural changes that occur in the airways as a result of chronic inflammation in respiratory diseases such as asthma. These changes include thickening of the airway wall, increased smooth muscle mass, and abnormal deposition of extracellular matrix components. These alterations can lead to narrowing of the airways, decreased lung function, and increased severity of symptoms. Airway remodeling is thought to be a major contributor to the persistent airflow obstruction that is characteristic of severe asthma.

"Rats, Inbred BN" are a strain of laboratory rats (Rattus norvegicus) that have been inbred for many generations to maintain a high level of genetic consistency and uniformity within the strain. The "BN" designation refers to the place where they were first developed, Bratislava, Czechoslovakia (now Slovakia).

These rats are often used in biomedical research because their genetic homogeneity makes them useful for studying the effects of specific genes or environmental factors on health and disease. They have been widely used as a model organism to study various physiological and pathophysiological processes, including hypertension, kidney function, immunology, and neuroscience.

Inbred BN rats are known for their low renin-angiotensin system activity, which makes them a useful model for studying hypertension and related disorders. They also have a unique sensitivity to dietary protein, making them a valuable tool for studying the relationship between diet and kidney function.

Overall, Inbred BN rats are an important tool in biomedical research, providing researchers with a consistent and well-characterized model organism for studying various aspects of human health and disease.

Proteolipids are a type of complex lipid-containing proteins that are insoluble in water and have a high content of hydrophobic amino acids. They are primarily found in the plasma membrane of cells, where they play important roles in maintaining the structural integrity and function of the membrane. Proteolipids are also found in various organelles, including mitochondria, lysosomes, and peroxisomes.

Proteolipids are composed of a hydrophobic protein core that is tightly associated with a lipid bilayer through non-covalent interactions. The protein component of proteolipids typically contains several transmembrane domains that span the lipid bilayer, as well as hydrophilic regions that face the cytoplasm or the lumen of organelles.

Proteolipids have been implicated in various cellular processes, including signal transduction, membrane trafficking, and ion transport. They are also associated with several neurological disorders, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. The study of proteolipids is an active area of research in biochemistry and cell biology, with potential implications for the development of new therapies for neurological disorders.

Th2 cells, or T helper 2 cells, are a type of CD4+ T cell that plays a key role in the immune response to parasites and allergens. They produce cytokines such as IL-4, IL-5, IL-13 which promote the activation and proliferation of eosinophils, mast cells, and B cells, leading to the production of antibodies such as IgE. Th2 cells also play a role in the pathogenesis of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis.

It's important to note that an imbalance in Th1/Th2 response can lead to immune dysregulation and disease states. For example, an overactive Th2 response can lead to allergic reactions while an underactive Th2 response can lead to decreased ability to fight off parasitic infections.

It's also worth noting that there are other subsets of CD4+ T cells such as Th1, Th17, Treg and others, each with their own specific functions and cytokine production profiles.

Pulmonary emphysema is a chronic respiratory disease characterized by abnormal, permanent enlargement of the airspaces distal to the terminal bronchioles, accompanied by destruction of their walls and without obvious fibrosis. This results in loss of elastic recoil, which leads to trappling of air within the lungs and difficulty exhaling. It is often caused by cigarette smoking or long-term exposure to harmful pollutants. The disease is part of a group of conditions known as chronic obstructive pulmonary disease (COPD), which also includes chronic bronchitis.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

Mechanical Ventilators are medical devices that assist with breathing by providing mechanical ventilation to patients who are unable to breathe sufficiently on their own. These machines deliver breaths to the patient through an endotracheal tube or a tracheostomy tube, which is placed in the windpipe (trachea). Mechanical Ventilators can be set to deliver breaths at specific rates and volumes, and they can also be adjusted to provide varying levels of positive end-expiratory pressure (PEEP) to help keep the alveoli open and improve oxygenation.

Mechanical ventilation is typically used in critical care settings such as intensive care units (ICUs), and it may be employed for a variety of reasons, including respiratory failure, sedation, neuromuscular disorders, or surgery. Prolonged use of mechanical ventilation can lead to complications such as ventilator-associated pneumonia, muscle weakness, and decreased cardiac function, so the goal is usually to wean patients off the ventilator as soon as possible.

Matrix metalloproteinase 12 (MMP-12) is a type of enzyme that belongs to the matrix metalloproteinase (MMP) family. MMPs are involved in the breakdown and remodeling of extracellular matrices, which are the structures that provide support and organization to cells in tissues and organs.

MMP-12 is also known as macrophage elastase because it is primarily produced by macrophages, a type of white blood cell that plays a key role in the immune system. MMP-12 is capable of degrading various components of the extracellular matrix, including elastin, a protein that provides elasticity to tissues such as lungs, arteries, and skin.

MMP-12 has been implicated in several physiological and pathological processes, including tissue remodeling, wound healing, inflammation, and cancer. Dysregulation of MMP-12 activity has been associated with various diseases, such as chronic obstructive pulmonary disease (COPD), atherosclerosis, and tumor metastasis.

Aspergillosis is a medical condition that is caused by the infection of the Aspergillus fungi. This fungus is commonly found in decaying organic matter, such as leaf litter and compost piles, and can also be found in some indoor environments like air conditioning systems and old buildings with water damage.

There are several types of aspergillosis, including:

1. Allergic bronchopulmonary aspergillosis (ABPA): This type of aspergillosis occurs when a person's immune system overreacts to the Aspergillus fungi, causing inflammation in the airways and lungs. ABPA is often seen in people with asthma or cystic fibrosis.
2. Invasive aspergillosis: This is a serious and potentially life-threatening condition that occurs when the Aspergillus fungi invade the bloodstream and spread to other organs, such as the brain, heart, or kidneys. Invasive aspergillosis typically affects people with weakened immune systems, such as those undergoing chemotherapy or organ transplantation.
3. Aspergilloma: Also known as a "fungus ball," an aspergilloma is a growth of the Aspergillus fungi that forms in a preexisting lung cavity, such as one caused by previous lung disease or injury. While an aspergilloma itself is not typically harmful, it can cause symptoms like coughing up blood or chest pain if it grows too large or becomes infected.

Symptoms of aspergillosis can vary depending on the type and severity of the infection. Treatment may include antifungal medications, surgery to remove the fungal growth, or management of underlying conditions that increase the risk of infection.

Respiratory aspiration is defined as the entry of foreign materials (such as food, liquids, or vomit) into the lower respiratory tract during swallowing, which includes the trachea and lungs. This can lead to respiratory complications such as pneumonia, bronchitis, or lung abscesses. Aspiration can occur in individuals with impaired swallowing function due to various conditions like neurological disorders, stroke, or anesthesia.

Idiopathic Pulmonary Fibrosis (IPF) is a specific type of chronic, progressive, and irreversible fibrotic lung disease of unknown cause, characterized by scarring (fibrosis) in the lungs that thickens and stiffens the lining of the air sacs (alveoli). This makes it increasingly difficult for the lungs to transfer oxygen into the bloodstream, leading to shortness of breath, cough, decreased exercise tolerance, and, eventually, respiratory failure.

The term "idiopathic" means that the cause of the disease is unknown. The diagnosis of IPF requires a combination of clinical, radiological, and pathological findings, excluding other known causes of pulmonary fibrosis. It primarily affects middle-aged to older adults, with a higher prevalence in men than women.

The progression of IPF varies from person to person, but the prognosis is generally poor, with a median survival time of 3-5 years after diagnosis. Currently, there are two FDA-approved medications for the treatment of IPF (nintedanib and pirfenidone), which can help slow down disease progression but do not cure the condition. Lung transplantation remains an option for select patients with advanced IPF.

I am not aware of a widely recognized or established medical term called "Blood-Air Barrier." It is possible that you may be referring to a concept or phenomenon that goes by a different name, or it could be a term that is specific to certain context or field within medicine.

In general, the terms "blood" and "air" refer to two distinct and separate compartments in the body, and there are various physiological barriers that prevent them from mixing with each other under normal circumstances. For example, the alveolar-capillary membrane in the lungs serves as a barrier that allows for the exchange of oxygen and carbon dioxide between the air in the alveoli and the blood in the capillaries, while preventing the two from mixing together.

If you could provide more context or clarify what you mean by "Blood-Air Barrier," I may be able to provide a more specific answer.

'Smoke' is not typically defined in a medical context, but it can be described as a mixture of small particles and gases that are released when something burns. Smoke can be composed of various components including carbon monoxide, particulate matter, volatile organic compounds (VOCs), benzene, toluene, styrene, and polycyclic aromatic hydrocarbons (PAHs). Exposure to smoke can cause a range of health problems, including respiratory symptoms, cardiovascular disease, and cancer.

In the medical field, exposure to smoke is often referred to as "secondhand smoke" or "passive smoking" when someone breathes in smoke from another person's cigarette, cigar, or pipe. This type of exposure can be just as harmful as smoking itself and has been linked to a range of health problems, including respiratory infections, asthma, lung cancer, and heart disease.

Interleukin-13 (IL-13) is a cytokine that plays a crucial role in the immune response, particularly in the development of allergic inflammation and hypersensitivity reactions. It is primarily produced by activated Th2 cells, mast cells, basophils, and eosinophils. IL-13 mediates its effects through binding to the IL-13 receptor complex, which consists of the IL-13Rα1 and IL-4Rα chains.

IL-13 has several functions in the body, including:

* Regulation of IgE production by B cells
* Induction of eosinophil differentiation and activation
* Inhibition of proinflammatory cytokine production by macrophages
* Promotion of mucus production and airway hyperresponsiveness in the lungs, contributing to the pathogenesis of asthma.

Dysregulation of IL-13 has been implicated in various diseases, such as allergic asthma, atopic dermatitis, and chronic rhinosinusitis. Therefore, targeting IL-13 with biologic therapies has emerged as a promising approach for the treatment of these conditions.

Thoracic radiography is a type of diagnostic imaging that involves using X-rays to produce images of the chest, including the lungs, heart, bronchi, great vessels, and the bones of the spine and chest wall. It is a commonly used tool in the diagnosis and management of various respiratory, cardiovascular, and thoracic disorders such as pneumonia, lung cancer, heart failure, and rib fractures.

During the procedure, the patient is positioned between an X-ray machine and a cassette containing a film or digital detector. The X-ray beam is directed at the chest, and the resulting image is captured on the film or detector. The images produced can help identify any abnormalities in the structure or function of the organs within the chest.

Thoracic radiography may be performed as a routine screening test for certain conditions, such as lung cancer, or it may be ordered when a patient presents with symptoms suggestive of a respiratory or cardiovascular disorder. It is a safe and non-invasive procedure that can provide valuable information to help guide clinical decision making and improve patient outcomes.

Hyperoxia is a medical term that refers to an abnormally high concentration of oxygen in the body or in a specific organ or tissue. It is often defined as the partial pressure of oxygen (PaO2) in arterial blood being greater than 100 mmHg.

This condition can occur due to various reasons such as exposure to high concentrations of oxygen during medical treatments, like mechanical ventilation, or due to certain diseases and conditions that cause the body to produce too much oxygen.

While oxygen is essential for human life, excessive levels can be harmful and lead to oxidative stress, which can damage cells and tissues. Hyperoxia has been linked to various complications, including lung injury, retinopathy of prematurity, and impaired wound healing.

Body fluids refer to the various liquids that can be found within and circulating throughout the human body. These fluids include, but are not limited to:

1. Blood: A fluid that carries oxygen, nutrients, hormones, and waste products throughout the body via the cardiovascular system. It is composed of red and white blood cells suspended in plasma.
2. Lymph: A clear-to-white fluid that circulates through the lymphatic system, helping to remove waste products, bacteria, and damaged cells from tissues while also playing a crucial role in the immune system.
3. Interstitial fluid: Also known as tissue fluid or extracellular fluid, it is the fluid that surrounds the cells in the body's tissues, allowing for nutrient exchange and waste removal between cells and blood vessels.
4. Cerebrospinal fluid (CSF): A clear, colorless fluid that circulates around the brain and spinal cord, providing protection, cushioning, and nutrients to these delicate structures while also removing waste products.
5. Pleural fluid: A small amount of lubricating fluid found in the pleural space between the lungs and the chest wall, allowing for smooth movement during respiration.
6. Pericardial fluid: A small amount of lubricating fluid found within the pericardial sac surrounding the heart, reducing friction during heart contractions.
7. Synovial fluid: A viscous, lubricating fluid found in joint spaces, allowing for smooth movement and protecting the articular cartilage from wear and tear.
8. Urine: A waste product produced by the kidneys, consisting of water, urea, creatinine, and various ions, which is excreted through the urinary system.
9. Gastrointestinal secretions: Fluids produced by the digestive system, including saliva, gastric juice, bile, pancreatic juice, and intestinal secretions, which aid in digestion, absorption, and elimination of food particles.
10. Reproductive fluids: Secretions from the male (semen) and female (cervical mucus, vaginal lubrication) reproductive systems that facilitate fertilization and reproduction.

Pancreatic elastase is a type of elastase that is specifically produced by the pancreas. It is an enzyme that helps in digesting proteins found in the food we eat. Pancreatic elastase breaks down elastin, a protein that provides elasticity to tissues and organs in the body.

In clinical practice, pancreatic elastase is often measured in stool samples as a diagnostic tool to assess exocrine pancreatic function. Low levels of pancreatic elastase in stool may indicate malabsorption or exocrine pancreatic insufficiency, which can be caused by various conditions such as chronic pancreatitis, cystic fibrosis, or pancreatic cancer.

Airway resistance is a measure of the opposition to airflow during breathing, which is caused by the friction between the air and the walls of the respiratory tract. It is an important parameter in respiratory physiology because it can affect the work of breathing and gas exchange.

Airway resistance is usually expressed in units of cm H2O/L/s or Pa·s/m, and it can be measured during spontaneous breathing or during forced expiratory maneuvers, such as those used in pulmonary function testing. Increased airway resistance can result from a variety of conditions, including asthma, chronic obstructive pulmonary disease (COPD), bronchitis, and bronchiectasis. Decreased airway resistance can be seen in conditions such as emphysema or after a successful bronchodilator treatment.

Smoking is not a medical condition, but it's a significant health risk behavior. Here is the definition from a public health perspective:

Smoking is the act of inhaling and exhaling the smoke of burning tobacco that is commonly consumed through cigarettes, pipes, and cigars. The smoke contains over 7,000 chemicals, including nicotine, tar, carbon monoxide, and numerous toxic and carcinogenic substances. These toxins contribute to a wide range of diseases and health conditions, such as lung cancer, heart disease, stroke, chronic obstructive pulmonary disease (COPD), and various other cancers, as well as adverse reproductive outcomes and negative impacts on the developing fetus during pregnancy. Smoking is highly addictive due to the nicotine content, which makes quitting smoking a significant challenge for many individuals.

A biopsy is a medical procedure in which a small sample of tissue is taken from the body to be examined under a microscope for the presence of disease. This can help doctors diagnose and monitor various medical conditions, such as cancer, infections, or autoimmune disorders. The type of biopsy performed will depend on the location and nature of the suspected condition. Some common types of biopsies include:

1. Incisional biopsy: In this procedure, a surgeon removes a piece of tissue from an abnormal area using a scalpel or other surgical instrument. This type of biopsy is often used when the lesion is too large to be removed entirely during the initial biopsy.

2. Excisional biopsy: An excisional biopsy involves removing the entire abnormal area, along with a margin of healthy tissue surrounding it. This technique is typically employed for smaller lesions or when cancer is suspected.

3. Needle biopsy: A needle biopsy uses a thin, hollow needle to extract cells or fluid from the body. There are two main types of needle biopsies: fine-needle aspiration (FNA) and core needle biopsy. FNA extracts loose cells, while a core needle biopsy removes a small piece of tissue.

4. Punch biopsy: In a punch biopsy, a round, sharp tool is used to remove a small cylindrical sample of skin tissue. This type of biopsy is often used for evaluating rashes or other skin abnormalities.

5. Shave biopsy: During a shave biopsy, a thin slice of tissue is removed from the surface of the skin using a sharp razor-like instrument. This technique is typically used for superficial lesions or growths on the skin.

After the biopsy sample has been collected, it is sent to a laboratory where a pathologist will examine the tissue under a microscope and provide a diagnosis based on their findings. The results of the biopsy can help guide further treatment decisions and determine the best course of action for managing the patient's condition.

Mannans are a type of complex carbohydrate, specifically a heteropolysaccharide, that are found in the cell walls of certain plants, algae, and fungi. They consist of chains of mannose sugars linked together, often with other sugar molecules such as glucose or galactose.

Mannans have various biological functions, including serving as a source of energy for microorganisms that can break them down. In some cases, mannans can also play a role in the immune response and are used as a component of vaccines to stimulate an immune response.

In the context of medicine, mannans may be relevant in certain conditions such as gut dysbiosis or allergic reactions to foods containing mannans. Additionally, some research has explored the potential use of mannans as a delivery vehicle for drugs or other therapeutic agents.

Lung compliance is a measure of the ease with which the lungs expand and is defined as the change in lung volume for a given change in transpulmonary pressure. It is often expressed in units of liters per centimeter of water (L/cm H2O). A higher compliance indicates that the lungs are more easily distensible, while a lower compliance suggests that the lungs are stiffer and require more force to expand. Lung compliance can be affected by various conditions such as pulmonary fibrosis, pneumonia, acute respiratory distress syndrome (ARDS), and chronic obstructive pulmonary disease (COPD).

Anti-inflammatory agents are a class of drugs or substances that reduce inflammation in the body. They work by inhibiting the production of inflammatory mediators, such as prostaglandins and leukotrienes, which are released during an immune response and contribute to symptoms like pain, swelling, redness, and warmth.

There are two main types of anti-inflammatory agents: steroidal and nonsteroidal. Steroidal anti-inflammatory drugs (SAIDs) include corticosteroids, which mimic the effects of hormones produced by the adrenal gland. Nonsteroidal anti-inflammatory drugs (NSAIDs) are a larger group that includes both prescription and over-the-counter medications, such as aspirin, ibuprofen, naproxen, and celecoxib.

While both types of anti-inflammatory agents can be effective in reducing inflammation and relieving symptoms, they differ in their mechanisms of action, side effects, and potential risks. Long-term use of NSAIDs, for example, can increase the risk of gastrointestinal bleeding, kidney damage, and cardiovascular events. Corticosteroids can have significant side effects as well, particularly with long-term use, including weight gain, mood changes, and increased susceptibility to infections.

It's important to use anti-inflammatory agents only as directed by a healthcare provider, and to be aware of potential risks and interactions with other medications or health conditions.

Leukocytes, also known as white blood cells (WBCs), are a crucial component of the human immune system. They are responsible for protecting the body against infections and foreign substances. Leukocytes are produced in the bone marrow and circulate throughout the body in the bloodstream and lymphatic system.

There are several types of leukocytes, including:

1. Neutrophils - These are the most abundant type of leukocyte and are primarily responsible for fighting bacterial infections. They contain enzymes that can destroy bacteria.
2. Lymphocytes - These are responsible for producing antibodies and destroying virus-infected cells, as well as cancer cells. There are two main types of lymphocytes: B-lymphocytes and T-lymphocytes.
3. Monocytes - These are the largest type of leukocyte and help to break down and remove dead or damaged tissues, as well as microorganisms.
4. Eosinophils - These play a role in fighting parasitic infections and are also involved in allergic reactions and inflammation.
5. Basophils - These release histamine and other chemicals that cause inflammation in response to allergens or irritants.

An abnormal increase or decrease in the number of leukocytes can indicate an underlying medical condition, such as an infection, inflammation, or a blood disorder.

Nonparametric statistics is a branch of statistics that does not rely on assumptions about the distribution of variables in the population from which the sample is drawn. In contrast to parametric methods, nonparametric techniques make fewer assumptions about the data and are therefore more flexible in their application. Nonparametric tests are often used when the data do not meet the assumptions required for parametric tests, such as normality or equal variances.

Nonparametric statistical methods include tests such as the Wilcoxon rank-sum test (also known as the Mann-Whitney U test) for comparing two independent groups, the Wilcoxon signed-rank test for comparing two related groups, and the Kruskal-Wallis test for comparing more than two independent groups. These tests use the ranks of the data rather than the actual values to make comparisons, which allows them to be used with ordinal or continuous data that do not meet the assumptions of parametric tests.

Overall, nonparametric statistics provide a useful set of tools for analyzing data in situations where the assumptions of parametric methods are not met, and can help researchers draw valid conclusions from their data even when the data are not normally distributed or have other characteristics that violate the assumptions of parametric tests.

Fiber optic technology in the medical context refers to the use of thin, flexible strands of glass or plastic fibers that are designed to transmit light and images along their length. These fibers are used to create bundles, known as fiber optic cables, which can be used for various medical applications such as:

1. Illumination: Fiber optics can be used to deliver light to hard-to-reach areas during surgical procedures or diagnostic examinations.
2. Imaging: Fiber optics can transmit images from inside the body, enabling doctors to visualize internal structures and tissues. This is commonly used in medical imaging techniques such as endoscopy, colonoscopy, and laparoscopy.
3. Sensing: Fiber optic sensors can be used to measure various physiological parameters such as temperature, pressure, and strain within the body. These sensors can provide real-time data during surgical procedures or for monitoring patients' health status.

Fiber optic technology offers several advantages over traditional medical imaging techniques, including high resolution, flexibility, small diameter, and the ability to bend around corners without significant loss of image quality. Additionally, fiber optics are non-magnetic and can be used in MRI environments without causing interference.

Capillary permeability refers to the ability of substances to pass through the walls of capillaries, which are the smallest blood vessels in the body. These tiny vessels connect the arterioles and venules, allowing for the exchange of nutrients, waste products, and gases between the blood and the surrounding tissues.

The capillary wall is composed of a single layer of endothelial cells that are held together by tight junctions. The permeability of these walls varies depending on the size and charge of the molecules attempting to pass through. Small, uncharged molecules such as water, oxygen, and carbon dioxide can easily diffuse through the capillary wall, while larger or charged molecules such as proteins and large ions have more difficulty passing through.

Increased capillary permeability can occur in response to inflammation, infection, or injury, allowing larger molecules and immune cells to enter the surrounding tissues. This can lead to swelling (edema) and tissue damage if not controlled. Decreased capillary permeability, on the other hand, can lead to impaired nutrient exchange and tissue hypoxia.

Overall, the permeability of capillaries is a critical factor in maintaining the health and function of tissues throughout the body.

Smoke inhalation injury is a type of damage that occurs to the respiratory system when an individual breathes in smoke, most commonly during a fire. This injury can affect both the upper and lower airways and can cause a range of symptoms, including coughing, wheezing, shortness of breath, and chest pain.

Smoke inhalation injury can also lead to more severe complications, such as chemical irritation of the airways, swelling of the throat and lungs, and respiratory failure. In some cases, it can even be fatal. The severity of the injury depends on several factors, including the duration and intensity of the exposure, the individual's underlying health status, and the presence of any pre-existing lung conditions.

Smoke inhalation injury is caused by a combination of thermal injury (heat damage) and chemical injury (damage from toxic substances present in the smoke). The heat from the smoke can cause direct damage to the airways, leading to inflammation and swelling. At the same time, the chemicals in the smoke can irritate and corrode the lining of the airways, causing further damage.

Some of the toxic substances found in smoke include carbon monoxide, cyanide, and various other chemicals released by burning materials. These substances can interfere with the body's ability to transport oxygen and can cause metabolic acidosis, a condition characterized by an excessively acidic environment in the body.

Treatment for smoke inhalation injury typically involves providing supportive care to help the individual breathe more easily, such as administering oxygen or using mechanical ventilation. In some cases, medications may be used to reduce inflammation and swelling in the airways. Severe cases of smoke inhalation injury may require hospitalization and intensive care.

"Aspergillus" is a genus of filamentous fungi (molds) that are widely distributed in the environment. These molds are commonly found in decaying organic matter such as leaf litter, compost piles, and rotting vegetation. They can also be found in indoor environments like air conditioning systems, dust, and building materials.

The medical relevance of Aspergillus comes from the fact that some species can cause a range of diseases in humans, particularly in individuals with weakened immune systems or underlying lung conditions. The most common disease caused by Aspergillus is called aspergillosis, which can manifest as allergic reactions, lung infections (like pneumonia), and invasive infections that can spread to other parts of the body.

Aspergillus species produce small, airborne spores called conidia, which can be inhaled into the lungs and cause infection. The severity of aspergillosis depends on various factors, including the individual's immune status, the specific Aspergillus species involved, and the extent of fungal invasion in the body.

Common Aspergillus species that can cause human disease include A. fumigatus, A. flavus, A. niger, and A. terreus. Preventing exposure to Aspergillus spores and maintaining a healthy immune system are crucial steps in minimizing the risk of aspergillosis.

Pseudomonas infections are infections caused by the bacterium Pseudomonas aeruginosa or other species of the Pseudomonas genus. These bacteria are gram-negative, opportunistic pathogens that can cause various types of infections, including respiratory, urinary tract, gastrointestinal, dermatological, and bloodstream infections.

Pseudomonas aeruginosa is a common cause of healthcare-associated infections, particularly in patients with weakened immune systems, chronic lung diseases, or those who are hospitalized for extended periods. The bacteria can also infect wounds, burns, and medical devices such as catheters and ventilators.

Pseudomonas infections can be difficult to treat due to the bacteria's resistance to many antibiotics. Treatment typically involves the use of multiple antibiotics that are effective against Pseudomonas aeruginosa. In severe cases, intravenous antibiotics or even hospitalization may be necessary.

Prevention measures include good hand hygiene, contact precautions for patients with known Pseudomonas infections, and proper cleaning and maintenance of medical equipment.

Silicon dioxide is not a medical term, but a chemical compound with the formula SiO2. It's commonly known as quartz or sand and is not something that would typically have a medical definition. However, in some cases, silicon dioxide can be used in pharmaceutical preparations as an excipient (an inactive substance that serves as a vehicle or medium for a drug) or as a food additive, often as an anti-caking agent.

In these contexts, it's important to note that silicon dioxide is considered generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA). However, exposure to very high levels of respirable silica dust, such as in certain industrial settings, can increase the risk of lung disease, including silicosis.

Bronchoconstrictor agents are substances that cause narrowing or constriction of the bronchioles, the small airways in the lungs. This can lead to symptoms such as wheezing, coughing, and shortness of breath. Bronchoconstrictor agents include certain medications (such as some beta-blockers and prostaglandin F2alpha), environmental pollutants (such as tobacco smoke and air pollution particles), and allergens (such as dust mites and pollen).

In contrast to bronchodilator agents, which are medications that widen the airways and improve breathing, bronchoconstrictor agents can make it more difficult for a person to breathe. People with respiratory conditions such as asthma or chronic obstructive pulmonary disease (COPD) may be particularly sensitive to bronchoconstrictor agents and may experience severe symptoms when exposed to them.

"Bird Fancier's Lung" is a type of hypersensitivity pneumonitis, which is a lung disease that results from an immune system reaction to inhaled dust particles. In the case of Bird Fancier's Lung, the dust particles come from bird droppings or feathers and are inhaled by people who keep birds as pets or work with them in aviaries or breeding facilities.

The immune system of susceptible individuals mounts an inflammatory response to the inhaled antigens, leading to symptoms such as cough, shortness of breath, fever, and fatigue. Over time, repeated exposure can lead to scarring and thickening of the lung tissue, which can impair lung function and cause irreversible damage.

The medical definition of Bird Fancier's Lung is: "A hypersensitivity pneumonitis caused by inhalation of antigens derived from avian proteins, most commonly found in people who keep birds as pets or work with them in aviaries or breeding facilities."

Opportunistic infections (OIs) are infections that occur more frequently or are more severe in individuals with weakened immune systems, often due to a underlying condition such as HIV/AIDS, cancer, or organ transplantation. These infections are caused by microorganisms that do not normally cause disease in people with healthy immune function, but can take advantage of an opportunity to infect and cause damage when the body's defense mechanisms are compromised. Examples of opportunistic infections include Pneumocystis pneumonia, tuberculosis, candidiasis (thrush), and cytomegalovirus infection. Preventive measures, such as antimicrobial medications and vaccinations, play a crucial role in reducing the risk of opportunistic infections in individuals with weakened immune systems.

Eosinophil peroxidase (EPO) is an enzyme that is primarily found in the granules of eosinophils, which are a type of white blood cell that plays a role in the immune response. EPO is involved in the destruction of certain types of parasites and also contributes to the inflammatory response in allergic reactions and other diseases.

EPO catalyzes the conversion of hydrogen peroxide to hypochlorous acid, which is a potent oxidizing agent that can kill or inhibit the growth of microorganisms. EPO also plays a role in the production of other reactive oxygen species, which can contribute to tissue damage and inflammation in certain conditions.

Elevated levels of EPO in tissues or bodily fluids may be indicative of eosinophil activation and degranulation, which can occur in various diseases such as asthma, allergies, parasitic infections, and some types of cancer. Measuring EPO levels can be useful in the diagnosis and monitoring of these conditions.

Medical Definition of Mineral Oil:

Mineral oil is a commonly used laxative, which is a substance that promotes bowel movements. It is a non-digestible, odorless, and tasteless oil that is derived from petroleum. When taken orally, mineral oil passes through the digestive system without being absorbed, helping to soften stools and relieve constipation by increasing the weight and size of the stool, stimulating the reflexes in the intestines that trigger bowel movements.

Mineral oil is also used topically as a moisturizer and emollient for dry skin conditions such as eczema and dermatitis. It forms a barrier on the skin, preventing moisture loss and protecting the skin from irritants. However, mineral oil should not be used on broken or inflamed skin, as it can trap bacteria and delay healing.

It is important to note that long-term use of mineral oil laxatives can lead to dependence and may interfere with the absorption of fat-soluble vitamins such as A, D, E, and K. Therefore, it should be used only under the guidance of a healthcare professional.

Extravascular lung water (EVLW) refers to the amount of fluid that has accumulated in the lungs outside of the pulmonary vasculature. It is not a part of the normal physiology and can be a sign of various pathological conditions, such as heart failure, sepsis, or acute respiratory distress syndrome (ARDS).

EVLW can be measured using various techniques, including transpulmonary thermodilution and pulmonary artery catheterization. Increased EVLW is associated with worse outcomes in critically ill patients, as it can lead to impaired gas exchange, decreased lung compliance, and increased work of breathing.

It's important to note that while EVLW can provide valuable information about a patient's condition, it should be interpreted in the context of other clinical findings and used as part of a comprehensive assessment.

Chemotaxis, Leukocyte is the movement of leukocytes (white blood cells) towards a higher concentration of a particular chemical substance, known as a chemotactic factor. This process plays a crucial role in the immune system's response to infection and injury.

When there is an infection or tissue damage, certain cells release chemotactic factors, which are small molecules or proteins that can attract leukocytes to the site of inflammation. Leukocytes have receptors on their surface that can detect these chemotactic factors and move towards them through a process called chemotaxis.

Once they reach the site of inflammation, leukocytes can help eliminate pathogens or damaged cells by phagocytosis (engulfing and destroying) or releasing toxic substances that kill the invading microorganisms. Chemotaxis is an essential part of the immune system's defense mechanisms and helps to maintain tissue homeostasis and prevent the spread of infection.

Eosinophil granule proteins are a group of biologically active molecules that are stored within the granules of eosinophils, which are types of white blood cells. These proteins include:

1. Eosinophil cationic protein (ECP): A protein with potent ribonuclease activity and the ability to disrupt cell membranes. It is involved in the immune response against parasites and has been implicated in the pathogenesis of several inflammatory diseases, such as asthma and allergies.
2. Eosinophil peroxidase (EPO): An enzyme that generates hypohalous acids, which can cause oxidative damage to cells and tissues. It contributes to the microbicidal activity of eosinophils and has been implicated in the pathogenesis of various inflammatory diseases.
3. Major basic protein (MBP): A highly cationic protein that can disrupt cell membranes, leading to cell lysis. MBP is involved in the immune response against parasites and has been linked to tissue damage in several inflammatory conditions, such as asthma, chronic rhinosinusitis, and eosinophilic esophagitis.
4. Eosinophil-derived neurotoxin (EDN): A protein with ribonuclease activity that can induce histamine release from mast cells and contribute to the inflammatory response. EDN is also involved in the immune response against parasites and has been implicated in the pathogenesis of asthma, allergies, and other inflammatory diseases.

These eosinophil granule proteins are released during eosinophil activation and degranulation, which can occur in response to various stimuli, such as immune complexes, cytokines, and infectious agents. Their release contributes to the inflammatory response and can lead to tissue damage in various diseases.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Cystic fibrosis (CF) is a genetic disorder that primarily affects the lungs and digestive system. It is caused by mutations in the CFTR gene, which regulates the movement of salt and water in and out of cells. When this gene is not functioning properly, thick, sticky mucus builds up in various organs, leading to a range of symptoms.

In the lungs, this mucus can clog the airways, making it difficult to breathe and increasing the risk of lung infections. Over time, lung damage can occur, which may lead to respiratory failure. In the digestive system, the thick mucus can prevent the release of digestive enzymes from the pancreas, impairing nutrient absorption and leading to malnutrition. CF can also affect the reproductive system, liver, and other organs.

Symptoms of cystic fibrosis may include persistent coughing, wheezing, lung infections, difficulty gaining weight, greasy stools, and frequent greasy diarrhea. The severity of the disease can vary significantly among individuals, depending on the specific genetic mutations they have inherited.

Currently, there is no cure for cystic fibrosis, but treatments are available to help manage symptoms and slow the progression of the disease. These may include airway clearance techniques, medications to thin mucus, antibiotics to treat infections, enzyme replacement therapy, and a high-calorie, high-fat diet. Lung transplantation is an option for some individuals with advanced lung disease.

"Specific Pathogen-Free (SPF)" is a term used to describe animals or organisms that are raised and maintained in a controlled environment, free from specific pathogens (disease-causing agents) that could interfere with research outcomes or pose a risk to human or animal health. The "specific" part of the term refers to the fact that the exclusion of pathogens is targeted to those that are relevant to the particular organism or research being conducted.

To maintain an SPF status, animals are typically housed in specialized facilities with strict biosecurity measures, such as air filtration systems, quarantine procedures, and rigorous sanitation protocols. They are usually bred and raised in isolation from other animals, and their health status is closely monitored to ensure that they remain free from specific pathogens.

It's important to note that SPF does not necessarily mean "germ-free" or "sterile," as some microorganisms may still be present in the environment or on the animals themselves, even in an SPF facility. Instead, it means that the animals are free from specific pathogens that have been identified and targeted for exclusion.

In summary, Specific Pathogen-Free Organisms refer to animals or organisms that are raised and maintained in a controlled environment, free from specific disease-causing agents that are relevant to the research being conducted or human/animal health.

Intubation, intratracheal is a medical procedure in which a flexible plastic or rubber tube called an endotracheal tube (ETT) is inserted through the mouth or nose, passing through the vocal cords and into the trachea (windpipe). This procedure is performed to establish and maintain a patent airway, allowing for the delivery of oxygen and the removal of carbon dioxide during mechanical ventilation in various clinical scenarios, such as:

1. Respiratory failure or arrest
2. Procedural sedation
3. Surgery under general anesthesia
4. Neuromuscular disorders
5. Ingestion of toxic substances
6. Head and neck trauma
7. Critical illness or injury affecting the airway

The process of intubation is typically performed by trained medical professionals, such as anesthesiologists, emergency medicine physicians, or critical care specialists, using direct laryngoscopy or video laryngoscopy to visualize the vocal cords and guide the ETT into the correct position. Once placed, the ETT is secured to prevent dislodgement, and the patient's respiratory status is continuously monitored to ensure proper ventilation and oxygenation.

Pulmonary tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. It primarily affects the lungs and can spread to other parts of the body through the bloodstream or lymphatic system. The infection typically enters the body when a person inhales droplets containing the bacteria, which are released into the air when an infected person coughs, sneezes, or talks.

The symptoms of pulmonary TB can vary but often include:

* Persistent cough that lasts for more than three weeks and may produce phlegm or blood-tinged sputum
* Chest pain or discomfort, particularly when breathing deeply or coughing
* Fatigue and weakness
* Unexplained weight loss
* Fever and night sweats
* Loss of appetite

Pulmonary TB can cause serious complications if left untreated, including damage to the lungs, respiratory failure, and spread of the infection to other parts of the body. Treatment typically involves a course of antibiotics that can last several months, and it is essential for patients to complete the full treatment regimen to ensure that the infection is fully eradicated.

Preventive measures include vaccination with the Bacillus Calmette-Guérin (BCG) vaccine, which can provide some protection against severe forms of TB in children, and measures to prevent the spread of the disease, such as covering the mouth and nose when coughing or sneezing, wearing a mask in public places, and avoiding close contact with people who have active TB.

Phosgene is not a medical condition, but it is an important chemical compound with significant medical implications. Medically, phosgene is most relevant as a potent chemical warfare agent and a severe pulmonary irritant. Here's the medical definition of phosgene:

Phosgene (COCl2): A highly toxic and reactive gas at room temperature with a characteristic odor reminiscent of freshly cut hay or grass. It is denser than air, allowing it to accumulate in low-lying areas. Exposure to phosgene primarily affects the respiratory system, causing symptoms ranging from mild irritation to severe pulmonary edema and potentially fatal respiratory failure.

Inhaling high concentrations of phosgene can lead to immediate choking sensations, coughing, chest pain, and difficulty breathing. Delayed symptoms may include fever, cyanosis (bluish discoloration of the skin due to insufficient oxygen), and pulmonary edema (fluid accumulation in the lungs). The onset of these severe symptoms can be rapid or take up to 48 hours after exposure.

Medical management of phosgene exposure primarily focuses on supportive care, including administering supplemental oxygen, bronchodilators, and corticosteroids to reduce inflammation. In severe cases, mechanical ventilation may be necessary to maintain adequate gas exchange in the lungs.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

Interleukin-6 (IL-6) is a cytokine, a type of protein that plays a crucial role in communication between cells, especially in the immune system. It is produced by various cells including T-cells, B-cells, fibroblasts, and endothelial cells in response to infection, injury, or inflammation.

IL-6 has diverse effects on different cell types. In the immune system, it stimulates the growth and differentiation of B-cells into plasma cells that produce antibodies. It also promotes the activation and survival of T-cells. Moreover, IL-6 plays a role in fever induction by acting on the hypothalamus to raise body temperature during an immune response.

In addition to its functions in the immune system, IL-6 has been implicated in various physiological processes such as hematopoiesis (the formation of blood cells), bone metabolism, and neural development. However, abnormal levels of IL-6 have also been associated with several diseases, including autoimmune disorders, chronic inflammation, and cancer.

I understand you are asking for a medical definition of "Horse Diseases." However, it's important to note that there isn't a specific medical field dedicated to horse diseases as we typically categorize medical fields by human diseases and conditions. Veterinary medicine is the field responsible for studying, diagnosing, and treating diseases in animals, including horses.

Here's a general definition of 'Horse Diseases':

Horse diseases are health issues or medical conditions that affect equine species, particularly horses. These diseases can be caused by various factors such as bacterial, viral, fungal, or parasitic infections; genetic predispositions; environmental factors; and metabolic disorders. Examples of horse diseases include Strangles (Streptococcus equi), Equine Influenza, Equine Herpesvirus, West Nile Virus, Rabies, Potomac Horse Fever, Lyme Disease, and internal or external parasites like worms and ticks. Additionally, horses can suffer from musculoskeletal disorders such as arthritis, laminitis, and various injuries. Regular veterinary care, preventative measures, and proper management are crucial for maintaining horse health and preventing diseases.

Hydroxyproline is not a medical term per se, but it is a significant component in the medical field, particularly in the study of connective tissues and collagen. Here's a scientific definition:

Hydroxyproline is a modified amino acid that is formed by the post-translational modification of the amino acid proline in collagen and some other proteins. This process involves the addition of a hydroxyl group (-OH) to the proline residue, which alters its chemical properties and contributes to the stability and structure of collagen fibers. Collagen is the most abundant protein in the human body and is a crucial component of connective tissues such as tendons, ligaments, skin, and bones. The presence and quantity of hydroxyproline can serve as a marker for collagen turnover and degradation, making it relevant to various medical and research contexts, including the study of diseases affecting connective tissues like osteoarthritis, rheumatoid arthritis, and Ehlers-Danlos syndrome.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Pulmonary aspergillosis is a respiratory infection caused by the fungus Aspergillus. It mainly affects the lungs, but it can also spread to other parts of the body. There are several forms of pulmonary aspergillosis, including:

1. Allergic bronchopulmonary aspergillosis (ABPA): This form occurs in people with asthma or cystic fibrosis. The immune system overreacts to the presence of Aspergillus, causing inflammation and damage to the airways.
2. Aspergilloma: Also known as a fungus ball, this is a growth of Aspergillus that develops in a preexisting lung cavity, usually caused by old tuberculosis or scarring from previous lung infections.
3. Invasive pulmonary aspergillosis (IPA): This is the most severe form and occurs when the fungus invades the lung tissue, blood vessels, and other organs. It primarily affects people with weakened immune systems due to conditions like cancer, HIV/AIDS, organ transplants, or long-term use of corticosteroids.

Symptoms of pulmonary aspergillosis can vary depending on the form and severity of the infection. They may include cough, chest pain, shortness of breath, fever, fatigue, weight loss, and bloody sputum. Diagnosis typically involves imaging tests like chest X-rays or CT scans, along with laboratory tests to detect Aspergillus antigens or DNA in blood or respiratory samples. Treatment options include antifungal medications, surgery to remove fungal growths, and management of underlying conditions that weaken the immune system.

Silicosis is a lung disease caused by inhalation of crystalline silica dust. It is characterized by the formation of nodular lesions and fibrosis (scarring) in the upper lobes of the lungs, which can lead to symptoms such as shortness of breath, cough, and fatigue. The severity of the disease depends on the duration and intensity of exposure to silica dust. Chronic silicosis is the most common form and develops after prolonged exposure, while acute silicosis can occur after brief, intense exposures. There is no cure for silicosis, and treatment is focused on managing symptoms and preventing further lung damage.

Ambroxol is a medication that belongs to the class of drugs known as mucolytic agents or expectorants. It works by thinning and loosening mucus in the airways, making it easier to cough up and clear the airways. This can help reduce symptoms such as chest congestion and shortness of breath in conditions such as chronic bronchitis, bronchiectasis, and cystic fibrosis.

Ambroxol also has some additional properties that make it useful in treating respiratory conditions. It can help to reduce inflammation in the airways, reduce the production of reactive oxygen species (which can damage cells), and increase the activity of certain immune cells that help to fight infection. These effects may contribute to the overall benefits of ambroxol in managing respiratory diseases.

It is important to note that ambroxol should only be used under the guidance of a healthcare professional, as it can have side effects and interactions with other medications. The dosage and duration of treatment will depend on various factors, including the underlying condition being treated, the patient's age and overall health status, and any other medical conditions or medications they may be taking.

Lymphocytosis is a medical term that refers to an abnormal increase in the number of lymphocytes (a type of white blood cell) in the peripheral blood. A normal lymphocyte count ranges from 1,000 to 4,800 cells per microliter (μL) of blood in adults. Lymphocytosis is typically defined as a lymphocyte count greater than 4,800 cells/μL in adults or higher than age-specific normal values in children.

There are various causes of lymphocytosis, including viral infections (such as mononucleosis), bacterial infections, tuberculosis, fungal infections, parasitic infections, autoimmune disorders, allergies, and certain cancers like chronic lymphocytic leukemia or lymphoma. It is essential to investigate the underlying cause of lymphocytosis through a thorough clinical evaluation, medical history, physical examination, and appropriate diagnostic tests, such as blood tests, imaging studies, or biopsies.

It's important to note that an isolated episode of mild lymphocytosis is often not clinically significant and may resolve on its own without any specific treatment. However, persistent or severe lymphocytosis requires further evaluation and management based on the underlying cause.

Respiratory tract infections (RTIs) are infections that affect the respiratory system, which includes the nose, throat (pharynx), voice box (larynx), windpipe (trachea), bronchi, and lungs. These infections can be caused by viruses, bacteria, or, less commonly, fungi.

RTIs are classified into two categories based on their location: upper respiratory tract infections (URTIs) and lower respiratory tract infections (LRTIs). URTIs include infections of the nose, sinuses, throat, and larynx, such as the common cold, flu, laryngitis, and sinusitis. LRTIs involve the lower airways, including the bronchi and lungs, and can be more severe. Examples of LRTIs are pneumonia, bronchitis, and bronchiolitis.

Symptoms of RTIs depend on the location and cause of the infection but may include cough, congestion, runny nose, sore throat, difficulty breathing, wheezing, fever, fatigue, and chest pain. Treatment for RTIs varies depending on the severity and underlying cause of the infection. For viral infections, treatment typically involves supportive care to manage symptoms, while antibiotics may be prescribed for bacterial infections.

Leukotriene B4 (LTB4) is a type of lipid mediator called eicosanoid, which is derived from arachidonic acid through the 5-lipoxygenase pathway. It is primarily produced by neutrophils, eosinophils, monocytes, and macrophages in response to various stimuli such as infection, inflammation, or injury. LTB4 acts as a potent chemoattractant and activator of these immune cells, playing a crucial role in the recruitment and activation of neutrophils during acute inflammatory responses. It also enhances the adhesion of leukocytes to endothelial cells, contributing to the development of tissue damage and edema. Dysregulation of LTB4 production has been implicated in several pathological conditions, including asthma, atherosclerosis, and cancer.

Pulmonary Surfactant-Associated Protein B (SP-B) is a small, hydrophobic protein that is an essential component of pulmonary surfactant. Surfactant is a complex mixture of lipids and proteins that reduces surface tension at the air-liquid interface in the alveoli of the lungs, thereby preventing collapse of the alveoli during expiration and facilitating lung expansion during inspiration. SP-B plays a crucial role in the biophysical function of surfactant by promoting its spreading and stability. It is synthesized and processed within type II alveolar epithelial cells and secreted as a part of lamellar bodies, which are lipoprotein complexes that store and release surfactant. Deficiency or dysfunction of SP-B can lead to severe respiratory distress syndrome (RDS) in infants and other lung diseases in both children and adults.

Chemokine CCL11, also known as eotaxin-1, is a small chemotactic cytokine that belongs to the CC subfamily of chemokines. Chemokines are a group of proteins that play crucial roles in immunity and inflammation by recruiting immune cells to sites of infection or tissue injury.

CCL11 specifically attracts eosinophils, a type of white blood cell that is involved in allergic reactions and the immune response to parasitic worm infections. It does this by binding to its specific receptor, CCR3, which is expressed on the surface of eosinophils and other cells.

CCL11 is produced by a variety of cells, including epithelial cells, endothelial cells, fibroblasts, and immune cells such as macrophages and Th2 lymphocytes. It has been implicated in the pathogenesis of several diseases, including asthma, allergies, and certain neurological disorders.

Interleukin-4 (IL-4) is a type of cytokine, which is a cell signaling molecule that mediates communication between cells in the immune system. Specifically, IL-4 is produced by activated T cells and mast cells, among other cells, and plays an important role in the differentiation and activation of immune cells called Th2 cells.

Th2 cells are involved in the immune response to parasites, as well as in allergic reactions. IL-4 also promotes the growth and survival of B cells, which produce antibodies, and helps to regulate the production of certain types of antibodies. In addition, IL-4 has anti-inflammatory effects and can help to downregulate the immune response in some contexts.

Defects in IL-4 signaling have been implicated in a number of diseases, including asthma, allergies, and certain types of cancer.

Berylliosis is a chronic inflammatory disease that affects the lungs and, less commonly, other organs. It is caused by exposure to beryllium, a lightweight, strong metal used in various industries such as aerospace, electronics, and nuclear energy. The disease can be categorized into two types: acute and chronic.

Acute berylliosis is a rare form of the disease that occurs after high levels of exposure to beryllium, usually through inhalation. Symptoms typically develop within a few weeks to months after exposure and include cough, chest pain, shortness of breath, and fatigue. Acute berylliosis can be severe and may require hospitalization.

Chronic berylliosis, also known as beryllium sensitization or beryllium disease, is a more common form of the disease that occurs after long-term exposure to low levels of beryllium. It is characterized by the development of an immune response to beryllium, resulting in chronic inflammation and scarring of the lung tissue. Symptoms may not appear for several years after exposure and can include cough, shortness of breath, fatigue, weight loss, and joint pain.

Diagnosis of berylliosis typically involves a combination of medical history, physical examination, chest X-ray or CT scan, pulmonary function tests, and blood tests to detect the presence of beryllium sensitization. Treatment may include corticosteroids and other immunosuppressive medications to manage inflammation and scarring in the lungs. Avoiding further exposure to beryllium is essential to prevent disease progression.

An acute disease is a medical condition that has a rapid onset, develops quickly, and tends to be short in duration. Acute diseases can range from minor illnesses such as a common cold or flu, to more severe conditions such as pneumonia, meningitis, or a heart attack. These types of diseases often have clear symptoms that are easy to identify, and they may require immediate medical attention or treatment.

Acute diseases are typically caused by an external agent or factor, such as a bacterial or viral infection, a toxin, or an injury. They can also be the result of a sudden worsening of an existing chronic condition. In general, acute diseases are distinct from chronic diseases, which are long-term medical conditions that develop slowly over time and may require ongoing management and treatment.

Examples of acute diseases include:

* Acute bronchitis: a sudden inflammation of the airways in the lungs, often caused by a viral infection.
* Appendicitis: an inflammation of the appendix that can cause severe pain and requires surgical removal.
* Gastroenteritis: an inflammation of the stomach and intestines, often caused by a viral or bacterial infection.
* Migraine headaches: intense headaches that can last for hours or days, and are often accompanied by nausea, vomiting, and sensitivity to light and sound.
* Myocardial infarction (heart attack): a sudden blockage of blood flow to the heart muscle, often caused by a buildup of plaque in the coronary arteries.
* Pneumonia: an infection of the lungs that can cause coughing, chest pain, and difficulty breathing.
* Sinusitis: an inflammation of the sinuses, often caused by a viral or bacterial infection.

It's important to note that while some acute diseases may resolve on their own with rest and supportive care, others may require medical intervention or treatment to prevent complications and promote recovery. If you are experiencing symptoms of an acute disease, it is always best to seek medical attention to ensure proper diagnosis and treatment.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

L-Lactate Dehydrogenase (LDH) is an enzyme found in various tissues within the body, including the heart, liver, kidneys, muscles, and brain. It plays a crucial role in the process of energy production, particularly during anaerobic conditions when oxygen levels are low.

In the presence of the coenzyme NADH, LDH catalyzes the conversion of pyruvate to lactate, generating NAD+ as a byproduct. Conversely, in the presence of NAD+, LDH can convert lactate back to pyruvate using NADH. This reversible reaction is essential for maintaining the balance between lactate and pyruvate levels within cells.

Elevated blood levels of LDH may indicate tissue damage or injury, as this enzyme can be released into the circulation following cellular breakdown. As a result, LDH is often used as a nonspecific biomarker for various medical conditions, such as myocardial infarction (heart attack), liver disease, muscle damage, and certain types of cancer. However, it's important to note that an isolated increase in LDH does not necessarily pinpoint the exact location or cause of tissue damage, and further diagnostic tests are usually required for confirmation.

Interferon-gamma (IFN-γ) is a soluble cytokine that is primarily produced by the activation of natural killer (NK) cells and T lymphocytes, especially CD4+ Th1 cells and CD8+ cytotoxic T cells. It plays a crucial role in the regulation of the immune response against viral and intracellular bacterial infections, as well as tumor cells. IFN-γ has several functions, including activating macrophages to enhance their microbicidal activity, increasing the presentation of major histocompatibility complex (MHC) class I and II molecules on antigen-presenting cells, stimulating the proliferation and differentiation of T cells and NK cells, and inducing the production of other cytokines and chemokines. Additionally, IFN-γ has direct antiproliferative effects on certain types of tumor cells and can enhance the cytotoxic activity of immune cells against infected or malignant cells.

Mycology is the branch of biology that deals with the study of fungi, including their genetic and biochemical properties, their taxonomy and classification, their role in diseases and decomposition processes, and their potential uses in industry, agriculture, and medicine. It involves the examination and identification of various types of fungi, such as yeasts, molds, and mushrooms, and the investigation of their ecological relationships with other organisms and their environments. Mycologists may also study the medical and veterinary importance of fungi, including the diagnosis and treatment of fungal infections, as well as the development of antifungal drugs and vaccines.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Obstructive lung disease is a category of respiratory diseases characterized by airflow limitation that causes difficulty in completely emptying the alveoli (tiny air sacs) of the lungs during exhaling. This results in the trapping of stale air and prevents fresh air from entering the alveoli, leading to various symptoms such as coughing, wheezing, shortness of breath, and decreased exercise tolerance.

The most common obstructive lung diseases include:

1. Chronic Obstructive Pulmonary Disease (COPD): A progressive disease that includes chronic bronchitis and emphysema, often caused by smoking or exposure to harmful pollutants.
2. Asthma: A chronic inflammatory disorder of the airways characterized by variable airflow obstruction, bronchial hyperresponsiveness, and an underlying inflammation. Symptoms can be triggered by various factors such as allergens, irritants, or physical activity.
3. Bronchiectasis: A condition in which the airways become abnormally widened, scarred, and thickened due to chronic inflammation or infection, leading to mucus buildup and impaired clearance.
4. Cystic Fibrosis: An inherited genetic disorder that affects the exocrine glands, resulting in thick and sticky mucus production in various organs, including the lungs. This can lead to chronic lung infections, inflammation, and airway obstruction.
5. Alpha-1 Antitrypsin Deficiency: A genetic condition characterized by low levels of alpha-1 antitrypsin protein, which leads to uncontrolled protease enzyme activity that damages the lung tissue, causing emphysema-like symptoms.

Treatment for obstructive lung diseases typically involves bronchodilators (to relax and widen the airways), corticosteroids (to reduce inflammation), and lifestyle modifications such as smoking cessation and pulmonary rehabilitation programs. In severe cases, oxygen therapy or even lung transplantation may be considered.

Lymphocyte subsets refer to distinct populations of white blood cells called lymphocytes, which are crucial components of the adaptive immune system. There are two main types of lymphocytes: T cells and B cells, and each type has several subsets based on their surface receptors, functions, and activation status.

1. T cell subsets: These include CD4+ T helper cells (Th cells), CD8+ cytotoxic T cells (Tc cells), regulatory T cells (Tregs), and memory T cells. Th cells are further divided into Th1, Th2, Th17, and Tfh cells based on their cytokine production profiles and functions.
* CD4+ T helper cells (Th cells) play a central role in orchestrating the immune response by producing various cytokines that activate other immune cells.
* CD8+ cytotoxic T cells (Tc cells) directly kill virus-infected or malignant cells upon recognition of specific antigens presented on their surface.
* Regulatory T cells (Tregs) suppress the activation and proliferation of other immune cells to maintain self-tolerance and prevent autoimmunity.
* Memory T cells are long-lived cells that remain in the body after an initial infection or immunization, providing rapid protection upon subsequent encounters with the same pathogen.
2. B cell subsets: These include naïve B cells, memory B cells, and plasma cells. Upon activation by antigens, B cells differentiate into antibody-secreting plasma cells that produce specific antibodies to neutralize or eliminate pathogens.
* Naïve B cells are resting cells that have not yet encountered their specific antigen.
* Memory B cells are long-lived cells generated after initial antigen exposure, which can quickly differentiate into antibody-secreting plasma cells upon re-exposure to the same antigen.
* Plasma cells are terminally differentiated B cells that secrete large amounts of specific antibodies.

Analyzing lymphocyte subsets is essential for understanding immune system function and dysfunction, as well as monitoring the effectiveness of immunotherapies and vaccinations.

Mineral fibers are tiny, elongated particles that occur naturally in the environment. They are made up of minerals such as silica and are often found in rocks and soil. Some mineral fibers, like asbestos, have been widely used in various industries for their heat resistance, insulating properties, and strength. However, exposure to certain types of mineral fibers, particularly asbestos, has been linked to serious health conditions such as lung cancer, mesothelioma, and asbestosis.

Mineral fibers are defined by their physical characteristics, including their length, width, and aspect ratio (the ratio of the fiber's length to its width). According to the International Agency for Research on Cancer (IARC), mineral fibers with a length of at least 5 micrometers, a width of no more than 3 micrometers, and an aspect ratio of at least 3:1 are considered to be "respirable," meaning they can be inhaled and potentially become lodged in the lungs.

It's worth noting that not all mineral fibers are created equal when it comes to health risks. Asbestos, for example, is a known human carcinogen, while other mineral fibers such as fiberglass and rock wool are considered less hazardous, although they can still cause respiratory irritation and other health problems with prolonged exposure.

Endotoxins are toxic substances that are associated with the cell walls of certain types of bacteria. They are released when the bacterial cells die or divide, and can cause a variety of harmful effects in humans and animals. Endotoxins are made up of lipopolysaccharides (LPS), which are complex molecules consisting of a lipid and a polysaccharide component.

Endotoxins are particularly associated with gram-negative bacteria, which have a distinctive cell wall structure that includes an outer membrane containing LPS. These toxins can cause fever, inflammation, and other symptoms when they enter the bloodstream or other tissues of the body. They are also known to play a role in the development of sepsis, a potentially life-threatening condition characterized by a severe immune response to infection.

Endotoxins are resistant to heat, acid, and many disinfectants, making them difficult to eliminate from contaminated environments. They can also be found in a variety of settings, including hospitals, industrial facilities, and agricultural operations, where they can pose a risk to human health.

I apologize for any confusion, but "Pyroglyphidae" is not a medical term. It is actually a family of small arthropods, specifically mites, that are often found in houses and other buildings. These mites are commonly known as dust mites or storage mites, and some species are associated with allergies and asthma symptoms in humans. If you have any questions related to medical terminology, I'll be happy to help!

Histamine is defined as a biogenic amine that is widely distributed throughout the body and is involved in various physiological functions. It is derived primarily from the amino acid histidine by the action of histidine decarboxylase. Histamine is stored in granules (along with heparin and proteases) within mast cells and basophils, and is released upon stimulation or degranulation of these cells.

Once released into the tissues and circulation, histamine exerts a wide range of pharmacological actions through its interaction with four types of G protein-coupled receptors (H1, H2, H3, and H4 receptors). Histamine's effects are diverse and include modulation of immune responses, contraction and relaxation of smooth muscle, increased vascular permeability, stimulation of gastric acid secretion, and regulation of neurotransmission.

Histamine is also a potent mediator of allergic reactions and inflammation, causing symptoms such as itching, sneezing, runny nose, and wheezing. Antihistamines are commonly used to block the actions of histamine at H1 receptors, providing relief from these symptoms.

Mycoplasma pneumonia is a type of atypical pneumonia, which is caused by the bacterium Mycoplasma pneumoniae. This organism is not a true bacterium, but rather the smallest free-living organisms known. They lack a cell wall and have a unique mode of reproduction.

Mycoplasma pneumonia infection typically occurs in small outbreaks or sporadically, often in crowded settings such as schools, colleges, and military barracks. It can also be acquired in the community. The illness is often mild and self-limiting, but it can also cause severe pneumonia and extra-pulmonary manifestations.

The symptoms of Mycoplasma pneumonia are typically less severe than those caused by typical bacterial pneumonia and may include a persistent cough that may be dry or produce small amounts of mucus, fatigue, fever, headache, sore throat, and chest pain. The infection can also cause extrapulmonary manifestations such as skin rashes, joint pain, and neurological symptoms.

Diagnosis of Mycoplasma pneumonia is often challenging because the organism is difficult to culture, and serological tests may take several weeks to become positive. PCR-based tests are now available and can provide a rapid diagnosis.

Treatment typically involves antibiotics such as macrolides (e.g., azithromycin), tetracyclines (e.g., doxycycline), or fluoroquinolones (e.g., levofloxacin). However, because Mycoplasma pneumonia is often self-limiting, antibiotic treatment may not shorten the duration of illness but can help prevent complications and reduce transmission.

Forced Expiratory Volume (FEV) is a medical term used to describe the volume of air that can be forcefully exhaled from the lungs in one second. It is often measured during pulmonary function testing to assess lung function and diagnose conditions such as chronic obstructive pulmonary disease (COPD) or asthma.

FEV is typically expressed as a percentage of the Forced Vital Capacity (FVC), which is the total volume of air that can be exhaled from the lungs after taking a deep breath in. The ratio of FEV to FVC is used to determine whether there is obstruction in the airways, with a lower ratio indicating more severe obstruction.

There are different types of FEV measurements, including FEV1 (the volume of air exhaled in one second), FEV25-75 (the average volume of air exhaled during the middle 50% of the FVC maneuver), and FEV0.5 (the volume of air exhaled in half a second). These measurements can provide additional information about lung function and help guide treatment decisions.

Monokines are cytokines that are produced and released by monocytes, which are a type of white blood cell. These proteins play an important role in the immune response, including inflammation, immunoregulation, and hematopoiesis (the formation of blood cells).

Monokines include several types of cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), and interleukin-12 (IL-12). These molecules help to regulate the activity of other immune cells, such as T cells and B cells, and can also have direct effects on infected or damaged tissues.

Monokines are involved in a variety of physiological and pathological processes, including host defense against infection, tissue repair and regeneration, and the development of chronic inflammatory diseases such as rheumatoid arthritis and atherosclerosis.

Alpha 1-antitrypsin (AAT, or α1-antiproteinase, A1AP) is a protein that is primarily produced by the liver and released into the bloodstream. It belongs to a group of proteins called serine protease inhibitors, which help regulate inflammation and protect tissues from damage caused by enzymes involved in the immune response.

Alpha 1-antitrypsin is particularly important for protecting the lungs from damage caused by neutrophil elastase, an enzyme released by white blood cells called neutrophils during inflammation. In the lungs, AAT binds to and inhibits neutrophil elastase, preventing it from degrading the extracellular matrix and damaging lung tissue.

Deficiency in alpha 1-antitrypsin can lead to chronic obstructive pulmonary disease (COPD) and liver disease. The most common cause of AAT deficiency is a genetic mutation that results in abnormal folding and accumulation of the protein within liver cells, leading to reduced levels of functional AAT in the bloodstream. This condition is called alpha 1-antitrypsin deficiency (AATD) and can be inherited in an autosomal codominant manner. Individuals with severe AATD may require augmentation therapy with intravenous infusions of purified human AAT to help prevent lung damage.

Asbestos is a group of naturally occurring mineral fibers that are resistant to heat, chemical reactions, and electrical currents. There are six types of asbestos, but the most common ones are chrysotile, amosite, and crocidolite. Asbestos has been widely used in various construction materials, such as roofing shingles, ceiling and floor tiles, paper products, and cement products.

Exposure to asbestos can cause serious health problems, including lung cancer, mesothelioma (a rare form of cancer that affects the lining of the lungs, heart, or abdomen), and asbestosis (a chronic lung disease characterized by scarring of the lung tissue). These health risks are related to the inhalation of asbestos fibers, which can become lodged in the lungs and cause inflammation and scarring over time.

As a result, the use of asbestos has been heavily regulated in many countries, and its use is banned in several others. Despite these regulations, asbestos remains a significant public health concern due to the large number of buildings and products that still contain it.

I must clarify that the term "Guinea Pigs" is not typically used in medical definitions. However, in colloquial or informal language, it may refer to people who are used as the first to try out a new medical treatment or drug. This is known as being a "test subject" or "in a clinical trial."

In the field of scientific research, particularly in studies involving animals, guinea pigs are small rodents that are often used as experimental subjects due to their size, cost-effectiveness, and ease of handling. They are not actually pigs from Guinea, despite their name's origins being unclear. However, they do not exactly fit the description of being used in human medical experiments.

Matrix Metalloproteinase 8 (MMP-8), also known as Collagenase-2 or Neutrophil Collagenase, is an enzyme that belongs to the Matrix Metalloproteinases family. MMP-8 is primarily produced by neutrophils and has the ability to degrade various components of the extracellular matrix (ECM), including collagens, gelatin, and elastin. It plays a crucial role in tissue remodeling, wound healing, and inflammatory responses. MMP-8 is also involved in the pathogenesis of several diseases, such as periodontitis, rheumatoid arthritis, and cancer, where it contributes to the breakdown of the ECM and promotes tissue destruction and invasion.

Allergic bronchopulmonary aspergillosis (ABPA) is a medical condition characterized by an hypersensitivity reaction to the fungus Aspergillus species, most commonly A. fumigatus. It primarily affects the airways and lung tissue. The immune system overreacts to the presence of the fungus, leading to inflammation and damage in the lungs.

The main symptoms of ABPA include wheezing, coughing, production of thick mucus, shortness of breath, and chest tightness. These symptoms are similar to those seen in asthma and other respiratory conditions. Some people with ABPA may also experience fever, weight loss, and fatigue.

Diagnosis of ABPA typically involves a combination of clinical evaluation, imaging studies (such as chest X-rays or CT scans), and laboratory tests (such as blood tests or sputum cultures) to detect the presence of Aspergillus species and elevated levels of certain antibodies.

Treatment for ABPA usually involves a combination of corticosteroids to reduce inflammation and antifungal medications to eradicate the Aspergillus infection. In some cases, immunomodulatory therapies may also be used to help regulate the immune system's response to the fungus.

It is important to note that ABPA can lead to serious complications if left untreated, including bronchiectasis (permanent enlargement of the airways), pulmonary fibrosis (scarring of the lung tissue), and respiratory failure. Therefore, prompt diagnosis and treatment are essential for managing this condition.

Mast cells are a type of white blood cell that are found in connective tissues throughout the body, including the skin, respiratory tract, and gastrointestinal tract. They play an important role in the immune system and help to defend the body against pathogens by releasing chemicals such as histamine, heparin, and leukotrienes, which help to attract other immune cells to the site of infection or injury. Mast cells also play a role in allergic reactions, as they release histamine and other chemicals in response to exposure to an allergen, leading to symptoms such as itching, swelling, and redness. They are derived from hematopoietic stem cells in the bone marrow and mature in the tissues where they reside.

Hypersensitivity, Immediate: Also known as Type I hypersensitivity, it is an exaggerated and abnormal immune response that occurs within minutes to a few hours after exposure to a second dose of an allergen (a substance that triggers an allergic reaction). This type of hypersensitivity is mediated by immunoglobulin E (IgE) antibodies, which are produced by the immune system in response to the first exposure to the allergen. Upon subsequent exposures, these IgE antibodies bind to mast cells and basophils, leading to their degranulation and the release of mediators such as histamine, leukotrienes, and prostaglandins. These mediators cause a variety of symptoms, including itching, swelling, redness, and pain at the site of exposure, as well as systemic symptoms such as difficulty breathing, wheezing, and hypotension (low blood pressure). Examples of immediate hypersensitivity reactions include allergic asthma, hay fever, anaphylaxis, and some forms of food allergy.

"Intraperitoneal injection" is a medical term that refers to the administration of a substance or medication directly into the peritoneal cavity, which is the space between the lining of the abdominal wall and the organs contained within it. This type of injection is typically used in clinical settings for various purposes, such as delivering chemotherapy drugs, anesthetics, or other medications directly to the abdominal organs.

The procedure involves inserting a needle through the abdominal wall and into the peritoneal cavity, taking care to avoid any vital structures such as blood vessels or nerves. Once the needle is properly positioned, the medication can be injected slowly and carefully to ensure even distribution throughout the cavity.

It's important to note that intraperitoneal injections are typically reserved for situations where other routes of administration are not feasible or effective, as they carry a higher risk of complications such as infection, bleeding, or injury to surrounding organs. As with any medical procedure, it should only be performed by trained healthcare professionals under appropriate clinical circumstances.

Chemokine (C-X-C motif) ligand 1 (CXCL1), also known as growth-regulated oncogene-alpha (GRO-α), is a small signaling protein belonging to the chemokine family. Chemokines are a group of cytokines, or cell signaling molecules, that play important roles in immune responses and inflammation by recruiting immune cells to sites of infection or tissue injury.

CXCL1 specifically binds to and activates the CXCR2 receptor, which is found on various types of immune cells, such as neutrophils, monocytes, and lymphocytes. The activation of the CXCR2 receptor by CXCL1 leads to a series of intracellular signaling events that result in the directed migration of these immune cells towards the site of chemokine production.

CXCL1 is involved in various physiological and pathological processes, including wound healing, angiogenesis, and tumor growth and metastasis. It has been implicated in several inflammatory diseases, such as rheumatoid arthritis, psoriasis, and atherosclerosis, as well as in cancer progression and metastasis.

In the context of medical and health sciences, particle size generally refers to the diameter or dimension of particles, which can be in the form of solid particles, droplets, or aerosols. These particles may include airborne pollutants, pharmaceutical drugs, or medical devices such as nanoparticles used in drug delivery systems.

Particle size is an important factor to consider in various medical applications because it can affect the behavior and interactions of particles with biological systems. For example, smaller particle sizes can lead to greater absorption and distribution throughout the body, while larger particle sizes may be filtered out by the body's natural defense mechanisms. Therefore, understanding particle size and its implications is crucial for optimizing the safety and efficacy of medical treatments and interventions.

Neutrophil activation refers to the process by which neutrophils, a type of white blood cell, become activated in response to a signal or stimulus, such as an infection or inflammation. This activation triggers a series of responses within the neutrophil that enable it to carry out its immune functions, including:

1. Degranulation: The release of granules containing enzymes and other proteins that can destroy microbes.
2. Phagocytosis: The engulfment and destruction of microbes through the use of reactive oxygen species (ROS) and other toxic substances.
3. Formation of neutrophil extracellular traps (NETs): A process in which neutrophils release DNA and proteins to trap and kill microbes outside the cell.
4. Release of cytokines and chemokines: Signaling molecules that recruit other immune cells to the site of infection or inflammation.

Neutrophil activation is a critical component of the innate immune response, but excessive or uncontrolled activation can contribute to tissue damage and chronic inflammation.

Phagocytosis is the process by which certain cells in the body, known as phagocytes, engulf and destroy foreign particles, bacteria, or dead cells. This mechanism plays a crucial role in the immune system's response to infection and inflammation. Phagocytes, such as neutrophils, monocytes, and macrophages, have receptors on their surface that recognize and bind to specific molecules (known as antigens) on the target particles or microorganisms.

Once attached, the phagocyte extends pseudopodia (cell extensions) around the particle, forming a vesicle called a phagosome that completely encloses it. The phagosome then fuses with a lysosome, an intracellular organelle containing digestive enzymes and other chemicals. This fusion results in the formation of a phagolysosome, where the engulfed particle is broken down by the action of these enzymes, neutralizing its harmful effects and allowing for the removal of cellular debris or pathogens.

Phagocytosis not only serves as a crucial defense mechanism against infections but also contributes to tissue homeostasis by removing dead cells and debris.

Systemic Scleroderma, also known as Systemic Sclerosis (SSc), is a rare, chronic autoimmune disease that involves the abnormal growth and accumulation of collagen in various connective tissues, blood vessels, and organs throughout the body. This excessive collagen production leads to fibrosis or scarring, which can cause thickening, hardening, and tightening of the skin and damage to internal organs such as the heart, lungs, kidneys, and gastrointestinal tract.

Systemic Scleroderma is characterized by two main features: small blood vessel abnormalities (Raynaud's phenomenon) and fibrosis. The disease can be further classified into two subsets based on the extent of skin involvement: limited cutaneous systemic sclerosis (lcSSc) and diffuse cutaneous systemic sclerosis (dcSSc).

Limited cutaneous systemic sclerosis affects the skin distally, typically involving fingers, hands, forearms, feet, lower legs, and face. It is often associated with Raynaud's phenomenon, calcinosis, telangiectasias, and pulmonary arterial hypertension.

Diffuse cutaneous systemic sclerosis involves more extensive skin thickening and fibrosis that spreads proximally to affect the trunk, upper arms, thighs, and face. It is commonly associated with internal organ involvement, such as interstitial lung disease, heart disease, and kidney problems.

The exact cause of Systemic Scleroderma remains unknown; however, it is believed that genetic, environmental, and immunological factors contribute to its development. There is currently no cure for Systemic Scleroderma, but various treatments can help manage symptoms, slow disease progression, and improve quality of life.

Chemokines are a family of small signaling proteins that are involved in immune regulation and inflammation. They mediate their effects by interacting with specific cell surface receptors, leading to the activation and migration of various types of immune cells. Chemokines can be divided into four subfamilies based on the arrangement of conserved cysteine residues near the N-terminus: CXC, CC, C, and CX3C.

CXC chemokines are characterized by the presence of a single amino acid (X) between the first two conserved cysteine residues. They play important roles in the recruitment and activation of neutrophils, which are critical effector cells in the early stages of inflammation. CXC chemokines can be further divided into two subgroups based on the presence or absence of a specific amino acid sequence (ELR motif) near the N-terminus: ELR+ and ELR-.

ELR+ CXC chemokines, such as IL-8, are potent chemoattractants for neutrophils and play important roles in the recruitment of these cells to sites of infection or injury. They bind to and activate the CXCR1 and CXCR2 receptors on the surface of neutrophils, leading to their migration towards the source of the chemokine.

ELR- CXC chemokines, such as IP-10 and MIG, are involved in the recruitment of T cells and other immune cells to sites of inflammation. They bind to and activate different receptors, such as CXCR3, on the surface of these cells, leading to their migration towards the source of the chemokine.

Overall, CXC chemokines play important roles in the regulation of immune responses and inflammation, and dysregulation of their expression or activity has been implicated in a variety of diseases, including cancer, autoimmune disorders, and infectious diseases.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by the persistent obstruction of airflow in and out of the lungs. This obstruction is usually caused by two primary conditions: chronic bronchitis and emphysema. Chronic bronchitis involves inflammation and narrowing of the airways, leading to excessive mucus production and coughing. Emphysema is a condition where the alveoli (air sacs) in the lungs are damaged, resulting in decreased gas exchange and shortness of breath.

The main symptoms of COPD include progressive shortness of breath, chronic cough, chest tightness, wheezing, and excessive mucus production. The disease is often associated with exposure to harmful particles or gases, such as cigarette smoke, air pollution, or occupational dusts and chemicals. While there is no cure for COPD, treatments can help alleviate symptoms, improve quality of life, and slow the progression of the disease. These treatments may include bronchodilators, corticosteroids, combination inhalers, pulmonary rehabilitation, and, in severe cases, oxygen therapy or lung transplantation.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

"Mycoplasma pneumoniae" is a type of bacteria that lacks a cell wall and can cause respiratory infections, particularly bronchitis and atypical pneumonia. It is one of the most common causes of community-acquired pneumonia. Infection with "M. pneumoniae" typically results in mild symptoms, such as cough, fever, and fatigue, although more severe complications can occur in some cases. The bacteria can also cause various extrapulmonary manifestations, including skin rashes, joint pain, and neurological symptoms. Diagnosis of "M. pneumoniae" infection is typically made through serological tests or PCR assays. Treatment usually involves antibiotics such as macrolides or tetracyclines.

Vital capacity (VC) is a term used in pulmonary function tests to describe the maximum volume of air that can be exhaled after taking a deep breath. It is the sum of inspiratory reserve volume, tidal volume, and expiratory reserve volume. In other words, it's the total amount of air you can forcibly exhale after inhaling as deeply as possible. Vital capacity is an important measurement in assessing lung function and can be reduced in conditions such as chronic obstructive pulmonary disease (COPD), asthma, and other respiratory disorders.

Orthomyxoviridae is a family of viruses that includes influenza A, B, and C viruses, which can cause respiratory infections in humans. Orthomyxoviridae infections are typically characterized by symptoms such as fever, cough, sore throat, runny or stuffy nose, muscle or body aches, headaches, and fatigue.

Influenza A and B viruses can cause seasonal epidemics of respiratory illness that occur mainly during the winter months in temperate climates. Influenza A viruses can also cause pandemics, which are global outbreaks of disease that occur when a new strain of the virus emerges to which there is little or no immunity in the human population.

Influenza C viruses are less common and typically cause milder illness than influenza A and B viruses. They do not cause epidemics and are not usually included in seasonal flu vaccines.

Orthomyxoviridae infections can be prevented through vaccination, good respiratory hygiene (such as covering the mouth and nose when coughing or sneezing), hand washing, and avoiding close contact with sick individuals. Antiviral medications may be prescribed to treat influenza A and B infections, particularly for people at high risk of complications, such as older adults, young children, pregnant women, and people with certain underlying medical conditions.

Legionellosis is a bacterial infection caused by the species Legionella, most commonly Legionella pneumophila. It can manifest in two main clinical syndromes: Legionnaires' disease and Pontiac fever.

Legionnaires' disease is a severe form of pneumonia characterized by cough, high fever, chills, muscle aches, and headaches. Other symptoms may include chest pain, shortness of breath, confusion, and gastrointestinal problems such as diarrhea, nausea, and vomiting. It is often associated with exposure to contaminated water sources like cooling towers, hot tubs, and decorative fountains.

Pontiac fever, on the other hand, is a milder form of legionellosis that causes flu-like symptoms without pneumonia. Symptoms typically include fever, chills, headache, and muscle aches, but they usually resolve within 2 to 5 days without specific treatment.

Both forms of legionellosis are transmitted through inhalation of contaminated aerosols or droplets, and prompt diagnosis and appropriate antibiotic therapy are essential for the management of Legionnaires' disease.

Tidal volume (Vt) is the amount of air that moves into or out of the lungs during normal, resting breathing. It is the difference between the volume of air in the lungs at the end of a normal expiration and the volume at the end of a normal inspiration. In other words, it's the volume of each breath you take when you are not making any effort to breathe more deeply.

The average tidal volume for an adult human is around 500 milliliters (ml) per breath, but this can vary depending on factors such as age, sex, size, and fitness level. During exercise or other activities that require increased oxygen intake, tidal volume may increase to meet the body's demands for more oxygen.

Tidal volume is an important concept in respiratory physiology and clinical medicine, as it can be used to assess lung function and diagnose respiratory disorders such as chronic obstructive pulmonary disease (COPD) or asthma.

Coal ash, also known as coal combustion residuals (CCRs), is the waste that is produced when coal is burned to generate electricity. It is a fine-grained, powdery material that is left over after coal is burned in power plants. Coal ash contains a variety of substances, including heavy metals such as arsenic, lead, mercury, and chromium, which can be harmful to human health and the environment if not properly managed.

Coal ash is typically stored in large ponds or landfills, but it can also be reused in a variety of applications, such as in concrete, wallboard, and other building materials. However, if coal ash is not handled and disposed of properly, it can pose serious risks to the environment and human health. For example, if coal ash ponds or landfills leak or burst, the toxic heavy metals they contain can contaminate water supplies and soil, posing a threat to both wildlife and humans.

It is important for coal ash to be managed in accordance with federal regulations to ensure that it is handled and disposed of in a way that protects public health and the environment. The Environmental Protection Agency (EPA) has established regulations governing the management of coal ash, including requirements for the location, design, and operation of coal ash disposal facilities, as well as standards for the monitoring and reporting of coal ash releases.

Chemokines are a family of small proteins that are involved in immune responses and inflammation. They mediate the chemotaxis (directed migration) of various cells, including leukocytes (white blood cells). Chemokines are classified into four major subfamilies based on the arrangement of conserved cysteine residues near the amino terminus: CXC, CC, C, and CX3C.

CC chemokines, also known as β-chemokines, are characterized by the presence of two adjacent cysteine residues near their N-terminal end. There are 27 known human CC chemokines, including MCP-1 (monocyte chemoattractant protein-1), RANTES (regulated on activation, normal T cell expressed and secreted), and eotaxin.

CC chemokines play important roles in the recruitment of immune cells to sites of infection or injury, as well as in the development and maintenance of immune responses. They bind to specific G protein-coupled receptors (GPCRs) on the surface of target cells, leading to the activation of intracellular signaling pathways that regulate cell migration, proliferation, and survival.

Dysregulation of CC chemokines and their receptors has been implicated in various inflammatory and autoimmune diseases, as well as in cancer. Therefore, targeting CC chemokine-mediated signaling pathways has emerged as a promising therapeutic strategy for the treatment of these conditions.

X-ray computed tomography (CT or CAT scan) is a medical imaging method that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional (tomographic) images (virtual "slices") of the body. These cross-sectional images can then be used to display detailed internal views of organs, bones, and soft tissues in the body.

The term "computed tomography" is used instead of "CT scan" or "CAT scan" because the machines take a series of X-ray measurements from different angles around the body and then use a computer to process these data to create detailed images of internal structures within the body.

CT scanning is a noninvasive, painless medical test that helps physicians diagnose and treat medical conditions. CT imaging provides detailed information about many types of tissue including lung, bone, soft tissue and blood vessels. CT examinations can be performed on every part of the body for a variety of reasons including diagnosis, surgical planning, and monitoring of therapeutic responses.

In computed tomography (CT), an X-ray source and detector rotate around the patient, measuring the X-ray attenuation at many different angles. A computer uses this data to construct a cross-sectional image by the process of reconstruction. This technique is called "tomography". The term "computed" refers to the use of a computer to reconstruct the images.

CT has become an important tool in medical imaging and diagnosis, allowing radiologists and other physicians to view detailed internal images of the body. It can help identify many different medical conditions including cancer, heart disease, lung nodules, liver tumors, and internal injuries from trauma. CT is also commonly used for guiding biopsies and other minimally invasive procedures.

In summary, X-ray computed tomography (CT or CAT scan) is a medical imaging technique that uses computer-processed combinations of many X-ray images taken from different angles to produce cross-sectional images of the body. It provides detailed internal views of organs, bones, and soft tissues in the body, allowing physicians to diagnose and treat medical conditions.

Respiratory Syncytial Virus (RSV) infections refer to the clinical illnesses caused by the Respiratory Syncytial Virus. RSV is a highly contagious virus that spreads through respiratory droplets, contact with infected surfaces, or direct contact with infected people. It primarily infects the respiratory tract, causing inflammation and damage to the cells lining the airways.

RSV infections can lead to a range of respiratory illnesses, from mild, cold-like symptoms to more severe conditions such as bronchiolitis (inflammation of the small airways in the lungs) and pneumonia (infection of the lung tissue). The severity of the infection tends to depend on factors like age, overall health status, and presence of underlying medical conditions.

In infants and young children, RSV is a leading cause of bronchiolitis and pneumonia, often resulting in hospitalization. In older adults, people with weakened immune systems, and those with chronic heart or lung conditions, RSV infections can also be severe and potentially life-threatening.

Symptoms of RSV infection may include runny nose, cough, sneezing, fever, wheezing, and difficulty breathing. Treatment typically focuses on managing symptoms and providing supportive care, although hospitalization and more aggressive interventions may be necessary in severe cases or for high-risk individuals. Preventive measures such as hand hygiene, wearing masks, and avoiding close contact with infected individuals can help reduce the spread of RSV.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Hydrochloric acid, also known as muriatic acid, is not a substance that is typically found within the human body. It is a strong mineral acid with the chemical formula HCl. In a medical context, it might be mentioned in relation to gastric acid, which helps digest food in the stomach. Gastric acid is composed of hydrochloric acid, potassium chloride and sodium chloride dissolved in water. The pH of hydrochloric acid is very low (1-2) due to its high concentration of H+ ions, making it a strong acid. However, it's important to note that the term 'hydrochloric acid' does not directly refer to a component of human bodily fluids or tissues.

A lymphocyte count is a laboratory test that measures the number of white blood cells called lymphocytes in a sample of blood. Lymphocytes are a vital part of the immune system and help fight off infections and diseases. A normal lymphocyte count ranges from 1,000 to 4,800 cells per microliter (µL) of blood for adults.

An abnormal lymphocyte count can indicate an infection, immune disorder, or blood cancer. A low lymphocyte count is called lymphopenia, while a high lymphocyte count is called lymphocytosis. The cause of an abnormal lymphocyte count should be investigated through further testing and clinical evaluation.

CD4-positive T-lymphocytes, also known as CD4+ T cells or helper T cells, are a type of white blood cell that plays a crucial role in the immune response. They express the CD4 receptor on their surface and help coordinate the immune system's response to infectious agents such as viruses and bacteria.

CD4+ T cells recognize and bind to specific antigens presented by antigen-presenting cells, such as dendritic cells or macrophages. Once activated, they can differentiate into various subsets of effector cells, including Th1, Th2, Th17, and Treg cells, each with distinct functions in the immune response.

CD4+ T cells are particularly important in the immune response to HIV (human immunodeficiency virus), which targets and destroys these cells, leading to a weakened immune system and increased susceptibility to opportunistic infections. The number of CD4+ T cells is often used as a marker of disease progression in HIV infection, with lower counts indicating more advanced disease.

'Ambrosia' is a term that does not have a specific medical definition. In general, it refers to the food or drink of the Greek gods, said to confer immortality upon them. It has been used in various contexts outside of its mythological origins, such as in botany to refer to certain types of plants, and in popular culture to name a genus of weed pollen that can cause severe allergic reactions. However, it does not have a technical medical meaning.

Air pollutants are substances or mixtures of substances present in the air that can have negative effects on human health, the environment, and climate. These pollutants can come from a variety of sources, including industrial processes, transportation, residential heating and cooking, agricultural activities, and natural events. Some common examples of air pollutants include particulate matter, nitrogen dioxide, sulfur dioxide, ozone, carbon monoxide, and volatile organic compounds (VOCs).

Air pollutants can cause a range of health effects, from respiratory irritation and coughing to more serious conditions such as bronchitis, asthma, and cancer. They can also contribute to climate change by reacting with other chemicals in the atmosphere to form harmful ground-level ozone and by directly absorbing or scattering sunlight, which can affect temperature and precipitation patterns.

Air quality standards and regulations have been established to limit the amount of air pollutants that can be released into the environment, and efforts are ongoing to reduce emissions and improve air quality worldwide.

Immunoglobulin A (IgA) is a type of antibody that plays a crucial role in the immune function of the human body. It is primarily found in external secretions, such as saliva, tears, breast milk, and sweat, as well as in mucous membranes lining the respiratory and gastrointestinal tracts. IgA exists in two forms: a monomeric form found in serum and a polymeric form found in secretions.

The primary function of IgA is to provide immune protection at mucosal surfaces, which are exposed to various environmental antigens, such as bacteria, viruses, parasites, and allergens. By doing so, it helps prevent the entry and colonization of pathogens into the body, reducing the risk of infections and inflammation.

IgA functions by binding to antigens present on the surface of pathogens or allergens, forming immune complexes that can neutralize their activity. These complexes are then transported across the epithelial cells lining mucosal surfaces and released into the lumen, where they prevent the adherence and invasion of pathogens.

In summary, Immunoglobulin A (IgA) is a vital antibody that provides immune defense at mucosal surfaces by neutralizing and preventing the entry of harmful antigens into the body.

Nasal lavage, also known as nasal washing or saline irrigation, is a procedure in which a saline solution is used to flush out the nasal passages. This is often done to help relieve symptoms associated with nasal congestion, allergies, sinusitis, and other respiratory conditions. The process involves instilling the saline solution into one nostril and allowing it to flow out through the other, taking with it any mucus, debris, or irritants that may be present in the nasal passages. This can help promote better breathing, reduce inflammation, and alleviate symptoms such as sinus pressure, headaches, and sneezing. Nasal lavage can be performed using a variety of devices, including bulb syringes, neti pots, or specialized squeeze bottles designed specifically for this purpose.

I'm sorry for any confusion, but "Phthalic Anhydrides" is not a medical term. It is a chemical compound with the formula C6H4(CO)2O. Phthalic anhydride is a white crystalline powder used in the industrial synthesis of plasticizers, resins, and dyes.

If you have any questions about medical terminology or concepts, please don't hesitate to ask!

Leukotrienes are a type of lipid mediator derived from arachidonic acid, which is a fatty acid found in the cell membranes of various cells in the body. They are produced by the 5-lipoxygenase (5-LO) pathway and play an essential role in the inflammatory response. Leukotrienes are involved in several physiological and pathophysiological processes, including bronchoconstriction, increased vascular permeability, and recruitment of immune cells to sites of injury or infection.

There are four main types of leukotrienes: LTB4, LTC4, LTD4, and LTE4. These molecules differ from each other based on the presence or absence of specific chemical groups attached to their core structure. Leukotrienes exert their effects by binding to specific G protein-coupled receptors (GPCRs) found on the surface of various cells.

LTB4 is primarily involved in neutrophil chemotaxis and activation, while LTC4, LTD4, and LTE4 are collectively known as cysteinyl leukotrienes (CysLTs). CysLTs cause bronchoconstriction, increased mucus production, and vascular permeability in the airways, contributing to the pathogenesis of asthma and other respiratory diseases.

In summary, leukotrienes are potent lipid mediators that play a crucial role in inflammation and immune responses. Their dysregulation has been implicated in several disease states, making them an important target for therapeutic intervention.

Visceral Larva Migrans is a parasitic infection caused by the migration of the larval stage of certain nematode roundworms, such as Toxocara spp. (most commonly Toxocara canis or Toxocara cati), through the tissues of the host. The larvae are ingested, usually through the consumption of contaminated soil, water, or undercooked meat, and then penetrate the intestinal wall, entering the bloodstream and migrating to various organs, including the liver, lungs, central nervous system, and eyes. This condition is more commonly seen in children due to their higher likelihood of engaging in pica (the consumption of soil or other non-food items) and having close contact with pets that may carry these parasites. Symptoms can vary widely depending on the organs involved but often include fever, coughing, wheezing, abdominal pain, and skin rashes. In severe cases, it can lead to potentially life-threatening complications such as blindness or neurological damage. Diagnosis typically involves a combination of clinical presentation, imaging studies, and laboratory tests, such as serology or stool examination for parasite eggs. Treatment usually consists of anthelmintic medications to eliminate the parasites and supportive care to manage symptoms.

Diagnostic techniques for the respiratory system are methods used to identify and diagnose various diseases and conditions affecting the lungs and breathing. Here are some commonly used diagnostic techniques:

1. Physical Examination: A healthcare provider will listen to your chest with a stethoscope to check for abnormal breath sounds, such as wheezing or crackles. They may also observe your respiratory rate and effort.
2. Chest X-ray: This imaging test can help identify abnormalities in the lungs, such as tumors, fluid accumulation, or collapsed lung sections.
3. Computed Tomography (CT) Scan: A CT scan uses X-rays to create detailed cross-sectional images of the lungs and surrounding structures. It can help detect nodules, cysts, or other abnormalities that may not be visible on a chest X-ray.
4. Pulmonary Function Tests (PFTs): These tests measure how well your lungs are working by assessing your ability to inhale and exhale air. Common PFTs include spirometry, lung volume measurement, and diffusing capacity testing.
5. Bronchoscopy: A thin, flexible tube with a camera and light is inserted through the nose or mouth into the airways to examine the lungs' interior and obtain tissue samples for biopsy.
6. Bronchoalveolar Lavage (BAL): During a bronchoscopy, fluid is introduced into a specific area of the lung and then suctioned out to collect cells and other materials for analysis.
7. Sleep Studies: These tests monitor your breathing patterns during sleep to diagnose conditions like sleep apnea or other sleep-related breathing disorders.
8. Sputum Analysis: A sample of coughed-up mucus is examined under a microscope to identify any abnormal cells, bacteria, or other organisms that may be causing respiratory issues.
9. Blood Tests: Blood tests can help diagnose various respiratory conditions by measuring oxygen and carbon dioxide levels, identifying specific antibodies or antigens, or detecting genetic markers associated with certain diseases.
10. Positron Emission Tomography (PET) Scan: A PET scan uses a small amount of radioactive material to create detailed images of the body's internal structures and functions, helping identify areas of abnormal cell growth or metabolic activity in the lungs.

Cytomegalovirus (CMV) infections are caused by the human herpesvirus 5 (HHV-5), a type of herpesvirus. The infection can affect people of all ages, but it is more common in individuals with weakened immune systems, such as those with HIV/AIDS or who have undergone organ transplantation.

CMV can be spread through close contact with an infected person's saliva, urine, blood, tears, semen, or breast milk. It can also be spread through sexual contact or by sharing contaminated objects, such as toys, eating utensils, or drinking glasses. Once a person is infected with CMV, the virus remains in their body for life and can reactivate later, causing symptoms to recur.

Most people who are infected with CMV do not experience any symptoms, but some may develop a mononucleosis-like illness, characterized by fever, fatigue, swollen glands, and sore throat. In people with weakened immune systems, CMV infections can cause more severe symptoms, including pneumonia, gastrointestinal disease, retinitis, and encephalitis.

Congenital CMV infection occurs when a pregnant woman passes the virus to her fetus through the placenta. This can lead to serious complications, such as hearing loss, vision loss, developmental delays, and mental disability.

Diagnosis of CMV infections is typically made through blood tests or by detecting the virus in bodily fluids, such as urine or saliva. Treatment depends on the severity of the infection and the patient's overall health. Antiviral medications may be prescribed to help manage symptoms and prevent complications.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

AIDS-related opportunistic infections (AROIs) are infections that occur more frequently or are more severe in people with weakened immune systems, such as those with advanced HIV infection or AIDS. These infections take advantage of a weakened immune system and can affect various organs and systems in the body.

Common examples of AROIs include:

1. Pneumocystis pneumonia (PCP), caused by the fungus Pneumocystis jirovecii
2. Mycobacterium avium complex (MAC) infection, caused by a type of bacteria called mycobacteria
3. Candidiasis, a fungal infection that can affect various parts of the body, including the mouth, esophagus, and genitals
4. Toxoplasmosis, caused by the parasite Toxoplasma gondii
5. Cryptococcosis, a fungal infection that affects the lungs and central nervous system
6. Cytomegalovirus (CMV) infection, caused by a type of herpes virus
7. Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis
8. Cryptosporidiosis, a parasitic infection that affects the intestines
9. Progressive multifocal leukoencephalopathy (PML), a viral infection that affects the brain

Preventing and treating AROIs is an important part of managing HIV/AIDS, as they can cause significant illness and even death in people with weakened immune systems. Antiretroviral therapy (ART) is used to treat HIV infection and prevent the progression of HIV to AIDS, which can help reduce the risk of opportunistic infections. In addition, medications to prevent specific opportunistic infections may be prescribed for people with advanced HIV or AIDS.

Bronchioles are the smallest airways in the respiratory system that carry air into the lungs. They are branching tubes within the lungs that further divide and become smaller than bronchi, ending in tiny air sacs called alveoli where the exchange of oxygen and carbon dioxide occurs. Bronchioles do not have cartilage in their walls, unlike larger bronchi, making them more flexible and able to adjust to changes in lung volume during breathing.

Collagen diseases, also known as collagen disorders or connective tissue diseases, refer to a group of medical conditions that affect the body's connective tissues. These tissues provide support and structure for various organs and systems in the body, including the skin, joints, muscles, and blood vessels.

Collagen is a major component of connective tissues, and it plays a crucial role in maintaining their strength and elasticity. In collagen diseases, the body's immune system mistakenly attacks healthy collagen, leading to inflammation, pain, and damage to the affected tissues.

There are several types of collagen diseases, including:

1. Systemic Lupus Erythematosus (SLE): This is a chronic autoimmune disease that can affect various organs and systems in the body, including the skin, joints, kidneys, heart, and lungs.
2. Rheumatoid Arthritis (RA): This is a chronic inflammatory disease that primarily affects the joints, causing pain, swelling, and stiffness.
3. Scleroderma: This is a rare autoimmune disorder that causes thickening and hardening of the skin and connective tissues, leading to restricted movement and organ damage.
4. Dermatomyositis: This is an inflammatory muscle disease that can also affect the skin, causing rashes and weakness.
5. Mixed Connective Tissue Disease (MCTD): This is a rare autoimmune disorder that combines symptoms of several collagen diseases, including SLE, RA, scleroderma, and dermatomyositis.

The exact cause of collagen diseases is not fully understood, but they are believed to be related to genetic, environmental, and hormonal factors. Treatment typically involves a combination of medications, lifestyle changes, and physical therapy to manage symptoms and prevent complications.

Chemokine (C-C motif) ligand 2, also known as monocyte chemoattractant protein-1 (MCP-1), is a small signaling protein that belongs to the chemokine family. Chemokines are a group of cytokines, or regulatory proteins, that play important roles in immune responses and inflammation by recruiting various immune cells to sites of infection or injury.

CCL2 specifically acts as a chemoattractant for monocytes, memory T cells, and dendritic cells, guiding them to migrate towards the source of infection or tissue damage. It does this by binding to its receptor, CCR2, which is expressed on the surface of these immune cells.

CCL2 has been implicated in several pathological conditions, including atherosclerosis, rheumatoid arthritis, and various cancers, where it contributes to the recruitment of immune cells that can exacerbate tissue damage or promote tumor growth and metastasis. Therefore, targeting CCL2 or its signaling pathways has emerged as a potential therapeutic strategy for these diseases.

Whole-body plethysmography is a non-invasive medical technique used to measure changes in the volume of air in the lungs and chest during breathing. It is often utilized in the diagnosis and assessment of various respiratory disorders such as chronic obstructive pulmonary disease (COPD), asthma, and restrictive lung diseases.

During whole-body plethysmography, the patient enters a sealed, clear chamber, usually in a standing or sitting position. The patient is instructed to breathe normally while the machine measures changes in pressure within the chamber as the chest and abdomen move during respiration. These measurements are then used to calculate lung volume, airflow, and other respiratory parameters.

This technique provides valuable information about the functional status of the lungs and can help healthcare providers make informed decisions regarding diagnosis, treatment planning, and disease monitoring.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Pulmonary gas exchange is the process by which oxygen (O2) from inhaled air is transferred to the blood, and carbon dioxide (CO2), a waste product of metabolism, is removed from the blood and exhaled. This process occurs in the lungs, primarily in the alveoli, where the thin walls of the alveoli and capillaries allow for the rapid diffusion of gases between them. The partial pressure gradient between the alveolar air and the blood in the pulmonary capillaries drives this diffusion process. Oxygen-rich blood is then transported to the body's tissues, while CO2-rich blood returns to the lungs to be exhaled.

Immunization is defined medically as the process where an individual is made immune or resistant to an infectious disease, typically through the administration of a vaccine. The vaccine stimulates the body's own immune system to recognize and fight off the specific disease-causing organism, thereby preventing or reducing the severity of future infections with that organism.

Immunization can be achieved actively, where the person is given a vaccine to trigger an immune response, or passively, where antibodies are transferred to the person through immunoglobulin therapy. Immunizations are an important part of preventive healthcare and have been successful in controlling and eliminating many infectious diseases worldwide.

Pneumoconiosis is a group of lung diseases caused by inhaling dust particles, leading to fibrosis or scarring of the lungs. The type of pneumoconiosis depends on the specific dust inhaled. Examples include coal worker's pneumoconiosis (from coal dust), silicosis (from crystalline silica dust), and asbestosis (from asbestos fibers). These diseases are generally preventable by minimizing exposure to harmful dusts through proper engineering controls, protective equipment, and workplace safety regulations.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

'Ascaris suum' is a species of roundworm that primarily infects pigs, although it can also rarely infect humans. It is a type of parasitic nematode that lives in the intestines of its host and obtains nutrients from ingested food. The adult female worm can grow up to 40 cm in length and produces thousands of eggs every day. These eggs are passed in the feces of infected animals and can survive in the environment for years, making them a significant source of infection for other pigs or humans who come into contact with them.

In pigs, 'Ascaris suum' infection can cause a range of symptoms, including diarrhea, vomiting, and stunted growth. In severe cases, it can lead to intestinal blockages or pneumonia. Humans who become infected with 'Ascaris suum' typically experience milder symptoms, such as abdominal pain, coughing, and wheezing. However, in rare cases, the infection can cause more serious complications, particularly if the worms migrate to other parts of the body.

Preventing 'Ascaris suum' infection involves good hygiene practices, such as washing hands thoroughly after handling animals or coming into contact with soil that may contain infected feces. It is also important to properly cook pork before eating it and to avoid consuming raw or undercooked meat. In areas where 'Ascaris suum' is common, deworming programs for pigs can help reduce the risk of infection for both animals and humans.

Exhalation is the act of breathing out or exhaling, which is the reverse process of inhalation. During exhalation, the diaphragm relaxes and moves upwards, while the chest muscles also relax, causing the chest cavity to decrease in size. This decrease in size puts pressure on the lungs, causing them to deflate and expel air.

Exhalation is a passive process that occurs naturally after inhalation, but it can also be actively controlled during activities such as speaking, singing, or playing a wind instrument. In medical terms, exhalation may also be referred to as expiration.

Respiratory mechanics refers to the biomechanical properties and processes that involve the movement of air through the respiratory system during breathing. It encompasses the mechanical behavior of the lungs, chest wall, and the muscles of respiration, including the diaphragm and intercostal muscles.

Respiratory mechanics includes several key components:

1. **Compliance**: The ability of the lungs and chest wall to expand and recoil during breathing. High compliance means that the structures can easily expand and recoil, while low compliance indicates greater resistance to expansion and recoil.
2. **Resistance**: The opposition to airflow within the respiratory system, primarily due to the friction between the air and the airway walls. Airway resistance is influenced by factors such as airway diameter, length, and the viscosity of the air.
3. **Lung volumes and capacities**: These are the amounts of air present in the lungs during different phases of the breathing cycle. They include tidal volume (the amount of air inspired or expired during normal breathing), inspiratory reserve volume (additional air that can be inspired beyond the tidal volume), expiratory reserve volume (additional air that can be exhaled beyond the tidal volume), and residual volume (the air remaining in the lungs after a forced maximum exhalation).
4. **Work of breathing**: The energy required to overcome the resistance and elastic forces during breathing. This work is primarily performed by the respiratory muscles, which contract to generate negative intrathoracic pressure and expand the chest wall, allowing air to flow into the lungs.
5. **Pressure-volume relationships**: These describe how changes in lung volume are associated with changes in pressure within the respiratory system. Important pressure components include alveolar pressure (the pressure inside the alveoli), pleural pressure (the pressure between the lungs and the chest wall), and transpulmonary pressure (the difference between alveolar and pleural pressures).

Understanding respiratory mechanics is crucial for diagnosing and managing various respiratory disorders, such as chronic obstructive pulmonary disease (COPD), asthma, and restrictive lung diseases.

A "colony count" is a method used to estimate the number of viable microorganisms, such as bacteria or fungi, in a sample. In this technique, a known volume of the sample is spread onto the surface of a solid nutrient medium in a petri dish and then incubated under conditions that allow the microorganisms to grow and form visible colonies. Each colony that grows on the plate represents an individual cell (or small cluster of cells) from the original sample that was able to divide and grow under the given conditions. By counting the number of colonies that form, researchers can make a rough estimate of the concentration of microorganisms in the original sample.

The term "microbial" simply refers to microscopic organisms, such as bacteria, fungi, or viruses. Therefore, a "colony count, microbial" is a general term that encompasses the use of colony counting techniques to estimate the number of any type of microorganism in a sample.

Colony counts are used in various fields, including medical research, food safety testing, and environmental monitoring, to assess the levels of contamination or the effectiveness of disinfection procedures. However, it is important to note that colony counts may not always provide an accurate measure of the total number of microorganisms present in a sample, as some cells may be injured or unable to grow under the conditions used for counting. Additionally, some microorganisms may form clusters or chains that can appear as single colonies, leading to an overestimation of the true cell count.

A chronic disease is a long-term medical condition that often progresses slowly over a period of years and requires ongoing management and care. These diseases are typically not fully curable, but symptoms can be managed to improve quality of life. Common chronic diseases include heart disease, stroke, cancer, diabetes, arthritis, and COPD (chronic obstructive pulmonary disease). They are often associated with advanced age, although they can also affect children and younger adults. Chronic diseases can have significant impacts on individuals' physical, emotional, and social well-being, as well as on healthcare systems and society at large.

Hemosiderosis is a medical condition characterized by the abnormal accumulation of hemosiderin, an iron-containing protein, in various organs and tissues of the body. Hemosiderin is derived from the breakdown of hemoglobin, which is the oxygen-carrying protein in red blood cells. When there is excessive breakdown of red blood cells or impaired clearance of hemosiderin, it can lead to its accumulation in organs such as the liver, spleen, and lungs.

Hemosiderosis can be classified into two types: primary and secondary. Primary hemosiderosis is a rare condition that is caused by genetic disorders affecting red blood cells, while secondary hemosiderosis is more common and is associated with various conditions that cause excessive breakdown of red blood cells or chronic inflammation. These conditions include hemolytic anemias, repeated blood transfusions, liver diseases, infections, and certain autoimmune disorders.

The accumulation of hemosiderin can lead to tissue damage and organ dysfunction, particularly in the lungs, where it can cause pulmonary fibrosis, and in the heart, where it can lead to heart failure. Hemosiderosis is typically diagnosed through a combination of medical history, physical examination, and laboratory tests, including blood tests and imaging studies such as chest X-rays or MRI scans. Treatment of hemosiderosis depends on the underlying cause and may include medications, blood transfusions, or supportive care to manage symptoms and prevent complications.

T-lymphocyte subsets refer to distinct populations of T-cells, which are a type of white blood cell that plays a central role in cell-mediated immunity. The two main types of T-lymphocytes are CD4+ and CD8+ cells, which are defined by the presence or absence of specific proteins called cluster differentiation (CD) molecules on their surface.

CD4+ T-cells, also known as helper T-cells, play a crucial role in activating other immune cells, such as B-lymphocytes and macrophages, to mount an immune response against pathogens. They also produce cytokines that help regulate the immune response.

CD8+ T-cells, also known as cytotoxic T-cells, directly kill infected cells or tumor cells by releasing toxic substances such as perforins and granzymes.

The balance between these two subsets of T-cells is critical for maintaining immune homeostasis and mounting effective immune responses against pathogens while avoiding excessive inflammation and autoimmunity. Therefore, the measurement of T-lymphocyte subsets is essential in diagnosing and monitoring various immunological disorders, including HIV infection, cancer, and autoimmune diseases.

"Soot" is not typically considered a medical term, but it does have relevance to public health and medicine due to its potential health effects. Soot is a general term for the fine black or brown particles that are produced when materials burn, such as in fires, industrial processes, or vehicle emissions. It is made up of a complex mixture of substances, including carbon, metals, and other organic compounds.

Inhaling soot can lead to respiratory problems, cardiovascular issues, and cancer. This is because the tiny particles can penetrate deep into the lungs and even enter the bloodstream, causing inflammation and damage to tissues. Prolonged exposure or high concentrations of soot can have more severe health effects, particularly in vulnerable populations such as children, the elderly, and those with pre-existing medical conditions.

Prednisolone is a synthetic glucocorticoid drug, which is a class of steroid hormones. It is commonly used in the treatment of various inflammatory and autoimmune conditions due to its potent anti-inflammatory and immunosuppressive effects. Prednisolone works by binding to specific receptors in cells, leading to changes in gene expression that reduce the production of substances involved in inflammation, such as cytokines and prostaglandins.

Prednisolone is available in various forms, including tablets, syrups, and injectable solutions. It can be used to treat a wide range of medical conditions, including asthma, rheumatoid arthritis, inflammatory bowel disease, allergies, skin conditions, and certain types of cancer.

Like other steroid medications, prednisolone can have significant side effects if used in high doses or for long periods of time. These may include weight gain, mood changes, increased risk of infections, osteoporosis, diabetes, and adrenal suppression. As a result, the use of prednisolone should be closely monitored by a healthcare professional to ensure that its benefits outweigh its risks.

Respiratory Syncytial Viruses (RSV) are a common type of virus that cause respiratory infections, particularly in young children and older adults. They are responsible for inflammation and narrowing of the small airways in the lungs, leading to breathing difficulties and other symptoms associated with bronchiolitis and pneumonia.

The term "syncytial" refers to the ability of these viruses to cause infected cells to merge and form large multinucleated cells called syncytia, which is a characteristic feature of RSV infections. The virus spreads through respiratory droplets when an infected person coughs or sneezes, and it can also survive on surfaces for several hours, making transmission easy.

RSV infections are most common during the winter months and can cause mild to severe symptoms depending on factors such as age, overall health, and underlying medical conditions. While RSV is typically associated with respiratory illnesses in children, it can also cause significant disease in older adults and immunocompromised individuals. Currently, there is no vaccine available for RSV, but antiviral medications and supportive care are used to manage severe infections.

'Aspergillus fumigatus' is a species of fungi that belongs to the genus Aspergillus. It is a ubiquitous mold that is commonly found in decaying organic matter, such as leaf litter, compost, and rotting vegetation. This fungus is also known to be present in indoor environments, including air conditioning systems, dust, and water-damaged buildings.

Aspergillus fumigatus is an opportunistic pathogen, which means that it can cause infections in people with weakened immune systems. It can lead to a range of conditions known as aspergillosis, including allergic reactions, lung infections, and invasive infections that can spread to other parts of the body.

The fungus produces small, airborne spores that can be inhaled into the lungs, where they can cause infection. In healthy individuals, the immune system is usually able to eliminate the spores before they can cause harm. However, in people with weakened immune systems, such as those undergoing chemotherapy or organ transplantation, or those with certain underlying medical conditions like asthma or cystic fibrosis, the fungus can establish an infection.

Infections caused by Aspergillus fumigatus can be difficult to treat, and treatment options may include antifungal medications, surgery, or a combination of both. Prompt diagnosis and treatment are essential for improving outcomes in people with aspergillosis.

Respiratory Distress Syndrome (RDS), Newborn is a common lung disorder in premature infants. It occurs when the lungs lack a substance called surfactant, which helps keep the tiny air sacs in the lungs open. This results in difficulty breathing and oxygenation, causing symptoms such as rapid, shallow breathing, grunting noises, flaring of the nostrils, and retractions (the skin between the ribs pulls in with each breath). RDS is more common in infants born before 34 weeks of gestation and is treated with surfactant replacement therapy, oxygen support, and mechanical ventilation if necessary. In severe cases, it can lead to complications such as bronchopulmonary dysplasia or even death.

Emphysema is a chronic respiratory disease characterized by abnormal, permanent enlargement of the airspaces called alveoli in the lungs, accompanied by destruction of their walls. This results in loss of elasticity and decreased gas exchange efficiency, causing shortness of breath and coughing. It is often caused by smoking or exposure to harmful pollutants. The damage to the lungs is irreversible, but quitting smoking and using medications can help alleviate symptoms and slow disease progression.

Pulmonary diffusing capacity, also known as pulmonary diffusion capacity, is a measure of the ability of the lungs to transfer gas from the alveoli to the bloodstream. It is often used to assess the severity of lung diseases such as chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis.

The most common measurement of pulmonary diffusing capacity is the diffusing capacity for carbon monoxide (DLCO), which reflects the transfer of carbon monoxide from the alveoli to the red blood cells in the capillaries. The DLCO is measured during a spirometry test, which involves breathing in a small amount of carbon monoxide and then measuring how much of it is exhaled.

A reduced DLCO may indicate a problem with the lung's ability to transfer oxygen to the blood, which can be caused by a variety of factors including damage to the alveoli or capillaries, thickening of the alveolar membrane, or a decrease in the surface area available for gas exchange.

It is important to note that other factors such as hemoglobin concentration, carboxyhemoglobin level, and lung volume can also affect the DLCO value, so these should be taken into account when interpreting the results of a diffusing capacity test.

Legionnaires' disease is a severe and often lethal form of pneumonia, a lung infection, caused by the bacterium Legionella pneumophila. It's typically contracted by inhaling microscopic water droplets containing the bacteria, which can be found in various environmental sources like cooling towers, hot tubs, whirlpools, decorative fountains, and large plumbing systems. The disease is not transmitted through person-to-person contact. Symptoms usually appear within 2-10 days after exposure and may include cough, fever, chills, muscle aches, headache, and shortness of breath. Some individuals, particularly those with weakened immune systems, elderly people, and smokers, are at higher risk for developing Legionnaires' disease. Early diagnosis and appropriate antibiotic treatment can improve the chances of recovery. Preventive measures include regular testing and maintenance of potential sources of Legionella bacteria in buildings and other facilities.

Tracheomalacia is a medical condition that refers to the softening and weakening of the tracheal walls, leading to its collapse or narrowing. This can cause symptoms such as shortness of breath, wheezing, coughing, and difficulty breathing, especially during exertion or when lying down.

In newborns and infants, tracheomalacia is often present at birth (congenital) and may improve on its own as the child grows and the trachea becomes stronger. However, in some cases, it may persist into adulthood and require medical treatment, such as bronchodilators, oxygen therapy, or even surgery to support the tracheal walls.

Tracheomalacia can also occur as a result of damage to the trachea from long-term intubation, trauma, infection, or other medical conditions that weaken the tracheal muscles and cartilage.

A contusion is a medical term for a bruise. It's a type of injury that occurs when blood vessels become damaged or broken as a result of trauma to the body. This trauma can be caused by a variety of things, such as a fall, a blow, or a hit. When the blood vessels are damaged, blood leaks into the surrounding tissues, causing the area to become discolored and swollen.

Contusions can occur anywhere on the body, but they are most common in areas that are more likely to be injured, such as the knees, elbows, and hands. In some cases, a contusion may be accompanied by other injuries, such as fractures or sprains.

Most contusions will heal on their own within a few days or weeks, depending on the severity of the injury. Treatment typically involves rest, ice, compression, and elevation (RICE) to help reduce swelling and pain. In some cases, over-the-counter pain medications may also be recommended to help manage discomfort.

If you suspect that you have a contusion, it's important to seek medical attention if the injury is severe or if you experience symptoms such as difficulty breathing, chest pain, or loss of consciousness. These could be signs of a more serious injury and require immediate medical attention.

Respiratory tract diseases refer to a broad range of medical conditions that affect the respiratory system, which includes the nose, throat (pharynx), windpipe (trachea), bronchi, bronchioles, and lungs. These diseases can be categorized into upper and lower respiratory tract infections based on the location of the infection.

Upper respiratory tract infections affect the nose, sinuses, pharynx, and larynx, and include conditions such as the common cold, flu, sinusitis, and laryngitis. Symptoms often include nasal congestion, sore throat, cough, and fever.

Lower respiratory tract infections affect the trachea, bronchi, bronchioles, and lungs, and can be more severe. They include conditions such as pneumonia, bronchitis, and tuberculosis. Symptoms may include cough, chest congestion, shortness of breath, and fever.

Respiratory tract diseases can also be caused by allergies, irritants, or genetic factors. Treatment varies depending on the specific condition and severity but may include medications, breathing treatments, or surgery in severe cases.

"Pseudomonas aeruginosa" is a medically important, gram-negative, rod-shaped bacterium that is widely found in the environment, such as in soil, water, and on plants. It's an opportunistic pathogen, meaning it usually doesn't cause infection in healthy individuals but can cause severe and sometimes life-threatening infections in people with weakened immune systems, burns, or chronic lung diseases like cystic fibrosis.

P. aeruginosa is known for its remarkable ability to resist many antibiotics and disinfectants due to its intrinsic resistance mechanisms and the acquisition of additional resistance determinants. It can cause various types of infections, including respiratory tract infections, urinary tract infections, gastrointestinal infections, dermatitis, and severe bloodstream infections known as sepsis.

The bacterium produces a variety of virulence factors that contribute to its pathogenicity, such as exotoxins, proteases, and pigments like pyocyanin and pyoverdine, which aid in iron acquisition and help the organism evade host immune responses. Effective infection control measures, appropriate use of antibiotics, and close monitoring of high-risk patients are crucial for managing P. aeruginosa infections.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

Interleukin-1 (IL-1) is a type of cytokine, which are proteins that play a crucial role in cell signaling. Specifically, IL-1 is a pro-inflammatory cytokine that is involved in the regulation of immune and inflammatory responses in the body. It is produced by various cells, including monocytes, macrophages, and dendritic cells, in response to infection or injury.

IL-1 exists in two forms, IL-1α and IL-1β, which have similar biological activities but are encoded by different genes. Both forms of IL-1 bind to the same receptor, IL-1R, and activate intracellular signaling pathways that lead to the production of other cytokines, chemokines, and inflammatory mediators.

IL-1 has a wide range of biological effects, including fever induction, activation of immune cells, regulation of hematopoiesis (the formation of blood cells), and modulation of bone metabolism. Dysregulation of IL-1 production or activity has been implicated in various inflammatory diseases, such as rheumatoid arthritis, gout, and inflammatory bowel disease. Therefore, IL-1 is an important target for the development of therapies aimed at modulating the immune response and reducing inflammation.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

The adrenal cortex hormones are a group of steroid hormones produced and released by the outer portion (cortex) of the adrenal glands, which are located on top of each kidney. These hormones play crucial roles in regulating various physiological processes, including:

1. Glucose metabolism: Cortisol helps control blood sugar levels by increasing glucose production in the liver and reducing its uptake in peripheral tissues.
2. Protein and fat metabolism: Cortisol promotes protein breakdown and fatty acid mobilization, providing essential building blocks for energy production during stressful situations.
3. Immune response regulation: Cortisol suppresses immune function to prevent overactivation and potential damage to the body during stress.
4. Cardiovascular function: Aldosterone regulates electrolyte balance and blood pressure by promoting sodium reabsorption and potassium excretion in the kidneys.
5. Sex hormone production: The adrenal cortex produces small amounts of sex hormones, such as androgens and estrogens, which contribute to sexual development and function.
6. Growth and development: Cortisol plays a role in normal growth and development by influencing the activity of growth-promoting hormones like insulin-like growth factor 1 (IGF-1).

The main adrenal cortex hormones include:

1. Glucocorticoids: Cortisol is the primary glucocorticoid, responsible for regulating metabolism and stress response.
2. Mineralocorticoids: Aldosterone is the primary mineralocorticoid, involved in electrolyte balance and blood pressure regulation.
3. Androgens: Dehydroepiandrosterone (DHEA) and its sulfate derivative (DHEAS) are the most abundant adrenal androgens, contributing to sexual development and function.
4. Estrogens: Small amounts of estrogens are produced by the adrenal cortex, mainly in women.

Disorders related to impaired adrenal cortex hormone production or regulation can lead to various clinical manifestations, such as Addison's disease (adrenal insufficiency), Cushing's syndrome (hypercortisolism), and congenital adrenal hyperplasia (CAH).

Carcinoma, bronchogenic is a medical term that refers to a type of lung cancer that originates in the bronchi, which are the branching tubes that carry air into the lungs. It is the most common form of lung cancer and can be further classified into different types based on the specific cell type involved, such as squamous cell carcinoma, adenocarcinoma, or large cell carcinoma.

Bronchogenic carcinomas are often associated with smoking and exposure to environmental pollutants, although they can also occur in non-smokers. Symptoms may include coughing, chest pain, shortness of breath, wheezing, hoarseness, or unexplained weight loss. Treatment options depend on the stage and location of the cancer, as well as the patient's overall health and may include surgery, radiation therapy, chemotherapy, targeted therapy, or a combination of these approaches.

Phosphodiesterase 4 inhibitors (PDE4 inhibitors) are a class of drugs that work by increasing the levels of cyclic adenosine monophosphate (cAMP) in cells. They do this by blocking the phosphodiesterase 4 enzyme, which is responsible for breaking down cAMP.

Cyclic AMP is an important intracellular signaling molecule that plays a role in various physiological processes, including inflammation and immune response. By increasing cAMP levels, PDE4 inhibitors can help to reduce inflammation and modulate the immune system.

PDE4 inhibitors have been studied for their potential therapeutic benefits in a range of conditions, including asthma, COPD, psoriasis, atopic dermatitis, and depression. Some examples of PDE4 inhibitors include roflumilast, apremilast, crisaborole, and ditropan.

It's important to note that while PDE4 inhibitors have shown promise in clinical trials, they can also have side effects, such as gastrointestinal symptoms, headache, and dizziness. Additionally, their long-term safety and efficacy are still being studied.

'Actinobacillus pleuropneumoniae' is a gram-negative, rod-shaped bacterium that primarily affects the respiratory system of pigs, causing a disease known as porcine pleuropneumonia. This disease is associated with severe respiratory signs, including coughing, difficulty breathing, and high fever, and can lead to significant economic losses in the swine industry.

The bacterium is typically transmitted through direct contact with infected pigs or contaminated fomites, and it can also be spread through aerosolized droplets. Once inside the host, 'Actinobacillus pleuropneumoniae' produces a number of virulence factors that allow it to evade the immune system and cause tissue damage.

Effective control and prevention strategies for porcine pleuropneumonia include vaccination, biosecurity measures, and antibiotic treatment. However, antibiotic resistance is an emerging concern in the management of this disease, highlighting the need for continued research and development of new control strategies.

'Asbestos, serpentine' is a type of asbestos mineral that belongs to the serpentine group of minerals. The serpentine group of minerals is characterized by its sheet or layered structure, in which each silicate tetrahedron shares three oxygen atoms with adjacent tetrahedra, forming a continuous two-dimensional sheet.

The most common type of asbestos mineral in the serpentine group is chrysotile, also known as white asbestos or serpentine asbestos. Chrysotile fibers are curly and flexible, which makes them easier to weave into textiles and other materials. As a result, chrysotile has been widely used in a variety of industrial and commercial applications, such as insulation, roofing, flooring, and cement products.

However, exposure to chrysotile fibers has been linked to several serious health problems, including lung cancer, mesothelioma, and asbestosis. As a result, the use of chrysotile and other types of asbestos has been banned or restricted in many countries around the world.

Airway obstruction is a medical condition that occurs when the normal flow of air into and out of the lungs is partially or completely blocked. This blockage can be caused by a variety of factors, including swelling of the tissues in the airway, the presence of foreign objects or substances, or abnormal growths such as tumors.

When the airway becomes obstructed, it can make it difficult for a person to breathe normally. They may experience symptoms such as shortness of breath, wheezing, coughing, and chest tightness. In severe cases, airway obstruction can lead to respiratory failure and other life-threatening complications.

There are several types of airway obstruction, including:

1. Upper airway obstruction: This occurs when the blockage is located in the upper part of the airway, such as the nose, throat, or voice box.
2. Lower airway obstruction: This occurs when the blockage is located in the lower part of the airway, such as the trachea or bronchi.
3. Partial airway obstruction: This occurs when the airway is partially blocked, allowing some air to flow in and out of the lungs.
4. Complete airway obstruction: This occurs when the airway is completely blocked, preventing any air from flowing into or out of the lungs.

Treatment for airway obstruction depends on the underlying cause of the condition. In some cases, removing the obstruction may be as simple as clearing the airway of foreign objects or mucus. In other cases, more invasive treatments such as surgery may be necessary.

Rolipram is not a medical term per se, but it is the name of a pharmaceutical compound. Rolipram is a selective inhibitor of phosphodiesterase-4 (PDE4), an enzyme that plays a role in regulating the body's inflammatory response and is involved in various cellular signaling pathways.

Rolipram has been investigated as a potential therapeutic agent for several medical conditions, including depression, asthma, chronic obstructive pulmonary disease (COPD), and Alzheimer's disease. However, its development as a drug has been hindered by issues related to its pharmacokinetics, such as poor bioavailability and a short half-life, as well as side effects like nausea and emesis.

Therefore, while Rolipram is an important compound in the field of pharmacology and has contributed significantly to our understanding of PDE4's role in various physiological processes, it is not typically used as a medical term to describe a specific disease or condition.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Fungal antigens are substances found on or produced by fungi that can stimulate an immune response in a host organism. They can be proteins, polysaccharides, or other molecules that are recognized as foreign by the host's immune system. Fungal antigens can be used in diagnostic tests to identify fungal infections, and they can also be targets of immune responses during fungal infections. In some cases, fungal antigens may contribute to the pathogenesis of fungal diseases by inducing inflammatory or allergic reactions. Examples of fungal antigens include the cell wall components of Candida albicans and the extracellular polysaccharide galactomannan produced by Aspergillus fumigatus.

Leukotriene D4 (LTD4) is a biological mediator derived from arachidonic acid, which is released from membrane phospholipids by the action of phospholipase A2. It is one of the cysteinyl leukotrienes (cys-LTs), along with LTC4 and LTE4, that are produced in the body through the 5-lipoxygenase pathway.

LTD4 plays a significant role in the inflammatory response, particularly in the airways. It is a potent constrictor of bronchial smooth muscle, increases vascular permeability, and recruits eosinophils and other inflammatory cells to the site of inflammation. These actions contribute to the pathogenesis of asthma and allergic rhinitis.

LTD4 exerts its effects by binding to cys-LT receptors (CysLT1 and CysLT2) found on various cell types, including smooth muscle cells, endothelial cells, and inflammatory cells. The activation of these receptors leads to a cascade of intracellular signaling events that result in the observed biological responses.

Inhibitors of 5-lipoxygenase or cys-LT receptor antagonists are used as therapeutic agents for the treatment of asthma and allergic rhinitis, targeting the actions of LTD4 and other cys-LTs to reduce inflammation and bronchoconstriction.

Particulate Matter (PM) refers to the mixture of tiny particles and droplets in the air that are solid or liquid in nature. These particles vary in size, with some being visible to the naked eye while others can only be seen under a microscope. PM is classified based on its diameter:

* PM10 includes particles with a diameter of 10 micrometers or smaller. These particles are often found in dust, pollen, and smoke.
* PM2.5 includes particles with a diameter of 2.5 micrometers or smaller. These fine particles are produced from sources such as power plants, industrial processes, and vehicle emissions. They can also come from natural sources like wildfires.

Exposure to particulate matter has been linked to various health problems, including respiratory issues, cardiovascular disease, and premature death. The smaller the particle, the deeper it can penetrate into the lungs, making PM2.5 particularly harmful to human health.

Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, hard, brittle alkaline earth metal that is difficult to fabricate because of its high reactivity and toxicity. Beryllium is primarily used as a hardening agent in alloys, such as beryllium copper, and as a moderator and reflector in nuclear reactors due to its ability to efficiently slow down neutrons.

In the medical field, beryllium is most well-known for its potential to cause a chronic allergic lung disease called berylliosis. This condition can occur after prolonged exposure to beryllium-containing dusts or fumes, and can lead to symptoms such as cough, shortness of breath, and fatigue. In severe cases, it can cause scarring and thickening of the lung tissue, leading to respiratory failure.

Healthcare professionals should take appropriate precautions when handling beryllium-containing materials, including using protective equipment and following proper disposal procedures to minimize exposure.

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that plays a crucial role in the modulation of immune responses. It is produced by various cell types, including T cells, macrophages, and dendritic cells. IL-10 inhibits the production of pro-inflammatory cytokines, such as TNF-α, IL-1, IL-6, IL-8, and IL-12, and downregulates the expression of costimulatory molecules on antigen-presenting cells. This results in the suppression of T cell activation and effector functions, which ultimately helps to limit tissue damage during inflammation and promote tissue repair. Dysregulation of IL-10 has been implicated in various pathological conditions, including chronic infections, autoimmune diseases, and cancer.

"Silo Filler's Disease" is not a recognized medical term or diagnosis in reputable medical sources. It appears to be a colloquial term that may refer to "Grain Engulfment" or "Silo Filler's Syndrome," which are occupational hazards primarily affecting farmers and grain handling workers.

Grain Engulfment is a serious condition where an individual becomes entrapped or submerged in flowing grain, such as corn or soybeans, leading to rapid suffocation. The term "Silo Filler's Syndrome" specifically refers to the accumulation of nitrogen dioxide gas in silos used for storing animal feed, which can lead to respiratory failure and other health issues for those who enter the silo without proper safety measures.

It is crucial to note that both conditions are severe and potentially life-threatening, requiring immediate medical attention and strict adherence to safety protocols when working with grain storage and handling equipment.

Chemotactic factors are substances that attract or repel cells, particularly immune cells, by stimulating directional movement in response to a chemical gradient. These factors play a crucial role in the body's immune response and inflammation process. They include:

1. Chemokines: A family of small signaling proteins that direct the migration of immune cells to sites of infection or tissue damage.
2. Cytokines: A broad category of signaling molecules that mediate and regulate immunity, inflammation, and hematopoiesis. Some cytokines can also act as chemotactic factors.
3. Complement components: Cleavage products of the complement system can attract immune cells to the site of infection or tissue injury.
4. Growth factors: Certain growth factors, like colony-stimulating factors (CSFs), can stimulate the migration and proliferation of specific cell types.
5. Lipid mediators: Products derived from arachidonic acid metabolism, such as leukotrienes and prostaglandins, can also act as chemotactic factors.
6. Formyl peptides: Bacterial-derived formylated peptides can attract and activate neutrophils during an infection.
7. Extracellular matrix (ECM) components: Fragments of ECM proteins, like collagen and fibronectin, can serve as chemotactic factors for immune cells.

These factors help orchestrate the immune response by guiding the movement of immune cells to specific locations in the body where they are needed.

Altraja A, Nigol K, Altraja S, Viitak A (2012-03-12). "Increased bronchoalveolar lavage fluid tin content in stannosis". Chest ... In comparison to health, non-tinning workers, the patient had significantly higher bronchoalveolar lavage fluid (BLAF) ...
"Vitamin E Acetate in Bronchoalveolar-Lavage Fluid Associated with EVALI". New England Journal of Medicine. 382 (8): 697-705. ... "The Chemical Components of Electronic Cigarette Cartridges and Refill Fluids: Review of Analytical Methods". Nicotine & Tobacco ...
Samples from bronchoalveolar lavage fluid specimens returned the highest sensitivity. The authors argued that CT scans showed ... or direct contact with hands contaminated with SARS-CoV-2 either by respiratory fluids or by touching surfaces contaminated ...
... diagnosis using routinely processed smears of bronchoalveolar lavage fluid". Journal of Clinical Pathology. 50 (12): 981-4. doi ... and ultrastructural findings in bronchoalveolar lavage fluid". Diagnostic Cytopathology. 24 (6): 389-95. doi:10.1002/dc.1086. ... The reported treatment of PAP using therapeutic bronchoalveolar lavage was in 1960 by Dr. Jose Ramirez-Rivera at the Veterans' ... Lung washings or tissue for histopathologic analysis are most commonly obtained using bronchoalveolar lavage and/or lung biopsy ...
Assessment of alveolar crystal burden in bronchoalveolar lavage fluid may aid diagnosis. For uncomplicated silicosis, chest x- ... fluid in the lungs), pneumonia, or tuberculosis. Using workplace controls, silicosis is almost always a preventable disease. ...
Inhaled pentamidine is mainly deposited into the bronchoalveolar lavage fluid of the lungs. Metabolism: Pentamidine is ... When inhaled through a nebulizer, pentamidine accumulates in the bronchoalveolar fluid of the lungs at a higher concentration ... Ample fluids or intravenous hydration may prevent some nephrotoxicity. Liver: Elevated liver enzymes are associated with ... Additionally, pentamidine does not reach curative levels in the cerebrospinal fluid. It has a volume of distribution of 286- ...
... it is present in bronchoalveolar lavage fluid from cats undergoing experimentally induced asthma; it stimulates the local ...
"Osteopontin is increased in the bronchoalveolar lavage fluid and bronchial tissue of smoking asthmatics". Cytokine. 61 (3): 713 ... PD patients serum and cerebrospinal fluid (CSF) concentrations of OPN were studied, it shows that OPN levels in the body fluid ...
2001). "Human bronchoalveolar lavage fluid protein two-dimensional database: study of interstitial lung diseases". ...
The sample types were bronchoalveolar lavage (BAL) fluid samples (fluid samples collected from the lungs). The chemical was ... In May 2019, a 21-year-old was hospitalized for more than two weeks due to fluid in his lungs and was in a medically induced ... necessitating a medically induced coma and removal of fluid from the lungs. Vomiting, coughing up blood, and lipid pneumonia ... My Lungs Were Full of Fluid'". People. Bojórquez, Kim (6 August 2019). "What Utah doctors are saying about vaping". Deseret ...
Allergen inhalation challenge of humans produces rises in the PGD2 levels in their Bronchoalveolar lavage fluids. Furthermore, ...
Wattiez R, Hermans C, Bernard A, Lesur O, Falmagne P (June 1999). "Human bronchoalveolar lavage fluid: two-dimensional gel ...
Typical inclusions called "Leventhal-Cole-Lillie bodies" can be seen within macrophages in BAL (bronchoalveolar lavage) fluid. ...
2015). "High-throughput sequencing of 16S rDNA amplicons characterizes bacterial composition in bronchoalveolar lavage fluid in ... Bronchoalveolar lavage (BAL) (also known as bronchoalveolar washing) is a diagnostic method of the lower respiratory system in ... "Therapeutic limited bronchoalveolar lavage with fiberoptic bronchoscopy as a bridging procedure prior to total lung lavage in a ... Bronchoalveolar lavage can be a more sensitive method of detection than nasal swabs in respiratory molecular diagnostics, as ...
"De Novo Assembly of the Pneumocystis jirovecii Genome from a Single Bronchoalveolar Lavage Fluid Specimen from a Patient". mBio ... The genome of P. jirovecii has been sequenced from a bronchoalveolar lavage sample. The genome is small, low in G+C content, ... Fluid leaks into alveoli, producing an exudate seen as honeycomb/cotton candy appearance on hematoxylin and eosin-stained ... and those that have been detected in many mammals are only known from molecular sample detection from lung tissue or fluids, ...
"Novel Neutrophil-derived Proteins in Bronchoalveolar Lavage Fluid Indicate and Exaggerated Inflammatory Response in Pediatric ... "Costs of Bronchoalveolar Lavage-Directed Therapy in the First 5 Years of Life for Children with Cystic Fibrosis". Journal of ... "Effect of Bronchoalveolar Lavage-directed Therapy on Pseudomonas Aeruginosa Infection and Structural Lung Injury in Children ... "Safety of Bronchoalveolar Lavage in Young Children with Cystic Fibrosis". Pediatric Pulmonology. 43 (10): 965-72. doi:10.1002/ ...
Bronchoalveolar Lavage Fluid". PLOS ONE. 10 (5): e0124194. Bibcode:2015PLoSO..1024194Z. doi:10.1371/journal.pone.0124194. ISSN ...
Mizuki M, Komatsu H, Akiyama Y, Iwane S, Tsuda T (1999). "Inhibition of eosinophil activation in bronchoalveolar lavage fluid ...
... bronchoalveolar lavage fluids, and conjunctival smears. Definitive diagnosis can also be achieved through fluorescein-tagged ...
Eosinophilic bronchitis is characterized by eosinophils in sputum and in bronchoalveolar lavage fluid without airway ... A cough is a sudden expulsion of air through the large breathing passages which can help clear them of fluids, irritants, ...
The bronchoalveolar lavage (BAL) fluid of patients with idiopathic pulmonary fibrosis contains a higher concentration of ATP ... Following tissue injury in patients with Graft-versus-host disease (GVHD), ATP is released into the peritoneal fluid. It binds ...
IL-13 expression has demonstrated to be increased in bronchoalveolar lavage (BAL) fluid and cells in patients with atopic mild ...
... bronchoalveolar lavage fluids (BAL), nasal lavage fluids (NLF), sputum, among others. The identification and quantification of ...
Neutrophils, beta-defensins, leukotrienes, and chemokines can also be detected in bronchoalveolar lavage fluid injected then ... has a normal neutrophil count detected in BAL fluid, and blood gas (an arterial blood test that measures the amount of oxygen ...
If this is unavailable, a bronchoalveolar lavage can be done, and the bronchial wash fluid can be examined for eosinophils. The ... is also significantly increased in the bronchial wash fluid of eosinophilic bronchitis patients compared to asthmatic patients ...
Similarly, increased levels of 5-oxo-ETE have been detected in the bronchoalveolar lavage fluid following the inhalation of ...
... can be measured in a number of biological fluids including bronchoalveolar lavage fluid (BALF) from asthmatic patients. " ... and limit markers of inflammation such as eosinophil counts in the peripheral blood and bronchoalveolar lavage fluid. This ...
... or when increased eosinophils are found in fluid obtained by a bronchoscopy (bronchoalveolar lavage fluid). Association with ... of white blood cells in fluid obtained by bronchoalveolar lavage. Other typical laboratory abnormalities include an elevated ... changes in multiple areas and fluid in the area surrounding the lungs on a chest X-ray, and eosinophils comprising more than 25 ...
Subsequent studies of bronchoalveolar lavage fluid from pediatric patients with asthma and also other severe chronic ... Webley WC, Salva PS, Andrzejewski C, Cirino F, West CA, Tilahun Y, Stuart ES (May 2005). "The bronchial lavage of pediatric ... Chlamydia pneumoniae has also been found in the cerebrospinal fluid of patients diagnosed with multiple sclerosis. Chlamydia ...
... bronchoalveolar lavage fluid of BAL) and human eosinophils, which are implicated in contributing to human asthma, metabolize ... "Lipidomic Profiling of Serum and Pancreatic Fluid in Chronic Pancreatitis". Pancreas. 41 (4): 518-22. doi:10.1097/MPA. ...
Bronchoalveolar Lavage Fluid Technique. Supplies * BAL Tubes (Bivona - 3 meter length, 11 mm outside diameter, 800‐258‐5361) ... Bronchoalveolar lavage (BAL) is a safe, simple and inexpensive technique that can be performed in the field without ... BAL fluid cytology has better correlation with pulmonary histopathology than tracheal fluid. But the latter fluid is the ... Mix the specimen cup fluid and submit an aliquot for fluid analysis. ...
Bronchoalveolar lavage fluid urea as a measure of pulmonary permeability in healthy smokers. C Ward, F Thien, J Secombe, S ... Bronchoalveolar lavage fluid urea as a measure of pulmonary permeability in healthy smokers ... Bronchoalveolar lavage fluid urea as a measure of pulmonary permeability in healthy smokers ... Bronchoalveolar lavage fluid urea as a measure of pulmonary permeability in healthy smokers ...
Exposure to peat dust: acute effects on lung function and content of bronchoalveolar lavage fluid. ... Exposure to peat dust: acute effects on lung function and content of bronchoalveolar lavage fluid. ... Bronchoscopy with bronchoalveolar lavage (BAL) was performed in six subjects at the end of the working season and the results ... The concentration of lysozyme positive alveolar macrophages in BAL fluid was significantly lower in the peat workers compared ...
Bronchoalveolar lavage was performed 12 to 18 hours after each race, and BAL fluid was analyzed for RBC and leukocyte counts ... Results-Mean ± SEM count of RBCs in BAL fluid when horses raced without the nasal dilator strip (84.6 ± 27.5 cells/µL) was not ... Horses were grouped as having mild or severe bleeding on the basis of RBC count in BAL fluid after horses raced without the ... fluid in racing Thoroughbreds. Design-Clinical trial. Animals-23 Thoroughbred racehorses in active training. Procedure-Each ...
"Bronchoalveolar Lavage Fluid" by people in this website by year, and whether "Bronchoalveolar Lavage Fluid" was a major or ... "Bronchoalveolar Lavage Fluid" is a descriptor in the National Library of Medicines controlled vocabulary thesaurus, MeSH ( ... High frequency of K-ras codon 12 mutations in bronchoalveolar lavage fluid of patients at high risk for second primary lung ... OLeary M, Cantley RL, Kluskens L, Gattuso P. Cytologic findings of acute leukemia in bronchoalveolar lavage fluid. Diagn ...
Novel Methods for the Analysis of Toxicants in Bronchoalveolar Lavage Fluid Samples from E-cigarette, or Vaping, Product Use- ... "Novel Methods for the Analysis of Toxicants in Bronchoalveolar Lavage Fluid Samples from E-cigarette, or Vaping, Product Use- ... "Novel Methods for the Analysis of Toxicants in Bronchoalveolar Lavage Fluid Samples from E-cigarette, or Vaping, Product Use- ... Novel Methods for the Analysis of Toxicants in Bronchoalveolar Lavage Fluid Samples from E-cigarette, or Vaping, Product Use- ...
... the lungs and bronchoalveolar lavage fluid (BALF) were collected to assess AAD. We stated that serum vitamin A levels in ... Bronchoalveolar lavage fluid (BALF) was obtained through a cannulated trachea by flushing the lungs twice with 1 ml each of PBS ... Bronchoalveolar lavage fluid and cell counting. Mice were anesthetized with 10% chloral hydrate (0.1 mL/100 g, i.p), twenty- ... the lungs and bronchoalveolar lavage fluid (BALF) were collected to assess AAD. We stated that serum vitamin A levels in ...
bronchoalveolar lavage fluid. Early posttransplant reductions in club cell secretory protein associate with future risk for ...
Petersen, BE, Jenkins, SG, Yuan, S, Lamm, C & Szporn, AH 2007, Nocardia farcinica isolated from bronchoalveolar lavage fluid ... Nocardia farcinica isolated from bronchoalveolar lavage fluid of a child with cystic fibrosis. In: Pediatric Infectious Disease ... Nocardia farcinica isolated from bronchoalveolar lavage fluid of a child with cystic fibrosis. / Petersen, Bruce E.; Jenkins, ... Dive into the research topics of Nocardia farcinica isolated from bronchoalveolar lavage fluid of a child with cystic fibrosis ...
Analysis of Airway Inflammation in Bronchoalveolar Lavage Fluid. Bronchoalveolar lavage fluid (BALF) was collected using 500 μL ... and intracellular fluid (B); the number of macrophages (C) of the bronchoalveolar lavage fluid (BALF) and from NF-κB-luciferase ... and intracellular fluid (B); the number of macrophages (C) of the bronchoalveolar lavage fluid (BALF) and from NF-κB-luciferase ... 37] showed that aspirin inhibits pulmonary neutrophilic inflammation, at both low and high doses in bronchoalveolar lavage. ...
Bronchoalveolar lavage fluid samples. Bronchoalveolar lavage fluid (BALF) was obtained at Bichat University Hospital (Paris, ... Quantitation of NRG1α in bronchoalveolar lavage fluid (BALF) in early stage idiopathic pulmonary fibrosis (IPF). Increased ... NRG1α and NRG1β were quantified in bronchoalveolar lavage fluid (BALF) of patients with early IPF (n=20), controls (n=9), and ...
... in 53 patients with progressive systemic sclerosis were correlated with functional parameters and bronchoalveolar lavage (BAL) ... Bronchoalveolar Lavage Fluid * Female * Follow-Up Studies * Humans * Lung Diseases / complications * Lung Diseases / diagnosis ... and bronchoalveolar lavage Radiology. 1993 Aug;188(2):499-506. doi: 10.1148/radiology.188.2.8327704. ... in 53 patients with progressive systemic sclerosis were correlated with functional parameters and bronchoalveolar lavage (BAL) ...
Although a definitive diagnosis is usually made by an open lung biopsy, bronchoalveolar lavage (BAL) cytology may play a ... Bronchoalveolar lavage cytology in pulmonary alveolar proteinosis Am J Clin Pathol. 1996 Oct;106(4):504-10. doi: 10.1093/ajcp/ ... Bronchoalveolar Lavage Fluid / cytology* * Child * Humans * Male * Microscopy, Electron * Mycobacterium avium-intracellulare ... Although a definitive diagnosis is usually made by an open lung biopsy, bronchoalveolar lavage (BAL) cytology may play a ...
... alveolar lavage fluid for invasive aspergillosis in immunocompromised patients answers are found in the Cochrane Abstracts ... Galactomannan detection in broncho‐alveolar lavage fluid for invasive aspergillosis in immunocompromised patients. In Cochrane ... "Galactomannan Detection in Broncho‐alveolar Lavage Fluid for Invasive Aspergillosis in Immunocompromised Patients." Cochrane ... Galactomannan detection in broncho‐alveolar lavage fluid for invasive aspergillosis in immunocompromised patients. Cochrane ...
... bronchoalveolar lavage fluid. These specimen types are specified in product package inserts authorized by FDA, available at: ...
Native SP-A can be purified from amniotic fluid and bronchiolar lavage fluid (BALF) via affinity chromatography. In addition, ... The presence of SP-A in fetal and maternal tissue and amniotic fluid suggests it is involved in pregnancy and labor. ... SP-A has also been localized at extra-pulmonary sites such as salivary epithelium, amniotic fluid, prostate glands, and semen. ... Purification of native surfactant protein SP-A from Pooled amniotic fluid and bronchoalveolar lavage ...
The Quantitation of Squalene and Squalane in Bronchoalveolar Lavage Fluid Using Gas Chromatography Mass Spectrometry.png ... electronic cigaretteselectronic vaping productsbronchoalveolar lavage fluidgas-chromatography mass spectrometrysqualenesqualane ... Calibration curves spanned a range of 0.50-30.0 µg analyte per mL bronchoalveolar lavage fluid. Recoveries were found to be 97- ... We developed and validated a quantitative method to measure SQE and SQA in bronchoalveolar lavage fluid to assess if these ...
Linssen, C.F.M. / Presence of human metapneumovirus in bronchoalveolar lavage fluid samples detected by means of real-time PCR. ... Presence of human metapneumovirus in bronchoalveolar lavage fluid samples detected by means of real-time PCR. / Linssen, C.F.M. ... Linssen, C. F. M. (2008). Presence of human metapneumovirus in bronchoalveolar lavage fluid samples detected by means of real- ... Presence of human metapneumovirus in bronchoalveolar lavage fluid samples detected by means of real-time PCR.. 2008. Poster ...
Bronchoalveolar lavage fluid. 2021 Sep. KP76. 47/F. Posttraumatic brain syndrome. Blood. 2021 Sep. ...
Immunological characterization of bronchoalveolar lavage fluid in patients with acute pulmonary coccidioidomycosis. J Infect ... Bronchoscopy with bronchoalveolar lavage, needle aspiration, and/or lung biopsy may be indicated with persistent or progressive ... Pleural fluid cultures have a low yield, with isolation of C immitis in less than 20% of patients. ... Coccidioidal CF titers in the serum and cerebrospinal fluid can be followed to monitor the effect of treatment on disease and ...
The Role of Isoensyme Levels of Adenosine Deaminase in Broncho Alveolar Lavage Fluid to Evaluate Activity of Pulmonary ... We measured isoensyme levels of Adenosine Deaminase in Broncho-alveolar lavage fluid in smear(-) tuberculosis patients to ... Keywords : tuberculosis, adenosine deaminase (ADA), bronchoalveolar lavage (BAL) Read: 1176 Downloads: 911 Published: 18 July ...
Altraja A, Nigol K, Altraja S, Viitak A (2012-03-12). "Increased bronchoalveolar lavage fluid tin content in stannosis". Chest ... In comparison to health, non-tinning workers, the patient had significantly higher bronchoalveolar lavage fluid (BLAF) ...
Next-generation sequencing (NGS) workflows applied to bronchoalveolar lavage (BAL) fluid specimens could enhance the detection ... and Targeted Next-Generation Sequencing Workflows for Detection of Respiratory Pathogens from Bronchoalveolar Lavage Fluid ...
Serum and Bronchoalveolar Lavage Fluid Endothelin-1 Concentrations as Diagnostic Biomarkers of Canine Idiopathic Pulmonary ... Dive into the research topics of Serum and Bronchoalveolar Lavage Fluid Endothelin-1 Concentrations as Diagnostic Biomarkers ...
"Diagnostic Yield of Xpert MTB/RIF Assay Using Bronchoalveolar Lavage Fluid in Detecting Mycobacterium tuberculosis among the ... Diagnostic Yield of Xpert MTB/RIF Assay Using Bronchoalveolar Lavage Fluid in Detecting Mycobacterium tuberculosis among the ... Diagnostic Yield of Xpert MTB/RIF Assay Using Bronchoalveolar Lavage Fluid in Detecting Mycobacterium tuberculosis among the ...
We found that bronchoalveolar lavage fluid (BALF) from 11 patients with idi... ... 2.2 Bronchoalveolar lavage fluid. BALF was centrifuged at 1000×g for 15 min. The supernatant was then centrifuged at 40 000×g ... Because the bronchoalveolar lavage fluid (BALF) from PAP patients is enriched in surfactant protein A, the clearance of SP-A ... We found that bronchoalveolar lavage fluid (BALF) from 11 patients with idiopathic pulmonary alveolar proteinosis (IPAP) ...
Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. N Engl J Med 2019;NEJMoa1916433. CrossRef PubMed ... bronchoalveolar lavage fluid from one of these patients was available for testing, and both THC and vitamin E acetate were ... bronchoalveolar lavage fluid specimens were sent to CDC for laboratory testing. EVALI cases reported during July 20-December 1 ... detected in the fluid. Thus, nine of 121 patients (7%) had no indication of any THC use and constituted the analysis subgroup; ...
Pepsin like activity in bronchoalveolar lavage fluid is suggestive of gastric aspiration in lung allografts. Thorax 2005; 60: ... Pepsin in bronchoalveolar lavage fluid: a specific and sensitive method of diagnosing gastro-oesophageal reflux-related ... We sought to determine whether pepsin, a marker of gastric aspiration, is elevated in bronchoalveolar lavage fluid obtained ... Bronchoalveolar lavage pepsin in acute exacerbation of idiopathic pulmonary fibrosis. J.S. Lee, J.W. Song, P.J. Wolters, B.M. ...
Bronchoalveolar lavage (BAL) fluid for bacterial, viral, fungal, [99, 122] and AFB stains and cultures; direct fluorescent ... it is not a fixed phenomenon but represents a fluid process. [26] ...
  • Twenty-four hours after the final challenge, the lungs and bronchoalveolar lavage fluid (BALF) were collected to assess AAD. (nature.com)
  • NRG1α and NRG1β were quantified in bronchoalveolar lavage fluid (BALF) of patients with early IPF (n=20), controls (n=9), and patients with other interstitial pneumonias (n=13). (bmj.com)
  • We found that bronchoalveolar lavage fluid (BALF) from 11 patients with idiopathic pulmonary alveolar proteinosis (IPAP) suppressed the growth of peripheral blood monocytes and TF-1 cells, a cell line dependent on either GM-CSF or interleukin-3 (IL-3). (wiley.com)
  • Bronchoalveolar lavage fluid (BALF), tracheas and lungs were collected. (cdc.gov)
  • Diagnosis relies on clinical signs, x-rays, and lung fluid (bronchoalveolar lavage fluid or BALF) analysis. (akcchf.org)
  • Lactate dehydrogenase (LDH) activity, inflammatory cells, and total protein concentration were analyzed in bronchoalveolar lavage fluid (BALF). (lu.se)
  • Uddin MKM, Ather MF, Akter S, Nasrin R, Rahman T, Kabir SN, Rahman SMM, Pouzol S, Hoffmann J, Banu S. Diagnostic Yield of Xpert MTB/RIF Assay Using Bronchoalveolar Lavage Fluid in Detecting Mycobacterium tuberculosis among the Sputum-Scarce Suspected Pulmonary TB Patients. (mdpi.com)
  • Evaluation of Metagenomic and Targeted Next-Generation Sequencing Workflows for Detection of Respiratory Pathogens from Bronchoalveolar Lavage Fluid Specimens. (bvsalud.org)
  • Next-generation sequencing (NGS) workflows applied to bronchoalveolar lavage (BAL) fluid specimens could enhance the detection of respiratory pathogens, although optimal approaches are not defined. (bvsalud.org)
  • When available, bronchoalveolar lavage fluid specimens were sent to CDC for laboratory testing. (cdc.gov)
  • HIV has been isolated from blood (2), semen (2), vaginal and cervical secretions (3), amniotic fluid (4), breast milk (5), alveolar fluid (6), saliva (7-9), tears (10), throat swabs (11) and cerebrospinal fluid (12). (cdc.gov)
  • After 55 days, infected diabetic mice exhibited fewer leukocytes in both peritoneal lavage fluid (PeLF) and bronchoalveolar lavage fluid and reduced secretion of interleukin- (IL-) 6 in lungs. (hindawi.com)
  • Any fluid filling the lungs can be a deadly complication of pneumonitis if it is not caught early and treated. (medicalnewstoday.com)
  • Solans EP, Yong S, Husain AN, Eichorst M, Gattuso P. Bronchioloalveolar lavage in the diagnosis of CMV pneumonitis in lung transplant recipients: an immunocytochemical study. (rush.edu)
  • Although a definitive diagnosis is usually made by an open lung biopsy, bronchoalveolar lavage (BAL) cytology may play a decisive role in the clinical work-up of these patients, and, in some cases, may spare a patient a more invasive diagnostic procedure. (nih.gov)
  • Bronchoalveolar lavage is usually done to confirm the diagnosis. (msdmanuals.com)
  • Exposure to peat dust: acute effects on lung function and content of bronchoalveolar lavage fluid. (bmj.com)
  • O'Leary M, Cantley RL, Kluskens L, Gattuso P. Cytologic findings of acute leukemia in bronchoalveolar lavage fluid. (rush.edu)
  • We sought to determine whether pepsin, a marker of gastric aspiration, is elevated in bronchoalveolar lavage fluid obtained from patients during acute exacerbation of idiopathic pulmonary fibrosis, compared with that obtained in stable disease. (ersjournals.com)
  • BAL provides an excellent sample of epithelial lining fluid for characterization of diffuse lung diseases and airway inflammation. (cornell.edu)
  • Changing urea measurements during the bronchoalveolar lavage procedure confound the use of the urea (epithelial lining fluid) method for normalizing dilution factors. (ersjournals.com)
  • The use of epithelial lining fluid determinations in smokers ignores the additional and probably complex permeability changes. (ersjournals.com)
  • We developed and validated a quantitative method to measure SQE and SQA in bronchoalveolar lavage fluid to assess if these chemicals accumulate in lung epithelial lining fluid after inhalation. (figshare.com)
  • Allergen challenge stimulated P release into the airways of asthmatic patients, and P levels positively correlated with proinflammatory cytokines in human bronchoalveolar lavage (BAL). (nih.gov)
  • Previously, we have shown in a mouse model that exposure to hog dust extract (HDE) collected from a CAFO results in the activation of protein kinase C (PKC), elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6), and the development of significant lung pathology. (cdc.gov)
  • RESULTS: In bronchoalveolar lavage fluid, WPS increased neutrophil and lymphocyte numbers, lactate dehydrogenase, myeloperoxidase and matrix metallopeptidase 9 activities, as well as several proinflammatory cytokines. (who.int)
  • 450/microL [0.45 × 10 9 /L]) in peripheral blood, bronchoalveolar lavage fluid, or lung biopsy tissue. (merckmanuals.com)
  • Find a laboratory with experience reading BAL fluid cytology to determine your differential count. (cornell.edu)
  • In other species, BAL fluid cytology has better correlation with pulmonary histopathology than tracheal fluid. (cornell.edu)
  • Objective -To determine the effects of an external nasal dilator strip on cytologic characteristics of bronchoalveolar lavage (BAL) fluid in racing Thoroughbreds. (avma.org)
  • Computed tomographic (CT) findings obtained in 53 patients with progressive systemic sclerosis were correlated with functional parameters and bronchoalveolar lavage (BAL) results, and lung changes over time were assessed in 17 patients. (nih.gov)
  • The investigated mechanistic parameters (bronchoalveolar lavage (BAL) fluid analyses have no direct value for fullfilling data requirements under the REACH regulation. (europa.eu)
  • High frequency of K-ras codon 12 mutations in bronchoalveolar lavage fluid of patients at high risk for second primary lung cancer. (rush.edu)
  • We aimed to investigate the level of mtDNA damage (deletions, mutations and changes in copy number) in bronchoalveolar lavage (BAL) cells from 10 preterm infants (27-30 weeks). (maastrichtuniversity.nl)
  • Tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and IL-8 concentrations were measured by ELISA in both bronchoalveolar lavage (BAL) fluid and serum. (karger.com)
  • The concentrations of IL1-β and IL-6 in BAL fluid were found to be significantly higher in the involved lung than those in either the noninvolved lung (p = 0.008 and p = 0.012, respectively) or serum (p = 0.002 and p = 0.025, respectively). (karger.com)
  • Serum CRP concentrations were increased compared to those in the involved and noninvolved lung in BAL fluid (p = 0.000 and p = 0.000, respectively). (karger.com)
  • Our results indicate that the CRP level is higher in the serum than in the BAL fluid in the lung, and that IL-6 is the most important cytokine for the determination of the severity of the disease. (karger.com)
  • Bronchoalveolar Lavage Fluid" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (rush.edu)
  • The method was applied to bronchoalveolar lavage fluid samples of patients from the 2019 outbreak of e-cigarette, or vaping, product use-associated lung injury (EVALI) and a comparison group. (figshare.com)
  • We measured isoensyme levels of Adenosine Deaminase in Broncho-alveolar lavage fluid in smear(-) tuberculosis patients to evaluate if disease is active or sequelar. (thoracrespract.org)
  • Lavage samples were obtained in a case-control study of well-characterised patients. (ersjournals.com)
  • To evaluate the role of alveolar macrophages in modulating the migration of neutrophils to he lung in IPF, alveolar macrophages, obtained by bronchoalveolar lavage of patients with IPF, were evaluated for their ability to release a chemotactic factor for neutrophils. (jci.org)
  • In patients with IPF, there was a significant correlation between the proportions of neutrophils in lavage fluid and the release of a chemotactic factor for neutrophils by alveolar macrophages (p less than 0.001). (jci.org)
  • These tests can also be performed on cerebrospinal fluid (CSF) upon suspicion of coccidioidal meningitis. (medscape.com)
  • Free HIV, not associated with cells, has also been isolated from plasma and cerebrospinal fluid but its contribution to transmission is not well-documented (5,12,14). (cdc.gov)
  • The concentration of lysozyme positive alveolar macrophages in BAL fluid was significantly lower in the peat workers compared with reference subjects. (bmj.com)
  • Furthermore, one particularly dust exposed worker had pronounced increases in alveolar macrophages, fibronectin concentration, and mast cells in BAL fluid. (bmj.com)
  • First, immune complexes stimulated normal macrophages to release the factor.Second, there was a significant correlation between the release of the chemotactic factor by IPF alveolar macrophages and the levels of immune complexes in bronchoalveolar lavage fluid. (jci.org)
  • Repeat the aspiration 2 to 3 times until no further fluid is retrieved. (cornell.edu)
  • The effects of cigarette smoking on blood to airway pulmonary permeability to the low-molecular-weight solute urea were investigated, in an attempt to evaluate its use as a dilution marker for bronchoalveolar lavage (BAL) studies. (ersjournals.com)
  • Increase in permeability of microvessels determines plasma fluid leakage and accumulation in tissues, leading to edema ( Figure 1 ). (frontiersin.org)
  • This 2019 image depicted a Centers for Disease Control and Prevention (CDC) laboratory technician, dressed in personal protective equipment (PPE), in the process of pipetting samples of bronchoalveolar lavage (BAL) fluid, which would undergo analysis, here, in this laboratory environment. (cdc.gov)
  • Presence of human metapneumovirus in bronchoalveolar lavage fluid samples detected by means of real-time PCR. (maastrichtuniversity.nl)
  • To provide guidance for implementing such practices, this article reviews how HIV is transmitted, including the presence of HIV in various body fluids and the risk of transmission after various exposures, and provides specific guidelines for preventing the transmission of HIV in settings where children are cared for. (cdc.gov)
  • The serious nature of HIV infection, the presence of HIV in a variety of body fluids and the close contact that children often enjoy with their playmates and caretakers have combined to generate considerable concern about HIV transmission in homes, schools, day-care centers and playgrounds. (cdc.gov)
  • Presence of HIV in body fluids. (cdc.gov)
  • For each 60 ml syringe, you may obtain 30‐50 cc frothy (surfactant), slightly turbid fluid. (cornell.edu)
  • Clean the exterior and lumen of the catheter with dilute Chlorhexidine solution, rinse with water, expel any fluid from the lumen and let dry either coiled or hung over a hook in a clean, dust‐free area of the clinic. (cornell.edu)
  • Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. (cdc.gov)
  • Levels of lavage pepsin were compared in cases and controls, and were correlated with clinical features and disease course. (ersjournals.com)
  • Mix the specimen cup fluid and submit an aliquot for fluid analysis. (cornell.edu)
  • Bronchoscopy with bronchoalveolar lavage (BAL) was performed in six subjects at the end of the working season and the results were compared with unexposed reference subjects. (bmj.com)
  • Results -Mean ± SEM count of RBCs in BAL fluid when horses raced without the nasal dilator strip (84.6 ± 27.5 cells/µL) was not significantly different from count when they raced with it (41.7 ± 12.2 cells/µL). (avma.org)
  • Mean count of lymphocytes in BAL fluid was significantly lower after horses raced with the external nasal dilator strip. (avma.org)
  • Bronchoalveolar lavage was performed 12 to 18 hours after each race, and BAL fluid was analyzed for RBC and leukocyte counts and hemosiderin content. (avma.org)
  • Find out from the AHDC the preferred vol. of fluid, transport container, and preservative for the best analysis. (cornell.edu)
  • however, these fluids theoretically may contain HIV if they are contaminated with blood. (cdc.gov)
  • This graph shows the total number of publications written about "Bronchoalveolar Lavage Fluid" by people in this website by year, and whether "Bronchoalveolar Lavage Fluid" was a major or minor topic of these publications. (rush.edu)
  • Below are the most recent publications written about "Bronchoalveolar Lavage Fluid" by people in Profiles. (rush.edu)
  • Five healthy normal smokers who smoked a cigarette 10 min prior to undergoing a 3 x 60 mL bronchoalveolar lavage (BAL), and five nonsmokers who also underwent BAL but without cigarette smoke exposure were studied. (ersjournals.com)
  • Au total, 38 enfants souffrant d'asthme (contrôlé pour 16 d'entre eux et partiellement contrôlé pour 22 autres) ont été comparés à 16 enfants en bonne santé de même sexe et de même âge. (who.int)
  • Bronchoalveolar lavage (BAL) is a safe, simple and inexpensive technique that can be performed in the field without sophisticated equipment or advanced skill. (cornell.edu)
  • But the latter fluid is the preferred sample to determine the bacterial cause for bronchopneumonia in a herd of cattle. (cornell.edu)
  • In comparison to health, non-tinning workers, the patient had significantly higher bronchoalveolar lavage fluid (BLAF) containing tin. (wikipedia.org)