Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices. (1/683)

To investigate the physiological consequences of the increase in spine density induced by estradiol in pyramidal neurons of the hippocampus, we performed simultaneous whole cell recordings and Ca2+ imaging in CA1 neuron spines and dendrites in hippocampal slices. Four- to eight-days in vitro slice cultures were exposed to 17beta-estradiol (EST) for an additional 4- to 8-day period, and spine density was assessed by confocal microscopy of DiI-labeled CA1 pyramidal neurons. Spine density was doubled in both apical and basal dendrites of the CA1 region in EST-treated slices; consistently, a reduction in cell input resistance was observed in EST-treated CA1 neurons. Double immunofluorescence staining of presynaptic (synaptophysin) and postsynaptic (alpha-subunit of CaMKII) proteins showed an increase in synaptic density after EST treatment. The slopes of the input/output curves of both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) postsynaptic currents were steeper in EST-treated CA1 neurons, consistent with the observed increase in synapse density. To characterize NMDA-dependent synaptic currents and dendritic Ca2+ transients during Schaffer collaterals stimulation, neurons were maintained at +40 mV in the presence of nimodipine, picrotoxin, and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). No differences in resting spine or dendritic Ca2+ levels were observed between control and EST-treated CA1 neurons. Intracellular Ca2+ transients during afferent stimulation exhibited a faster slope and reached higher levels in spines than in adjacent dendrites. Peak Ca2+ levels were larger in both spines and dendrites of EST-treated CA1 neurons. Ca2+ gradients between spine heads and dendrites during afferent stimulation were also larger in EST-treated neurons. Both spine and dendritic Ca2+ transients during afferent stimulation were reversibly blocked by D, L-2-amino-5-phosphonovaleric acid (D,L-APV). The increase in spine density and the enhanced NMDA-dependent Ca2+ signals in spines and dendrites induced by EST may underlie a threshold reduction for induction of NMDA-dependent synaptic plasticity in the hippocampus.  (+info)

Recurrent mossy fiber pathway in rat dentate gyrus: synaptic currents evoked in presence and absence of seizure-induced growth. (2/683)

A common feature of temporal lobe epilepsy and of animal models of epilepsy is the growth of hippocampal mossy fibers into the dentate molecular layer, where at least some of them innervate granule cells. Because the mossy fibers are axons of granule cells, the recurrent mossy fiber pathway provides monosynaptic excitatory feedback to these neurons that could facilitate seizure discharge. We used the pilocarpine model of temporal lobe epilepsy to study the synaptic responses evoked by activating this pathway. Whole cell patch-clamp recording demonstrated that antidromic stimulation of the mossy fibers evoked an excitatory postsynaptic current (EPSC) in approximately 74% of granule cells from rats that had survived >10 wk after pilocarpine-induced status epilepticus. Recurrent mossy fiber growth was demonstrated with the Timm stain in all instances. In contrast, antidromic stimulation of the mossy fibers evoked an EPSC in only 5% of granule cells studied 4-6 days after status epilepticus, before recurrent mossy fiber growth became detectable. Notably, antidromic mossy fiber stimulation also evoked an EPSC in many granule cells from control rats. Clusters of mossy fiber-like Timm staining normally were present in the inner third of the dentate molecular layer at the level of the hippocampal formation from which slices were prepared, and several considerations suggested that the recorded EPSCs depended mainly on activation of recurrent mossy fibers rather than associational fibers. In both status epilepticus and control groups, the antidromically evoked EPSC was glutamatergic and involved the activation of both AMPA/kainate and N-methyl-D-aspartate (NMDA) receptors. EPSCs recorded in granule cells from rats with recurrent mossy fiber growth differed in three respects from those recorded in control granule cells: they were much more frequently evoked, a number of them were unusually large, and the NMDA component of the response was generally much more prominent. In contrast to the antidromically evoked EPSC, the EPSC evoked by stimulation of the perforant path appeared to be unaffected by a prior episode of status epilepticus. These results support the hypothesis that recurrent mossy fiber growth and synapse formation increases the excitatory drive to dentate granule cells and thus facilitates repetitive synchronous discharge. Activation of NMDA receptors in the recurrent pathway may contribute to seizure propagation under depolarizing conditions. Mossy fiber-granule cell synapses also are present in normal rats, where they may contribute to repetitive granule cell discharge in regions of the dentate gyrus where their numbers are significant.  (+info)

Differences in the properties of ionotropic glutamate synaptic currents in oxytocin and vasopressin neuroendocrine neurons. (3/683)

Oxytocin (OT) and vasopressin (VP) hormone release from neurohypophysial terminals is controlled by the firing pattern of neurosecretory cells located in the hypothalamic supraoptic (SON) and paraventricular nuclei. Although glutamate is a key modulator of the electrical activity of both OT and VP neurons, a differential contribution of AMPA receptors (AMPARs) and NMDA receptors (NMDARs) has been proposed to mediate glutamatergic influences on these neurons. In the present study we examined the distribution and functional properties of synaptic currents mediated by AMPARs and NMDARs in immunoidentified SON neurons. Our results suggest that the properties of AMPA-mediated currents in SON neurons are controlled in a cell type-specific manner. OT neurons displayed AMPA-mediated miniature EPSCs (mEPSCs) with larger amplitude and faster decay kinetics than VP neurons. Furthermore, a peak-scaled nonstationary noise analysis of mEPSCs revealed a larger estimated single-channel conductance of AMPARs expressed in OT neurons. High-frequency summation of AMPA-mediated excitatory postsynaptic potentials was smaller in OT neurons. In both cell types, AMPA-mediated synaptic currents showed inward rectification, which was more pronounced in OT neurons, and displayed Ca2+ permeability. On the other hand, NMDA-mediated mEPSCs of both cell types had similar amplitude and kinetic properties. The cell type-specific expression of functionally different AMPARs can contribute to the adoption of different firing patterns by these neuroendocrine neurons in response to physiological stimuli.  (+info)

Clozapine, but not haloperidol, prevents the functional hyperactivity of N-methyl-D-aspartate receptors in rat cortical neurons induced by subchronic administration of phencyclidine. (4/683)

Repeated exposure of rats to the psychotomimetic drug phencyclidine (PCP) markedly increased the response of prefrontal cortical neurons to the glutamate agonist N-methyl-D-aspartate (NMDA) relative to agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid. Moreover, acute challenge by PCP produced a significantly reduced block of NMDA-induced current. In addition, the subchronic administration of PCP reduced significantly the paired-pulse facilitation, accompanied by a significant increase of excitatory postsynaptic current variance. These results suggest that repeated exposure to PCP increased evoked release of excitatory amino acids. The enhanced release of excitatory amino acids evoked by NMDA could explain, at least partly, a hypersensitive response to NMDA and a reduced blockade of the NMDA responses by a PCP challenge in rats exposed repeatedly to PCP. Pretreatment with the atypical antipsychotic drug clozapine, but not the typical antipsychotic drug haloperidol, attenuates the repeated PCP-induced effect. Our results support the hypothesis that clozapine may facilitate NMDA receptor-mediated neurotransmission to improve schizophrenic-negative symptoms and cognitive dysfunction. This novel approach is useful for evaluating the cellular mechanisms of action of atypical antipsychotic drugs.  (+info)

BIIR 561 CL: a novel combined antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and voltage-dependent sodium channels with anticonvulsive and neuroprotective properties. (5/683)

Antagonists of glutamate receptors of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype, as well as of voltage-gated sodium channels, exhibit anticonvulsive and neuroprotective properties in vivo. One can postulate that a compound that combines both principles might be useful for the treatment of disorders of the central nervous system, like focal or global ischemia. Here, we present data on the effects of dimethyl-(2-[2-(3-phenyl-[1,2, 4]oxadiazol-5-yl)-phenoxy]ethyl)-amine hydrochloride (BIIR 561 CL) on neuronal AMPA receptors and voltage-dependent sodium channels. BIIR 561 CL inhibited AMPA receptor-mediated membrane currents in cultured cortical neurons with an IC50 value of 8.5 microM. The inhibition was noncompetitive. In a cortical wedge preparation, BIIR 561 CL reduced AMPA-induced depolarizations with an IC50 value of 10.8 microM. In addition to the effects on the glutamatergic system, BIIR 561 CL inhibited binding of radiolabeled batrachotoxin to rat brain synaptosomal membranes with a Ki value of 1.2 microM. The compound reduced sodium currents in voltage-clamped cortical neurons with an IC50 value of 5.2 microM and inhibited the veratridine-induced release of glutamate from rat brain slices with an IC50 value of 2.3 microM. Thus, BIIR 561 CL inhibited AMPA receptors and voltage-gated sodium channels in a variety of preparations. BIIR 561 CL suppressed tonic seizures in a maximum electroshock model in mice with an ED50 value of 2.8 mg/kg after s.c. administration. In a model of focal ischemia in mice, i.p. administration of 6 or 60 mg/kg BIIR 561 CL reduced the area of the infarcted cortical surface. These data show that BIIR 561 CL is a combined antagonist of AMPA receptors and voltage-gated sodium channels with promising anticonvulsive and neuroprotective properties.  (+info)

SPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity. (6/683)

Accumulating preclinical data suggest that compounds that block the excitatory effect of glutamate on excitatory amino acid receptors may have neuroprotective effects and utility for the treatment of neurodegeneration after brain ischemia. In the present study, the in vitro and in vivo pharmacological properties of the novel glutamate antagonist SPD 502 [8-methyl-5(4-(N,N-dimethylsulfamoyl)phenyl)-6,7, 8,9,-tetrahydro-1H-pyrrolo[3,2-h]-isoquinoline-2, 3-dione-3-O-(4-hydroxybutyric acid-2-yl)oxime] are described. In binding studies, SPD 502 was shown to display selectivity for the [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-binding site (IC50 = 0.043 microM) compared with the [3H]kainate- (IC50 = 81 microM), [3H]cis-4-phosphonomethyl-2-piperidine carboxylic acid-(CGS 19755), and [3H]glycine-binding sites (IC50 > 30 microM) in rat cortical membranes. In an in vitro functional assay, SPD 502 blocked the AMPA-induced release of [3H]gamma-aminobutyric acid from cultured mouse cortical neurons in a competitive manner with an IC50 value of 0.23 microM. Furthermore, SPD 502 potently and selectively inhibited AMPA-induced currents in cortical neurons with an IC50 value of 0.15 microM. In in vivo electrophysiology, SPD 502 blocked AMPA-evoked spike activity in rat hippocampus after i.v. administration with an ED50 value of 6.1 mg/kg and with a duration of action of more than 1 h. Furthermore, SPD 502 increased the seizure threshold for electroshock-induced tonic seizures in mice at i.v doses of 40 mg/kg and higher. In the two-vessel occlusion model of transient forebrain ischemia in gerbils, SPD 502 (10 mg/kg bolus injection followed by a 10 mg/kg/h infusion for 2 h) resulted in a highly significant protection against the ischemia-induced damage in the hippocampal CA1 pyramidal neurons.  (+info)

Ethanol inhibition of synaptically evoked kainate responses in rat hippocampal CA3 pyramidal neurons. (7/683)

Many studies have demonstrated that intoxicating concentrations of ethanol (10-100 mM) can selectively inhibit the component of glutamatergic synaptic transmission mediated by N-methyl-D-aspartate (NMDA) receptors while having little or no effect on excitatory synaptic transmission mediated by non-NMDA receptors [i.e., alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and/or kainate (KA) receptors]. However, until the recent development of highly selective AMPA receptor antagonists, it was not possible to assess the relative contribution of AMPA and KA receptors to non-NMDA receptor-mediated synaptic transmission or to determine whether these glutamate receptor subtypes differed in their sensitivity to ethanol. In the present experiments, we used the highly selective AMPA receptor antagonist LY 303070 to pharmacologically isolate KA receptor-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal CA3 pyramidal neurons and tested their sensitivity to ethanol. Concentrations of ethanol as low as 20 mM significantly and reversibly depressed KA EPSCs. Ethanol also inhibited KA currents evoked by direct pressure application of KA in the presence of LY 303070, suggesting that this inhibition was mediated by a postsynaptic action. In contrast, ethanol had no effect on AMPA EPSCs in these cells, even at the highest concentration tested (80 mM). Ethanol significantly inhibited NMDA EPSCs in these neurons, but these responses were less sensitive to ethanol than KA EPSCs. These results suggest that in addition to its well-described depressant effect on NMDA receptor-mediated synaptic transmission, ethanol has an even greater inhibitory effect on glutamatergic synaptic transmission mediated by KA receptors in rat hippocampal CA3 pyramidal neurons.  (+info)

Differential roles of ionotropic glutamate receptors in canine medullary inspiratory neurons of the ventral respiratory group. (8/683)

The relative roles of ionotropic N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors in supplying excitatory drive to inspiratory (I) augmenting pattern neurons of the ventral respiratory group were studied in anesthetized, ventilated, paralyzed, and vagotomized dogs. Multibarrel micropipettes were used to record simultaneously single-unit neuronal activity and pressure microeject the NMDA antagonist, 2-amino-5-phosphonovalerate (AP5; 2 mM), the non-NMDA antagonist 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX; 0.25 mM), and an artificial cerebrospinal fluid vehicle. Ejected volume-rates were measured directly via meniscus level changes. The moving time average of phrenic nerve activity was used to determine respiratory phase durations and to synchronize cycle-triggered histograms of the discharge patterns. Both AP5 and NBQX produced dose-dependent reductions in peak spontaneous I neuronal discharge frequency (Fn). The average (+/- SE) maximum reduction in peak Fn produced by AP5 was 69.1 +/- 4.2% and by NBQX was 47.1 +/- 3.3%. Blockade of both glutamate receptor subtypes nearly silenced these neurons, suggesting that their activity is highly dependent on excitatory synaptic drive mediated by ionotropic glutamate receptors. Differential effects were found for the two glutamatergic antagonists. AP5 produced downward, parallel shifts in the augmenting pattern of discharge, whereas NBQX reduced the slope of the augmenting discharge pattern. These results suggest that time-varying excitatory input patterns to the canine I bulbospinal neurons are mediated by non-NMDA glutamate receptors and that constant or tonic input patterns to these neurons are mediated by NMDA receptors.  (+info)