Interrupting the transmission of respiratory tract infections: theory and practice. (1/1781)

Interruption of transmission has always been one of the most attractive approaches for infection control. The technologies available were severely limited before the development of appropriate vaccines. Mathematically, the proportion of those who need to be immune to interrupt transmission can be derived from the Ro, which represents the number of new cases infected by a single case when all contacts are susceptible. Purely respiratory infections have critical characteristics affecting transmission that are different from key childhood vaccine-preventable diseases spread by the respiratory route. They include frequent reinfections and antigenic changes of the agents. Pragmatic approaches to understanding their potential effect can be found in experimental and programmatic use of vaccines such as those for Haemophilus influenzae type b and influenza virus infections. Results of these experiences can in turn strengthen the development of transmission theory.  (+info)

Home delivery of heat-stable vaccines in Indonesia: outreach immunization with a prefilled, single-use injection device. (2/1781)

Extending immunization coverage to underserved populations will require innovative immunization strategies. This study evaluated one such strategy: the use of a prefilled, single-use injection device for outreach immunization by village midwives. The device, UniJect, is designed to prevent refilling or reuse. Stored at ambient temperatures for up to 1 month in midwives' homes, vaccine-filled UniJect devices were immediately available for outreach. Between July 1995 and April 1996, 110 midwives on the Indonesia islands of Lombok and Bali visited the homes of newborn infants to deliver hepatitis B vaccine to the infants and tetanus toxoid to their mothers. Observations and interviews showed that the midwives used the device properly and safely to administer approximately 10,000 sterile injections in home settings. There were no problems with excessive heat exposure during the storage or delivery of vaccine. Injection recipients and midwives expressed a strong preference for the UniJect device over a standard syringe. Use of the prefilled device outside the cold chain simplified the logistics and facilitated the speed and efficiency of home visits, while the single-dose format minimized vaccine wastage.  (+info)

A contraceptive peptide vaccine targeting sulfated glycoprotein ZP2 of the mouse zona pellucida. (3/1781)

In this study, we have mapped and characterized a B cell epitope of sulfated glycoprotein ZP2 (ZP2) as a step toward the development of a multi-epitope zona pellucida (ZP) vaccine. Recombinant polypeptides expressed by random deoxyribonuclease-digested fragments of ZP2 cDNA were screened for binding to IE-3, a monoclonal antibody to murine ZP2. Positive clones contained cDNA inserts encoding polypeptide corresponding to ZP2(103-134). When normal or ovariectomized female mice were immunized with three overlapping peptides that span this region of ZP2 (101-120, 111-130, 121-140), only ZP2(121-140) elicited IgG antibodies that reacted with mouse ovarian ZP, indicative of the presence of native B epitope and helper T cell epitope in ZP2(121-140). To more finely map the ZP2 B cell epitope, a random peptide display library was screened with the IE-3 antibody, and a consensus tetramer sequence VxYK that matched the ZP2(123-126) sequence VRYK was located. Competitive immunofluorescence analysis with single alanine-substituted VxYK peptides ranked the relative contribution of the three critical B cell epitope residues as Y > V > K. A chimeric peptide was constructed that contained the YRYK motif of ZP2 and a bovine RNase T cell epitope. Although (C57BL/6xA/J) F1 (B6AF1) female mice immunized with the chimeric peptide developed ZP antibody response, this peptide elicited antibody only in mice of the histocompatibility complex (MHC) H-2(k or b) haplotype. In contrast, ZP2(121-140) peptide elicited antibody in inbred mice with three additional mouse MHC haplotypes. Moreover, although ZP2(121-140) contained a T cell epitope, no oophoritis was observed after immunization of B6AF1 mice with ZP2(121-140) in complete Freund's adjuvant (CFA). In a preliminary trial, female B6AF1 mice immunized with ZP2(121-140) in CFA had reduced litter sizes as compared with mice injected with CFA alone.  (+info)

Molecular characterization of a Haemaphysalis longicornis tick salivary gland-associated 29-kilodalton protein and its effect as a vaccine against tick infestation in rabbits. (4/1781)

The use of tick vaccines in mammalian hosts has been shown to be the most promising alternative tick control method to current use of acaricides, which suffers from a number of limitations. However, the success of this method is dependent on the identification, cloning, and in vitro expression of tick molecules involved in the mediation of key physiological roles with respect to the biological success of a tick as a vector and pest. We have sequenced and characterized a Haemaphysalis longicornis tick salivary gland-associated cDNA coding for a 29-kDa extracellular matrix-like protein. This protein is expressed in both unfed and fed immature and mature H. longicornis ticks. The predicted amino acid sequence of p29 shows high homology to sequences of some known extracellular matrix like-proteins with the structural conservation similar to all known collagen proteins. Immunization with the recombinant p29 conferred a significant protective immunity in rabbits, resulting in reduced engorgement weight for adult ticks and up to 40 and 56% mortality in larvae and nymphs that fed on the immunized rabbits. We speculate that this protein is associated with formation of tick cement, a chemical compound that enables the tick to remain attached to the host, and suggest a role for p29 as a candidate tick vaccine molecule for the control of ticks. We have discussed our findings with respect to the search of tick molecules for vaccine candidates.  (+info)

Impact of vaccines universally recommended for children--United States, 1990-1998. (5/1781)

At the beginning of the 20th century, infectious diseases were widely prevalent in the United States and exacted an enormous toll on the population. For example, in 1900, 21,064 smallpox cases were reported, and 894 patients died. In 1920, 469,924 measles cases were reported, and 7575 patients died; 147,991 diphtheria cases were reported, and 13,170 patients died. In 1922, 107,473 pertussis cases were reported, and 5099 patients died.  (+info)

Interleukin-12 as an adjuvant for an antischistosome vaccine consisting of adult worm antigens: protection of rats from cercarial challenge. (6/1781)

Our group previously demonstrated that a detergent extract (fraction S3) prepared from immature (4-week) Schistosoma mansoni parasites can induce partial, serum-transferable immunity to challenge infection in rats when administered as an alum precipitate. In the present study, we examined whether S3 prepared from adult (7-week) worms could similarly induce protection and whether immunity could be positively influenced by treatment with interleukin-12 (IL-12). IL-12 coadministered to Fischer rats and C57BL/6 mice at the time of S3 vaccination altered the prechallenge kinetics of S3-specific antibody titers in both species, ultimately leading to a stable enhancement of titers (relative to those in animals vaccinated without IL-12) in mice but not rats. Immunoblot analysis of prechallenge immune sera demonstrated that IL-12 treatment was associated with changes in the S3 antigen recognition profile in each species. Isotyping of specific antibodies in S3- plus IL-12-vaccinated mice prior to challenge infection revealed a moderate elevation in immunoglobulin G1 (IgG1) responses, strongly enhanced IgG2a and IgG2b responses, as well as diminished total serum IgE responses compared to those in mice given S3 only. In vaccinated rats, IL-12 profoundly suppressed specific IgG1 and enhanced IgG2b responses but did not affect IgG2a responses. S3- plus IL-12-vaccinated rats also produced less total IgE upon challenge infection. Enumeration of worm burdens revealed that vaccination with S3 plus IL-12 conferred 50% protection from cercarial challenge to rats, whereas rats given S3 only were not protected; mice were not protected by S3 vaccination regardless of IL-12 coadministration. The protection observed in S3- plus IL-12-vaccinated rats could not be transferred with serum, suggesting participation of an activated cellular component in the expression of immunity.  (+info)

Single-dose mucosal immunization with biodegradable microparticles containing a Schistosoma mansoni antigen. (7/1781)

The purpose of this work was to assess the immunogenicity of a single nasal or oral administration of recombinant 28-kDa glutathione S-transferase of Schistosoma mansoni (rSm28GST) entrapped by poly(lactide-co-glycolide) (PLG)- or polycaprolactone (PCL)-biodegradable microparticles. Whatever the polymer and the route of administration used, the equivalent of 100 microg of entrapped rSm28GST induced a long-lasting and stable antigen-specific serum antibody response, with a peak at 9 to 10 weeks following immunization. Isotype profiles were comparable, with immunoglobulin G1 being the predominant isotype produced. The abilities of specific antisera to neutralize the rSm28GST enzymatic activity have been used as criteria of immune response quality. Pooled 10-week sera from mice receiving PLG microparticles by the nasal or oral route neutralized the rSm28GST enzymatic activity, whereas sera of mice receiving either PCL microparticles, free rSm28GST, or empty microparticles inefficiently neutralized this enzymatic activity. Finally, this study shows that a single administration of these microparticles could provide distinct and timely release pulses of microencapsulated antigen, which might greatly facilitate future vaccine development.  (+info)

Heat shock protein-based therapeutic strategies against human immunodeficiency virus type 1 infection. (8/1781)

Heat shock proteins (hsps) and cyclophilins (CypA) are intracellular chaperone molecules that facilitate protein folding and assembly. These proteins are selectively expressed in cells following exposure to a range of stress stimuli, including viral infection. Hsp species are highly immunogenic, eliciting humoral, cytotoxic T lymphocyte (CTL), and natural killer (NK) cell responses against viruses, tumours, and infectious diseases. This review discusses the roles of stress proteins in immunity and viral life cycles, vis-a-vis the development of Hsp-based therapeutic strategies against human immunodeficiency virus type-1 (HIV-1) infection. Cumulative findings are cited implicating the requirement of CypA in HIV-1 replication and formation of infectious virions. Studies by our group show the upregulated expression of hsp27 and hsp70 during single-cycle HIV infections. These species redistribute to the cell surface following HIV-infection and heat stress, serving as targets for NK and antibody-dependent cellular cytotoxicity. Co-immunoprecipitation and Western blot studies show that hsp27, hsp70, and hsp78 complex with HIV-1 viral proteins intracellularly. Hsp70, hsp56, and CypA are assembled into HIV-1 virions. The ability of hsps to interact with HIV-1 viral proteins, combined with their inherent adjuvant and immunogenic properties, indicates that hsps may serve as vehicles for antigen delivery and the design of vaccines against acquired immunodeficiency syndrome.  (+info)