The return of glomerular-filtered albumin to the rat renal vein. (1/319)

BACKGROUND: Recent studies have demonstrated that the normal glomerular capillary wall (GCW) is not charge selective to albumin. This means that albumin flux across the GCW is high, and this has been confirmed in studies in which albumin uptake by the tubules has been inhibited. Therefore, there must be a high-capacity postglomerular retrieval pathway in normal kidneys that returns filtered albumin back to the blood supply. METHODS: This study identifies the presence of glomerular-filtered albumin in the renal vein from the analysis of the decrease of radioactivity in the venous effluent after the injection of a pulse of tritium-labeled albumin into the renal artery in vivo and in the isolated perfused kidney. RESULTS: The postglomerular filtered albumin is returned to the blood supply by a high-capacity pathway that transports this albumin at a rate of 1830 +/- 292 micrograms/min.rat kidney (N = 14, mean +/- SEM). This pathway has been identified under physiological conditions in vivo and in the isolated perfused kidney. The pathway is specific for albumin, as it does not occur for horseradish peroxidase. The pathway is inhibited in a nonfiltering kidney. The pathway is also inhibited by ammonium chloride (an agent that inhibits tubular protein uptake but does not alter glomerular size selectivity) and by albumin peptides (which compete for the tubular albumin receptor). CONCLUSIONS: The high-capacity retrieval pathway for albumin is most likely associated with transtubular cell transport. It is also apparent that most albuminuric states could be accounted for by the malfunctioning of this pathway without resorting to any change in glomerular permselectivity.  (+info)

Segmental differentiations of cell junctions in the vascular endothelium. Arteries and veins. (2/319)

A systematic survey of endothelial junctions in elastic (aorta) and muscular (mesenteric) arteries and in medium (renal and mesenteric) and large (cava inferior) size veins has been carried out in the rat using freeze-cleaved preparations. The arterial endothelium is provided with a complex of occluding and communicating junctions (gap junctions) comparable to, though less elaborate than, that described in arterioles. The particles of the occluding junctions behave like "single unit" particles and have the tendency to remain on B faces upon membrane cleavage. In the venous endothelium the junctions take the form of long occluding junctions with few associated communicating junctions (maculae communicantes). As in arterial endothelium, the junctional particles appear preferentially on B faces in cleaved preparations. These structures, although continuous over long distances, are interrupted focally by areas in which the junctional elements are similar to those found in venules: the ridges and grooves are short, discontinuous, randomly distributed along the general line of cell contact, and often particle-free. In muscular arteries two unusual types of junctions are encountered. Both are disposed in loops over short distances along the perimeter of the cell. One type appears to be a strectched-out version of the usual combination of occluding and communcating junctions of the arterial endothelium (this type is also occasionally encountered in the venous endothelium). The other type is reminiscent of the septate junctions found in the epithelia of invertebrates but the apparent similarity remains to be checked by further work.  (+info)

3D Ultrasound imaging--a useful non-invasive tool to detect AV fistulas in transplanted kidneys. (3/319)

BACKGROUND: A precise, non-invasive, non-toxic, repeatable, convenient and inexpensive follow-up of renal transplants, especially following biopsies, is in the interest of nephrologists. Formerly, the rate of biopsies leading to AV fistulas had been underestimated. Imaging procedures suited to a detailed judgement of these vascular malformations are to be assessed. METHODS: Three-dimensional (3D) reconstruction techniques of ultrasound flow-directed and non-flow-directed energy mode pictures were compared with a standard procedure, gadolinium-enhanced nuclear magnetic resonance imaging angiography (MRA) using the phase contrast technique. RESULTS: Using B-mode and conventional duplex information, AV fistulas were localized in the upper pole of the kidney transplant of the index patient. The 3D reconstruction provided information about the exact localization and orientation of the fistula in relation to other vascular structures, and the flow along the fistula. The MRA provided localization and orientation information, but less functional information. Flow-directed and non-flow-directed energy mode pictures could be reconstructed to provide 3D information about vascular malformations in transplanted kidneys. CONCLUSION: In transplanted kidneys, 3D-ultrasound angiography may be equally as effective as MRA in localizing and identifying AV malformations. Advantages of the ultrasound method are that it is cheaper, non-toxic, non-invasive, more widely availability and that it even provides more functional information. Future prospective studies will be necessary to evaluate the two techniques further.  (+info)

Renal glucose production during insulin-induced hypoglycemia in humans. (4/319)

We investigated the effects of hypoglycemia on renal glucose production (RGP) and renal glucose uptake (RGU) using arteriovenous balance combined with tracer technique in humans. Our 14 healthy subjects had arterialized hand veins (artery) and renal veins (under fluoroscopy) catheterized after an overnight fast. Systemic and renal glucose kinetics were measured with infusion of [6-(2)H2]glucose, and renal plasma flow was measured by para-aminohippurate clearance. After a 150-min equilibration period, artery and renal vein samples were obtained between -30 and 0 min, and subjects received a 180-min peripheral insulin infusion (0.250 mU kg(-1) x min(-1)) with a variable infusion of [6-(2)H2]dextrose adjusted to maintain plasma glucose at either approximately 60 mg/dl (hypoglycemic clamp) or approximately 90 mg/dl (euglycemic clamp). Blood samples were obtained between 150 and 180 min during the study period. Insulin increased from 49 +/- 14 to 130 +/- 25 (hypoglycemia) and to 102 +/- 10 (euglycemia) pmol/l. Glucose decreased from 5.32 +/- 0.11 to 3.58 +/- 0.07 micromol/ml during hypoglycemia, but it did not change during euglycemia (5.20 +/- 0.19 vs. 5.05 +/- 0.15 micromol/ml). Endogenous glucose production decreased (9.30 +/- 0.70 vs. 5.65 +/- 0.50) during euglycemia but not during hypoglycemia (9.80 +/- 0.50 vs. 10.25 +/- 0.60 micromol x kg(-1) x min(-1)). During hypoglycemia, net renal glucose output increased from 0.54 +/- 0.30 to 2.31 +/- 0.40, RGP increased from 1.88 +/- 0.70 to 3.65 +/- 0.50 (P < 0.05), and RGU did not change (1.34 +/- 0.50 vs. 1.34 +/- 0.60 micromol x kg(-1) x min(-1)). During euglycemia, renal glucose balance switched from a net output of 0.72 +/- 0.20 to a net uptake of 1.70 +/- 0.92, RGP decreased from 2.31 +/- 0.50 to 1.20 +/- 0.58, and RGU increased from 1.59 +/- 0.50 to 2.90 +/- 0.70 micromol x kg(-1) x min(-1) (P < 0.05). During hypoglycemia, arterial glucagon increased from 105 +/- 6 to 129 +/- 8, epinephrine increased from 116 +/- 28 to 331 +/- 33, norepinephrine increased from 171 +/- 9 to 272 +/- 9 (all P < 0.05), and renal vein norepinephrine increased from 236 +/- 13 to 426 +/- 50 (P < 0.001). These data indicate that, in addition to counterregulatory hormones, activation of the autonomic nervous system during hypoglycemia stimulates glucose production by the kidney, which may represent an important additional component of the body's defense against hypoglycemia in humans.  (+info)

The heterogeneity of vascular findings in the kidneys of patients with benign essential hypertension. (5/319)

As the interlobular arteries of the ageing kidney progressively accumulate intimal fibroplasia, these fibroplastic changes appear to introduce strictures upon the interlobular arteries. These strictures are expected to generate nephron heterogeneity, which is a uniquely disturbed setting peculiarly suited to sustaining both high and low renin forms of hypertension. Fibroplastic renovasculopathy accumulates with age at varying rates in different human populations, and these rates closely parallel the rise of blood pressure with age, as documented by community surveys. Here, I introduce the expression type 1 for hypertension in subjects with mild or minimal renovasculopathy, and type 2 for those with severe vasculopathy. Data reviewed here imply that variations in prevailing blood pressure levels between populations can be attributed entirely, or almost entirely, to type 2 hypertension. No practical test is available to detect nephron heterogeneity clinically. Tests for this purpose have not been and are not now in development. The reason for this deficiency is probably the general lack of suspicion regarding the existence of this pathological entity. Once the entity becomes the target of attention, a variety of tests for measuring its severity in clinical patients should follow readily.  (+info)

Relationship between kidney size, renal injury, and renal impairment induced by shock wave lithotripsy. (6/319)

The relationship between kidney size and impaired renal function induced by shock-wave lithotripsy (SWL) was examined in 6- and 10-wk-old anesthetized pigs. Each pig received 2000 shock waves, 24 kV, or sham SWL to the lower pole calyx of one kidney. Bilateral GFR, renal plasma flow (RPF), and para-aminohippurate extraction was measured 1 h before and 1 and 4 h after SWL. The kidneys were then removed for morphometric analysis. Mean kidney weights were 66.1+/-2.7 g (n = 9) and 103.1+/-3.3 g (n = 8) in the SWL groups, and 60.1+/-2.6 g (n = 9) and 82.3+/-4.0 g (n = 9) in the sham-SWL groups. SWL-induced lesions occupied a significantly greater volume of the small kidneys (6.1+/-1.7 vol % versus 1.5+/-0.2 vol% in the large kidneys). RPF was significantly reduced by SWL in small and large kidneys, but to a significantly greater extent in small kidneys. RPF was also significantly reduced in the contralateral kidneys of both groups, but only at 1 h after SWL. SWL significantly reduced GFR to similar degrees in both kidneys of both groups, regardless of kidney size. Para-aminohippurate extraction was likewise reduced to similar degrees in both groups, but this effect was evident only in the SWL-treated kidneys, and only in the pole to which the shock waves had been applied. The injury induced by SWL affected a larger fraction of small kidneys than large ones, and the renal vasoconstriction induced by SWL was greatest in small kidneys.  (+info)

Infra-renal angles, entry into inferior vena cava and vertebral levels of renal veins. (7/319)

Current norms for renal vasculature hold true in only half the population. Standard textbooks perpetuate old misconceptions regarding renal venous anatomy. This study is aimed to determine left and right infra-renal angles (L-IRA, R-IRA); entry level of renal veins into the inferior vena cava (IVC), and height of IVC under renal vein influence; and their vertebral level. One hundred morphologically normal en-bloc renal specimens randomly selected from post-mortem examinations were dissected and resin casted. IRA were also measured from venograms of 32 adult and 11 foetal cadavers, as were vertebral entry levels. IRA measurements (degrees) were as follows: left, 55 degrees +/- 16 degrees (20 degrees -102 degrees ); right, 60 degrees +/- 17 degrees (10 degrees -93 degrees ). Left vein entered IVC higher than right 54%, lower 36%, and opposite each other 10%. Vertical distance between lower borders of veins was 1.0 +/- 0.9 cm. Vertical distance of IVC under renal vein influence was 2.3 +/- 1.0 cm. Vertebral level of veins in adults lies between TI2-L2. In foetuses, IRA was as follows: left, 65 degrees +/- 12 degrees (45 degrees -90 degrees ); right, 58 degrees +/- 7 degrees (40 degrees -70 degrees ); vertebral level between T12 and L3. Similar IRA values from literature noted on right, 51 degrees (26 degrees -100 degrees ); differences on left, 77 degrees (43 degrees -94 degrees ), clearly differing from Williams et al. (Gray's Anatomy, 37(th) ed, 1989) statement that renal veins "open into the inferior vena cava almost at right angles." Large variations of IRA are not surprising since kidneys are considered normally "floating viscera," varying position with posture and respiratory movement as well as in live vs. cadaveric subjects. The entry level into the IVC also differs from Williams et al. This study uniquely quantitated actual height difference between lower borders of left and right veins. The data presented appears to be the first documentation of vertebral level of entry of renal veins into IVC in foetuses. These findings are clinically important for the angiographer, catheter design, and planning porto-renal shunt procedures.  (+info)

Abdominal aortic aneurysm with aorta-left renal vein fistula with left varicocele. (8/319)

Abdominal aortic aneurysm with spontaneous aorto-left renal vein fistula is a rare but well-described clinical entity usually with abdominal pain, hematuria, and a nonfunctioning left kidney. This report describes a 44-year-old man with left-sided groin pain and varicocele who was treated with conservative measures only. The diagnosis was eventually made when he returned with microscopic hematuria, elevated serum creatinine level, and nonfunction of the left kidney; computed tomography scan demonstrated a 6-cm abdominal aortic aneurysm, a retroaortic left renal vein, and an enlargement of the left kidney. This patient represents the youngest to be reported with aorto-left renal vein fistula and the second case with a left-sided varicocele.  (+info)