Anchoring points where the CYTOSKELETON of neighboring cells are connected to each other. They are composed of specialized areas of the plasma membrane where bundles of the ACTIN CYTOSKELETON attach to the membrane through the transmembrane linkers, CADHERINS, which in turn attach through their extracellular domains to cadherins in the neighboring cell membranes. In sheets of cells, they form into adhesion belts (zonula adherens) that go all the way around a cell.
Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792)
Calcium-dependent cell adhesion proteins. They are important in the formation of ADHERENS JUNCTIONS between cells. Cadherins are classified by their distinct immunological and tissue specificities, either by letters (E- for epithelial, N- for neural, and P- for placental cadherins) or by numbers (cadherin-12 or N-cadherin 2 for brain-cadherin). Cadherins promote cell adhesion via a homophilic mechanism as in the construction of tissues and of the whole animal body.
Cell-cell junctions that seal adjacent epithelial cells together, preventing the passage of most dissolved molecules from one side of the epithelial sheet to the other. (Alberts et al., Molecular Biology of the Cell, 2nd ed, p22)
A catenin that binds F-ACTIN and links the CYTOSKELETON with BETA CATENIN and GAMMA CATENIN.
A family of cytoskeletal proteins that play essential roles in CELL ADHESION at ADHERENS JUNCTIONS by linking CADHERINS to the ACTIN FILAMENTS of the CYTOSKELETON.
Connections between cells which allow passage of small molecules and electric current. Gap junctions were first described anatomically as regions of close apposition between cells with a narrow (1-2 nm) gap between cell membranes. The variety in the properties of gap junctions is reflected in the number of CONNEXINS, the family of proteins which form the junctions.
Desmoplakins are cytoskeletal linker proteins that anchor INTERMEDIATE FILAMENTS to the PLASMA MEMBRANE at DESMOSOMES.
A multi-functional catenin that participates in CELL ADHESION and nuclear signaling. Beta catenin binds CADHERINS and helps link their cytoplasmic tails to the ACTIN in the CYTOSKELETON via ALPHA CATENIN. It also serves as a transcriptional co-activator and downstream component of WNT PROTEIN-mediated SIGNAL TRANSDUCTION PATHWAYS.
A 195-kDa zonula occludens protein that is distinguished by the presence of a ZU5 domain at the C-terminal of the molecule.
A multi-functional catenin that is highly homologous to BETA CATENIN. Gamma catenin binds CADHERINS and helps link their cytoplasmic tails to ACTIN in the CYTOSKELETON via ALPHA CATENIN. It is also found in DESMOSOMES where it mediates the link between DESMOSOMAL CADHERINS and DESMOPLAKIN.
Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible.
A family of proteins that contain several 42-amino acid repeat domains and are homologous to the Drosophila armadillo protein. They bind to other proteins through their armadillo domains and play a variety of roles in the CELL including SIGNAL TRANSDUCTION, regulation of DESMOSOME assembly, and CELL ADHESION.
A type of junction that attaches one cell to its neighbor. One of a number of differentiated regions which occur, for example, where the cytoplasmic membranes of adjacent epithelial cells are closely apposed. It consists of a circular region of each membrane together with associated intracellular microfilaments and an intercellular material which may include, for example, mucopolysaccharides. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990; Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Adherence of cells to surfaces or to other cells.
Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis.
A cytoskeletal protein associated with cell-cell and cell-matrix interactions. The amino acid sequence of human vinculin has been determined. The protein consists of 1066 amino acid residues and its gene has been assigned to chromosome 10.
A MARVEL domain protein that plays an important role in the formation and regulation of the TIGHT JUNCTION paracellular permeability barrier.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Orientation of intracellular structures especially with respect to the apical and basolateral domains of the plasma membrane. Polarized cells must direct proteins from the Golgi apparatus to the appropriate domain since tight junctions prevent proteins from diffusing between the two domains.
The synapse between a neuron and a muscle.
Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle.
Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
A group of desmosomal cadherins with cytoplasmic tails that resemble those of classical CADHERINS.
The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm.
Phosphoproteins are proteins that have been post-translationally modified with the addition of a phosphate group, usually on serine, threonine or tyrosine residues, which can play a role in their regulation, function, interaction with other molecules, and localization within the cell.
Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.
A 43-kDa peptide which is a member of the connexin family of gap junction proteins. Connexin 43 is a product of a gene in the alpha class of connexin genes (the alpha-1 gene). It was first isolated from mammalian heart, but is widespread in the body including the brain.
A group of desmosomal cadherins with cytoplasmic tails that are divergent from those of classical CADHERINS. Their intracytoplasmic domains bind PLAKOGLOBIN; PLAKOPHILINS; and DESMOPLAKINS.
Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell.
Members of the armadillo family of proteins that are found in DESMOSOMES and interact with various proteins including desmocadherins; DESMOPLAKIN; ACTIN FILAMENTS; and KERATINS.
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement.
Proteins that take part in the formation or structure of TIGHT JUNCTIONS.
An integral membrane protein that is localized to TIGHT JUNCTIONS, where it plays a role in controlling the paracellular permeability of polarized cells. Mutations in the gene for claudin-1 are associated with Neonatal Ichthyosis-Sclerosing Cholangitis (NISCH) Syndrome.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
A group of homologous proteins which form the intermembrane channels of GAP JUNCTIONS. The connexins are the products of an identified gene family which has both highly conserved and highly divergent regions. The variety contributes to the wide range of functional properties of gap junctions.
A zonula occludens protein subtype found in epithelial cell junctions. Several isoforms of zonula occludens-2 protein exist due to use of alternative promoter regions and alternative mRNA splicings.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
Established cell cultures that have the potential to propagate indefinitely.
Fibers composed of MICROFILAMENT PROTEINS, which are predominately ACTIN. They are the smallest of the cytoskeletal filaments.
The resistance to the flow of either alternating or direct electrical current.
Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
One or more layers of EPITHELIAL CELLS, supported by the basal lamina, which covers the inner or outer surfaces of the body.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
A large family of MONOMERIC GTP-BINDING PROTEINS that are involved in regulation of actin organization, gene expression and cell cycle progression. This enzyme was formerly listed as EC 3.6.1.47.
A rac GTP-binding protein involved in regulating actin filaments at the plasma membrane. It controls the development of filopodia and lamellipodia in cells and thereby influences cellular motility and adhesion. It is also involved in activation of NADPH OXIDASE. This enzyme was formerly listed as EC 3.6.1.47.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
A genetically related subfamily of RAP GTP-BINDING PROTEINS that share homology with RAS PROTEINS. They bind to Ras effectors but do not activate them, therefore they may antagonize the effects of RAS PROTEINS. This enzyme was formerly listed as EC 3.6.1.47.
The quality of surface form or outline of CELLS.
A family of membrane glycoproteins localized to TIGHT JUNCTIONS that contain two extracellular Ig-like domains, a single transmembrane segment, and a cytoplasmic tail of variable length.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
A species of fruit fly much used in genetics because of the large size of its chromosomes.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The epithelium lining the seminiferous tubules composed of primary male germ cells (SPERMATOGONIA) and supporting SERTOLI CELLS. As SPERMATOGENESIS proceeds, the developing germ cells migrate toward the lumen. The adluminal compartment, the inner two thirds of the tubules, contains SPERMATOCYTES and the more advanced germ cells.
A light microscopic technique in which only a small spot is illuminated and observed at a time. An image is constructed through point-by-point scanning of the field in this manner. Light sources may be conventional or laser, and fluorescence or transmitted observations are possible.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Cells of epithelial origin possessing specialized sensory functions. They include cells that are found in the TASTE BUDS; OLFACTORY MUCOSA; COCHLEA; and NEUROEPITHELIAL BODIES.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
A single-pass transmembrane glycoproteins that mediate CALCIUM-dependent CELL ADHESION and are core components of DESMOSOMES.
Vestibular nucleus lying immediately superior to the inferior vestibular nucleus and composed of large multipolar nerve cells. Its upper end becomes continuous with the superior vestibular nucleus.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO.
A RHO GTP-BINDING PROTEIN involved in regulating signal transduction pathways that control assembly of focal adhesions and actin stress fibers. This enzyme was formerly listed as EC 3.6.1.47.
A member of the Rho family of MONOMERIC GTP-BINDING PROTEINS. It is associated with a diverse array of cellular functions including cytoskeletal changes, filopodia formation and transport through the GOLGI APPARATUS. This enzyme was formerly listed as EC 3.6.1.47.
A process of complicated morphogenetic cell movements that reorganizes a bilayer embryo into one with three GERM LAYERS and specific orientation (dorsal/ventral; anterior/posterior). Gastrulation describes the germ layer development of a non-mammalian BLASTULA or that of a mammalian BLASTOCYST.
A sub-family of RHO GTP-BINDING PROTEINS that is involved in regulating the organization of cytoskeletal filaments. This enzyme was formerly listed as EC 3.6.1.47.
A specialized barrier, in the TESTIS, between the interstitial BLOOD compartment and the adluminal compartment of the SEMINIFEROUS TUBULES. The barrier is formed by layers of cells from the VASCULAR ENDOTHELIUM of the capillary BLOOD VESSELS, to the SEMINIFEROUS EPITHELIUM of the seminiferous tubules. TIGHT JUNCTIONS form between adjacent SERTOLI CELLS, as well as between the ENDOTHELIAL CELLS.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Supporting cells projecting inward from the basement membrane of SEMINIFEROUS TUBULES. They surround and nourish the developing male germ cells and secrete ANDROGEN-BINDING PROTEIN and hormones such as ANTI-MULLERIAN HORMONE. The tight junctions of Sertoli cells with the SPERMATOGONIA and SPERMATOCYTES provide a BLOOD-TESTIS BARRIER.
An epithelial cell line derived from a kidney of a normal adult female dog.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
The area covering the terminal portion of ESOPHAGUS and the beginning of STOMACH at the cardiac orifice.
An inactive stage between the larval and adult stages in the life cycle of insects.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
An enzyme that catalyzes reversible reactions of a nucleoside triphosphate, e.g., ATP, with a nucleoside monophosphate, e.g., UMP, to form ADP and UDP. Many nucleoside monophosphates can act as acceptor while many ribo- and deoxyribonucleoside triphosphates can act as donor. EC 2.7.4.4.
A PROTEIN-TYROSINE KINASE family that was originally identified by homology to the Rous sarcoma virus ONCOGENE PROTEIN PP60(V-SRC). They interact with a variety of cell-surface receptors and participate in intracellular signal transduction pathways. Oncogenic forms of src-family kinases can occur through altered regulation or expression of the endogenous protein and by virally encoded src (v-src) genes.
Bundles of actin filaments (ACTIN CYTOSKELETON) and myosin-II that span across the cell attaching to the cell membrane at FOCAL ADHESIONS and to the network of INTERMEDIATE FILAMENTS that surrounds the nucleus.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica.
Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell.
A CALCIUM-dependent adhesion molecule of DESMOSOMES that also plays a role in embryonic STEM CELL proliferation.
The subfamily of myosin proteins that are commonly found in muscle fibers. Myosin II is also involved a diverse array of cellular functions including cell division, transport within the GOLGI APPARATUS, and maintaining MICROVILLI structure.
A microtubule-associated mechanical adenosine triphosphatase, that uses the energy of ATP hydrolysis to move organelles along microtubules toward the plus end of the microtubule. The protein is found in squid axoplasm, optic lobes, and in bovine brain. Bovine kinesin is a heterotetramer composed of two heavy (120 kDa) and two light (62 kDa) chains. EC 3.6.1.-.
Human colonic ADENOCARCINOMA cells that are able to express differentiation features characteristic of mature intestinal cells, such as ENTEROCYTES. These cells are valuable in vitro tools for studies related to intestinal cell function and differentiation.
A non-essential amino acid. In animals it is synthesized from PHENYLALANINE. It is also the precursor of EPINEPHRINE; THYROID HORMONES; and melanin.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
A ubiquitously-expressed claudin subtype that acts as a general barrier-forming protein in TIGHT JUNCTIONS. Elevated expression of claudin-3 is found in a variety of tumor cell types, suggesting its role as a therapeutic target for specific ANTINEOPLASTIC AGENTS.
Enzymes that recognize CRUCIFORM DNA structures and introduce paired incisions that help to resolve the structure into two DNA helices.
A protein factor that regulates the length of R-actin. It is chemically similar, but immunochemically distinguishable from actin.
A protein complex of actin and MYOSINS occurring in muscle. It is the essential contractile substance of muscle.
A method used to study the lateral movement of MEMBRANE PROTEINS and LIPIDS. A small area of a cell membrane is bleached by laser light and the amount of time necessary for unbleached fluorescent marker-tagged proteins to diffuse back into the bleached site is a measurement of the cell membrane's fluidity. The diffusion coefficient of a protein or lipid in the membrane can be calculated from the data. (From Segen, Current Med Talk, 1995).
A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain.
An anchoring junction of the cell to a non-cellular substrate. It is composed of a specialized area of the plasma membrane where bundles of the ACTIN CYTOSKELETON terminate and attach to the transmembrane linkers, INTEGRINS, which in turn attach through their extracellular domains to EXTRACELLULAR MATRIX PROTEINS.
Hydrazines are organic compounds containing the functional group R-NH-NH2, where R represents an organic group, and are used in pharmaceuticals, agrochemicals, and rocket fuels, but can be highly toxic and carcinogenic with potential for environmental damage.
Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.
The aggregation of soluble ANTIGENS with ANTIBODIES, alone or with antibody binding factors such as ANTI-ANTIBODIES or STAPHYLOCOCCAL PROTEIN A, into complexes large enough to fall out of solution.
An abnormal extension of a gingival sulcus not accompanied by the apical migration of the epithelial attachment.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions.
Catalyzes the ATP-dependent PHOSPHORYLATION of GMP to generate GDP and ADP.
A claudin subtype that is found localized to TIGHT JUNCTIONS in VASCULAR ENDOTHELIAL CELLS. The protein was initially identified as one of several proteins which are deleted in VELOCARDIOFACIAL SYNDROME and may play an important role in maintaining the integrity of the BLOOD-BRAIN BARRIER.
Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays.
Endothelial cells that line venous vessels of the UMBILICAL CORD.
Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Derivatives of PHOSPHATIDIC ACIDS that lack one of its fatty acyl chains due to its hydrolytic removal.
A group of intracellular-signaling serine threonine kinases that bind to RHO GTP-BINDING PROTEINS. They were originally found to mediate the effects of rhoA GTP-BINDING PROTEIN on the formation of STRESS FIBERS and FOCAL ADHESIONS. Rho-associated kinases have specificity for a variety of substrates including MYOSIN-LIGHT-CHAIN PHOSPHATASE and LIM KINASES.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
An amino alcohol with a long unsaturated hydrocarbon chain. Sphingosine and its derivative sphinganine are the major bases of the sphingolipids in mammals. (Dorland, 28th ed)
Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
Recording serial images of a process at regular intervals spaced out over a longer period of time than the time in which the recordings will be played back.
A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.
Indazoles are heterocyclic aromatic organic compounds that consist of a benzene ring fused with a pyrazole ring, and they are used as building blocks in the synthesis of various pharmaceutical drugs.
Specialized cells in the invertebrates that detect and transduce light. They are predominantly rhabdomeric with an array of photosensitive microvilli. Illumination depolarizes invertebrate photoreceptors by stimulating Na+ influx across the plasma membrane.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
A quality of cell membranes which permits the passage of solvents and solutes into and out of cells.
ANIMALS whose GENOME has been altered by GENETIC ENGINEERING, or their offspring.
A large family of transmembrane proteins found in TIGHT JUNCTIONS. They take part in the formation of paracellular barriers and pores that regulate paracellular permeability.
The barrier between capillary blood and alveolar air comprising the alveolar EPITHELIUM and capillary ENDOTHELIUM with their adherent BASEMENT MEMBRANE and EPITHELIAL CELL cytoplasm. PULMONARY GAS EXCHANGE occurs across this membrane.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.

Cell confluence-dependent remodeling of endothelial membranes mediated by cholesterol. (1/859)

The plasma membranes of endothelial cells reaching confluence undergo profound structural and functional modifications, including the formation of adherens junctions, crucial for the regulation of vascular permeability and angiogenesis. Adherens junction formation is accompanied by the tyrosine dephosphorylation of adherens junctions proteins, which has been correlated with the strength and stability of adherens junctions. Here we show that cholesterol is a critical determinant of plasma membrane remodeling in cultures of growing cow pulmonary aortic endothelial cells. Membrane cholesterol increased dramatically at an early stage in the formation of confluent cow pulmonary aortic endothelial cell monolayers, prior to formation of intercellular junctions. This increase was accompanied by the redistribution of caveolin from a high density to a low density membrane compartment, previously shown to require cholesterol, and increased binding of the annexin II-p11 complex to membranes, consistent with other studies indicating cholesterol-dependent binding of annexin II to membranes. Furthermore, partial depletion of cholesterol from confluent cells with methyl-beta-cyclodextrin both induced tyrosine phosphorylation of multiple membrane proteins, including adherens junctions proteins, and disrupted adherens junctions. Both effects were dramatically reduced by prior complexing of methyl-beta-cyclodextrin with cholesterol. Our results reveal a novel physiological role for cholesterol regulating the formation of adherens junctions and other plasma membrane remodeling events as endothelial cells reach confluence.  (+info)

Cell volume-dependent phosphorylation of proteins of the cortical cytoskeleton and cell-cell contact sites. The role of Fyn and FER kinases. (2/859)

Cell volume affects diverse functions including cytoskeletal organization, but the underlying signaling pathways remained undefined. We have shown previously that shrinkage induces Fyn-dependent tyrosine phosphorylation of the cortical actin-binding protein, cortactin. Because FER kinase was implicated in the direct phosphorylation of cortactin, we investigated the osmotic responsiveness of FER and its relationship to Fyn and cortactin. Shrinkage increased FER activity and tyrosine phosphorylation. These effects were abolished by the Src family inhibitor PP2 and strongly mitigated in Fyn-deficient but not in Src-deficient cells. FER overexpression caused cortactin phosphorylation that was further enhanced by hypertonicity. Exchange of tyrosine residues 421, 466, and 482 for phenylalanine prevented cortactin phosphorylation by hypertonicity and strongly decreased it upon FER overexpression, suggesting that FER targets primarily the same osmo-sensitive tyrosines. Because constituents of the cell-cell contacts are substrates of Fyn and FER, we investigated the effect of shrinkage on the adherens junctions. Hypertonicity provoked Fyn-dependent tyrosine phosphorylation in beta-catenin, alpha-catenin, and p120(Cas) and caused the dissociation of beta-catenin from the contacts. This process was delayed in Fyn-deficient or PP2-treated cells. Thus, FER is a volume-sensitive kinase downstream from Fyn, and the Fyn/FER pathway may contribute to the cell size-dependent reorganization of the cytoskeleton and the cell-cell contacts.  (+info)

Myosin light chain kinase plays an essential role in S. flexneri dissemination. (3/859)

Shigella flexneri, the causitive agent of bacillary dysentery, has been shown to disseminate in colonic epithelial cells via protrusions that extend from infected cells and are endocytosed by adjacent cells. This phenomenon occurs in the region of the eukaryotic cell's adherens junctions and is inhibited by pharmacological reagents or host cell mutations that completely disrupt the junctional complex. In this study, inhibitors of the myosin light chain kinase (MLCK) were shown to dramatically decrease intercellular spread of S. flexneri but to have no inhibitory effect on bacterial entry, multiplication or actin-based motility within the host cell. Furthermore, cell-to-cell spread of Listeria monocytogenes, another bacterial pathogen that uses an actin-based mechanism to move within the eukaryotic cytoplasm and to spread from cell to cell, was not affected by the MLCK inhibitors, indicating that (1) the inhibition of S. flexneri cell-to-cell spread in treated cells is not due to a complete break down of cell-cell contacts, which was subsequently confirmed by confocal microscopy, and (2) MLCK plays a role in a S. flexneri-specific mechanism of dissemination. Myosin has been shown to play a role in a variety of membrane-based phenomena. The work presented here suggests that activation of this molecule via phosphorylation by MLCK, at the very least participates in the formation of the bacteria-containing protrusion, and could also contribute to the endocytosis of this structure by neighboring cells.  (+info)

The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability. (4/859)

We review here our work on the molecular and functional organization of endothelial cell-to-cell junctions. The first part of the review is dedicated to VE-cadherin, characterized by our group few years ago. This protein is a member of the large family of transmembrane adhesion proteins called cadherins. It is endothelial cell specific and plays a major role in the organization of adherens junctions. Inactivation of VE-cadherin gene or in vivo truncation of its cytoplasmic tail leads to a lethal phenotype due to the lack of correct organization of the vasculature in the embryo. We found that the defect was due to apoptosis of endothelial cells, which became unresponsive to the survival signal induced by vascular endothelial cell growth factor. Our data indicate that VE-cadherin may act as a scaffolding protein able to associate vascular endothelial cell growth factor receptor and to promote its signaling. In the second part of the review we consider another protein more recently discovered by us and called junctional adhesion molecule (JAM). This protein is a small immunoglobulin which is located at tight junctions in the endothelium and in epithelial cells. Evidence is discussed indicating that JAM takes part in the organization of tight junctions and modulates leukocyte extravasation through endothelial intercellular junctions in vitro and in vivo. The general role of tight junctions in endothelial cells is also discussed.  (+info)

Reversibility of increased microvessel permeability in response to VE-cadherin disassembly. (5/859)

We determined the role of vascular endothelial (VE)-cadherin complex in regulating the permeability of pulmonary microvessels. Studies were made in mouse lungs perfused with albumin-Krebs containing EDTA, a Ca(2+) chelator, added to study the VE-cadherin junctional disassembly. We then repleted the perfusate with Ca(2+) to restore VE-cadherin integrity. Confocal microscopy showed a disappearance of VE-cadherin immunostaining in a time- and dose-dependent manner after Ca(2+) chelation and reassembly of the VE-cadherin complex within 5 min after Ca(2+) repletion. We determined the (125)I-labeled albumin permeability-surface area product and capillary filtration coefficient (K(fc)) to quantify alterations in the pulmonary microvessel barrier. The addition of EDTA increased (125)I-albumin permeability-surface area product and K(fc) in a concentration-dependent manner within 5 min. The permeability response was reversed within 5 min after repletion of Ca(2+). An anti-VE-cadherin monoclonal antibody against epitopes responsible for homotypic adhesion augmented the increase in K(fc) induced by Ca(2+) chelation and prevented reversal of the response. We conclude that the disassembled VE-cadherins in endothelial cells are mobilized at the junctional plasmalemmal membrane such that VE-cadherins can rapidly form adhesive contact and restore microvessel permeability by reannealing the adherens junctions.  (+info)

Actin-dependent membrane association of a Drosophila epithelial APC protein and its effect on junctional Armadillo. (6/859)

BACKGROUND: The adenomatous polyposis coli (APC) protein is an important tumour suppressor in the colon. It promotes the destabilisation of free cytoplasmic beta-catenin (the vertebrate homologue of the Drosophila protein Armadillo), a critical effector of the Wnt signalling pathway. The beta-catenin protein is also a component of adherens junctions, linking these to the actin cytoskeleton. In Drosophila epithelial cells, the ubiquitous form of APC, known as E-APC, is associated with adherens junctions. This association appears to be necessary for E-APC to function in destabilising Armadillo. RESULTS: Using actin-depolymerising drugs, we established that an intact actin cytoskeleton is required for the association of E-APC with adherens junctions in the Drosophila embryo. From an analysis of profilin mutants, whose actin cytoskeleton is disrupted, we found that E-APC also requires actin filaments to associate with adhesive cell membranes in the ovary. Notably, conditions that delocalised E-APC from membranes, including a mutation in E-APC itself, caused partial detachment of Armadillo from adhesive membranes. CONCLUSIONS: Actin filaments are continuously required for E-APC to be associated with junctional membranes. These filaments may serve as tracks for E-APC to reach the adherens junctions. The failure of E-APC to do so appears to affect the integrity of junctional complexes.  (+info)

Reversal of the Ras-induced transformed phenotype by HR12, a novel ras farnesylation inhibitor, is mediated by the Mek/Erk pathway. (7/859)

We have used the selective farnesylation inhibitor HR12 [cysteine-N(methyl)valine-N(cyclohexyl) glycine-methionine-O-methyl-ester] to study the role of oncogenic Ras in cytoskeletal reorganization in Ha-ras(V12)-transformed Rat1 cells (Rat1/ras). Application of HR12 resulted in complete restoration of the cytoskeleton and associated cell adhesions disrupted by oncogenic Ras. This included an increase in the number and size of focal adhesions, accompanied by massive stress fiber formation and enhanced tyrosine phosphorylation. Furthermore, HR12 induced assembly of adherens junctions and dramatically elevated the level of the junctional components, cadherin and beta-catenin. HR12 was unable to restore the nontransformed phenotype in cells expressing farnesylation-independent, myristylated Ras. Examination of the main Ras-regulated signaling pathways revealed that HR12 induced a dose- and time-dependent decline in Erk1&2 activation (t(1/2) approximately 6 h), which correlated with the accumulation of nonfarnesylated oncogenic-Ras. Inhibition of the Mek/Erk pathway in Rat1/ras cells, using the Mek inhibitor, PD98059, resulted in complete cytoskeletal recovery, indistinguishable from that induced by HR12. Moreover, a constitutively active Mek mimicked the effect of ras transformation in Rat1 cells, and prevented HR12-induced cytoskeletal effects in Rat1/ras cells. No such effects were observed after treatment of Rat1/ras cells with the phosphatidylinositol 3-kinase inhibitor LY294002. These findings establish the Mek/Erk pathway as the dominant pathway involved in conferring the cytoskeletal and junctional manifestations of the Ras-induced transformed phenotype.  (+info)

Endothelial adherens junctions. (8/859)

The principle of the molecular organization of adherens junctions follows a uniform pattern, which is found in epithelial, muscular, neuroneal as well as in endothelial cells and is highly conserved among species. Transmembrane molecules of the cadherin family link to catenins, which anchor the adhesion plaque to the cytoskeleton. The kind of cadherin used in adherens junctions is cell-type specific, vascular endothelial (VE)-cadherin is specific for endothelial cells. The assembly and disassembly of the cadherin/catenin complex is dynamic and regulated by growth factors. The functional status of adherens junctions controls endothelial cell-to-cell adhesion, cell scattering, vessel morphogenesis and has intracellular signaling properties, thereby playing an important role in vasculogenesis and angiogenesis.  (+info)

Adherens junctions are specialized types of cell-cell contacts that play a crucial role in maintaining the integrity and stability of tissues. They are composed of transmembrane cadherin proteins, which connect to the actin cytoskeleton inside the cell through intracellular adaptor proteins such as catenins.

The cadherins on opposing cells interact with each other to form adhesive bonds that help to anchor the cells together and regulate various cellular processes, including cell growth, differentiation, and migration. Adherens junctions are essential for many physiological processes, such as embryonic development, wound healing, and tissue homeostasis, and their dysfunction has been implicated in a variety of diseases, including cancer and degenerative disorders.

Intercellular junctions are specialized areas of contact between two or more adjacent cells in multicellular organisms. They play crucial roles in maintaining tissue structure and function by regulating the movement of ions, molecules, and even larger cellular structures from one cell to another. There are several types of intercellular junctions, including:

1. Tight Junctions (Zonulae Occludentes): These are the most apical structures in epithelial and endothelial cells, forming a virtually impermeable barrier to prevent the paracellular passage of solutes and water between the cells. They create a tight seal by connecting the transmembrane proteins of adjacent cells, such as occludin and claudins.
2. Adherens Junctions: These are located just below the tight junctions and help maintain cell-to-cell adhesion and tissue integrity. Adherens junctions consist of cadherin proteins that form homophilic interactions with cadherins on adjacent cells, as well as intracellular adaptor proteins like catenins, which connect to the actin cytoskeleton.
3. Desmosomes: These are another type of cell-to-cell adhesion structure, primarily found in tissues that experience mechanical stress, such as the skin and heart. Desmosomes consist of cadherin proteins (desmocadherins) that interact with each other and connect to intermediate filaments (keratin in epithelial cells) via plakoglobin and desmoplakin.
4. Gap Junctions: These are specialized channels that directly connect the cytoplasm of adjacent cells, allowing for the exchange of small molecules, ions, and second messengers. Gap junctions consist of connexin proteins that form hexameric structures called connexons in the plasma membrane of each cell. When two connexons align, they create a continuous pore or channel between the cells.

In summary, intercellular junctions are essential for maintaining tissue structure and function by regulating paracellular transport, cell-to-cell adhesion, and intercellular communication.

Cadherins are a type of cell adhesion molecule that play a crucial role in the development and maintenance of intercellular junctions. They are transmembrane proteins that mediate calcium-dependent homophilic binding between adjacent cells, meaning that they bind to identical cadherin molecules on neighboring cells.

There are several types of cadherins, including classical cadherins, desmosomal cadherins, and protocadherins, each with distinct functions and localization in tissues. Classical cadherins, also known as type I cadherins, are the most well-studied and are essential for the formation of adherens junctions, which help to maintain cell-to-cell contact and tissue architecture.

Desmosomal cadherins, on the other hand, are critical for the formation and maintenance of desmosomes, which are specialized intercellular junctions that provide mechanical strength and stability to tissues. Protocadherins are a diverse family of cadherin-related proteins that have been implicated in various developmental processes, including neuronal connectivity and tissue patterning.

Mutations in cadherin genes have been associated with several human diseases, including cancer, neurological disorders, and heart defects. Therefore, understanding the structure, function, and regulation of cadherins is essential for elucidating their roles in health and disease.

Tight junctions, also known as zonula occludens, are specialized types of intercellular junctions that occur in epithelial and endothelial cells. They are located near the apical side of the lateral membranes of adjacent cells, where they form a continuous belt-like structure that seals off the space between the cells.

Tight junctions are composed of several proteins, including occludin, claudins, and junctional adhesion molecules (JAMs), which interact to form a network of strands that create a tight barrier. This barrier regulates the paracellular permeability of ions, solutes, and water, preventing their uncontrolled movement across the epithelial or endothelial layer.

Tight junctions also play an important role in maintaining cell polarity by preventing the mixing of apical and basolateral membrane components. Additionally, they are involved in various signaling pathways that regulate cell proliferation, differentiation, and survival.

Alpha-catenin is a protein that plays a crucial role in cell adhesion and the maintenance of the cytoskeleton. It is a component of the cadherin-catenin complex, which is responsible for forming tight junctions between cells, known as adherens junctions. Alpha-catenin binds to beta-catenin, which in turn interacts with cadherins, transmembrane proteins that mediate cell-cell adhesion. This interaction helps to link the actin cytoskeleton to the cadherin-catenin complex, providing strength and stability to adherens junctions. Additionally, alpha-catenin has been implicated in various signaling pathways related to cell growth, differentiation, and migration.

Catenins are a type of protein that play a crucial role in cell adhesion and signal transduction. They are named for their ability to link together (or "catenate") proteins called cadherins, which are important for the formation of tight junctions between cells. Catenins help to anchor cadherins to the cytoskeleton, providing structural support and stability to tissues.

There are several different types of catenins, including alpha-catenin, beta-catenin, gamma-catenin (also called plakoglobin), and delta-catenin. Alpha-catenin links cadherins to the actin cytoskeleton, while beta-catenin and gamma-catenin can also interact with transcription factors in the nucleus to regulate gene expression.

Mutations in catenin genes have been associated with various human diseases, including cancer. For example, abnormal activation of the Wnt signaling pathway, which involves beta-catenin, has been implicated in several types of cancer. Additionally, mutations in alpha-E-catenin, a type of alpha-catenin found in epithelial cells, have been linked to colorectal cancer.

Gap junctions are specialized intercellular connections that allow for the direct exchange of ions, small molecules, and electrical signals between adjacent cells. They are composed of arrays of channels called connexons, which penetrate the cell membranes of two neighboring cells and create a continuous pathway for the passage of materials from one cytoplasm to the other. Each connexon is formed by the assembly of six proteins called connexins, which are encoded by different genes and vary in their biophysical properties. Gap junctions play crucial roles in many physiological processes, including the coordination of electrical activity in excitable tissues, the regulation of cell growth and differentiation, and the maintenance of tissue homeostasis. Mutations or dysfunctions in gap junction channels have been implicated in various human diseases, such as cardiovascular disorders, neurological disorders, skin disorders, and cancer.

Desmoplakins are important proteins that play a crucial role in the structural integrity and function of certain types of cell-to-cell junctions called desmosomes. Desmosomes are specialized structures that connect adjacent cells in tissues that undergo significant mechanical stress, such as the skin, heart, and gut.

Desmoplakins are large proteins that are composed of several domains, including a plakin domain, which interacts with other desmosomal components, and a spectrin-like repeat domain, which binds to intermediate filaments. By linking desmosomes to the intermediate filament network, desmoplakins help to provide mechanical strength and stability to tissues.

Mutations in the genes that encode desmoplakins have been associated with several human genetic disorders, including arrhythmogenic right ventricular cardiomyopathy (ARVC), a heart condition characterized by abnormal heart rhythms and structural changes in the heart muscle, and epidermolysis bullosa simplex (EBS), a skin disorder characterized by blistering and fragility of the skin.

Beta-catenin is a protein that plays a crucial role in gene transcription and cell-cell adhesion. It is a key component of the Wnt signaling pathway, which regulates various processes such as cell proliferation, differentiation, and migration during embryonic development and tissue homeostasis in adults.

In the absence of Wnt signals, beta-catenin forms a complex with other proteins, including adenomatous polyposis coli (APC) and axin, which targets it for degradation by the proteasome. When Wnt ligands bind to their receptors, this complex is disrupted, allowing beta-catenin to accumulate in the cytoplasm and translocate to the nucleus. In the nucleus, beta-catenin interacts with T cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors to activate the transcription of target genes involved in cell fate determination, survival, and proliferation.

Mutations in the genes encoding components of the Wnt signaling pathway, including beta-catenin, have been implicated in various human diseases, such as cancer, developmental disorders, and degenerative conditions.

Zonula Occludens-1 (ZO-1) protein is a tight junction (TJ) protein, which belongs to the membrane-associated guanylate kinase (MAGUK) family. It plays a crucial role in the formation and maintenance of tight junctions, which are complex structures that form a barrier between neighboring cells in epithelial and endothelial tissues.

Tight junctions are composed of several proteins, including transmembrane proteins and cytoplasmic plaque proteins. ZO-1 is one of the major cytoplasmic plaque proteins that interact with both transmembrane proteins (such as occludin and claudins) and other cytoskeletal proteins to form a network of protein interactions that maintain the integrity of tight junctions.

ZO-1 has multiple domains, including PDZ domains, SH3 domains, and a guanylate kinase-like domain, which allow it to interact with various binding partners. It is involved in regulating paracellular permeability, cell polarity, and signal transduction pathways that control cell proliferation, differentiation, and survival.

Mutations or dysfunction of ZO-1 protein have been implicated in several human diseases, including inflammatory bowel disease, cancer, and neurological disorders.

Gamma-catenin, also known as plakoglobin, is a protein that is involved in cell adhesion and the regulation of gene expression. It is a member of the catenin family, which includes beta-catenin and alpha-catenin. Gamma-catenin is found at adherens junctions, where it interacts with cadherins to help maintain cell-cell adhesion. It also plays a role in the Wnt signaling pathway, where it can bind to TCF/LEF transcription factors and regulate the expression of target genes. Mutations in the gene that encodes gamma-catenin have been associated with several types of cancer, including colon cancer and melanoma.

Cytoskeletal proteins are a type of structural proteins that form the cytoskeleton, which is the internal framework of cells. The cytoskeleton provides shape, support, and structure to the cell, and plays important roles in cell division, intracellular transport, and maintenance of cell shape and integrity.

There are three main types of cytoskeletal proteins: actin filaments, intermediate filaments, and microtubules. Actin filaments are thin, rod-like structures that are involved in muscle contraction, cell motility, and cell division. Intermediate filaments are thicker than actin filaments and provide structural support to the cell. Microtubules are hollow tubes that are involved in intracellular transport, cell division, and maintenance of cell shape.

Cytoskeletal proteins are composed of different subunits that polymerize to form filamentous structures. These proteins can be dynamically assembled and disassembled, allowing cells to change their shape and move. Mutations in cytoskeletal proteins have been linked to various human diseases, including cancer, neurological disorders, and muscular dystrophies.

Armadillo (ARM) domain proteins are a family of conserved cytoskeletal proteins characterized by the presence of armadillo repeats, which are structural motifs involved in protein-protein interactions. These proteins play crucial roles in various cellular processes such as signal transduction, cell adhesion, and intracellular transport.

The ARM domain is composed of multiple tandem repeats (usually 4 to 12) of approximately 40-42 amino acid residues. Each repeat forms a pair of antiparallel alpha-helices that stack together to create a superhelix structure, which provides a binding surface for various partner proteins.

Examples of ARM domain proteins include:

1. β-catenin and plakoglobin (also known as γ-catenin): These proteins are essential components of the Wnt signaling pathway, where they interact with transcription factors to regulate gene expression. They also play a role in cell adhesion by binding to cadherins at the plasma membrane.
2. Paxillin: A focal adhesion protein that interacts with various structural and signaling molecules, including integrins, growth factor receptors, and kinases, to regulate cell migration and adhesion.
3. Importin-α: A nuclear transport receptor that recognizes and binds to cargo proteins containing a nuclear localization signal (NLS), facilitating their import into the nucleus through interaction with importin-β and the nuclear pore complex.
4. DEC1 (also known as STRA13): A transcriptional repressor involved in cell differentiation, apoptosis, and circadian rhythm regulation.
5. HEF1/NEDD9: A scaffolding protein that interacts with various signaling molecules to regulate cell migration, adhesion, and survival.
6. p120-catenin: A member of the catenin family that regulates cadherin stability and function in cell adhesion.

These proteins have been implicated in several human diseases, including cancer, cardiovascular disease, and neurological disorders.

Desmosomes are specialized intercellular junctions that provide strong adhesion between adjacent epithelial cells and help maintain the structural integrity and stability of tissues. They are composed of several proteins, including desmoplakin, plakoglobin, and cadherins, which form complex structures that anchor intermediate filaments (such as keratin) to the cell membrane. This creates a network of interconnected cells that can withstand mechanical stresses. Desmosomes are particularly abundant in tissues subjected to high levels of tension, such as the skin and heart.

Cell adhesion refers to the binding of cells to extracellular matrices or to other cells, a process that is fundamental to the development, function, and maintenance of multicellular organisms. Cell adhesion is mediated by various cell surface receptors, such as integrins, cadherins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs), which interact with specific ligands in the extracellular environment. These interactions lead to the formation of specialized junctions, such as tight junctions, adherens junctions, and desmosomes, that help to maintain tissue architecture and regulate various cellular processes, including proliferation, differentiation, migration, and survival. Disruptions in cell adhesion can contribute to a variety of diseases, including cancer, inflammation, and degenerative disorders.

Cell adhesion molecules (CAMs) are a type of protein found on the surface of cells that mediate the attachment or adhesion of cells to either other cells or to the extracellular matrix (ECM), which is the network of proteins and carbohydrates that provides structural and biochemical support to surrounding cells.

CAMs play crucial roles in various biological processes, including tissue development, differentiation, repair, and maintenance of tissue architecture and function. They are also involved in cell signaling, migration, and regulation of the immune response.

There are several types of CAMs, classified based on their structure and function, such as immunoglobulin-like CAMs (IgCAMs), cadherins, integrins, and selectins. Dysregulation of CAMs has been implicated in various diseases, including cancer, inflammation, and neurological disorders.

Vinculin is a protein found in many types of cells, including muscle and endothelial cells. It is primarily located at the sites of cell-cell and cell-matrix adhesions, where it plays important roles in cell adhesion, mechanotransduction, and cytoskeletal organization. Vinculin interacts with several other proteins, including actin, talin, and integrins, to form a complex network that helps regulate the connection between the extracellular matrix and the intracellular cytoskeleton. Mutations in the vinculin gene have been associated with certain inherited diseases, such as muscular dystrophy-cardiomyopathy syndrome.

Occludin is a protein that is a component of tight junctions, which are structures that form a barrier between adjacent cells in epithelial and endothelial tissues. Tight junctions help to regulate the movement of molecules between cells and play a crucial role in maintaining the integrity of these tissues.

Occludin is composed of four transmembrane domains, two extracellular loops, and intracellular N- and C-termini. The extracellular loops interact with other tight junction proteins to form the intercellular seal, while the intracellular domains interact with various signaling molecules and cytoskeletal components to regulate the assembly and disassembly of tight junctions.

Mutations in the gene that encodes occludin have been associated with various human diseases, including inflammatory bowel disease, liver cirrhosis, and skin disorders. Additionally, changes in occludin expression and localization have been implicated in the development of cancer and neurological disorders.

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Cell polarity refers to the asymmetric distribution of membrane components, cytoskeleton, and organelles in a cell. This asymmetry is crucial for various cellular functions such as directed transport, cell division, and signal transduction. The plasma membrane of polarized cells exhibits distinct domains with unique protein and lipid compositions that define apical, basal, and lateral surfaces of the cell.

In epithelial cells, for example, the apical surface faces the lumen or external environment, while the basolateral surface interacts with other cells or the extracellular matrix. The establishment and maintenance of cell polarity are regulated by various factors including protein complexes, lipids, and small GTPases. Loss of cell polarity has been implicated in several diseases, including cancer and neurological disorders.

The neuromuscular junction (NMJ) is the specialized synapse or chemical communication point, where the motor neuron's nerve terminal (presynaptic element) meets the muscle fiber's motor end plate (postsynaptic element). This junction plays a crucial role in controlling muscle contraction and relaxation.

At the NMJ, the neurotransmitter acetylcholine is released from the presynaptic nerve terminal into the synaptic cleft, following an action potential. Acetylcholine then binds to nicotinic acetylcholine receptors on the postsynaptic membrane of the muscle fiber, leading to the generation of an end-plate potential. If sufficient end-plate potentials are generated and summate, they will trigger an action potential in the muscle fiber, ultimately causing muscle contraction.

Dysfunction at the neuromuscular junction can result in various neuromuscular disorders, such as myasthenia gravis, where autoantibodies attack acetylcholine receptors, leading to muscle weakness and fatigue.

Actin is a type of protein that forms part of the contractile apparatus in muscle cells, and is also found in various other cell types. It is a globular protein that polymerizes to form long filaments, which are important for many cellular processes such as cell division, cell motility, and the maintenance of cell shape. In muscle cells, actin filaments interact with another type of protein called myosin to enable muscle contraction. Actins can be further divided into different subtypes, including alpha-actin, beta-actin, and gamma-actin, which have distinct functions and expression patterns in the body.

Cell communication, also known as cell signaling, is the process by which cells exchange and transmit signals between each other and their environment. This complex system allows cells to coordinate their functions and maintain tissue homeostasis. Cell communication can occur through various mechanisms including:

1. Autocrine signaling: When a cell releases a signal that binds to receptors on the same cell, leading to changes in its behavior or function.
2. Paracrine signaling: When a cell releases a signal that binds to receptors on nearby cells, influencing their behavior or function.
3. Endocrine signaling: When a cell releases a hormone into the bloodstream, which then travels to distant target cells and binds to specific receptors, triggering a response.
4. Synaptic signaling: In neurons, communication occurs through the release of neurotransmitters that cross the synapse and bind to receptors on the postsynaptic cell, transmitting electrical or chemical signals.
5. Contact-dependent signaling: When cells physically interact with each other, allowing for the direct exchange of signals and information.

Cell communication is essential for various physiological processes such as growth, development, differentiation, metabolism, immune response, and tissue repair. Dysregulation in cell communication can contribute to diseases, including cancer, diabetes, and neurological disorders.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Desmogleins are a group of proteins that are part of the desmosomes, which are structures that help to strengthen and maintain the integrity of epithelial tissues. Desmogleins play a crucial role in cell-to-cell adhesion by forming intercellular junctions known as desmoglein adherens junctions. These junctions help to anchor intermediate filaments, such as keratin, to the plasma membrane and provide structural support to epithelial cells.

There are four main types of desmogleins (Dsg1-4), each with distinct expression patterns in different tissues. For example, Dsg1 is primarily expressed in the upper layers of the epidermis, while Dsg3 is found in the lower layers and in mucous membranes. Mutations in desmoglein genes have been associated with several skin disorders, including pemphigus vulgaris and pemphigus foliaceus, which are autoimmune blistering diseases characterized by the loss of cell-to-cell adhesion in the epidermis.

The cytoskeleton is a complex network of various protein filaments that provides structural support, shape, and stability to the cell. It plays a crucial role in maintaining cellular integrity, intracellular organization, and enabling cell movement. The cytoskeleton is composed of three major types of protein fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. These filaments work together to provide mechanical support, participate in cell division, intracellular transport, and help maintain the cell's architecture. The dynamic nature of the cytoskeleton allows cells to adapt to changing environmental conditions and respond to various stimuli.

Phosphoproteins are proteins that have been post-translationally modified by the addition of a phosphate group (-PO3H2) onto specific amino acid residues, most commonly serine, threonine, or tyrosine. This process is known as phosphorylation and is mediated by enzymes called kinases. Phosphoproteins play crucial roles in various cellular processes such as signal transduction, cell cycle regulation, metabolism, and gene expression. The addition or removal of a phosphate group can activate or inhibit the function of a protein, thereby serving as a switch to control its activity. Phosphoproteins can be detected and quantified using techniques such as Western blotting, mass spectrometry, and immunofluorescence.

'Drosophila proteins' refer to the proteins that are expressed in the fruit fly, Drosophila melanogaster. This organism is a widely used model system in genetics, developmental biology, and molecular biology research. The study of Drosophila proteins has contributed significantly to our understanding of various biological processes, including gene regulation, cell signaling, development, and aging.

Some examples of well-studied Drosophila proteins include:

1. HSP70 (Heat Shock Protein 70): A chaperone protein involved in protein folding and protection from stress conditions.
2. TUBULIN: A structural protein that forms microtubules, important for cell division and intracellular transport.
3. ACTIN: A cytoskeletal protein involved in muscle contraction, cell motility, and maintenance of cell shape.
4. BETA-GALACTOSIDASE (LACZ): A reporter protein often used to monitor gene expression patterns in transgenic flies.
5. ENDOGLIN: A protein involved in the development of blood vessels during embryogenesis.
6. P53: A tumor suppressor protein that plays a crucial role in preventing cancer by regulating cell growth and division.
7. JUN-KINASE (JNK): A signaling protein involved in stress response, apoptosis, and developmental processes.
8. DECAPENTAPLEGIC (DPP): A member of the TGF-β (Transforming Growth Factor Beta) superfamily, playing essential roles in embryonic development and tissue homeostasis.

These proteins are often studied using various techniques such as biochemistry, genetics, molecular biology, and structural biology to understand their functions, interactions, and regulation within the cell.

Connexin 43 is a protein that forms gap junctions, which are specialized channels that allow for the direct communication and transport of small molecules between adjacent cells. Connexin 43 is widely expressed in many tissues, including the heart, brain, and various types of epithelial and connective tissues. In the heart, connexin 43 plays a crucial role in electrical conduction and coordination of contraction between cardiac muscle cells. Mutations in the gene that encodes connexin 43 have been associated with several human diseases, including certain types of cardiac arrhythmias and skin disorders.

Desmocollins are a type of cadherin, which is a transmembrane protein involved in cell-cell adhesion. Specifically, desmocollins are found in the desmosomes, which are specialized structures that help to mechanically connect adjacent epithelial cells. There are three main isoforms of desmocollin (Desmocollin-1, -2, and -3) that are encoded by different genes. Mutations in the genes encoding desmocollins have been associated with several skin blistering disorders, including certain forms of epidermolysis bullosa.

Microfilament proteins are a type of structural protein that form part of the cytoskeleton in eukaryotic cells. They are made up of actin monomers, which polymerize to form long, thin filaments. These filaments are involved in various cellular processes such as muscle contraction, cell division, and cell motility. Microfilament proteins also interact with other cytoskeletal components like intermediate filaments and microtubules to maintain the overall shape and integrity of the cell. Additionally, they play a crucial role in the formation of cell-cell junctions and cell-matrix adhesions, which are essential for tissue structure and function.

Plakophilins are a group of proteins that play a crucial role in the structure and function of desmosomes, which are specialized cell-cell junctions found in epithelial and cardiac muscle cells. Desmosomes help to maintain the integrity and stability of tissues by providing strong adhesive connections between adjacent cells.

Plakophilins are members of the armadillo protein family and have several important functions within desmosomes:

1. Scaffolding: Plakophilins act as scaffolding proteins, helping to organize and link various components of the desmosome together. They bind to desmocollin and desmoglein adhesion molecules, as well as to other structural proteins such as plakoglobin and intermediate filaments.
2. Signal transduction: Plakophilins also play a role in signal transduction pathways related to cell growth, differentiation, and survival. They can interact with various signaling molecules, including kinases, phosphatases, and transcription factors, thereby modulating their activity.
3. Regulation of desmosome assembly and disassembly: Plakophilins are involved in the regulation of desmosome formation and breakdown. They can bind to proteins that promote desmosome assembly or disassembly, depending on cellular conditions and requirements.

There are four main isoforms of plakophilin (PKP1-4) in humans, each with distinct expression patterns and functions. Mutations in the genes encoding plakophilins have been associated with various genetic disorders, including arrhythmogenic right ventricular cardiomyopathy (ARVC), ectodermal dysplasia-syndactyly syndrome (EDSS), and skin fragility-woolly hair syndrome (SFWHS).

Trans-activators are proteins that increase the transcriptional activity of a gene or a set of genes. They do this by binding to specific DNA sequences and interacting with the transcription machinery, thereby enhancing the recruitment and assembly of the complexes needed for transcription. In some cases, trans-activators can also modulate the chromatin structure to make the template more accessible to the transcription machinery.

In the context of HIV (Human Immunodeficiency Virus) infection, the term "trans-activator" is often used specifically to refer to the Tat protein. The Tat protein is a viral regulatory protein that plays a critical role in the replication of HIV by activating the transcription of the viral genome. It does this by binding to a specific RNA structure called the Trans-Activation Response Element (TAR) located at the 5' end of all nascent HIV transcripts, and recruiting cellular cofactors that enhance the processivity and efficiency of RNA polymerase II, leading to increased viral gene expression.

Capillary permeability refers to the ability of substances to pass through the walls of capillaries, which are the smallest blood vessels in the body. These tiny vessels connect the arterioles and venules, allowing for the exchange of nutrients, waste products, and gases between the blood and the surrounding tissues.

The capillary wall is composed of a single layer of endothelial cells that are held together by tight junctions. The permeability of these walls varies depending on the size and charge of the molecules attempting to pass through. Small, uncharged molecules such as water, oxygen, and carbon dioxide can easily diffuse through the capillary wall, while larger or charged molecules such as proteins and large ions have more difficulty passing through.

Increased capillary permeability can occur in response to inflammation, infection, or injury, allowing larger molecules and immune cells to enter the surrounding tissues. This can lead to swelling (edema) and tissue damage if not controlled. Decreased capillary permeability, on the other hand, can lead to impaired nutrient exchange and tissue hypoxia.

Overall, the permeability of capillaries is a critical factor in maintaining the health and function of tissues throughout the body.

Tight junction proteins are specialized proteins that play a crucial role in the formation and maintenance of tight junctions, which are intercellular structures that form a barrier to prevent the passage of molecules between cells. These proteins are found in the apical region of epithelial and endothelial cells and help to create a tight seal between adjacent cells.

Tight junction proteins can be classified into two major groups: transmembrane proteins and cytoplasmic plaque proteins. Transmembrane proteins, such as occludin and claudins, span the cell membrane and interact with each other to form the backbone of the tight junction. Cytoplasmic plaque proteins, such as zonula occludens (ZO) proteins, anchor the transmembrane proteins to the cytoskeleton and help to regulate their function.

Tight junction proteins are essential for maintaining the integrity of epithelial and endothelial barriers in various organs, including the gut, lungs, and blood-brain barrier. Dysfunction of these proteins has been implicated in a variety of diseases, such as inflammatory bowel disease, cancer, and neurological disorders.

Claudin-1 is a protein that is a member of the claudin family, which are important components of tight junctions in cells. Tight junctions are specialized structures that help to regulate the paracellular permeability of liquids and solutes between cells, and play a crucial role in maintaining cell polarity and tissue integrity. Claudin-1 is primarily expressed in epithelial and endothelial cells, where it helps to form tight junctions and regulate the movement of molecules across these barriers. Mutations in the gene that encodes claudin-1 have been associated with various human diseases, including skin disorders and cancer.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Connexins are a family of proteins that form the structural units of gap junctions, which are specialized channels that allow for the direct exchange of small molecules and ions between adjacent cells. These channels play crucial roles in maintaining tissue homeostasis, coordinating cellular activities, and enabling communication between cells. In humans, there are 21 different connexin genes that encode for these proteins, with each isoform having unique properties and distributions within the body. Mutations in connexin genes have been linked to a variety of human diseases, including hearing loss, skin disorders, and heart conditions.

Zonula Occludens-2 (ZO-2) protein is a tight junction protein, which belongs to the membrane-associated guanylate kinase homologs (MAGUKs) family. It plays a crucial role in the formation and maintenance of tight junctions, which are complex structures that form a barrier between neighboring cells in epithelial and endothelial tissues.

ZO-2 protein is localized to the cytoplasmic face of the tight junction and interacts with various proteins, including transmembrane proteins such as occludin and claudins, as well as other cytoskeletal proteins. It contains several functional domains that enable it to interact with these proteins, including PDZ (PSD-95/Dlg/ZO-1) domains, SH3 (Src homology 3) domains, and a guanylate kinase-like domain.

ZO-2 protein has been implicated in various cellular processes, including the regulation of tight junction permeability, cell signaling, and gene expression. Mutations in ZO-2 have been associated with several human diseases, including inflammatory bowel disease, cancer, and neurological disorders.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Morphogenesis is a term used in developmental biology and refers to the process by which cells give rise to tissues and organs with specific shapes, structures, and patterns during embryonic development. This process involves complex interactions between genes, cells, and the extracellular environment that result in the coordinated movement and differentiation of cells into specialized functional units.

Morphogenesis is a dynamic and highly regulated process that involves several mechanisms, including cell proliferation, death, migration, adhesion, and differentiation. These processes are controlled by genetic programs and signaling pathways that respond to environmental cues and regulate the behavior of individual cells within a developing tissue or organ.

The study of morphogenesis is important for understanding how complex biological structures form during development and how these processes can go awry in disease states such as cancer, birth defects, and degenerative disorders.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

The actin cytoskeleton is a complex, dynamic network of filamentous (threadlike) proteins that provides structural support and shape to cells, allows for cell movement and division, and plays a role in intracellular transport. Actin filaments are composed of actin monomers that polymerize to form long, thin fibers. These filaments can be organized into different structures, such as stress fibers, which provide tension and support, or lamellipodia and filopodia, which are involved in cell motility. The actin cytoskeleton is constantly remodeling in response to various intracellular and extracellular signals, allowing for changes in cell shape and behavior.

Electric impedance is a measure of opposition to the flow of alternating current (AC) in an electrical circuit or component, caused by both resistance (ohmic) and reactance (capacitive and inductive). It is expressed as a complex number, with the real part representing resistance and the imaginary part representing reactance. The unit of electric impedance is the ohm (Ω).

In the context of medical devices, electric impedance may be used to measure various physiological parameters, such as tissue conductivity or fluid composition. For example, bioelectrical impedance analysis (BIA) uses electrical impedance to estimate body composition, including fat mass and lean muscle mass. Similarly, electrical impedance tomography (EIT) is a medical imaging technique that uses electric impedance to create images of internal organs and tissues.

Endothelial cells are the type of cells that line the inner surface of blood vessels, lymphatic vessels, and heart chambers. They play a crucial role in maintaining vascular homeostasis by controlling vasomotor tone, coagulation, platelet activation, and inflammation. Endothelial cells also regulate the transport of molecules between the blood and surrounding tissues, and contribute to the maintenance of the structural integrity of the vasculature. They are flat, elongated cells with a unique morphology that allows them to form a continuous, nonthrombogenic lining inside the vessels. Endothelial cells can be isolated from various tissues and cultured in vitro for research purposes.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Epithelium is the tissue that covers the outer surface of the body, lines the internal cavities and organs, and forms various glands. It is composed of one or more layers of tightly packed cells that have a uniform shape and size, and rest on a basement membrane. Epithelial tissues are avascular, meaning they do not contain blood vessels, and are supplied with nutrients by diffusion from the underlying connective tissue.

Epithelial cells perform a variety of functions, including protection, secretion, absorption, excretion, and sensation. They can be classified based on their shape and the number of cell layers they contain. The main types of epithelium are:

1. Squamous epithelium: composed of flat, scalelike cells that fit together like tiles on a roof. It forms the lining of blood vessels, air sacs in the lungs, and the outermost layer of the skin.
2. Cuboidal epithelium: composed of cube-shaped cells with equal height and width. It is found in glands, tubules, and ducts.
3. Columnar epithelium: composed of tall, rectangular cells that are taller than they are wide. It lines the respiratory, digestive, and reproductive tracts.
4. Pseudostratified epithelium: appears stratified or layered but is actually made up of a single layer of cells that vary in height. The nuclei of these cells appear at different levels, giving the tissue a stratified appearance. It lines the respiratory and reproductive tracts.
5. Transitional epithelium: composed of several layers of cells that can stretch and change shape to accommodate changes in volume. It is found in the urinary bladder and ureters.

Epithelial tissue provides a barrier between the internal and external environments, protecting the body from physical, chemical, and biological damage. It also plays a crucial role in maintaining homeostasis by regulating the exchange of substances between the body and its environment.

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

Rho GTP-binding proteins are a subfamily of the Ras superfamily of small GTPases, which function as molecular switches in various cellular signaling pathways. These proteins play crucial roles in regulating diverse cellular processes such as actin cytoskeleton dynamics, gene expression, cell cycle progression, and cell migration.

Rho GTP-binding proteins cycle between an active GTP-bound state and an inactive GDP-bound state. In the active state, they interact with various downstream effectors to regulate their respective cellular functions. Guanine nucleotide exchange factors (GEFs) activate Rho GTP-binding proteins by promoting the exchange of GDP for GTP, while GTPase-activating proteins (GAPs) inactivate them by enhancing their intrinsic GTP hydrolysis activity.

There are several members of the Rho GTP-binding protein family, including RhoA, RhoB, RhoC, Rac1, Rac2, Rac3, Cdc42, and Rnd proteins, each with distinct functions and downstream effectors. Dysregulation of Rho GTP-binding proteins has been implicated in various human diseases, including cancer, cardiovascular disease, neurological disorders, and inflammatory diseases.

Rac1 (Ras-related C3 botulinum toxin substrate 1) is a GTP-binding protein, which belongs to the Rho family of small GTPases. These proteins function as molecular switches that regulate various cellular processes such as actin cytoskeleton organization, gene expression, cell proliferation, and differentiation.

Rac1 cycles between an inactive GDP-bound state and an active GTP-bound state. When Rac1 is in its active form (GTP-bound), it interacts with various downstream effectors to modulate the actin cytoskeleton dynamics, cell adhesion, and motility. Activation of Rac1 has been implicated in several cellular responses, including cell migration, membrane ruffling, and filopodia formation.

Rac1 GTP-binding protein plays a crucial role in many physiological processes, such as embryonic development, angiogenesis, and wound healing. However, dysregulation of Rac1 activity has been associated with various pathological conditions, including cancer, inflammation, and neurological disorders.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Electron microscopy (EM) is a type of microscopy that uses a beam of electrons to create an image of the sample being examined, resulting in much higher magnification and resolution than light microscopy. There are several types of electron microscopy, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and reflection electron microscopy (REM).

In TEM, a beam of electrons is transmitted through a thin slice of the sample, and the electrons that pass through the sample are focused to form an image. This technique can provide detailed information about the internal structure of cells, viruses, and other biological specimens, as well as the composition and structure of materials at the atomic level.

In SEM, a beam of electrons is scanned across the surface of the sample, and the electrons that are scattered back from the surface are detected to create an image. This technique can provide information about the topography and composition of surfaces, as well as the structure of materials at the microscopic level.

REM is a variation of SEM in which the beam of electrons is reflected off the surface of the sample, rather than scattered back from it. This technique can provide information about the surface chemistry and composition of materials.

Electron microscopy has a wide range of applications in biology, medicine, and materials science, including the study of cellular structure and function, disease diagnosis, and the development of new materials and technologies.

Rap1 GTP-binding proteins are a subfamily of the Ras superfamily of small GTPases, which function as molecular switches that regulate various cellular processes, including cell growth, differentiation, and motility. Rap1 proteins cycle between an inactive GDP-bound state and an active GTP-bound state, and this cycling is regulated by guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP, and GTPase-activating proteins (GAPs) that stimulate the intrinsic GTPase activity of Rap1, promoting its return to the inactive state.

Rap1 has been implicated in a variety of cellular processes, including cell adhesion, migration, and polarity, as well as cell cycle progression and transcriptional regulation. In particular, Rap1 has been shown to play important roles in the regulation of integrin-mediated adhesion and signaling, and in the control of endothelial cell barrier function. Dysregulation of Rap1 activity has been implicated in a number of human diseases, including cancer and inflammatory disorders.

Cell shape refers to the physical form or configuration of a cell, which is determined by the cytoskeleton (the internal framework of the cell) and the extracellular matrix (the external environment surrounding the cell). The shape of a cell can vary widely depending on its type and function. For example, some cells are spherical, such as red blood cells, while others are elongated or irregularly shaped. Changes in cell shape can be indicative of various physiological or pathological processes, including development, differentiation, migration, and disease.

Junctional Adhesion Molecules (JAMs) are a group of proteins that play crucial roles in cell-cell adhesion, formation and maintenance of tight junctions, and regulation of trafficking of various molecules across the epithelial and endothelial barriers. They belong to the immunoglobulin superfamily and are typically composed of a single transmembrane domain, an extracellular domain with variable numbers of immunoglobulin-like motifs, and a cytoplasmic tail that interacts with intracellular signaling molecules.

JAMs are involved in various cellular processes, such as leukocyte migration, angiogenesis, and maintenance of epithelial polarity. Dysregulation of JAMs has been implicated in several pathological conditions, including inflammatory bowel disease, cancer, and viral infections.

Some examples of Junctional Adhesion Molecules include JAM-A, JAM-B, JAM-C, JAM-4, and coxsackievirus and adenovirus receptor (CAR). These proteins are differentially expressed in various tissues and cells, and they have distinct functions and binding partners.

Cell movement, also known as cell motility, refers to the ability of cells to move independently and change their location within tissue or inside the body. This process is essential for various biological functions, including embryonic development, wound healing, immune responses, and cancer metastasis.

There are several types of cell movement, including:

1. **Crawling or mesenchymal migration:** Cells move by extending and retracting protrusions called pseudopodia or filopodia, which contain actin filaments. This type of movement is common in fibroblasts, immune cells, and cancer cells during tissue invasion and metastasis.
2. **Amoeboid migration:** Cells move by changing their shape and squeezing through tight spaces without forming protrusions. This type of movement is often observed in white blood cells (leukocytes) as they migrate through the body to fight infections.
3. **Pseudopodial extension:** Cells extend pseudopodia, which are temporary cytoplasmic projections containing actin filaments. These protrusions help the cell explore its environment and move forward.
4. **Bacterial flagellar motion:** Bacteria use a whip-like structure called a flagellum to propel themselves through their environment. The rotation of the flagellum is driven by a molecular motor in the bacterial cell membrane.
5. **Ciliary and ependymal movement:** Ciliated cells, such as those lining the respiratory tract and fallopian tubes, have hair-like structures called cilia that beat in coordinated waves to move fluids or mucus across the cell surface.

Cell movement is regulated by a complex interplay of signaling pathways, cytoskeletal rearrangements, and adhesion molecules, which enable cells to respond to environmental cues and navigate through tissues.

'Drosophila melanogaster' is the scientific name for a species of fruit fly that is commonly used as a model organism in various fields of biological research, including genetics, developmental biology, and evolutionary biology. Its small size, short generation time, large number of offspring, and ease of cultivation make it an ideal subject for laboratory studies. The fruit fly's genome has been fully sequenced, and many of its genes have counterparts in the human genome, which facilitates the understanding of genetic mechanisms and their role in human health and disease.

Here is a brief medical definition:

Drosophila melanogaster (droh-suh-fih-luh meh-lon-guh-ster): A species of fruit fly used extensively as a model organism in genetic, developmental, and evolutionary research. Its genome has been sequenced, revealing many genes with human counterparts, making it valuable for understanding genetic mechanisms and their role in human health and disease.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

"Drosophila" is a genus of small flies, also known as fruit flies. The most common species used in scientific research is "Drosophila melanogaster," which has been a valuable model organism for many areas of biological and medical research, including genetics, developmental biology, neurobiology, and aging.

The use of Drosophila as a model organism has led to numerous important discoveries in genetics and molecular biology, such as the identification of genes that are associated with human diseases like cancer, Parkinson's disease, and obesity. The short reproductive cycle, large number of offspring, and ease of genetic manipulation make Drosophila a powerful tool for studying complex biological processes.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

The seminiferous epithelium is a specialized type of epithelial tissue that lines the seminiferous tubules within the testes. It is composed of various cell types, including germ cells in different stages of development (spermatogonia, primary and secondary spermatocytes, spermatids) and supportive cells called Sertoli cells.

The primary function of the seminiferous epithelium is to support sperm production (spermatogenesis). The Sertoli cells provide structural support and nourishment to the developing germ cells, helping them to differentiate into mature spermatozoa (sperm). This process involves a series of complex cellular events, including mitosis, meiosis, and spermiogenesis.

In addition to its role in sperm production, the seminiferous epithelium also plays a crucial part in maintaining the blood-testis barrier, which separates the testicular environment from the systemic circulation. This barrier helps protect developing germ cells from potential immune attacks and maintains an optimal microenvironment for spermatogenesis.

Confocal microscopy is a powerful imaging technique used in medical and biological research to obtain high-resolution, contrast-rich images of thick samples. This super-resolution technology provides detailed visualization of cellular structures and processes at various depths within a specimen.

In confocal microscopy, a laser beam focused through a pinhole illuminates a small spot within the sample. The emitted fluorescence or reflected light from this spot is then collected by a detector, passing through a second pinhole that ensures only light from the focal plane reaches the detector. This process eliminates out-of-focus light, resulting in sharp images with improved contrast compared to conventional widefield microscopy.

By scanning the laser beam across the sample in a raster pattern and collecting fluorescence at each point, confocal microscopy generates optical sections of the specimen. These sections can be combined to create three-dimensional reconstructions, allowing researchers to study cellular architecture and interactions within complex tissues.

Confocal microscopy has numerous applications in medical research, including studying protein localization, tracking intracellular dynamics, analyzing cell morphology, and investigating disease mechanisms at the cellular level. Additionally, it is widely used in clinical settings for diagnostic purposes, such as analyzing skin lesions or detecting pathogens in patient samples.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Neuroepithelial cells are stem cells that line the developing central nervous system (CNS) in embryos. These cells have the ability to differentiate into various cell types, including neurons and glial cells, which make up the brain and spinal cord. Neuroepithelial cells form a pseudostratified epithelium, meaning that the nuclei of the cells are at varying heights within the cell layer, giving it a striped appearance. These cells play a crucial role in the development and growth of the CNS.

Protein transport, in the context of cellular biology, refers to the process by which proteins are actively moved from one location to another within or between cells. This is a crucial mechanism for maintaining proper cell function and regulation.

Intracellular protein transport involves the movement of proteins within a single cell. Proteins can be transported across membranes (such as the nuclear envelope, endoplasmic reticulum, Golgi apparatus, or plasma membrane) via specialized transport systems like vesicles and transport channels.

Intercellular protein transport refers to the movement of proteins from one cell to another, often facilitated by exocytosis (release of proteins in vesicles) and endocytosis (uptake of extracellular substances via membrane-bound vesicles). This is essential for communication between cells, immune response, and other physiological processes.

It's important to note that any disruption in protein transport can lead to various diseases, including neurological disorders, cancer, and metabolic conditions.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

Desmosomal cadherins, also known as desmocadherins, are a subfamily of the cadherin superfamily of calcium-dependent adhesion molecules. They are primarily responsible for cell-cell adhesion in tissues that undergo mechanical stress, such as epithelial and cardiac tissue.

Desmosomal cadherins include desmocadherin-1 (Desmoglein-1) and desmocadherin-2 (Desmocollin-2), which are located in the desmosomes of adjacent cells. Desmosomes are specialized intercellular junctions that provide strong adhesion and help maintain tissue integrity during mechanical stress.

Desmosomal cadherins have a unique structure, with an extracellular domain containing multiple cadherin repeats that mediate homophilic interactions between adjacent cells. They also have a cytoplasmic domain that interacts with desmoplakin, a protein that links the desmosomal cadherins to the intermediate filament cytoskeleton.

Mutations in desmosomal cadherins have been associated with several human genetic disorders, including skin blistering diseases and arrhythmogenic right ventricular cardiomyopathy (ARVC), a heart condition that can lead to sudden cardiac death.

The vestibular nucleus, lateral, is a part of the vestibular nuclei complex located in the medulla oblongata region of the brainstem. It plays a crucial role in the processing and integration of vestibular information related to balance, posture, and eye movements. The lateral vestibular nucleus is primarily involved in the regulation of muscle tone and coordinating head and eye movements during changes in body position or movement. Damage to this area can result in various vestibular disorders, such as vertigo, oscillopsia, and balance difficulties.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

A nonmammalian embryo refers to the developing organism in animals other than mammals, from the fertilized egg (zygote) stage until hatching or birth. In nonmammalian species, the developmental stages and terminology differ from those used in mammals. The term "embryo" is generally applied to the developing organism up until a specific stage of development that is characterized by the formation of major organs and structures. After this point, the developing organism is referred to as a "larva," "juvenile," or other species-specific terminology.

The study of nonmammalian embryos has played an important role in our understanding of developmental biology and evolutionary developmental biology (evo-devo). By comparing the developmental processes across different animal groups, researchers can gain insights into the evolutionary origins and diversification of body plans and structures. Additionally, nonmammalian embryos are often used as model systems for studying basic biological processes, such as cell division, gene regulation, and pattern formation.

RhoA (Ras Homolog Family Member A) is a small GTPase protein that acts as a molecular switch, cycling between an inactive GDP-bound state and an active GTP-bound state. It plays a crucial role in regulating various cellular processes such as actin cytoskeleton organization, gene expression, cell cycle progression, and cell migration.

RhoA GTP-binding protein becomes activated when it binds to GTP, and this activation leads to the recruitment of downstream effectors that mediate its functions. The activity of RhoA is tightly regulated by several proteins, including guanine nucleotide exchange factors (GEFs) that promote the exchange of GDP for GTP, GTPase-activating proteins (GAPs) that stimulate the intrinsic GTPase activity of RhoA to hydrolyze GTP to GDP and return it to an inactive state, and guanine nucleotide dissociation inhibitors (GDIs) that sequester RhoA in the cytoplasm and prevent its association with the membrane.

Mutations or dysregulation of RhoA GTP-binding protein have been implicated in various human diseases, including cancer, neurological disorders, and cardiovascular diseases.

CDC42 is a small GTP-binding protein that belongs to the Rho family of GTPases. It acts as a molecular switch, cycling between an inactive GDP-bound state and an active GTP-bound state, and plays a critical role in regulating various cellular processes, including actin cytoskeleton organization, cell polarity, and membrane trafficking.

When CDC42 is activated by Guanine nucleotide exchange factors (GEFs), it interacts with downstream effectors to modulate the assembly of actin filaments and the formation of membrane protrusions, such as lamellipodia and filopodia. These cellular structures are essential for cell migration, adhesion, and morphogenesis.

CDC42 also plays a role in intracellular signaling pathways that regulate gene expression, cell cycle progression, and apoptosis. Dysregulation of CDC42 has been implicated in various human diseases, including cancer, neurodegenerative disorders, and immune disorders.

In summary, CDC42 is a crucial GTP-binding protein involved in regulating multiple cellular processes, and its dysfunction can contribute to the development of several pathological conditions.

Gastrulation is a fundamental process in embryonic development, characterized by the transformation of a initially flat layer of cells called the blastula into a three-layered structure known as the gastrula. This complex series of cellular movements and rearrangements establishes the foundation for the formation of the three primary germ layers: the ectoderm, mesoderm, and endoderm. These germ layers further differentiate to give rise to all the diverse cell types and tissues in the developing organism, including the nervous system, muscles, bones, and internal organs.

The precise mechanisms of gastrulation vary among different animal groups; however, common features include:

1. Formation of a blastopore: A small indentation or opening that forms on the surface of the blastula, which eventually develops into the primitive gut or anus in the gastrula.
2. Invagination: The process by which cells at the blastopore fold inward and migrate towards the interior of the embryo, forming the endodermal layer.
3. Epiboly: A coordinated movement of cells that spreads over and encloses the yolk within the embryo, contributing to the formation of the ectodermal layer.
4. Delamination: The separation and migration of cells from the epiblast (the outer layer of the blastula) to form the mesodermal layer in between the ectoderm and endoderm.

Gastrulation is a critical period in embryonic development, as errors during this process can lead to severe congenital abnormalities or even embryonic lethality. A thorough understanding of gastrulation has important implications for regenerative medicine, stem cell research, and the study of evolutionary developmental biology (Evo-Devo).

Rac (Ras-related C3 botulinum toxin substrate) GTP-binding proteins are a subfamily of the Rho family of small GTPases, which function as molecular switches that regulate various cellular processes, including actin cytoskeleton organization, cell adhesion, and gene transcription.

Rac GTP-binding proteins cycle between an inactive GDP-bound state and an active GTP-bound state. When Rac is in its active state, it interacts with downstream effectors to regulate various signaling pathways that control cell behavior. Activation of Rac promotes the formation of lamellipodia and membrane ruffles, which are important for cell migration and invasion.

Rac GTP-binding proteins have been implicated in a variety of physiological and pathological processes, including embryonic development, immune function, and cancer. Dysregulation of Rac signaling has been associated with various diseases, such as inflammatory disorders, neurological disorders, and cancer. Therefore, understanding the regulation and function of Rac GTP-binding proteins is crucial for developing therapeutic strategies to target these diseases.

The Blood-Testis Barrier (BTB) is a unique structural and functional feature of the seminiferous epithelium in the testes, which forms a tight junction between adjacent Sertoli cells in the semi-niferous tubules. This barrier selectively restricts the passage of molecules, including potentially harmful substances and immune cells, from the systemic circulation into the adluminal compartment of the seminiferous epithelium where spermatogenesis occurs. This helps to maintain a immunologically privileged microenvironment that is essential for the survival and maturation of developing sperm cells, preventing an immune response against them. The BTB also regulates the movement of molecules required for spermatogenesis, such as nutrients, hormones, and signaling molecules, from the basal compartment to the adluminal compartment.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Sertoli cells, also known as sustentacular cells or nurse cells, are specialized cells in the seminiferous tubules of the testis in mammals. They play a crucial role in supporting and nurturing the development of sperm cells (spermatogenesis). Sertoli cells create a microenvironment within the seminiferous tubules that facilitates the differentiation, maturation, and survival of germ cells.

These cells have several essential functions:

1. Blood-testis barrier formation: Sertoli cells form tight junctions with each other, creating a physical barrier called the blood-testis barrier, which separates the seminiferous tubules into basal and adluminal compartments. This barrier protects the developing sperm cells from the immune system and provides an isolated environment for their maturation.
2. Nutrition and support: Sertoli cells provide essential nutrients and growth factors to germ cells, ensuring their proper development and survival. They also engulf and digest residual bodies, which are byproducts of spermatid differentiation.
3. Phagocytosis: Sertoli cells have phagocytic properties, allowing them to remove debris and dead cells within the seminiferous tubules.
4. Hormone metabolism: Sertoli cells express receptors for various hormones, such as follicle-stimulating hormone (FSH), testosterone, and estradiol. They play a role in regulating hormonal signaling within the testis by metabolizing these hormones or producing inhibins, which modulate FSH secretion from the pituitary gland.
5. Regulation of spermatogenesis: Sertoli cells produce and secrete various proteins and growth factors that influence germ cell development and proliferation. They also control the release of mature sperm cells into the epididymis through a process called spermiation.

Madin-Darby Canine Kidney (MDCK) cells are a type of cell line that is derived from the kidney of a normal, healthy female cocker spaniel. They were first established in 1958 by researchers Madin and Darby. These cells are epithelial in origin and have the ability to form tight junctions, which makes them a popular choice for studying the transport of molecules across biological barriers.

MDCK cells are widely used in scientific research, particularly in the fields of cell biology, virology, and toxicology. They can be used to study various aspects of cell behavior, including cell adhesion, migration, differentiation, and polarization. Additionally, MDCK cells are susceptible to a variety of viruses, making them useful for studying viral replication and host-virus interactions.

In recent years, MDCK cells have also become an important tool in the development and production of vaccines. They can be used to produce large quantities of virus particles that can then be purified and used as vaccine antigens. Overall, Madin-Darby Canine Kidney cells are a valuable resource for researchers studying a wide range of biological phenomena.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

The esophagogastric junction (EGJ) is the region of the gastrointestinal tract where the esophagus (the tube that carries food from the mouth to the stomach) meets the stomach. It serves as a physiological sphincter, which helps control the direction of flow and prevent reflux of gastric contents back into the esophagus. The EGJ is also known as the gastroesophageal junction or cardia.

I must clarify that the term 'pupa' is not typically used in medical contexts. Instead, it is a term from the field of biology, particularly entomology, which is the study of insects.

In insect development, a pupa refers to a stage in the life cycle of certain insects undergoing complete metamorphosis. During this phase, the larval body undergoes significant transformation and reorganization within a protective casing called a chrysalis (in butterflies and moths) or a cocoon (in other insects). The old larval tissues are broken down and replaced with new adult structures. Once this process is complete, the pupal case opens, and the adult insect emerges.

Since 'pupa' is not a medical term, I couldn't provide a medical definition for it. However, I hope this explanation helps clarify its meaning in the context of biology.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Nucleoside-phosphate kinase (NPK) is an enzyme that plays a crucial role in the synthesis and metabolism of nucleotides, which are the building blocks of DNA and RNA. NPK catalyzes the transfer of a phosphate group from a donor molecule, typically ATP, to a nucleoside or deoxynucleoside, forming a nucleoside monophosphate (NMP) or deoxynucleoside monophosphate (dNMP).

There are several isoforms of NPK found in different cellular compartments and tissues, each with distinct substrate specificities. These enzymes play essential roles in maintaining the balance of nucleotides required for various cellular processes, including DNA replication, repair, and transcription, as well as RNA synthesis and metabolism.

Abnormalities in NPK activity or expression have been implicated in several human diseases, such as cancer, viral infections, and neurological disorders. Therefore, understanding the function and regulation of NPK is crucial for developing novel therapeutic strategies to target these conditions.

SRC-family kinases (SFKs) are a group of non-receptor tyrosine kinases that play important roles in various cellular processes, including cell proliferation, differentiation, survival, and migration. They are named after the founding member, SRC, which was first identified as an oncogene in Rous sarcoma virus.

SFKs share a common structure, consisting of an N-terminal unique domain, a SH3 domain, a SH2 domain, a catalytic kinase domain, and a C-terminal regulatory tail with a negative regulatory tyrosine residue (Y527 in human SRC). In their inactive state, SFKs are maintained in a closed conformation through intramolecular interactions between the SH3 domain, SH2 domain, and the phosphorylated C-terminal tyrosine.

Upon activation by various signals, such as growth factors, cytokines, or integrin engagement, SFKs are activated through a series of events that involve dephosphorylation of the regulatory tyrosine residue, recruitment to membrane receptors via their SH2 and SH3 domains, and trans-autophosphorylation of the activation loop in the kinase domain.

Once activated, SFKs can phosphorylate a wide range of downstream substrates, including other protein kinases, adaptor proteins, and cytoskeletal components, thereby regulating various signaling pathways that control cell behavior. Dysregulation of SFK activity has been implicated in various diseases, including cancer, inflammation, and neurological disorders.

Stress fibers are specialized cytoskeletal structures composed primarily of actin filaments, along with myosin II and other associated proteins. They are called "stress" fibers because they are thought to provide cells with the ability to resist and respond to mechanical stresses. These structures play a crucial role in maintaining cell shape, facilitating cell migration, and mediating cell-cell and cell-matrix adhesions. Stress fibers form bundles that span the length of the cell and connect to focal adhesion complexes at their ends, allowing for the transmission of forces between the extracellular matrix and the cytoskeleton. They are dynamic structures that can undergo rapid assembly and disassembly in response to various stimuli, including changes in mechanical stress, growth factor signaling, and cellular differentiation.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Freeze fracturing is not a medical term itself, but it is a technique used in the field of electron microscopy, which is a type of imaging commonly used in scientific research and medical fields to visualize structures at a very small scale, such as cells and cellular components.

In freeze fracturing, a sample is rapidly frozen to preserve its structure and then fractured or split along a plane of weakness, often along the membrane of a cell. The freshly exposed surface is then shadowed with a thin layer of metal, such as platinum or gold, to create a replica of the surface. This replica can then be examined using an electron microscope to reveal details about the structure and organization of the sample at the molecular level.

Freeze fracturing is particularly useful for studying membrane structures, such as lipid bilayers and protein complexes, because it allows researchers to visualize these structures in their native state, without the need for staining or other chemical treatments that can alter or damage the samples.

Keratinocytes are the predominant type of cells found in the epidermis, which is the outermost layer of the skin. These cells are responsible for producing keratin, a tough protein that provides structural support and protection to the skin. Keratinocytes undergo constant turnover, with new cells produced in the basal layer of the epidermis and older cells moving upward and eventually becoming flattened and filled with keratin as they reach the surface of the skin, where they are then shed. They also play a role in the immune response and can release cytokines and other signaling molecules to help protect the body from infection and injury.

Desmoglein 2 is a type of desmoglein protein that is primarily found in the desmosomes of epithelial cells. Desmosomes are specialized structures that help to anchor intermediate filaments to the cell membrane and provide strength and stability to tissues that undergo mechanical stress, such as the skin and heart.

Desmoglein 2 plays a critical role in maintaining cell-cell adhesion by forming intercellular junctions called desmosomal cadherins. These junctions help to hold adjacent cells together and contribute to the integrity of epithelial tissues. Mutations in the gene that encodes Desmoglein 2 have been associated with several skin disorders, including pemphigus vulgaris, a blistering autoimmune disease that affects mucous membranes and the skin. In this condition, antibodies target Desmoglein 2, leading to loss of cell-cell adhesion and formation of blisters.

Myosin Type II, also known as myosin II or heavy meromyosin, is a type of motor protein involved in muscle contraction and other cellular movements. It is a hexameric protein composed of two heavy chains and four light chains. The heavy chains have a head domain that binds to actin filaments and an tail domain that forms a coiled-coil structure, allowing the formation of filaments. Myosin II uses the energy from ATP hydrolysis to move along actin filaments, generating force and causing muscle contraction or other cell movements. It plays a crucial role in various cellular processes such as cytokinesis, cell motility, and maintenance of cell shape.

Kinesin is not a medical term per se, but a term from the field of cellular biology. However, understanding how kinesins work is important in the context of medical and cellular research.

Kinesins are a family of motor proteins that play a crucial role in transporting various cargoes within cells, such as vesicles, organelles, and chromosomes. They move along microtubule filaments, using the energy derived from ATP hydrolysis to generate mechanical force and motion. This process is essential for several cellular functions, including intracellular transport, mitosis, and meiosis.

In a medical context, understanding kinesin function can provide insights into various diseases and conditions related to impaired intracellular transport, such as neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease) and certain genetic disorders affecting motor neurons. Research on kinesins can potentially lead to the development of novel therapeutic strategies targeting these conditions.

Caco-2 cells are a type of human epithelial colorectal adenocarcinoma cell line that is commonly used in scientific research, particularly in the field of drug development and toxicology. These cells are capable of forming a monolayer with tight junctions, which makes them an excellent model for studying intestinal absorption, transport, and metabolism of drugs and other xenobiotic compounds.

Caco-2 cells express many of the transporters and enzymes that are found in the human small intestine, making them a valuable tool for predicting drug absorption and bioavailability in humans. They are also used to study the mechanisms of drug transport across the intestinal epithelium, including passive diffusion and active transport by various transporters.

In addition to their use in drug development, Caco-2 cells are also used to study the toxicological effects of various compounds on human intestinal cells. They can be used to investigate the mechanisms of toxicity, as well as to evaluate the potential for drugs and other compounds to induce intestinal damage or inflammation.

Overall, Caco-2 cells are a widely used and valuable tool in both drug development and toxicology research, providing important insights into the absorption, transport, metabolism, and toxicity of various compounds in the human body.

Tyrosine is an non-essential amino acid, which means that it can be synthesized by the human body from another amino acid called phenylalanine. Its name is derived from the Greek word "tyros," which means cheese, as it was first isolated from casein, a protein found in cheese.

Tyrosine plays a crucial role in the production of several important substances in the body, including neurotransmitters such as dopamine, norepinephrine, and epinephrine, which are involved in various physiological processes, including mood regulation, stress response, and cognitive functions. It also serves as a precursor to melanin, the pigment responsible for skin, hair, and eye color.

In addition, tyrosine is involved in the structure of proteins and is essential for normal growth and development. Some individuals may require tyrosine supplementation if they have a genetic disorder that affects tyrosine metabolism or if they are phenylketonurics (PKU), who cannot metabolize phenylalanine, which can lead to elevated tyrosine levels in the blood. However, it is important to consult with a healthcare professional before starting any supplementation regimen.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

The epidermis is the outermost layer of the skin, composed mainly of stratified squamous epithelium. It forms a protective barrier that prevents water loss and inhibits the entry of microorganisms. The epidermis contains no blood vessels, and its cells are nourished by diffusion from the underlying dermis. The bottom-most layer of the epidermis, called the stratum basale, is responsible for generating new skin cells that eventually move up to replace dead cells on the surface. This process of cell turnover takes about 28 days in adults.

The most superficial part of the epidermis consists of dead cells called squames, which are constantly shed and replaced. The exact rate at which this happens varies depending on location; for example, it's faster on the palms and soles than elsewhere. Melanocytes, the pigment-producing cells, are also located in the epidermis, specifically within the stratum basale layer.

In summary, the epidermis is a vital part of our integumentary system, providing not only physical protection but also playing a crucial role in immunity and sensory perception through touch receptors called Pacinian corpuscles.

Claudin-3 is a protein that belongs to the family of claudins, which are essential components of tight junctions in cells. Tight junctions are specialized structures that serve as barriers between adjacent cells, controlling the paracellular movement of ions, solutes, and water. Claudin-3 is primarily expressed in epithelial tissues, where it helps maintain cell polarity and regulate the permeability of the intercellular space. Mutations or abnormal expression of claudin-3 have been implicated in various pathological conditions, including cancer and inflammatory diseases.

Holliday junction resolvases are a type of enzyme that are involved in the process of genetic recombination. They are named after Robin Holliday, who first proposed the existence of a structure called a Holliday junction during genetic recombination.

A Holliday junction is a four-way DNA structure that forms when two DNA molecules exchange genetic material during recombination. The junction is held together by hydrogen bonds between complementary base pairs, and it can move along the DNA molecules through a process called branch migration.

Holliday junction resolvases are responsible for cleaving the DNA strands at the Holliday junction, resolving the structure into two separate DNA molecules. They do this by introducing nicks in the phosphodiester backbone of the DNA strands on either side of the junction and then joining the broken ends together. This results in the exchange of genetic material between the two original DNA molecules.

There are several different types of Holliday junction resolvases, including the bacterial RuvC and RecU enzymes, as well as the eukaryotic Flap endonuclease 1 (FEN1) and XPF/ERCC1 complexes. These enzymes have different specificities for cleaving the DNA strands at the Holliday junction, but they all play important roles in ensuring that genetic recombination occurs accurately and efficiently.

Actinin is a protein that belongs to the family of actin-binding proteins. It plays an important role in the organization and stability of the cytoskeleton, which is the structural framework of a cell. Specifically, actinin crosslinks actin filaments into bundles or networks, providing strength and rigidity to the cell structure. There are several isoforms of actinin, with alpha-actinin and gamma-actinin being widely studied. Alpha-actinin is found in the Z-discs of sarcomeres in muscle cells, where it helps anchor actin filaments and maintains the structural integrity of the muscle. Gamma-actinin is primarily located at cell-cell junctions and participates in cell adhesion and signaling processes.

Actomyosin is a contractile protein complex that consists of actin and myosin filaments. It plays an essential role in muscle contraction, cell motility, and cytokinesis (the process of cell division where the cytoplasm is divided into two daughter cells). The interaction between actin and myosin generates force and movement through a mechanism called sliding filament theory. In this process, myosin heads bind to actin filaments and then undergo a power stroke, which results in the sliding of one filament relative to the other and ultimately leads to muscle contraction or cellular movements. Actomyosin complexes are also involved in various non-muscle cellular processes such as cytoplasmic streaming, intracellular transport, and maintenance of cell shape.

Fluorescence Recovery After Photobleaching (FRAP) is a microscopy technique used to study the mobility and diffusion of molecules in biological samples, particularly within living cells. This technique involves the use of an intense laser beam to photobleach (or permanently disable) the fluorescence of a specific region within a sample that has been labeled with a fluorescent probe or dye. The recovery of fluorescence in this bleached area is then monitored over time, as unbleached molecules from adjacent regions move into the bleached area through diffusion or active transport.

The rate and extent of fluorescence recovery can provide valuable information about the mobility, binding interactions, and dynamics of the labeled molecules within their native environment. FRAP is widely used in cell biology research to investigate various processes such as protein-protein interactions, membrane fluidity, organelle dynamics, and gene expression regulation.

Myosins are a large family of motor proteins that play a crucial role in various cellular processes, including muscle contraction and intracellular transport. They consist of heavy chains, which contain the motor domain responsible for generating force and motion, and light chains, which regulate the activity of the myosin. Based on their structural and functional differences, myosins are classified into over 35 classes, with classes II, V, and VI being the most well-studied.

Class II myosins, also known as conventional myosins, are responsible for muscle contraction in skeletal, cardiac, and smooth muscles. They form filaments called thick filaments, which interact with actin filaments to generate force and movement during muscle contraction.

Class V myosins, also known as unconventional myosins, are involved in intracellular transport and organelle positioning. They have a long tail that can bind to various cargoes, such as vesicles, mitochondria, and nuclei, and a motor domain that moves along actin filaments to transport the cargoes to their destinations.

Class VI myosins are also unconventional myosins involved in intracellular transport and organelle positioning. They have two heads connected by a coiled-coil tail, which can bind to various cargoes. Class VI myosins move along actin filaments in a unique hand-over-hand motion, allowing them to transport their cargoes efficiently.

Overall, myosins are essential for many cellular functions and have been implicated in various diseases, including cardiovascular diseases, neurological disorders, and cancer.

Focal adhesions are specialized structures found in cells that act as points of attachment between the intracellular cytoskeleton and the extracellular matrix (ECM). They are composed of a complex network of proteins, including integrins, talin, vinculin, paxillin, and various others.

Focal adhesions play a crucial role in cellular processes such as adhesion, migration, differentiation, and signal transduction. They form when integrin receptors in the cell membrane bind to specific ligands within the ECM, leading to the clustering of these receptors and the recruitment of various adaptor and structural proteins. This results in the formation of a stable linkage between the cytoskeleton and the ECM, which helps maintain cell shape, provide mechanical stability, and facilitate communication between the intracellular and extracellular environments.

Focal adhesions are highly dynamic structures that can undergo rapid assembly and disassembly in response to various stimuli, allowing cells to adapt and respond to changes in their microenvironment. Dysregulation of focal adhesion dynamics has been implicated in several pathological conditions, including cancer metastasis, fibrosis, and impaired wound healing.

Hydrazines are not a medical term, but rather a class of organic compounds containing the functional group N-NH2. They are used in various industrial and chemical applications, including the production of polymers, pharmaceuticals, and agrochemicals. However, some hydrazines have been studied for their potential therapeutic uses, such as in the treatment of cancer and cardiovascular diseases. Exposure to high levels of hydrazines can be toxic and may cause damage to the liver, kidneys, and central nervous system. Therefore, medical professionals should be aware of the potential health hazards associated with hydrazine exposure.

A precipitin test is a type of immunodiagnostic test used to detect and measure the presence of specific antibodies or antigens in a patient's serum. The test is based on the principle of antigen-antibody interaction, where the addition of an antigen to a solution containing its corresponding antibody results in the formation of an insoluble immune complex known as a precipitin.

In this test, a small amount of the patient's serum is added to a solution containing a known antigen or antibody. If the patient has antibodies or antigens that correspond to the added reagent, they will bind and form a visible precipitate. The size and density of the precipitate can be used to quantify the amount of antibody or antigen present in the sample.

Precipitin tests are commonly used in the diagnosis of various infectious diseases, autoimmune disorders, and allergies. They can also be used in forensic science to identify biological samples. However, they have largely been replaced by more modern immunological techniques such as enzyme-linked immunosorbent assays (ELISAs) and radioimmunoassays (RIAs).

Immunoprecipitation (IP) is a research technique used in molecular biology and immunology to isolate specific antigens or antibodies from a mixture. It involves the use of an antibody that recognizes and binds to a specific antigen, which is then precipitated out of solution using various methods, such as centrifugation or chemical cross-linking.

In this technique, an antibody is first incubated with a sample containing the antigen of interest. The antibody specifically binds to the antigen, forming an immune complex. This complex can then be captured by adding protein A or G agarose beads, which bind to the constant region of the antibody. The beads are then washed to remove any unbound proteins, leaving behind the precipitated antigen-antibody complex.

Immunoprecipitation is a powerful tool for studying protein-protein interactions, post-translational modifications, and signal transduction pathways. It can also be used to detect and quantify specific proteins in biological samples, such as cells or tissues, and to identify potential biomarkers of disease.

A gingival pocket, also known as a sulcus, is a small space or groove between the gum tissue (gingiva) and the tooth. It's a normal anatomical structure found in healthy teeth and gums, and it measures about 1-3 millimeters in depth. The purpose of the gingival pocket is to allow for the movement of the gum tissue during functions such as eating, speaking, and swallowing.

However, when the gums become inflamed due to bacterial buildup (plaque) or other factors, the pocket can deepen, leading to the formation of a pathological gingival pocket. Pathological pockets are typically deeper than 3 millimeters and may indicate the presence of periodontal disease. These pockets can harbor harmful bacteria that can cause further damage to the gum tissue and bone supporting the tooth, potentially leading to tooth loss if left untreated.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

In the context of medicine and physiology, permeability refers to the ability of a tissue or membrane to allow the passage of fluids, solutes, or gases. It is often used to describe the property of the capillary walls, which control the exchange of substances between the blood and the surrounding tissues.

The permeability of a membrane can be influenced by various factors, including its molecular structure, charge, and the size of the molecules attempting to pass through it. A more permeable membrane allows for easier passage of substances, while a less permeable membrane restricts the movement of substances.

In some cases, changes in permeability can have significant consequences for health. For example, increased permeability of the blood-brain barrier (a specialized type of capillary that regulates the passage of substances into the brain) has been implicated in a number of neurological conditions, including multiple sclerosis, Alzheimer's disease, and traumatic brain injury.

Guanylate kinase is an enzyme that plays a crucial role in the synthesis of guanosine triphosphate (GTP) in cells. GTP is a vital energy currency and a key player in various cellular processes, such as protein synthesis, signal transduction, and gene regulation.

The primary function of guanylate kinase is to catalyze the transfer of a phosphate group from adenosine triphosphate (ATP) to guanosine monophosphate (GMP), resulting in the formation of GTP and adenosine diphosphate (ADP). The reaction can be represented as follows:

GMP + ATP → GTP + ADP

There are two main types of guanylate kinases, based on their structure and function:

1. **Classical Guanylate Kinase:** This type of guanylate kinase is found in various organisms, including bacteria, archaea, and eukaryotes. They typically contain around 180-200 amino acids and share a conserved catalytic domain. In humans, there are two classical guanylate kinases (GK1 and GK2) that play essential roles in DNA damage response and neuronal development.
2. **Ubiquitous Guanylate Kinase-like Proteins:** These proteins share structural similarities with the catalytic domain of classical guanylate kinases but lack enzymatic activity. They are involved in various cellular processes, such as transcription regulation and RNA processing.

Guanylate kinase deficiency has been linked to neurological disorders, developmental delays, and seizures in humans. Additionally, inhibiting guanylate kinase activity can be a potential therapeutic strategy for treating certain types of cancer, as it may interfere with the energy production required for uncontrolled cell growth and proliferation.

Claudin-5 is a protein that is a member of the claudin family, which are tight junction proteins. Tight junctions are specialized structures found in epithelial and endothelial cells that help to form a barrier between different cellular compartments. Claudin-5 is specifically expressed in endothelial cells and plays an important role in the formation of tight junctions in the blood-brain barrier, which helps to regulate the movement of molecules between the blood and the brain. Mutations in the gene that encodes claudin-5 have been associated with various neurological disorders.

Transmission electron microscopy (TEM) is a type of microscopy in which an electron beam is transmitted through a ultra-thin specimen, interacting with it as it passes through. An image is formed from the interaction of the electrons with the specimen; the image is then magnified and visualized on a fluorescent screen or recorded on an electronic detector (or photographic film in older models).

TEM can provide high-resolution, high-magnification images that can reveal the internal structure of specimens including cells, viruses, and even molecules. It is widely used in biological and materials science research to investigate the ultrastructure of cells, tissues and materials. In medicine, TEM is used for diagnostic purposes in fields such as virology and bacteriology.

It's important to note that preparing a sample for TEM is a complex process, requiring specialized techniques to create thin (50-100 nm) specimens. These include cutting ultrathin sections of embedded samples using an ultramicrotome, staining with heavy metal salts, and positive staining or negative staining methods.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

RNA interference (RNAi) is a biological process in which RNA molecules inhibit the expression of specific genes. This process is mediated by small RNA molecules, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), that bind to complementary sequences on messenger RNA (mRNA) molecules, leading to their degradation or translation inhibition.

RNAi plays a crucial role in regulating gene expression and defending against foreign genetic elements, such as viruses and transposons. It has also emerged as an important tool for studying gene function and developing therapeutic strategies for various diseases, including cancer and viral infections.

Immunoelectron microscopy (IEM) is a specialized type of electron microscopy that combines the principles of immunochemistry and electron microscopy to detect and localize specific antigens within cells or tissues at the ultrastructural level. This technique allows for the visualization and identification of specific proteins, viruses, or other antigenic structures with a high degree of resolution and specificity.

In IEM, samples are first fixed, embedded, and sectioned to prepare them for electron microscopy. The sections are then treated with specific antibodies that have been labeled with electron-dense markers, such as gold particles or ferritin. These labeled antibodies bind to the target antigens in the sample, allowing for their visualization under an electron microscope.

There are several different methods of IEM, including pre-embedding and post-embedding techniques. Pre-embedding involves labeling the antigens before embedding the sample in resin, while post-embedding involves labeling the antigens after embedding. Post-embedding techniques are generally more commonly used because they allow for better preservation of ultrastructure and higher resolution.

IEM is a valuable tool in many areas of research, including virology, bacteriology, immunology, and cell biology. It can be used to study the structure and function of viruses, bacteria, and other microorganisms, as well as the distribution and localization of specific proteins and antigens within cells and tissues.

Human Umbilical Vein Endothelial Cells (HUVECs) are a type of primary cells that are isolated from the umbilical cord vein of human placenta. These cells are naturally equipped with endothelial properties and functions, making them an essential tool in biomedical research. HUVECs line the interior surface of blood vessels and play a crucial role in the regulation of vascular function, including angiogenesis (the formation of new blood vessels), coagulation, and permeability. Due to their accessibility and high proliferation rate, HUVECs are widely used in various research areas such as vascular biology, toxicology, drug development, and gene therapy.

Green Fluorescent Protein (GFP) is not a medical term per se, but a scientific term used in the field of molecular biology. GFP is a protein that exhibits bright green fluorescence when exposed to light, particularly blue or ultraviolet light. It was originally discovered in the jellyfish Aequorea victoria.

In medical and biological research, scientists often use recombinant DNA technology to introduce the gene for GFP into other organisms, including bacteria, plants, and animals, including humans. This allows them to track the expression and localization of specific genes or proteins of interest in living cells, tissues, or even whole organisms.

The ability to visualize specific cellular structures or processes in real-time has proven invaluable for a wide range of research areas, from studying the development and function of organs and organ systems to understanding the mechanisms of diseases and the effects of therapeutic interventions.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Lysophospholipids are a type of glycerophospholipid, which is a major component of cell membranes. They are characterized by having only one fatty acid chain attached to the glycerol backbone, as opposed to two in regular phospholipids. This results in a more polar and charged molecule, which can play important roles in cell signaling and regulation.

Lysophospholipids can be derived from the breakdown of regular phospholipids through the action of enzymes such as phospholipase A1 or A2. They can also be synthesized de novo in the cell. Some lysophospholipids, such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P), have been found to act as signaling molecules that bind to specific G protein-coupled receptors and regulate various cellular processes, including proliferation, survival, and migration.

Abnormal levels of lysophospholipids have been implicated in several diseases, such as cancer, inflammation, and neurological disorders. Therefore, understanding the biology of lysophospholipids has important implications for developing new therapeutic strategies.

Rho-associated kinases (ROCKs) are serine/threonine kinases that are involved in the regulation of various cellular processes, including actin cytoskeleton organization, cell migration, and gene expression. They are named after their association with the small GTPase RhoA, which activates them upon binding.

ROCKs exist as two isoforms, ROCK1 and ROCK2, which share a high degree of sequence homology and have similar functions. They contain several functional domains, including a kinase domain, a coiled-coil region that mediates protein-protein interactions, and a Rho-binding domain (RBD) that binds to active RhoA.

Once activated by RhoA, ROCKs phosphorylate a variety of downstream targets, including myosin light chain (MLC), LIM kinase (LIMK), and moesin, leading to the regulation of actomyosin contractility, stress fiber formation, and focal adhesion turnover. Dysregulation of ROCK signaling has been implicated in various pathological conditions, such as cancer, cardiovascular diseases, neurological disorders, and fibrosis. Therefore, ROCKs have emerged as promising therapeutic targets for the treatment of these diseases.

Immunoblotting, also known as western blotting, is a laboratory technique used in molecular biology and immunogenetics to detect and quantify specific proteins in a complex mixture. This technique combines the electrophoretic separation of proteins by gel electrophoresis with their detection using antibodies that recognize specific epitopes (protein fragments) on the target protein.

The process involves several steps: first, the protein sample is separated based on size through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Next, the separated proteins are transferred onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric field. The membrane is then blocked with a blocking agent to prevent non-specific binding of antibodies.

After blocking, the membrane is incubated with a primary antibody that specifically recognizes the target protein. Following this, the membrane is washed to remove unbound primary antibodies and then incubated with a secondary antibody conjugated to an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (AP). The enzyme catalyzes a colorimetric or chemiluminescent reaction that allows for the detection of the target protein.

Immunoblotting is widely used in research and clinical settings to study protein expression, post-translational modifications, protein-protein interactions, and disease biomarkers. It provides high specificity and sensitivity, making it a valuable tool for identifying and quantifying proteins in various biological samples.

Sphingosine is not a medical term per se, but rather a biological compound with importance in the field of medicine. It is a type of sphingolipid, a class of lipids that are crucial components of cell membranes. Sphingosine itself is a secondary alcohol with an amino group and two long-chain hydrocarbons.

Medically, sphingosine is significant due to its role as a precursor in the synthesis of other sphingolipids, such as ceramides, sphingomyelins, and gangliosides, which are involved in various cellular processes like signal transduction, cell growth, differentiation, and apoptosis (programmed cell death).

Moreover, sphingosine-1-phosphate (S1P), a derivative of sphingosine, is an important bioactive lipid mediator that regulates various physiological functions, including immune response, vascular maturation, and neuronal development. Dysregulation of S1P signaling has been implicated in several diseases, such as cancer, inflammation, and cardiovascular disorders.

In summary, sphingosine is a crucial biological compound with medical relevance due to its role as a precursor for various sphingolipids involved in cellular processes and as a precursor for the bioactive lipid mediator S1P.

Endocytosis is the process by which cells absorb substances from their external environment by engulfing them in membrane-bound structures, resulting in the formation of intracellular vesicles. This mechanism allows cells to take up large molecules, such as proteins and lipids, as well as small particles, like bacteria and viruses. There are two main types of endocytosis: phagocytosis (cell eating) and pinocytosis (cell drinking). Phagocytosis involves the engulfment of solid particles, while pinocytosis deals with the uptake of fluids and dissolved substances. Other specialized forms of endocytosis include receptor-mediated endocytosis and caveolae-mediated endocytosis, which allow for the specific internalization of molecules through the interaction with cell surface receptors.

Small interfering RNA (siRNA) is a type of short, double-stranded RNA molecule that plays a role in the RNA interference (RNAi) pathway. The RNAi pathway is a natural cellular process that regulates gene expression by targeting and destroying specific messenger RNA (mRNA) molecules, thereby preventing the translation of those mRNAs into proteins.

SiRNAs are typically 20-25 base pairs in length and are generated from longer double-stranded RNA precursors called hairpin RNAs or dsRNAs by an enzyme called Dicer. Once generated, siRNAs associate with a protein complex called the RNA-induced silencing complex (RISC), which uses one strand of the siRNA (the guide strand) to recognize and bind to complementary sequences in the target mRNA. The RISC then cleaves the target mRNA, leading to its degradation and the inhibition of protein synthesis.

SiRNAs have emerged as a powerful tool for studying gene function and have shown promise as therapeutic agents for a variety of diseases, including viral infections, cancer, and genetic disorders. However, their use as therapeutics is still in the early stages of development, and there are challenges associated with delivering siRNAs to specific cells and tissues in the body.

Time-lapse imaging is a medical imaging technique where images are captured at regular intervals over a period of time and then played back at a faster rate to show the progression or changes that occur during that time frame. This technique is often used in various fields of medicine, including microbiology, pathology, and reproductive medicine. In microbiology, for example, time-lapse imaging can be used to observe bacterial growth or the movement of individual cells. In pathology, it might help track the development of a lesion or the response of a tumor to treatment. In reproductive medicine, time-lapse imaging is commonly employed in embryo culture during in vitro fertilization (IVF) procedures to assess the development and quality of embryos before implantation.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Indazoles are not a medical term, but a chemical classification. They refer to a class of heterocyclic organic compounds that contain a indazole moiety, which is a benzene ring fused with a diazole ring. Indazoles have no specific medical relevance, but certain derivatives of indazoles have been developed and used as drugs in medicine, particularly in the treatment of cancer and cardiovascular diseases. For example, Tadalafil (Cialis), a medication used to treat erectile dysfunction and benign prostatic hyperplasia, is a selective inhibitor of cGMP-specific phosphodiesterase type 5 and has an indazole structure.

Photoreceptor cells in invertebrates are specialized sensory neurons that convert light stimuli into electrical signals. These cells are primarily responsible for the ability of many invertebrates to detect and respond to light, enabling behaviors such as phototaxis (movement towards or away from light) and vision.

Invertebrate photoreceptor cells typically contain light-sensitive pigments that absorb light at specific wavelengths. The most common type of photopigment is rhodopsin, which consists of a protein called opsin and a chromophore called retinal. When light hits the photopigment, it changes the conformation of the chromophore, triggering a cascade of molecular events that ultimately leads to the generation of an electrical signal.

Invertebrate photoreceptor cells can be found in various locations throughout the body, depending on their function. For example, simple eyespots containing a few photoreceptor cells may be scattered over the surface of the body in some species, while more complex eyes with hundreds or thousands of photoreceptors may be present in other groups. In addition to their role in vision, photoreceptor cells can also serve as sensory organs for regulating circadian rhythms, detecting changes in light intensity, and mediating social behaviors.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Cell membrane permeability refers to the ability of various substances, such as molecules and ions, to pass through the cell membrane. The cell membrane, also known as the plasma membrane, is a thin, flexible barrier that surrounds all cells, controlling what enters and leaves the cell. Its primary function is to protect the cell's internal environment and maintain homeostasis.

The permeability of the cell membrane depends on its structure, which consists of a phospholipid bilayer interspersed with proteins. The hydrophilic (water-loving) heads of the phospholipids face outward, while the hydrophobic (water-fearing) tails face inward, creating a barrier that is generally impermeable to large, polar, or charged molecules.

However, specific proteins within the membrane, called channels and transporters, allow certain substances to cross the membrane. Channels are protein structures that span the membrane and provide a pore for ions or small uncharged molecules to pass through. Transporters, on the other hand, are proteins that bind to specific molecules and facilitate their movement across the membrane, often using energy in the form of ATP.

The permeability of the cell membrane can be influenced by various factors, such as temperature, pH, and the presence of certain chemicals or drugs. Changes in permeability can have significant consequences for the cell's function and survival, as they can disrupt ion balances, nutrient uptake, waste removal, and signal transduction.

Genetically modified animals (GMAs) are those whose genetic makeup has been altered using biotechnological techniques. This is typically done by introducing one or more genes from another species into the animal's genome, resulting in a new trait or characteristic that does not naturally occur in that species. The introduced gene is often referred to as a transgene.

The process of creating GMAs involves several steps:

1. Isolation: The desired gene is isolated from the DNA of another organism.
2. Transfer: The isolated gene is transferred into the target animal's cells, usually using a vector such as a virus or bacterium.
3. Integration: The transgene integrates into the animal's chromosome, becoming a permanent part of its genetic makeup.
4. Selection: The modified cells are allowed to multiply, and those that contain the transgene are selected for further growth and development.
5. Breeding: The genetically modified individuals are bred to produce offspring that carry the desired trait.

GMAs have various applications in research, agriculture, and medicine. In research, they can serve as models for studying human diseases or testing new therapies. In agriculture, GMAs can be developed to exhibit enhanced growth rates, improved disease resistance, or increased nutritional value. In medicine, GMAs may be used to produce pharmaceuticals or other therapeutic agents within their bodies.

Examples of genetically modified animals include mice with added genes for specific proteins that make them useful models for studying human diseases, goats that produce a human protein in their milk to treat hemophilia, and pigs with enhanced resistance to certain viruses that could potentially be used as organ donors for humans.

It is important to note that the use of genetically modified animals raises ethical concerns related to animal welfare, environmental impact, and potential risks to human health. These issues must be carefully considered and addressed when developing and implementing GMA technologies.

Claudins are a group of proteins that play a crucial role in the formation and function of tight junctions, which are specialized structures found in the cell membranes of epithelial and endothelial cells. Tight junctions serve as barriers to regulate the paracellular movement of ions, solutes, and water between cells, and claudins are one of the major components that contribute to their selective permeability.

There are over 20 different types of claudins identified in various tissues throughout the body, with each type having a unique structure and function. Claudins can form homotypic or heterotypic interactions with other claudin molecules, allowing for the formation of tight junction strands with varying pore sizes and charge selectivity. This diversity in claudin composition enables the regulation of paracellular transport across different tissues, such as the blood-brain barrier, intestinal epithelium, and renal tubules.

Mutations or dysregulation of claudins have been implicated in several diseases, including cancer, inflammatory bowel disease, and neurological disorders. For example, altered expression levels of specific claudins can contribute to the development of drug resistance in certain types of cancer cells, making them more difficult to treat. Additionally, changes in claudin composition or distribution can disrupt tight junction function, leading to increased permeability and the onset of various pathological conditions.

I am not aware of a widely recognized or established medical term called "Blood-Air Barrier." It is possible that you may be referring to a concept or phenomenon that goes by a different name, or it could be a term that is specific to certain context or field within medicine.

In general, the terms "blood" and "air" refer to two distinct and separate compartments in the body, and there are various physiological barriers that prevent them from mixing with each other under normal circumstances. For example, the alveolar-capillary membrane in the lungs serves as a barrier that allows for the exchange of oxygen and carbon dioxide between the air in the alveoli and the blood in the capillaries, while preventing the two from mixing together.

If you could provide more context or clarify what you mean by "Blood-Air Barrier," I may be able to provide a more specific answer.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

MBInfo - Adherens Junction MBInfo - Adherens Junction Assembly Adherens+Junctions at the U.S. National Library of Medicine ... Adherens junctions (or zonula adherens, intermediate junction, or "belt desmosome") are protein complexes that occur at cell- ... usually more basal than tight junctions. An adherens junction is defined as a cell junction whose cytoplasmic face is linked to ... "Signaling to and through the Endothelial Adherens Junction". In LaFlamme SE, Kowalczyck AP (eds.). Cell Junctions: Adhesion, ...
It appears that NM-IIB plays an essential role in maintaining normal adherens junction integrity and structure. A cardiac ... widened adherens junctions; and progressive hypertrophic cardiomyopathy at 6 months. These data indicate that NM-IIB functions ... where it localizes to adherens junctions within intercalated discs. NM-IIB is essential for normal development of cardiac ...
Geiger, B; Volk, T; Volberg, T (1985). "Molecular heterogeneity of adherens junctions". The Journal of Cell Biology. 101 (4): ...
Volk T, Cohen O, Geiger B (September 1987). "Formation of heterotypic adherens-type junctions between L-CAM-containing liver ... Cadherins (named for "calcium-dependent adhesion") are cell adhesion molecules important in forming adherens junctions that let ... Harris TJ, Tepass U (July 2010). "Adherens junctions: from molecules to morphogenesis". Nature Reviews. Molecular Cell Biology ... February 2011). "The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins". ...
Arderiu G, Cuevas I, Chen A, Carrio M, East L, Boudreau NJ (2007). "HoxA5 stabilizes adherens junctions via increased Akt1". ... and stabilizing adherens junctions by upregulating TIMP1/downregulating uPAR and MMP14, and by upregulating Tsp2/downregulating ...
The adherens junctions in the Sertoli cells is one of the only epithelial cell-cell junction that lacks the expression of ... Adherens junctions are composed primarily of E-cadherin, alpha and beta catenins and other proteins such as actin and myosin. ... The protein vezatin has been shown to play a critical role in the maintenance and formation of adherens junctions in many ... Disruption of vezatin synthesis in the early embryo not only leads to lack of adherens junction formation, but also results in ...
Arderiu G, Cuevas I, Chen A, Carrio M, East L, Boudreau NJ (2007). "HoxA5 stabilizes adherens junctions via increased Akt1". ...
Adherens junctions (AJs) form homotypic dimers between neighboring cells, where the intracellular protein complex interacts ... Ozawa M, Hiver S, Yamamoto T, Shibata T, Upadhyayula S, Mimori-Kiyosue Y, Takeichi M (October 2020). "Adherens junction ... In addition to E-cadherin, adherens junctions are composed of the intracellular components, p120-catenin, beta-catenin, and ... Ladoux B, Nelson WJ, Yan J, Mège RM (October 2015). "The mechanotransduction machinery at work at adherens junctions". ...
Adherens junctions, desmosomes and hemidesmosomes (anchoring junctions) Gap junctions (communicating junction) Tight junctions ... occluding junctions) Invertebrates have several other types of specific junctions, for example septate junctions or the C. ... The β-catenin-α-catenin linked complex at the adherens junctions allows for the formation of a dynamic link to the actin ... Spot-like adherens junctions called focal adhesions help cells adhere to extracellular matrix. The cytoskeletal actin filaments ...
... such as the formation of adherens junctions, tight junctions and focal adhesions. Adherens junctions are a type of cell-cell ... This may serve as a mechanism for how actin is recruited to adherens junctions. Tight junctions, or zona occludens, are the ... α-catenin and β-catenin are integral components of adherens junctions, which bind together to produce cadherin-α-catenin-β- ... Hartsock, Andrea; Nelson, W. James (March 2008). "Adherens and tight junctions: Structure, function and connections to the ...
Cell-cell junctions can occur in different forms. In anchoring junctions between cells such as adherens junctions and ... Adherens junctions mainly function to maintain the shape of tissues and to hold cells together. In adherens junctions, ... According to their functions, the cell junctions can be classified as: Anchoring junctions (adherens junctions, desmosomes and ... Niessen, Carien M. (2007). "Tight Junctions/Adherens Junctions: Basic Structure and Function". Journal of Investigative ...
... is an adherens junction (AJ) protein, involved in the junction's integrity and stability. The protein was discovered in ... Knock-out of PLEKHA7 results in the loss of PDZD11 from epithelial adherens junctions, and this is rescued by the introduction ... Pulimeno P, Bauer C, Stutz J, Citi S (August 2010). "PLEKHA7 is an adherens junction protein with a tissue distribution and ... The first identified function of PLEKHA7 was is to contribute to integrity and stability of the zonula adherens junctions by ...
... adherens, desmosomes, gap, tight and tricellular junctions. Adherens, desmosomes, tight and tricellular junctions, serve ... "Calcium regulates the interplay between the tight junction and epithelial adherens junction at the plasma membrane". FEBS ... In one respect tight junctions play a generic role in cell signaling in that they may form a tight zip around cells forming an ... Gap junctions can form intercellular links, effectively a tiny direct regulated "pipe" called a connexon pair between the ...
Together Farquhar and Palade named tight junctions and adherens junctions. Since then, Farquhar has continued to study ... Cell junction-associated proteins IQGAP1, MAGI-2, CASK, spectrins, and alpha-actinin are components of the nephrin multiprotein ... junctions in the podocytes. After leaving Rockefeller in 1962, she established her own laboratory at the University of ...
"Endocytosis is required for E-cadherin redistribution at mature adherens junctions". PNAS. 106 (17): 7010-15. doi:10.1073/pnas. ... of cadherins into the adhesive junctions at the synapse. P120 ctn proteins are thought to either inhibit endocytosis of neural ...
While in the adherens junction, cadherins recruit β-catenin molecules onto their intracellular regions[clarification needed]. β ... β-catenin is part of a protein complex that form adherens junctions. These cell-cell adhesion complexes are necessary for the ... Adherens junctions require significant protein dynamics in order to link to the actin cytoskeleton, thereby enabling ... Sinn HW, Balsamo J, Lilien J, Lin JJ (September 2002). "Localization of the novel Xin protein to the adherens junction complex ...
... are shifted to the periphery of the active zone and form the puncta adherens junction (PAJ). The PAJ functions much like the ... adherens junctions in epithelial tissues. The displacement of these CAMs and the formation of this junction provides the ... signaling involving the activation of EphA4 results in the stabilization of synaptic proteins at the neuromuscular junction. As ...
The encoded protein affects the formation of adherens junction. Alternative splicing results in multiple transcript variants. ...
Song, X.; Zhu, CH; Doan, C; Xie, T (7 June 2002). "Germline Stem Cells Anchored by Adherens Junctions in the Drosophila Ovary ... Studies in Drosophila germarium have identified the signals decapentaplegic and adherens junctions that prevent germarium stem ...
Sahai E, Marshall CJ (June 2002). "ROCK and Dia have opposing effects on adherens junctions downstream of Rho". Nature Cell ...
The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of cell science 121 (13), 2115- ... Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. The Journal of clinical ... Her report of the discovery of VE-cadherin as a key protein component of cell-to-cell adherence junctions has led to the ... Endothelial cell-cell junctions: happy together. Nature reviews Molecular cell biology 5 (4), 261-270 (1284 citations) 2008. E ...
This protein is one of the plasma membrane components of adherens junctions. It also serves as an entry for certain mutant ... 1999). "Nectin/PRR: An Immunoglobulin-like Cell Adhesion Molecule Recruited to Cadherin-based Adherens Junctions through ... a Component of Cell-Cell Adherens Junctions". Mol. Cell. Biol. 20 (8): 2865-73. doi:10.1128/MCB.20.8.2865-2873.2000. PMC 85510 ...
Song X, Zhu CH, Doan C, Xie T (June 2002). "Germline stem cells anchored by adherens junctions in the Drosophila ovary niches ... adherens junctions and if this physical attachment is lost GSCs will differentiate and lose their identity as a stem cell. The ... whereby differentiating spermatocytes must traverse the tight junctions. These tight junctions form the blood testis barrier ( ... The bulge area at the junction of arrector pili muscle to the hair follicle sheath has been shown to host the skin stem cells ...
Compromise in adherens junctions (AJs) is associated with several chronic inflammatory diseases. Functional characterization ... Mishra, Jayshree; Das, Jugal Kishore; Kumar, Narendra (2017). "Janus kinase 3 regulates adherens junctions and epithelial ... Jak3 redistributed to basolateral surfaces and interacted with adherens junction (AJ) protein β-catenin. Jak3 expression in ...
An autoinhibited structure of alpha-catenin and its implications for vinculin recruitment to adherens junctions. J Biol Chem. ... Kobielak A, Pasolli HA, Fuchs E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin ... 9. Takeichi M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nature Reviews Molecular Cell ... Simske JS, Koppen M, Sims P, Hodgkin J, Yonkof A, Hardin J. The cell junction protein VAB-9 regulates adhesion and epidermal ...
... they localize to a cell adhesion structure such as focal adhesion or adherens junction. 2. they directly interact with one of ... functional modularity in the adherens junction". Current Opinion in Cell Biology. 36: 32-40. doi:10.1016/j.ceb.2015.06.008. ...
Aguilar-Aragon, M.; Bonello, T.T.; Bell, G.P.; Fletcher, G.C; Thompson, B.J. (2015). "Adherens junction remodeling during ... remodelling of adherens junctions, and removal of the Lgl protein from the plasma membrane to allow spindle orienting factors ... of the atypical myosin Dachs by the Fat and Dachsous cadherins is responsible for polarising tension at adherens junctions and ...
The exact mechanisms by which α-catenin acts in adherens junctions is still unclear; however, it is likely that α-catenin acts ... For instance, when an epithelial layer is complete and the adherens junctions indicate that the cell is surrounded, β-catenin ... α-catenin participates in the formation and stabilization of adherens junctions by binding to β-catenin-cadherin complexes in ... Tripathi V, Popescu NC, Zimonjic DB (April 2012). "DLC1 interaction with α-catenin stabilizes adherens junctions and enhances ...
... is a major cytoplasmic component of both desmosomes and adherens junctions, and is the only known constituent ... Shasby DM, Ries DR, Shasby SS, Winter MC (Jun 2002). "Histamine stimulates phosphorylation of adherens junction proteins and ... Plakoglobin is a cytoplasmic component of desmosomes and adherens junctions structures located within intercalated discs of ... "Plakoglobin is essential for myocardial compliance but dispensable for myofibril insertion into adherens junctions". Journal of ...
Shasby DM, Ries DR, Shasby SS, Winter MC (Jun 2002). "Histamine stimulates phosphorylation of adherens junction proteins and ... and the VE-cadherin-based adherens junction is thought to be particularly important. VE-cadherin is known to be required for ... thereby prevented loss of VE-cadherin expression at the endothelial adherens junctions. VE-cadherin is indispensable for proper ... "Alteration of interendothelial adherens junctions following tumor cell-endothelial cell interaction in vitro". Exp. Cell Res. ...
MBInfo - Adherens Junction MBInfo - Adherens Junction Assembly Adherens+Junctions at the U.S. National Library of Medicine ... Adherens junctions (or zonula adherens, intermediate junction, or "belt desmosome") are protein complexes that occur at cell- ... usually more basal than tight junctions. An adherens junction is defined as a cell junction whose cytoplasmic face is linked to ... "Signaling to and through the Endothelial Adherens Junction". In LaFlamme SE, Kowalczyck AP (eds.). Cell Junctions: Adhesion, ...
The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic ... Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a ... Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating ... partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the ...
Antibodies for proteins involved in adherens junction organization pathways, according to their Panther/Gene Ontology ... Antibodies for proteins involved in adherens junction organization pathways; according to their Panther/Gene Ontology ...
As a component of both adherens and synaptic junctions, delta-catenin can link the adherens junction to the synapse and, ... Delta-catenin at the synaptic-adherens junction Kenneth S Kosik 1 , Christine P Donahue, Inbal Israely, Xin Liu, Tomoyo ... Delta-catenin at the synaptic-adherens junction Kenneth S Kosik et al. Trends Cell Biol. 2005 Mar. ... By virtue of its restriction to the post-synaptic area, delta-catenin creates an asymmetric adherens junction in the region of ...
Adherens Junction Length during Tissue Contraction Is Controlled by the Mechanosensitive Activity of Actomyosin and Junctional ...
Rho1 regulates Drosophila adherens junctions independently of p120ctn Donald T. Fox, Donald T. Fox ... During animal development, adherens junctions (AJs) maintain epithelial cell adhesion and coordinate changes in cell shape by ... Drosophila p120 catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. J. Cell ... Rho1 interacts with p120ctn and α-catenin, and regulates cadherin-based adherens junction components in Drosophila.. ...
VE-cad tyrosine phosphorylation, adherens junction integrity and TEM of monocytes in human umbilical vein endothelial cells ( ... Tyrosine phosphorylation of vascular endothelial cadherin (VE-cad) leads to the disruption of endothelial adherens junctions ... Our findings show that the high-concentration glucose-induced disruption of endothelial adherens junctions is mediated by ... The role of protein kinase C (PKC) in induction of endothelial cells adherence junction disruption by exposure of HUVECs to ...
Adherens Junctions (AJs). At the onset of neurogenesis, neuroepithelial cells become RGs and lose tight junctions, but AJs are ... Adherens junctions between aRGs are crucial for the maintenance of the scaffold. In the enlarged box is represented the binding ... Veeraval, L., Oleary, C. J., and Cooper, H. M. (2020). Adherens junctions: guardians of cortical development. Front. Cell Dev ... 2006). Inactivation of aPKCλ results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis ...
Get editable icons and illustrations of Adherens junction. Create professional science figures in minutes with BioRender ... adherens,adherens junctions,zonula adherens,intermediate junction,belt desmosome,desmosome,epithelial cell,endothelial cell, ... icons.biorender.com/w550xh620/5b3636b1e330e90014c42f57/adherens-junction.png"},{"image":"https://icons.biorender.com/w75xh75/ ... 5b3636b1e330e90014c42f56/adherens-junction.png","waterMarkImage":"https://icons.biorender.com/w550xh620/ ...
GO keywords: adherens junction [+] focal adhesion extracellular matrix cadherin binding Morpholinos: itgb1 MO1 Article Images: ... Figure 1. Adherens junctions spatially guide integrin β1 activation (A) Confocal images of interphase HeLa cells fixed at ... Adherens junctions stimulate and spatially guide integrin activation and extracellular matrix deposition. Hadjisavva R , ... Adherens junction (AJ)-associated integrin activation depends on locally generated tension and does not require extracellular ...
Cell-Matrix Junctions. Focal Adhesions. Hemidesmosomes. Caveolae. Adherens Junctions. Membrane Microdomains. Cell Nucleus ...
Catenin includes a essential function in the forming of adherens junction. * Post author By healthanddietblog ... In adherens junctions, however the extracellular area of E-cadherin is vital allowing you to connect cells through homophilic ... Catenin includes a essential function in the forming of adherens junction through it is connections with -catenin and E- ... These outcomes suggest a job for p120 catenin being a regulatory proteins in adherens junctions by recruiting towards the ...
KEGG_ADHERENS_JUNCTION. 70. 1.67. 0.043. G1_S_TRANSITION_OF_MITOTIC_CELL_CYCLE. 25. 1.67. 0.045. ... REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX. 106. 2.56. ,0.0001. ... REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX. 106. 2.66. ,0.001. ... REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCTION_COMPLEX. 106. 2.05. 0.003. ...
A 135-KD RECEPTOR OF INTERCELLULAR ADHERENS JUNCTIONS .2. ANTIBODY-MEDIATED MODULATION OF JUNCTION FORMATION. Journal Of Cell ... VOLK, T; GEIGER, B (1984). A 135-KD-MEMBRANE PROTEIN OF INTERCELLULAR ADHERENS JUNCTIONS. Embo Journal. 3 (10):2249-2260. ... Erez, N; Bershadsky, A; Geiger, B (2005). Signaling from adherens-type junctions. European Journal of Cell Biology. 84 (2-3): ... GEIGER, B; GINSBERG, D (1991). THE CYTOPLASMIC DOMAIN OF ADHERENS-TYPE JUNCTIONS. Cell Motility And The Cytoskeleton. 20 (1):1- ...
is_active_in adherens junction IBA Inferred from Biological aspect of Ancestor. more info ... involved_in negative regulation of adherens junction organization IMP Inferred from Mutant Phenotype. more info ... Merlin regulates contact inhibition and is an integral part of cell-cell junctions, while ERM proteins, ezrin, radixin and ...
... adherens junctions; regulation of autophagy; snare interactions in vesicular transport; and cell cycle) have been previously ...
Cell-cell adherens junction. 113. 4.46 × 10−18. 6.72 × 10−16. MF_GO:0098641. Cadherin binding involved in cell-cell adhesion. ... ME/CFS; proteomics; plasma; ephrin-Eph pathway; immune metabolism; adherens junction; glucose; SOMAscan®; diagnosis ... Other recurring aspects also centered around cell-cell communication are linked to cell adhesion, with adherens junctions, axon ... The same study predicted a potential role of AIF1L in tight junctions, cell junctions, and focal adhesion, while showing that ...
... has a beta-catenin involved both in signaling and in forming adherens junctions. ... has a β-catenin involved both in signaling and in forming adherens junctions (. Nature. 2000, 408:727-731). The junctions form ... A slime mold, like metazoans, has a beta-catenin involved both in signaling and in forming adherens junctions.. William Wells( ... after the unicellular amoebae are starved and aggregate into a fruiting body, with junctions present only between cells at a ...
Keratinocytes are held together through desmosomes and adherens junctions. These junctions consist of calcium-binding ...
stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4.﻽. Lyu Q, Xu S, Lyu Y, Choi M, Christie ... SENCR Stabilizes Vascular Endothelial Cell Adherens Junction through Interaction with CKAP4.. Lyu, Q.; Xu, S.W.; Lyu, Y.Y.; ...
ADHERENS JUNCTIONS. UNIONES ADHERENTES. JUNÇÕES DE MATRIZ CELULAR. CELL-MATRIX JUNCTIONS. UNIONES DE MATRIZ CELULAR. ...
04520 Adherens junction. 04530 Tight junction. 04540 Gap junction. 04550 Signaling pathways regulating pluripotency of stem ...
AbLIM_anchor; Putative adherens-junction anchoring region of AbLIM. cl02475. Location:1 → 24. LIM; LIM is a small protein- ... AbLIM_anchor; Putative adherens-junction anchoring region of AbLIM. cl02475. Location:1 → 24. LIM; LIM is a small protein- ... AbLIM_anchor; Putative adherens-junction anchoring region of AbLIM. cl02475. Location:1 → 24. LIM; LIM is a small protein- ... AbLIM_anchor; Putative adherens-junction anchoring region of AbLIM. cl02475. Location:1 → 24. LIM; LIM is a small protein- ...
There are three basic types of cell junction, septate junction, adherens junction, and gap junction. The presence of these ... Three types of inter-cellular junction, zonula adherens, macula adherens, and gap junction, were found at vermiform stages and ... b) Adherens junction between two capsule cells. (c) Gap junction between posteroventral lateral cell and capsule cell. Bar ... These zonulae adherentes possibly belong to the septate junction because of the presence of fine septa-like structures in the ...
Name: vezatin, adherens junctions transmembrane protein. Type: Gene. Species: Mus musculus (mouse) ...
Adherens junctions appear normal (arrowhead). Somewhat more E-cadherin is found outside the adherens junctions than when wild- ... Adherens junctions appear normal (arrowhead). Somewhat more E-cadherin is found outside the adherens junctions than when wild- ... Shot localizes with proteins of the adherens junction and may play a role in adherens junction-mediated organization of the ... reveals that Shot colocalizes with adherens junctions(Fig. 3A-C). In shotmutant embryos, adherens junctions between tracheal ...
EMS, Adherens junctions (Costa et al., 1998; Korswagen et al., 2000; Natarajan et al., 2001; Putzke and Rothman, 2010; ... It binds to the cytoplasmic tail of classical cadherins and α-catenin to anchor the actin cytoskeleton to adherens junctions ... and co-localizes with these proteins in adherens junctions (Costa et al., 1998). Interestingly, BAR-1 and WRM-1 do not interact ...
adherens junctions associated protein 1. involved_in. ISO. (PMID:16410724). RGD. PMID:16410724. NCBI chr 5:163,907,846... ...
Cell adhesion: Tight junctions, desmosomes, adherens junctions, gap junctions, hemidesmosomes. Roles and composition. ...
MeSH Terms: Adherens Junctions/metabolism; Antigens, CD/drug effects*; Antigens, CD/metabolism; Cadherins/drug effects*; ... After exposure, the integrity of VE-cadherin in adherens junctions was assessed by immunofluorescence analysis, and ... potentially have a direct effect on capillary endothelia was examined by following the adherens junction component, vascular ... This molecule is incorporated into endothelial adherens junctions at the cell surface, where it forms homodimeric associations ...
  • Adherens junctions (or zonula adherens, intermediate junction, or "belt desmosome") are protein complexes that occur at cell-cell junctions and cell-matrix junctions in epithelial and endothelial tissues, usually more basal than tight junctions. (wikipedia.org)
  • They can appear as bands encircling the cell (zonula adherens) or as spots of attachment to the extracellular matrix (focal adhesion). (wikipedia.org)
  • In sheets of cells, they form into adhesion belts (zonula adherens) that go all the way around a cell. (nih.gov)
  • Cell-cell connections among epithelial cells possess an essential function in arranged tissues and so are generally mediated by adherens junctions and desmosomes. (healthanddietblog.info)
  • Keratinocytes are held together through desmosomes and adherens junctions. (medscape.com)
  • Cell Junctions: Adhesion, Development, and Disease. (wikipedia.org)
  • The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. (hindawi.com)
  • Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. (hindawi.com)
  • During animal development, adherens junctions (AJs) maintain epithelial cell adhesion and coordinate changes in cell shape by linking the actin cytoskeletons of adjacent cells. (biologists.com)
  • 2003). In epithelial cells, adherens junctions (AJs)mediate cell-cell adhesion, via interactions between cadherins on neighboring cells. (biologists.com)
  • Interendothelial adherens junctions (AJs) that maintain endothelial barrier function are largely composed of vascular endothelial cadherin (VE-cad), an endothelium-specific member of the cadherin family of adhesion proteins. (biomedcentral.com)
  • In adherens junctions, however the extracellular area of E-cadherin is vital allowing you to connect cells through homophilic connections, its intracellular area is necessary for regulating cell-cell adhesion. (healthanddietblog.info)
  • These junctions consist of calcium-binding transmembrane glycoproteins, which contribute to cellular adhesion. (medscape.com)
  • Cells bind each other using specialized cell surface adhesion complexes called adherens junctions. (stanford.edu)
  • Acts upstream of or within cell adhesion and protein localization to cell junction. (nih.gov)
  • Adherens junctions are composed of the following proteins: cadherins. (wikipedia.org)
  • 18. Adherens junction proteins in tumour progression. (nih.gov)
  • The protein encoded by this gene is part of a complex of proteins that constitute adherens junctions (AJs). (origene.com)
  • The BBB is held together by tight junctions of the neighboring endothelial cells of the barrier, more specifically by tight junction proteins (TJPs) which can take the form of either integral transmembrane proteins or accessory cytoplasmic membrane proteins. (bvsalud.org)
  • The results showed that ADTC1 has activity in inhibiting the resealing of the intercellular junctions of the MDCK cell monolayers similar to that of the linear ADT6, indicating that cyclization can maintain the peptide activity. (ku.edu)
  • In conclusion, formation of cyclic peptides can maintain cadherin peptide ability to modulate intercellular junctions of the BBB, and the primary sequence of ADT peptides is important for their biological activity. (ku.edu)
  • Tyrosine phosphorylation of vascular endothelial cadherin (VE-cad) leads to the disruption of endothelial adherens junctions and increases the transendothelial migration (TEM) of leukocytes. (biomedcentral.com)
  • Whether diesel exhaust particles (DEPs) potentially have a direct effect on capillary endothelia was examined by following the adherens junction component, vascular endothelial cell cadherin (VE-cadherin). (nih.gov)
  • These peptides modulate cadherin interactions in the adherens junctions of the vascular endothelial cells in the blood-brain barrier (BBB) to increase paracellular drug permeation. (ku.edu)
  • This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. (hindawi.com)
  • Rho1 interacts with p120ctn and alpha-catenin, and regulates cadherin-based adherens junction components in Drosophila. (nih.gov)
  • Adherens junctions spatially guide integrin β1 activation (A) Confocal images of interphase HeLa cells fixed at different time points (30, 45, 60, and 120 min) after seeding on N-Cadherin Fc substrates. (xenbase.org)
  • Catenin includes a essential function in the forming of adherens junction through it is connections with -catenin and E-cadherin. (healthanddietblog.info)
  • We have investigated how E-cadherin controls the elaboration of adherens junction associated cytoskeletal structures crucial for assembling tubular networks. (biologists.com)
  • These results indicate that E-cadherin controls track initiation and maturation using distinct,evolutionarily conserved signals to F-actin and microtubules, and employs Shot to promote adherens junction-associated cytoskeletal assembly. (biologists.com)
  • After exposure, the integrity of VE-cadherin in adherens junctions was assessed by immunofluorescence analysis, and demonstrated that increasing concentrations of DEPs caused increasing redistribution of VE-cadherin away from the cell-cell junctions toward intracellular locations. (nih.gov)
  • Reduction of IQGAP1 increases insoluble VE-cadherin at endothelial adherens junctions. (cdc.gov)
  • Adherens junctions stimulate and spatially guide integrin activation and extracellular matrix deposition. (xenbase.org)
  • Adherens junction (AJ)-associated integrin activation depends on locally generated tension and does not require extracellular matrix ligands. (xenbase.org)
  • This protein is present in many types of cells and tissues, where it is primarily found at junctions that connect neighboring cells (adherens junctions). (nih.gov)
  • The barrier function of the intestinal epithelium is provided by paracellular apical junction complexes, including tight junctions and adherens junctions located at the apical end of epithelial cells, and by mucus layers. (nih.gov)
  • Caco-2 cells labeled for tight junction molecule cingulin (green), actin (red), vinculin (pink) and DNA (blue). (weizmann.ac.il)
  • Fortunately, there are a number of ways to protect and strengthen a leaky gut, seal the tight junctions between the cells of the gut lining, and restore health, even in the most problematic of cases. (bodybio.com)
  • Our preliminary studies showed that chronic alcohol feeding decreased intestinal HIF-2, ITF and tight junction expression leading to increased endotoxemia and ultimately liver injury. (nih.gov)
  • The results, obtained in a setting that removes the confounding effects of inflammatory cells or blood components, suggest that if DEPs encounter alveolar capillaries in vivo, they may be able to directly affect the endothelial cell-cell junctions. (nih.gov)
  • Collagen XIIIa1 is a trimeric type 2 transmembrane molecule that localizes to intercellular adherens junctions and cell-matrix focal adhesions. (rndsystems.com)
  • This molecule is incorporated into endothelial adherens junctions at the cell surface, where it forms homodimeric associations with adjacent cells and contributes to the barrier function of the vasculature (Dejana et al. (nih.gov)
  • The role of protein kinase C (PKC) in induction of endothelial cells adherence junction disruption by exposure of HUVECs to high concentration of glucose was explored. (biomedcentral.com)
  • Our findings show that the high-concentration glucose-induced disruption of endothelial adherens junctions is mediated by tyrosine phosphorylation of VE-cad through PKC-β and MLC phosphorylation. (biomedcentral.com)
  • As a component of both adherens and synaptic junctions, delta-catenin can link the adherens junction to the synapse and, thereby, coordinate synaptic input with changes in the adherens junction. (nih.gov)
  • By virtue of its restriction to the post-synaptic area, delta-catenin creates an asymmetric adherens junction in the region of the synapse. (nih.gov)
  • Two the different parts of the adherens junction complicated have been regarded the main goals of tyrosine kinases/phosphatases: -catenin and p120 catenin. (healthanddietblog.info)
  • Nevertheless, the exact function of p120 catenin in the legislation of adherens junction isn't apparent since different writers have suggested positive and negative effects (examined in reference 4). (healthanddietblog.info)
  • A slime mold, like metazoans, has a beta-catenin involved both in signaling and in forming adherens junctions. (the-scientist.com)
  • Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. (hindawi.com)
  • VE-cad tyrosine phosphorylation, adherens junction integrity and TEM of monocytes in human umbilical vein endothelial cells (HUVECs) treated with high-concentration glucose were evaluated. (biomedcentral.com)
  • It is suggested that signaling by Spitz (but not Argos) is restricted to adhesive junctions. (sdbonline.org)
  • In this manner, midline glia not forming signaling junctions remain sensitive to juxtacrine Argos signaling, while an autocrine Argos signal is excluded by the adhesive junction (Stemerdink, 1997). (sdbonline.org)
  • An adherens junction is defined as a cell junction whose cytoplasmic face is linked to the actin cytoskeleton. (wikipedia.org)
  • Adherens junctions were, for many years, thought to share the characteristic of anchor cells through their cytoplasmic actin filaments. (wikipedia.org)
  • citation needed] Adherens junctions may serve as a regulatory module to maintain the actin contractile ring with which it is associated in microscopic studies. (wikipedia.org)
  • These changes are executed in part by the actin cytoskeleton, and neighboring cells act in concert by linking their cytoskeletons to cell-cell and cell-matrix junctions (reviewed by Perez-Moreno et al. (biologists.com)
  • Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. (hindawi.com)
  • The presence of these junctions suggests not only cell-to-cell attachment, but also cell-to-cell communication. (bioone.org)
  • Adherens junctions uniquely disassemble in uterine epithelial cells to allow the blastocyst to penetrate between epithelial cells. (wikipedia.org)
  • A similar cell junction in non-epithelial, non-endothelial cells is the fascia adherens. (wikipedia.org)
  • The junctions form after the unicellular amoebae are starved and aggregate into a fruiting body, with junctions present only between cells at a constriction near the top of the stalk tube. (the-scientist.com)
  • This information is relayed across synapses, which are junctions between nerve cells where cell-to-cell communication occurs. (medlineplus.gov)
  • These astrocytes co-label with markers to ependymal cells and astrocytes, form intercellular adherens junctions with neighboring ependymal cells, and some possess multiple basal bodies of cilia within their cytoplasm. (nih.gov)
  • In contrast, ADTC6 peptide does not have activity in inhibiting the junction resealing, indicating that the valine residue is important for peptide activity. (ku.edu)