Antibodies that react with self-antigens (AUTOANTIGENS) of the organism that produced them.
Endogenous tissue constituents that have the ability to interact with AUTOANTIBODIES and cause an immune response.
Autoantibodies directed against various nuclear antigens including DNA, RNA, histones, acidic nuclear proteins, or complexes of these molecular elements. Antinuclear antibodies are found in systemic autoimmune diseases including systemic lupus erythematosus, Sjogren's syndrome, scleroderma, polymyositis, and mixed connective tissue disease.
Disorders that are characterized by the production of antibodies that react with host tissues or immune effector cells that are autoreactive to endogenous peptides.
A chronic, relapsing, inflammatory, and often febrile multisystemic disorder of connective tissue, characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is of unknown etiology, but is thought to represent a failure of the regulatory mechanisms of the autoimmune system. The disease is marked by a wide range of system dysfunctions, an elevated erythrocyte sedimentation rate, and the formation of LE cells in the blood or bone marrow.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
Process whereby the immune system reacts against the body's own tissues. Autoimmunity may produce or be caused by AUTOIMMUNE DISEASES.
The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site.
Group of chronic blistering diseases characterized histologically by ACANTHOLYSIS and blister formation within the EPIDERMIS.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
Antibodies specific to INSULIN.
A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15.
Inbred NZB mice are a strain of laboratory mice that spontaneously develop an autoimmune disease similar to human systemic lupus erythematosus (SLE), characterized by the production of autoantibodies, immune complex deposition, and glomerulonephritis.
A chronic and relatively benign subepidermal blistering disease usually of the elderly and without histopathologic acantholysis.
A chronic multi-system disorder of CONNECTIVE TISSUE. It is characterized by SCLEROSIS in the SKIN, the LUNGS, the HEART, the GASTROINTESTINAL TRACT, the KIDNEYS, and the MUSCULOSKELETAL SYSTEM. Other important features include diseased small BLOOD VESSELS and AUTOANTIBODIES. The disorder is named for its most prominent feature (hard skin), and classified into subsets by the extent of skin thickening: LIMITED SCLERODERMA and DIFFUSE SCLERODERMA.
A desmosomal cadherin that is an autoantigen in the acquired skin disorder PEMPHIGUS VULGARIS.
A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally being called a macroglobulin.
Chronic inflammatory and autoimmune disease in which the salivary and lacrimal glands undergo progressive destruction by lymphocytes and plasma cells resulting in decreased production of saliva and tears. The primary form, often called sicca syndrome, involves both KERATOCONJUNCTIVITIS SICCA and XEROSTOMIA. The secondary form includes, in addition, the presence of a connective tissue disease, usually rheumatoid arthritis.
Sites on an antigen that interact with specific antibodies.
Antibodies found in adult RHEUMATOID ARTHRITIS patients that are directed against GAMMA-CHAIN IMMUNOGLOBULINS.
A form of cutaneous tuberculosis. It is seen predominantly in women and typically involves the NASAL MUCOSA; BUCCAL MUCOSA; and conjunctival mucosa.
Acquired hemolytic anemia due to the presence of AUTOANTIBODIES which agglutinate or lyse the patient's own RED BLOOD CELLS.
Glomerulonephritis associated with autoimmune disease SYSTEMIC LUPUS ERYTHEMATOSUS. Lupus nephritis is histologically classified into 6 classes: class I - normal glomeruli, class II - pure mesangial alterations, class III - focal segmental glomerulonephritis, class IV - diffuse glomerulonephritis, class V - diffuse membranous glomerulonephritis, and class VI - advanced sclerosing glomerulonephritis (The World Health Organization classification 1982).
Small RNAs found in the cytoplasm usually complexed with proteins in scRNPs (RIBONUCLEOPROTEINS, SMALL CYTOPLASMIC).
The protein components that constitute the common core of small nuclear ribonucleoprotein particles. These proteins are commonly referred as Sm nuclear antigens due to their antigenic nature.
Thyroglobulin is a glycoprotein synthesized and secreted by thyroid follicular cells, serving as a precursor for the production of thyroid hormones T3 and T4, and its measurement in blood serves as a tumor marker for thyroid cancer surveillance.
Inflammation of a muscle or muscle tissue.
A family of structurally-related short-chain collagens that do not form large fibril bundles.
A subclass of receptor-like protein tryosine phosphatases that contain an extracellular RDGS-adhesion recognition motif and a single cytosolic protein tyrosine phosphate domain.
A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence.
Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation.
A mouse substrain that is genetically predisposed to the development of systemic lupus erythematosus-like syndrome, which has been found to be clinically similar to the human disease. It has been determined that this mouse strain carries a mutation in the fas gene. Also, the MRL/lpr is a useful model to study behavioral and cognitive deficits found in autoimmune diseases and the efficacy of immunosuppressive agents.
Inflammatory disease of the THYROID GLAND due to autoimmune responses leading to lymphocytic infiltration of the gland. It is characterized by the presence of circulating thyroid antigen-specific T-CELLS and thyroid AUTOANTIBODIES. The clinical signs can range from HYPOTHYROIDISM to THYROTOXICOSIS depending on the type of autoimmune thyroiditis.
A desmosomal cadherin that is an autoantigen in the acquired skin disorder PEMPHIGUS FOLIACEUS.
Complexes of RNA-binding proteins with ribonucleic acids (RNA).
A subacute or chronic inflammatory disease of muscle and skin, marked by proximal muscle weakness and a characteristic skin rash. The illness occurs with approximately equal frequency in children and adults. The skin lesions usually take the form of a purplish rash (or less often an exfoliative dermatitis) involving the nose, cheeks, forehead, upper trunk, and arms. The disease is associated with a complement mediated intramuscular microangiopathy, leading to loss of capillaries, muscle ischemia, muscle-fiber necrosis, and perifascicular atrophy. The childhood form of this disease tends to evolve into a systemic vasculitis. Dermatomyositis may occur in association with malignant neoplasms. (From Adams et al., Principles of Neurology, 6th ed, pp1405-6)
Autoantibodies directed against cytoplasmic constituents of POLYMORPHONUCLEAR LEUKOCYTES and/or MONOCYTES. They are used as specific markers for GRANULOMATOSIS WITH POLYANGIITIS and other diseases, though their pathophysiological role is not clear. ANCA are routinely detected by indirect immunofluorescence with three different patterns: c-ANCA (cytoplasmic), p-ANCA (perinuclear), and atypical ANCA.
Methods used for studying the interactions of antibodies with specific regions of protein antigens. Important applications of epitope mapping are found within the area of immunochemistry.
In patients with neoplastic diseases a wide variety of clinical pictures which are indirect and usually remote effects produced by tumor cell metabolites or other products.
A test to detect non-agglutinating ANTIBODIES against ERYTHROCYTES by use of anti-antibodies (the Coombs' reagent.) The direct test is applied to freshly drawn blood to detect antibody bound to circulating red cells. The indirect test is applied to serum to detect the presence of antibodies that can bind to red blood cells.
A hemeprotein that catalyzes the oxidation of the iodide radical to iodine with the subsequent iodination of many organic compounds, particularly proteins. EC 1.11.1.8.
The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES.
Local surface sites on antibodies which react with antigen determinant sites on antigens (EPITOPES.) They are formed from parts of the variable regions of FAB FRAGMENTS.
A chronic systemic disease, primarily of the joints, marked by inflammatory changes in the synovial membranes and articular structures, widespread fibrinoid degeneration of the collagen fibers in mesenchymal tissues, and by atrophy and rarefaction of bony structures. Etiology is unknown, but autoimmune mechanisms have been implicated.
The processes triggered by interactions of ANTIBODIES with their ANTIGENS.
Antibodies produced by a single clone of cells.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
A common form of hyperthyroidism with a diffuse hyperplastic GOITER. It is an autoimmune disorder that produces antibodies against the THYROID STIMULATING HORMONE RECEPTOR. These autoantibodies activate the TSH receptor, thereby stimulating the THYROID GLAND and hypersecretion of THYROID HORMONES. These autoantibodies can also affect the eyes (GRAVES OPHTHALMOPATHY) and the skin (Graves dermopathy).
Antibodies which react with the individual structural determinants (idiotopes) on the variable region of other antibodies.
Unique genetically-controlled determinants present on ANTIBODIES whose specificity is limited to a single group of proteins (e.g., another antibody molecule or an individual myeloma protein). The idiotype appears to represent the antigenicity of the antigen-binding site of the antibody and to be genetically codetermined with it. The idiotypic determinants have been precisely located to the IMMUNOGLOBULIN VARIABLE REGION of both immunoglobin polypeptide chains.
Highly conserved nuclear RNA-protein complexes that function in RNA processing in the nucleus, including pre-mRNA splicing and pre-mRNA 3'-end processing in the nucleoplasm, and pre-rRNA processing in the nucleolus (see RIBONUCLEOPROTEINS, SMALL NUCLEOLAR).
Autoimmune diseases affecting multiple endocrine organs. Type I is characterized by childhood onset and chronic mucocutaneous candidiasis (CANDIDIASIS, CHRONIC MUCOCUTANEOUS), while type II exhibits any combination of adrenal insufficiency (ADDISON'S DISEASE), lymphocytic thyroiditis (THYROIDITIS, AUTOIMMUNE;), HYPOPARATHYROIDISM; and gonadal failure. In both types organ-specific ANTIBODIES against a variety of ENDOCRINE GLANDS have been detected. The type II syndrome differs from type I in that it is associated with HLA-A1 and B8 haplotypes, onset is usually in adulthood, and candidiasis is not present.
A form of fluorescent antibody technique commonly used to detect serum antibodies and immune complexes in tissues and microorganisms in specimens from patients with infectious diseases. The technique involves formation of an antigen-antibody complex which is labeled with fluorescein-conjugated anti-immunoglobulin antibody. (From Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
Skin diseases characterized by local or general distributions of blisters. They are classified according to the site and mode of blister formation. Lesions can appear spontaneously or be precipitated by infection, trauma, or sunlight. Etiologies include immunologic and genetic factors. (From Scientific American Medicine, 1990)
Antiphospholipid antibodies found in association with systemic lupus erythematosus (LUPUS ERYTHEMATOSUS, SYSTEMIC;), ANTIPHOSPHOLIPID SYNDROME; and in a variety of other diseases as well as in healthy individuals. The antibodies are detected by solid-phase IMMUNOASSAY employing the purified phospholipid antigen CARDIOLIPIN.
A condition characterized by persistent spasms (SPASM) involving multiple muscles, primarily in the lower limbs and trunk. The illness tends to occur in the fourth to sixth decade of life, presenting with intermittent spasms that become continuous. Minor sensory stimuli, such as noise and light touch, precipitate severe spasms. Spasms do not occur during sleep and only rarely involve cranial muscles. Respiration may become impaired in advanced cases. (Adams et al., Principles of Neurology, 6th ed, p1492; Neurology 1998 Jul;51(1):85-93)
Diseases characterized by inflammation involving multiple muscles. This may occur as an acute or chronic condition associated with medication toxicity (DRUG TOXICITY); CONNECTIVE TISSUE DISEASES; infections; malignant NEOPLASMS; and other disorders. The term polymyositis is frequently used to refer to a specific clinical entity characterized by subacute or slowly progressing symmetrical weakness primarily affecting the proximal limb and trunk muscles. The illness may occur at any age, but is most frequent in the fourth to sixth decade of life. Weakness of pharyngeal and laryngeal muscles, interstitial lung disease, and inflammation of the myocardium may also occur. Muscle biopsy reveals widespread destruction of segments of muscle fibers and an inflammatory cellular response. (Adams et al., Principles of Neurology, 6th ed, pp1404-9)
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
Inflammation of any one of the blood vessels, including the ARTERIES; VEINS; and rest of the vasculature system in the body.
A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively.
FIBROSIS of the hepatic parenchyma due to obstruction of BILE flow (CHOLESTASIS) in the intrahepatic or extrahepatic bile ducts (BILE DUCTS, INTRAHEPATIC; BILE DUCTS, EXTRAHEPATIC). Primary biliary cirrhosis involves the destruction of small intra-hepatic bile ducts and bile secretion. Secondary biliary cirrhosis is produced by prolonged obstruction of large intrahepatic or extrahepatic bile ducts from a variety of causes.
A heterogeneous group of disorders, some hereditary, others acquired, characterized by abnormal structure or function of one or more of the elements of connective tissue, i.e., collagen, elastin, or the mucopolysaccharides.
A polymorphonuclear leukocyte-derived serine protease that degrades proteins such as ELASTIN; FIBRONECTIN; LAMININ; VITRONECTIN; and COLLAGEN. It is named for its ability to control myeloid cell growth and differentiation.
Cell surface proteins that bind pituitary THYROTROPIN (also named thyroid stimulating hormone or TSH) and trigger intracellular changes of the target cells. TSH receptors are present in the nervous system and on target cells in the thyroid gland. Autoantibodies to TSH receptors are implicated in thyroid diseases such as GRAVES DISEASE and Hashimoto disease (THYROIDITIS, AUTOIMMUNE).
Ligand-binding assays that measure protein-protein, protein-small molecule, or protein-nucleic acid interactions using a very large set of capturing molecules, i.e., those attached separately on a solid support, to measure the presence or interaction of target molecules in the sample.
A 44-kDa highly glycosylated plasma protein that binds phospholipids including CARDIOLIPIN; APOLIPOPROTEIN E RECEPTOR; membrane phospholipids, and other anionic phospholipid-containing moieties. It plays a role in coagulation and apoptotic processes. Formerly known as apolipoprotein H, it is an autoantigen in patients with ANTIPHOSPHOLIPID ANTIBODIES.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A chronic self-perpetuating hepatocellular INFLAMMATION of unknown cause, usually with HYPERGAMMAGLOBULINEMIA and serum AUTOANTIBODIES.
A syndrome with overlapping clinical features of systemic lupus erythematosus, scleroderma, polymyositis, and Raynaud's phenomenon. The disease is differentially characterized by high serum titers of antibodies to ribonuclease-sensitive extractable (saline soluble) nuclear antigen and a "speckled" epidermal nuclear staining pattern on direct immunofluorescence.
Visible accumulations of fluid within or beneath the epidermis.
The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
Form of epidermolysis bullosa characterized by trauma-induced, subepidermal blistering with no family history of the disease. Direct immunofluorescence shows IMMUNOGLOBULIN G deposited at the dermo-epidermal junction.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
An enzyme that activates histidine with its specific transfer RNA. EC 6.1.1.21.
Pathological processes involving the THYROID GLAND.
Inflammatory diseases of the THYROID GLAND. Thyroiditis can be classified into acute (THYROIDITIS, SUPPURATIVE), subacute (granulomatous and lymphocytic), chronic fibrous (Riedel's), chronic lymphocytic (HASHIMOTO DISEASE), transient (POSTPARTUM THYROIDITIS), and other AUTOIMMUNE THYROIDITIS subtypes.
A subcomponent of complement C1, composed of six copies of three polypeptide chains (A, B, and C), each encoded by a separate gene (C1QA; C1QB; C1QC). This complex is arranged in nine subunits (six disulfide-linked dimers of A and B, and three disulfide-linked homodimers of C). C1q has binding sites for antibodies (the heavy chain of IMMUNOGLOBULIN G or IMMUNOGLOBULIN M). The interaction of C1q and immunoglobulin activates the two proenzymes COMPLEMENT C1R and COMPLEMENT C1S, thus initiating the cascade of COMPLEMENT ACTIVATION via the CLASSICAL COMPLEMENT PATHWAY.
Mercury chloride (HgCl2). A highly toxic compound that volatizes slightly at ordinary temperature and appreciably at 100 degrees C. It is corrosive to mucous membranes and used as a topical antiseptic and disinfectant.
An autoimmune disease of the KIDNEY and the LUNG. It is characterized by the presence of circulating autoantibodies targeting the epitopes in the non-collagenous domains of COLLAGEN TYPE IV in the basement membranes of kidney glomeruli (KIDNEY GLOMERULUS) and lung alveoli (PULMONARY ALVEOLI), and the subsequent destruction of these basement membranes. Clinical features include pulmonary alveolar hemorrhage and glomerulonephritis.
Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN.
Transmembrane proteins that form the beta subunits of the HLA-DQ antigens.
A group of the D-related HLA antigens found to differ from the DR antigens in genetic locus and therefore inheritance. These antigens are polymorphic glycoproteins comprising alpha and beta chains and are found on lymphoid and other cells, often associated with certain diseases.
An adrenal disease characterized by the progressive destruction of the ADRENAL CORTEX, resulting in insufficient production of ALDOSTERONE and HYDROCORTISONE. Clinical symptoms include ANOREXIA; NAUSEA; WEIGHT LOSS; MUSCLE WEAKNESS; and HYPERPIGMENTATION of the SKIN due to increase in circulating levels of ACTH precursor hormone which stimulates MELANOCYTES.
Disorders of connective tissue, especially the joints and related structures, characterized by inflammation, degeneration, or metabolic derangement.
Inflammation of the renal glomeruli (KIDNEY GLOMERULUS) that can be classified by the type of glomerular injuries including antibody deposition, complement activation, cellular proliferation, and glomerulosclerosis. These structural and functional abnormalities usually lead to HEMATURIA; PROTEINURIA; HYPERTENSION; and RENAL INSUFFICIENCY.
A PULMONARY ALVEOLI-filling disease, characterized by dense phospholipoproteinaceous deposits in the alveoli, cough, and DYSPNEA. This disease is often related to, congenital or acquired, impaired processing of PULMONARY SURFACTANTS by alveolar macrophages, a process dependent on GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation.
A disorder of neuromuscular transmission characterized by weakness of cranial and skeletal muscles. Autoantibodies directed against acetylcholine receptors damage the motor endplate portion of the NEUROMUSCULAR JUNCTION, impairing the transmission of impulses to skeletal muscles. Clinical manifestations may include diplopia, ptosis, and weakness of facial, bulbar, respiratory, and proximal limb muscles. The disease may remain limited to the ocular muscles. THYMOMA is commonly associated with this condition. (Adams et al., Principles of Neurology, 6th ed, p1459)
A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance.
The classes of immunoglobulins found in any species of animal. In man there are nine classes that migrate in five different groups in electrophoresis; they each consist of two light and two heavy protein chains, and each group has distinguishing structural and functional properties.
Abnormal immunoglobulins, especially IGG or IGM, that precipitate spontaneously when SERUM is cooled below 37 degrees Celsius. It is characteristic of CRYOGLOBULINEMIA.
Separation of the prickle cells of the stratum spinosum of the epidermis, resulting in atrophy of the prickle cell layer. It is seen in diseases such as pemphigus vulgaris (see PEMPHIGUS) and DARIER DISEASE.
The structure of one molecule that imitates or simulates the structure of a different molecule.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
A measure of the binding strength between antibody and a simple hapten or antigen determinant. It depends on the closeness of stereochemical fit between antibody combining sites and antigen determinants, on the size of the area of contact between them, and on the distribution of charged and hydrophobic groups. It includes the concept of "avidity," which refers to the strength of the antigen-antibody bond after formation of reversible complexes.
A syndrome characterized by acute OPTIC NEURITIS; MYELITIS, TRANSVERSE; demyelinating and/or necrotizing lesions in the OPTIC NERVES and SPINAL CORD; and presence of specific autoantibodies to AQUAPORIN 4.
The presence of antibodies directed against phospholipids (ANTIBODIES, ANTIPHOSPHOLIPID). The condition is associated with a variety of diseases, notably systemic lupus erythematosus and other connective tissue diseases, thrombopenia, and arterial or venous thromboses. In pregnancy it can cause abortion. Of the phospholipids, the cardiolipins show markedly elevated levels of anticardiolipin antibodies (ANTIBODIES, ANTICARDIOLIPIN). Present also are high levels of lupus anticoagulant (LUPUS COAGULATION INHIBITOR).
Citrulline is an α-amino acid, primarily produced in the urea cycle in the liver and found in some dietary proteins, which functions as a vital intermediator in the nitrogen metabolism and vasodilation, and can be supplemented for potential health benefits in improving blood flow, reducing fatigue, and enhancing exercise performance.
Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN.
Thrombocytopenia occurring in the absence of toxic exposure or a disease associated with decreased platelets. It is mediated by immune mechanisms, in most cases IMMUNOGLOBULIN G autoantibodies which attach to platelets and subsequently undergo destruction by macrophages. The disease is seen in acute (affecting children) and chronic (adult) forms.
A multisystemic disease of a complex genetic background. It is characterized by inflammation of the blood vessels (VASCULITIS) leading to damage in any number of organs. The common features include granulomatous inflammation of the RESPIRATORY TRACT and kidneys. Most patients have measurable autoantibodies (ANTINEUTROPHIL CYTOPLASMIC ANTIBODIES) against neutrophil proteinase-3 (WEGENER AUTOANTIGEN).
Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell.
Aquaporin 4 is the major water-selective channel in the CENTRAL NERVOUS SYSTEM of mammals.
Autoantibodies that bind to the thyroid-stimulating hormone (TSH) receptor (RECEPTORS, THYROTROPIN) on thyroid epithelial cells. The autoantibodies mimic TSH causing an unregulated production of thyroid hormones characteristic of GRAVES DISEASE.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses.
Transglutaminases catalyze cross-linking of proteins at a GLUTAMINE in one chain with LYSINE in another chain. They include keratinocyte transglutaminase (TGM1 or TGK), tissue transglutaminase (TGM2 or TGC), plasma transglutaminase involved with coagulation (FACTOR XIII and FACTOR XIIIa), hair follicle transglutaminase, and prostate transglutaminase. Although structures differ, they share an active site (YGQCW) and strict CALCIUM dependence.
Substances that are recognized by the immune system and induce an immune reaction.
Antigenic determinants recognized and bound by the B-cell receptor. Epitopes recognized by the B-cell receptor are located on the surface of the antigen.
Peptides whose amino and carboxy ends are linked together with a peptide bond forming a circular chain. Some of them are ANTI-INFECTIVE AGENTS. Some of them are biosynthesized non-ribosomally (PEPTIDE BIOSYNTHESIS, NON-RIBOSOMAL).
A subclass of beta-adrenergic receptors (RECEPTORS, ADRENERGIC, BETA). The adrenergic beta-1 receptors are equally sensitive to EPINEPHRINE and NOREPINEPHRINE and bind the agonist DOBUTAMINE and the antagonist METOPROLOL with high affinity. They are found in the HEART, juxtaglomerular cells, and in the central and peripheral nervous systems.
Cell surface receptors that bind to and internalize SECRETED PHOSPHOLIPASES A2. Although primarily acting as scavenger receptors, these proteins may also play a role in intracellular signaling. Soluble forms of phospholipase A2 receptors occur through the action of proteases and may a play a role in the inhibition of extracellular phospholipase activity.
Proteins prepared by recombinant DNA technology.
An encapsulated lymphatic organ through which venous blood filters.
A classification of B-lymphocytes based on structurally or functionally different populations of cells.
Autoantibodies directed against phospholipids. These antibodies are characteristically found in patients with systemic lupus erythematosus (LUPUS ERYTHEMATOSUS, SYSTEMIC;), ANTIPHOSPHOLIPID SYNDROME; related autoimmune diseases, some non-autoimmune diseases, and also in healthy individuals.
The normal lack of the ability to produce an immunological response to autologous (self) antigens. A breakdown of self tolerance leads to autoimmune diseases. The ability to recognize the difference between self and non-self is the prime function of the immune system.
Sensitive assay using radiolabeled ANTIGENS to detect specific ANTIBODIES in SERUM. The antigens are allowed to react with the serum and then precipitated using a special reagent such as PROTEIN A sepharose beads. The bound radiolabeled immunoprecipitate is then commonly analyzed by gel electrophoresis.
Immunologically detectable substances found in the CELL NUCLEUS.
Central nervous system vasculitis that is associated with SYSTEMIC LUPUS ERYTHEMATOSUS. Clinical manifestations may include DEMENTIA; SEIZURES; CRANIAL NERVE DISEASES; HEMIPARESIS; BLINDNESS; DYSPHASIA; and other neurological disorders.
An HLA-DR antigen which is associated with HLA-DRB1 CHAINS encoded by DRB1*03 alleles.
A malabsorption syndrome that is precipitated by the ingestion of foods containing GLUTEN, such as wheat, rye, and barley. It is characterized by INFLAMMATION of the SMALL INTESTINE, loss of MICROVILLI structure, failed INTESTINAL ABSORPTION, and MALNUTRITION.
The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa.

Weak autoantibody reactions to antigens other than sperm after vasectomy. (1/9574)

Autoantibody activity against various antigens was measured by indirect immunofluorescence in 97 men about to undergo vasectomy and 170 men who had undergone the operation up to six years earlier. There was a significantly higher prevalence of weakly positive autoantibody reactions among those who had undergone vasectomy. There was, however, no evidence that vasectomy could induce stronger autoantibody reactions such as those associated with autoimmune disease.  (+info)

Anti-heart autoantibodies in ischaemic heart disease patients. (2/9574)

One hundred and ninety-nine ischaemic heart disease (IHD) patients were studied with regard to the prevalence of anti-heart autoantibodies (AHA). The incidence of AHA in IHD patients was 1%: one out of 102 patients who suffered acute myocardial infarction (AMI), one out of seventy-two patients who suffered from acute coronary insufficiency (ACI), and none out of twenty-five patients with other signs and symptoms of IHD, had AHA in their sera. An additional 2% of patients who suffered from AMI developed detectable antibody levels during a follow-up period of 15 days. In comparison,, 53% of patients (eight out of fifteen) who underwent heart surgery and who had no AHA prior to operation, developed these antibodies in their sera during 1-2 weeks following operation.  (+info)

Explanations for the clinical and microscopic localization of lesions in pemphigus foliaceus and vulgaris. (3/9574)

Patients with pemphigus foliaceus (PF) have blisters on skin, but not mucous membranes, whereas patients with pemphigus vulgaris (PV) develop blisters on mucous membranes and/or skin. PF and PV blisters are due to loss of keratinocyte cell-cell adhesion in the superficial and deep epidermis, respectively. PF autoantibodies are directed against desmoglein (Dsg) 1; PV autoantibodies bind Dsg3 or both Dsg3 and Dsg1. In this study, we test the hypothesis that coexpression of Dsg1 and Dsg3 in keratinocytes protects against pathology due to antibody-induced dysfunction of either one alone. Using passive transfer of pemphigus IgG to normal and DSG3(null) neonatal mice, we show that in the areas of epidermis and mucous membrane that coexpress Dsg1 and Dsg3, antibodies against either desmoglein alone do not cause spontaneous blisters, but antibodies against both do. In areas (such as superficial epidermis of normal mice) where Dsg1 without Dsg3 is expressed, anti-Dsg1 antibodies alone can cause blisters. Thus, the anti-desmoglein antibody profiles in pemphigus sera and the normal tissue distributions of Dsg1 and Dsg3 determine the sites of blister formation. These studies suggest that pemphigus autoantibodies inhibit the adhesive function of desmoglein proteins, and demonstrate that either Dsg1 or Dsg3 alone is sufficient to maintain keratinocyte adhesion.  (+info)

Autoantibodies to gastrin in patients with pernicious anaemia--a novel antibody. (4/9574)

Autoantibodies arise when there is a breakdown in immunological tolerance. Autoantibodies to parietal cells and intrinsic factor are found in autoimmune atrophic gastritis (AAG) and are associated with elevated plasma gastrin. Endogenous gastrin autoantibodies have not been described to date. The aim of this study was to investigate the occurrence of autoantibodies to gastrin. Plasma from 50,000 patients, including more than 2000 with AAG, was tested. Gastrin was measured by radioimmunoassay (RIA) in whole plasma and the presence of autoantibody determined by using a control which omitted assay antibody. The quantity and affinity of gastrin autoantibodies was assessed. Three patients had autoantibodies to gastrin. All three had AAG and pernicious anaemia (PA). The antibodies were of low titre and relatively high affinity. Free circulating plasma gastrin levels were within the normal range, but total gastrin levels were elevated. This is the first description of autoantibodies to endogenous gastrin. The incidence of antibodies to gastrin is low, they are found in association with PA, and they may lead to falsely low measurements of plasma gastrin.  (+info)

Associations of anti-beta2-glycoprotein I autoantibodies with HLA class II alleles in three ethnic groups. (5/9574)

OBJECTIVE: To determine any HLA associations with anti-beta2-glycoprotein I (anti-beta2GPI) antibodies in a large, retrospectively studied, multiethnic group of 262 patients with primary antiphospholipid antibody syndrome (APS), systemic lupus erythematosus (SLE), or another connective tissue disease. METHODS: Anti-beta2GPI antibodies were detected in sera using an enzyme-linked immunosorbent assay. HLA class II alleles (DRB1, DQA1, and DQB1) were determined by DNA oligotyping. RESULTS: The HLA-DQB1*0302 (DQ8) allele, typically carried on HLA-DR4 haplotypes, was associated with anti-beta2GPI when compared with both anti-beta2GPI-negative SLE patients and ethnically matched normal controls, especially in Mexican Americans and, to a lesser extent, in whites. Similarly, when ethnic groups were combined, HLA-DQB1*0302, as well as HLA-DQB1*03 alleles overall (DQB1*0301, *0302, and *0303), were strongly correlated with anti-beta2GPI antibodies. The HLA-DR6 (DR13) haplotype DRB1*1302; DQB1*0604/5 was also significantly increased, primarily in blacks. HLA-DR7 was not significantly increased in any of these 3 ethnic groups, and HLA-DR53 (DRB4*0101) was increased in Mexican Americans only. CONCLUSION: Certain HLA class II haplotypes genetically influence the expression of antibodies to beta2GPI, an important autoimmune response in the APS, but there are variations in HLA associations among different ethnic groups.  (+info)

The inhibition of myeloperoxidase by ceruloplasmin can be reversed by anti-myeloperoxidase antibodies. (6/9574)

BACKGROUND: The purpose of this study was to characterize the recently reported inhibition of myeloperoxidase (MPO) by ceruloplasmin and to determine whether this may be disturbed in the presence of anti-MPO antibodies. METHODS: Specificity of the binding between ceruloplasmin and MPO was confirmed by Western blotting and enzyme-linked immunosorbent assay (ELISA), and the enzymatic activity of MPO was measured in the presence of ceruloplasmin, affinity-purified anti-MPO antibodies, or both. The affinity of the binding between MPO and ceruloplasmin and MPO and the anti-MPO antibodies was measured using a biosensor, with the results confirmed by chaotrope ELISA. RESULTS: Affinity-purified anti-MPO antibodies from patients with microscopic polyangiitis and florid renal vasculitis inhibited the binding between ceruloplasmin and MPO to a maximum of 72.9 +/- 12.8%, whereas those from patients with Wegener's granulomatosis and only minimal renal involvement inhibited the binding to a maximum of only 36.8 +/- 10.9% (P < 0. 001), with comparable reversal of the ceruloplasmin-mediated inhibition of MPO activity. Measurement of the affinity of the interactions demonstrated that binding between MPO and the anti-MPO antibodies is stronger than that between MPO and ceruloplasmin (1.61 x 107 to 1.33 x 108 vs. 7.46 x 106 m-1), indicating that binding to the autoantibody would be favored in vivo. CONCLUSIONS: This study confirms a role for ceruloplasmin as a physiological inhibitor of MPO, and demonstrates how the inhibition may be disrupted in the presence of anti-MPO antibodies. Because a majority (16 of 21) of the antibodies did not themselves inhibit MPO activity, their interference with the inhibition mediated by ceruloplasmin may be brought about by steric hindrance consequent upon the binding of the antibody to a dominant epitope at or near the active site.  (+info)

Goodpasture antigen: expression of the full-length alpha3(IV) chain of collagen IV and localization of epitopes exclusively to the noncollagenous domain. (7/9574)

BACKGROUND: Tissue injury in Goodpasture (GP) syndrome (rapidly progressive glomerular nephritis and pulmonary hemorrhage) is mediated by antibasement membrane antibodies that are targeted to the alpha3(IV) chain of type IV collagen, one of five alpha(IV) chains that occur in the glomerular basement membrane. GP antibodies are known to bind epitopes within the carboxyl terminal noncollagenous domain (NC1) of the alpha3(IV) chain, termed the GP autoantigen. Whether epitopes also exist in the 1400-residue collagenous domain is unknown because studies to date have focused solely on the NC1 domain. A knowledge of GP epitopes is important for the understanding of the etiology and pathogenesis of the disease and for the development of therapeutic strategies. METHODS: A cDNA construct was prepared for the full-length human alpha3(IV) chain. The construct was stably transfected into human embryonic kidney 293 cells. The purified full-length r-alpha3(IV) chain was characterized by electrophoresis and electron microscopy. The capacity of this chain for binding of GP antibodies from five patients was compared with that of the human r-alpha3(IV)NC1 domain by competitive enzyme-linked immunosorbent assay. RESULTS: The r-alpha3(IV) chain was secreted from 293 cells as a single polypeptide chain that did not spontaneously undergo assembly into a triple-helical molecule. An analysis of GP-antibody binding to the full-length r-alpha3(IV) chain showed binding exclusively to the globular NC1 domain. CONCLUSION: The full-length human alpha3(IV) chain possesses the capacity to bind GP autoantibodies. The epitope(s) is found exclusively on the nontriple-helical NC1 domain of the alpha3(IV) chain, indicating the presence of specific immunogenic properties. The alpha3(IV) chain alone does not spontaneously undergo assembly into a triple-helical homotrimeric molecule, suggesting that coassembly with either the alpha4(IV) and/or the alpha5(IV) chain may be required for triple-helix formation.  (+info)

Identification of a clinically relevant immunodominant region of collagen IV in Goodpasture disease. (8/9574)

BACKGROUND: The characteristic feature of Goodpasture disease is the occurrence of an autoantibody response to the noncollagenous domain of the alpha3 chain of type IV collagen [alpha3(IV)NC1] in the alveolar and glomerular basement membrane. These antibodies are associated with the development of a rapidly progressive glomerulonephritis, with or without lung hemorrhage, whereas autoantibodies specific for the other alpha chains of the heterotrimeric type IV collagen probably do not cause disease. In this study, we have investigated whether differences in fine specificity of autoimmune recognition of the alpha3(IV)NC1 correlate with clinical outcome. METHODS: For mapping of antibody binding to type IV collagen, chimeric collagen constructs were generated in which parts of the alpha3(IV)NC1 domain were replaced by the corresponding sequences of homologous nonreactive alpha1(IV). The different recombinant collagen chimeras allowed the analysis of antibody specificities in 77 sera from well-documented patients. RESULTS: One construct that harbors the aminoterminal third of the alpha3(IV)NC1 was recognized by all sera, indicating that it represents the dominant target of the B-cell response in Goodpasture disease. Seventy percent of the samples recognized other parts of the molecule as well. However, only reactivity to the N-terminus of the alpha3(IV)NC1 correlated with prognosis, that is, kidney survival after six months of follow-up. CONCLUSION: The results indicate the crucial importance of antibody recognition of this particular domain for the pathogenesis of Goodpasture disease, thereby opening new avenues for the development of better diagnostic and therapeutic procedures.  (+info)

Autoantibodies are defined as antibodies that are produced by the immune system and target the body's own cells, tissues, or organs. These antibodies mistakenly identify certain proteins or molecules in the body as foreign invaders and attack them, leading to an autoimmune response. Autoantibodies can be found in various autoimmune diseases such as rheumatoid arthritis, lupus, and thyroiditis. The presence of autoantibodies can also be used as a diagnostic marker for certain conditions.

Autoantigens are substances that are typically found in an individual's own body, but can stimulate an immune response because they are recognized as foreign by the body's own immune system. In autoimmune diseases, the immune system mistakenly attacks and damages healthy tissues and organs because it recognizes some of their components as autoantigens. These autoantigens can be proteins, DNA, or other molecules that are normally present in the body but have become altered or exposed due to various factors such as infection, genetics, or environmental triggers. The immune system then produces antibodies and activates immune cells to attack these autoantigens, leading to tissue damage and inflammation.

Antinuclear antibodies (ANA) are a type of autoantibody that target structures found in the nucleus of a cell. These antibodies are produced by the immune system and attack the body's own cells and tissues, leading to inflammation and damage. The presence of ANA is often used as a marker for certain autoimmune diseases, such as systemic lupus erythematosus (SLE), Sjogren's syndrome, rheumatoid arthritis, scleroderma, and polymyositis.

ANA can be detected through a blood test called the antinuclear antibody test. A positive result indicates the presence of ANA in the blood, but it does not necessarily mean that a person has an autoimmune disease. Further testing is usually needed to confirm a diagnosis and determine the specific type of autoantibodies present.

It's important to note that ANA can also be found in healthy individuals, particularly as they age. Therefore, the test results should be interpreted in conjunction with other clinical findings and symptoms.

Autoimmune diseases are a group of disorders in which the immune system, which normally protects the body from foreign invaders like bacteria and viruses, mistakenly attacks the body's own cells and tissues. This results in inflammation and damage to various organs and tissues in the body.

In autoimmune diseases, the body produces autoantibodies that target its own proteins or cell receptors, leading to their destruction or malfunction. The exact cause of autoimmune diseases is not fully understood, but it is believed that a combination of genetic and environmental factors contribute to their development.

There are over 80 different types of autoimmune diseases, including rheumatoid arthritis, lupus, multiple sclerosis, type 1 diabetes, Hashimoto's thyroiditis, Graves' disease, psoriasis, and inflammatory bowel disease. Symptoms can vary widely depending on the specific autoimmune disease and the organs or tissues affected. Treatment typically involves managing symptoms and suppressing the immune system to prevent further damage.

Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease that can affect almost any organ or system in the body. In SLE, the immune system produces an exaggerated response, leading to the production of autoantibodies that attack the body's own cells and tissues, causing inflammation and damage. The symptoms and severity of SLE can vary widely from person to person, but common features include fatigue, joint pain, skin rashes (particularly a "butterfly" rash across the nose and cheeks), fever, hair loss, and sensitivity to sunlight.

Systemic lupus erythematosus can also affect the kidneys, heart, lungs, brain, blood vessels, and other organs, leading to a wide range of symptoms such as kidney dysfunction, chest pain, shortness of breath, seizures, and anemia. The exact cause of SLE is not fully understood, but it is believed to involve a combination of genetic, environmental, and hormonal factors. Treatment typically involves medications to suppress the immune system and manage symptoms, and may require long-term management by a team of healthcare professionals.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

Autoimmunity is a medical condition in which the body's immune system mistakenly attacks and destroys healthy tissues within the body. In normal function, the immune system recognizes and fights off foreign substances such as bacteria, viruses, and toxins. However, when autoimmunity occurs, the immune system identifies self-molecules or tissues as foreign and produces an immune response against them.

This misguided response can lead to chronic inflammation, tissue damage, and impaired organ function. Autoimmune diseases can affect various parts of the body, including the joints, skin, glands, muscles, and blood vessels. Some common examples of autoimmune diseases are rheumatoid arthritis, lupus, multiple sclerosis, type 1 diabetes, Hashimoto's thyroiditis, and Graves' disease.

The exact cause of autoimmunity is not fully understood, but it is believed to involve a combination of genetic, environmental, and lifestyle factors that trigger an abnormal immune response in susceptible individuals. Treatment for autoimmune diseases typically involves managing symptoms, reducing inflammation, and suppressing the immune system's overactive response using medications such as corticosteroids, immunosuppressants, and biologics.

Antibody specificity refers to the ability of an antibody to bind to a specific epitope or antigenic determinant on an antigen. Each antibody has a unique structure that allows it to recognize and bind to a specific region of an antigen, typically a small portion of the antigen's surface made up of amino acids or sugar residues. This highly specific binding is mediated by the variable regions of the antibody's heavy and light chains, which form a pocket that recognizes and binds to the epitope.

The specificity of an antibody is determined by its unique complementarity-determining regions (CDRs), which are loops of amino acids located in the variable domains of both the heavy and light chains. The CDRs form a binding site that recognizes and interacts with the epitope on the antigen. The precise fit between the antibody's binding site and the epitope is critical for specificity, as even small changes in the structure of either can prevent binding.

Antibody specificity is important in immune responses because it allows the immune system to distinguish between self and non-self antigens. This helps to prevent autoimmune reactions where the immune system attacks the body's own cells and tissues. Antibody specificity also plays a crucial role in diagnostic tests, such as ELISA assays, where antibodies are used to detect the presence of specific antigens in biological samples.

Pemphigus is a group of rare, autoimmune blistering diseases that affect the skin and mucous membranes. In these conditions, the immune system mistakenly produces antibodies against desmoglein proteins, which are crucial for maintaining cell-to-cell adhesion in the epidermis (outermost layer of the skin). This results in the loss of keratinocyte cohesion and formation of flaccid blisters filled with serous fluid.

There are several types of pemphigus, including:

1. Pemphigus vulgaris - The most common form, primarily affecting middle-aged to older adults, with widespread erosions and flaccid blisters on the skin and mucous membranes (e.g., mouth, nose, genitals).
2. Pemphigus foliaceus - A more superficial form, mainly involving the skin, causing crusted erosions and scaly lesions without mucosal involvement. It is more prevalent in older individuals and in certain geographical regions like the Middle East.
3. Paraneoplastic pemphigus - A rare type associated with underlying neoplasms (cancers), such as lymphomas or carcinomas, characterized by severe widespread blistering of both skin and mucous membranes, along with antibodies against additional antigens besides desmogleins.
4. IgA pemphigus - A less common form characterized by localized or generalized erosions and blisters, with IgA autoantibodies targeting the basement membrane zone.

Treatment for pemphigus typically involves high-dose systemic corticosteroids, often in combination with immunosuppressive agents (e.g., azathioprine, mycophenolate mofetil, rituximab) to control the disease activity and prevent complications. Regular follow-ups with dermatologists and oral specialists are essential for monitoring treatment response and managing potential side effects.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Insulin antibodies are proteins produced by the immune system that recognize and bind to insulin. They are typically formed in response to an exposure to exogenous insulin, such as in people with diabetes who use insulin therapy. In some cases, the presence of insulin antibodies can affect insulin absorption, distribution, metabolism, and elimination, leading to variable insulin requirements, reduced glycemic control, and potentially an increased risk of hypoglycemia or hyperglycemia. However, not all individuals with insulin antibodies experience clinical consequences, and the significance of their presence can vary between individuals.

Glutamate decarboxylase (GAD) is an enzyme that plays a crucial role in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) in the brain. GABA is an inhibitory neurotransmitter that helps to balance the excitatory effects of glutamate, another neurotransmitter.

Glutamate decarboxylase catalyzes the conversion of glutamate to GABA by removing a carboxyl group from the glutamate molecule. This reaction occurs in two steps, with the enzyme first converting glutamate to glutamic acid semialdehyde and then converting that intermediate product to GABA.

There are two major isoforms of glutamate decarboxylase, GAD65 and GAD67, which differ in their molecular weight, subcellular localization, and function. GAD65 is primarily responsible for the synthesis of GABA in neuronal synapses, while GAD67 is responsible for the synthesis of GABA in the cell body and dendrites of neurons.

Glutamate decarboxylase is an important target for research in neurology and psychiatry because dysregulation of GABAergic neurotransmission has been implicated in a variety of neurological and psychiatric disorders, including epilepsy, anxiety, depression, and schizophrenia.

'NZB mice' is a term used to refer to an inbred strain of laboratory mice that are genetically identical to each other and have been used extensively in biomedical research. The 'NZB' designation stands for "New Zealand Black," which refers to the coat color of these mice.

NZB mice are known to spontaneously develop an autoimmune disease that is similar to human systemic lupus erythematosus (SLE), a chronic inflammatory disorder caused by an overactive immune system. This makes them a valuable model for studying the genetic and environmental factors that contribute to the development of SLE, as well as for testing new therapies and treatments.

It's important to note that while NZB mice are an inbred strain, they may still exhibit some variability in their disease phenotype due to genetic modifiers or environmental influences. Therefore, researchers often use large cohorts of mice and standardized experimental conditions to ensure the reproducibility and reliability of their findings.

According to the American Academy of Ophthalmology and the National Organization for Rare Disorders, bullous pemphigoid is an autoimmune blistering disorder characterized by the formation of large, fluid-filled blisters (bullae) on the skin and mucous membranes. This condition primarily affects older adults, with most cases occurring in individuals over 60 years of age.

In bullous pemphigoid, the immune system mistakenly produces antibodies against proteins called BP230 and BP180, which are found in the basement membrane zone – a layer that separates the epidermis (outer skin layer) from the dermis (inner skin layer). This autoimmune response leads to the formation of blisters, causing significant discomfort and potential complications if left untreated.

The symptoms of bullous pemphigoid typically include:

1. Large, fluid-filled blisters on the skin, often appearing on the trunk, arms, or legs. These blisters may be itchy or painful.
2. Blisters that rupture easily, leading to raw, open sores.
3. Mucous membrane involvement, such as blisters in the mouth, nose, eyes, or genital area.
4. Skin redness and irritation.
5. Fluid-filled bumps (papules) or pus-filled bumps (pustules).
6. Scarring and skin discoloration after blisters heal.

Treatment for bullous pemphigoid usually involves a combination of medications to control the immune response, reduce inflammation, and promote healing. These may include corticosteroids, immunosuppressants, or other targeted therapies. In some cases, antibiotics may also be prescribed to help manage secondary infections that can occur due to blister formation.

It is essential to consult with a healthcare professional for an accurate diagnosis and treatment plan if you suspect you have bullous pemphigoid or are experiencing related symptoms.

Systemic Scleroderma, also known as Systemic Sclerosis (SSc), is a rare, chronic autoimmune disease that involves the abnormal growth and accumulation of collagen in various connective tissues, blood vessels, and organs throughout the body. This excessive collagen production leads to fibrosis or scarring, which can cause thickening, hardening, and tightening of the skin and damage to internal organs such as the heart, lungs, kidneys, and gastrointestinal tract.

Systemic Scleroderma is characterized by two main features: small blood vessel abnormalities (Raynaud's phenomenon) and fibrosis. The disease can be further classified into two subsets based on the extent of skin involvement: limited cutaneous systemic sclerosis (lcSSc) and diffuse cutaneous systemic sclerosis (dcSSc).

Limited cutaneous systemic sclerosis affects the skin distally, typically involving fingers, hands, forearms, feet, lower legs, and face. It is often associated with Raynaud's phenomenon, calcinosis, telangiectasias, and pulmonary arterial hypertension.

Diffuse cutaneous systemic sclerosis involves more extensive skin thickening and fibrosis that spreads proximally to affect the trunk, upper arms, thighs, and face. It is commonly associated with internal organ involvement, such as interstitial lung disease, heart disease, and kidney problems.

The exact cause of Systemic Scleroderma remains unknown; however, it is believed that genetic, environmental, and immunological factors contribute to its development. There is currently no cure for Systemic Scleroderma, but various treatments can help manage symptoms, slow disease progression, and improve quality of life.

Desmoglein 3 is a type of desmoglein protein that is primarily found in the upper layers of the epidermis, specifically in the desmosomes of the skin. Desmogleins are part of the cadherin family of cell adhesion molecules and play a crucial role in maintaining the structural integrity and cohesion of tissues, particularly in areas subjected to mechanical stress.

Desmoglein 3 is essential for the formation and maintenance of desmosomal junctions in stratified squamous epithelia, such as the skin and mucous membranes. It is involved in cell-to-cell adhesion by forming calcium-dependent homophilic interactions with other Desmoglein 3 molecules on adjacent cells.

Mutations in the gene encoding Desmoglein 3 have been associated with several skin disorders, including pemphigus vulgaris, a severe autoimmune blistering disease that affects the mucous membranes and skin. In pemphigus vulgaris, autoantibodies target Desmoglein 3 (and sometimes Desmoglein 1) molecules, leading to loss of cell-to-cell adhesion and formation of blisters and erosions.

Immunoglobulin M (IgM) is a type of antibody that is primarily found in the blood and lymph fluid. It is the first antibody to be produced in response to an initial exposure to an antigen, making it an important part of the body's primary immune response. IgM antibodies are large molecules that are composed of five basic units, giving them a pentameric structure. They are primarily found on the surface of B cells as membrane-bound immunoglobulins (mlgM), where they function as receptors for antigens. Once an mlgM receptor binds to an antigen, it triggers the activation and differentiation of the B cell into a plasma cell that produces and secretes large amounts of soluble IgM antibodies.

IgM antibodies are particularly effective at agglutination (clumping) and complement activation, which makes them important in the early stages of an immune response to help clear pathogens from the bloodstream. However, they are not as stable or long-lived as other types of antibodies, such as IgG, and their levels tend to decline after the initial immune response has occurred.

In summary, Immunoglobulin M (IgM) is a type of antibody that plays a crucial role in the primary immune response to antigens by agglutination and complement activation. It is primarily found in the blood and lymph fluid, and it is produced by B cells after they are activated by an antigen.

Sjögren's syndrome is a chronic autoimmune disorder in which the body's immune system mistakenly attacks its own moisture-producing glands, particularly the tear and salivary glands. This can lead to symptoms such as dry eyes, dry mouth, and dryness in other areas of the body. In some cases, it may also affect other organs, leading to a variety of complications.

There are two types of Sjögren's syndrome: primary and secondary. Primary Sjögren's syndrome occurs when the condition develops on its own, while secondary Sjögren's syndrome occurs when it develops in conjunction with another autoimmune disease, such as rheumatoid arthritis or lupus.

The exact cause of Sjögren's syndrome is not fully understood, but it is believed to involve a combination of genetic and environmental factors. Treatment typically focuses on relieving symptoms and may include artificial tears, saliva substitutes, medications to stimulate saliva production, and immunosuppressive drugs in more severe cases.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

Rheumatoid factor (RF) is an autoantibody, specifically an immunoglobulin M (IgM) antibody, that can be detected in the blood serum of some people with rheumatoid arthritis (RA), other inflammatory conditions, and infectious diseases. RF targets the Fc portion of IgG, leading to immune complex formation and subsequent inflammation, which contributes to the pathogenesis of RA. However, not all patients with RA test positive for RF, and its presence does not necessarily confirm a diagnosis of RA. Other conditions can also lead to elevated RF levels, such as infections, liver diseases, and certain malignancies. Therefore, the interpretation of RF results should be considered alongside other clinical, laboratory, and imaging findings for an accurate diagnosis and appropriate management.

Lupus vulgaris is not related to systemic lupus erythematosus, which is an autoimmune disease. Instead, it's a specific form of cutaneous tuberculosis, a bacterial infection that affects the skin. It's caused by the Mycobacterium tuberculosis bacteria, the same organism responsible for pulmonary tuberculosis and other forms of tuberculosis.

Lupus vulgaris typically occurs in people who have had prior tuberculous infection or those with a weakened immune system. The condition is characterized by slowly growing, reddish-brown or violaceous papules, nodules, and plaques that may ulcerate and form scars. Lesions often have an apple jelly appearance when a glass slide is pressed against them and examined under a dermatoscope.

Lupus vulgaris lesions usually occur on the face, especially the nose, cheeks, and ears, but they can appear on other parts of the body as well. The condition can lead to significant disfigurement if left untreated. Diagnosis typically involves skin biopsy and culture or PCR for Mycobacterium tuberculosis. Treatment usually consists of a combination of multiple antituberculous drugs, such as isoniazid, rifampin, ethambutol, and pyrazinamide, along with local therapies like surgical excision or laser treatment.

Hemolytic anemia, autoimmune is a type of anemia characterized by the premature destruction of red blood cells (RBCs) in which the immune system mistakenly attacks and destroys its own RBCs. This occurs when the body produces autoantibodies that bind to the surface of RBCs, leading to their rupture (hemolysis). The symptoms may include fatigue, weakness, shortness of breath, and dark colored urine. The diagnosis is made through blood tests that measure the number and size of RBCs, reticulocyte count, and the presence of autoantibodies. Treatment typically involves suppressing the immune system with medications such as corticosteroids or immunosuppressive drugs, and sometimes removal of the spleen (splenectomy) may be necessary.

Lupus nephritis is a type of kidney inflammation (nephritis) that can occur in people with systemic lupus erythematosus (SLE), an autoimmune disease. In lupus nephritis, the immune system produces abnormal antibodies that attack the tissues of the kidneys, leading to inflammation and damage. The condition can cause a range of symptoms, including proteinuria (protein in the urine), hematuria (blood in the urine), hypertension (high blood pressure), and eventually kidney failure if left untreated. Lupus nephritis is typically diagnosed through a combination of medical history, physical examination, laboratory tests, and imaging studies. Treatment may include medications to suppress the immune system and control inflammation, such as corticosteroids and immunosuppressive drugs.

"Small cytoplasmic RNAs" (scRNAs) are a heterogeneous group of non-coding RNA molecules that are typically 100-300 nucleotides in length and are located within the cytoplasm of cells. They play various roles in post-transcriptional regulation of gene expression, including serving as components of ribonucleoprotein complexes involved in mRNA splicing, stability, and translation.

Some specific types of scRNAs include small nuclear RNAs (snRNAs), which are involved in spliceosomal complexes that remove introns from pre-mRNA; small nucleolar RNAs (snoRNAs), which guide chemical modifications of other RNA molecules, such as ribosomal RNAs (rRNAs); and microRNAs (miRNAs), which bind to target mRNAs and inhibit their translation or promote their degradation.

It's worth noting that the term "small cytoplasmic RNA" is a broad category, and individual scRNAs can have distinct functions and characteristics.

SnRNP (small nuclear ribonucleoprotein) core proteins are a group of proteins that are associated with small nuclear RNAs (snRNAs) to form small nuclear ribonucleoprotein particles. These particles play crucial roles in various aspects of RNA processing, such as splicing, 3' end formation, and degradation.

The snRNP core proteins include seven Sm proteins (B, D1, D2, D3, E, F, and G) that form a heptameric ring-like structure called the Sm core, which binds to a conserved sequence motif in the snRNAs called the Sm site. In addition to the Sm proteins, there are also other core proteins such as Sm like (L) proteins and various other protein factors that associate with specific snRNP particles.

Together, these snRNP core proteins help to stabilize the snRNA, facilitate its assembly into functional ribonucleoprotein complexes, and participate in the recognition and processing of target RNAs during post-transcriptional regulation.

Thyroglobulin is a protein produced and used by the thyroid gland in the production of thyroid hormones, primarily thyroxine (T4) and triiodothyronine (T3). It is composed of two subunits, an alpha and a beta or gamma unit, which bind iodine atoms necessary for the synthesis of the thyroid hormones. Thyroglobulin is exclusively produced by the follicular cells of the thyroid gland.

In clinical practice, measuring thyroglobulin levels in the blood can be useful as a tumor marker for monitoring treatment and detecting recurrence of thyroid cancer, particularly in patients with differentiated thyroid cancer (papillary or follicular) who have had their thyroid gland removed. However, it is important to note that thyroglobulin is not specific to thyroid tissue and can be produced by some non-thyroidal cells under certain conditions, which may lead to false positive results in some cases.

Myositis is a medical term that refers to inflammation of the muscle tissue. This condition can cause various symptoms, including muscle weakness, pain, swelling, and stiffness. There are several types of myositis, such as polymyositis, dermatomyositis, and inclusion body myositis, which have different causes and characteristics.

Polymyositis is a type of myositis that affects multiple muscle groups, particularly those close to the trunk of the body. Dermatomyositis is characterized by muscle inflammation as well as a skin rash. Inclusion body myositis is a less common form of myositis that typically affects older adults and can cause both muscle weakness and wasting.

The causes of myositis vary depending on the type, but they can include autoimmune disorders, infections, medications, and other medical conditions. Treatment for myositis may involve medication to reduce inflammation, physical therapy to maintain muscle strength and flexibility, and lifestyle changes to manage symptoms and prevent complications.

Non-fibrillar collagens are a type of collagen that do not form fibrous structures, unlike the more common fibrillar collagens. They are a group of structurally diverse collagens that play important roles in various biological processes such as cell adhesion, migration, and differentiation. Non-fibrillar collagens include types IV, VI, VIII, X, XII, XIV, XVI, XIX, XXI, and XXVIII. They are often found in basement membranes and other specialized extracellular matrix structures.

Type IV collagen is a major component of the basement membrane and forms a network-like structure that provides a scaffold for other matrix components. Type VI collagen has a beaded filament structure and is involved in the organization of the extracellular matrix. Type VIII collagen is found in the eyes and helps to maintain the structural integrity of the eye. Type X collagen is associated with cartilage development and bone formation. Type XII and XIV collagens are fibril-associated collagens that help to regulate the organization and diameter of fibrillar collagens. The other non-fibrillar collagens have various functions, including cell adhesion, migration, and differentiation.

Overall, non-fibrillar collagens are important structural components of the extracellular matrix and play critical roles in various biological processes.

Receptor-like protein tyrosine phosphatases, class 8 (RPTPs μ/β) are a subfamily of the receptor-like protein tyrosine phosphatase superfamily. These transmembrane proteins contain two extracellular carbonic anhydrase-like domains, a single membrane-spanning region, and one intracellular protein tyrosine phosphatase domain. They are involved in the regulation of various cellular processes, including cell growth, differentiation, and migration, by dephosphorylating specific tyrosine residues on target proteins. RPTPs μ/β have been implicated in the development and function of the nervous system, and their dysregulation has been associated with several neurological disorders and cancers.

Diabetes Mellitus, Type 1 is a chronic autoimmune disease characterized by the destruction of insulin-producing beta cells in the pancreas, leading to an absolute deficiency of insulin. This results in an inability to regulate blood glucose levels, causing hyperglycemia (high blood sugar). Type 1 diabetes typically presents in childhood or early adulthood, although it can develop at any age. It is usually managed with regular insulin injections or the use of an insulin pump, along with monitoring of blood glucose levels and adjustments to diet and physical activity. Uncontrolled type 1 diabetes can lead to serious complications such as kidney damage, nerve damage, blindness, and cardiovascular disease.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a key role in the immune system's response to infection. They are responsible for producing antibodies, which are proteins that help to neutralize or destroy pathogens such as bacteria and viruses.

When a B-lymphocyte encounters a pathogen, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies specific to the antigens on the surface of the pathogen. These antibodies bind to the pathogen, marking it for destruction by other immune cells such as neutrophils and macrophages.

B-lymphocytes also have a role in presenting antigens to T-lymphocytes, another type of white blood cell involved in the immune response. This helps to stimulate the activation and proliferation of T-lymphocytes, which can then go on to destroy infected cells or help to coordinate the overall immune response.

Overall, B-lymphocytes are an essential part of the adaptive immune system, providing long-lasting immunity to previously encountered pathogens and helping to protect against future infections.

'Mice, Inbred MRL-lpr' refers to a specific strain of laboratory mice that are used in biomedical research. The 'MRL' part of the name stands for the breeding colony where they were originally developed, which is the Mouse Repository at the Jackson Laboratory in Bar Harbor, Maine. The 'lpr' designation indicates that these mice carry a mutation in the Fas gene, also known as lpr (lymphoproliferation) gene, which leads to an autoimmune disorder characterized by lymphadenopathy (enlarged lymph nodes), splenomegaly (enlarged spleen), and production of autoantibodies.

The MRL-lpr mice are known for their accelerated aging phenotype, which includes the development of a variety of age-related diseases such as atherosclerosis, osteoporosis, and cancer. They also develop a severe form of systemic lupus erythematosus (SLE), an autoimmune disease that affects many organs in the body. The MRL-lpr mice are widely used as a model to study the pathogenesis of SLE and other autoimmune diseases, as well as to test potential therapies for these conditions.

It is important to note that while inbred mouse strains like MRL-lpr provide valuable insights into human disease mechanisms, they do not perfectly replicate all aspects of human disease, and results obtained in mice may not always translate directly to humans. Therefore, findings from mouse studies should be interpreted with caution and validated in human studies before being applied in clinical practice.

Autoimmune thyroiditis, also known as Hashimoto's disease, is a chronic inflammation of the thyroid gland caused by an autoimmune response. In this condition, the immune system produces antibodies that attack and damage the thyroid gland, leading to hypothyroidism (underactive thyroid). The thyroid gland may become enlarged (goiter), and symptoms can include fatigue, weight gain, cold intolerance, constipation, dry skin, and depression. Autoimmune thyroiditis is more common in women than men and tends to run in families. It is often associated with other autoimmune disorders such as rheumatoid arthritis, Addison's disease, and type 1 diabetes. The diagnosis is typically made through blood tests that measure levels of thyroid hormones and antibodies. Treatment usually involves thyroid hormone replacement therapy to manage the symptoms of hypothyroidism.

Desmoglein 1 is a type of desmosomal cadherin, which is a transmembrane protein involved in cell-to-cell adhesion. It is primarily expressed in the upper layers of the epidermis and plays a crucial role in maintaining the integrity and stability of the skin. Desmoglein 1 forms desmosomes, specialized intercellular junctions that connect adjacent keratinocytes and help to resist shearing forces.

Desmoglein 1 is also a target for autoantibodies in certain blistering diseases, such as pemphigus foliaceus, where the binding of these antibodies to desmoglein 1 results in the loss of cell-to-cell adhesion and formation of skin blisters.

Ribonucleoproteins (RNPs) are complexes composed of ribonucleic acid (RNA) and proteins. They play crucial roles in various cellular processes, including gene expression, RNA processing, transport, stability, and degradation. Different types of RNPs exist, such as ribosomes, spliceosomes, and signal recognition particles, each having specific functions in the cell.

Ribosomes are large RNP complexes responsible for protein synthesis, where messenger RNA (mRNA) is translated into proteins. They consist of two subunits: a smaller subunit containing ribosomal RNA (rRNA) and proteins that recognize the start codon on mRNA, and a larger subunit with rRNA and proteins that facilitate peptide bond formation during translation.

Spliceosomes are dynamic RNP complexes involved in pre-messenger RNA (pre-mRNA) splicing, where introns (non-coding sequences) are removed, and exons (coding sequences) are joined together to form mature mRNA. Spliceosomes consist of five small nuclear ribonucleoproteins (snRNPs), each containing a specific small nuclear RNA (snRNA) and several proteins, as well as numerous additional proteins.

Other RNP complexes include signal recognition particles (SRPs), which are responsible for targeting secretory and membrane proteins to the endoplasmic reticulum during translation, and telomerase, an enzyme that maintains the length of telomeres (the protective ends of chromosomes) by adding repetitive DNA sequences using its built-in RNA component.

In summary, ribonucleoproteins are essential complexes in the cell that participate in various aspects of RNA metabolism and protein synthesis.

Dermatomyositis is a medical condition characterized by inflammation and weakness in the muscles and skin. It is a type of inflammatory myopathy, which means that it causes muscle inflammation and damage. Dermatomyositis is often associated with a distinctive rash that affects the skin around the eyes, nose, mouth, fingers, and toes.

The symptoms of dermatomyositis can include:

* Progressive muscle weakness, particularly in the hips, thighs, shoulders, and neck
* Fatigue
* Difficulty swallowing or speaking
* Skin rash, which may be pink or purple and is often accompanied by itching
* Muscle pain and tenderness
* Joint pain and swelling
* Raynaud's phenomenon, a condition that affects blood flow to the fingers and toes

The exact cause of dermatomyositis is not known, but it is believed to be related to an autoimmune response in which the body's immune system mistakenly attacks healthy tissue. Treatment for dermatomyositis typically involves medications to reduce inflammation and suppress the immune system, as well as physical therapy to help maintain muscle strength and function.

Antineutrophil cytoplasmic antibodies (ANCAs) are a type of autoantibody that specifically target certain proteins in the cytoplasm of neutrophils, which are a type of white blood cell. These antibodies are associated with several types of vasculitis, which is inflammation of the blood vessels.

There are two main types of ANCAs: perinuclear ANCAs (p-ANCAs) and cytoplasmic ANCAs (c-ANCAs). p-ANCAs are directed against myeloperoxidase, a protein found in neutrophil granules, while c-ANCAs target proteinase 3, another protein found in neutrophil granules.

The presence of ANCAs in the blood can indicate an increased risk for developing certain types of vasculitis, such as granulomatosis with polyangiitis (GPA), eosinophilic granulomatosis with polyangiitis (EGPA), and microscopic polyangiitis (MPA). ANCA testing is often used in conjunction with other clinical findings to help diagnose and manage these conditions.

It's important to note that while the presence of ANCAs can indicate an increased risk for vasculitis, not everyone with ANCAs will develop the condition. Additionally, ANCAs can also be found in some individuals without any associated disease, so their presence should be interpreted in the context of other clinical findings.

Epitope mapping is a technique used in immunology to identify the specific portion or regions (called epitopes) on an antigen that are recognized and bind to antibodies or T-cell receptors. This process helps to understand the molecular basis of immune responses against various pathogens, allergens, or transplanted tissues.

Epitope mapping can be performed using different methods such as:

1. Peptide scanning: In this method, a series of overlapping peptides spanning the entire length of the antigen are synthesized and tested for their ability to bind to antibodies or T-cell receptors. The peptide that shows binding is considered to contain the epitope.
2. Site-directed mutagenesis: In this approach, specific amino acids within the antigen are altered, and the modified antigens are tested for their ability to bind to antibodies or T-cell receptors. This helps in identifying the critical residues within the epitope.
3. X-ray crystallography and NMR spectroscopy: These techniques provide detailed information about the three-dimensional structure of antigen-antibody complexes, allowing for accurate identification of epitopes at an atomic level.

The results from epitope mapping can be useful in various applications, including vaccine design, diagnostic test development, and understanding the basis of autoimmune diseases.

Paraneoplastic syndromes refer to a group of rare disorders that are caused by an abnormal immune system response to a cancerous (malignant) tumor. These syndromes are characterized by symptoms or signs that do not result directly from the growth of the tumor itself, but rather from substances produced by the tumor or the body's immune system in response to the tumor.

Paraneoplastic syndromes can affect various organs and systems in the body, including the nervous system, endocrine system, skin, and joints. Examples of paraneoplastic syndromes include Lambert-Eaton myasthenic syndrome (LEMS), which affects nerve function and causes muscle weakness; cerebellar degeneration, which can cause difficulty with coordination and balance; and dermatomyositis, which is an inflammatory condition that affects the skin and muscles.

Paraneoplastic syndromes can occur in association with a variety of different types of cancer, including lung cancer, breast cancer, ovarian cancer, and lymphoma. Treatment typically involves addressing the underlying cancer, as well as managing the symptoms of the paraneoplastic syndrome.

The Coombs test is a laboratory procedure used to detect the presence of antibodies on the surface of red blood cells (RBCs). It is named after the scientist, Robin Coombs, who developed the test. There are two types of Coombs tests: direct and indirect.

1. Direct Coombs Test (DCT): This test is used to detect the presence of antibodies directly attached to the surface of RBCs. It is often used to diagnose hemolytic anemia, a condition in which RBCs are destroyed prematurely, leading to anemia. A positive DCT indicates that the patient's RBCs have been coated with antibodies, which can occur due to various reasons such as autoimmune disorders, blood transfusion reactions, or drug-induced immune hemolysis.
2. Indirect Coombs Test (ICT): This test is used to detect the presence of antibodies in the patient's serum that can agglutinate (clump) foreign RBCs. It is commonly used before blood transfusions or during pregnancy to determine if the patient has antibodies against the RBCs of a potential donor or fetus, respectively. A positive ICT indicates that the patient's serum contains antibodies capable of binding to and agglutinating foreign RBCs.

In summary, the Coombs test is a crucial diagnostic tool in identifying various hemolytic disorders and ensuring safe blood transfusions by detecting the presence of harmful antibodies against RBCs.

Iodide peroxidase, also known as iodide:hydrogen peroxide oxidoreductase, is an enzyme that belongs to the family of oxidoreductases. Specifically, it is a peroxidase that uses iodide as its physiological reducing substrate. This enzyme catalyzes the oxidation of iodide by hydrogen peroxide to produce iodine, which plays a crucial role in thyroid hormone biosynthesis.

The systematic name for this enzyme is iodide:hydrogen-peroxide oxidoreductase (iodinating). It is most commonly found in the thyroid gland, where it helps to produce and regulate thyroid hormones by facilitating the iodination of tyrosine residues on thyroglobulin, a protein produced by the thyroid gland.

Iodide peroxidase requires a heme cofactor for its enzymatic activity, which is responsible for the oxidation-reduction reactions it catalyzes. The enzyme's ability to iodinate tyrosine residues on thyroglobulin is essential for the production of triiodothyronine (T3) and thyroxine (T4), two critical hormones that regulate metabolism, growth, and development in mammals.

An antigen-antibody complex is a type of immune complex that forms when an antibody binds to a specific antigen. An antigen is any substance that triggers an immune response, while an antibody is a protein produced by the immune system to neutralize or destroy foreign substances like antigens.

When an antibody binds to an antigen, it forms a complex that can be either soluble or insoluble. Soluble complexes are formed when the antigen is small and can move freely through the bloodstream. Insoluble complexes, on the other hand, are formed when the antigen is too large to move freely, such as when it is part of a bacterium or virus.

The formation of antigen-antibody complexes plays an important role in the immune response. Once formed, these complexes can be recognized and cleared by other components of the immune system, such as phagocytes, which help to prevent further damage to the body. However, in some cases, the formation of large numbers of antigen-antibody complexes can lead to inflammation and tissue damage, contributing to the development of certain autoimmune diseases.

A binding site on an antibody refers to the specific region on the surface of the antibody molecule that can recognize and bind to a specific antigen. Antibodies are proteins produced by the immune system in response to the presence of foreign substances called antigens. They have two main functions: to neutralize the harmful effects of antigens and to help eliminate them from the body.

The binding site of an antibody is located at the tips of its Y-shaped structure, formed by the variable regions of the heavy and light chains of the antibody molecule. These regions contain unique amino acid sequences that determine the specificity of the antibody for a particular antigen. The binding site can recognize and bind to a specific epitope or region on the antigen, forming an antigen-antibody complex.

The binding between the antibody and antigen is highly specific and depends on non-covalent interactions such as hydrogen bonds, van der Waals forces, and electrostatic attractions. This interaction plays a crucial role in the immune response, as it allows the immune system to recognize and eliminate pathogens and other foreign substances from the body.

Rheumatoid arthritis (RA) is a systemic autoimmune disease that primarily affects the joints. It is characterized by persistent inflammation, synovial hyperplasia, and subsequent damage to the articular cartilage and bone. The immune system mistakenly attacks the body's own tissues, specifically targeting the synovial membrane lining the joint capsule. This results in swelling, pain, warmth, and stiffness in affected joints, often most severely in the hands and feet.

RA can also have extra-articular manifestations, affecting other organs such as the lungs, heart, skin, eyes, and blood vessels. The exact cause of RA remains unknown, but it is believed to involve a complex interplay between genetic susceptibility and environmental triggers. Early diagnosis and treatment are crucial in managing rheumatoid arthritis to prevent joint damage, disability, and systemic complications.

An antigen-antibody reaction is a specific immune response that occurs when an antigen (a foreign substance, such as a protein or polysaccharide on the surface of a bacterium or virus) comes into contact with a corresponding antibody (a protective protein produced by the immune system in response to the antigen). The antigen and antibody bind together, forming an antigen-antibody complex. This interaction can neutralize the harmful effects of the antigen, mark it for destruction by other immune cells, or activate complement proteins to help eliminate the antigen from the body. Antigen-antibody reactions are a crucial part of the adaptive immune response and play a key role in the body's defense against infection and disease.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

Graves' disease is defined as an autoimmune disorder that leads to overactivity of the thyroid gland (hyperthyroidism). It results when the immune system produces antibodies that stimulate the thyroid gland, causing it to produce too much thyroid hormone. This can result in a variety of symptoms such as rapid heartbeat, weight loss, heat intolerance, and bulging eyes (Graves' ophthalmopathy). The exact cause of Graves' disease is unknown, but it is more common in women and people with a family history of the disorder. Treatment may include medications to control hyperthyroidism, radioactive iodine therapy to destroy thyroid tissue, or surgery to remove the thyroid gland.

Anti-idiotypic antibodies are a type of immune protein that recognizes and binds to the unique identifying region (idiotype) of another antibody. These antibodies are produced by the immune system as part of a regulatory feedback mechanism, where they can modulate or inhibit the activity of the original antibody. They have been studied for their potential use in immunotherapy and vaccine development.

Immunoglobulin idiotypes refer to the unique antigenic determinants found on the variable regions of an immunoglobulin (antibody) molecule. These determinants are specific to each individual antibody and can be used to distinguish between different antibodies produced by a single individual or between antibodies produced by different individuals.

The variable region of an antibody is responsible for recognizing and binding to a specific antigen. The amino acid sequence in this region varies between different antibodies, and it is these variations that give rise to the unique idiotypes. Idiotypes can be used as markers to study the immune response, including the clonal selection and affinity maturation of B cells during an immune response.

Immunoglobulin idiotypes are also important in the development of monoclonal antibodies for therapeutic use. By identifying and isolating a specific antibody with the desired idiotype, it is possible to produce large quantities of identical antibodies that can be used to treat various diseases, including cancer and autoimmune disorders.

Small nuclear ribonucleoproteins (snRNPs) are a type of ribonucleoprotein (RNP) found within the nucleus of eukaryotic cells. They are composed of small nuclear RNA (snRNA) molecules and associated proteins, which are involved in various aspects of RNA processing, particularly in the modification and splicing of messenger RNA (mRNA).

The snRNPs play a crucial role in the formation of spliceosomes, large ribonucleoprotein complexes that remove introns (non-coding sequences) from pre-mRNA and join exons (coding sequences) together to form mature mRNA. Each snRNP contains a specific snRNA molecule, such as U1, U2, U4, U5, or U6, which recognizes and binds to specific sequences within the pre-mRNA during splicing. The associated proteins help stabilize the snRNP structure and facilitate its interactions with other components of the spliceosome.

In addition to their role in splicing, some snRNPs are also involved in other cellular processes, such as transcription regulation, RNA export, and DNA damage response. Dysregulation or mutations in snRNP components have been implicated in various human diseases, including cancer, neurological disorders, and autoimmune diseases.

Polyendocrinopathies, autoimmune refers to a group of disorders that involve malfunction of multiple endocrine glands, caused by the immune system mistakenly attacking and damaging these glands. The endocrine glands are responsible for producing hormones that regulate various functions in the body.

There are several types of autoimmune polyendocrinopathies, including:

1. Autoimmune Polyendocrine Syndrome Type 1 (APS-1): Also known as Autoimmune Polyglandular Syndrome Type 1 or APECED, this is a rare inherited disorder that typically affects multiple endocrine glands and other organs. It is caused by mutations in the autoimmune regulator (AIRE) gene.
2. Autoimmune Polyendocrine Syndrome Type 2 (APS-2): Also known as Schmidt's syndrome, this disorder typically involves the adrenal glands, thyroid gland, and/or insulin-producing cells in the pancreas. It is more common than APS-1 and often affects middle-aged women.
3. Autoimmune Polyendocrine Syndrome Type 3 (APS-3): This disorder involves the presence of autoimmune Addison's disease, with or without other autoimmune disorders such as thyroid disease, type 1 diabetes, or vitiligo.
4. Autoimmune Polyendocrine Syndrome Type 4 (APS-4): This is a catch-all category for individuals who have multiple autoimmune endocrine disorders that do not fit into the other types of APS.

Symptoms of autoimmune polyendocrinopathies can vary widely depending on which glands are affected and the severity of the damage. Treatment typically involves replacing the hormones that are no longer being produced in sufficient quantities, as well as managing any underlying immune system dysfunction.

The Fluorescent Antibody Technique (FAT), Indirect is a type of immunofluorescence assay used to detect the presence of specific antigens in a sample. In this method, the sample is first incubated with a primary antibody that binds to the target antigen. After washing to remove unbound primary antibodies, a secondary fluorescently labeled antibody is added, which recognizes and binds to the primary antibody. This indirect labeling approach allows for amplification of the signal, making it more sensitive than direct methods. The sample is then examined under a fluorescence microscope to visualize the location and amount of antigen based on the emitted light from the fluorescent secondary antibody. It's commonly used in diagnostic laboratories for detection of various bacteria, viruses, and other antigens in clinical specimens.

Vesiculobullous skin diseases are a group of disorders characterized by the formation of blisters (vesicles) and bullae (larger blisters) on the skin. These blisters form when there is a separation between the epidermis (outer layer of the skin) and the dermis (layer beneath the epidermis) due to damage in the area where they join, known as the dermo-epidermal junction.

There are several types of vesiculobullous diseases, each with its own specific causes and symptoms. Some of the most common types include:

1. Pemphigus vulgaris: an autoimmune disorder where the immune system mistakenly attacks proteins that help to hold the skin together, causing blisters to form.
2. Bullous pemphigoid: another autoimmune disorder, but in this case, the immune system attacks a different set of proteins, leading to large blisters and inflammation.
3. Dermatitis herpetiformis: a skin condition associated with celiac disease, where gluten ingestion triggers an immune response that leads to the formation of itchy blisters.
4. Pemphigoid gestationis: a rare autoimmune disorder that occurs during pregnancy and causes blisters on the abdomen and other parts of the body.
5. Epidermolysis bullosa: a group of inherited disorders where there is a fragile skin structure, leading to blistering and wound formation after minor trauma or friction.

Treatment for vesiculobullous diseases depends on the specific diagnosis and may include topical or systemic medications, such as corticosteroids, immunosuppressants, or antibiotics, as well as wound care and prevention of infection.

Anticardiolipin antibodies are a type of autoantibody that targets and binds to cardiolipin, a phospholipid component found in the inner mitochondrial membrane of cells. These antibodies are clinically significant because they have been associated with a variety of autoimmune disorders, including antiphospholipid syndrome (APS).

APS is a condition characterized by recurrent blood clots, pregnancy losses, and thrombocytopenia (low platelet count). Anticardiolipin antibodies are one of the three main types of autoantibodies found in APS, along with lupus anticoagulant and anti-β2 glycoprotein I antibodies.

The presence of high levels of anticardiolipin antibodies in the blood can lead to abnormal blood clotting, which can cause serious complications such as deep vein thrombosis, pulmonary embolism, and stroke. Anticardiolipin antibodies can also contribute to pregnancy losses by causing placental insufficiency or abnormal blood clotting in the placenta.

Anticardiolipin antibodies are typically detected through a blood test that measures their levels in the serum. A positive result is usually confirmed with a second test performed at least 12 weeks later to establish persistence. Treatment for anticardiolipin antibody-related disorders typically involves anticoagulation therapy to prevent blood clots and other complications.

Stiff-Person Syndrome (SPS) is a rare neurological disorder characterized by fluctuating muscle rigidity in the trunk and limbs and a heightened sensitivity to stimuli such as touch, sound, and emotional distress, which can trigger muscle spasms. The symptoms can significantly affect a person's ability to perform daily activities and can lead to frequent falls and injuries. SPS is often associated with antibodies against glutamic acid decarboxylase (GAD), an enzyme involved in the production of a neurotransmitter called gamma-aminobutyric acid (GABA) that helps regulate muscle movement. The exact cause of SPS remains unknown, but it is thought to involve both autoimmune and genetic factors.

Polymyositis is defined as a rare inflammatory disorder that causes muscle weakness and inflammation (swelling) of the muscles. It primarily affects the skeletal muscles, which are the muscles responsible for voluntary movements such as walking, talking, and swallowing. The onset of polymyositis can occur at any age but is most commonly seen in adults between 31 to 60 years old, with women being slightly more affected than men.

The exact cause of polymyositis remains unknown; however, it is believed to be an autoimmune disorder, where the body's immune system mistakenly attacks its own muscle tissue. Certain factors such as genetics, viral infections, and exposure to certain drugs may contribute to the development of this condition.

Polymyositis can cause various symptoms, including:
- Progressive muscle weakness and wasting, particularly affecting the proximal muscles (those closest to the trunk of the body) such as the hips, thighs, shoulders, and upper arms.
- Difficulty climbing stairs, lifting objects, or rising from a seated position.
- Fatigue and stiffness, especially after periods of inactivity.
- Joint pain and swelling.
- Difficulty swallowing or speaking.
- Shortness of breath due to weakened respiratory muscles.

Diagnosis of polymyositis typically involves a combination of medical history, physical examination, laboratory tests, electromyography (EMG), and muscle biopsy. Treatment usually includes medications such as corticosteroids and immunosuppressants to reduce inflammation and control the immune response. Physical therapy may also be recommended to help maintain muscle strength and flexibility.

If left untreated, polymyositis can lead to significant disability and complications, including respiratory failure, malnutrition, and cardiovascular disease. Early diagnosis and treatment are crucial for improving outcomes and preventing long-term complications.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Vasculitis is a group of disorders characterized by inflammation of the blood vessels, which can cause changes in the vessel walls including thickening, narrowing, or weakening. These changes can restrict blood flow, leading to organ and tissue damage. The specific symptoms and severity of vasculitis depend on the size and location of the affected blood vessels and the extent of inflammation. Vasculitis can affect any organ system in the body, and its causes can vary, including infections, autoimmune disorders, or exposure to certain medications or chemicals.

The thyroid gland is a major endocrine gland located in the neck, anterior to the trachea and extends from the lower third of the Adams apple to the suprasternal notch. It has two lateral lobes, connected by an isthmus, and sometimes a pyramidal lobe. This gland plays a crucial role in the metabolism, growth, and development of the human body through the production of thyroid hormones (triiodothyronine/T3 and thyroxine/T4) and calcitonin. The thyroid hormones regulate body temperature, heart rate, and the production of protein, while calcitonin helps in controlling calcium levels in the blood. The function of the thyroid gland is controlled by the hypothalamus and pituitary gland through the thyroid-stimulating hormone (TSH).

Biliary cirrhosis is a specific type of liver cirrhosis that results from chronic inflammation and scarring of the bile ducts, leading to impaired bile flow, liver damage, and fibrosis. It can be further classified into primary biliary cholangitis (PBC) and secondary biliary cirrhosis. PBC is an autoimmune disease, while secondary biliary cirrhosis is often associated with chronic gallstones, biliary tract obstruction, or recurrent pyogenic cholangitis. Symptoms may include fatigue, itching, jaundice, and abdominal discomfort. Diagnosis typically involves blood tests, imaging studies, and sometimes liver biopsy. Treatment focuses on managing symptoms, slowing disease progression, and preventing complications.

Connective tissue diseases (CTDs) are a group of disorders that involve the abnormal production and accumulation of abnormal connective tissues in various parts of the body. Connective tissues are the structural materials that support and bind other tissues and organs together. They include tendons, ligaments, cartilage, fat, and the material that fills the spaces between cells, called the extracellular matrix.

Connective tissue diseases can affect many different systems in the body, including the skin, joints, muscles, lungs, kidneys, gastrointestinal tract, and blood vessels. Some CTDs are autoimmune disorders, meaning that the immune system mistakenly attacks healthy connective tissues. Others may be caused by genetic mutations or environmental factors.

Some examples of connective tissue diseases include:

* Systemic lupus erythematosus (SLE)
* Rheumatoid arthritis (RA)
* Scleroderma
* Dermatomyositis/Polymyositis
* Mixed Connective Tissue Disease (MCTD)
* Sjogren's syndrome
* Ehlers-Danlos syndrome
* Marfan syndrome
* Osteogenesis imperfecta

The specific symptoms and treatment of connective tissue diseases vary depending on the type and severity of the condition. Treatment may include medications to reduce inflammation, suppress the immune system, or manage pain. In some cases, surgery may be necessary to repair or replace damaged tissues or organs.

Myeloblastin is not typically used as a medical term in current literature. However, in the field of hematology, "myeloblast" refers to an immature cell that develops into a white blood cell called a granulocyte. These myeloblasts are normally found in the bone marrow and are part of the body's immune system.

If you meant 'Myeloperoxidase,' I can provide a definition for it:

Myeloperoxidase (MPO) is a peroxidase enzyme that is abundant in neutrophil granulocytes, a type of white blood cell involved in the immune response. MPO plays an essential role in the microbicidal activity of these cells by generating hypochlorous acid and other reactive oxygen species to kill invading pathogens.

Thyrotropin receptors (TSHRs) are a type of G protein-coupled receptor found on the surface of cells in the thyroid gland. They bind to thyroid-stimulating hormone (TSH), which is produced and released by the pituitary gland. When TSH binds to the TSHR, it activates a series of intracellular signaling pathways that stimulate the production and release of thyroid hormones, triiodothyronine (T3) and thyroxine (T4). These hormones are important for regulating metabolism, growth, and development in the body. Mutations in the TSHR gene can lead to various thyroid disorders, such as hyperthyroidism or hypothyroidism.

Protein array analysis is a high-throughput technology used to detect and measure the presence and activity of specific proteins in biological samples. This technique utilizes arrays or chips containing various capture agents, such as antibodies or aptamers, that are designed to bind to specific target proteins. The sample is then added to the array, allowing the target proteins to bind to their corresponding capture agents. After washing away unbound materials, a detection system is used to identify and quantify the bound proteins. This method can be used for various applications, including protein-protein interaction studies, biomarker discovery, and drug development. The results of protein array analysis provide valuable information about the expression levels, post-translational modifications, and functional states of proteins in complex biological systems.

Beta 2-glycoprotein I, also known as apolipoprotein H, is a plasma protein that belongs to the family of proteins called immunoglobulin-binding proteins. It has a molecular weight of approximately 44 kDa and is composed of five domains with similar structures.

Beta 2-glycoprotein I is primarily produced in the liver and circulates in the bloodstream, where it plays a role in several physiological processes, including coagulation, complement activation, and lipid metabolism. It has been identified as an autoantigen in certain autoimmune disorders, such as antiphospholipid syndrome (APS), where autoantibodies against beta 2-glycoprotein I can cause blood clots, miscarriages, and other complications.

In medical terminology, the definition of "beta 2-glycoprotein I" is as follows:

A plasma protein that belongs to the family of immunoglobulin-binding proteins and has a molecular weight of approximately 44 kDa. It is primarily produced in the liver and circulates in the bloodstream, where it plays a role in several physiological processes, including coagulation, complement activation, and lipid metabolism. Autoantibodies against beta 2-glycoprotein I are associated with certain autoimmune disorders, such as antiphospholipid syndrome (APS), where they can cause blood clots, miscarriages, and other complications.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Autoimmune hepatitis is a chronic (long-term) disease in which the body's immune system mistakenly attacks the liver, leading to inflammation and damage. This results in decreased liver function over time if not treated. The exact cause of autoimmune hepatitis is unknown, but it is believed to be associated with genetic factors and exposure to certain environmental triggers, such as viral infections or medications.

There are two main types of autoimmune hepatitis:

1. Type 1 (classic) autoimmune hepatitis: This form can affect both adults and children, and it is more common in women than men. People with this type may also have other autoimmune disorders, such as rheumatoid arthritis, thyroid disease, or ulcerative colitis.
2. Type 2 autoimmune hepatitis: This form primarily affects children and young women. It is less common than type 1 and tends to be more severe. People with this type may also have other autoimmune disorders, such as celiac disease or chronic candidiasis.

Symptoms of autoimmune hepatitis can vary widely, from mild to severe. They may include fatigue, loss of appetite, nausea, vomiting, abdominal pain, joint pain, jaundice (yellowing of the skin and eyes), dark urine, and light-colored stools.

Diagnosis typically involves blood tests, imaging studies, and sometimes a liver biopsy to assess the extent of damage. Treatment usually includes medications that suppress the immune system, such as corticosteroids and immunosuppressants, which can help reduce inflammation and slow or stop liver damage. In some cases, lifestyle changes and supportive care may also be necessary.

Mixed Connective Tissue Disease (MCTD) is a rare overlapping condition of the connective tissues, characterized by the presence of specific autoantibodies against a protein called "U1-snRNP" or "U1-small nuclear ribonucleoprotein." This disorder has features of various connective tissue diseases such as systemic lupus erythematosus (SLE), scleroderma, polymyositis, and rheumatoid arthritis. Symptoms may include swollen hands, joint pain and swelling, muscle weakness, skin thickening, lung involvement, and Raynaud's phenomenon. The exact cause of MCTD is unknown, but it is believed to involve both genetic and environmental factors leading to an autoimmune response. Early diagnosis and treatment are essential for better disease management and preventing severe complications.

A blister is a small fluid-filled bubble that forms on the skin due to friction, burns, or contact with certain chemicals or irritants. Blisters are typically filled with a clear fluid called serum, which is a component of blood. They can also be filled with blood (known as blood blisters) if the blister is caused by a more severe injury.

Blisters act as a natural protective barrier for the underlying skin and tissues, preventing infection and promoting healing. It's generally recommended to leave blisters intact and avoid breaking them, as doing so can increase the risk of infection and delay healing. If a blister is particularly large or painful, medical attention may be necessary to prevent complications.

Antibody formation, also known as humoral immune response, is the process by which the immune system produces proteins called antibodies in response to the presence of a foreign substance (antigen) in the body. This process involves several steps:

1. Recognition: The antigen is recognized and bound by a type of white blood cell called a B lymphocyte or B cell, which then becomes activated.
2. Differentiation: The activated B cell undergoes differentiation to become a plasma cell, which is a type of cell that produces and secretes large amounts of antibodies.
3. Antibody production: The plasma cells produce and release antibodies, which are proteins made up of four polypeptide chains (two heavy chains and two light chains) arranged in a Y-shape. Each antibody has two binding sites that can recognize and bind to specific regions on the antigen called epitopes.
4. Neutralization or elimination: The antibodies bind to the antigens, neutralizing them or marking them for destruction by other immune cells. This helps to prevent the spread of infection and protect the body from harmful substances.

Antibody formation is an important part of the adaptive immune response, which allows the body to specifically recognize and respond to a wide variety of pathogens and foreign substances.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Immunoglobulin A (IgA) is a type of antibody that plays a crucial role in the immune function of the human body. It is primarily found in external secretions, such as saliva, tears, breast milk, and sweat, as well as in mucous membranes lining the respiratory and gastrointestinal tracts. IgA exists in two forms: a monomeric form found in serum and a polymeric form found in secretions.

The primary function of IgA is to provide immune protection at mucosal surfaces, which are exposed to various environmental antigens, such as bacteria, viruses, parasites, and allergens. By doing so, it helps prevent the entry and colonization of pathogens into the body, reducing the risk of infections and inflammation.

IgA functions by binding to antigens present on the surface of pathogens or allergens, forming immune complexes that can neutralize their activity. These complexes are then transported across the epithelial cells lining mucosal surfaces and released into the lumen, where they prevent the adherence and invasion of pathogens.

In summary, Immunoglobulin A (IgA) is a vital antibody that provides immune defense at mucosal surfaces by neutralizing and preventing the entry of harmful antigens into the body.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Epidermolysis Bullosa Acquisita (EBA) is a rare autoimmune blistering disorder characterized by the production of autoantibodies against type VII collagen, a protein that plays a crucial role in anchoring the epidermis to the dermis. This results in the formation of blisters and erosions on the skin and mucous membranes, particularly in areas subjected to friction or trauma.

EBA can be classified into two main forms: the mechanobullous form and the inflammatory form. The mechanobullous form is characterized by spontaneous blistering and mechanical fragility of the skin, while the inflammatory form presents with inflammation and erosions in the mucous membranes.

The onset of EBA can occur at any age, but it is more common in adults, particularly those over 40 years old. The diagnosis of EBA is based on clinical presentation, direct immunofluorescence (DIF) studies, and detection of autoantibodies against type VII collagen.

Treatment of EBA typically involves a combination of wound care, prevention of infection, and immunosuppressive therapy to control the production of autoantibodies. The prognosis of EBA varies depending on the severity and extent of skin and mucous membrane involvement, as well as the response to treatment.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Immunoblotting, also known as western blotting, is a laboratory technique used in molecular biology and immunogenetics to detect and quantify specific proteins in a complex mixture. This technique combines the electrophoretic separation of proteins by gel electrophoresis with their detection using antibodies that recognize specific epitopes (protein fragments) on the target protein.

The process involves several steps: first, the protein sample is separated based on size through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Next, the separated proteins are transferred onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric field. The membrane is then blocked with a blocking agent to prevent non-specific binding of antibodies.

After blocking, the membrane is incubated with a primary antibody that specifically recognizes the target protein. Following this, the membrane is washed to remove unbound primary antibodies and then incubated with a secondary antibody conjugated to an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (AP). The enzyme catalyzes a colorimetric or chemiluminescent reaction that allows for the detection of the target protein.

Immunoblotting is widely used in research and clinical settings to study protein expression, post-translational modifications, protein-protein interactions, and disease biomarkers. It provides high specificity and sensitivity, making it a valuable tool for identifying and quantifying proteins in various biological samples.

Histidine-tRNA ligase is an enzyme involved in the process of protein synthesis, specifically during the step of translation. Its primary function is to catalyze the attachment of the amino acid histidine to its corresponding transfer RNA (tRNA) molecule. This enzyme does this by forming a ester bond between the carboxyl group of histidine and the 3'-hydroxyl group of the tRNA, creating a charged histidine-tRNA complex.

The histidine-tRNA ligase enzyme plays a crucial role in maintaining the accuracy of protein synthesis, as it ensures that only the correct amino acid is attached to its specific tRNA. This helps to prevent errors in the genetic code and contributes to the proper folding and functioning of proteins.

The systematic name for this enzyme is "histidine:tRNA(His) ligase (AMP-forming)" and it belongs to the family of ligases, specifically the aminoacyl-tRNA ligases. The gene that encodes this enzyme in humans is known as HARS1 (Histidyl-tRNA Synthetase 1). Defects or mutations in this gene can lead to various genetic disorders, such as histidinemia and Charcot-Marie-Tooth disease.

Thyroid diseases are a group of conditions that affect the function and structure of the thyroid gland, a small butterfly-shaped endocrine gland located in the base of the neck. The thyroid gland produces hormones that regulate many vital functions in the body, including metabolism, growth, and development.

Thyroid diseases can be classified into two main categories: hypothyroidism and hyperthyroidism. Hypothyroidism occurs when the thyroid gland does not produce enough hormones, leading to symptoms such as fatigue, weight gain, cold intolerance, constipation, and depression. Hyperthyroidism, on the other hand, occurs when the thyroid gland produces too much hormone, resulting in symptoms such as weight loss, heat intolerance, rapid heart rate, tremors, and anxiety.

Other common thyroid diseases include:

1. Goiter: an enlargement of the thyroid gland that can be caused by iodine deficiency or autoimmune disorders.
2. Thyroid nodules: abnormal growths on the thyroid gland that can be benign or malignant.
3. Thyroid cancer: a malignant tumor of the thyroid gland that requires medical treatment.
4. Hashimoto's disease: an autoimmune disorder that causes chronic inflammation of the thyroid gland, leading to hypothyroidism.
5. Graves' disease: an autoimmune disorder that causes hyperthyroidism and can also lead to eye problems and skin changes.

Thyroid diseases are diagnosed through a combination of physical examination, medical history, blood tests, and imaging studies such as ultrasound or CT scan. Treatment options depend on the specific type and severity of the disease and may include medication, surgery, or radioactive iodine therapy.

Thyroiditis is a general term that refers to inflammation of the thyroid gland. It can be caused by various factors such as infections, autoimmune disorders, or medications. Depending on the cause and severity, thyroiditis may lead to overproduction (hyperthyroidism) or underproduction (hypothyroidism) of thyroid hormones, or it can result in a temporary or permanent loss of thyroid function.

There are several types of thyroiditis, including:

1. Hashimoto's thyroiditis - an autoimmune disorder where the body attacks and damages the thyroid gland, leading to hypothyroidism.
2. Subacute granulomatous thyroiditis (De Quervain's thyroiditis) - often follows a viral infection and results in painful inflammation of the thyroid gland, causing hyperthyroidism followed by hypothyroidism.
3. Silent thyroiditis - an autoimmune disorder similar to Hashimoto's thyroiditis but without symptoms like pain or tenderness; it can cause temporary hyperthyroidism and later hypothyroidism.
4. Postpartum thyroiditis - occurs in women after childbirth, causing inflammation of the thyroid gland leading to hyperthyroidism followed by hypothyroidism.
5. Acute suppurative thyroiditis - a rare bacterial infection that causes painful swelling and redness of the thyroid gland, usually requiring antibiotics for treatment.

Symptoms of thyroiditis depend on whether it leads to hyperthyroidism or hypothyroidism. Hyperthyroidism symptoms include rapid heartbeat, weight loss, heat intolerance, anxiety, and tremors. Hypothyroidism symptoms include fatigue, weight gain, cold intolerance, constipation, dry skin, and depression. Treatment varies depending on the type of thyroiditis and its severity.

Complement C1q is a protein that is part of the complement system, which is a group of proteins in the blood that help to eliminate pathogens and damaged cells from the body. C1q is the first component of the classical complement pathway, which is activated by the binding of C1q to antibodies that are attached to the surface of a pathogen or damaged cell.

C1q is composed of six identical polypeptide chains, each containing a collagen-like region and a globular head region. The globular heads can bind to various structures, including the Fc regions of certain antibodies, immune complexes, and some types of cells. When C1q binds to an activating surface, it triggers a series of proteolytic reactions that lead to the activation of other complement components and the formation of the membrane attack complex (MAC), which can punch holes in the membranes of pathogens or damaged cells, leading to their destruction.

In addition to its role in the immune system, C1q has also been found to have roles in various physiological processes, including tissue remodeling, angiogenesis, and the clearance of apoptotic cells. Dysregulation of the complement system, including abnormalities in C1q function, has been implicated in a variety of diseases, including autoimmune disorders, inflammatory diseases, and neurodegenerative conditions.

Mercuric chloride, also known as corrosive sublimate, is defined medically as a white or colorless crystalline compound used historically as a topical antiseptic and caustic. It has been used in the treatment of various skin conditions such as warts, thrush, and some parasitic infestations. However, its use is limited nowadays due to its high toxicity and potential for serious side effects, including kidney damage, digestive problems, and nervous system disorders. It is classified as a hazardous substance and should be handled with care.

Anti-glomerular basement membrane (anti-GBM) disease, also known as Goodpasture's disease, is a rare autoimmune disorder in which the body produces antibodies that attack the glomerular basement membrane (GBM), a component of the filtering units (glomeruli) in the kidneys. This leads to inflammation and damage to the glomeruli, causing hematuria (blood in urine), proteinuria (protein in urine), and potentially kidney failure. In some cases, anti-GBM disease may also affect the lungs, leading to coughing up blood (hemoptysis). The exact cause of anti-GBM disease is not fully understood, but it is believed to be related to both genetic and environmental factors. Treatment typically involves a combination of immunosuppressive therapy and plasma exchange.

Immunoglobulin (Ig) Fab fragments are the antigen-binding portions of an antibody that result from the digestion of the whole antibody molecule by enzymes such as papain. An antibody, also known as an immunoglobulin, is a Y-shaped protein produced by the immune system to identify and neutralize foreign substances like bacteria, viruses, or toxins. The antibody has two identical antigen-binding sites, located at the tips of the two shorter arms, which can bind specifically to a target antigen.

Fab fragments are formed when an antibody is cleaved by papain, resulting in two Fab fragments and one Fc fragment. Each Fab fragment contains one antigen-binding site, composed of a variable region (Fv) and a constant region (C). The Fv region is responsible for the specificity and affinity of the antigen binding, while the C region contributes to the effector functions of the antibody.

Fab fragments are often used in various medical applications, such as immunodiagnostics and targeted therapies, due to their ability to bind specifically to target antigens without triggering an immune response or other effector functions associated with the Fc region.

HLA-DQ beta-chains are a type of human leukocyte antigen (HLA) molecule found on the surface of cells in the human body. The HLAs are a group of proteins that play an important role in the immune system by helping the body recognize and respond to foreign substances, such as viruses and bacteria.

The HLA-DQ beta-chains are part of the HLA-DQ complex, which is a heterodimer made up of two polypeptide chains: an alpha chain (HLA-DQ alpha) and a beta chain (HLA-DQ beta). These chains are encoded by genes located on chromosome 6 in the major histocompatibility complex (MHC) region.

The HLA-DQ complex is involved in presenting peptides to CD4+ T cells, which are a type of white blood cell that plays a central role in the immune response. The peptides presented by the HLA-DQ complex are derived from proteins that have been processed within the cell, and they are used to help the CD4+ T cells recognize and respond to infected or abnormal cells.

Variations in the genes that encode the HLA-DQ beta-chains can affect an individual's susceptibility to certain diseases, including autoimmune disorders and infectious diseases.

HLA-DQ antigens are a type of human leukocyte antigen (HLA) that are found on the surface of cells in our body. They are a part of the major histocompatibility complex (MHC) class II molecules, which play a crucial role in the immune system by presenting pieces of proteins from outside the cell to CD4+ T cells, also known as helper T cells. This presentation process is essential for initiating an appropriate immune response against potentially harmful pathogens such as bacteria and viruses.

HLA-DQ antigens are encoded by genes located on chromosome 6p21.3 in the HLA region. Each individual inherits a pair of HLA-DQ genes, one from each parent, which can result in various combinations of HLA-DQ alleles. These genetic variations contribute to the diversity of immune responses among different individuals.

HLA-DQ antigens consist of two noncovalently associated polypeptide chains: an alpha (DQA) chain and a beta (DQB) chain. There are several isotypes of HLA-DQ antigens, including DQ1, DQ2, DQ3, DQ4, DQ5, DQ6, DQ7, DQ8, and DQ9, which are determined by the specific combination of DQA and DQB alleles.

Certain HLA-DQ genotypes have been associated with an increased risk of developing certain autoimmune diseases, such as celiac disease (DQ2 and DQ8), type 1 diabetes (DQ2, DQ8), and rheumatoid arthritis (DQ4). Understanding the role of HLA-DQ antigens in these conditions can provide valuable insights into disease pathogenesis and potential therapeutic targets.

Addison disease, also known as primary adrenal insufficiency or hypocortisolism, is a rare endocrine disorder characterized by the dysfunction and underproduction of hormones produced by the adrenal glands, specifically cortisol and aldosterone. The adrenal glands are located on top of the kidneys and play a crucial role in regulating various bodily functions such as metabolism, blood pressure, stress response, and immune system function.

The primary cause of Addison disease is the destruction of more than 90% of the adrenal cortex, which is the outer layer of the adrenal glands responsible for hormone production. This damage can be due to an autoimmune disorder where the body's immune system mistakenly attacks and destroys the adrenal gland tissue, infections such as tuberculosis or HIV, cancer, genetic disorders, or certain medications.

The symptoms of Addison disease often develop gradually and may include fatigue, weakness, weight loss, decreased appetite, low blood pressure, darkening of the skin, and mood changes. In some cases, an acute crisis known as acute adrenal insufficiency or Addisonian crisis can occur, which is a medical emergency characterized by sudden and severe symptoms such as extreme weakness, confusion, dehydration, vomiting, diarrhea, low blood sugar, and coma.

Diagnosis of Addison disease typically involves blood tests to measure hormone levels, imaging studies such as CT scans or MRIs to assess the adrenal glands' size and structure, and stimulation tests to evaluate the adrenal glands' function. Treatment usually involves replacing the missing hormones with medications such as hydrocortisone, fludrocortisone, and sometimes mineralocorticoids. With proper treatment and management, individuals with Addison disease can lead normal and productive lives.

Rheumatic diseases are a group of disorders that cause pain, stiffness, and swelling in the joints, muscles, tendons, ligaments, or bones. They include conditions such as rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus (SLE), gout, ankylosing spondylitis, psoriatic arthritis, and many others. These diseases can also affect other body systems including the skin, eyes, lungs, heart, kidneys, and nervous system. Rheumatic diseases are often chronic and may be progressive, meaning they can worsen over time. They can cause significant pain, disability, and reduced quality of life if not properly diagnosed and managed. The exact causes of rheumatic diseases are not fully understood, but genetics, environmental factors, and immune system dysfunction are believed to play a role in their development.

Glomerulonephritis is a medical condition that involves inflammation of the glomeruli, which are the tiny blood vessel clusters in the kidneys that filter waste and excess fluids from the blood. This inflammation can impair the kidney's ability to filter blood properly, leading to symptoms such as proteinuria (protein in the urine), hematuria (blood in the urine), edema (swelling), hypertension (high blood pressure), and eventually kidney failure.

Glomerulonephritis can be acute or chronic, and it may occur as a primary kidney disease or secondary to other medical conditions such as infections, autoimmune disorders, or vasculitis. The diagnosis of glomerulonephritis typically involves a combination of medical history, physical examination, urinalysis, blood tests, and imaging studies, with confirmation often requiring a kidney biopsy. Treatment depends on the underlying cause and severity of the disease but may include medications to suppress inflammation, control blood pressure, and manage symptoms.

Pulmonary Alveolar Proteinosis (PAP) is a rare lung disorder characterized by the accumulation of surfactant, a lipoprotein complex that reduces surface tension within the alveoli, in the air sacs (alveoli) of the lungs. This accumulation can lead to difficulty breathing and reduced oxygen levels in the blood.

There are three types of PAP:

1. Congenital PAP: A very rare inherited form that affects infants and is caused by a genetic mutation that disrupts the production or function of granulocyte-macrophage colony-stimulating factor (GM-CSF), a protein important for the development and function of alveolar macrophages.

2. Secondary PAP: This form is associated with conditions that impair the clearance of surfactant by alveolar macrophages, such as hematologic disorders (e.g., leukemia), infections, exposure to inhaled irritants (e.g., silica dust), and certain medications.

3. Idiopathic PAP: The most common form, also known as autoimmune PAP, is caused by the development of autoantibodies against GM-CSF, which disrupts its function and leads to surfactant accumulation in the lungs.

Treatment for PAP may include whole lung lavage (WLL), a procedure where the affected lung is filled with saline solution and then drained to remove excess surfactant, as well as managing any underlying conditions. In some cases of idiopathic PAP, off-label use of inhaled GM-CSF has shown promise in improving symptoms and lung function.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

The Immunoglobulin (Ig) variable region is the antigen-binding part of an antibody, which is highly variable in its amino acid sequence and therefore specific to a particular epitope (the site on an antigen that is recognized by the antigen-binding site of an antibody). This variability is generated during the process of V(D)J recombination in the maturation of B cells, allowing for a diverse repertoire of antibodies to be produced and recognizing a wide range of potential pathogens.

The variable region is composed of several sub-regions including:

1. The heavy chain variable region (VH)
2. The light chain variable region (VL)
3. The heavy chain joining region (JH)
4. The light chain joining region (JL)

These regions are further divided into framework regions and complementarity-determining regions (CDRs). The CDRs, particularly CDR3, contain the most variability and are primarily responsible for antigen recognition.

Inbred strains of mice are defined as lines of mice that have been brother-sister mated for at least 20 consecutive generations. This results in a high degree of homozygosity, where the mice of an inbred strain are genetically identical to one another, with the exception of spontaneous mutations.

Inbred strains of mice are widely used in biomedical research due to their genetic uniformity and stability, which makes them useful for studying the genetic basis of various traits, diseases, and biological processes. They also provide a consistent and reproducible experimental system, as compared to outbred or genetically heterogeneous populations.

Some commonly used inbred strains of mice include C57BL/6J, BALB/cByJ, DBA/2J, and 129SvEv. Each strain has its own unique genetic background and phenotypic characteristics, which can influence the results of experiments. Therefore, it is important to choose the appropriate inbred strain for a given research question.

Myasthenia Gravis is a long-term autoimmune neuromuscular disorder that leads to muscle weakness. It occurs when communication between nerves and muscles is disrupted at the nerve endings, resulting in fewer impulses being transmitted to activate the muscles. This results in muscle weakness and rapid fatigue. The condition can affect any voluntary muscle, but it most commonly affects muscles of the eyes, face, throat, and limbs. Symptoms may include drooping eyelids (ptosis), double vision (diplopia), difficulty swallowing, slurred speech, and weakness in the arms and legs. The severity of symptoms can vary greatly from person to person, ranging from mild to life-threatening.

The disorder is caused by an abnormal immune system response that produces antibodies against the acetylcholine receptors in the postsynaptic membrane of the neuromuscular junction. These antibodies block or destroy the receptors, which leads to a decrease in the number of available receptors for nerve impulses to activate the muscle fibers.

Myasthenia Gravis can be treated with medications that improve communication between nerves and muscles, such as cholinesterase inhibitors, immunosuppressants, and plasmapheresis or intravenous immunoglobulin (IVIG) to remove the harmful antibodies from the blood. With proper treatment, many people with Myasthenia Gravis can lead normal or nearly normal lives.

An immunoassay is a biochemical test that measures the presence or concentration of a specific protein, antibody, or antigen in a sample using the principles of antibody-antigen reactions. It is commonly used in clinical laboratories to diagnose and monitor various medical conditions such as infections, hormonal disorders, allergies, and cancer.

Immunoassays typically involve the use of labeled reagents, such as enzymes, radioisotopes, or fluorescent dyes, that bind specifically to the target molecule. The amount of label detected is proportional to the concentration of the target molecule in the sample, allowing for quantitative analysis.

There are several types of immunoassays, including enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), fluorescence immunoassay (FIA), and chemiluminescent immunoassay (CLIA). Each type has its own advantages and limitations, depending on the sensitivity, specificity, and throughput required for a particular application.

Immunoglobulins, also known as antibodies, are proteins produced by the immune system to recognize and neutralize foreign substances like pathogens or antigens. The term "immunoglobulin isotypes" refers to the different classes of immunoglobulins that share a similar structure but have distinct functions and properties.

There are five main isotypes of immunoglobulins in humans, namely IgA, IgD, IgE, IgG, and IgM. Each isotype has a unique heavy chain constant region (CH) that determines its effector functions, such as binding to Fc receptors, complement activation, or protection against pathogens.

IgA is primarily found in external secretions like tears, saliva, and breast milk, providing localized immunity at mucosal surfaces. IgD is expressed on the surface of B cells and plays a role in their activation and differentiation. IgE is associated with allergic responses and binds to mast cells and basophils, triggering the release of histamine and other mediators of inflammation.

IgG is the most abundant isotype in serum and has several subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their effector functions. IgG can cross the placenta, providing passive immunity to the fetus. IgM is the first antibody produced during an immune response and is primarily found in the bloodstream, where it forms large pentameric complexes that are effective at agglutination and complement activation.

Overall, immunoglobulin isotypes play a crucial role in the adaptive immune response, providing specific and diverse mechanisms for recognizing and neutralizing foreign substances.

Cryoglobulins are immunoglobulins (a type of antibody) that precipitate or become insoluble at reduced temperatures, typically below 37°C (98.6°F), and re-dissolve when rewarmed. They can be found in various clinical conditions such as infections, inflammatory diseases, and lymphoproliferative disorders.

The presence of cryoglobulins in the blood can lead to a variety of symptoms, including purpura (a type of skin rash), arthralgias (joint pain), neuropathy (nerve damage), and glomerulonephritis (kidney inflammation). The diagnosis of cryoglobulinemia is made by detecting the presence of cryoglobulins in the serum, which requires special handling and processing of the blood sample. Treatment of cryoglobulinemia depends on the underlying cause and may include medications such as corticosteroids, immunosuppressive agents, or targeted therapies.

Acantholysis is a medical term that refers to the separation of the cells in the upper layer of the skin (the epidermis), specifically between the pickle cell layer (stratum spinosum) and the granular cell layer (stratum granulosum). This separation results in the formation of distinct, round, or oval cells called acantholytic cells, which are typically seen in certain skin conditions.

Acantholysis is a characteristic feature of several skin disorders, including:

1. Pemphigus vulgaris: A rare autoimmune blistering disorder where the immune system produces antibodies against desmoglein-1 and -3 proteins, leading to acantholysis and formation of flaccid blisters.
2. Pemphigus foliaceus: Another autoimmune blistering disorder that specifically targets desmoglein-1 protein, causing superficial blisters and erosions on the skin.
3. Hailey-Hailey disease (familial benign chronic pemphigus): An autosomal dominant genetic disorder affecting ATP2C1 gene, leading to defective calcium transport and abnormal keratinocyte adhesion, resulting in acantholysis and recurrent skin eruptions.
4. Darier's disease (keratosis follicularis): An autosomal dominant genetic disorder affecting ATP2A2 gene, causing dysfunction of calcium transport and abnormal keratinocyte adhesion, resulting in acantholysis and characteristic papular or keratotic skin lesions.
5. Grover's disease (transient acantholytic dermatosis): An acquired skin disorder of unknown cause, characterized by the development of pruritic, red, and scaly papules and vesicles due to acantholysis.

The presence of acantholysis in these conditions can be confirmed through histopathological examination of skin biopsies.

Molecular mimicry is a phenomenon in immunology where structurally similar molecules from different sources can induce cross-reactivity of the immune system. This means that an immune response against one molecule also recognizes and responds to another molecule due to their structural similarity, even though they may be from different origins.

In molecular mimicry, a foreign molecule (such as a bacterial or viral antigen) shares sequence or structural homology with self-antigens present in the host organism. The immune system might not distinguish between these two similar molecules, leading to an immune response against both the foreign and self-antigens. This can potentially result in autoimmune diseases, where the immune system attacks the body's own tissues or organs.

Molecular mimicry has been implicated as a possible mechanism for the development of several autoimmune disorders, including rheumatic fever, Guillain-Barré syndrome, and multiple sclerosis. However, it is essential to note that molecular mimicry alone may not be sufficient to trigger an autoimmune response; other factors like genetic predisposition and environmental triggers might also play a role in the development of these conditions.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Antibody affinity refers to the strength and specificity of the interaction between an antibody and its corresponding antigen at a molecular level. It is a measure of how strongly and selectively an antibody binds to its target antigen. A higher affinity indicates a more stable and specific binding, while a lower affinity suggests weaker and less specific interactions. Affinity is typically measured in terms of the dissociation constant (Kd), which describes the concentration of antigen needed to achieve half-maximal binding to an antibody. Generally, a smaller Kd value corresponds to a higher affinity, indicating a tighter and more selective bond. This parameter is crucial in the development of diagnostic and therapeutic applications, such as immunoassays and targeted therapies, where high-affinity antibodies are preferred for improved sensitivity and specificity.

Neuromyelitis optica (NMO), also known as Devic's disease, is an autoimmune disorder that affects the central nervous system (CNS). It primarily causes inflammation and damage to the optic nerves (which transmit visual signals from the eye to the brain) and the spinal cord. This results in optic neuritis (inflammation of the optic nerve, causing vision loss) and myelitis (inflammation of the spinal cord, leading to motor, sensory, and autonomic dysfunction).

A key feature of NMO is the presence of autoantibodies against aquaporin-4 (AQP4-IgG), a water channel protein found in astrocytes (a type of glial cell) in the CNS. These antibodies play a crucial role in the development of the disease, as they target and damage the AQP4 proteins, leading to inflammation, demyelination (loss of the protective myelin sheath around nerve fibers), and subsequent neurological dysfunction.

NMO is distinct from multiple sclerosis (MS), another autoimmune disorder affecting the CNS, as it has different clinical features, radiological findings, and treatment responses. However, NMO can sometimes be misdiagnosed as MS due to overlapping symptoms in some cases. Accurate diagnosis of NMO is essential for appropriate management and treatment, which often includes immunosuppressive therapies to control the autoimmune response and prevent further damage to the nervous system.

Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by the presence of antiphospholipid antibodies in the blood. These antibodies are directed against phospholipids, a type of fat molecule found in cell membranes and plasma lipoproteins. The presence of these antibodies can lead to abnormal blood clotting, which can cause serious complications such as stroke, heart attack, deep vein thrombosis, and pulmonary embolism.

APS can occur either on its own (primary APS) or in conjunction with other autoimmune disorders, such as systemic lupus erythematosus (secondary APS). The exact cause of APS is not fully understood, but it is believed to involve a combination of genetic and environmental factors.

Symptoms of APS can vary widely depending on the location and severity of the blood clots. They may include:

* Recurrent miscarriages or stillbirths
* Blood clots in the legs, lungs, or other parts of the body
* Skin ulcers or lesions
* Headaches, seizures, or stroke-like symptoms
* Kidney problems
* Heart valve abnormalities

Diagnosis of APS typically involves blood tests to detect the presence of antiphospholipid antibodies. Treatment may include medications to prevent blood clots, such as anticoagulants and antiplatelet agents, as well as management of any underlying autoimmune disorders.

L-Citrulline is a non-essential amino acid that plays a role in the urea cycle, which is the process by which the body eliminates toxic ammonia from the bloodstream. It is called "non-essential" because it can be synthesized by the body from other compounds, such as L-Ornithine and carbamoyl phosphate.

Citrulline is found in some foods, including watermelon, bitter melon, and certain types of sausage. It is also available as a dietary supplement. In the body, citrulline is converted to another amino acid called L-Arginine, which is involved in the production of nitric oxide, a molecule that helps dilate blood vessels and improve blood flow.

Citrulline has been studied for its potential benefits on various aspects of health, including exercise performance, cardiovascular function, and immune system function. However, more research is needed to confirm these potential benefits and establish safe and effective dosages.

The Islets of Langerhans are clusters of specialized cells within the pancreas, an organ located behind the stomach. These islets are named after Paul Langerhans, who first identified them in 1869. They constitute around 1-2% of the total mass of the pancreas and are distributed throughout its substance.

The Islets of Langerhans contain several types of cells, including:

1. Alpha (α) cells: These produce and release glucagon, a hormone that helps to regulate blood sugar levels by promoting the conversion of glycogen to glucose in the liver when blood sugar levels are low.
2. Beta (β) cells: These produce and release insulin, a hormone that promotes the uptake and utilization of glucose by cells throughout the body, thereby lowering blood sugar levels.
3. Delta (δ) cells: These produce and release somatostatin, a hormone that inhibits the release of both insulin and glucagon and helps regulate their secretion in response to changing blood sugar levels.
4. PP cells (gamma or γ cells): These produce and release pancreatic polypeptide, which plays a role in regulating digestive enzyme secretion and gastrointestinal motility.

Dysfunction of the Islets of Langerhans can lead to various endocrine disorders, such as diabetes mellitus, where insulin-producing beta cells are damaged or destroyed, leading to impaired blood sugar regulation.

Idiopathic Thrombocytopenic Purpura (ITP) is a medical condition characterized by a low platelet count (thrombocytopenia) in the blood without an identifiable cause. Platelets are small blood cells that help your body form clots to stop bleeding. When you don't have enough platelets, you may bleed excessively or spontaneously, causing purpura, which refers to purple-colored spots on the skin that result from bleeding under the skin.

In ITP, the immune system mistakenly attacks and destroys platelets, leading to their decreased levels in the blood. This condition can occur at any age but is more common in children following a viral infection, and in adults after the age of 30-40 years. Symptoms may include easy or excessive bruising, prolonged bleeding from cuts, spontaneous bleeding from the gums or nose, blood blisters, and small red or purple spots on the skin (petechiae).

Depending on the severity of thrombocytopenia and the presence of bleeding symptoms, ITP treatment may include observation, corticosteroids, intravenous immunoglobulin (IVIG), or other medications that modify the immune system's response. In severe cases or when other treatments are ineffective, surgical removal of the spleen (splenectomy) might be considered.

Wegener Granulomatosis is a rare, chronic granulomatous vasculitis that affects small and medium-sized blood vessels. It is also known as granulomatosis with polyangiitis (GPA). The disease primarily involves the respiratory tract (nose, sinuses, trachea, and lungs) and kidneys but can affect other organs as well.

The characteristic features of Wegener Granulomatosis include necrotizing granulomas, vasculitis, and inflammation of the blood vessel walls. These abnormalities can lead to various symptoms such as cough, shortness of breath, nosebleeds, sinus congestion, skin lesions, joint pain, and kidney problems.

The exact cause of Wegener Granulomatosis is unknown, but it is believed to be an autoimmune disorder where the body's immune system mistakenly attacks its own tissues and organs. The diagnosis of Wegener Granulomatosis typically involves a combination of clinical symptoms, laboratory tests, imaging studies, and biopsy findings. Treatment usually includes immunosuppressive therapy to control the inflammation and prevent further damage to the affected organs.

A hybridoma is a type of hybrid cell that is created in a laboratory by fusing a cancer cell (usually a B cell) with a normal immune cell. The resulting hybrid cell combines the ability of the cancer cell to grow and divide indefinitely with the ability of the immune cell to produce antibodies, which are proteins that help the body fight infection.

Hybridomas are commonly used to produce monoclonal antibodies, which are identical copies of a single antibody produced by a single clone of cells. These antibodies can be used for a variety of purposes, including diagnostic tests and treatments for diseases such as cancer and autoimmune disorders.

To create hybridomas, B cells are first isolated from the spleen or blood of an animal that has been immunized with a specific antigen (a substance that triggers an immune response). The B cells are then fused with cancer cells using a chemical agent such as polyethylene glycol. The resulting hybrid cells are called hybridomas and are grown in culture medium, where they can be selected for their ability to produce antibodies specific to the antigen of interest. These antibody-producing hybridomas can then be cloned to produce large quantities of monoclonal antibodies.

Aquaporin 4 (AQP4) is a water channel protein that is primarily found in the membranes of astrocytes, which are a type of glial cell in the central nervous system. AQP4 plays a crucial role in the regulation of water homeostasis and the clearance of excess fluid from the brain and spinal cord. It also facilitates the rapid movement of water across the blood-brain barrier and between astrocytes, which is important for maintaining proper neuronal function and protecting the brain from edema or swelling.

Mutations in the AQP4 gene can lead to various neurological disorders, such as neurodegenerative diseases and neuromyelitis optica spectrum disorder (NMOSD), a severe autoimmune condition that affects the optic nerves and spinal cord. In NMOSD, the immune system mistakenly attacks AQP4 proteins, causing inflammation, demyelination, and damage to the nervous tissue.

Immunoglobulins, Thyroid-Stimulating (TSI), are autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the surface of thyroid cells. These antibodies mimic the action of TSH and stimulate the growth and function of the thyroid gland, leading to excessive production of thyroid hormones. This results in a condition known as Graves' disease, which is characterized by hyperthyroidism, goiter, and sometimes ophthalmopathy (eye problems). The presence and titer of TSIs are used in the diagnosis of Graves' disease.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Immunoglobulins (Igs), also known as antibodies, are glycoprotein molecules produced by the immune system's B cells in response to the presence of foreign substances, such as bacteria, viruses, and toxins. These Y-shaped proteins play a crucial role in identifying and neutralizing pathogens and other antigens, thereby protecting the body against infection and disease.

Immunoglobulins are composed of four polypeptide chains: two identical heavy chains and two identical light chains, held together by disulfide bonds. The variable regions of these chains form the antigen-binding sites, which recognize and bind to specific epitopes on antigens. Based on their heavy chain type, immunoglobulins are classified into five main isotypes or classes: IgA, IgD, IgE, IgG, and IgM. Each class has distinct functions in the immune response, such as providing protection in different body fluids and tissues, mediating hypersensitivity reactions, and aiding in the development of immunological memory.

In medical settings, immunoglobulins can be administered therapeutically to provide passive immunity against certain diseases or to treat immune deficiencies, autoimmune disorders, and other conditions that may benefit from immunomodulation.

Transglutaminases are a family of enzymes that catalyze the post-translational modification of proteins by forming isopeptide bonds between the carboxamide group of peptide-bound glutamine residues and the ε-amino group of lysine residues. This process is known as transamidation or cross-linking. Transglutaminases play important roles in various biological processes, including cell signaling, differentiation, apoptosis, and tissue repair. There are several types of transglutaminases, such as tissue transglutaminase (TG2), factor XIII, and blood coagulation factor XIIIA. Abnormal activity or expression of these enzymes has been implicated in various diseases, such as celiac disease, neurodegenerative disorders, and cancer.

An antigen is a substance (usually a protein) that is recognized as foreign by the immune system and stimulates an immune response, leading to the production of antibodies or activation of T-cells. Antigens can be derived from various sources, including bacteria, viruses, fungi, parasites, and tumor cells. They can also come from non-living substances such as pollen, dust mites, or chemicals.

Antigens contain epitopes, which are specific regions on the antigen molecule that are recognized by the immune system. The immune system's response to an antigen depends on several factors, including the type of antigen, its size, and its location in the body.

In general, antigens can be classified into two main categories:

1. T-dependent antigens: These require the help of T-cells to stimulate an immune response. They are typically larger, more complex molecules that contain multiple epitopes capable of binding to both MHC class II molecules on antigen-presenting cells and T-cell receptors on CD4+ T-cells.
2. T-independent antigens: These do not require the help of T-cells to stimulate an immune response. They are usually smaller, simpler molecules that contain repetitive epitopes capable of cross-linking B-cell receptors and activating them directly.

Understanding antigens and their properties is crucial for developing vaccines, diagnostic tests, and immunotherapies.

An epitope is a specific region on an antigen (a substance that triggers an immune response) that is recognized and bound by an antibody or a B-lymphocyte (a type of white blood cell that produces antibodies). Epitopes are also sometimes referred to as antigenic determinants.

B-lymphocytes, or B cells, are a type of immune cell that plays a key role in the humoral immune response. They produce and secrete antibodies, which are proteins that recognize and bind to specific epitopes on antigens. When a B cell encounters an antigen, it binds to the antigen at its surface receptor, which recognizes a specific epitope on the antigen. This binding activates the B cell, causing it to divide and differentiate into plasma cells, which produce and secrete large amounts of antibody that is specific for the epitope on the antigen.

The ability of an antibody or a B cell to recognize and bind to a specific epitope is determined by the structure of the variable region of the antibody or B cell receptor. The variable region is made up of several loops of amino acids, called complementarity-determining regions (CDRs), that form a binding site for the antigen. The CDRs are highly variable in sequence and length, allowing them to recognize and bind to a wide variety of different epitopes.

In summary, an epitope is a specific region on an antigen that is recognized and bound by an antibody or a B-lymphocyte. The ability of an antibody or a B cell to recognize and bind to a specific epitope is determined by the structure of the variable region of the antibody or B cell receptor.

Cyclic peptides are a type of peptides in which the N-terminus and C-terminus of the peptide chain are linked to form a circular structure. This is in contrast to linear peptides, which have a straight peptide backbone with a free N-terminus and C-terminus. The cyclization of peptides can occur through various mechanisms, including the formation of an amide bond between the N-terminal amino group and the C-terminal carboxylic acid group (head-to-tail cyclization), or through the formation of a bond between side chain functional groups.

Cyclic peptides have unique structural and chemical properties that make them valuable in medical and therapeutic applications. For example, they are more resistant to degradation by enzymes compared to linear peptides, which can increase their stability and half-life in the body. Additionally, the cyclic structure allows for greater conformational rigidity, which can enhance their binding affinity and specificity to target molecules.

Cyclic peptides have been explored as potential therapeutics for a variety of diseases, including cancer, infectious diseases, and neurological disorders. They have also been used as tools in basic research to study protein-protein interactions and cell signaling pathways.

Beta-1 adrenergic receptors (also known as β1-adrenergic receptors) are a type of G protein-coupled receptor found in the cell membrane. They are activated by the catecholamines, particularly noradrenaline (norepinephrine) and adrenaline (epinephrine), which are released by the sympathetic nervous system as part of the "fight or flight" response.

When a catecholamine binds to a β1-adrenergic receptor, it triggers a series of intracellular signaling events that ultimately lead to an increase in the rate and force of heart contractions, as well as an increase in renin secretion from the kidneys. These effects help to prepare the body for physical activity by increasing blood flow to the muscles and improving the efficiency of the cardiovascular system.

In addition to their role in the regulation of cardiovascular function, β1-adrenergic receptors have been implicated in a variety of physiological processes, including lipolysis (the breakdown of fat), glucose metabolism, and the regulation of mood and cognition.

Dysregulation of β1-adrenergic receptor signaling has been linked to several pathological conditions, including heart failure, hypertension, and anxiety disorders. As a result, β1-adrenergic receptors are an important target for the development of therapeutics used in the treatment of these conditions.

Phospholipase A2 (PLA2) receptors are a group of proteins that are involved in the signaling pathways related to inflammation and immune response. PLA2 is an enzyme that cleaves phospholipids in cell membranes to produce arachidonic acid, which is a precursor for various eicosanoids, such as prostaglandins, leukotrienes, and thromboxanes, that play crucial roles in the inflammatory response.

There are two main types of PLA2 receptors: secreted PLA2 (sPLA2) receptors and intracellular PLA2 (iPLA2) receptors. The sPLA2 receptors are found on the cell surface and mediate the binding and internalization of sPLA2 enzymes, which are released from activated immune cells during inflammation. The iPLA2 receptors, on the other hand, are located inside the cell and regulate the intracellular levels of arachidonic acid and other lipid mediators.

Abnormal activation or regulation of PLA2 receptors has been implicated in various pathological conditions, including inflammatory diseases, neurodegenerative disorders, and cancer. Therefore, understanding the structure, function, and regulation of these receptors is important for developing new therapeutic strategies to target these diseases.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

The spleen is an organ in the upper left side of the abdomen, next to the stomach and behind the ribs. It plays multiple supporting roles in the body:

1. It fights infection by acting as a filter for the blood. Old red blood cells are recycled in the spleen, and platelets and white blood cells are stored there.
2. The spleen also helps to control the amount of blood in the body by removing excess red blood cells and storing platelets.
3. It has an important role in immune function, producing antibodies and removing microorganisms and damaged red blood cells from the bloodstream.

The spleen can be removed without causing any significant problems, as other organs take over its functions. This is known as a splenectomy and may be necessary if the spleen is damaged or diseased.

B-lymphocytes, also known as B-cells, are a type of white blood cell that plays a central role in the humoral immune response. They are responsible for producing antibodies, which are proteins that help to neutralize or destroy pathogens such as viruses and bacteria.

B-lymphocyte subsets refer to distinct populations of B-cells that can be identified based on their surface receptors and functional characteristics. Some common B-lymphocyte subsets include:

1. Naive B-cells: These are mature B-cells that have not yet been exposed to an antigen. They express surface receptors called immunoglobulin M (IgM) and immunoglobulin D (IgD).
2. Memory B-cells: These are B-cells that have previously encountered an antigen and mounted an immune response. They express high levels of surface immunoglobulins and can quickly differentiate into antibody-secreting plasma cells upon re-exposure to the same antigen.
3. Plasma cells: These are fully differentiated B-cells that secrete large amounts of antibodies in response to an antigen. They lack surface immunoglobulins and do not undergo further division.
4. Regulatory B-cells: These are a subset of B-cells that modulate the immune response by producing anti-inflammatory cytokines and suppressing the activation of other immune cells.
5. B-1 cells: These are a population of B-cells that are primarily found in the peripheral blood and mucosal tissues. They produce natural antibodies that provide early protection against pathogens and help to maintain tissue homeostasis.

Understanding the different B-lymphocyte subsets and their functions is important for diagnosing and treating immune-related disorders, including autoimmune diseases, infections, and cancer.

Antiphospholipid antibodies are a type of autoantibody that targets and binds to certain proteins found in the blood that attach to phospholipids (a type of fat molecule). These antibodies are associated with an increased risk of developing antiphospholipid syndrome, a disorder characterized by abnormal blood clotting.

There are several types of antiphospholipid antibodies, including:

1. Lupus anticoagulant: This type of antiphospholipid antibody can interfere with blood clotting tests and may increase the risk of thrombosis (blood clots) in both arteries and veins.
2. Anticardiolipin antibodies: These antibodies target a specific phospholipid called cardiolipin, which is found in the inner membrane of mitochondria. High levels of anticardiolipin antibodies are associated with an increased risk of thrombosis and pregnancy complications such as recurrent miscarriage.
3. Anti-β2 glycoprotein I antibodies: These antibodies target a protein called β2 glycoprotein I, which binds to negatively charged phospholipids on the surface of cells. High levels of anti-β2 glycoprotein I antibodies are associated with an increased risk of thrombosis and pregnancy complications.

The exact mechanism by which antiphospholipid antibodies cause blood clotting is not fully understood, but it is thought to involve the activation of platelets, the inhibition of natural anticoagulants, and the promotion of inflammation. Antiphospholipid syndrome can be treated with medications that thin the blood or prevent clots from forming, such as aspirin, warfarin, or heparin.

Self tolerance, also known as immunological tolerance or biological tolerance, is a critical concept in the field of immunology. It refers to the ability of the immune system to distinguish between "self" and "non-self" antigens and to refrain from mounting an immune response against its own cells, tissues, and organs.

In other words, self tolerance is the state of immune non-responsiveness to self antigens, which are molecules or structures that are normally present in an individual's own body. This ensures that the immune system does not attack the body's own cells and cause autoimmune diseases.

Self tolerance is established during the development and maturation of the immune system, particularly in the thymus gland for T cells and the bone marrow for B cells. During this process, immature immune cells that recognize self antigens are either eliminated or rendered tolerant to them, so that they do not mount an immune response against the body's own tissues.

Maintaining self tolerance is essential for the proper functioning of the immune system and for preventing the development of autoimmune diseases, in which the immune system mistakenly attacks the body's own cells and tissues.

A Radioimmunoprecipitation Assay (RIA) is a highly sensitive laboratory technique used to measure the presence and concentration of specific antigens or antibodies in a sample. This technique combines the use of radioisotopes, immunochemistry, and precipitation reactions.

In an RIA, a known quantity of a radioactively labeled antigen (or hapten) is incubated with a sample containing an unknown amount of antibody (or vice versa). If the specific antigen-antibody pair is present in the sample, they will bind together to form an immune complex. This complex can then be selectively precipitated from the solution using a second antibody that recognizes and binds to the first antibody, thus forming an insoluble immune precipitate.

The amount of radioactivity present in the precipitate is directly proportional to the concentration of antigen or antibody in the sample. By comparing this value to a standard curve generated with known concentrations of antigen or antibody, the unknown concentration can be accurately determined. RIAs have been widely used in research and clinical settings for the quantification of various hormones, drugs, vitamins, and other biomolecules. However, due to safety concerns and regulatory restrictions associated with radioisotopes, non-radioactive alternatives like Enzyme-Linked Immunosorbent Assays (ELISAs) have become more popular in recent years.

Nuclear antigens are proteins or other molecules found in the nucleus of a cell that can stimulate an immune response and produce antibodies when they are recognized as foreign by the body's immune system. These antigens are normally located inside the cell and are not typically exposed to the immune system, but under certain circumstances, such as during cell death or damage, they may be released and become targets of the immune system.

Nuclear antigens can play a role in the development of some autoimmune diseases, such as systemic lupus erythematosus (SLE), where the body's immune system mistakenly attacks its own cells and tissues. In SLE, nuclear antigens such as double-stranded DNA and nucleoproteins are common targets of the abnormal immune response.

Testing for nuclear antigens is often used in the diagnosis and monitoring of autoimmune diseases. For example, a positive test for anti-double-stranded DNA antibodies is a specific indicator of SLE and can help confirm the diagnosis. However, it's important to note that not all people with SLE will have positive nuclear antigen tests, and other factors must also be considered in making a diagnosis.

Lupus vasculitis in the central nervous system (CNS) is a specific type of inflammation that occurs in the blood vessels of the brain and/or spinal cord due to systemic lupus erythematosus (SLE), an autoimmune disease. In this condition, the body's immune system mistakenly attacks healthy tissue, including blood vessel walls, leading to their inflammation and damage.

CNS vasculitis can cause various neurological symptoms such as headaches, seizures, cognitive impairment, mood changes, stroke-like episodes, and even loss of consciousness. The diagnosis typically involves a combination of clinical evaluation, imaging studies (such as MRI or angiography), and laboratory tests to detect the presence of autoantibodies associated with SLE. Treatment usually includes immunosuppressive therapy to control the inflammation and prevent further damage to the blood vessels in the CNS.

HLA-DR3 antigen is a type of human leukocyte antigen (HLA) class II histocompatibility antigen. HLAs are proteins found on the surface of cells that help the immune system distinguish between the body's own cells and foreign substances. The HLA-DR3 antigen is encoded by the DRB1*03:01 gene and is commonly found in individuals with certain autoimmune diseases, such as rheumatoid arthritis, type 1 diabetes, and celiac disease.

The HLA-DR3 antigen plays a role in presenting pieces of proteins (peptides) to CD4+ T cells, which are a type of white blood cell that helps coordinate the immune response. The presentation of specific peptides by the HLA-DR3 antigen can lead to an abnormal immune response in some individuals, resulting in the development of autoimmune diseases.

It's important to note that having the HLA-DR3 antigen does not guarantee that a person will develop an autoimmune disease, as other genetic and environmental factors also play a role.

Celiac disease is a genetic autoimmune disorder in which the consumption of gluten, a protein found in wheat, barley, and rye, leads to damage in the small intestine. In people with celiac disease, their immune system reacts to gluten by attacking the lining of the small intestine, leading to inflammation and destruction of the villi - finger-like projections that help absorb nutrients from food.

This damage can result in various symptoms such as diarrhea, bloating, fatigue, anemia, and malnutrition. Over time, if left untreated, celiac disease can lead to serious health complications, including osteoporosis, infertility, neurological disorders, and even certain types of cancer.

The only treatment for celiac disease is a strict gluten-free diet, which involves avoiding all foods, beverages, and products that contain gluten. With proper management, individuals with celiac disease can lead healthy lives and prevent further intestinal damage and related health complications.

Immunoglobulin heavy chains are proteins that make up the framework of antibodies, which are Y-shaped immune proteins. These heavy chains, along with light chains, form the antigen-binding sites of an antibody, which recognize and bind to specific foreign substances (antigens) in order to neutralize or remove them from the body.

The heavy chain is composed of a variable region, which contains the antigen-binding site, and constant regions that determine the class and function of the antibody. There are five classes of immunoglobulins (IgA, IgD, IgE, IgG, and IgM) that differ in their heavy chain constant regions and therefore have different functions in the immune response.

Immunoglobulin heavy chains are synthesized by B cells, a type of white blood cell involved in the adaptive immune response. The genetic rearrangement of immunoglobulin heavy chain genes during B cell development results in the production of a vast array of different antibodies with unique antigen-binding sites, allowing for the recognition and elimination of a wide variety of pathogens.

... (or simply antithyroid antibodies) are autoantibodies targeted against one or more components on the ... Anti-Na+/I− symporter antibodies are a more recent discovery of possible thyroid autoantibodies and their role in thyroid ... Anti-TPO antibodies are the most common anti-thyroid autoantibody, present in approximately 90% of Hashimoto's thyroiditis, 75 ... The most clinically relevant anti-thyroid autoantibodies are anti-thyroid peroxidase antibodies (anti-TPO antibodies, TPOAb), ...
... are autoantibodies (antibodies directed against a person's own protein) targeting adrenergic ... autoantibodies to these receptors have been tied to many different heart diseases. Autoantibodies to beta1-adrenergic receptors ... Adrenergic receptor autoantibodies The adrenergic receptors (or adrenoreceptors) are a class of cell membrane-bound protein ... Adrenergic autoantibodies have been linked to Buerger's disease (thromboangiitis obliterans). Buerger's disease is a rare ...
The role of autoantibodies in normal immune function is also a subject of scientific research. The causes of autoantibody ... Those who have more than one autoimmune disorder may have several detectable autoantibodies. Whether a particular autoantibody ... the autoantibodies may develop. Systemic autoantibody tests are used to: Help diagnose systemic autoimmune disorders. Help ... leading to production of pathological autoantibodies. Autoantibodies may also play a nonpathological role; for instance they ...
714-5. ISBN 978-1-4557-2684-4. American Association for Clinical Chemistry (13 November 2019). "Autoantibodies". Lab Tests ... autoantibodies). All people have different immunology graphs.[citation needed] A 2016 research paper by Metcalf et al., amongst ...
Konstandoulakis MM, Syrigos KN, Leandros M, Charalabopoulos A, Manouras A, Golematis BC (1998). "Autoantibodies in the serum of ... 2005). "Significance of smooth muscle/anti-actin autoantibodies in celiac disease". Acta Gastroenterol. Latinoam. 35 (2): 83-93 ...
Yehuda Shoenfeld; M. Eric Gershwin; Pier-Luigi Meroni (2007). Autoantibodies. Elsevier. pp. 98-. ISBN 978-0-444-52763-9. ... Articles with short description, Short description is different from Wikidata, Autoantibodies). ...
Shojania AM, Meilleur G, Alvi AW (1987). "An autoantibody with potent antithrombin activity whose action could be inhibited by ... Shibata S, Sasaki T, Harpel P, Fillit H (1994). "Autoantibodies to vascular heparan sulfate proteoglycan in systemic lupus ... Anti-thrombin antibodies are autoantibodies directed against thrombin that may constitute a fraction of lupus anticoagulant and ...
Wesierska-Gadek J, Hohenuer H, Hitchman E, Penner E (1996). "Autoantibodies against nucleoporin p62 constitute a novel marker ...
IgG3 Caspr autoantibodies were found during the acute GBS-like phase, while IgG4 Caspr autoantibodies were present during the ... Autoantibodies to components of the Ranvier nodes, specially autoantibodies the Contactin-associated protein 1 (CASPR), cause a ... These cases seem to be related to the presence of anti-neurofascin autoantibodies.[citation needed] Dendrite Soma Axon Nucleus ... Parry and Clarke in 1988 described a neuropathy which was later found to be associated with IgM autoantibodies directed against ...
"Isolation and characterization of cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from ...
1998). "Autoantibodies against a 210 kDa glycoprotein of the nuclear pore complex as a prognostic marker in patients with ... Courvalin JC, Lassoued K, Worman HJ, Blobel G (1990). "Identification and characterization of autoantibodies against the ... Nickowitz RE, Worman HJ (1993). "Autoantibodies from patients with primary biliary cirrhosis recognize a restricted region ...
Anti-mitochondrial antibodies (AMA) are autoantibodies, consisting of immunoglobulins formed against mitochondria, primarily ... Mitochondrial antigens and autoantibodies: from anti-M1 to anti-M9. Klin Wochenschr 64(19):897-909 Labro MT, Andrieu MC, Weber ...
Auto-antibodies against histones have been reported to be involved. Anti-AQP1 could be involved in atypical MS and NMO N-type ... Anti-neurofascin autoantibodies have been reported in atypical cases of MS and CIDP, and a whole spectrum of Anti-neurofascin ... Some auto-antibodies have been found consistently across different MS cases but there is still no agreement on their relevance ... Other auto-antibodies can be used to stablish a differential diagnosis from very different diseases like Sjögren syndrome which ...
Autoantibodies are also common. Investigators at the National Institute of Allergy and Infectious Diseases at the US National ...
Mallone R, Perin PC (2006). "Anti-CD38 autoantibodies in type? diabetes". Diabetes/Metabolism Research and Reviews. 22 (4): 284 ...
CS1: long volume value, Autoantibodies). ...
Autoantibodies against CD74 have been identified as promising biomarkers in the early diagnosis of the autoimmune disease ... June 2014). "Autoantibodies against CD74 in spondyloarthritis". Annals of the Rheumatic Diseases. 73 (6): 1211-1214. doi: ...
Autoantibodies are usually absent or very low, so instead of being given in standard reference ranges, the values usually ... chronolab.com > Autoantibodies associated with rheumatic diseases > Reference ranges Retrieved on April 29, 2010 "AMA - ...
This is the highest dilution of the serum at which autoantibodies are still detectable. Positive autoantibody titres at a ... Autoantibody screening is useful in the diagnosis of autoimmune disorders and monitoring levels helps to predict the ... In case no defined autoantibody can be detected (e.g. anti-ENA antibodies), the testing of anti-DFS70 antibodies is recommended ... Lyons, R; Narain, S; Nichols, C; Satoh, M; Reeves, WH (June 2005). "Effective use of autoantibody tests in the diagnosis of ...
The presence of autoantibodies against citrullinated proteins in rheumatoid arthritis patients was first described in the mid- ... chronolab.com > Autoantibodies associated with rheumatic diseases > Reference ranges Archived 30 July 2013 at the Wayback ... Subsequent studies demonstrated that autoantibodies from RA patients react with a series of different citrullinated antigens, ... Anti-citrullinated protein antibodies (ACPAs) are autoantibodies (antibodies to an individual's own proteins) that are directed ...
"Antinuclear autoantibodies specific for lamins. Characterization and clinical significance". Ann Intern Med. 108 (6): 829-3. ...
Muller, Sylviane (2014). Chapter 23 - Histone Autoantibodies, In Autoantibodies (Third ed.). San Diego, CA. p. 195. doi:10.1016 ... "HIS - Clinical: Histone Autoantibodies, Serum". Mayo Medical Laboratories. Retrieved 2018-08-04. (CS1 maint: location missing ... Multiple "Autoantibodies" to Cell Constituents in Systematic Lupus Erythematosus. In: Ciba Foundation Symposium - Cellular ... Anti-histone antibodies are autoantibodies that are a subset of the anti-nuclear antibody family, which specifically target ...
With his colleagues, he was the first to describe smooth muscle reactive autoantibodies and this led the way to important ... cite journal}}: Cite journal requires ,journal= (help) Toh BH (1979). "Smooth muscle autoantibodies and autoantigens". Clin Exp ... he was there he was particularly involved in perfecting the new technique of using immunoflourescence to define autoantibodies ...
This effect can also occur after an infection causes the production of autoantibodies to other structures within the nucleus. ... Subsequently, in 1957, antibodies to dsDNA were the first autoantibodies to be identified in patients with SLE. Although the ... Hueber W, Utz PJ, Steinman L, Robinson WH (2002). "Autoantibody profiling for the study and treatment of autoimmune disease". ... Automated analysis of the well fluorescence allows for rapid detection of autoantibodies. Microarrays are a newly emerging ...
Antineutrophil autoantibodies in Graves' Disease. Implications of thyrotropin binding to neutrophils. J Clin Invest. 1985; 75: ...
see autoantibody). These anti-host DNA antibodies are able to stimulate pDCs which proceed to secrete IFN, furthering the ...
"Induction of lupus autoantibodies by adjuvants". Journal of Autoimmunity. 21 (1): 1-9. doi:10.1016/S0896-8411(03)00083-0. PMID ...
They are autoantibodies against some ribonucleoproteins. Anti-nRNP antibodies can be elevated in mixed connective tissue ... v t e (Articles with short description, Short description with empty Wikidata description, Autoantibodies, All stub articles, ... "Human anti-nuclear ribonucleoprotein antigen autoimmune sera contain a novel subset of autoantibodies that stabilizes the ...
... autoantibodies often attack citrullinated proteins. The presence of anti-citrullinated protein antibody is a standard test for ... "Autoantibodies: Double Agents in Human Disease". Science Translational Medicine. 5 (186): 186fs19. doi:10.1126/scitranslmed. ...
October 2014). "Autoantibodies against IgLON5: Two new cases". Journal of Neuroimmunology. 275 (1-2): 8. doi:10.1016/j.jneuroim ... November 2016). "Chorea and parkinsonism associated with autoantibodies to IgLON5 and responsive to immunotherapy". Journal of ...

No FAQ available that match "autoantibodies"

No images available that match "autoantibodies"