Crystallization and a 5 A X-ray diffraction study of Aphanothece sacrum ferredoxin. (1/382)

A chloroplast-type ferredoxin containing two non-heme iron and two labile sulfur atoms per molecule was prepared from Aphanothece sacrum. Crystals were obtained by dialysis against 75% saturated a-monium sulfate solution, and belong to the tetragonal system with cell dimensions a = b = 92.2 A and c = 47.6 A, containing four molecules in an asymmetric unit. The electron density map at 5 A resolution was calculated by using the best phase angles determined by the single isomorphous replacement method coupled with the anomalous dispersion effect. An anomalous dispersion difference Fourier map for the native crystal clearly showed four humps corresponding to the iron atoms in an asymmetric unit. The electron densis surface.  (+info)

Distribution of uranium in rats implanted with depleted uranium pellets. (2/382)

During the Persian Gulf War, soldiers were injured with depleted uranium (DU) fragments. To assess the potential health risks associated with chronic exposure to DU, Sprague Dawley rats were surgically implanted with DU pellets at 3 dose levels (low, medium and high). Biologically inert tantalum (Ta) pellets were used as controls. At 1 day and 6, 12, and 18 months after implantation, the rats were euthanized and tissue samples collected. Using kinetic phosphorimetry, uranium levels were measured. As early as 1 day after pellet implantation and at all subsequent sample times, the greatest concentrations of uranium were in the kidney and tibia. At all time points, uranium concentrations in kidney and bone (tibia and skull) were significantly greater in the high-dose rats than in the Ta-control group. By 18 months post-implantation, the uranium concentration in kidney and bone of low-dose animals was significantly different from that in the Ta controls. Significant concentrations of uranium were excreted in the urine throughout the 18 months of the study (224 +/- 32 ng U/ml urine in low-dose rats and 1010 +/- 87 ng U/ml urine in high-dose rats at 12 months). Many other tissues (muscle, spleen, liver, heart, lung, brain, lymph nodes, and testicles) contained significant concentrations of uranium in the implanted animals. From these results, we conclude that kidney and bone are the primary reservoirs for uranium redistributed from intramuscularly embedded fragments. The accumulations in brain, lymph nodes, and testicles suggest the potential for unanticipated physiological consequences of exposure to uranium through this route.  (+info)

Radionuclides in the lichen-caribou-human food chain near uranium mining operations in northern Saskatchewan, Canada. (3/382)

The richest uranium ore bodies ever discovered (Cigar Lake and McArthur River) are presently under development in northeastern Saskatchewan. This subarctic region is also home to several operating uranium mines and aboriginal communities, partly dependent upon caribou for subsistence. Because of concerns over mining impacts and the efficient transfer of airborne radionuclides through the lichen-caribou-human food chain, radionuclides were analyzed in tissues from 18 barren-ground caribou (Rangifer tarandus groenlandicus). Radionuclides included uranium (U), radium (226Ra), lead (210Pb), and polonium (210Po) from the uranium decay series; the fission product (137Cs) from fallout; and naturally occurring potassium (40K). Natural background radiation doses average 2-4 mSv/year from cosmic rays, external gamma rays, radon inhalation, and ingestion of food items. The ingestion of 210Po and 137Cs when caribou are consumed adds to these background doses. The dose increment was 0.85 mSv/year for adults who consumed 100 g of caribou meat per day and up to 1.7 mSv/year if one liver and 10 kidneys per year were also consumed. We discuss the cancer risk from these doses. Concentration ratios (CRs), relating caribou tissues to lichens or rumen (stomach) contents, were calculated to estimate food chain transfer. The CRs for caribou muscle ranged from 1 to 16% for U, 6 to 25% for 226Ra, 1 to 2% for 210Pb, 6 to 26% for 210Po, 260 to 370% for 137Cs, and 76 to 130% for 40K, with 137Cs biomagnifying by a factor of 3-4. These CRs are useful in predicting caribou meat concentrations from the lichens, measured in monitoring programs, for the future evaluation of uranium mining impacts on this critical food chain.  (+info)

X-ray analysis of ferredoxin from Spirulina platensis. II. Chelate structure of active center. (4/382)

A chloroplast-type ferredoxin from Spirulina platenis crystallized in an orthorhombic system, space group C2221, with cell dimensions a=62.32, b=28.51, and c=108.08 A. The electron density map at 2.8 A resolution was prepared by using the best phase angles determined by the single isomorphous replacement method coupled with the anomalous dispersion method. The chelating structure of the acitve center was revealed as follows. Of the six cysteinyl residues in the molecule, Cys 41, Cys 4k, Cys 49, and Cys 79 are involved in the active center. Cys 41 and Cys 46 are coordinated to one iron atom, and Cys 49 and Cys 79 to the other iron atom. Only one of these cysteinyl residues, Cys 79, is comparatively apart from the other three in the amino acids sequence of the molecule, as found in the case of bacterial ferredoxin. It appears that the NH....S hydrogen bonds are around the active center, as in other non-heme iron sulfur proteins.  (+info)

Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum. (5/382)

It has recently been noted that a diversity of hyperthermophilic microorganisms have the ability to reduce Fe(III) with hydrogen as the electron donor, but the reduction of Fe(III) or other metals by these organisms has not been previously examined in detail. When Pyrobaculum islandicum was grown at 100 degrees C in a medium with hydrogen as the electron donor and Fe(III)-citrate as the electron acceptor, the increase in cell numbers of P. islandicum per mole of Fe(III) reduced was found to be ca. 10-fold higher than previously reported. Poorly crystalline Fe(III) oxide could also serve as the electron acceptor for growth on hydrogen. The stoichiometry of hydrogen uptake and Fe(III) oxide reduction was consistent with the oxidation of 1 mol of hydrogen resulting in the reduction of 2 mol of Fe(III). The poorly crystalline Fe(III) oxide was reduced to extracellular magnetite. P. islandicum could not effectively reduce the crystalline Fe(III) oxide minerals goethite and hematite. In addition to using hydrogen as an electron donor for Fe(III) reduction, P. islandicum grew via Fe(III) reduction in media in which peptone and yeast extract served as potential electron donors. The closely related species P. aerophilum grew via Fe(III) reduction in a similar complex medium. Cell suspensions of P. islandicum reduced the following metals with hydrogen as the electron donor: U(VI), Tc(VII), Cr(VI), Co(III), and Mn(IV). The reduction of these metals was dependent upon the presence of cells and hydrogen. The metalloids arsenate and selenate were not reduced. U(VI) was reduced to the insoluble U(IV) mineral uraninite, which was extracellular. Tc(VII) was reduced to insoluble Tc(IV) or Tc(V). Cr(VI) was reduced to the less toxic, less soluble Cr(III). Co(III) was reduced to Co(II). Mn(IV) was reduced to Mn(II) with the formation of manganese carbonate. These results demonstrate that biological reduction may contribute to the speciation of metals in hydrothermal environments and could account for such phenomena as magnetite accumulation and the formation of uranium deposits at ca. 100 degrees C. Reduction of toxic metals with hyperthermophilic microorganisms or their enzymes might be applied to the remediation of metal-contaminated waters or waste streams.  (+info)

Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. (6/382)

Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO(2) and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH(2)DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml(-1)) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms.  (+info)

Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. (7/382)

A uranium-lead zircon age for a volcanic ash interstratified with fossil-bearing, shallow marine siliciclastic rocks in the Zimnie Gory section of the White Sea region indicates that a diverse assemblage of body and trace fossils occurred before 555.3 +/- 0.3 million years ago. This age is a minimum for the oldest well-documented triploblastic bilaterian Kimberella. It also makes co-occurring trace fossils the oldest that are reliably dated. This determination of age implies that there is no simple relation between Ediacaran diversity and the carbon isotopic composition of Neoproterozoic seawater.  (+info)

Improvement of accuracy of chromosome aberration analysis for biological radiation dosimetry. (8/382)

The frequency of chromosome aberrations in circulating lymphocytes is accepted as being the most reliable indicator of the absorbed dose of radiation. Researches done to improve the accuracy of cytogenetic analysis are described in this review. These include investigations of in vitro factors that affect the yield of radiation-induced aberrations and of in vivo factors that affect the chromosomal radiosensitivity of individuals. Improved chromosome-painting methods for accurate judgment of dicentrics and translocations are introduced. The practicality of these advanced cytogenetic techniques is shown by examinations of individuals exposed in the radiation accident at Tokaimura in 1999.  (+info)