The smallest divisions of the arteries located between the muscular arteries and the capillaries.
The innermost layer of the three meninges covering the brain and spinal cord. It is the fine vascular membrane that lies under the ARACHNOID and the DURA MATER.
The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE.
The minute vessels that collect blood from the capillary plexuses and join together to form veins.
Central retinal artery and its branches. It arises from the ophthalmic artery, pierces the optic nerve and runs through its center, enters the eye through the porus opticus and branches to supply the retina.
The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE.
The circulation of the BLOOD through the MICROVASCULAR NETWORK.
Drugs used to cause dilation of the blood vessels.
The nonstriated involuntary muscle tissue of blood vessels.
The part of the face that is below the eye and to the side of the nose and mouth.
A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP.
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
A complex of cells consisting of juxtaglomerular cells, extraglomerular mesangium lacis cells, the macula densa of the distal convoluted tubule, and granular epithelial peripolar cells. Juxtaglomerular cells are modified SMOOTH MUSCLE CELLS found in the walls of afferent glomerular arterioles and sometimes the efferent arterioles. Extraglomerular mesangium lacis cells are located in the angle between the afferent and efferent glomerular arterioles. Granular epithelial peripolar cells are located at the angle of reflection of the parietal to visceral angle of the renal corpuscle.
Microscopy in which television cameras are used to brighten magnified images that are otherwise too dark to be seen with the naked eye. It is used frequently in TELEPATHOLOGY.
The neural systems which act on VASCULAR SMOOTH MUSCLE to control blood vessel diameter. The major neural control is through the sympathetic nervous system.
Drugs used to cause constriction of the blood vessels.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
The minute vessels that connect the arterioles and venules.
A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system.
An inhibitor of nitric oxide synthetase which has been shown to prevent glutamate toxicity. Nitroarginine has been experimentally tested for its ability to prevent ammonia toxicity and ammonia-induced alterations in brain energy and ammonia metabolites. (Neurochem Res 1995:200(4):451-6)
The arterial blood vessels supplying the CEREBRUM.
A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins.
Porphyrins with four methyl, two ethyl, and two propionic acid side chains attached to the pyrrole rings.
A non-selective inhibitor of nitric oxide synthase. It has been used experimentally to induce hypertension.
The flow of BLOOD through or around an organ or region of the body.
The circulation of the BLOOD through the vessels of the KIDNEY.
The veins and arteries of the HEART.
The vessels carrying blood away from the heart.
An NADPH-dependent enzyme that catalyzes the conversion of L-ARGININE and OXYGEN to produce CITRULLINE and NITRIC OXIDE.
Genetically developed small pigs for use in biomedical research. There are several strains - Yucatan miniature, Sinclair miniature, and Minnesota miniature.
The force that opposes the flow of BLOOD through a vascular bed. It is equal to the difference in BLOOD PRESSURE across the vascular bed divided by the CARDIAC OUTPUT.
PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
A genus of the family Muridae having three species. The present domesticated strains were developed from individuals brought from Syria. They are widely used in biomedical research.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
Abnormal enlargement or swelling of a KIDNEY due to dilation of the KIDNEY CALICES and the KIDNEY PELVIS. It is often associated with obstruction of the URETER or chronic kidney diseases that prevents normal drainage of urine into the URINARY BLADDER.
The blood vessels which supply and drain the RETINA.
A CALCIUM-dependent, constitutively-expressed form of nitric oxide synthase found primarily in ENDOTHELIAL CELLS.
A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue.
A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter.
The state of activity or tension of a muscle beyond that related to its physical properties, that is, its active resistance to stretch. In skeletal muscle, tonus is dependent upon efferent innervation. (Stedman, 25th ed)
A non-steroidal anti-inflammatory agent (NSAID) that inhibits the enzyme cyclooxygenase necessary for the formation of prostaglandins and other autacoids. It also inhibits the motility of polymorphonuclear leukocytes.
A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR).
A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke.
Precursor of epinephrine that is secreted by the adrenal medulla and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers and of the diffuse projection system in the brain arising from the locus ceruleus. It is also found in plants and is used pharmacologically as a sympathomimetic.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
The relationship between the dose of an administered drug and the response of the organism to the drug.
A value equal to the total volume flow divided by the cross-sectional area of the vascular bed.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
A white crystal or crystalline powder used in BUFFERS; FERTILIZERS; and EXPLOSIVES. It can be used to replenish ELECTROLYTES and restore WATER-ELECTROLYTE BALANCE in treating HYPOKALEMIA.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter.
Hydrazines are organic compounds containing the functional group R-NH-NH2, where R represents an organic group, and are used in pharmaceuticals, agrochemicals, and rocket fuels, but can be highly toxic and carcinogenic with potential for environmental damage.
A stable prostaglandin endoperoxide analog which serves as a thromboxane mimetic. Its actions include mimicking the hydro-osmotic effect of VASOPRESSIN and activation of TYPE C PHOSPHOLIPASES. (From J Pharmacol Exp Ther 1983;224(1): 108-117; Biochem J 1984;222(1):103-110)
The finer blood vessels of the vasculature that are generally less than 100 microns in internal diameter.
An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS.
Central retinal vein and its tributaries. It runs a short course within the optic nerve and then leaves and empties into the superior ophthalmic vein or cavernous sinus.
Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen.
Compounds or agents that combine with cyclooxygenase (PROSTAGLANDIN-ENDOPEROXIDE SYNTHASES) and thereby prevent its substrate-enzyme combination with arachidonic acid and the formation of eicosanoids, prostaglandins, and thromboxanes.
A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes.
An antidiabetic sulfonylurea derivative with actions similar to those of chlorpropamide.
A tissue preparation technique that involves the injecting of plastic (acrylates) into blood vessels or other hollow viscera and treating the tissue with a caustic substance. This results in a negative copy or a solid replica of the enclosed space of the tissue that is ready for viewing under a scanning electron microscope.
A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area.
A class of drugs that act by inhibition of potassium efflux through cell membranes. Blockade of potassium channels prolongs the duration of ACTION POTENTIALS. They are used as ANTI-ARRHYTHMIA AGENTS and VASODILATOR AGENTS.
A layer of the peritoneum which attaches the abdominal viscera to the ABDOMINAL WALL and conveys their blood vessels and nerves.
A diphenylbutylpiperidine that is effective as an antipsychotic agent and as an alternative to HALOPERIDOL for the suppression of vocal and motor tics in patients with Tourette syndrome. Although the precise mechanism of action is unknown, blockade of postsynaptic dopamine receptors has been postulated. (From AMA Drug Evaluations Annual, 1994, p403)
Treatment process involving the injection of fluid into an organ or tissue.

Calcium responses induced by acetylcholine in submucosal arterioles of the guinea-pig small intestine. (1/2323)

1. Calcium responses induced by brief stimulation with acetylcholine (ACh) were assessed from the fluorescence changes in fura-2 loaded submucosal arterioles of the guinea-pig small intestine. 2. Initially, 1-1.5 h after loading with fura-2 (fresh tissues), ACh increased [Ca2+]i in a concentration-dependent manner. This response diminished with time, and finally disappeared in 2-3 h (old tissues). 3. Ba2+ elevated [Ca2+]i to a similar extent in both fresh and old tissues. ACh further increased the Ba2+-elevated [Ca2+]i in fresh tissues, but reduced it in old tissues. Responses were not affected by either indomethacin or nitroarginine. 4. In fresh mesenteric arteries, mechanical removal of endothelial cells abolished the ACh-induced increase in [Ca2+]i, with no alteration of [Ca2+]i at rest and during elevation with Ba2+. 5. In the presence of indomethacin and nitroarginine, high-K+ solution elevated [Ca2+]i in both fresh and old tissues. Subsequent addition of ACh further increased [Ca2+]i in fresh tissues without changing it in old tissues. 6. Proadifen, an inhibitor of the enzyme cytochrome P450 mono-oxygenase, inhibited the ACh-induced changes in [Ca2+]i in both fresh and Ba2+-stimulated old tissues. It also inhibited the ACh-induced hyperpolarization. 7. In fresh tissues, the ACh-induced Ca2+ response was not changed by apamin, charybdotoxin (CTX), 4-aminopyridine (4-AP) or glibenclamide. In old tissues in which [Ca2+]i had previously been elevated with Ba2+, the ACh-induced Ca2+ response was inhibited by CTX but not by apamin, 4-AP or glibenclamide. 8. It is concluded that in submucosal arterioles, ACh elevates endothelial [Ca2+]i and reduces muscular [Ca2+]i, probably through the hyperpolarization of endothelial or smooth muscle membrane by activating CTX-sensitive K+ channels.  (+info)

Interaction of amylin with calcitonin gene-related peptide receptors in the microvasculature of the hamster cheek pouch in vivo. (2/2323)

1. This study used intravital microscopy to investigate the receptors stimulated by amylin which shares around 50% sequence homology with the vasodilator calcitonin gene-related peptide (CGRP) in the hamster cheek pouch microvasculature in vivo. 2. Receptor agonists dilated arterioles (diameters 20-40 microm). The -log of the concentrations (+/- s.e.mean; n = 8) causing 50% increase in arteriole diameter were: human betaCGRP (10.8 +/- 0.3), human alphaCGRP (10.8 +/- 0.4), rat alphaCGRP (10.4 +/- 0.3). Rat amylin and the CGRP2 receptor selective agonist [Cys(ACM2,7]-human alphaCGRP were 100 fold less potent (estimates were 8.5 +/- 0.4 and 8.2 +/- 0.3 respectively). 3. The GCRP1 receptor antagonist, CGRP8-37 (300 nmol kg(-1); i.v.) reversibly inhibited the increase in diameter evoked by human alphaCGRP (0.3 nM) from 178 +/- 22% to 59 +/- 12% (n = 8; P < 0.05) and by rat amylin (100 nM) from 138 +/- 23% to 68 +/- 24% (n = 6; P < 0.05). CGRP8-37 did not inhibit vasodilation evoked by substance P (10 nM; n = 4: P > 0.05). 4. The amylin receptor antagonist, amylin8-37 (300 nmol kg(-1); i.v.) did not significantly inhibit the increase in diameter evoked by human alphaCGRP (0.3 nM) which was 112 +/- 26% in the absence, and 90 +/- 29% in the presence of antagonist (n = 4; P < 0.05); nor that evoked by rat amylin (100 nM) which was 146 +/- 23% in the absence and 144 +/- 32% in the presence of antagonist (n = 4; P > 0.05). 5. The agonist profile for vasodilatation and the inhibition of this dilatation by CGRP8-37, although not the amylin8-37 indicates that amylin causes vasodilatation through interaction with CGRP1 receptors in the hamster cheek pouch.  (+info)

Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle. (3/2323)

1. In arterioles of the hamster cheek pouch, vasodilatation and vasoconstriction can spread via the conduction of electrical signals through gap junctions between cells that comprise the vessel wall. However, conduction in resistance networks supplying other tissues has received relatively little attention. In anaesthetized hamsters, we have investigated the spread of dilatation and constriction along feed arteries and arterioles of the retractor muscle, which is contiguous with the cheek pouch. 2. When released from a micropipette, acetylcholine (ACh) triggered vasodilatation that spread rapidly along feed arteries external to the muscle and arterioles within the muscle. Responses were independent of changes in wall shear rate, perivascular nerve activity, or release of nitric oxide, indicating cell-to-cell conduction. 3. Vasodilatation conducted without decrement along unbranched feed arteries, yet decayed markedly in arteriolar networks. Thus, branching of the conduction pathway dissipated the vasodilatation. 4. Noradrenaline (NA) or a depolarizing KCl stimulus evoked constriction of arterioles and feed arteries of the retractor muscle that was constrained to the vicinity of the micropipette. This behaviour contrasts sharply with the conduction of vasodilatation in these microvessels and with the conduction of vasoconstriction elicited by NA and KCl in cheek pouch arterioles. 5. Focal electrical stimulation produced constriction that spread rapidly along feed arteries and arterioles. These responses were inhibited by tetrodotoxin or prazosin, confirming the release of NA along perivascular sympathetic nerves, which are absent from arterioles studied in the cheek pouch. Thus, sympathetic nerve activity co-ordinated the contraction of smooth muscle cells as effectively as the conduction of vasodilatation co-ordinated their relaxation. 6. In the light of previous findings in the cheek pouch, the properties of vasoconstriction and vasodilatation in feed arteries and arterioles of the retractor muscle indicate that substantive differences can exist in the nature of signal transmission along microvessels of tissues that differ in structure and function.  (+info)

Neovascularization at the vascular pole region in diabetic glomerulopathy. (4/2323)

BACKGROUND: Diabetic nephropathy is associated with renal structural changes involving all of the compartments. Most characteristic is the diabetic glomerulopathy. Studies of the histological changes during the early phases of nephropathy have included the glomerulopathy and also the juxtaglomerular structures. Neovascularization, well-known in diabetic retinopathy, has also been observed in the kidney. The present study concerns estimates of frequency of neovascularization at the vascular pole region in early stages of diabetic nephropathy. METHODS: Extra efferent arterioles at the glomerular vascular pole were detected during measurements of the vascular pole area applying 1-microm serial sections through kidney biopsies. It was observed that more than one efferent arteriole existed occasionally. The present study was carried out with the aim of estimating the frequency of this phenomenon in diabetic patients and in non-diabetic controls, the diabetic patients categorized according to the level of albumin excretion rate. RESULTS: Neovascularization was first observed in IDDM patients with microalbuminuria. Some of the cases presented the phenomenon in all of the glomeruli studied. As the examinations of many kidney biopsies continued the phenomenon was observed also in the non-diabetic control group and in one IDDM patient with normoalbuminuria. However, the frequency was statistically highly significantly increased in patients with elevated albumin-excretion. Within this group a strong correlation between frequency of neovascularization and the severity of diabetic glomerulopathy is seen. CONCLUSIONS: The vascular abnormality localized to the vascular pole region is observed occasionally in the normal kidney, but the frequency is increased in patients with diabetic glomerulopathy. The abnormality may develop as a consequence of a long-standing diabetic glomerulopathy and might lead to less pronounced elevation of albumin excretion.  (+info)

Inhibition of NO synthesis or endothelium removal reveals a vasoconstrictor effect of insulin on isolated arterioles. (5/2323)

In this study we tested the hypothesis that insulin may differentially affect isolated arterioles from red (RGM) and white gastrocnemius muscles (WGM) because of their differences in function and metabolic profile. We also determined whether the responses of these arterioles are endothelium dependent and mediated by either prostaglandins or nitric oxide (NO). Arterioles were isolated, pressurized to 85 mmHg, equilibrated in Krebs bicarbonate-buffered solution (pH 7.4) gassed with 10% O2 (5% CO2-85% N2), and studied in a no-flow state. Control diameters for first-order arterioles from RGM averaged 77 +/- 8 micrometers and from WGM averaged 77 +/- 5 micrometers. Cumulative dose-response curves to insulin (10 microU/ml, 100 microU/ml, 1 mU/ml, and 10 mU/ml) were obtained in arterioles before and after endothelium removal or administration of either indomethacin (Indo, 10(-5) M) or NG-nitro-L-arginine (L-NNA, 10(-4) M). Insulin evoked concentration-dependent increases in control diameter of intact RGM and WGM arterioles of 6-26% and 9-28%, respectively. Indo was without any effect on insulin-induced dilation in RGM and WGM arterioles. Insulin-evoked dilation in both RGM and WGM arterioles was completely inhibited and converted to vasoconstriction by endothelium removal and administration of L-NNA. These results indicate that in endothelium-intact arterioles from RGM and WGM, insulin evokes an endothelium-dependent dilation that is equivalent and mediated by NO. In contrast, in the absence of a functional endothelium, insulin evokes arteriolar constriction. The finding that insulin can constrict arterioles, at physiological concentrations, suggests that insulin may play a more significant role in the regulation of vascular tone and total peripheral resistance than previously appreciated.  (+info)

Conducted signals within arteriolar networks initiated by bioactive amino acids. (6/2323)

Our purpose was to determine the specificity of L-arginine (L-Arg)-induced conducted signals for intra- vs. extracellular actions of L-Arg. Diameter and red blood cell velocities were measured for arterioles [18 +/- 1.6 (SE) micrometer] in the cremaster muscle of pentobarbital sodium-anesthetized (Nembutal, 70 mg/kg) hamsters (n = 53). Remote (conducted) responses were viewed approximately 1,000 micrometer upstream from the local (micropipette) application. Six amino acids were tested: L-arginine, L-cystine, L-leucine, L-lysine, L-histidine, and L-aspartate (100 microM each). Only L-Arg induced a remote dilation; L-lysine and L-aspartate had no effect, and the others each induced a significant remote constriction. There is a second conducted signal initiated by L-arginine that preconditions the arteriolar network and upregulates a direct response of L-arginine to dilate the remote site. This was blocked by inhibition of L-arginine uptake at the local (preconditioning) site (100 microM L-histidine or 1 mM phenformin). Arginine-glycine-aspartate (100 microM)-induced remote dilations (+3. 2 +/- 0.3 micrometer) were not mimicked by a peptide control and were prevented by anti- integrin alphav monoclonal antibody. Remote dilations were greater in animals with a higher wall shear stress for arginine-glycine-aspartate (r2 = 0.92) but not for L-arginine (r2 = 0.12). Thus L-arginine initiates separate conducted signals related to system y+ transport, integrins, and baseline flow.  (+info)

Endothelin antagonists block alpha1-adrenergic constriction of coronary arterioles. (7/2323)

We have previously observed that intracoronary administration of the alpha1-adrenergic agonist phenylephrine (PE) over a period of minutes induced both an immediate and long-lasting (2 h) vasoconstriction of epicardial coronary arterioles. Because it is unlikely that alpha1-adrenergic constriction would persist for hours after removal of the agonist, this observation supports the view that another constrictor(s) is released during alpha1-adrenergic activation and induces the prolonged vasoconstriction. Therefore, we hypothesized that the prolonged microvascular constriction after PE is due to the production of endothelin (ET). We focused on ET not only because this peptide produces potent vasoconstriction but also because its vasoconstrictor action is characterized by a long duration. To test this hypothesis, the diameters of coronary arterioles (<222 micrometers) in the beating heart of pentobarbital-anesthetized dogs with stroboscopic intravital microscopy were measured during a 15-min intracoronary infusion of PE (1 microgram. kg-1 . min-1) and at 15-min intervals for a total of 120 min. All experiments were performed in the presence of beta-adrenergic blockade with propranolol. At 120 min, arterioles in the PE group were constricted (-23 +/- 9% change in diameter vs. baseline). Pretreatment with the ET-converting enzyme inhibitor phosphoramidon or the ETA-receptor antagonist FR-139317 prevented the PE-induced constriction at 120 min (-1 +/- 3 and -6 +/- 3%, respectively, P < 0.01 vs. PE). Pretreatment with the selective alpha1-adrenergic antagonist prazosin (Prz) also prevented the sustained constriction (0 +/- 2%, P < 0.01 vs. PE) but Prz given 60 min after PE infusion did not (-13 +/- 3%). In the aggregate, these results show that vasoconstriction of epicardial coronary arterioles via alpha1-adrenergic activation is blocked by an ET antagonist and an inhibitor of its production. From these data, we conclude that alpha1-adrenergic activation promotes the production and/or release of ET, which produces or facilitates microvascular constriction of epicardial canine coronary arterioles.  (+info)

Flow regulation of ecNOS and Cu/Zn SOD mRNA expression in porcine coronary arterioles. (8/2323)

The purpose of this study was to test the hypothesis that increased flow through coronary arterioles increases endothelial cell nitric oxide synthase (ecNOS) and Cu/Zn superoxide dismutase (SOD) mRNA expression. Single porcine coronary arterioles (ID 100-160 micrometers; pressurized) were cannulated, perfused, and exposed to intraluminal flow sufficient to produce maximal flow-induced dilation of coronary arterioles (high flow; 7.52 +/- 0.22 microliter/min), low flow (0.84 +/- 0.05 microliter/min), or no flow for 2 or 4 h. Mean shear stress was calculated to be 5.7 +/- 1.0 dyn/cm2 for high-flow arterioles and 1. 6 +/- 1.0 dyn/cm2 for low-flow arterioles. At the end of the treatment period, mRNA was isolated from each vessel, and ecNOS and SOD mRNA expression was assessed using a semiquantitative RT-PCR. All data were standardized by coamplifying ecNOS or SOD with glyceraldehyde-3-phosphate dehydrogenase. The results indicate that ecNOS mRNA expression is increased in arterioles exposed to 2 or 4 h of high flow. In contrast, SOD mRNA expression was increased only after 4 h of high flow. Neither gene is induced by exposure to low flow. On the basis of these data, we concluded that ecNOS and SOD mRNA expression is regulated by flow in porcine coronary arterioles. In addition, we concluded that a threshold level of flow and shear stress must be sustained to elicit the upregulation of ecNOS and SOD mRNA expression.  (+info)

Arterioles are small branches of arteries that play a crucial role in regulating blood flow and blood pressure within the body's circulatory system. They are the smallest type of blood vessels that have muscular walls, which allow them to contract or dilate in response to various physiological signals.

Arterioles receive blood from upstream arteries and deliver it to downstream capillaries, where the exchange of oxygen, nutrients, and waste products occurs between the blood and surrounding tissues. The contraction of arteriolar muscles can reduce the diameter of these vessels, causing increased resistance to blood flow and leading to a rise in blood pressure upstream. Conversely, dilation of arterioles reduces resistance and allows for greater blood flow at a lower pressure.

The regulation of arteriolar tone is primarily controlled by the autonomic nervous system, local metabolic factors, and various hormones. This fine-tuning of arteriolar diameter enables the body to maintain adequate blood perfusion to vital organs while also controlling overall blood pressure and distribution.

Pia Mater is the inner-most layer of the meninges, which are the protective coverings of the brain and spinal cord. It is a very thin and highly vascularized (rich in blood vessels) membrane that closely adheres to the surface of the brain. The name "Pia Mater" comes from Latin, meaning "tender mother." This layer provides nutrition and protection to the brain, and it also allows for the movement and flexibility of the brain within the skull.

Vasodilation is the widening or increase in diameter of blood vessels, particularly the involuntary relaxation of the smooth muscle in the tunica media (middle layer) of the arteriole walls. This results in an increase in blood flow and a decrease in vascular resistance. Vasodilation can occur due to various physiological and pathophysiological stimuli, such as local metabolic demands, neural signals, or pharmacological agents. It plays a crucial role in regulating blood pressure, tissue perfusion, and thermoregulation.

Venules are very small blood vessels that carry oxygen-depleted blood from capillaries to veins. They have a diameter of 8-50 micrometers and are an integral part of the microcirculation system in the body. Venules merge together to form veins, which then transport the low-oxygen blood back to the heart.

A retinal artery is a small branch of the ophthalmic artery that supplies oxygenated blood to the inner layers of the retina, which is the light-sensitive tissue located at the back of the eye. There are two main retinal arteries - the central retinal artery and the cilioretinal artery. The central retinal artery enters the eye through the optic nerve and divides into smaller branches to supply blood to the entire retina, while the cilioretinal artery is a smaller artery that supplies blood to a small portion of the retina near the optic nerve. Any damage or blockage to these arteries can lead to serious vision problems, such as retinal artery occlusion or retinal artery embolism.

Vasoconstriction is a medical term that refers to the narrowing of blood vessels due to the contraction of the smooth muscle in their walls. This process decreases the diameter of the lumen (the inner space of the blood vessel) and reduces blood flow through the affected vessels. Vasoconstriction can occur throughout the body, but it is most noticeable in the arterioles and precapillary sphincters, which control the amount of blood that flows into the capillary network.

The autonomic nervous system, specifically the sympathetic division, plays a significant role in regulating vasoconstriction through the release of neurotransmitters like norepinephrine (noradrenaline). Various hormones and chemical mediators, such as angiotensin II, endothelin-1, and serotonin, can also induce vasoconstriction.

Vasoconstriction is a vital physiological response that helps maintain blood pressure and regulate blood flow distribution in the body. However, excessive or prolonged vasoconstriction may contribute to several pathological conditions, including hypertension, stroke, and peripheral vascular diseases.

Microcirculation is the circulation of blood in the smallest blood vessels, including arterioles, venules, and capillaries. It's responsible for the delivery of oxygen and nutrients to the tissues and the removal of waste products. The microcirculation plays a crucial role in maintaining tissue homeostasis and is regulated by various physiological mechanisms such as autonomic nervous system activity, local metabolic factors, and hormones.

Impairment of microcirculation can lead to tissue hypoxia, inflammation, and organ dysfunction, which are common features in several diseases, including diabetes, hypertension, sepsis, and ischemia-reperfusion injury. Therefore, understanding the structure and function of the microcirculation is essential for developing new therapeutic strategies to treat these conditions.

Vasodilator agents are pharmacological substances that cause the relaxation or widening of blood vessels by relaxing the smooth muscle in the vessel walls. This results in an increase in the diameter of the blood vessels, which decreases vascular resistance and ultimately reduces blood pressure. Vasodilators can be further classified based on their site of action:

1. Systemic vasodilators: These agents cause a generalized relaxation of the smooth muscle in the walls of both arteries and veins, resulting in a decrease in peripheral vascular resistance and preload (the volume of blood returning to the heart). Examples include nitroglycerin, hydralazine, and calcium channel blockers.
2. Arterial vasodilators: These agents primarily affect the smooth muscle in arterial vessel walls, leading to a reduction in afterload (the pressure against which the heart pumps blood). Examples include angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and direct vasodilators like sodium nitroprusside.
3. Venous vasodilators: These agents primarily affect the smooth muscle in venous vessel walls, increasing venous capacitance and reducing preload. Examples include nitroglycerin and other organic nitrates.

Vasodilator agents are used to treat various cardiovascular conditions such as hypertension, heart failure, angina, and pulmonary arterial hypertension. It is essential to monitor their use carefully, as excessive vasodilation can lead to orthostatic hypotension, reflex tachycardia, or fluid retention.

A smooth muscle within the vascular system refers to the involuntary, innervated muscle that is found in the walls of blood vessels. These muscles are responsible for controlling the diameter of the blood vessels, which in turn regulates blood flow and blood pressure. They are called "smooth" muscles because their individual muscle cells do not have the striations, or cross-striped patterns, that are observed in skeletal and cardiac muscle cells. Smooth muscle in the vascular system is controlled by the autonomic nervous system and by hormones, and can contract or relax slowly over a period of time.

A "cheek" is the fleshy, muscular area of the face that forms the side of the face below the eye and above the jaw. It contains the buccinator muscle, which helps with chewing by moving food to the back teeth for grinding and also assists in speaking and forming facial expressions. The cheek also contains several sensory receptors that allow us to perceive touch, temperature, and pain in this area of the face. Additionally, there is a mucous membrane lining inside the mouth cavity called the buccal mucosa which covers the inner surface of the cheek.

Nitric oxide (NO) is a molecule made up of one nitrogen atom and one oxygen atom. In the body, it is a crucial signaling molecule involved in various physiological processes such as vasodilation, immune response, neurotransmission, and inhibition of platelet aggregation. It is produced naturally by the enzyme nitric oxide synthase (NOS) from the amino acid L-arginine. Inhaled nitric oxide is used medically to treat pulmonary hypertension in newborns and adults, as it helps to relax and widen blood vessels, improving oxygenation and blood flow.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

The Juxtaglomerular Apparatus (JGA) is a specialized region located at the junction between the afferent arteriole and the distal convoluted tubule in the nephron of the kidney. It plays a crucial role in regulating blood pressure and fluid balance within the body through the renin-angiotensin-aldosterone system (RAAS).

The JGA consists of three main components:

1. Juxtaglomerular Cells: These are specialized smooth muscle cells found in the media layer of the afferent arteriole. They have the ability to synthesize and release renin, an enzyme that initiates the RAAS cascade. When blood pressure decreases or when sodium levels in the distal convoluted tubule are low, these cells are stimulated to release renin.

2. Macula Densa: This is a group of specialized epithelial cells located within the wall of the distal convoluted tubule at its point of contact with the afferent arteriole. These cells monitor the concentration and flow rate of filtrate in the tubule and provide feedback to the juxtaglomerular cells regarding sodium levels and pressure changes in the nephron.

3. Lacis Cells: Also known as extraglomerular mesangial cells, lacis cells are located within the connective tissue surrounding the JGA. They help regulate blood flow to the glomerulus by contracting or relaxing in response to various stimuli.

In summary, the Juxtaglomerular Apparatus is a critical structure involved in maintaining homeostasis through its role in regulating blood pressure and fluid balance via the renin-angiotensin-aldosterone system.

Video microscopy is a medical technique that involves the use of a microscope equipped with a video camera to capture and display real-time images of specimens on a monitor. This allows for the observation and documentation of dynamic processes, such as cell movement or chemical reactions, at a level of detail that would be difficult or impossible to achieve with the naked eye. Video microscopy can also be used in conjunction with image analysis software to measure various parameters, such as size, shape, and motion, of individual cells or structures within the specimen.

There are several types of video microscopy, including brightfield, darkfield, phase contrast, fluorescence, and differential interference contrast (DIC) microscopy. Each type uses different optical techniques to enhance contrast and reveal specific features of the specimen. For example, fluorescence microscopy uses fluorescent dyes or proteins to label specific structures within the specimen, allowing them to be visualized against a dark background.

Video microscopy is used in various fields of medicine, including pathology, microbiology, and neuroscience. It can help researchers and clinicians diagnose diseases, study disease mechanisms, develop new therapies, and understand fundamental biological processes at the cellular and molecular level.

The vasomotor system is a part of the autonomic nervous system that controls the diameter of blood vessels, particularly the smooth muscle in the walls of arterioles and precapillary sphincters. It regulates blood flow to different parts of the body by constricting or dilating these vessels. The vasomotor center located in the medulla oblongata of the brainstem controls the system, receiving input from various sensory receptors and modulating the sympathetic and parasympathetic nervous systems' activity. Vasoconstriction decreases blood flow, while vasodilation increases it.

Vasoconstrictor agents are substances that cause the narrowing of blood vessels by constricting the smooth muscle in their walls. This leads to an increase in blood pressure and a decrease in blood flow. They work by activating the sympathetic nervous system, which triggers the release of neurotransmitters such as norepinephrine and epinephrine that bind to alpha-adrenergic receptors on the smooth muscle cells of the blood vessel walls, causing them to contract.

Vasoconstrictor agents are used medically for a variety of purposes, including:

* Treating hypotension (low blood pressure)
* Controlling bleeding during surgery or childbirth
* Relieving symptoms of nasal congestion in conditions such as the common cold or allergies

Examples of vasoconstrictor agents include phenylephrine, oxymetazoline, and epinephrine. It's important to note that prolonged use or excessive doses of vasoconstrictor agents can lead to rebound congestion and other adverse effects, so they should be used with caution and under the guidance of a healthcare professional.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Capillaries are the smallest blood vessels in the body, with diameters that range from 5 to 10 micrometers. They form a network of tiny tubes that connect the arterioles (small branches of arteries) and venules (small branches of veins), allowing for the exchange of oxygen, carbon dioxide, nutrients, and waste products between the blood and the surrounding tissues.

Capillaries are composed of a single layer of endothelial cells that surround a hollow lumen through which blood flows. The walls of capillaries are extremely thin, allowing for easy diffusion of molecules between the blood and the surrounding tissue. This is essential for maintaining the health and function of all body tissues.

Capillaries can be classified into three types based on their structure and function: continuous, fenestrated, and sinusoidal. Continuous capillaries have a continuous layer of endothelial cells with tight junctions that restrict the passage of large molecules. Fenestrated capillaries have small pores or "fenestrae" in the endothelial cell walls that allow for the passage of larger molecules, such as proteins and lipids. Sinusoidal capillaries are found in organs with high metabolic activity, such as the liver and spleen, and have large, irregular spaces between the endothelial cells that allow for the exchange of even larger molecules.

Overall, capillaries play a critical role in maintaining the health and function of all body tissues by allowing for the exchange of nutrients, oxygen, and waste products between the blood and surrounding tissues.

Acetylcholine is a neurotransmitter, a type of chemical messenger that transmits signals across a chemical synapse from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell. It is involved in both peripheral and central nervous system functions.

In the peripheral nervous system, acetylcholine acts as a neurotransmitter at the neuromuscular junction, where it transmits signals from motor neurons to activate muscles. Acetylcholine also acts as a neurotransmitter in the autonomic nervous system, where it is involved in both the sympathetic and parasympathetic systems.

In the central nervous system, acetylcholine plays a role in learning, memory, attention, and arousal. Disruptions in cholinergic neurotransmission have been implicated in several neurological disorders, including Alzheimer's disease, Parkinson's disease, and myasthenia gravis.

Acetylcholine is synthesized from choline and acetyl-CoA by the enzyme choline acetyltransferase and is stored in vesicles at the presynaptic terminal of the neuron. When a nerve impulse arrives, the vesicles fuse with the presynaptic membrane, releasing acetylcholine into the synapse. The acetylcholine then binds to receptors on the postsynaptic membrane, triggering a response in the target cell. Acetylcholine is subsequently degraded by the enzyme acetylcholinesterase, which terminates its action and allows for signal transduction to be repeated.

Nitro-L-arginine or Nitroarginine is not a medical term per se, but it is a chemical compound that is sometimes used in medical research and experiments. It is a salt of nitric acid and L-arginine, an amino acid that is important for the functioning of the body.

Nitroarginine is known to inhibit the production of nitric oxide, a molecule that plays a role in various physiological processes such as blood flow regulation, immune response, and neurotransmission. As a result, nitroarginine has been used in research to study the effects of reduced nitric oxide levels on different systems in the body.

It's worth noting that nitroarginine is not approved for use as a medication in humans, and its use is generally limited to laboratory settings.

Cerebral arteries refer to the blood vessels that supply oxygenated blood to the brain. These arteries branch off from the internal carotid arteries and the vertebral arteries, which combine to form the basilar artery. The major cerebral arteries include:

1. Anterior cerebral artery (ACA): This artery supplies blood to the frontal lobes of the brain, including the motor and sensory cortices responsible for movement and sensation in the lower limbs.
2. Middle cerebral artery (MCA): The MCA is the largest of the cerebral arteries and supplies blood to the lateral surface of the brain, including the temporal, parietal, and frontal lobes. It is responsible for providing blood to areas involved in motor function, sensory perception, speech, memory, and vision.
3. Posterior cerebral artery (PCA): The PCA supplies blood to the occipital lobe, which is responsible for visual processing, as well as parts of the temporal and parietal lobes.
4. Anterior communicating artery (ACoA) and posterior communicating arteries (PComAs): These are small arteries that connect the major cerebral arteries, forming an important circulatory network called the Circle of Willis. The ACoA connects the two ACAs, while the PComAs connect the ICA with the PCA and the basilar artery.

These cerebral arteries play a crucial role in maintaining proper brain function by delivering oxygenated blood to various regions of the brain. Any damage or obstruction to these arteries can lead to serious neurological conditions, such as strokes or transient ischemic attacks (TIAs).

nitroprusside (ni-troe-rus-ide)

A rapid-acting vasodilator used in the management of severe hypertension, acute heart failure, and to reduce afterload in patients undergoing cardiac surgery. It is a potent arterial and venous dilator that decreases preload and afterload, thereby reducing myocardial oxygen demand. Nitroprusside is metabolized to cyanide, which must be monitored closely during therapy to prevent toxicity.

Pharmacologic class: Peripheral vasodilators

Therapeutic class: Antihypertensives, Vasodilators

Medical Categories: Cardiovascular Drugs, Hypertension Agents

Mesoporphyrins are a type of porphyrin, which are organic compounds containing four pyrrole rings connected by methine bridges in a cyclic arrangement. Porphyrins are important components of various biological molecules such as hemoglobin, myoglobin, and cytochromes.

Mesoporphyrins have a specific structure with two propionic acid side chains and two acetic acid side chains attached to the pyrrole rings. They are intermediates in the biosynthesis of heme, which is a complex formed by the insertion of iron into protoporphyrin IX, a type of porphyrin.

Mesoporphyrins have been used in medical research and clinical settings as photosensitizers for photodynamic therapy (PDT), a treatment that uses light to activate a photosensitizing agent to destroy abnormal cells or tissues. In particular, mesoporphyrin IX has been used for the PDT treatment of various types of cancer, such as bladder, esophageal, and lung cancer, as well as for the treatment of age-related macular degeneration (AMD), a leading cause of vision loss in older adults.

It is important to note that mesoporphyrins are not typically used as a diagnostic tool or a therapeutic agent in routine clinical practice, but rather as part of experimental research and clinical trials.

NG-Nitroarginine Methyl Ester (L-NAME) is not a medication, but rather a research chemical used in scientific studies. It is an inhibitor of nitric oxide synthase, an enzyme that synthesizes nitric oxide, a molecule involved in the relaxation of blood vessels.

Therefore, L-NAME is often used in experiments to investigate the role of nitric oxide in various physiological and pathophysiological processes. It is important to note that the use of L-NAME in humans is not approved for therapeutic purposes due to its potential side effects, which can include hypertension, decreased renal function, and decreased cerebral blood flow.

Regional blood flow (RBF) refers to the rate at which blood flows through a specific region or organ in the body, typically expressed in milliliters per minute per 100 grams of tissue (ml/min/100g). It is an essential physiological parameter that reflects the delivery of oxygen and nutrients to tissues while removing waste products. RBF can be affected by various factors such as metabolic demands, neural regulation, hormonal influences, and changes in blood pressure or vascular resistance. Measuring RBF is crucial for understanding organ function, diagnosing diseases, and evaluating the effectiveness of treatments.

Renal circulation refers to the blood flow specifically dedicated to the kidneys. The main function of the kidneys is to filter waste and excess fluids from the blood, which then get excreted as urine. To perform this function efficiently, the kidneys receive a substantial amount of the body's total blood supply - about 20-25% in a resting state.

The renal circulation process begins when deoxygenated blood from the rest of the body returns to the right side of the heart and is pumped into the lungs for oxygenation. Oxygen-rich blood then leaves the left side of the heart through the aorta, the largest artery in the body.

A portion of this oxygen-rich blood moves into the renal arteries, which branch directly from the aorta and supply each kidney with blood. Within the kidneys, these arteries divide further into smaller vessels called afferent arterioles, which feed into a network of tiny capillaries called the glomerulus within each nephron (the functional unit of the kidney).

The filtration process occurs in the glomeruli, where waste materials and excess fluids are separated from the blood. The resulting filtrate then moves through another set of capillaries, the peritubular capillaries, which surround the renal tubules (the part of the nephron that reabsorbs necessary substances back into the bloodstream).

The now-deoxygenated blood from the kidneys' capillary network coalesces into venules and then merges into the renal veins, which ultimately drain into the inferior vena cava and return the blood to the right side of the heart. This highly specialized circulation system allows the kidneys to efficiently filter waste while maintaining appropriate blood volume and composition.

Coronary vessels refer to the network of blood vessels that supply oxygenated blood and nutrients to the heart muscle, also known as the myocardium. The two main coronary arteries are the left main coronary artery and the right coronary artery.

The left main coronary artery branches off into the left anterior descending artery (LAD) and the left circumflex artery (LCx). The LAD supplies blood to the front of the heart, while the LCx supplies blood to the side and back of the heart.

The right coronary artery supplies blood to the right lower part of the heart, including the right atrium and ventricle, as well as the back of the heart.

Coronary vessel disease (CVD) occurs when these vessels become narrowed or blocked due to the buildup of plaque, leading to reduced blood flow to the heart muscle. This can result in chest pain, shortness of breath, or a heart attack.

Arteries are blood vessels that carry oxygenated blood away from the heart to the rest of the body. They have thick, muscular walls that can withstand the high pressure of blood being pumped out of the heart. Arteries branch off into smaller vessels called arterioles, which further divide into a vast network of tiny capillaries where the exchange of oxygen, nutrients, and waste occurs between the blood and the body's cells. After passing through the capillary network, deoxygenated blood collects in venules, then merges into veins, which return the blood back to the heart.

Nitric Oxide Synthase (NOS) is a group of enzymes that catalyze the production of nitric oxide (NO) from L-arginine. There are three distinct isoforms of NOS, each with different expression patterns and functions:

1. Neuronal Nitric Oxide Synthase (nNOS or NOS1): This isoform is primarily expressed in the nervous system and plays a role in neurotransmission, synaptic plasticity, and learning and memory processes.
2. Inducible Nitric Oxide Synthase (iNOS or NOS2): This isoform is induced by various stimuli such as cytokines, lipopolysaccharides, and hypoxia in a variety of cells including immune cells, endothelial cells, and smooth muscle cells. iNOS produces large amounts of NO, which functions as a potent effector molecule in the immune response, particularly in the defense against microbial pathogens.
3. Endothelial Nitric Oxide Synthase (eNOS or NOS3): This isoform is constitutively expressed in endothelial cells and produces low levels of NO that play a crucial role in maintaining vascular homeostasis by regulating vasodilation, inhibiting platelet aggregation, and preventing smooth muscle cell proliferation.

Overall, NOS plays an essential role in various physiological processes, including neurotransmission, immune response, cardiovascular function, and respiratory regulation. Dysregulation of NOS activity has been implicated in several pathological conditions such as hypertension, atherosclerosis, neurodegenerative diseases, and inflammatory disorders.

"Miniature Swine" is not a medical term per se, but it is commonly used in the field of biomedical research to refer to certain breeds or types of pigs that are smaller in size compared to traditional farm pigs. These miniature swine are often used as animal models for human diseases due to their similarities with humans in terms of anatomy, genetics, and physiology. Examples of commonly used miniature swine include the Yucatan, Sinclair, and Göttingen breeds. It is important to note that while these animals are often called "miniature," they can still weigh between 50-200 pounds depending on the specific breed or age.

Vascular resistance is a measure of the opposition to blood flow within a vessel or a group of vessels, typically expressed in units of mmHg/(mL/min) or sometimes as dynes*sec/cm^5. It is determined by the diameter and length of the vessels, as well as the viscosity of the blood flowing through them. In general, a decrease in vessel diameter, an increase in vessel length, or an increase in blood viscosity will result in an increase in vascular resistance, while an increase in vessel diameter, a decrease in vessel length, or a decrease in blood viscosity will result in a decrease in vascular resistance. Vascular resistance is an important concept in the study of circulation and cardiovascular physiology because it plays a key role in determining blood pressure and blood flow within the body.

Blood pressure is the force exerted by circulating blood on the walls of the blood vessels. It is measured in millimeters of mercury (mmHg) and is given as two figures:

1. Systolic pressure: This is the pressure when the heart pushes blood out into the arteries.
2. Diastolic pressure: This is the pressure when the heart rests between beats, allowing it to fill with blood.

Normal blood pressure for adults is typically around 120/80 mmHg, although this can vary slightly depending on age, sex, and other factors. High blood pressure (hypertension) is generally considered to be a reading of 130/80 mmHg or higher, while low blood pressure (hypotension) is usually defined as a reading below 90/60 mmHg. It's important to note that blood pressure can fluctuate throughout the day and may be affected by factors such as stress, physical activity, and medication use.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

"Mesocricetus" is a genus of rodents, more commonly known as hamsters. It includes several species of hamsters that are native to various parts of Europe and Asia. The best-known member of this genus is the Syrian hamster, also known as the golden hamster or Mesocricetus auratus, which is a popular pet due to its small size and relatively easy care. These hamsters are burrowing animals and are typically solitary in the wild.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

Hydronephrosis is a medical condition characterized by the swelling of one or both kidneys due to the accumulation of urine. This occurs when the flow of urine from the kidney to the bladder is obstructed, causing urine to back up into the kidney. The obstruction can be caused by various factors such as kidney stones, tumors, or congenital abnormalities. If left untreated, hydronephrosis can lead to serious complications including kidney damage and infection. It is typically diagnosed through imaging tests such as ultrasound, CT scan, or MRI.

Retinal vessels refer to the blood vessels that are located in the retina, which is the light-sensitive tissue that lines the inner surface of the eye. The retina contains two types of blood vessels: arteries and veins.

The central retinal artery supplies oxygenated blood to the inner layers of the retina, while the central retinal vein drains deoxygenated blood from the retina. These vessels can be visualized during a routine eye examination using an ophthalmoscope, which allows healthcare professionals to assess their health and any potential abnormalities.

Retinal vessels are essential for maintaining the health and function of the retina, and any damage or changes to these vessels can affect vision and lead to various eye conditions such as diabetic retinopathy, retinal vein occlusion, and hypertensive retinopathy.

Nitric Oxide Synthase Type III (NOS-III), also known as endothelial Nitric Oxide Synthase (eNOS), is an enzyme responsible for the production of nitric oxide (NO) in the endothelium, the lining of blood vessels. This enzyme catalyzes the conversion of L-arginine to L-citrulline, producing NO as a byproduct. The release of NO from eNOS plays an important role in regulating vascular tone and homeostasis, including the relaxation of smooth muscle cells in the blood vessel walls, inhibition of platelet aggregation, and modulation of immune function. Mutations or dysfunction in NOS-III can contribute to various cardiovascular diseases such as hypertension, atherosclerosis, and erectile dysfunction.

A kidney glomerulus is a functional unit in the nephron of the kidney. It is a tuft of capillaries enclosed within a structure called Bowman's capsule, which filters waste and excess fluids from the blood. The glomerulus receives blood from an afferent arteriole and drains into an efferent arteriole.

The process of filtration in the glomerulus is called ultrafiltration, where the pressure within the glomerular capillaries drives plasma fluid and small molecules (such as ions, glucose, amino acids, and waste products) through the filtration membrane into the Bowman's space. Larger molecules, like proteins and blood cells, are retained in the blood due to their larger size. The filtrate then continues down the nephron for further processing, eventually forming urine.

Adenosine is a purine nucleoside that is composed of a sugar (ribose) and the base adenine. It plays several important roles in the body, including serving as a precursor for the synthesis of other molecules such as ATP, NAD+, and RNA.

In the medical context, adenosine is perhaps best known for its use as a pharmaceutical agent to treat certain cardiac arrhythmias. When administered intravenously, it can help restore normal sinus rhythm in patients with paroxysmal supraventricular tachycardia (PSVT) by slowing conduction through the atrioventricular node and interrupting the reentry circuit responsible for the arrhythmia.

Adenosine can also be used as a diagnostic tool to help differentiate between narrow-complex tachycardias of supraventricular origin and those that originate from below the ventricles (such as ventricular tachycardia). This is because adenosine will typically terminate PSVT but not affect the rhythm of VT.

It's worth noting that adenosine has a very short half-life, lasting only a few seconds in the bloodstream. This means that its effects are rapidly reversible and generally well-tolerated, although some patients may experience transient symptoms such as flushing, chest pain, or shortness of breath.

Muscle tonus, also known as muscle tone, refers to the continuous and passive partial contraction of the muscles, which helps to maintain posture and stability. It is the steady state of slight tension that is present in resting muscles, allowing them to quickly respond to stimuli and move. This natural state of mild contraction is maintained by the involuntary activity of the nervous system and can be affected by factors such as injury, disease, or exercise.

It's important to note that muscle tone should not be confused with muscle "tone" in the context of physical appearance or body sculpting, which refers to the amount of muscle definition and leanness seen in an individual's physique.

Indomethacin is a non-steroidal anti-inflammatory drug (NSAID) that is commonly used to reduce pain, inflammation, and fever. It works by inhibiting the activity of certain enzymes in the body, including cyclooxygenase (COX), which plays a role in producing prostaglandins, chemicals involved in the inflammatory response.

Indomethacin is available in various forms, such as capsules, suppositories, and injectable solutions, and is used to treat a wide range of conditions, including rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, gout, and bursitis. It may also be used to relieve pain and reduce fever in other conditions, such as dental procedures or after surgery.

Like all NSAIDs, indomethacin can have side effects, including stomach ulcers, bleeding, and kidney damage, especially when taken at high doses or for long periods of time. It may also increase the risk of heart attack and stroke. Therefore, it is important to use indomethacin only as directed by a healthcare provider and to report any unusual symptoms or side effects promptly.

WKY (Wistar Kyoto) is not a term that refers to "rats, inbred" in a medical definition. Instead, it is a strain of laboratory rat that is widely used in biomedical research. WKY rats are an inbred strain, which means they are the result of many generations of brother-sister matings, resulting in a genetically uniform population.

WKY rats originated from the Wistar Institute in Philadelphia and were established as a normotensive control strain to contrast with other rat strains that exhibit hypertension. They have since been used in various research areas, including cardiovascular, neurological, and behavioral studies. Compared to other commonly used rat strains like the spontaneously hypertensive rat (SHR), WKY rats are known for their lower blood pressure, reduced stress response, and greater emotionality.

In summary, "WKY" is a designation for an inbred strain of laboratory rat that is often used as a control group in biomedical research due to its normotensive characteristics.

SHR (Spontaneously Hypertensive Rats) are an inbred strain of rats that were originally developed through selective breeding for high blood pressure. They are widely used as a model to study hypertension and related cardiovascular diseases, as well as neurological disorders such as stroke and dementia.

Inbred strains of animals are created by mating genetically identical individuals (siblings or offspring) for many generations, resulting in a population that is highly homozygous at all genetic loci. This means that the animals within an inbred strain are essentially genetically identical to one another, which makes them useful for studying the effects of specific genes or environmental factors on disease processes.

SHR rats develop high blood pressure spontaneously, without any experimental manipulation, and show many features of human hypertension, such as increased vascular resistance, left ventricular hypertrophy, and renal dysfunction. They also exhibit a number of behavioral abnormalities, including hyperactivity, impulsivity, and cognitive deficits, which make them useful for studying the neurological consequences of hypertension and other cardiovascular diseases.

Overall, inbred SHR rats are an important tool in biomedical research, providing a valuable model for understanding the genetic and environmental factors that contribute to hypertension and related disorders.

Norepinephrine, also known as noradrenaline, is a neurotransmitter and a hormone that is primarily produced in the adrenal glands and is released into the bloodstream in response to stress or physical activity. It plays a crucial role in the "fight-or-flight" response by preparing the body for action through increasing heart rate, blood pressure, respiratory rate, and glucose availability.

As a neurotransmitter, norepinephrine is involved in regulating various functions of the nervous system, including attention, perception, motivation, and arousal. It also plays a role in modulating pain perception and responding to stressful or emotional situations.

In medical settings, norepinephrine is used as a vasopressor medication to treat hypotension (low blood pressure) that can occur during septic shock, anesthesia, or other critical illnesses. It works by constricting blood vessels and increasing heart rate, which helps to improve blood pressure and perfusion of vital organs.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Blood flow velocity is the speed at which blood travels through a specific part of the vascular system. It is typically measured in units of distance per time, such as centimeters per second (cm/s) or meters per second (m/s). Blood flow velocity can be affected by various factors, including cardiac output, vessel diameter, and viscosity of the blood. Measuring blood flow velocity is important in diagnosing and monitoring various medical conditions, such as heart disease, stroke, and peripheral vascular disease.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Potassium chloride is an essential electrolyte that is often used in medical settings as a medication. It's a white, crystalline salt that is highly soluble in water and has a salty taste. In the body, potassium chloride plays a crucial role in maintaining fluid and electrolyte balance, nerve function, and muscle contraction.

Medically, potassium chloride is commonly used to treat or prevent low potassium levels (hypokalemia) in the blood. Hypokalemia can occur due to various reasons such as certain medications, kidney diseases, vomiting, diarrhea, or excessive sweating. Potassium chloride is available in various forms, including tablets, capsules, and liquids, and it's usually taken by mouth.

It's important to note that potassium chloride should be used with caution and under the supervision of a healthcare provider, as high levels of potassium (hyperkalemia) can be harmful and even life-threatening. Hyperkalemia can cause symptoms such as muscle weakness, irregular heartbeat, and cardiac arrest.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Bradykinin is a naturally occurring peptide in the human body, consisting of nine amino acids. It is a potent vasodilator and increases the permeability of blood vessels, causing a local inflammatory response. Bradykinin is formed from the breakdown of certain proteins, such as kininogen, by enzymes called kininases or proteases, including kallikrein. It plays a role in several physiological processes, including pain transmission, blood pressure regulation, and the immune response. In some pathological conditions, such as hereditary angioedema, bradykinin levels can increase excessively, leading to symptoms like swelling, redness, and pain.

Hydrazines are not a medical term, but rather a class of organic compounds containing the functional group N-NH2. They are used in various industrial and chemical applications, including the production of polymers, pharmaceuticals, and agrochemicals. However, some hydrazines have been studied for their potential therapeutic uses, such as in the treatment of cancer and cardiovascular diseases. Exposure to high levels of hydrazines can be toxic and may cause damage to the liver, kidneys, and central nervous system. Therefore, medical professionals should be aware of the potential health hazards associated with hydrazine exposure.

Microvessels are the smallest blood vessels in the body, including capillaries, venules, and arterioles. They form a crucial part of the circulatory system, responsible for delivering oxygen and nutrients to tissues and organs while removing waste products. Capillaries, the tiniest microvessels, facilitate the exchange of substances between blood and tissue cells through their thin walls. Overall, microvessels play a vital role in maintaining proper organ function and overall health.

Angiotensin II is a potent vasoactive peptide hormone that plays a critical role in the renin-angiotensin-aldosterone system (RAAS), which is a crucial regulator of blood pressure and fluid balance in the body. It is formed from angiotensin I through the action of an enzyme called angiotensin-converting enzyme (ACE).

Angiotensin II has several physiological effects on various organs, including:

1. Vasoconstriction: Angiotensin II causes contraction of vascular smooth muscle, leading to an increase in peripheral vascular resistance and blood pressure.
2. Aldosterone release: Angiotensin II stimulates the adrenal glands to release aldosterone, a hormone that promotes sodium reabsorption and potassium excretion in the kidneys, thereby increasing water retention and blood volume.
3. Sympathetic nervous system activation: Angiotensin II activates the sympathetic nervous system, leading to increased heart rate and contractility, further contributing to an increase in blood pressure.
4. Thirst regulation: Angiotensin II stimulates the hypothalamus to increase thirst, promoting water intake and helping to maintain intravascular volume.
5. Cell growth and fibrosis: Angiotensin II has been implicated in various pathological processes, such as cell growth, proliferation, and fibrosis, which can contribute to the development of cardiovascular and renal diseases.

Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are two classes of medications commonly used in clinical practice to target the RAAS by blocking the formation or action of angiotensin II, respectively. These drugs have been shown to be effective in managing hypertension, heart failure, and chronic kidney disease.

A Retinal Vein is a vessel that carries oxygen-depleted blood away from the retina, a light-sensitive layer at the back of the eye. The retinal veins originate from a network of smaller vessels called venules and ultimately merge to form the central retinal vein, which exits the eye through the optic nerve.

Retinal veins are crucial for maintaining the health and function of the retina, as they facilitate the removal of waste products and help regulate the ocular environment. However, they can also be susceptible to various pathological conditions such as retinal vein occlusions, which can lead to vision loss or damage to the eye.

Cyclic N-oxides are a class of organic compounds that contain a cyclic structure with a nitrogen atom bonded to an oxygen atom as an N-oxide. An N-oxide is a compound in which the nitrogen atom has a positive charge and the oxygen atom has a negative charge, forming a polar covalent bond. In cyclic N-oxides, this N-O group is part of a ring structure, which can be composed of various combinations of carbon, nitrogen, and other atoms. These compounds have been studied for their potential use in pharmaceuticals, agrochemicals, and materials science.

Cyclooxygenase (COX) inhibitors are a class of drugs that work by blocking the activity of cyclooxygenase enzymes, which are involved in the production of prostaglandins. Prostaglandins are hormone-like substances that play a role in inflammation, pain, and fever.

There are two main types of COX enzymes: COX-1 and COX-2. COX-1 is produced continuously in various tissues throughout the body and helps maintain the normal function of the stomach and kidneys, among other things. COX-2, on the other hand, is produced in response to inflammation and is involved in the production of prostaglandins that contribute to pain, fever, and inflammation.

COX inhibitors can be non-selective, meaning they block both COX-1 and COX-2, or selective, meaning they primarily block COX-2. Non-selective COX inhibitors include drugs such as aspirin, ibuprofen, and naproxen, while selective COX inhibitors are often referred to as coxibs and include celecoxib (Celebrex) and rofecoxib (Vioxx).

COX inhibitors are commonly used to treat pain, inflammation, and fever. However, long-term use of non-selective COX inhibitors can increase the risk of gastrointestinal side effects such as ulcers and bleeding, while selective COX inhibitors may be associated with an increased risk of cardiovascular events such as heart attack and stroke. It is important to talk to a healthcare provider about the potential risks and benefits of COX inhibitors before using them.

Prostaglandins are naturally occurring, lipid-derived hormones that play various important roles in the human body. They are produced in nearly every tissue in response to injury or infection, and they have diverse effects depending on the site of release and the type of prostaglandin. Some of their functions include:

1. Regulation of inflammation: Prostaglandins contribute to the inflammatory response by increasing vasodilation, promoting fluid accumulation, and sensitizing pain receptors, which can lead to symptoms such as redness, heat, swelling, and pain.
2. Modulation of gastrointestinal functions: Prostaglandins protect the stomach lining from acid secretion and promote mucus production, maintaining the integrity of the gastric mucosa. They also regulate intestinal motility and secretion.
3. Control of renal function: Prostaglandins help regulate blood flow to the kidneys, maintain sodium balance, and control renin release, which affects blood pressure and fluid balance.
4. Regulation of smooth muscle contraction: Prostaglandins can cause both relaxation and contraction of smooth muscles in various tissues, such as the uterus, bronchioles, and vascular system.
5. Modulation of platelet aggregation: Some prostaglandins inhibit platelet aggregation, preventing blood clots from forming too quickly or becoming too large.
6. Reproductive system regulation: Prostaglandins are involved in the menstrual cycle, ovulation, and labor induction by promoting uterine contractions.
7. Neurotransmission: Prostaglandins can modulate neurotransmitter release and neuronal excitability, affecting pain perception, mood, and cognition.

Prostaglandins exert their effects through specific G protein-coupled receptors (GPCRs) found on the surface of target cells. There are several distinct types of prostaglandins (PGs), including PGD2, PGE2, PGF2α, PGI2 (prostacyclin), and thromboxane A2 (TXA2). Each type has unique functions and acts through specific receptors. Prostaglandins are synthesized from arachidonic acid, a polyunsaturated fatty acid derived from membrane phospholipids, by the action of cyclooxygenase (COX) enzymes. Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin and ibuprofen, inhibit COX activity, reducing prostaglandin synthesis and providing analgesic, anti-inflammatory, and antipyretic effects.

Glyburide is a medication that falls under the class of drugs known as sulfonylureas. It is primarily used to manage type 2 diabetes by lowering blood sugar levels. Glyburide works by stimulating the release of insulin from the pancreas, thereby increasing the amount of insulin available in the body to help glucose enter cells and decrease the level of glucose in the bloodstream.

The medical definition of Glyburide is:
A second-generation sulfonylurea antidiabetic drug (oral hypoglycemic) used in the management of type 2 diabetes mellitus. It acts by stimulating pancreatic beta cells to release insulin and increases peripheral glucose uptake and utilization, thereby reducing blood glucose levels. Glyburide may also decrease glucose production in the liver.

It is important to note that Glyburide should be used as part of a comprehensive diabetes management plan that includes proper diet, exercise, regular monitoring of blood sugar levels, and other necessary lifestyle modifications. As with any medication, it can have side effects and potential interactions with other drugs, so it should only be taken under the supervision of a healthcare provider.

Corrosion casting is a specialized technique used in anatomy and pathology to create detailed casts or molds of biological specimens, particularly vascular systems. This method is also known as "acid etching" or "corrosive casting." Here's the medical definition:

Corrosion casting is a process that involves injecting a special resin or plastic material into the vasculature or other hollow structures of a biological specimen, such as an organ or tissue. The injected material thoroughly fills the cavity and then hardens once it has set. After hardening, the surrounding tissues are corroded or dissolved using strong acids or bases, leaving behind only the cast or mold of the internal structures.

This technique results in a detailed three-dimensional representation of the complex internal networks, like blood vessels, which can be used for further study, research, and education. Corrosion casting is particularly useful in visualizing the intricate branching patterns and structural relationships within these systems.

Mechanical stress, in the context of physiology and medicine, refers to any type of force that is applied to body tissues or organs, which can cause deformation or displacement of those structures. Mechanical stress can be either external, such as forces exerted on the body during physical activity or trauma, or internal, such as the pressure changes that occur within blood vessels or other hollow organs.

Mechanical stress can have a variety of effects on the body, depending on the type, duration, and magnitude of the force applied. For example, prolonged exposure to mechanical stress can lead to tissue damage, inflammation, and chronic pain. Additionally, abnormal or excessive mechanical stress can contribute to the development of various musculoskeletal disorders, such as tendinitis, osteoarthritis, and herniated discs.

In order to mitigate the negative effects of mechanical stress, the body has a number of adaptive responses that help to distribute forces more evenly across tissues and maintain structural integrity. These responses include changes in muscle tone, joint positioning, and connective tissue stiffness, as well as the remodeling of bone and other tissues over time. However, when these adaptive mechanisms are overwhelmed or impaired, mechanical stress can become a significant factor in the development of various pathological conditions.

Potassium channel blockers are a class of medications that work by blocking potassium channels, which are proteins in the cell membrane that control the movement of potassium ions into and out of cells. By blocking these channels, potassium channel blockers can help to regulate electrical activity in the heart, making them useful for treating certain types of cardiac arrhythmias (irregular heart rhythms).

There are several different types of potassium channel blockers, including:

1. Class III antiarrhythmic drugs: These medications, such as amiodarone and sotalol, are used to treat and prevent serious ventricular arrhythmias (irregular heart rhythms that originate in the lower chambers of the heart).
2. Calcium channel blockers: While not strictly potassium channel blockers, some calcium channel blockers also have effects on potassium channels. These medications, such as diltiazem and verapamil, are used to treat hypertension (high blood pressure), angina (chest pain), and certain types of arrhythmias.
3. Non-selective potassium channel blockers: These medications, such as 4-aminopyridine and tetraethylammonium, have a broader effect on potassium channels and are used primarily in research settings to study the electrical properties of cells.

It's important to note that potassium channel blockers can have serious side effects, particularly when used in high doses or in combination with other medications that affect heart rhythms. They should only be prescribed by a healthcare provider who is familiar with their use and potential risks.

The mesentery is a continuous fold of the peritoneum, the double-layered serous membrane that lines the abdominal cavity, which attaches the stomach, small intestine, large intestine (colon), and rectum to the posterior wall of the abdomen. It provides blood vessels, nerves, and lymphatic vessels to these organs.

Traditionally, the mesentery was thought to consist of separate and distinct sections along the length of the intestines. However, recent research has shown that the mesentery is a continuous organ, with a single continuous tethering point to the posterior abdominal wall. This new understanding of the anatomy of the mesentery has implications for the study of various gastrointestinal diseases and disorders.

Pimozide is an antipsychotic medication that is primarily used to treat chronic tics and Tourette's disorder. It works by blocking the action of dopamine, a neurotransmitter in the brain that is involved in regulating movement and mood. By blocking dopamine receptors, pimozide helps to reduce the severity and frequency of tics and other symptoms associated with these conditions.

Pimozide may also be used off-label for the treatment of other conditions, such as severe behavioral problems in children with developmental disabilities. It is important to note that pimozide can have serious side effects, including cardiac arrhythmias and neurological symptoms, and should only be prescribed by a healthcare professional who is experienced in managing its use.

As with all medications, it's essential to follow the dosage instructions carefully and to report any unusual or concerning symptoms to your healthcare provider promptly.

Perfusion, in medical terms, refers to the process of circulating blood through the body's organs and tissues to deliver oxygen and nutrients and remove waste products. It is a measure of the delivery of adequate blood flow to specific areas or tissues in the body. Perfusion can be assessed using various methods, including imaging techniques like computed tomography (CT) scans, magnetic resonance imaging (MRI), and perfusion scintigraphy.

Perfusion is critical for maintaining proper organ function and overall health. When perfusion is impaired or inadequate, it can lead to tissue hypoxia, acidosis, and cell death, which can result in organ dysfunction or failure. Conditions that can affect perfusion include cardiovascular disease, shock, trauma, and certain surgical procedures.

The afferent arterioles branch from the renal artery, which supplies blood to the kidneys. The afferent arterioles later ... The afferent arterioles are a group of blood vessels that supply the nephrons in many excretory systems. They play an important ... If the efferent arterioles are constricted then the blood pressure in the capillaries of the kidneys will increase. Efferent ... The macula densa cell can also increase the blood pressure of the afferent arterioles by decreasing the synthesis of adenosine ...
Arteritis of the arterioles occurs when the arteriole walls become inflamed as a result of either an immune response to ... Pulmonary arterioles are a noteworthy exception as they vasodilate in response to high oxygen. Brain arterioles are ... An arteriole is a small-diameter blood vessel in the microcirculation that extends and branches out from an artery and leads to ... Arterioles have muscular walls (usually only one to two layers of smooth muscle cells) and are the primary site of vascular ...
The efferent arterioles are blood vessels that are part of the urinary tract of organisms. Efferent (from Latin ex + ferre) ... The efferent arterioles form a convergence of the capillaries of the glomerulus, and carry blood away from the glomerulus that ... The efferent arterioles of the juxtamedullary glomeruli are much different. They do break up, but they form bundles of vessels ... The efferent arterioles of the undifferentiated cortical glomeruli are the most complex. Promptly on leaving the glomerulus ...
There are five types of blood vessels: the arteries, which carry the blood away from the heart; the arterioles; the capillaries ... In general, arteries and arterioles transport oxygenated blood from the lungs to the body and its organs, and veins and venules ... There are various kinds of blood vessels: Arteries Elastic arteries Distributing arteries Arterioles Capillaries (smallest ... Blood is propelled through arteries and arterioles through pressure generated by the heartbeat. Blood vessels also transport ...
Prominent arterioles. Angiolymphatic invasion common. Up to 10-15 mitotic figures per 10 HPF in most active areas. Tongue-like ...
... contraction of arterioles; dilatation of bronchioles; increased levels of blood sugar; sweating; widening of the pupils and ...
Affects capillaries, venules, or arterioles. Thought to be part of a group that includes granulomatosis with polyangiitis since ... Systemic vasculitis of medium and small arteries, including venules and arterioles. Produces granulomatous inflammation of the ... or arterioles. Therefore, complement will be low with histology showing vessel inflammation with immune deposits. Vasculitis ...
Dilate arterioles to skeletal muscle. In the normal eye, beta-2 stimulation by salbutamol increases intraocular pressure via ...
There, arterioles control the flow of blood to the capillaries. Arterioles contract and relax, varying their diameter and ... The microvessels include terminal arterioles, metarterioles, capillaries, and venules. Arterioles carry oxygenated blood to the ... Arterioles carry the blood to the capillaries, which are not innervated, have no smooth muscle, and are about 5-8 μm in ... Metarterioles connect arterioles and capillaries. A tributary to the venules is known as a thoroughfare channel.[citation ...
Diseases of arteries, arterioles and capillaries). ...
Immediately following the arterioles are the capillaries. Following the logic observed in the arterioles, we expect the blood ... This is why[citation needed] the arterioles have the highest pressure-drop. The pressure drop of the arterioles is the product ... In the arterioles blood pressure is lower than in the major arteries. This is due to bifurcations, which cause a drop in ... The high resistance observed in the arterioles, which factor largely in the ∆P is a result of a smaller radius of about 30 µm. ...
"Significance of bright plaques in the retinal arterioles". JAMA. 178: 23-29. doi:10.1001/jama.1961.03040400025005. PMC 1316410 ...
In 1961, Hollenhorst published "Significance of Bright Plaques in Retinal Arterioles" in the Journal of the American Medical ... Hollenhorst RW (1961). "Significance of bright plaques in the retinal arterioles". JAMA. 178: 23-29. doi:10.1001/jama. ...
In some subjects, arterioles and venules can be seen to run parallel with each other. Paired arterioles are generally smaller ... The bulbar conjunctival microvasculature contains arterioles, meta-arterioles, venules, capillaries, and communicating vessels ... Hypertension is associated with an increase in the tortuosity of bulbar conjunctival blood vessels and capillary and arteriole ...
Efferent arterioles appear to play a lesser role; experimental evidence supports both vasoconstriction and vasodilation, with ... The muscle tension in the afferent arteriole is modified based on the difference between the sensed concentration and a target ... Constricting the smooth muscle cells in the afferent arteriole, results in a reduced concentration of chloride at the MD. TGF ... Adenosine constricts the afferent arteriole by binding with high affinity to the A1 receptors a Gi/Go. Adenosine binds with ...
Another determinant of vascular resistance is the pre-capillary arterioles. These arterioles are less than 100 μm in diameter. ... Because resistance is inversely proportional to the fourth power of vessel radius, changes to arteriole diameter can result in ... known as resistance arterioles) tone. These vessels are from 450 μm down to 100 μm in diameter (as a comparison, the diameter ... but the small arteries and arterioles are the site of about 70% of the pressure drop, and are the main regulators of SVR. When ...
... angiotensin II also constricts the afferent arteriole into the glomerulus in addition to the efferent arteriole it normally ... Prostaglandins normally dilate the afferent arterioles of the glomeruli. This helps maintain normal glomerular perfusion and ... Since NSAIDs block this prostaglandin-mediated effect of afferent arteriole dilation, particularly in kidney failure, NSAIDs ... which removes angiotensin II's vasoconstriction of the efferent arteriole) and a diuretic (which drops plasma volume, and ...
The myogenic mechanism is how arteries and arterioles react to an increase or decrease of blood pressure to keep the blood flow ... This is especially relevant in arterioles of the body. When blood pressure is increased in the blood vessels and the blood ...
... located on the afferent arteriole wall). This leads to renin secretion that causes the angiotensinogen conversion to ...
Hand-warming involves arteriole vasodilation produced by a beta-2 adrenergic hormonal mechanism. Hand-cooling involves ... Skin temperature mainly reflects arteriole diameter. Hand-warming and hand-cooling are produced by separate mechanisms, and ... arteriole vasoconstriction produced by the increased firing of sympathetic C-fibers. Biofeedback therapists use temperature ...
The germinal centers are supplied by arterioles called penicilliary radicles. The spleen is innervated by the splenic plexus, ...
Arteries, arterioles, capillaries, venules, and veins make up the vasculature. The cardiovascular system circulates about 5 ... circulations take the blood through large arteries first and then branches into smaller arteries before reaching arterioles and ...
The occluded arterioles can be seen as dark red lines. They eventually turn into white silver-wire vessels. Stage of peripheral ... They are usually seen adjacent to the retinal arteriole. Bleeding in the deeper layers of the retina leads to the appearance of ...
... down to the arterioles. The arterioles supply capillaries, which in turn empty into venules. The first branches off of the ... Arterioles have the greatest collective influence on both local blood flow and on overall blood pressure. They are the primary ... Arterioles help in regulating blood pressure by the variable contraction of the smooth muscle of their walls, and deliver blood ... Systemic arteries deliver blood to the arterioles, and then to the capillaries, where nutrients and gases are exchanged. After ...
The arterioles end by opening freely into the splenic pulp; their walls become much attenuated, they lose their tubular ... The arterioles, supported by the minute trabeculae, traverse the pulp in all directions in bundles (penicilli) of straight ... The altered coat of the arterioles, consisting of adenoid tissue, presents here and there thickenings of a spheroidal shape, ... or central arterioles). Branches of the central arteries are given to the red pulp, and these are called penicillar arteries). ...
However, this assumption fails when considering forward flow within arterioles. At the microscopic scale, the effects of ...
... s are substances or medications that preferentially dilate arterioles. When used on people with certain ...
The germinal centers are supplied by arterioles called penicilliary radicles. In the human until the fifth month of prenatal ...
The rest passes into an efferent arteriole. The diameter of the efferent arteriole is smaller than that of the afferent, and ... Although the figure labels the efferent vessel as a vein, it is actually an arteriole.) Glomerulus is red; Bowman's capsule is ... Each glomerulus receives its blood supply from an afferent arteriole of the renal circulation. The glomerular blood pressure ... Blood from the efferent arteriole, containing everything that was not filtered out in the glomerulus, moves into the ...
The arterioles are thickened and occlusion by thrombi are occasionally present. Though a neuroma is a soft-tissue abnormality ...
The afferent arterioles branch from the renal artery, which supplies blood to the kidneys. The afferent arterioles later ... The afferent arterioles are a group of blood vessels that supply the nephrons in many excretory systems. They play an important ... If the efferent arterioles are constricted then the blood pressure in the capillaries of the kidneys will increase. Efferent ... The macula densa cell can also increase the blood pressure of the afferent arterioles by decreasing the synthesis of adenosine ...
DISEASES OF ARTERIES, ARTERIOLES, AND CAPILLARIES ICD-9 Code range 440-449. The ICD-9 code range DISEASES OF ARTERIES, ... ARTERIOLES, AND CAPILLARIES for 440-449 is medical classification list by the World Health Organization (WHO). ...
Precise, 3-D optogenetic control of the diameter of single arterioles. Philip J. OHerron, David A. Hartmann, Kun Xie, Prakash ... Precise, 3-D optogenetic control of the diameter of single arterioles Message Subject (Your Name) has forwarded a page to you ...
Pathoma said it as well: vasodilation of arterioles-, rubor, calor. + increased permeability of postcapillary venules-, fluid ...
... passing through its center and ending on either side at the outer surface of the arteriole wall. A renal afferent arteriole is ... The length of a line which crosses a transverse view of a renal afferent arteriole, ...
The pulmonary arterioles and small arteries were studied and their musculature and its nuclei were quantified in 90 neonates, ... of SIDS are subjected to chronic hypoxia before death as significantly more medial muscle tissue in the pulmonary arterioles ...
Arrows indicate afferent arterioles. Scale bars: 50 μm. (F) GFP showed in the walls of hypertrophic afferent arterioles in the ... The expression of Bgn, Cpe, Emillin1, Fstl1, Nid1, Mgp, Sparc, and Spp1 was increased in the hypertrophic arterioles in Ren1c- ... The expression of Akr1b7 mRNA was substantially diminished in the afferent arterioles of the Ren1c-KO Itgb1-cKO mice (Figure 6E ... The mean wall thickness of afferent arterioles at the JG area was significantly smaller in Ren1c-KO Itgb1-cKO mice (n = 6, ...
Good metarteriole is a kind of ship who has got architectural features of each other a keen arteriole and you may a great ... Each metarteriole comes from a critical arteriole and you may twigs to offer Biracial free and single dating site blood so ... arterioles, venules, veins, or perhaps the heart itself. Typically, new precapillary sphincters are signed. In the event that ...
Our aim in this study is to advance a recently proposed ex vivo isolated Capillary-Arteriole preparation for quantifying Kir- ... Surface tension enhances the removal of parenchymal tissue and stresses the isolated capillary-arteriole network. ... Our aim in this study is to advance a recently proposed ex vivo isolated Capillary-Arteriole preparation for quantifying Kir- ... Our aim in this study is to advance a recently proposed ex vivo isolated Capillary-Arteriole preparation for quantifying Kir- ...
What are the arterioles and venules ? How does the exchange of gases and materials take place between blood and blood cells.. ... What are the arterioles and venules ? How does the exchange of gases and materials take place between blood and blood cells. ...
Arterioles. Klafs ABC of Well-being. WHAT ARE ARTERIOLES?. Arterioles are small blood vessels that are smaller than arteries, ... FACTS ABOUT ARTERIOLES AT A GLANCE. *Arterioles are small blood vessels. *Arterioles influence blood pressure and control blood ... FUNCTION OF ARTERIOLES?. The blood vessels regulate the circulation in the down-stream capillaries. To ensure the flawless ... A strong branching of the arterioles reduces blood pressure because the frictional resistance and flow speed of the blood are ...
... arteriole, adventitia). Create professional science figures in minutes with BioRender scientific illustration software. ... ":"https://icons.biorender.com/w550xh620/5d068c286ca2f504007354c9/vessel-cross-section-arteriole-adventitia.png"},{"image":" ... "https://icons.biorender.com/w75xh75/5d068c286ca2f504007354c8/vessel-cross-section-arteriole-adventitia.png","waterMarkImage":" ... "https://icons.biorender.com/w550xh620/5d068c286ca2f504007354c8/vessel-cross-section-arteriole-adventitia.png"},{"image":"https ...
Histology of arterioles and venules in loose connective tissue (mesentery). ... Arterioles & Venules. (H&E). Arterioles and venules are small diameter blood vessels that allow blood to flow into and out of ... Arteriole #3. - two layers of smooth muscle.. *. Small Arteriole #4. - nuclei of two endothelial cells and two smooth muscle ... Arteriole & Venule. (Verhoeff Stain). Arterioles and venules are small diameter blood vessels that allow blood flow to and from ...
Histology of arterioles and venules in loose connective tissue (mesentery). ... Arterioles & Venules. (H&E). Arterioles and venules are small diameter blood vessels that allow blood to flow into and out of ... Arteriole #3. - two layers of smooth muscle.. *. Small Arteriole #4. - nuclei of two endothelial cells and two smooth muscle ... Arteriole & Venule. (Verhoeff Stain). Arterioles and venules are small diameter blood vessels that allow blood flow to and from ...
Inflammatory Mechanisms in Arterioles and Venules Sarelius, Ingrid H. University of Rochester, Rochester, NY, United States ... Inflammatory Mechanisms in Arterioles and Venules. Sarelius, Ingrid H. / University of Rochester. $360,907. ... Inflammatory Mechanisms in Arterioles and Venules. Sarelius, Ingrid H. / University of Rochester. $369,593. ... Inflammatory Mechanisms in Arterioles and Venules. Sarelius, Ingrid H. / University of Rochester. $369,593. ...
I79 Disorders of arteries, arterioles and capillaries in diseases classified ...
... kidney efferent arteriole cell cell types (synonyms: N/A). Specialized vascular cells that regulate blood flow in the kidney, ...
... in renal arterioles and the possible role of voltage-gated Ca2+ channels in these responses. Glomeruli with attached arterioles ... in renal arterioles and the possible role of voltage-gated Ca2+ channels in these responses. Glomeruli with attached arterioles ... in renal arterioles and the possible role of voltage-gated Ca2+ channels in these responses. Glomeruli with attached arterioles ... in renal arterioles and the possible role of voltage-gated Ca2+ channels in these responses. Glomeruli with attached arterioles ...
Arterioles: Dynamic Structure, Function and Clinical Analysis. $110.00. Select options. * Horizons in World Cardiovascular ...
The term cardiovascular refers to the heart (cardio) and the blood vessels (vascular). The cardiovascular system includes:
keywords = "Acetylcholine, Afferent arteriole, EDHF, Hypertension, Nitric oxide",. author = "Koichi Hayashi and Hiroto Matsuda ... Impaired nitric oxide-independent dilation of renal afferent arterioles in spontaneously hypertensive rats. In: Hypertension ... During myogenic constriction, afferent arterioles from WKY and SHR kidneys responded to ACH with only transient vasodilation, ... In conclusion, ACH has both sustained and transient vasodilative effects on the afferent arteriole. Sustained vasodilation is ...
Connexin mimetic peptides fail to inhibit vascular conducted calcium responses in renal arterioles.. Publikation: Bidrag til ...
Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles. In: ... Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles. ... Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles. / ... Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles. ...
Effect of intraluminal pressure and tone on smooth muscle Ca2+oscillations in cremaster muscle arterioles ... Effect of intraluminal pressure and tone on smooth muscle Ca2+oscillations in cremaster muscle arterioles ...
A very large number of pre-capillary arterioles deliver blood to capillary beds (~0.06 mm diameters, 0.15 mm lengths). A ... At the acquired resolution, it may not be possible to gain insights into the pre-capillary arteriole BF distributions. Apart ... Our model is limited to SN 6 (arterioles) to SN 11 (main coronary arteries) arterial segments. The ensemble of coronary trees ... Blocking All Large Arteries (Stenosis) Promotes BF Bi-Modality, Blocking Smaller Arterioles Increase BF Heterogeneity. The ...
arteriole (anatomy). acrocyanosis: …hands caused by spasms in arterioles (small arteries) of the skin. Less commonly, the feet ... arteriosclerosis: Arteriolosclerosis affects small arteries and arterioles (very small arteries). It involves thickening of the ... muscular vessels called arterioles, from which blood enters simple endothelial tubes (i.e., tubes formed of endothelial, or ...
... were observed in close apposition to the outer surface of the vascular smooth muscle wall of 10/15 arterioles. In fixed slices ... stained varicose fibres were also seen in close association with the smooth muscle wall of small arterioles. These findings ... Animals, Arterioles, Cerebrovascular Circulation, Enzyme Inhibitors, Fluorescein, Fluorescent Dyes, Hippocampus, In Vitro ... Fluorescent imaging of nitric oxide production in neuronal varicosities associated with intraparenchymal arterioles in rat ...
Garner, AM & Kim, KS 1996, The effects of Escherichia coli S-fimbriae and outer membrane protein A on rat pial arterioles, ... The effects of Escherichia coli S-fimbriae and outer membrane protein A on rat pial arterioles. Pediatric research. 1996 Apr;39 ... The effects of Escherichia coli S-fimbriae and outer membrane protein A on rat pial arterioles. In: Pediatric research. 1996 ; ... The effects of Escherichia coli S-fimbriae and outer membrane protein A on rat pial arterioles. / Garner, Alice Mcknight; Kim, ...
Arterioles. •Metarterioles. •Capillaries. •Venules. •Veins. •The tunics of the blood vessels. •Tunica Intima/Tunica Interna. • ...

No FAQ available that match "arterioles"